1 /* 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 3 * Routines for control of YMF724/740/744/754 chips 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/firmware.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/mutex.h> 29 #include <linux/module.h> 30 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/info.h> 34 #include <sound/tlv.h> 35 #include "ymfpci.h" 36 #include <sound/asoundef.h> 37 #include <sound/mpu401.h> 38 39 #include <asm/io.h> 40 #include <asm/byteorder.h> 41 42 /* 43 * common I/O routines 44 */ 45 46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 47 48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 49 { 50 return readb(chip->reg_area_virt + offset); 51 } 52 53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 54 { 55 writeb(val, chip->reg_area_virt + offset); 56 } 57 58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 59 { 60 return readw(chip->reg_area_virt + offset); 61 } 62 63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 64 { 65 writew(val, chip->reg_area_virt + offset); 66 } 67 68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 69 { 70 return readl(chip->reg_area_virt + offset); 71 } 72 73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 74 { 75 writel(val, chip->reg_area_virt + offset); 76 } 77 78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 79 { 80 unsigned long end_time; 81 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 82 83 end_time = jiffies + msecs_to_jiffies(750); 84 do { 85 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 86 return 0; 87 schedule_timeout_uninterruptible(1); 88 } while (time_before(jiffies, end_time)); 89 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); 90 return -EBUSY; 91 } 92 93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 94 { 95 struct snd_ymfpci *chip = ac97->private_data; 96 u32 cmd; 97 98 snd_ymfpci_codec_ready(chip, 0); 99 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 100 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 101 } 102 103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 104 { 105 struct snd_ymfpci *chip = ac97->private_data; 106 107 if (snd_ymfpci_codec_ready(chip, 0)) 108 return ~0; 109 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 110 if (snd_ymfpci_codec_ready(chip, 0)) 111 return ~0; 112 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 113 int i; 114 for (i = 0; i < 600; i++) 115 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 116 } 117 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 118 } 119 120 /* 121 * Misc routines 122 */ 123 124 static u32 snd_ymfpci_calc_delta(u32 rate) 125 { 126 switch (rate) { 127 case 8000: return 0x02aaab00; 128 case 11025: return 0x03accd00; 129 case 16000: return 0x05555500; 130 case 22050: return 0x07599a00; 131 case 32000: return 0x0aaaab00; 132 case 44100: return 0x0eb33300; 133 default: return ((rate << 16) / 375) << 5; 134 } 135 } 136 137 static u32 def_rate[8] = { 138 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 139 }; 140 141 static u32 snd_ymfpci_calc_lpfK(u32 rate) 142 { 143 u32 i; 144 static u32 val[8] = { 145 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 146 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 147 }; 148 149 if (rate == 44100) 150 return 0x40000000; /* FIXME: What's the right value? */ 151 for (i = 0; i < 8; i++) 152 if (rate <= def_rate[i]) 153 return val[i]; 154 return val[0]; 155 } 156 157 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 158 { 159 u32 i; 160 static u32 val[8] = { 161 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 162 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 163 }; 164 165 if (rate == 44100) 166 return 0x370A0000; 167 for (i = 0; i < 8; i++) 168 if (rate <= def_rate[i]) 169 return val[i]; 170 return val[0]; 171 } 172 173 /* 174 * Hardware start management 175 */ 176 177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 178 { 179 unsigned long flags; 180 181 spin_lock_irqsave(&chip->reg_lock, flags); 182 if (chip->start_count++ > 0) 183 goto __end; 184 snd_ymfpci_writel(chip, YDSXGR_MODE, 185 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 186 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 187 __end: 188 spin_unlock_irqrestore(&chip->reg_lock, flags); 189 } 190 191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 192 { 193 unsigned long flags; 194 long timeout = 1000; 195 196 spin_lock_irqsave(&chip->reg_lock, flags); 197 if (--chip->start_count > 0) 198 goto __end; 199 snd_ymfpci_writel(chip, YDSXGR_MODE, 200 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 201 while (timeout-- > 0) { 202 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 203 break; 204 } 205 if (atomic_read(&chip->interrupt_sleep_count)) { 206 atomic_set(&chip->interrupt_sleep_count, 0); 207 wake_up(&chip->interrupt_sleep); 208 } 209 __end: 210 spin_unlock_irqrestore(&chip->reg_lock, flags); 211 } 212 213 /* 214 * Playback voice management 215 */ 216 217 static int voice_alloc(struct snd_ymfpci *chip, 218 enum snd_ymfpci_voice_type type, int pair, 219 struct snd_ymfpci_voice **rvoice) 220 { 221 struct snd_ymfpci_voice *voice, *voice2; 222 int idx; 223 224 *rvoice = NULL; 225 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 226 voice = &chip->voices[idx]; 227 voice2 = pair ? &chip->voices[idx+1] : NULL; 228 if (voice->use || (voice2 && voice2->use)) 229 continue; 230 voice->use = 1; 231 if (voice2) 232 voice2->use = 1; 233 switch (type) { 234 case YMFPCI_PCM: 235 voice->pcm = 1; 236 if (voice2) 237 voice2->pcm = 1; 238 break; 239 case YMFPCI_SYNTH: 240 voice->synth = 1; 241 break; 242 case YMFPCI_MIDI: 243 voice->midi = 1; 244 break; 245 } 246 snd_ymfpci_hw_start(chip); 247 if (voice2) 248 snd_ymfpci_hw_start(chip); 249 *rvoice = voice; 250 return 0; 251 } 252 return -ENOMEM; 253 } 254 255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 256 enum snd_ymfpci_voice_type type, int pair, 257 struct snd_ymfpci_voice **rvoice) 258 { 259 unsigned long flags; 260 int result; 261 262 if (snd_BUG_ON(!rvoice)) 263 return -EINVAL; 264 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 265 return -EINVAL; 266 267 spin_lock_irqsave(&chip->voice_lock, flags); 268 for (;;) { 269 result = voice_alloc(chip, type, pair, rvoice); 270 if (result == 0 || type != YMFPCI_PCM) 271 break; 272 /* TODO: synth/midi voice deallocation */ 273 break; 274 } 275 spin_unlock_irqrestore(&chip->voice_lock, flags); 276 return result; 277 } 278 279 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 280 { 281 unsigned long flags; 282 283 if (snd_BUG_ON(!pvoice)) 284 return -EINVAL; 285 snd_ymfpci_hw_stop(chip); 286 spin_lock_irqsave(&chip->voice_lock, flags); 287 if (pvoice->number == chip->src441_used) { 288 chip->src441_used = -1; 289 pvoice->ypcm->use_441_slot = 0; 290 } 291 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 292 pvoice->ypcm = NULL; 293 pvoice->interrupt = NULL; 294 spin_unlock_irqrestore(&chip->voice_lock, flags); 295 return 0; 296 } 297 298 /* 299 * PCM part 300 */ 301 302 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 303 { 304 struct snd_ymfpci_pcm *ypcm; 305 u32 pos, delta; 306 307 if ((ypcm = voice->ypcm) == NULL) 308 return; 309 if (ypcm->substream == NULL) 310 return; 311 spin_lock(&chip->reg_lock); 312 if (ypcm->running) { 313 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 314 if (pos < ypcm->last_pos) 315 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 316 else 317 delta = pos - ypcm->last_pos; 318 ypcm->period_pos += delta; 319 ypcm->last_pos = pos; 320 if (ypcm->period_pos >= ypcm->period_size) { 321 /* 322 printk(KERN_DEBUG 323 "done - active_bank = 0x%x, start = 0x%x\n", 324 chip->active_bank, 325 voice->bank[chip->active_bank].start); 326 */ 327 ypcm->period_pos %= ypcm->period_size; 328 spin_unlock(&chip->reg_lock); 329 snd_pcm_period_elapsed(ypcm->substream); 330 spin_lock(&chip->reg_lock); 331 } 332 333 if (unlikely(ypcm->update_pcm_vol)) { 334 unsigned int subs = ypcm->substream->number; 335 unsigned int next_bank = 1 - chip->active_bank; 336 struct snd_ymfpci_playback_bank *bank; 337 u32 volume; 338 339 bank = &voice->bank[next_bank]; 340 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 341 bank->left_gain_end = volume; 342 if (ypcm->output_rear) 343 bank->eff2_gain_end = volume; 344 if (ypcm->voices[1]) 345 bank = &ypcm->voices[1]->bank[next_bank]; 346 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 347 bank->right_gain_end = volume; 348 if (ypcm->output_rear) 349 bank->eff3_gain_end = volume; 350 ypcm->update_pcm_vol--; 351 } 352 } 353 spin_unlock(&chip->reg_lock); 354 } 355 356 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 357 { 358 struct snd_pcm_runtime *runtime = substream->runtime; 359 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 360 struct snd_ymfpci *chip = ypcm->chip; 361 u32 pos, delta; 362 363 spin_lock(&chip->reg_lock); 364 if (ypcm->running) { 365 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 366 if (pos < ypcm->last_pos) 367 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 368 else 369 delta = pos - ypcm->last_pos; 370 ypcm->period_pos += delta; 371 ypcm->last_pos = pos; 372 if (ypcm->period_pos >= ypcm->period_size) { 373 ypcm->period_pos %= ypcm->period_size; 374 /* 375 printk(KERN_DEBUG 376 "done - active_bank = 0x%x, start = 0x%x\n", 377 chip->active_bank, 378 voice->bank[chip->active_bank].start); 379 */ 380 spin_unlock(&chip->reg_lock); 381 snd_pcm_period_elapsed(substream); 382 spin_lock(&chip->reg_lock); 383 } 384 } 385 spin_unlock(&chip->reg_lock); 