xref: /openbmc/linux/sound/pci/ymfpci/ymfpci_main.c (revision 54cbac81)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/mutex.h>
29 #include <linux/module.h>
30 
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include "ymfpci.h"
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38 
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41 
42 /*
43  *  common I/O routines
44  */
45 
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47 
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50 	return readb(chip->reg_area_virt + offset);
51 }
52 
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55 	writeb(val, chip->reg_area_virt + offset);
56 }
57 
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60 	return readw(chip->reg_area_virt + offset);
61 }
62 
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65 	writew(val, chip->reg_area_virt + offset);
66 }
67 
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70 	return readl(chip->reg_area_virt + offset);
71 }
72 
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75 	writel(val, chip->reg_area_virt + offset);
76 }
77 
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80 	unsigned long end_time;
81 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82 
83 	end_time = jiffies + msecs_to_jiffies(750);
84 	do {
85 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86 			return 0;
87 		schedule_timeout_uninterruptible(1);
88 	} while (time_before(jiffies, end_time));
89 	snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
90 	return -EBUSY;
91 }
92 
93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
94 {
95 	struct snd_ymfpci *chip = ac97->private_data;
96 	u32 cmd;
97 
98 	snd_ymfpci_codec_ready(chip, 0);
99 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
100 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
101 }
102 
103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
104 {
105 	struct snd_ymfpci *chip = ac97->private_data;
106 
107 	if (snd_ymfpci_codec_ready(chip, 0))
108 		return ~0;
109 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
110 	if (snd_ymfpci_codec_ready(chip, 0))
111 		return ~0;
112 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
113 		int i;
114 		for (i = 0; i < 600; i++)
115 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
116 	}
117 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
118 }
119 
120 /*
121  *  Misc routines
122  */
123 
124 static u32 snd_ymfpci_calc_delta(u32 rate)
125 {
126 	switch (rate) {
127 	case 8000:	return 0x02aaab00;
128 	case 11025:	return 0x03accd00;
129 	case 16000:	return 0x05555500;
130 	case 22050:	return 0x07599a00;
131 	case 32000:	return 0x0aaaab00;
132 	case 44100:	return 0x0eb33300;
133 	default:	return ((rate << 16) / 375) << 5;
134 	}
135 }
136 
137 static u32 def_rate[8] = {
138 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
139 };
140 
141 static u32 snd_ymfpci_calc_lpfK(u32 rate)
142 {
143 	u32 i;
144 	static u32 val[8] = {
145 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
146 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
147 	};
148 
149 	if (rate == 44100)
150 		return 0x40000000;	/* FIXME: What's the right value? */
151 	for (i = 0; i < 8; i++)
152 		if (rate <= def_rate[i])
153 			return val[i];
154 	return val[0];
155 }
156 
157 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
158 {
159 	u32 i;
160 	static u32 val[8] = {
161 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
162 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
163 	};
164 
165 	if (rate == 44100)
166 		return 0x370A0000;
167 	for (i = 0; i < 8; i++)
168 		if (rate <= def_rate[i])
169 			return val[i];
170 	return val[0];
171 }
172 
173 /*
174  *  Hardware start management
175  */
176 
177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
178 {
179 	unsigned long flags;
180 
181 	spin_lock_irqsave(&chip->reg_lock, flags);
182 	if (chip->start_count++ > 0)
183 		goto __end;
184 	snd_ymfpci_writel(chip, YDSXGR_MODE,
185 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
186 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
187       __end:
188       	spin_unlock_irqrestore(&chip->reg_lock, flags);
189 }
190 
191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
192 {
193 	unsigned long flags;
194 	long timeout = 1000;
195 
196 	spin_lock_irqsave(&chip->reg_lock, flags);
197 	if (--chip->start_count > 0)
198 		goto __end;
199 	snd_ymfpci_writel(chip, YDSXGR_MODE,
200 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
201 	while (timeout-- > 0) {
202 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
203 			break;
204 	}
205 	if (atomic_read(&chip->interrupt_sleep_count)) {
206 		atomic_set(&chip->interrupt_sleep_count, 0);
207 		wake_up(&chip->interrupt_sleep);
208 	}
209       __end:
210       	spin_unlock_irqrestore(&chip->reg_lock, flags);
211 }
212 
213 /*
214  *  Playback voice management
215  */
216 
217 static int voice_alloc(struct snd_ymfpci *chip,
218 		       enum snd_ymfpci_voice_type type, int pair,
219 		       struct snd_ymfpci_voice **rvoice)
220 {
221 	struct snd_ymfpci_voice *voice, *voice2;
222 	int idx;
223 
224 	*rvoice = NULL;
225 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
226 		voice = &chip->voices[idx];
227 		voice2 = pair ? &chip->voices[idx+1] : NULL;
228 		if (voice->use || (voice2 && voice2->use))
229 			continue;
230 		voice->use = 1;
231 		if (voice2)
232 			voice2->use = 1;
233 		switch (type) {
234 		case YMFPCI_PCM:
235 			voice->pcm = 1;
236 			if (voice2)
237 				voice2->pcm = 1;
238 			break;
239 		case YMFPCI_SYNTH:
240 			voice->synth = 1;
241 			break;
242 		case YMFPCI_MIDI:
243 			voice->midi = 1;
244 			break;
245 		}
246 		snd_ymfpci_hw_start(chip);
247 		if (voice2)
248 			snd_ymfpci_hw_start(chip);
249 		*rvoice = voice;
250 		return 0;
251 	}
252 	return -ENOMEM;
253 }
254 
255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
256 				  enum snd_ymfpci_voice_type type, int pair,
257 				  struct snd_ymfpci_voice **rvoice)
258 {
259 	unsigned long flags;
260 	int result;
261 
262 	if (snd_BUG_ON(!rvoice))
263 		return -EINVAL;
264 	if (snd_BUG_ON(pair && type != YMFPCI_PCM))
265 		return -EINVAL;
266 
267 	spin_lock_irqsave(&chip->voice_lock, flags);
268 	for (;;) {
269 		result = voice_alloc(chip, type, pair, rvoice);
270 		if (result == 0 || type != YMFPCI_PCM)
271 			break;
272 		/* TODO: synth/midi voice deallocation */
273 		break;
274 	}
275 	spin_unlock_irqrestore(&chip->voice_lock, flags);
276 	return result;
277 }
278 
279 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
280 {
281 	unsigned long flags;
282 
283 	if (snd_BUG_ON(!pvoice))
284 		return -EINVAL;
285 	snd_ymfpci_hw_stop(chip);
286 	spin_lock_irqsave(&chip->voice_lock, flags);
287 	if (pvoice->number == chip->src441_used) {
288 		chip->src441_used = -1;
289 		pvoice->ypcm->use_441_slot = 0;
290 	}
291 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
292 	pvoice->ypcm = NULL;
293 	pvoice->interrupt = NULL;
294 	spin_unlock_irqrestore(&chip->voice_lock, flags);
295 	return 0;
296 }
297 
298 /*
299  *  PCM part
300  */
301 
302 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
303 {
304 	struct snd_ymfpci_pcm *ypcm;
305 	u32 pos, delta;
306 
307 	if ((ypcm = voice->ypcm) == NULL)
308 		return;
309 	if (ypcm->substream == NULL)
310 		return;
311 	spin_lock(&chip->reg_lock);
312 	if (ypcm->running) {
313 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
314 		if (pos < ypcm->last_pos)
315 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
316 		else
317 			delta = pos - ypcm->last_pos;
318 		ypcm->period_pos += delta;
319 		ypcm->last_pos = pos;
320 		if (ypcm->period_pos >= ypcm->period_size) {
321 			/*
322 			printk(KERN_DEBUG
323 			       "done - active_bank = 0x%x, start = 0x%x\n",
324 			       chip->active_bank,
325 			       voice->bank[chip->active_bank].start);
326 			*/
327 			ypcm->period_pos %= ypcm->period_size;
328 			spin_unlock(&chip->reg_lock);
329 			snd_pcm_period_elapsed(ypcm->substream);
330 			spin_lock(&chip->reg_lock);
331 		}
332 
333 		if (unlikely(ypcm->update_pcm_vol)) {
334 			unsigned int subs = ypcm->substream->number;
335 			unsigned int next_bank = 1 - chip->active_bank;
336 			struct snd_ymfpci_playback_bank *bank;
337 			u32 volume;