386 } 387 388 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 389 int cmd) 390 { 391 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 392 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 393 struct snd_kcontrol *kctl = NULL; 394 int result = 0; 395 396 spin_lock(&chip->reg_lock); 397 if (ypcm->voices[0] == NULL) { 398 result = -EINVAL; 399 goto __unlock; 400 } 401 switch (cmd) { 402 case SNDRV_PCM_TRIGGER_START: 403 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 404 case SNDRV_PCM_TRIGGER_RESUME: 405 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 406 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 407 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 408 ypcm->running = 1; 409 break; 410 case SNDRV_PCM_TRIGGER_STOP: 411 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 412 kctl = chip->pcm_mixer[substream->number].ctl; 413 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 414 } 415 /* fall through */ 416 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 417 case SNDRV_PCM_TRIGGER_SUSPEND: 418 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 419 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 420 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 421 ypcm->running = 0; 422 break; 423 default: 424 result = -EINVAL; 425 break; 426 } 427 __unlock: 428 spin_unlock(&chip->reg_lock); 429 if (kctl) 430 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 431 return result; 432 } 433 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 434 int cmd) 435 { 436 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 437 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 438 int result = 0; 439 u32 tmp; 440 441 spin_lock(&chip->reg_lock); 442 switch (cmd) { 443 case SNDRV_PCM_TRIGGER_START: 444 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 445 case SNDRV_PCM_TRIGGER_RESUME: 446 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 447 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 448 ypcm->running = 1; 449 break; 450 case SNDRV_PCM_TRIGGER_STOP: 451 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 452 case SNDRV_PCM_TRIGGER_SUSPEND: 453 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 454 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 455 ypcm->running = 0; 456 break; 457 default: 458 result = -EINVAL; 459 break; 460 } 461 spin_unlock(&chip->reg_lock); 462 return result; 463 } 464 465 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 466 { 467 int err; 468 469 if (ypcm->voices[1] != NULL && voices < 2) { 470 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 471 ypcm->voices[1] = NULL; 472 } 473 if (voices == 1 && ypcm->voices[0] != NULL) 474 return 0; /* already allocated */ 475 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 476 return 0; /* already allocated */ 477 if (voices > 1) { 478 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 479 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 480 ypcm->voices[0] = NULL; 481 } 482 } 483 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 484 if (err < 0) 485 return err; 486 ypcm->voices[0]->ypcm = ypcm; 487 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 488 if (voices > 1) { 489 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 490 ypcm->voices[1]->ypcm = ypcm; 491 } 492 return 0; 493 } 494 495 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 496 struct snd_pcm_runtime *runtime, 497 int has_pcm_volume) 498 { 499 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 500 u32 format; 501 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 502 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 503 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 504 struct snd_ymfpci_playback_bank *bank; 505 unsigned int nbank; 506 u32 vol_left, vol_right; 507 u8 use_left, use_right; 508 unsigned long flags; 509 510 if (snd_BUG_ON(!voice)) 511 return; 512 if (runtime->channels == 1) { 513 use_left = 1; 514 use_right = 1; 515 } else { 516 use_left = (voiceidx & 1) == 0; 517 use_right = !use_left; 518 } 519 if (has_pcm_volume) { 520 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 521 [ypcm->substream->number].left << 15); 522 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 523 [ypcm->substream->number].right << 15); 524 } else { 525 vol_left = cpu_to_le32(0x40000000); 526 vol_right = cpu_to_le32(0x40000000); 527 } 528 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 529 format = runtime->channels == 2 ? 0x00010000 : 0; 530 if (snd_pcm_format_width(runtime->format) == 8) 531 format |= 0x80000000; 532 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 533 runtime->rate == 44100 && runtime->channels == 2 && 534 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 535 ypcm->chip->src441_used == voice->number)) { 536 ypcm->chip->src441_used = voice->number; 537 ypcm->use_441_slot = 1; 538 format |= 0x10000000; 539 } 540 if (ypcm->chip->src441_used == voice->number && 541 (format & 0x10000000) == 0) { 542 ypcm->chip->src441_used = -1; 543 ypcm->use_441_slot = 0; 544 } 545 if (runtime->channels == 2 && (voiceidx & 1) != 0) 546 format |= 1; 547 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 548 for (nbank = 0; nbank < 2; nbank++) { 549 bank = &voice->bank[nbank]; 550 memset(bank, 0, sizeof(*bank)); 551 bank->format = cpu_to_le32(format); 552 bank->base = cpu_to_le32(runtime->dma_addr); 553 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 554 bank->lpfQ = cpu_to_le32(lpfQ); 555 bank->delta = 556 bank->delta_end = cpu_to_le32(delta); 557 bank->lpfK = 558 bank->lpfK_end = cpu_to_le32(lpfK); 559 bank->eg_gain = 560 bank->eg_gain_end = cpu_to_le32(0x40000000); 561 562 if (ypcm->output_front) { 563 if (use_left) { 564 bank->left_gain = 565 bank->left_gain_end = vol_left; 566 } 567 if (use_right) { 568 bank->right_gain = 569 bank->right_gain_end = vol_right; 570 } 571 } 572 if (ypcm->output_rear) { 573 if (!ypcm->swap_rear) { 574 if (use_left) { 575 bank->eff2_gain = 576 bank->eff2_gain_end = vol_left; 577 } 578 if (use_right) { 579 bank->eff3_gain = 580 bank->eff3_gain_end = vol_right; 581 } 582 } else { 583 /* The SPDIF out channels seem to be swapped, so we have 584 * to swap them here, too. The rear analog out channels 585 * will be wrong, but otherwise AC3 would not work. 586 */ 587 if (use_left) { 588 bank->eff3_gain = 589 bank->eff3_gain_end = vol_left; 590 } 591 if (use_right) { 592 bank->eff2_gain = 593 bank->eff2_gain_end = vol_right; 594 } 595 } 596 } 597 } 598 } 599 600 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 601 { 602 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 603 4096, &chip->ac3_tmp_base) < 0) 604 return -ENOMEM; 605 606 chip->bank_effect[3][0]->base = 607 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 608 chip->bank_effect[3][0]->loop_end = 609 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 610 chip->bank_effect[4][0]->base = 611 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 612 chip->bank_effect[4][0]->loop_end = 613 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 614 615 spin_lock_irq(&chip->reg_lock); 616 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 617 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 618 spin_unlock_irq(&chip->reg_lock); 619 return 0; 620 } 621 622 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 623 { 624 spin_lock_irq(&chip->reg_lock); 625 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 626 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 627 spin_unlock_irq(&chip->reg_lock); 628 // snd_ymfpci_irq_wait(chip); 629 if (chip->ac3_tmp_base.area) { 630 snd_dma_free_pages(&chip->ac3_tmp_base); 631 chip->ac3_tmp_base.area = NULL; 632 } 633 return 0; 634 } 635 636 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 637 struct snd_pcm_hw_params *hw_params) 638 { 639 struct snd_pcm_runtime *runtime = substream->runtime; 640 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 641 int err; 642 643 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 644 return err; 645 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 646 return err; 647 return 0; 648 } 649 650 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 651 { 652 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 653 struct snd_pcm_runtime *runtime = substream->runtime; 654 struct snd_ymfpci_pcm *ypcm; 655 656 if (runtime->private_data == NULL) 657 return 0; 658 ypcm = runtime->private_data; 659 660 /* wait, until the PCI operations are not finished */ 661 snd_ymfpci_irq_wait(chip); 662 snd_pcm_lib_free_pages(substream); 663 if (ypcm->voices[1]) { 664 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 665 ypcm->voices[1] = NULL; 666 } 667 if (ypcm->voices[0]) { 668 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 669 ypcm->voices[0] = NULL; 670 } 671 return 0; 672 } 673 674 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 675 { 676 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 677 struct snd_pcm_runtime *runtime = substream->runtime; 678 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 679 struct snd_kcontrol *kctl; 680 unsigned int nvoice; 681 682 ypcm->period_size = runtime->period_size; 683 ypcm->buffer_size = runtime->buffer_size; 684 ypcm->period_pos = 0; 685 ypcm->last_pos = 0; 686 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 687 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 688 substream->pcm == chip->pcm); 689 690 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 691 kctl = chip->pcm_mixer[substream->number].ctl; 692 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 693 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 694 } 695 return 0; 696 } 697 698 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 699 struct snd_pcm_hw_params *hw_params) 700 { 701 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 702 } 703 704 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 705 { 706 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 707 708 /* wait, until the PCI operations are not finished */ 709 snd_ymfpci_irq_wait(chip); 710 return snd_pcm_lib_free_pages(substream); 711 } 712 713 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 714 { 715 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 716 struct snd_pcm_runtime *runtime = substream->runtime; 717 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 718 struct snd_ymfpci_capture_bank * bank; 719 int nbank; 720 u32 rate, format; 721 722 ypcm->period_size = runtime->period_size; 723 ypcm->buffer_size = runtime->buffer_size; 724 ypcm->period_pos = 0; 725 ypcm->last_pos = 0; 726 ypcm->shift = 0; 727 rate = ((48000 * 4096) / runtime->rate) - 1; 728 format = 0; 729 if (runtime->channels == 2) { 730 format |= 2; 731 ypcm->shift++; 732 } 733 if (snd_pcm_format_width(runtime->format) == 8) 734 format |= 1; 735 else 736 ypcm->shift++; 737 switch (ypcm->capture_bank_number) { 738 case 0: 739 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 740 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 741 break; 742 case 1: 743 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 744 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 745 break; 746 } 747 for (nbank = 0; nbank < 2; nbank++) { 748 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 749 bank->base = cpu_to_le32(runtime->dma_addr); 750 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 751 bank->start = 0; 752 bank->num_of_loops = 0; 753 } 754 return 0; 755 } 756 757 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 758 { 759 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 760 struct snd_pcm_runtime *runtime = substream->runtime; 761 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 762 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 763 764 if (!(ypcm->running && voice)) 765 return 0; 766 return le32_to_cpu(voice->bank[chip->active_bank].start); 767 } 768 769 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 770 { 771 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 772 struct snd_pcm_runtime *runtime = substream->runtime; 773 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 774 775 if (!ypcm->running) 776 return 0; 777 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 778 } 779 780 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 781 { 782 wait_queue_t wait; 783 int loops = 4; 784 785 while (loops-- > 0) { 786 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 787 continue; 788 init_waitqueue_entry(&wait, current); 789 add_wait_queue(&chip->interrupt_sleep, &wait); 790 atomic_inc(&chip->interrupt_sleep_count); 791 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 792 remove_wait_queue(&chip->interrupt_sleep, &wait); 793 } 794 } 795 796 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 797 { 798 struct snd_ymfpci *chip = dev_id; 799 u32 status, nvoice, mode; 800 struct snd_ymfpci_voice *voice; 801 802 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 803 if (status & 0x80000000) { 804 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 805 spin_lock(&chip->voice_lock); 806 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 807 voice = &chip->voices[nvoice]; 808 if (voice->interrupt) 809 voice->interrupt(chip, voice); 810 } 811 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 812 if (chip->capture_substream[nvoice]) 813 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 814 } 815 #if 0 816 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 817 if (chip->effect_substream[nvoice]) 818 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 819 } 820 #endif 821 spin_unlock(&chip->voice_lock); 822 spin_lock(&chip->reg_lock); 823 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 824 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 825 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 826 spin_unlock(&chip->reg_lock); 827 828 if (atomic_read(&chip->interrupt_sleep_count)) { 829 atomic_set(&chip->interrupt_sleep_count, 0); 830 wake_up(&chip->interrupt_sleep); 831 } 832 } 833 834 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 835 if (status & 1) { 836 if (chip->timer) 837 snd_timer_interrupt(chip->timer, chip->timer_ticks); 838 } 839 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 840 841 if (chip->rawmidi) 842 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 843 return IRQ_HANDLED; 844 } 845 846 static struct snd_pcm_hardware snd_ymfpci_playback = 847 { 848 .info = (SNDRV_PCM_INFO_MMAP | 849 SNDRV_PCM_INFO_MMAP_VALID | 850 SNDRV_PCM_INFO_INTERLEAVED | 851 SNDRV_PCM_INFO_BLOCK_TRANSFER | 852 SNDRV_PCM_INFO_PAUSE | 853 SNDRV_PCM_INFO_RESUME), 854 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 855 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 856 .rate_min = 8000, 857 .rate_max = 48000, 858 .channels_min = 1, 859 .channels_max = 2, 860 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 861 .period_bytes_min = 64, 862 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 863 .periods_min = 3, 864 .periods_max = 1024, 865 .fifo_size = 0, 866 }; 867 868 static struct snd_pcm_hardware snd_ymfpci_capture = 869 { 870 .info = (SNDRV_PCM_INFO_MMAP | 871 SNDRV_PCM_INFO_MMAP_VALID | 872 SNDRV_PCM_INFO_INTERLEAVED | 873 SNDRV_PCM_INFO_BLOCK_TRANSFER | 874 SNDRV_PCM_INFO_PAUSE | 875 SNDRV_PCM_INFO_RESUME), 876 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 877 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 878 .rate_min = 8000, 879 .rate_max = 48000, 880 .channels_min = 1, 881 .channels_max = 2, 882 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 883 .period_bytes_min = 64, 884 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 885 .periods_min = 3, 886 .periods_max = 1024, 887 .fifo_size = 0, 888 }; 889 890 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 891 { 892 kfree(runtime->private_data); 893 } 894 895 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 896 { 897 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 898 struct snd_pcm_runtime *runtime = substream->runtime; 899 struct snd_ymfpci_pcm *ypcm; 900 int err; 901 902 runtime->hw = snd_ymfpci_playback; 903 /* FIXME? True value is 256/48 = 5.33333 ms */ 904 err = snd_pcm_hw_constraint_minmax(runtime, 905 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 906 5334, UINT_MAX); 907 if (err < 0) 908 return err; 909 err = snd_pcm_hw_rule_noresample(runtime, 48000); 910 if (err < 0) 911 return err; 912 913 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 914 if (ypcm == NULL) 915 return -ENOMEM; 916 ypcm->chip = chip; 917 ypcm->type = PLAYBACK_VOICE; 918 ypcm->substream = substream; 919 runtime->private_data = ypcm; 920 runtime->private_free = snd_ymfpci_pcm_free_substream; 921 return 0; 922 } 923 924 /* call with spinlock held */ 925 static void ymfpci_open_extension(struct snd_ymfpci *chip) 926 { 927 if (! chip->rear_opened) { 928 if (! chip->spdif_opened) /* set AC3 */ 929 snd_ymfpci_writel(chip, YDSXGR_MODE, 930 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 931 /* enable second codec (4CHEN) */ 932 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 933 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 934 } 935 } 936 937 /* call with spinlock held */ 938 static void ymfpci_close_extension(struct snd_ymfpci *chip) 939 { 940 if (! chip->rear_opened) { 941 if (! chip->spdif_opened) 942 snd_ymfpci_writel(chip, YDSXGR_MODE, 943 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 944 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 945 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 946 } 947 } 948 949 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 950 { 951 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 952 struct snd_pcm_runtime *runtime = substream->runtime; 953 struct snd_ymfpci_pcm *ypcm; 954 int err; 955 956 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 957 return err; 958 ypcm = runtime->private_data; 959 ypcm->output_front = 1; 960 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 961 ypcm->swap_rear = 0; 962 spin_lock_irq(&chip->reg_lock); 963 if (ypcm->output_rear) { 964 ymfpci_open_extension(chip); 965 chip->rear_opened++; 966 } 967 spin_unlock_irq(&chip->reg_lock); 968 return 0; 969 } 970 971 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 972 { 973 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 974 struct snd_pcm_runtime *runtime = substream->runtime; 975 struct snd_ymfpci_pcm *ypcm; 976 int err; 977 978 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 979 return err; 980 ypcm = runtime->private_data; 981 ypcm->output_front = 0; 982 ypcm->output_rear = 1; 983 ypcm->swap_rear = 1; 984 spin_lock_irq(&chip->reg_lock); 985 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 986 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 987 ymfpci_open_extension(chip); 988 chip->spdif_pcm_bits = chip->spdif_bits; 989 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 990 chip->spdif_opened++; 991 spin_unlock_irq(&chip->reg_lock); 992 993 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 994 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 995 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 