338 
339 			bank = &voice->bank[next_bank];
340 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
341 			bank->left_gain_end = volume;
342 			if (ypcm->output_rear)
343 				bank->eff2_gain_end = volume;
344 			if (ypcm->voices[1])
345 				bank = &ypcm->voices[1]->bank[next_bank];
346 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
347 			bank->right_gain_end = volume;
348 			if (ypcm->output_rear)
349 				bank->eff3_gain_end = volume;
350 			ypcm->update_pcm_vol--;
351 		}
352 	}
353 	spin_unlock(&chip->reg_lock);
354 }
355 
356 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
357 {
358 	struct snd_pcm_runtime *runtime = substream->runtime;
359 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
360 	struct snd_ymfpci *chip = ypcm->chip;
361 	u32 pos, delta;
362 
363 	spin_lock(&chip->reg_lock);
364 	if (ypcm->running) {
365 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
366 		if (pos < ypcm->last_pos)
367 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
368 		else
369 			delta = pos - ypcm->last_pos;
370 		ypcm->period_pos += delta;
371 		ypcm->last_pos = pos;
372 		if (ypcm->period_pos >= ypcm->period_size) {
373 			ypcm->period_pos %= ypcm->period_size;
374 			/*
375 			printk(KERN_DEBUG
376 			       "done - active_bank = 0x%x, start = 0x%x\n",
377 			       chip->active_bank,
378 			       voice->bank[chip->active_bank].start);
379 			*/
380 			spin_unlock(&chip->reg_lock);
381 			snd_pcm_period_elapsed(substream);
382 			spin_lock(&chip->reg_lock);
383 		}
384 	}
385 	spin_unlock(&chip->reg_lock);
386 }
387 
388 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
389 				       int cmd)
390 {
391 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
392 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
393 	struct snd_kcontrol *kctl = NULL;
394 	int result = 0;
395 
396 	spin_lock(&chip->reg_lock);
397 	if (ypcm->voices[0] == NULL) {
398 		result = -EINVAL;
399 		goto __unlock;
400 	}
401 	switch (cmd) {
402 	case SNDRV_PCM_TRIGGER_START:
403 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
404 	case SNDRV_PCM_TRIGGER_RESUME:
405 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
406 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
407 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
408 		ypcm->running = 1;
409 		break;
410 	case SNDRV_PCM_TRIGGER_STOP:
411 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
412 			kctl = chip->pcm_mixer[substream->number].ctl;
413 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
414 		}
415 		/* fall through */
416 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
417 	case SNDRV_PCM_TRIGGER_SUSPEND:
418 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
419 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
420 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
421 		ypcm->running = 0;
422 		break;
423 	default:
424 		result = -EINVAL;
425 		break;
426 	}
427       __unlock:
428 	spin_unlock(&chip->reg_lock);
429 	if (kctl)
430 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
431 	return result;
432 }
433 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
434 				      int cmd)
435 {
436 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
437 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
438 	int result = 0;
439 	u32 tmp;
440 
441 	spin_lock(&chip->reg_lock);
442 	switch (cmd) {
443 	case SNDRV_PCM_TRIGGER_START:
444 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
445 	case SNDRV_PCM_TRIGGER_RESUME:
446 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
447 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
448 		ypcm->running = 1;
449 		break;
450 	case SNDRV_PCM_TRIGGER_STOP:
451 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
452 	case SNDRV_PCM_TRIGGER_SUSPEND:
453 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
454 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
455 		ypcm->running = 0;
456 		break;
457 	default:
458 		result = -EINVAL;
459 		break;
460 	}
461 	spin_unlock(&chip->reg_lock);
462 	return result;
463 }
464 
465 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
466 {
467 	int err;
468 
469 	if (ypcm->voices[1] != NULL && voices < 2) {
470 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
471 		ypcm->voices[1] = NULL;
472 	}
473 	if (voices == 1 && ypcm->voices[0] != NULL)
474 		return 0;		/* already allocated */
475 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
476 		return 0;		/* already allocated */
477 	if (voices > 1) {
478 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
479 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
480 			ypcm->voices[0] = NULL;
481 		}
482 	}
483 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
484 	if (err < 0)
485 		return err;
486 	ypcm->voices[0]->ypcm = ypcm;
487 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
488 	if (voices > 1) {
489 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
490 		ypcm->voices[1]->ypcm = ypcm;
491 	}
492 	return 0;
493 }
494 
495 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
496 				      struct snd_pcm_runtime *runtime,
497 				      int has_pcm_volume)
498 {
499 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
500 	u32 format;
501 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
502 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
503 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
504 	struct snd_ymfpci_playback_bank *bank;
505 	unsigned int nbank;
506 	u32 vol_left, vol_right;
507 	u8 use_left, use_right;
508 	unsigned long flags;
509 
510 	if (snd_BUG_ON(!voice))
511 		return;
512 	if (runtime->channels == 1) {
513 		use_left = 1;
514 		use_right = 1;
515 	} else {
516 		use_left = (voiceidx & 1) == 0;
517 		use_right = !use_left;
518 	}
519 	if (has_pcm_volume) {
520 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
521 				       [ypcm->substream->number].left << 15);
522 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
523 					[ypcm->substream->number].right << 15);
524 	} else {
525 		vol_left = cpu_to_le32(0x40000000);
526 		vol_right = cpu_to_le32(0x40000000);
527 	}
528 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
529 	format = runtime->channels == 2 ? 0x00010000 : 0;
530 	if (snd_pcm_format_width(runtime->format) == 8)
531 		format |= 0x80000000;
532 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
533 		 runtime->rate == 44100 && runtime->channels == 2 &&
534 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
535 				   ypcm->chip->src441_used == voice->number)) {
536 		ypcm->chip->src441_used = voice->number;
537 		ypcm->use_441_slot = 1;
538 		format |= 0x10000000;
539 	}
540 	if (ypcm->chip->src441_used == voice->number &&
541 	    (format & 0x10000000) == 0) {
542 		ypcm->chip->src441_used = -1;
543 		ypcm->use_441_slot = 0;
544 	}
545 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
546 		format |= 1;
547 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
548 	for (nbank = 0; nbank < 2; nbank++) {
549 		bank = &voice->bank[nbank];
550 		memset(bank, 0, sizeof(*bank));
551 		bank->format = cpu_to_le32(format);
552 		bank->base = cpu_to_le32(runtime->dma_addr);
553 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
554 		bank->lpfQ = cpu_to_le32(lpfQ);
555 		bank->delta =
556 		bank->delta_end = cpu_to_le32(delta);
557 		bank->lpfK =
558 		bank->lpfK_end = cpu_to_le32(lpfK);
559 		bank->eg_gain =
560 		bank->eg_gain_end = cpu_to_le32(0x40000000);
561 
562 		if (ypcm->output_front) {
563 			if (use_left) {
564 				bank->left_gain =
565 				bank->left_gain_end = vol_left;
566 			}
567 			if (use_right) {
568 				bank->right_gain =
569 				bank->right_gain_end = vol_right;
570 			}
571 		}
572 		if (ypcm->output_rear) {
573 		        if (!ypcm->swap_rear) {
574         			if (use_left) {
575         				bank->eff2_gain =
576         				bank->eff2_gain_end = vol_left;
577         			}
578         			if (use_right) {
579         				bank->eff3_gain =
580         				bank->eff3_gain_end = vol_right;
581         			}
582 		        } else {
583         			/* The SPDIF out channels seem to be swapped, so we have
584         			 * to swap them here, too.  The rear analog out channels
585         			 * will be wrong, but otherwise AC3 would not work.