996 return 0; 997 } 998 999 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 1000 { 1001 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1002 struct snd_pcm_runtime *runtime = substream->runtime; 1003 struct snd_ymfpci_pcm *ypcm; 1004 int err; 1005 1006 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 1007 return err; 1008 ypcm = runtime->private_data; 1009 ypcm->output_front = 0; 1010 ypcm->output_rear = 1; 1011 ypcm->swap_rear = 0; 1012 spin_lock_irq(&chip->reg_lock); 1013 ymfpci_open_extension(chip); 1014 chip->rear_opened++; 1015 spin_unlock_irq(&chip->reg_lock); 1016 return 0; 1017 } 1018 1019 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 1020 u32 capture_bank_number) 1021 { 1022 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1023 struct snd_pcm_runtime *runtime = substream->runtime; 1024 struct snd_ymfpci_pcm *ypcm; 1025 int err; 1026 1027 runtime->hw = snd_ymfpci_capture; 1028 /* FIXME? True value is 256/48 = 5.33333 ms */ 1029 err = snd_pcm_hw_constraint_minmax(runtime, 1030 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1031 5334, UINT_MAX); 1032 if (err < 0) 1033 return err; 1034 err = snd_pcm_hw_rule_noresample(runtime, 48000); 1035 if (err < 0) 1036 return err; 1037 1038 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1039 if (ypcm == NULL) 1040 return -ENOMEM; 1041 ypcm->chip = chip; 1042 ypcm->type = capture_bank_number + CAPTURE_REC; 1043 ypcm->substream = substream; 1044 ypcm->capture_bank_number = capture_bank_number; 1045 chip->capture_substream[capture_bank_number] = substream; 1046 runtime->private_data = ypcm; 1047 runtime->private_free = snd_ymfpci_pcm_free_substream; 1048 snd_ymfpci_hw_start(chip); 1049 return 0; 1050 } 1051 1052 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1053 { 1054 return snd_ymfpci_capture_open(substream, 0); 1055 } 1056 1057 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1058 { 1059 return snd_ymfpci_capture_open(substream, 1); 1060 } 1061 1062 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1063 { 1064 return 0; 1065 } 1066 1067 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1068 { 1069 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1070 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1071 1072 spin_lock_irq(&chip->reg_lock); 1073 if (ypcm->output_rear && chip->rear_opened > 0) { 1074 chip->rear_opened--; 1075 ymfpci_close_extension(chip); 1076 } 1077 spin_unlock_irq(&chip->reg_lock); 1078 return snd_ymfpci_playback_close_1(substream); 1079 } 1080 1081 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1082 { 1083 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1084 1085 spin_lock_irq(&chip->reg_lock); 1086 chip->spdif_opened = 0; 1087 ymfpci_close_extension(chip); 1088 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1089 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1090 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1091 spin_unlock_irq(&chip->reg_lock); 1092 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1093 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1094 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1095 return snd_ymfpci_playback_close_1(substream); 1096 } 1097 1098 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1099 { 1100 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1101 1102 spin_lock_irq(&chip->reg_lock); 1103 if (chip->rear_opened > 0) { 1104 chip->rear_opened--; 1105 ymfpci_close_extension(chip); 1106 } 1107 spin_unlock_irq(&chip->reg_lock); 1108 return snd_ymfpci_playback_close_1(substream); 1109 } 1110 1111 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1112 { 1113 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1114 struct snd_pcm_runtime *runtime = substream->runtime; 1115 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1116 1117 if (ypcm != NULL) { 1118 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1119 snd_ymfpci_hw_stop(chip); 1120 } 1121 return 0; 1122 } 1123 1124 static struct snd_pcm_ops snd_ymfpci_playback_ops = { 1125 .open = snd_ymfpci_playback_open, 1126 .close = snd_ymfpci_playback_close, 1127 .ioctl = snd_pcm_lib_ioctl, 1128 .hw_params = snd_ymfpci_playback_hw_params, 1129 .hw_free = snd_ymfpci_playback_hw_free, 1130 .prepare = snd_ymfpci_playback_prepare, 1131 .trigger = snd_ymfpci_playback_trigger, 1132 .pointer = snd_ymfpci_playback_pointer, 1133 }; 1134 1135 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1136 .open = snd_ymfpci_capture_rec_open, 1137 .close = snd_ymfpci_capture_close, 1138 .ioctl = snd_pcm_lib_ioctl, 1139 .hw_params = snd_ymfpci_capture_hw_params, 1140 .hw_free = snd_ymfpci_capture_hw_free, 1141 .prepare = snd_ymfpci_capture_prepare, 1142 .trigger = snd_ymfpci_capture_trigger, 1143 .pointer = snd_ymfpci_capture_pointer, 1144 }; 1145 1146 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm **rpcm) 1147 { 1148 struct snd_pcm *pcm; 1149 int err; 1150 1151 if (rpcm) 1152 *rpcm = NULL; 1153 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1154 return err; 1155 pcm->private_data = chip; 1156 1157 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1158 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1159 1160 /* global setup */ 1161 pcm->info_flags = 0; 1162 strcpy(pcm->name, "YMFPCI"); 1163 chip->pcm = pcm; 1164 1165 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1166 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1167 1168 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1169 snd_pcm_std_chmaps, 2, 0, NULL); 1170 if (err < 0) 1171 return err; 1172 1173 if (rpcm) 1174 *rpcm = pcm; 1175 return 0; 1176 } 1177 1178 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1179 .open = snd_ymfpci_capture_ac97_open, 1180 .close = snd_ymfpci_capture_close, 1181 .ioctl = snd_pcm_lib_ioctl, 1182 .hw_params = snd_ymfpci_capture_hw_params, 1183 .hw_free = snd_ymfpci_capture_hw_free, 1184 .prepare = snd_ymfpci_capture_prepare, 1185 .trigger = snd_ymfpci_capture_trigger, 1186 .pointer = snd_ymfpci_capture_pointer, 1187 }; 1188 1189 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm **rpcm) 1190 { 1191 struct snd_pcm *pcm; 1192 int err; 1193 1194 if (rpcm) 1195 *rpcm = NULL; 1196 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1197 return err; 1198 pcm->private_data = chip; 1199 1200 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1201 1202 /* global setup */ 1203 pcm->info_flags = 0; 1204 sprintf(pcm->name, "YMFPCI - %s", 1205 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1206 chip->pcm2 = pcm; 1207 1208 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1209 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1210 1211 if (rpcm) 1212 *rpcm = pcm; 1213 return 0; 1214 } 1215 1216 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1217 .open = snd_ymfpci_playback_spdif_open, 1218 .close = snd_ymfpci_playback_spdif_close, 1219 .ioctl = snd_pcm_lib_ioctl, 1220 .hw_params = snd_ymfpci_playback_hw_params, 1221 .hw_free = snd_ymfpci_playback_hw_free, 1222 .prepare = snd_ymfpci_playback_prepare, 1223 .trigger = snd_ymfpci_playback_trigger, 1224 .pointer = snd_ymfpci_playback_pointer, 1225 }; 1226 1227 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, 1228 struct snd_pcm **rpcm) 1229 { 1230 struct snd_pcm *pcm; 1231 int err; 1232 1233 if (rpcm) 1234 *rpcm = NULL; 1235 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1236 return err; 1237 pcm->private_data = chip; 1238 1239 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1240 1241 /* global setup */ 1242 pcm->info_flags = 0; 1243 strcpy(pcm->name, "YMFPCI - IEC958"); 1244 chip->pcm_spdif = pcm; 1245 1246 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1247 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1248 1249 if (rpcm) 1250 *rpcm = pcm; 1251 return 0; 1252 } 1253 1254 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1255 .open = snd_ymfpci_playback_4ch_open, 1256 .close = snd_ymfpci_playback_4ch_close, 1257 .ioctl = snd_pcm_lib_ioctl, 1258 .hw_params = snd_ymfpci_playback_hw_params, 1259 .hw_free = snd_ymfpci_playback_hw_free, 1260 .prepare = snd_ymfpci_playback_prepare, 1261 .trigger = snd_ymfpci_playback_trigger, 1262 .pointer = snd_ymfpci_playback_pointer, 1263 }; 1264 1265 static const struct snd_pcm_chmap_elem surround_map[] = { 1266 { .channels = 1, 1267 .map = { SNDRV_CHMAP_MONO } }, 1268 { .channels = 2, 1269 .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 1270 { } 1271 }; 1272 1273 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, 1274 struct snd_pcm **rpcm) 1275 { 1276 struct snd_pcm *pcm; 1277 int err; 1278 1279 if (rpcm) 1280 *rpcm = NULL; 1281 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1282 return err; 1283 pcm->private_data = chip; 1284 1285 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1286 1287 /* global setup */ 1288 pcm->info_flags = 0; 1289 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1290 chip->pcm_4ch = pcm; 1291 1292 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1293 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1294 1295 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1296 surround_map, 2, 0, NULL); 1297 if (err < 0) 1298 return err; 1299 1300 if (rpcm) 1301 *rpcm = pcm; 1302 return 0; 1303 } 1304 1305 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1306 { 1307 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1308 uinfo->count = 1; 1309 return 0; 1310 } 1311 1312 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1313 struct snd_ctl_elem_value *ucontrol) 1314 { 1315 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1316 1317 spin_lock_irq(&chip->reg_lock); 1318 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1319 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1320 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1321 spin_unlock_irq(&chip->reg_lock); 1322 return 0; 1323 } 1324 1325 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1326 struct snd_ctl_elem_value *ucontrol) 1327 { 1328 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1329 unsigned int val; 1330 int change; 1331 1332 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1333 (ucontrol->value.iec958.status[1] << 8); 1334 spin_lock_irq(&chip->reg_lock); 1335 change = chip->spdif_bits != val; 1336 chip->spdif_bits = val; 1337 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1338 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1339 spin_unlock_irq(&chip->reg_lock); 1340 return change; 1341 } 1342 1343 static struct snd_kcontrol_new snd_ymfpci_spdif_default = 1344 { 1345 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1346 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1347 .info = snd_ymfpci_spdif_default_info, 1348 .get = snd_ymfpci_spdif_default_get, 1349 .put = snd_ymfpci_spdif_default_put 1350 }; 1351 1352 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1353 { 1354 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1355 uinfo->count = 1; 1356 return 0; 1357 } 1358 1359 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1360 struct snd_ctl_elem_value *ucontrol) 1361 { 1362 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1363 1364 spin_lock_irq(&chip->reg_lock); 1365 ucontrol->value.iec958.status[0] = 0x3e; 1366 ucontrol->value.iec958.status[1] = 0xff; 1367 spin_unlock_irq(&chip->reg_lock); 1368 return 0; 1369 } 1370 1371 static struct snd_kcontrol_new snd_ymfpci_spdif_mask = 1372 { 1373 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1374 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1375 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1376 .info = snd_ymfpci_spdif_mask_info, 1377 .get = snd_ymfpci_spdif_mask_get, 1378 }; 1379 1380 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1381 { 1382 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1383 uinfo->count = 1; 1384 return 0; 1385 } 1386 1387 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1388 struct snd_ctl_elem_value *ucontrol) 1389 { 1390 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1391 1392 spin_lock_irq(&chip->reg_lock); 1393 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1394 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1395 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1396 spin_unlock_irq(&chip->reg_lock); 1397 return 0; 1398 } 1399 1400 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1401 struct snd_ctl_elem_value *ucontrol) 1402 { 1403 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1404 unsigned int val; 1405 int change; 1406 1407 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1408 (ucontrol->value.iec958.status[1] << 8); 1409 spin_lock_irq(&chip->reg_lock); 1410 change = chip->spdif_pcm_bits != val; 1411 chip->spdif_pcm_bits = val; 1412 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1413 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1414 spin_unlock_irq(&chip->reg_lock); 1415 return change; 1416 } 1417 1418 static struct snd_kcontrol_new snd_ymfpci_spdif_stream = 1419 { 1420 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1421 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1422 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1423 .info = snd_ymfpci_spdif_stream_info, 1424 .get = snd_ymfpci_spdif_stream_get, 1425 .put = snd_ymfpci_spdif_stream_put 1426 }; 1427 1428 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1429 { 1430 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1431 1432 return snd_ctl_enum_info(info, 1, 3, texts); 1433 } 1434 1435 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1436 { 1437 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1438 u16 reg; 1439 1440 spin_lock_irq(&chip->reg_lock); 1441 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1442 spin_unlock_irq(&chip->reg_lock); 1443 if (!(reg & 0x100)) 1444 value->value.enumerated.item[0] = 0; 1445 else 1446 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1447 return 0; 1448 } 1449 1450 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1451 { 1452 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1453 u16 reg, old_reg; 1454 1455 spin_lock_irq(&chip->reg_lock); 1456 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1457 if (value->value.enumerated.item[0] == 0) 1458 reg = old_reg & ~0x100; 1459 else 1460 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1461 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1462 spin_unlock_irq(&chip->reg_lock); 1463 return reg != old_reg; 1464 } 1465 1466 static struct snd_kcontrol_new snd_ymfpci_drec_source = { 1467 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1468 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1469 .name = "Direct Recording Source", 1470 .info = snd_ymfpci_drec_source_info, 1471 .get = snd_ymfpci_drec_source_get, 1472 .put = snd_ymfpci_drec_source_put 1473 }; 1474 1475 /* 1476 * Mixer controls 1477 */ 1478 1479 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1480 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1481 .info = snd_ymfpci_info_single, \ 1482 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1483 .private_value = ((reg) | ((shift) << 16)) } 1484 1485 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1486 1487 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1488 struct snd_ctl_elem_value *ucontrol) 1489 { 1490 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1491 int reg = kcontrol->private_value & 0xffff; 1492 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1493 unsigned int mask = 1; 1494 1495 switch (reg) { 1496 case YDSXGR_SPDIFOUTCTRL: break; 1497 case YDSXGR_SPDIFINCTRL: break; 1498 default: return -EINVAL; 1499 } 1500 ucontrol->value.integer.value[0] = 1501 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1502 return 0; 1503 } 1504 1505 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1506 struct snd_ctl_elem_value *ucontrol) 1507 { 1508 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1509 int reg = kcontrol->private_value & 0xffff; 1510 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1511 unsigned int mask = 1; 1512 int change; 1513 unsigned int val, oval; 1514 1515 switch (reg) { 1516 case YDSXGR_SPDIFOUTCTRL: break; 1517 case YDSXGR_SPDIFINCTRL: break; 1518 default: return -EINVAL; 1519 } 1520 val = (ucontrol->value.integer.value[0] & mask); 1521 val <<= shift; 1522 spin_lock_irq(&chip->reg_lock); 1523 oval = snd_ymfpci_readl(chip, reg); 1524 val = (oval & ~(mask << shift)) | val; 1525 change = val != oval; 1526 snd_ymfpci_writel(chip, reg, val); 1527 spin_unlock_irq(&chip->reg_lock); 1528 return change; 1529 } 1530 1531 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1532 1533 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1534 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1535 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1536 .info = snd_ymfpci_info_double, \ 1537 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1538 .private_value = reg, \ 1539 .tlv = { .p = db_scale_native } } 1540 1541 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1542 { 1543 unsigned int reg = kcontrol->private_value; 1544 1545 if (reg < 0x80 || reg >= 0xc0) 1546 return -EINVAL; 1547 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1548 uinfo->count = 2; 1549 uinfo->value.integer.min = 0; 1550 uinfo->value.integer.max = 16383; 1551 return 0; 1552 } 1553 1554 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1555 { 1556 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1557 unsigned int reg = kcontrol->private_value; 1558 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1559 unsigned int val; 1560 1561 if (reg < 0x80 || reg >= 0xc0) 1562 return -EINVAL; 1563 spin_lock_irq(&chip->reg_lock); 1564 val = snd_ymfpci_readl(chip, reg); 1565 spin_unlock_irq(&chip->reg_lock); 1566 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1567 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1568 return 0; 1569 } 1570 1571 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1572 { 1573 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1574 unsigned int reg = kcontrol->private_value; 1575 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1576 int change; 1577 unsigned int val1, val2, oval; 1578 1579 if (reg < 0x80 || reg >= 0xc0) 1580 return -EINVAL; 1581 val1 = ucontrol->value.integer.value[0] & mask; 1582 val2 = ucontrol->value.integer.value[1] & mask; 1583 val1 <<= shift_left; 1584 val2 <<= shift_right; 1585 spin_lock_irq(&chip->reg_lock); 1586 oval = snd_ymfpci_readl(chip, reg); 1587 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1588 change = val1 != oval; 1589 snd_ymfpci_writel(chip, reg, val1); 1590 spin_unlock_irq(&chip->reg_lock); 1591 return change; 1592 } 1593 1594 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1595 struct snd_ctl_elem_value *ucontrol) 1596 { 1597 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1598 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1599 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1600 int change; 1601 unsigned int value, oval; 1602 1603 value = ucontrol->value.integer.value[0] & 0x3fff; 1604 