586         			 */
587         			if (use_left) {
588         				bank->eff3_gain =
589         				bank->eff3_gain_end = vol_left;
590         			}
591         			if (use_right) {
592         				bank->eff2_gain =
593         				bank->eff2_gain_end = vol_right;
594         			}
595         		}
596                 }
597 	}
598 }
599 
600 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
601 {
602 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
603 				4096, &chip->ac3_tmp_base) < 0)
604 		return -ENOMEM;
605 
606 	chip->bank_effect[3][0]->base =
607 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
608 	chip->bank_effect[3][0]->loop_end =
609 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
610 	chip->bank_effect[4][0]->base =
611 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
612 	chip->bank_effect[4][0]->loop_end =
613 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
614 
615 	spin_lock_irq(&chip->reg_lock);
616 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
617 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
618 	spin_unlock_irq(&chip->reg_lock);
619 	return 0;
620 }
621 
622 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
623 {
624 	spin_lock_irq(&chip->reg_lock);
625 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
626 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
627 	spin_unlock_irq(&chip->reg_lock);
628 	// snd_ymfpci_irq_wait(chip);
629 	if (chip->ac3_tmp_base.area) {
630 		snd_dma_free_pages(&chip->ac3_tmp_base);
631 		chip->ac3_tmp_base.area = NULL;
632 	}
633 	return 0;
634 }
635 
636 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
637 					 struct snd_pcm_hw_params *hw_params)
638 {
639 	struct snd_pcm_runtime *runtime = substream->runtime;
640 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
641 	int err;
642 
643 	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
644 		return err;
645 	if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
646 		return err;
647 	return 0;
648 }
649 
650 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
651 {
652 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
653 	struct snd_pcm_runtime *runtime = substream->runtime;
654 	struct snd_ymfpci_pcm *ypcm;
655 
656 	if (runtime->private_data == NULL)
657 		return 0;
658 	ypcm = runtime->private_data;
659 
660 	/* wait, until the PCI operations are not finished */
661 	snd_ymfpci_irq_wait(chip);
662 	snd_pcm_lib_free_pages(substream);
663 	if (ypcm->voices[1]) {
664 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
665 		ypcm->voices[1] = NULL;
666 	}
667 	if (ypcm->voices[0]) {
668 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
669 		ypcm->voices[0] = NULL;
670 	}
671 	return 0;
672 }
673 
674 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
675 {
676 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
677 	struct snd_pcm_runtime *runtime = substream->runtime;
678 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
679 	struct snd_kcontrol *kctl;
680 	unsigned int nvoice;
681 
682 	ypcm->period_size = runtime->period_size;
683 	ypcm->buffer_size = runtime->buffer_size;
684 	ypcm->period_pos = 0;
685 	ypcm->last_pos = 0;
686 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
687 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
688 					  substream->pcm == chip->pcm);
689 
690 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
691 		kctl = chip->pcm_mixer[substream->number].ctl;
692 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
693 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
694 	}
695 	return 0;
696 }
697 
698 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
699 					struct snd_pcm_hw_params *hw_params)
700 {
701 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
702 }
703 
704 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
705 {
706 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
707 
708 	/* wait, until the PCI operations are not finished */
709 	snd_ymfpci_irq_wait(chip);
710 	return snd_pcm_lib_free_pages(substream);
711 }
712 
713 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
714 {
715 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
716 	struct snd_pcm_runtime *runtime = substream->runtime;
717 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
718 	struct snd_ymfpci_capture_bank * bank;
719 	int nbank;
720 	u32 rate, format;
721 
722 	ypcm->period_size = runtime->period_size;
723 	ypcm->buffer_size = runtime->buffer_size;
724 	ypcm->period_pos = 0;
725 	ypcm->last_pos = 0;
726 	ypcm->shift = 0;
727 	rate = ((48000 * 4096) / runtime->rate) - 1;
728 	format = 0;
729 	if (runtime->channels == 2) {
730 		format |= 2;
731 		ypcm->shift++;
732 	}
733 	if (snd_pcm_format_width(runtime->format) == 8)
734 		format |= 1;
735 	else
736 		ypcm->shift++;
737 	switch (ypcm->capture_bank_number) {
738 	case 0:
739 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
740 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
741 		break;
742 	case 1:
743 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
744 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
745 		break;
746 	}
747 	for (nbank = 0; nbank < 2; nbank++) {
748 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
749 		bank->base = cpu_to_le32(runtime->dma_addr);
750 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
751 		bank->start = 0;
752 		bank->num_of_loops = 0;
753 	}
754 	return 0;
755 }
756 
757 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
758 {
759 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
760 	struct snd_pcm_runtime *runtime = substream->runtime;
761 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
762 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
763 
764 	if (!(ypcm->running && voice))
765 		return 0;
766 	return le32_to_cpu(voice->bank[chip->active_bank].start);
767 }
768 
769 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
770 {
771 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
772 	struct snd_pcm_runtime *runtime = substream->runtime;
773 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
774 
775 	if (!ypcm->running)
776 		return 0;
777 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
778 }
779 
780 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
781 {
782 	wait_queue_t wait;
783 	int loops = 4;
784 
785 	while (loops-- > 0) {
786 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
787 		 	continue;
788 		init_waitqueue_entry(&wait, current);
789 		add_wait_queue(&chip->interrupt_sleep, &wait);
790 		atomic_inc(&chip->interrupt_sleep_count);
791 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
792 		remove_wait_queue(&chip->interrupt_sleep, &wait);
793 	}
794 }
795 
796 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
797 {
798 	struct snd_ymfpci *chip = dev_id;
799 	u32 status, nvoice, mode;
800 	struct snd_ymfpci_voice *voice;
801 
802 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
803 	if (status & 0x80000000) {
804 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
805 		spin_lock(&chip->voice_lock);
806 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
807 			voice = &chip->voices[nvoice];
808 			if (voice->interrupt)
809 				voice->interrupt(chip, voice);
810 		}
811 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
812 			if (chip->capture_substream[nvoice])
813 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
814 		}
815 #if 0
816 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
817 			if (chip->effect_substream[nvoice])
818 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
819 		}
820 #endif
821 		spin_unlock(&chip->voice_lock);
822 		spin_lock(&chip->reg_lock);
823 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
824 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
825 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
826 		spin_unlock(&chip->reg_lock);
827 
828 		if (atomic_read(&chip->interrupt_sleep_count)) {
829 			atomic_set(&chip->interrupt_sleep_count, 0);
830 			wake_up(&chip->interrupt_sleep);
831 		}
832 	}
833 
834 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
835 	if (status & 1) {
836 		if (chip->timer)
837 			snd_timer_interrupt(chip->timer, chip->timer_ticks);
838 	}
839 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
840 
841 	if (chip->rawmidi)
842 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
843 	return IRQ_HANDLED;
844 }
845 
846 static struct snd_pcm_hardware snd_ymfpci_playback =
847 {
848 	.info =			(SNDRV_PCM_INFO_MMAP |
849 				 SNDRV_PCM_INFO_MMAP_VALID |
850 				 SNDRV_PCM_INFO_INTERLEAVED |
851 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
852 				 SNDRV_PCM_INFO_PAUSE |
853 				 SNDRV_PCM_INFO_RESUME),
854 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
855 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
856 	.rate_min =		8000,
857 	.rate_max =		48000,
858 	.channels_min =		1,
859 	.channels_max =		2,
860 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
861 	.period_bytes_min =	64,
862 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
863 	.periods_min =		3,
864 	.periods_max =		1024,
865 	.fifo_size =		0,
866 };
867 
868 static struct snd_pcm_hardware snd_ymfpci_capture =
869 {
870 	.info =			(SNDRV_PCM_INFO_MMAP |
871 				 SNDRV_PCM_INFO_MMAP_VALID |
872 				 SNDRV_PCM_INFO_INTERLEAVED |
873 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
874 				 SNDRV_PCM_INFO_PAUSE |
875 				 SNDRV_PCM_INFO_RESUME),
876 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
877 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
878 	.rate_min =		8000,
879 	.rate_max =		48000,
880 	.channels_min =		1,
881 	.channels_max =		2,
882 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
883 	.period_bytes_min =	64,
884 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
885 	.periods_min =		3,
886 	.periods_max =		1024,
887 	.fifo_size =		0,
888 };
889 
890 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
891 {
892 	kfree(runtime->private_data);
893 }
894 
895 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
896 {
897 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
898 	struct snd_pcm_runtime *runtime = substream->runtime;
899 	struct snd_ymfpci_pcm *ypcm;
900 	int err;
901 
902 	runtime->hw = snd_ymfpci_playback;
903 	/* FIXME? True value is 256/48 = 5.33333 ms */
904 	err = snd_pcm_hw_constraint_minmax(runtime,
905 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
906 					   5334, UINT_MAX);
907 	if (err < 0)
908 		return err;
909 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
910 	if (err < 0)
911 		return err;
912 
913 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
914 	if (ypcm == NULL)
915 		return -ENOMEM;
916 	ypcm->chip = chip;
917 	ypcm->type = PLAYBACK_VOICE;
918 	ypcm->substream = substream;
919 	runtime->private_data = ypcm;
920 	runtime->private_free = snd_ymfpci_pcm_free_substream;
921 	return 0;
922 }
923 
924 /* call with spinlock held */
925 static void ymfpci_open_extension(struct snd_ymfpci *chip)
926 {