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1605 spin_lock_irq(&chip->reg_lock); 1606 oval = snd_ymfpci_readl(chip, reg); 1607 change = value != oval; 1608 snd_ymfpci_writel(chip, reg, value); 1609 snd_ymfpci_writel(chip, reg2, value); 1610 spin_unlock_irq(&chip->reg_lock); 1611 return change; 1612 } 1613 1614 /* 1615 * 4ch duplication 1616 */ 1617 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1618 1619 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1620 { 1621 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1622 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1623 return 0; 1624 } 1625 1626 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1627 { 1628 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1629 int change; 1630 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1631 if (change) 1632 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1633 return change; 1634 } 1635 1636 static struct snd_kcontrol_new snd_ymfpci_dup4ch = { 1637 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1638 .name = "4ch Duplication", 1639 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1640 .info = snd_ymfpci_info_dup4ch, 1641 .get = snd_ymfpci_get_dup4ch, 1642 .put = snd_ymfpci_put_dup4ch, 1643 }; 1644 1645 static struct snd_kcontrol_new snd_ymfpci_controls[] = { 1646 { 1647 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1648 .name = "Wave Playback Volume", 1649 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1650 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1651 .info = snd_ymfpci_info_double, 1652 .get = snd_ymfpci_get_double, 1653 .put = snd_ymfpci_put_nativedacvol, 1654 .private_value = YDSXGR_NATIVEDACOUTVOL, 1655 .tlv = { .p = db_scale_native }, 1656 }, 1657 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1658 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1659 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1660 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1661 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1662 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1663 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1664 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL), 1665 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1666 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1667 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1668 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1669 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1670 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1671 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1672 }; 1673 1674 1675 /* 1676 * GPIO 1677 */ 1678 1679 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1680 { 1681 u16 reg, mode; 1682 unsigned long flags; 1683 1684 spin_lock_irqsave(&chip->reg_lock, flags); 1685 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1686 reg &= ~(1 << (pin + 8)); 1687 reg |= (1 << pin); 1688 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1689 /* set the level mode for input line */ 1690 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1691 mode &= ~(3 << (pin * 2)); 1692 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1693 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1694 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1695 spin_unlock_irqrestore(&chip->reg_lock, flags); 1696 return (mode >> pin) & 1; 1697 } 1698 1699 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1700 { 1701 u16 reg; 1702 unsigned long flags; 1703 1704 spin_lock_irqsave(&chip->reg_lock, flags); 1705 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1706 reg &= ~(1 << pin); 1707 reg &= ~(1 << (pin + 8)); 1708 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1709 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1710 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1711 spin_unlock_irqrestore(&chip->reg_lock, flags); 1712 1713 return 0; 1714 } 1715 1716 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1717 1718 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1719 { 1720 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1721 int pin = (int)kcontrol->private_value; 1722 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1723 return 0; 1724 } 1725 1726 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1727 { 1728 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1729 int pin = (int)kcontrol->private_value; 1730 1731 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1732 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1733 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1734 return 1; 1735 } 1736 return 0; 1737 } 1738 1739 static struct snd_kcontrol_new snd_ymfpci_rear_shared = { 1740 .name = "Shared Rear/Line-In Switch", 1741 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1742 .info = snd_ymfpci_gpio_sw_info, 1743 .get = snd_ymfpci_gpio_sw_get, 1744 .put = snd_ymfpci_gpio_sw_put, 1745 .private_value = 2, 1746 }; 1747 1748 /* 1749 * PCM voice volume 1750 */ 1751 1752 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1753 struct snd_ctl_elem_info *uinfo) 1754 { 1755 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1756 uinfo->count = 2; 1757 uinfo->value.integer.min = 0; 1758 uinfo->value.integer.max = 0x8000; 1759 return 0; 1760 } 1761 1762 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1763 struct snd_ctl_elem_value *ucontrol) 1764 { 1765 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1766 unsigned int subs = kcontrol->id.subdevice; 1767 1768 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1769 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1770 return 0; 1771 } 1772 1773 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1774 struct snd_ctl_elem_value *ucontrol) 1775 { 1776 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1777 unsigned int subs = kcontrol->id.subdevice; 1778 struct snd_pcm_substream *substream; 1779 unsigned long flags; 1780 1781 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1782 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1783 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1784 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1785 if (chip->pcm_mixer[subs].left > 0x8000) 1786 chip->pcm_mixer[subs].left = 0x8000; 1787 if (chip->pcm_mixer[subs].right > 0x8000) 1788 chip->pcm_mixer[subs].right = 0x8000; 1789 1790 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1791 spin_lock_irqsave(&chip->voice_lock, flags); 1792 if (substream->runtime && substream->runtime->private_data) { 1793 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1794 if (!ypcm->use_441_slot) 1795 ypcm->update_pcm_vol = 2; 1796 } 1797 spin_unlock_irqrestore(&chip->voice_lock, flags); 1798 return 1; 1799 } 1800 return 0; 1801 } 1802 1803 static struct snd_kcontrol_new snd_ymfpci_pcm_volume = { 1804 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1805 .name = "PCM Playback Volume", 1806 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1807 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1808 .info = snd_ymfpci_pcm_vol_info, 1809 .get = snd_ymfpci_pcm_vol_get, 1810 .put = snd_ymfpci_pcm_vol_put, 1811 }; 1812 1813 1814 /* 1815 * Mixer routines 1816 */ 1817 1818 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1819 { 1820 struct snd_ymfpci *chip = bus->private_data; 1821 chip->ac97_bus = NULL; 1822 } 1823 1824 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1825 { 1826 struct snd_ymfpci *chip = ac97->private_data; 1827 chip->ac97 = NULL; 1828 } 1829 1830 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1831 { 1832 struct snd_ac97_template ac97; 1833 struct snd_kcontrol *kctl; 1834 struct snd_pcm_substream *substream; 1835 unsigned int idx; 1836 int err; 1837 static struct snd_ac97_bus_ops ops = { 1838 .write = snd_ymfpci_codec_write, 1839 .read = snd_ymfpci_codec_read, 1840 }; 1841 1842 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1843 return err; 1844 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1845 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1846 1847 memset(&ac97, 0, sizeof(ac97)); 1848 ac97.private_data = chip; 1849 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1850 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1851 return err; 1852 1853 /* to be sure */ 1854 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1855 AC97_EA_VRA|AC97_EA_VRM, 0); 1856 1857 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1858 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1859 return err; 1860 } 1861 if (chip->ac97->ext_id & AC97_EI_SDAC) { 1862 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip); 1863 err = snd_ctl_add(chip->card, kctl); 1864 if (err < 0) 1865 return err; 1866 } 1867 1868 /* add S/PDIF control */ 1869 if (snd_BUG_ON(!chip->pcm_spdif)) 1870 return -ENXIO; 1871 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1872 return err; 1873 kctl->id.device = chip->pcm_spdif->device; 1874 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1875 return err; 1876 kctl->id.device = chip->pcm_spdif->device; 1877 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1878 return err; 1879 kctl->id.device = chip->pcm_spdif->device; 1880 chip->spdif_pcm_ctl = kctl; 1881 1882 /* direct recording source */ 1883 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1884 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1885 return err; 1886 1887 /* 1888 * shared rear/line-in 1889 */ 1890 if (rear_switch) { 1891 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1892 return err; 1893 } 1894 1895 /* per-voice volume */ 1896 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1897 for (idx = 0; idx < 32; ++idx) { 1898 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1899 if (!kctl) 1900 return -ENOMEM; 1901 kctl->id.device = chip->pcm->device; 1902 kctl->id.subdevice = idx; 1903 kctl->private_value = (unsigned long)substream; 1904 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1905 return err; 1906 chip->pcm_mixer[idx].left = 0x8000; 1907 chip->pcm_mixer[idx].right = 0x8000; 1908 chip->pcm_mixer[idx].ctl = kctl; 1909 substream = substream->next; 1910 } 1911 1912 return 0; 1913 } 1914 1915 1916 /* 1917 * timer 1918 */ 1919 1920 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1921 { 1922 struct snd_ymfpci *chip; 1923 unsigned long flags; 1924 unsigned int count; 1925 1926 chip = snd_timer_chip(timer); 1927 spin_lock_irqsave(&chip->reg_lock, flags); 1928 if (timer->sticks > 1) { 1929 chip->timer_ticks = timer->sticks; 1930 count = timer->sticks - 1; 1931 } else { 1932 /* 1933 * Divisor 1 is not allowed; fake it by using divisor 2 and 1934 * counting two ticks for each interrupt. 