927 	if (! chip->rear_opened) {
928 		if (! chip->spdif_opened) /* set AC3 */
929 			snd_ymfpci_writel(chip, YDSXGR_MODE,
930 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
931 		/* enable second codec (4CHEN) */
932 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
933 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
934 	}
935 }
936 
937 /* call with spinlock held */
938 static void ymfpci_close_extension(struct snd_ymfpci *chip)
939 {
940 	if (! chip->rear_opened) {
941 		if (! chip->spdif_opened)
942 			snd_ymfpci_writel(chip, YDSXGR_MODE,
943 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
944 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
945 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
946 	}
947 }
948 
949 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
950 {
951 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
952 	struct snd_pcm_runtime *runtime = substream->runtime;
953 	struct snd_ymfpci_pcm *ypcm;
954 	int err;
955 
956 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
957 		return err;
958 	ypcm = runtime->private_data;
959 	ypcm->output_front = 1;
960 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
961 	ypcm->swap_rear = 0;
962 	spin_lock_irq(&chip->reg_lock);
963 	if (ypcm->output_rear) {
964 		ymfpci_open_extension(chip);
965 		chip->rear_opened++;
966 	}
967 	spin_unlock_irq(&chip->reg_lock);
968 	return 0;
969 }
970 
971 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
972 {
973 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
974 	struct snd_pcm_runtime *runtime = substream->runtime;
975 	struct snd_ymfpci_pcm *ypcm;
976 	int err;
977 
978 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
979 		return err;
980 	ypcm = runtime->private_data;
981 	ypcm->output_front = 0;
982 	ypcm->output_rear = 1;
983 	ypcm->swap_rear = 1;
984 	spin_lock_irq(&chip->reg_lock);
985 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
986 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
987 	ymfpci_open_extension(chip);
988 	chip->spdif_pcm_bits = chip->spdif_bits;
989 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
990 	chip->spdif_opened++;
991 	spin_unlock_irq(&chip->reg_lock);
992 
993 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
994 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
995 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
996 	return 0;
997 }
998 
999 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
1000 {
1001 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1002 	struct snd_pcm_runtime *runtime = substream->runtime;
1003 	struct snd_ymfpci_pcm *ypcm;
1004 	int err;
1005 
1006 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
1007 		return err;
1008 	ypcm = runtime->private_data;
1009 	ypcm->output_front = 0;
1010 	ypcm->output_rear = 1;
1011 	ypcm->swap_rear = 0;
1012 	spin_lock_irq(&chip->reg_lock);
1013 	ymfpci_open_extension(chip);
1014 	chip->rear_opened++;
1015 	spin_unlock_irq(&chip->reg_lock);
1016 	return 0;
1017 }
1018 
1019 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1020 				   u32 capture_bank_number)
1021 {
1022 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1023 	struct snd_pcm_runtime *runtime = substream->runtime;
1024 	struct snd_ymfpci_pcm *ypcm;
1025 	int err;
1026 
1027 	runtime->hw = snd_ymfpci_capture;
1028 	/* FIXME? True value is 256/48 = 5.33333 ms */
1029 	err = snd_pcm_hw_constraint_minmax(runtime,
1030 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1031 					   5334, UINT_MAX);
1032 	if (err < 0)
1033 		return err;
1034 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
1035 	if (err < 0)
1036 		return err;
1037 
1038 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1039 	if (ypcm == NULL)
1040 		return -ENOMEM;
1041 	ypcm->chip = chip;
1042 	ypcm->type = capture_bank_number + CAPTURE_REC;
1043 	ypcm->substream = substream;
1044 	ypcm->capture_bank_number = capture_bank_number;
1045 	chip->capture_substream[capture_bank_number] = substream;
1046 	runtime->private_data = ypcm;
1047 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1048 	snd_ymfpci_hw_start(chip);
1049 	return 0;
1050 }
1051 
1052 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1053 {
1054 	return snd_ymfpci_capture_open(substream, 0);
1055 }
1056 
1057 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1058 {
1059 	return snd_ymfpci_capture_open(substream, 1);
1060 }
1061 
1062 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1063 {
1064 	return 0;
1065 }
1066 
1067 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1068 {
1069 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1070 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1071 
1072 	spin_lock_irq(&chip->reg_lock);
1073 	if (ypcm->output_rear && chip->rear_opened > 0) {
1074 		chip->rear_opened--;
1075 		ymfpci_close_extension(chip);
1076 	}
1077 	spin_unlock_irq(&chip->reg_lock);
1078 	return snd_ymfpci_playback_close_1(substream);
1079 }
1080 
1081 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1082 {
1083 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1084 
1085 	spin_lock_irq(&chip->reg_lock);
1086 	chip->spdif_opened = 0;
1087 	ymfpci_close_extension(chip);
1088 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1089 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1090 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1091 	spin_unlock_irq(&chip->reg_lock);
1092 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1093 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1094 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1095 	return snd_ymfpci_playback_close_1(substream);
1096 }
1097 
1098 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1099 {
1100 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1101 
1102 	spin_lock_irq(&chip->reg_lock);
1103 	if (chip->rear_opened > 0) {
1104 		chip->rear_opened--;
1105 		ymfpci_close_extension(chip);
1106 	}
1107 	spin_unlock_irq(&chip->reg_lock);
1108 	return snd_ymfpci_playback_close_1(substream);
1109 }
1110 
1111 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1112 {
1113 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1114 	struct snd_pcm_runtime *runtime = substream->runtime;
1115 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1116 
1117 	if (ypcm != NULL) {
1118 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1119 		snd_ymfpci_hw_stop(chip);
1120 	}
1121 	return 0;
1122 }
1123 
1124 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1125 	.open =			snd_ymfpci_playback_open,
1126 	.close =		snd_ymfpci_playback_close,
1127 	.ioctl =		snd_pcm_lib_ioctl,
1128 	.hw_params =		snd_ymfpci_playback_hw_params,
1129 	.hw_free =		snd_ymfpci_playback_hw_free,
1130 	.prepare =		snd_ymfpci_playback_prepare,
1131 	.trigger =		snd_ymfpci_playback_trigger,
1132 	.pointer =		snd_ymfpci_playback_pointer,
1133 };
1134 
1135 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1136 	.open =			snd_ymfpci_capture_rec_open,
1137 	.close =		snd_ymfpci_capture_close,
1138 	.ioctl =		snd_pcm_lib_ioctl,
1139 	.hw_params =		snd_ymfpci_capture_hw_params,
1140 	.hw_free =		snd_ymfpci_capture_hw_free,
1141 	.prepare =		snd_ymfpci_capture_prepare,
1142 	.trigger =		snd_ymfpci_capture_trigger,
1143 	.pointer =		snd_ymfpci_capture_pointer,
1144 };
1145 
1146 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm **rpcm)
1147 {
1148 	struct snd_pcm *pcm;
1149 	int err;
1150 
1151 	if (rpcm)
1152 		*rpcm = NULL;
1153 	if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1154 		return err;
1155 	pcm->private_data = chip;
1156 
1157 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1158 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1159 
1160 	/* global setup */
1161 	pcm->info_flags = 0;
1162 	strcpy(pcm->name, "YMFPCI");
1163 	chip->pcm = pcm;
1164 
1165 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1166 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1167 
1168 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1169 				     snd_pcm_std_chmaps, 2, 0, NULL);
1170 	if (err < 0)
1171 		return err;
1172 
1173 	if (rpcm)
1174 		*rpcm = pcm;
1175 	return 0;
1176 }
1177 
1178 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1179 	.open =			snd_ymfpci_capture_ac97_open,
1180 	.close =		snd_ymfpci_capture_close,
1181 	.ioctl =		snd_pcm_lib_ioctl,
1182 	.hw_params =		snd_ymfpci_capture_hw_params,
1183 	.hw_free =		snd_ymfpci_capture_hw_free,
1184 	.prepare =		snd_ymfpci_capture_prepare,
1185 	.trigger =		snd_ymfpci_capture_trigger,
1186 	.pointer =		snd_ymfpci_capture_pointer,
1187 };
1188 
1189 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm **rpcm)
1190 {
1191 	struct snd_pcm *pcm;
1192 	int err;
1193 
1194 	if (rpcm)
1195 		*rpcm = NULL;
1196 	if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1197 		return err;
1198 	pcm->private_data = chip;
1199 
1200 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1201 
1202 	/* global setup */
1203 	pcm->info_flags = 0;
1204 	sprintf(pcm->name, "YMFPCI - %s",
1205 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1206 	chip->pcm2 = pcm;
1207 
1208 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1209 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1210 
1211 	if (rpcm)
1212 		*rpcm = pcm;
1213 	return 0;
1214 }
1215 
1216 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1217 	.open =			snd_ymfpci_playback_spdif_open,
1218 	.close =		snd_ymfpci_playback_spdif_close,
1219 	.ioctl =		snd_pcm_lib_ioctl,
1220 	.hw_params =		snd_ymfpci_playback_hw_params,
1221 	.hw_free =		snd_ymfpci_playback_hw_free,
1222 	.prepare =		snd_ymfpci_playback_prepare,
1223 	.trigger =		snd_ymfpci_playback_trigger,
1224 	.pointer =		snd_ymfpci_playback_pointer,
1225 };
1226 
1227 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device,
1228 			 struct snd_pcm **rpcm)
1229 {
1230 	struct snd_pcm *pcm;
1231 	int err;
1232 
1233 	if (rpcm)
1234 		*rpcm = NULL;
1235 	if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1236 		return err;
1237 	pcm->private_data = chip;
1238 
1239 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1240 
1241 	/* global setup */
1242 	pcm->info_flags = 0;
1243 	strcpy(pcm->name, "YMFPCI - IEC958");
1244 	chip->pcm_spdif = pcm;
1245 
1246 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1247 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1248 
1249 	if (rpcm)
1250 		*rpcm = pcm;
1251 	return 0;
1252 }
1253 
1254 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1255 	.open =			snd_ymfpci_playback_4ch_open,
1256 	.close =		snd_ymfpci_playback_4ch_close,
1257 	.ioctl =		snd_pcm_lib_ioctl,
1258 	.hw_params =		snd_ymfpci_playback_hw_params,
1259 	.hw_free =		snd_ymfpci_playback_hw_free,
1260 	.prepare =		snd_ymfpci_playback_prepare,
1261 	.trigger =		snd_ymfpci_playback_trigger,
1262 	.pointer =		snd_ymfpci_playback_pointer,
1263 };
1264 
1265 static const struct snd_pcm_chmap_elem surround_map[] = {
1266 	{ .channels = 1,
1267 	  .map = { SNDRV_CHMAP_MONO } },
1268 	{ .channels = 2,
1269 	  .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1270 	{ }
1271 };
1272 
1273 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device,
1274 		       struct snd_pcm **rpcm)
1275 {
1276 	struct snd_pcm *pcm;
1277 	int err;
1278 
1279 	if (rpcm)
1280 		*rpcm = NULL;
1281 	if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1282 		return err;
1283 	pcm->private_data = chip;
1284 
1285 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1286 
1287 	/* global setup */
1288 	pcm->info_flags = 0;
1289 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1290 	chip->pcm_4ch = pcm;
1291 
1292 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1293 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1294 
1295 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1296 				     surround_map, 2, 0, NULL);
1297 	if (err < 0)
1298 		return err;
1299 
1300 	if (rpcm)
1301 		*rpcm = pcm;
1302 	return 0;
1303 }
1304 
1305 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1306 {
1307 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1308 	uinfo->count = 1;
1309 	return 0;
1310 }
1311 
1312 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1313 					struct snd_ctl_elem_value *ucontrol)
1314 {
1315 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1316 
1317 	spin_lock_irq(&chip->reg_lock);
1318 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1319 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1320 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1321 	spin_unlock_irq(&chip->reg_lock);
1322 	return 0;
1323 }
1324 
1325 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1326 					 struct snd_ctl_elem_value *ucontrol)
1327 {
1328 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1329 	unsigned int val;
1330 	int change;
1331 
1332 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1333 	      (ucontrol->value.iec958.status[1] << 8);
1334 	spin_lock_irq(&chip->reg_lock);
1335 	change = chip->spdif_bits != val;
1336 	chip->spdif_bits = val;
1337 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1338 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1339 	spin_unlock_irq(&chip->reg_lock);
1340 	return change;
1341 }
1342 
1343 static struct snd_kcontrol_new snd_ymfpci_spdif_default =
1344 {
1345 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1346 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1347 	.info =		snd_ymfpci_spdif_default_info,
1348 	.get =		snd_ymfpci_spdif_default_get,
1349 	.put =		snd_ymfpci_spdif_default_put
1350 };
1351 
1352 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1353 {
1354 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1355 	uinfo->count = 1;
1356 	return 0;
1357 }
1358 
1359 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1360 				      struct snd_ctl_elem_value *ucontrol)
1361 {
1362 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1363 
1364 	spin_lock_irq(&chip->reg_lock);
1365 	ucontrol->value.iec958.status[0] = 0x3e;
1366 	ucontrol->value.iec958.status[1] = 0xff;
1367 	spin_unlock_irq(&chip->reg_lock);
1368 	return 0;
1369 }
1370 
1371 static struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1372 {
1373 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1374 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1375 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1376 	.info =		snd_ymfpci_spdif_mask_info,
1377 	.get =		snd_ymfpci_spdif_mask_get,
1378 };
1379 
1380 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1381 {
1382 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1383 	uinfo->count = 1;
1384 	return 0;
1385 }
1386 
1387 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1388 					struct snd_ctl_elem_value *ucontrol)
1389 {
1390 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1391 
1392 	spin_lock_irq(&chip->reg_lock);
1393 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1394 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1395 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1396 	spin_unlock_irq(&chip->reg_lock);
1397 	return 0;
1398 }
1399 
1400 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1401 					struct snd_ctl_elem_value *ucontrol)
1402 {
1403 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1404 	unsigned int val;
1405 	int change;
1406 
1407 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1408 	      (ucontrol->value.iec958.status[1] << 8);
1409 	spin_lock_irq(&chip->reg_lock);
1410 	change = chip->spdif_pcm_bits != val;
1411 	chip->spdif_pcm_bits = val;
1412 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1413 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1414 	spin_unlock_irq(&chip->reg_lock);
1415 	return change;
1416 }
1417 
1418 static struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1419 {
1420 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1421 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1422 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1423 	.info =		snd_ymfpci_spdif_stream_info,
1424 	.get =		snd_ymfpci_spdif_stream_get,
1425 	.put =		snd_ymfpci_spdif_stream_put
1426 };
1427 
1428 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1429 {
1430 	static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1431 
1432 	return snd_ctl_enum_info(info, 1, 3, texts);
1433 }
1434 
1435 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1436 {
1437 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1438 	u16 reg;
1439 
1440 	spin_lock_irq(&chip->reg_lock);
1441 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1442 	spin_unlock_irq(&chip->reg_lock);
1443 	if (!(reg & 0x100))
1444 		value->value.enumerated.item[0] = 0;
1445 	else
1446 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1447 	return 0;
1448 }
1449 
1450 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1451 {
1452 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1453 	u16 reg, old_reg;
1454 
1455 	spin_lock_irq(&chip->reg_lock);
1456 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1457 	if (value->value.enumerated.item[0] == 0)
1458 		reg = old_reg & ~0x100;
1459 	else
1460 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1461 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1462 	spin_unlock_irq(&chip->reg_lock);
1463 	return reg != old_reg;
1464 }
1465 
1466 static struct snd_kcontrol_new snd_ymfpci_drec_source = {
1467 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1468 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1469 	.name =		"Direct Recording Source",
1470 	.info =		snd_ymfpci_drec_source_info,
1471 	.get =		snd_ymfpci_drec_source_get,
1472 	.put =		snd_ymfpci_drec_source_put
1473 };
1474 
1475 /*
1476  *  Mixer controls
1477  */
1478 
1479 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1480 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1481   .info = snd_ymfpci_info_single, \
1482   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1483   .private_value = ((reg) | ((shift) << 16)) }
1484 
1485 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1486 
1487 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1488 				 struct snd_ctl_elem_value *ucontrol)
1489 {
1490 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1491 	int reg = kcontrol->private_value & 0xffff;
1492 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1493 	unsigned int mask = 1;
1494 
1495 	switch (reg) {
1496 	case YDSXGR_SPDIFOUTCTRL: break;
1497 	case YDSXGR_SPDIFINCTRL: break;
1498 	default: return -EINVAL;
1499 	}
1500 	ucontrol->value.integer.value[0] =
1501 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1502 	return 0;
1503 }
1504 
1505 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1506 				 struct snd_ctl_elem_value *ucontrol)
1507 {
1508 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1509 	int reg = kcontrol->private_value & 0xffff;
1510 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1511  	unsigned int mask = 1;
1512 	int change;
1513 	unsigned int val, oval;
1514 
1515 	switch (reg) {
1516 	case YDSXGR_SPDIFOUTCTRL: break;
1517 	case YDSXGR_SPDIFINCTRL: break;
1518 	default: return -EINVAL;
1519 	}
1520 	val = (ucontrol->value.integer.value[0] & mask);
1521 	val <<= shift;
1522 	spin_lock_irq(&chip->reg_lock);
1523 	oval = snd_ymfpci_readl(chip, reg);
1524 	val = (oval & ~(mask << shift)) | val;
1525 	change = val != oval;
1526 	snd_ymfpci_writel(chip, reg, val);
1527 	spin_unlock_irq(&chip->reg_lock);
1528 	return change;
1529 }
1530 
1531 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1532 
1533 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1534 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1535   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1536   .info = snd_ymfpci_info_double, \
1537   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1538   .private_value = reg, \
1539   .tlv = { .p = db_scale_native } }
1540 
1541 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1542 {
1543 	unsigned int reg = kcontrol->private_value;
1544 
1545 	if (reg < 0x80 || reg >= 0xc0)
1546 		return -EINVAL;
1547 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1548 	uinfo->count = 2;
1549 	uinfo->value.integer.min = 0;
1550 	uinfo->value.integer.max = 16383;
1551 	return 0;
1552 }
1553 
1554 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1555 {
1556 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1557 	unsigned int reg = kcontrol->private_value;
1558 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1559 	unsigned int val;
1560 
1561 	if (reg < 0x80 || reg >= 0xc0)
1562 		return -EINVAL;
1563 	spin_lock_irq(&chip->reg_lock);
1564 	val = snd_ymfpci_readl(chip, reg);
1565 	spin_unlock_irq(&chip->reg_lock);
1566 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1567 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1568 	return 0;
1569 }
1570 
1571 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1572 {
1573 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1574 	unsigned int reg = kcontrol->private_value;
1575 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1576 	int change;
1577 	unsigned int val1, val2, oval;
1578 
1579 	if (reg < 0x80 || reg >= 0xc0)
1580 		return -EINVAL;
1581 	val1 = ucontrol->value.integer.value[0] & mask;
1582 	val2 = ucontrol->value.integer.value[1] & mask;
1583 	val1 <<= shift_left;
1584 	val2 <<= shift_right;
1585 	spin_lock_irq(&chip->reg_lock);
1586 	oval = snd_ymfpci_readl(chip, reg);
1587 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1588 	change = val1 != oval;
1589 	snd_ymfpci_writel(chip, reg, val1);
1590 	spin_unlock_irq(&chip->reg_lock);
1591 	return change;
1592 }
1593 
1594 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1595 				       struct snd_ctl_elem_value *ucontrol)
1596 {
1597 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1598 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1599 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1600 	int change;
1601 	unsigned int value, oval;
1602 
1603 	value = ucontrol->value.integer.value[0] & 0x3fff;