1935 */ 1936 chip->timer_ticks = 2; 1937 count = 2 - 1; 1938 } 1939 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1940 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1941 spin_unlock_irqrestore(&chip->reg_lock, flags); 1942 return 0; 1943 } 1944 1945 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1946 { 1947 struct snd_ymfpci *chip; 1948 unsigned long flags; 1949 1950 chip = snd_timer_chip(timer); 1951 spin_lock_irqsave(&chip->reg_lock, flags); 1952 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1953 spin_unlock_irqrestore(&chip->reg_lock, flags); 1954 return 0; 1955 } 1956 1957 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1958 unsigned long *num, unsigned long *den) 1959 { 1960 *num = 1; 1961 *den = 96000; 1962 return 0; 1963 } 1964 1965 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1966 .flags = SNDRV_TIMER_HW_AUTO, 1967 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ 1968 .ticks = 0x10000, 1969 .start = snd_ymfpci_timer_start, 1970 .stop = snd_ymfpci_timer_stop, 1971 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1972 }; 1973 1974 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1975 { 1976 struct snd_timer *timer = NULL; 1977 struct snd_timer_id tid; 1978 int err; 1979 1980 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1981 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1982 tid.card = chip->card->number; 1983 tid.device = device; 1984 tid.subdevice = 0; 1985 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1986 strcpy(timer->name, "YMFPCI timer"); 1987 timer->private_data = chip; 1988 timer->hw = snd_ymfpci_timer_hw; 1989 } 1990 chip->timer = timer; 1991 return err; 1992 } 1993 1994 1995 /* 1996 * proc interface 1997 */ 1998 1999 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 2000 struct snd_info_buffer *buffer) 2001 { 2002 struct snd_ymfpci *chip = entry->private_data; 2003 int i; 2004 2005 snd_iprintf(buffer, "YMFPCI\n\n"); 2006 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 2007 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 2008 } 2009 2010 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 2011 { 2012 struct snd_info_entry *entry; 2013 2014 if (! snd_card_proc_new(card, "ymfpci", &entry)) 2015 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); 2016 return 0; 2017 } 2018 2019 /* 2020 * initialization routines 2021 */ 2022 2023 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 2024 { 2025 u8 cmd; 2026 2027 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 2028 #if 0 // force to reset 2029 if (cmd & 0x03) { 2030 #endif 2031 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 2032 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 2033 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 2034 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 2035 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 2036 #if 0 2037 } 2038 #endif 2039 } 2040 2041 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 2042 { 2043 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 2044 } 2045 2046 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 2047 { 2048 u32 val; 2049 int timeout = 1000; 2050 2051 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 2052 if (val) 2053 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 2054 while (timeout-- > 0) { 2055 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 2056 if ((val & 0x00000002) == 0) 2057 break; 2058 } 2059 } 2060 2061 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2062 { 2063 int err, is_1e; 2064 const char *name; 2065 2066 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2067 &chip->pci->dev); 2068 if (err >= 0) { 2069 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2070 snd_printk(KERN_ERR "DSP microcode has wrong size\n"); 2071 err = -EINVAL; 2072 } 2073 } 2074 if (err < 0) 2075 return err; 2076 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2077 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2078 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2079 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2080 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2081 err = request_firmware(&chip->controller_microcode, name, 2082 &chip->pci->dev); 2083 if (err >= 0) { 2084 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2085 snd_printk(KERN_ERR "controller microcode" 2086 " has wrong size\n"); 2087 err = -EINVAL; 2088 } 2089 } 2090 if (err < 0) 2091 return err; 2092 return 0; 2093 } 2094 2095 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2096 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2097 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2098 2099 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2100 { 2101 int i; 2102 u16 ctrl; 2103 const __le32 *inst; 2104 2105 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2106 snd_ymfpci_disable_dsp(chip); 2107 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2108 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2109 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2110 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2111 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2112 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2113 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2114 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2115 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2116 2117 /* setup DSP instruction code */ 2118 inst = (const __le32 *)chip->dsp_microcode->data; 2119 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2120 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2121 le32_to_cpu(inst[i])); 2122 2123 /* setup control instruction code */ 2124 inst = (const __le32 *)chip->controller_microcode->data; 2125 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2126 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2127 le32_to_cpu(inst[i])); 2128 2129 snd_ymfpci_enable_dsp(chip); 2130 } 2131 2132 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2133 { 2134 long size, playback_ctrl_size; 2135 int voice, bank, reg; 2136 u8 *ptr; 2137 dma_addr_t ptr_addr; 2138 2139 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2140 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2141 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2142 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2143 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2144 2145 size = ALIGN(playback_ctrl_size, 0x100) + 2146 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2147 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2148 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2149 chip->work_size; 2150 /* work_ptr must be aligned to 256 bytes, but it's already 2151 covered with the kernel page allocation mechanism */ 2152 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 2153 size, &chip->work_ptr) < 0) 2154 return -ENOMEM; 2155 ptr = chip->work_ptr.area; 2156 ptr_addr = chip->work_ptr.addr; 2157 memset(ptr, 0, size); /* for sure */ 2158 2159 chip->bank_base_playback = ptr; 2160 chip->bank_base_playback_addr = ptr_addr; 2161 chip->ctrl_playback = (u32 *)ptr; 2162 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2163 ptr += ALIGN(playback_ctrl_size, 0x100); 2164 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2165 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2166 chip->voices[voice].number = voice; 2167 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2168 chip->voices[voice].bank_addr = ptr_addr; 2169 for (bank = 0; bank < 2; bank++) { 2170 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2171 ptr += chip->bank_size_playback; 2172 ptr_addr += chip->bank_size_playback; 2173 } 2174 } 2175 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2176 ptr_addr = ALIGN(ptr_addr, 0x100); 2177 chip->bank_base_capture = ptr; 2178 chip->bank_base_capture_addr = ptr_addr; 2179 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2180 for (bank = 0; bank < 2; bank++) { 2181 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2182 ptr += chip->bank_size_capture; 2183 ptr_addr += chip->bank_size_capture; 2184 } 2185 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2186 ptr_addr = ALIGN(ptr_addr, 0x100); 2187 chip->bank_base_effect = ptr; 2188 chip->bank_base_effect_addr = ptr_addr; 2189 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2190 for (bank = 0; bank < 2; bank++) { 2191 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2192 