1604 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1605 	spin_lock_irq(&chip->reg_lock);
1606 	oval = snd_ymfpci_readl(chip, reg);
1607 	change = value != oval;
1608 	snd_ymfpci_writel(chip, reg, value);
1609 	snd_ymfpci_writel(chip, reg2, value);
1610 	spin_unlock_irq(&chip->reg_lock);
1611 	return change;
1612 }
1613 
1614 /*
1615  * 4ch duplication
1616  */
1617 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1618 
1619 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1620 {
1621 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1622 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1623 	return 0;
1624 }
1625 
1626 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1627 {
1628 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1629 	int change;
1630 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1631 	if (change)
1632 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1633 	return change;
1634 }
1635 
1636 static struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1637 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1638 	.name = "4ch Duplication",
1639 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1640 	.info = snd_ymfpci_info_dup4ch,
1641 	.get = snd_ymfpci_get_dup4ch,
1642 	.put = snd_ymfpci_put_dup4ch,
1643 };
1644 
1645 static struct snd_kcontrol_new snd_ymfpci_controls[] = {
1646 {
1647 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1648 	.name = "Wave Playback Volume",
1649 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1650 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1651 	.info = snd_ymfpci_info_double,
1652 	.get = snd_ymfpci_get_double,
1653 	.put = snd_ymfpci_put_nativedacvol,
1654 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1655 	.tlv = { .p = db_scale_native },
1656 },
1657 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1658 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1659 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1660 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1661 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1662 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1663 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1664 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1665 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1666 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1667 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1668 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1669 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1670 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1671 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1672 };
1673 
1674 
1675 /*
1676  * GPIO
1677  */
1678 
1679 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1680 {
1681 	u16 reg, mode;
1682 	unsigned long flags;
1683 
1684 	spin_lock_irqsave(&chip->reg_lock, flags);
1685 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1686 	reg &= ~(1 << (pin + 8));
1687 	reg |= (1 << pin);
1688 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1689 	/* set the level mode for input line */
1690 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1691 	mode &= ~(3 << (pin * 2));
1692 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1693 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1694 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1695 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1696 	return (mode >> pin) & 1;
1697 }
1698 
1699 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1700 {
1701 	u16 reg;
1702 	unsigned long flags;
1703 
1704 	spin_lock_irqsave(&chip->reg_lock, flags);
1705 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1706 	reg &= ~(1 << pin);
1707 	reg &= ~(1 << (pin + 8));
1708 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1709 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1710 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1711 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1712 
1713 	return 0;
1714 }
1715 
1716 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1717 
1718 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1719 {
1720 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1721 	int pin = (int)kcontrol->private_value;
1722 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1723 	return 0;
1724 }
1725 
1726 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1727 {
1728 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1729 	int pin = (int)kcontrol->private_value;
1730 
1731 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1732 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1733 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1734 		return 1;
1735 	}
1736 	return 0;
1737 }
1738 
1739 static struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1740 	.name = "Shared Rear/Line-In Switch",
1741 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1742 	.info = snd_ymfpci_gpio_sw_info,
1743 	.get = snd_ymfpci_gpio_sw_get,
1744 	.put = snd_ymfpci_gpio_sw_put,
1745 	.private_value = 2,
1746 };
1747 
1748 /*
1749  * PCM voice volume
1750  */
1751 
1752 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1753 				   struct snd_ctl_elem_info *uinfo)
1754 {
1755 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1756 	uinfo->count = 2;
1757 	uinfo->value.integer.min = 0;
1758 	uinfo->value.integer.max = 0x8000;
1759 	return 0;
1760 }
1761 
1762 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1763 				  struct snd_ctl_elem_value *ucontrol)
1764 {
1765 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1766 	unsigned int subs = kcontrol->id.subdevice;
1767 
1768 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1769 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1770 	return 0;
1771 }
1772 
1773 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1774 				  struct snd_ctl_elem_value *ucontrol)
1775 {
1776 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1777 	unsigned int subs = kcontrol->id.subdevice;
1778 	struct snd_pcm_substream *substream;
1779 	unsigned long flags;
1780 
1781 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1782 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1783 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1784 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1785 		if (chip->pcm_mixer[subs].left > 0x8000)
1786 			chip->pcm_mixer[subs].left = 0x8000;
1787 		if (chip->pcm_mixer[subs].right > 0x8000)
1788 			chip->pcm_mixer[subs].right = 0x8000;
1789 
1790 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1791 		spin_lock_irqsave(&chip->voice_lock, flags);
1792 		if (substream->runtime && substream->runtime->private_data) {
1793 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1794 			if (!ypcm->use_441_slot)
1795 				ypcm->update_pcm_vol = 2;
1796 		}
1797 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1798 		return 1;
1799 	}
1800 	return 0;
1801 }
1802 
1803 static struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1804 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1805 	.name = "PCM Playback Volume",
1806 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1807 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1808 	.info = snd_ymfpci_pcm_vol_info,
1809 	.get = snd_ymfpci_pcm_vol_get,
1810 	.put = snd_ymfpci_pcm_vol_put,
1811 };
1812 
1813 
1814 /*
1815  *  Mixer routines
1816  */
1817 
1818 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1819 {
1820 	struct snd_ymfpci *chip = bus->private_data;
1821 	chip->ac97_bus = NULL;
1822 }
1823 
1824 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1825 {
1826 	struct snd_ymfpci *chip = ac97->private_data;
1827 	chip->ac97 = NULL;
1828 }
1829 
1830 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1831 {
1832 	struct snd_ac97_template ac97;
1833 	struct snd_kcontrol *kctl;
1834 	struct snd_pcm_substream *substream;
1835 	unsigned int idx;
1836 	int err;
1837 	static struct snd_ac97_bus_ops ops = {
1838 		.write = snd_ymfpci_codec_write,
1839 		.read = snd_ymfpci_codec_read,
1840 	};
1841 
1842 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1843 		return err;
1844 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1845 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1846 
1847 	memset(&ac97, 0, sizeof(ac97));
1848 	ac97.private_data = chip;
1849 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1850 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1851 		return err;
1852 
1853 	/* to be sure */
1854 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1855 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1856 
1857 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1858 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1859 			return err;
1860 	}
1861 	if (chip->ac97->ext_id & AC97_EI_SDAC) {
1862 		kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1863 		err = snd_ctl_add(chip->card, kctl);
1864 		if (err < 0)
1865 			return err;
1866 	}
1867 
1868 	/* add S/PDIF control */
1869 	if (snd_BUG_ON(!chip->pcm_spdif))
1870 		return -ENXIO;
1871 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1872 		return err;
1873 	kctl->id.device = chip->pcm_spdif->device;
1874 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1875 		return err;
1876 	kctl->id.device = chip->pcm_spdif->device;
1877 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1878 		return err;
1879 	kctl->id.device = chip->pcm_spdif->device;
1880 	chip->spdif_pcm_ctl = kctl;
1881 
1882 	/* direct recording source */
1883 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1884 	    (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1885 		return err;
1886 
1887 	/*
1888 	 * shared rear/line-in
1889 	 */
1890 	if (rear_switch) {
1891 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1892 			return err;
1893 	}
1894 
1895 	/* per-voice volume */
1896 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1897 	for (idx = 0; idx < 32; ++idx) {
1898 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1899 		if (!kctl)
1900 			return -ENOMEM;
1901 		kctl->id.device = chip->pcm->device;
1902 		kctl->id.subdevice = idx;
1903 		kctl->private_value = (unsigned long)substream;
1904 		if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1905 			return err;
1906 		chip->pcm_mixer[idx].left = 0x8000;
1907 		chip->pcm_mixer[idx].right = 0x8000;
1908 		chip->pcm_mixer[idx].ctl = kctl;
1909 		substream = substream->next;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 
1916 /*
1917  * timer
1918  */
1919 
1920 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1921 {
1922 	struct snd_ymfpci *chip;
1923 	unsigned long flags;
1924 	unsigned int count;
1925 
1926 	chip = snd_timer_chip(timer);
1927 	spin_lock_irqsave(&chip->reg_lock, flags);
1928 	if (timer->sticks > 1) {
1929 		chip->timer_ticks = timer->sticks;
1930 		count = timer->sticks - 1;
1931 	} else {
1932 		/*
1933 		 * Divisor 1 is not allowed; fake it by using divisor 2 and
1934 		 * counting two ticks for each interrupt.