ptr += chip->bank_size_effect; 2193 ptr_addr += chip->bank_size_effect; 2194 } 2195 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2196 ptr_addr = ALIGN(ptr_addr, 0x100); 2197 chip->work_base = ptr; 2198 chip->work_base_addr = ptr_addr; 2199 2200 snd_BUG_ON(ptr + chip->work_size != 2201 chip->work_ptr.area + chip->work_ptr.bytes); 2202 2203 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2204 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2205 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2206 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2207 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2208 2209 /* S/PDIF output initialization */ 2210 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2211 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2212 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2213 2214 /* S/PDIF input initialization */ 2215 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2216 2217 /* digital mixer setup */ 2218 for (reg = 0x80; reg < 0xc0; reg += 4) 2219 snd_ymfpci_writel(chip, reg, 0); 2220 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2221 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2222 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2223 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2224 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2225 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2226 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2227 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2228 2229 return 0; 2230 } 2231 2232 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2233 { 2234 u16 ctrl; 2235 2236 if (snd_BUG_ON(!chip)) 2237 return -EINVAL; 2238 2239 if (chip->res_reg_area) { /* don't touch busy hardware */ 2240 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2241 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2242 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2243 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2244 snd_ymfpci_disable_dsp(chip); 2245 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2246 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2247 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2248 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2249 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2250 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2251 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2252 } 2253 2254 snd_ymfpci_ac3_done(chip); 2255 2256 /* Set PCI device to D3 state */ 2257 #if 0 2258 /* FIXME: temporarily disabled, otherwise we cannot fire up 2259 * the chip again unless reboot. ACPI bug? 2260 */ 2261 pci_set_power_state(chip->pci, 3); 2262 #endif 2263 2264 #ifdef CONFIG_PM_SLEEP 2265 kfree(chip->saved_regs); 2266 #endif 2267 if (chip->irq >= 0) 2268 free_irq(chip->irq, chip); 2269 release_and_free_resource(chip->mpu_res); 2270 release_and_free_resource(chip->fm_res); 2271 snd_ymfpci_free_gameport(chip); 2272 if (chip->reg_area_virt) 2273 iounmap(chip->reg_area_virt); 2274 if (chip->work_ptr.area) 2275 snd_dma_free_pages(&chip->work_ptr); 2276 2277 release_and_free_resource(chip->res_reg_area); 2278 2279 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2280 2281 pci_disable_device(chip->pci); 2282 release_firmware(chip->dsp_microcode); 2283 release_firmware(chip->controller_microcode); 2284 kfree(chip); 2285 return 0; 2286 } 2287 2288 static int snd_ymfpci_dev_free(struct snd_device *device) 2289 { 2290 struct snd_ymfpci *chip = device->device_data; 2291 return snd_ymfpci_free(chip); 2292 } 2293 2294 #ifdef CONFIG_PM_SLEEP 2295 static int saved_regs_index[] = { 2296 /* spdif */ 2297 YDSXGR_SPDIFOUTCTRL, 2298 YDSXGR_SPDIFOUTSTATUS, 2299 YDSXGR_SPDIFINCTRL, 2300 /* volumes */ 2301 YDSXGR_PRIADCLOOPVOL, 2302 YDSXGR_NATIVEDACINVOL, 2303 YDSXGR_NATIVEDACOUTVOL, 2304 YDSXGR_BUF441OUTVOL, 2305 YDSXGR_NATIVEADCINVOL, 2306 YDSXGR_SPDIFLOOPVOL, 2307 YDSXGR_SPDIFOUTVOL, 2308 YDSXGR_ZVOUTVOL, 2309 YDSXGR_LEGACYOUTVOL, 2310 /* address bases */ 2311 YDSXGR_PLAYCTRLBASE, 2312 YDSXGR_RECCTRLBASE, 2313 YDSXGR_EFFCTRLBASE, 2314 YDSXGR_WORKBASE, 2315 /* capture set up */ 2316 YDSXGR_MAPOFREC, 2317 YDSXGR_RECFORMAT, 2318 YDSXGR_RECSLOTSR, 2319 YDSXGR_ADCFORMAT, 2320 YDSXGR_ADCSLOTSR, 2321 }; 2322 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2323 2324 static int snd_ymfpci_suspend(struct device *dev) 2325 { 2326 struct pci_dev *pci = to_pci_dev(dev); 2327 struct snd_card *card = dev_get_drvdata(dev); 2328 struct snd_ymfpci *chip = card->private_data; 2329 unsigned int i; 2330 2331 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2332 snd_pcm_suspend_all(chip->pcm); 2333 snd_pcm_suspend_all(chip->pcm2); 2334 snd_pcm_suspend_all(chip->pcm_spdif); 2335 snd_pcm_suspend_all(chip->pcm_4ch); 2336 snd_ac97_suspend(chip->ac97); 2337 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2338 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2339 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2340 pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY, 2341 &chip->saved_dsxg_legacy); 2342 pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY, 2343 &chip->saved_dsxg_elegacy); 2344 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2345 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2346 snd_ymfpci_disable_dsp(chip); 2347 pci_disable_device(pci); 2348 pci_save_state(pci); 2349 pci_set_power_state(pci, PCI_D3hot); 2350 return 0; 2351 } 2352 2353 static int snd_ymfpci_resume(struct device *dev) 2354 { 2355 struct pci_dev *pci = to_pci_dev(dev); 2356 struct snd_card *card = dev_get_drvdata(dev); 2357 struct snd_ymfpci *chip = card->private_data; 2358 unsigned int i; 2359 2360 pci_set_power_state(pci, PCI_D0); 2361 pci_restore_state(pci); 2362 if (pci_enable_device(pci) < 0) { 2363 printk(KERN_ERR "ymfpci: pci_enable_device failed, " 2364 "disabling device\n"); 2365 snd_card_disconnect(card); 2366 return -EIO; 2367 } 2368 pci_set_master(pci); 2369 snd_ymfpci_aclink_reset(pci); 2370 snd_ymfpci_codec_ready(chip, 0); 2371 snd_ymfpci_download_image(chip); 2372 udelay(100); 2373 2374 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2375 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2376 2377 snd_ac97_resume(chip->ac97); 2378 2379 pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, 2380 chip->saved_dsxg_legacy); 2381 pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY, 2382 chip->saved_dsxg_elegacy); 2383 2384 /* start hw again */ 2385 if (chip->start_count > 0) { 2386 spin_lock_irq(&chip->reg_lock); 2387 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2388 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2389 spin_unlock_irq(&chip->reg_lock); 2390 } 2391 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2392 return 0; 2393 } 2394 2395 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume); 2396 #endif /* CONFIG_PM_SLEEP */ 2397 2398 int snd_ymfpci_create(struct snd_card *card, 2399 struct pci_dev *pci, 2400 unsigned short old_legacy_ctrl, 2401 struct snd_ymfpci **rchip) 2402 { 2403 struct snd_ymfpci *chip; 2404 int err; 2405 static struct snd_device_ops ops = { 2406 .dev_free = snd_ymfpci_dev_free, 2407 }; 2408 2409 *rchip = NULL; 2410 2411 /* enable PCI device */ 2412 if ((err = pci_enable_device(pci)) < 0) 2413 return err; 2414 2415 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2416 if (chip == NULL) { 2417 pci_disable_device(pci); 2418 return -ENOMEM; 2419 } 2420 chip->old_legacy_ctrl = old_legacy_ctrl; 2421 spin_lock_init(&chip->reg_lock); 2422 spin_lock_init(&chip->voice_lock); 2423 init_waitqueue_head(&chip->interrupt_sleep); 2424 atomic_set(&chip->interrupt_sleep_count, 0); 2425 chip->card = card; 2426 chip->pci = pci; 2427 chip->irq = -1; 2428 chip->device_id = pci->device; 2429 chip->rev = pci->revision; 2430 chip->reg_area_phys = pci_resource_start(pci, 0); 2431 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2432 pci_set_master(pci); 2433 chip->src441_used = -1; 2434 2435 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2436 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2437 snd_ymfpci_free(chip); 2438 return -EBUSY; 2439 } 2440 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2441 KBUILD_MODNAME, chip)) { 2442 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2443 snd_ymfpci_free(chip); 2444 return -EBUSY; 2445 } 2446 chip->irq = pci->irq; 2447 2448 snd_ymfpci_aclink_reset(pci); 2449 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2450 snd_ymfpci_free(chip); 2451 return -EIO; 2452 } 2453 2454 err = snd_ymfpci_request_firmware(chip); 2455 if (err < 0) { 2456 snd_printk(KERN_ERR "firmware request failed: %d\n", err); 2457 snd_ymfpci_free(chip); 2458 return err; 2459 } 2460 snd_ymfpci_download_image(chip); 2461 2462 udelay(100); /* seems we need a delay after downloading image.. */ 2463 2464 if (snd_ymfpci_memalloc(chip) < 0) { 2465 snd_ymfpci_free(chip); 2466 return -EIO; 2467 } 2468 2469 if ((err = snd_ymfpci_ac3_init(chip)) < 0) { 2470 snd_ymfpci_free(chip); 2471 return err; 2472 } 2473 2474 #ifdef CONFIG_PM_SLEEP 2475 chip->saved_regs = kmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32), 2476 GFP_KERNEL); 2477 if (chip->saved_regs == NULL) { 2478 snd_ymfpci_free(chip); 2479 return -ENOMEM; 2480 } 2481 #endif 2482 2483 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 2484 snd_ymfpci_free(chip); 2485 return err; 2486 } 2487 2488 snd_ymfpci_proc_init(card, chip); 2489 2490 snd_card_set_dev(card, &pci->dev); 2491 2492 *rchip = chip; 2493 return 0; 2494 } 2495