1935 		 */
1936 		chip->timer_ticks = 2;
1937 		count = 2 - 1;
1938 	}
1939 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1940 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1941 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1942 	return 0;
1943 }
1944 
1945 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1946 {
1947 	struct snd_ymfpci *chip;
1948 	unsigned long flags;
1949 
1950 	chip = snd_timer_chip(timer);
1951 	spin_lock_irqsave(&chip->reg_lock, flags);
1952 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1953 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1954 	return 0;
1955 }
1956 
1957 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1958 					       unsigned long *num, unsigned long *den)
1959 {
1960 	*num = 1;
1961 	*den = 96000;
1962 	return 0;
1963 }
1964 
1965 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1966 	.flags = SNDRV_TIMER_HW_AUTO,
1967 	.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1968 	.ticks = 0x10000,
1969 	.start = snd_ymfpci_timer_start,
1970 	.stop = snd_ymfpci_timer_stop,
1971 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1972 };
1973 
1974 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1975 {
1976 	struct snd_timer *timer = NULL;
1977 	struct snd_timer_id tid;
1978 	int err;
1979 
1980 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1981 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1982 	tid.card = chip->card->number;
1983 	tid.device = device;
1984 	tid.subdevice = 0;
1985 	if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1986 		strcpy(timer->name, "YMFPCI timer");
1987 		timer->private_data = chip;
1988 		timer->hw = snd_ymfpci_timer_hw;
1989 	}
1990 	chip->timer = timer;
1991 	return err;
1992 }
1993 
1994 
1995 /*
1996  *  proc interface
1997  */
1998 
1999 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
2000 				 struct snd_info_buffer *buffer)
2001 {
2002 	struct snd_ymfpci *chip = entry->private_data;
2003 	int i;
2004 
2005 	snd_iprintf(buffer, "YMFPCI\n\n");
2006 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
2007 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
2008 }
2009 
2010 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
2011 {
2012 	struct snd_info_entry *entry;
2013 
2014 	if (! snd_card_proc_new(card, "ymfpci", &entry))
2015 		snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
2016 	return 0;
2017 }
2018 
2019 /*
2020  *  initialization routines
2021  */
2022 
2023 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
2024 {
2025 	u8 cmd;
2026 
2027 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
2028 #if 0 // force to reset
2029 	if (cmd & 0x03) {
2030 #endif
2031 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2032 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
2033 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2034 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2035 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2036 #if 0
2037 	}
2038 #endif
2039 }
2040 
2041 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2042 {
2043 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2044 }
2045 
2046 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2047 {
2048 	u32 val;
2049 	int timeout = 1000;
2050 
2051 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2052 	if (val)
2053 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2054 	while (timeout-- > 0) {
2055 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2056 		if ((val & 0x00000002) == 0)
2057 			break;
2058 	}
2059 }
2060 
2061 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2062 {
2063 	int err, is_1e;
2064 	const char *name;
2065 
2066 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2067 			       &chip->pci->dev);
2068 	if (err >= 0) {
2069 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2070 			snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2071 			err = -EINVAL;
2072 		}
2073 	}
2074 	if (err < 0)
2075 		return err;
2076 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2077 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2078 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2079 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2080 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2081 	err = request_firmware(&chip->controller_microcode, name,
2082 			       &chip->pci->dev);
2083 	if (err >= 0) {
2084 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2085 			snd_printk(KERN_ERR "controller microcode"
2086 				   " has wrong size\n");
2087 			err = -EINVAL;
2088 		}
2089 	}
2090 	if (err < 0)
2091 		return err;
2092 	return 0;
2093 }
2094 
2095 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2096 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2097 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2098 
2099 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2100 {
2101 	int i;
2102 	u16 ctrl;
2103 	const __le32 *inst;
2104 
2105 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2106 	snd_ymfpci_disable_dsp(chip);
2107 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2108 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2109 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2110 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2111 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2112 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2113 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2114 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2115 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2116 
2117 	/* setup DSP instruction code */
2118 	inst = (const __le32 *)chip->dsp_microcode->data;
2119 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2120 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2121 				  le32_to_cpu(inst[i]));
2122 
2123 	/* setup control instruction code */
2124 	inst = (const __le32 *)chip->controller_microcode->data;
2125 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2126 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2127 				  le32_to_cpu(inst[i]));
2128 
2129 	snd_ymfpci_enable_dsp(chip);
2130 }
2131 
2132 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2133 {
2134 	long size, playback_ctrl_size;
2135 	int voice, bank, reg;
2136 	u8 *ptr;
2137 	dma_addr_t ptr_addr;
2138 
2139 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2140 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2141 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2142 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2143 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2144 
2145 	size = ALIGN(playback_ctrl_size, 0x100) +
2146 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2147 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2148 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2149 	       chip->work_size;
2150 	/* work_ptr must be aligned to 256 bytes, but it's already
2151 	   covered with the kernel page allocation mechanism */
2152 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2153 				size, &chip->work_ptr) < 0)
2154 		return -ENOMEM;
2155 	ptr = chip->work_ptr.area;
2156 	ptr_addr = chip->work_ptr.addr;
2157 	memset(ptr, 0, size);	/* for sure */
2158 
2159 	chip->bank_base_playback = ptr;
2160 	chip->bank_base_playback_addr = ptr_addr;
2161 	chip->ctrl_playback = (u32 *)ptr;
2162 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2163 	ptr += ALIGN(playback_ctrl_size, 0x100);
2164 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2165 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2166 		chip->voices[voice].number = voice;
2167 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2168 		chip->voices[voice].bank_addr = ptr_addr;
2169 		for (bank = 0; bank < 2; bank++) {
2170 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2171 			ptr += chip->bank_size_playback;
2172 			ptr_addr += chip->bank_size_playback;
2173 		}
2174 	}
2175 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2176 	ptr_addr = ALIGN(ptr_addr, 0x100);
2177 	chip->bank_base_capture = ptr;
2178 	chip->bank_base_capture_addr = ptr_addr;
2179 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2180 		for (bank = 0; bank < 2; bank++) {
2181 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2182 			ptr += chip->bank_size_capture;
2183 			ptr_addr += chip->bank_size_capture;
2184 		}
2185 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2186 	ptr_addr = ALIGN(ptr_addr, 0x100);
2187 	chip->bank_base_effect = ptr;
2188 	chip->bank_base_effect_addr = ptr_addr;
2189 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2190 		for (bank = 0; bank < 2; bank++) {
2191 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2192 			ptr += chip->bank_size_effect;
2193 			ptr_addr += chip->bank_size_effect;
2194 		}
2195 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2196 	ptr_addr = ALIGN(ptr_addr, 0x100);
2197 	chip->work_base = ptr;
2198 	chip->work_base_addr = ptr_addr;
2199 
2200 	snd_BUG_ON(ptr + chip->work_size !=
2201 		   chip->work_ptr.area + chip->work_ptr.bytes);
2202 
2203 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2204 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2205 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2206 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2207 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2208 
2209 	/* S/PDIF output initialization */
2210 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2211 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2212 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2213 
2214 	/* S/PDIF input initialization */
2215 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2216 
2217 	/* digital mixer setup */
2218 	for (reg = 0x80; reg < 0xc0; reg += 4)
2219 		snd_ymfpci_writel(chip, reg, 0);
2220 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2221 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2222 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2223 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2224 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2225 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2226 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2227 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2228 
2229 	return 0;
2230 }
2231 
2232 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2233 {
2234 	u16 ctrl;
2235 
2236 	if (snd_BUG_ON(!chip))
2237 		return -EINVAL;
2238 
2239 	if (chip->res_reg_area) {	/* don't touch busy hardware */
2240 		snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2241 		snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2242 		snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2243 		snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2244 		snd_ymfpci_disable_dsp(chip);
2245 		snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2246 		snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2247 		snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2248 		snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2249 		snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2250 		ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2251 		snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2252 	}
2253 
2254 	snd_ymfpci_ac3_done(chip);
2255 
2256 	/* Set PCI device to D3 state */
2257 #if 0
2258 	/* FIXME: temporarily disabled, otherwise we cannot fire up
2259 	 * the chip again unless reboot.  ACPI bug?
2260 	 */
2261 	pci_set_power_state(chip->pci, 3);
2262 #endif
2263 
2264 #ifdef CONFIG_PM_SLEEP
2265 	kfree(chip->saved_regs);
2266 #endif
2267 	if (chip->irq >= 0)
2268 		free_irq(chip->irq, chip);
2269 	release_and_free_resource(chip->mpu_res);
2270 	release_and_free_resource(chip->fm_res);
2271 	snd_ymfpci_free_gameport(chip);
2272 	if (chip->reg_area_virt)
2273 		iounmap(chip->reg_area_virt);
2274 	if (chip->work_ptr.area)
2275 		snd_dma_free_pages(&chip->work_ptr);
2276 
2277 	release_and_free_resource(chip->res_reg_area);
2278 
2279 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2280 
2281 	pci_disable_device(chip->pci);
2282 	release_firmware(chip->dsp_microcode);
2283 	release_firmware(chip->controller_microcode);
2284 	kfree(chip);
2285 	return 0;
2286 }
2287 
2288 static int snd_ymfpci_dev_free(struct snd_device *device)
2289 {
2290 	struct snd_ymfpci *chip = device->device_data;
2291 	return snd_ymfpci_free(chip);
2292 }
2293 
2294 #ifdef CONFIG_PM_SLEEP
2295 static int saved_regs_index[] = {
2296 	/* spdif */
2297 	YDSXGR_SPDIFOUTCTRL,
2298 	YDSXGR_SPDIFOUTSTATUS,
2299 	YDSXGR_SPDIFINCTRL,
2300 	/* volumes */
2301 	YDSXGR_PRIADCLOOPVOL,
2302 	YDSXGR_NATIVEDACINVOL,
2303 	YDSXGR_NATIVEDACOUTVOL,
2304 	YDSXGR_BUF441OUTVOL,
2305 	YDSXGR_NATIVEADCINVOL,
2306 	YDSXGR_SPDIFLOOPVOL,
2307 	YDSXGR_SPDIFOUTVOL,
2308 	YDSXGR_ZVOUTVOL,
2309 	YDSXGR_LEGACYOUTVOL,
2310 	/* address bases */
2311 	YDSXGR_PLAYCTRLBASE,
2312 	YDSXGR_RECCTRLBASE,
2313 	YDSXGR_EFFCTRLBASE,
2314 	YDSXGR_WORKBASE,
2315 	/* capture set up */
2316 	YDSXGR_MAPOFREC,
2317 	YDSXGR_RECFORMAT,
2318 	YDSXGR_RECSLOTSR,
2319 	YDSXGR_ADCFORMAT,
2320 	YDSXGR_ADCSLOTSR,
2321 };
2322 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2323 
2324 static int snd_ymfpci_suspend(struct device *dev)
2325 {
2326 	struct pci_dev *pci = to_pci_dev(dev);
2327 	struct snd_card *card = dev_get_drvdata(dev);
2328 	struct snd_ymfpci *chip = card->private_data;
2329 	unsigned int i;
2330 
2331 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2332 	snd_pcm_suspend_all(chip->pcm);
2333 	snd_pcm_suspend_all(chip->pcm2);
2334 	snd_pcm_suspend_all(chip->pcm_spdif);
2335 	snd_pcm_suspend_all(chip->pcm_4ch);
2336 	snd_ac97_suspend(chip->ac97);
2337 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2338 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2339 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2340 	pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2341 			     &chip->saved_dsxg_legacy);
2342 	pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2343 			     &chip->saved_dsxg_elegacy);
2344 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2345 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2346 	snd_ymfpci_disable_dsp(chip);
2347 	pci_disable_device(pci);
2348 	pci_save_state(pci);
2349 	pci_set_power_state(pci, PCI_D3hot);
2350 	return 0;
2351 }
2352 
2353 static int snd_ymfpci_resume(struct device *dev)
2354 {
2355 	struct pci_dev *pci = to_pci_dev(dev);
2356 	struct snd_card *card = dev_get_drvdata(dev);
2357 	struct snd_ymfpci *chip = card->private_data;
2358 	unsigned int i;
2359 
2360 	pci_set_power_state(pci, PCI_D0);
2361 	pci_restore_state(pci);
2362 	if (pci_enable_device(pci) < 0) {
2363 		printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2364 		       "disabling device\n");
2365 		snd_card_disconnect(card);
2366 		return -EIO;
2367 	}
2368 	pci_set_master(pci);
2369 	snd_ymfpci_aclink_reset(pci);
2370 	snd_ymfpci_codec_ready(chip, 0);
2371 	snd_ymfpci_download_image(chip);
2372 	udelay(100);
2373 
2374 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2375 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2376 
2377 	snd_ac97_resume(chip->ac97);
2378 
2379 	pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2380 			      chip->saved_dsxg_legacy);
2381 	pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2382 			      chip->saved_dsxg_elegacy);
2383 
2384 	/* start hw again */
2385 	if (chip->start_count > 0) {
2386 		spin_lock_irq(&chip->reg_lock);
2387 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2388 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2389 		spin_unlock_irq(&chip->reg_lock);
2390 	}
2391 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2392 	return 0;
2393 }
2394 
2395 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2396 #endif /* CONFIG_PM_SLEEP */
2397 
2398 int snd_ymfpci_create(struct snd_card *card,
2399 		      struct pci_dev *pci,
2400 		      unsigned short old_legacy_ctrl,
2401 		      struct snd_ymfpci **rchip)
2402 {
2403 	struct snd_ymfpci *chip;
2404 	int err;
2405 	static struct snd_device_ops ops = {
2406 		.dev_free =	snd_ymfpci_dev_free,
2407 	};
2408 
2409 	*rchip = NULL;
2410 
2411 	/* enable PCI device */
2412 	if ((err = pci_enable_device(pci)) < 0)
2413 		return err;
2414 
2415 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2416 	if (chip == NULL) {
2417 		pci_disable_device(pci);
2418 		return -ENOMEM;
2419 	}
2420 	chip->old_legacy_ctrl = old_legacy_ctrl;
2421 	spin_lock_init(&chip->reg_lock);
2422 	spin_lock_init(&chip->voice_lock);
2423 	init_waitqueue_head(&chip->interrupt_sleep);
2424 	atomic_set(&chip->interrupt_sleep_count, 0);
2425 	chip->card = card;
2426 	chip->pci = pci;
2427 	chip->irq = -1;
2428 	chip->device_id = pci->device;
2429 	chip->rev = pci->revision;
2430 	chip->reg_area_phys = pci_resource_start(pci, 0);
2431 	chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2432 	pci_set_master(pci);
2433 	chip->src441_used = -1;
2434 
2435 	if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2436 		snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2437 		snd_ymfpci_free(chip);
2438 		return -EBUSY;
2439 	}
2440 	if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2441 			KBUILD_MODNAME, chip)) {
2442 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2443 		snd_ymfpci_free(chip);
2444 		return -EBUSY;
2445 	}
2446 	chip->irq = pci->irq;
2447 
2448 	snd_ymfpci_aclink_reset(pci);
2449 	if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2450 		snd_ymfpci_free(chip);
2451 		return -EIO;
2452 	}
2453 
2454 	err = snd_ymfpci_request_firmware(chip);
2455 	if (err < 0) {
2456 		snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2457 		snd_ymfpci_free(chip);
2458 		return err;
2459 	}
2460 	snd_ymfpci_download_image(chip);
2461 
2462 	udelay(100); /* seems we need a delay after downloading image.. */
2463 
2464 	if (snd_ymfpci_memalloc(chip) < 0) {
2465 		snd_ymfpci_free(chip);
2466 		return -EIO;
2467 	}
2468 
2469 	if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2470 		snd_ymfpci_free(chip);
2471 		return err;
2472 	}
2473 
2474 #ifdef CONFIG_PM_SLEEP
2475 	chip->saved_regs = kmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32),
2476 				   GFP_KERNEL);
2477 	if (chip->saved_regs == NULL) {
2478 		snd_ymfpci_free(chip);
2479 		return -ENOMEM;
2480 	}
2481 #endif
2482 
2483 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2484 		snd_ymfpci_free(chip);
2485 		return err;
2486 	}
2487 
2488 	snd_ymfpci_proc_init(card, chip);
2489 
2490 	snd_card_set_dev(card, &pci->dev);
2491 
2492 	*rchip = chip;
2493 	return 0;
2494 }
2495