xref: /openbmc/linux/sound/pci/ymfpci/ymfpci_main.c (revision 545e4006)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mutex.h>
30 
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include <sound/ymfpci.h>
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38 
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41 
42 /*
43  *  common I/O routines
44  */
45 
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47 
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50 	return readb(chip->reg_area_virt + offset);
51 }
52 
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55 	writeb(val, chip->reg_area_virt + offset);
56 }
57 
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60 	return readw(chip->reg_area_virt + offset);
61 }
62 
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65 	writew(val, chip->reg_area_virt + offset);
66 }
67 
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70 	return readl(chip->reg_area_virt + offset);
71 }
72 
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75 	writel(val, chip->reg_area_virt + offset);
76 }
77 
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80 	unsigned long end_time;
81 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82 
83 	end_time = jiffies + msecs_to_jiffies(750);
84 	do {
85 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86 			return 0;
87 		schedule_timeout_uninterruptible(1);
88 	} while (time_before(jiffies, end_time));
89 	snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
90 	return -EBUSY;
91 }
92 
93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
94 {
95 	struct snd_ymfpci *chip = ac97->private_data;
96 	u32 cmd;
97 
98 	snd_ymfpci_codec_ready(chip, 0);
99 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
100 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
101 }
102 
103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
104 {
105 	struct snd_ymfpci *chip = ac97->private_data;
106 
107 	if (snd_ymfpci_codec_ready(chip, 0))
108 		return ~0;
109 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
110 	if (snd_ymfpci_codec_ready(chip, 0))
111 		return ~0;
112 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
113 		int i;
114 		for (i = 0; i < 600; i++)
115 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
116 	}
117 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
118 }
119 
120 /*
121  *  Misc routines
122  */
123 
124 static u32 snd_ymfpci_calc_delta(u32 rate)
125 {
126 	switch (rate) {
127 	case 8000:	return 0x02aaab00;
128 	case 11025:	return 0x03accd00;
129 	case 16000:	return 0x05555500;
130 	case 22050:	return 0x07599a00;
131 	case 32000:	return 0x0aaaab00;
132 	case 44100:	return 0x0eb33300;
133 	default:	return ((rate << 16) / 375) << 5;
134 	}
135 }
136 
137 static u32 def_rate[8] = {
138 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
139 };
140 
141 static u32 snd_ymfpci_calc_lpfK(u32 rate)
142 {
143 	u32 i;
144 	static u32 val[8] = {
145 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
146 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
147 	};
148 
149 	if (rate == 44100)
150 		return 0x40000000;	/* FIXME: What's the right value? */
151 	for (i = 0; i < 8; i++)
152 		if (rate <= def_rate[i])
153 			return val[i];
154 	return val[0];
155 }
156 
157 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
158 {
159 	u32 i;
160 	static u32 val[8] = {
161 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
162 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
163 	};
164 
165 	if (rate == 44100)
166 		return 0x370A0000;
167 	for (i = 0; i < 8; i++)
168 		if (rate <= def_rate[i])
169 			return val[i];
170 	return val[0];
171 }
172 
173 /*
174  *  Hardware start management
175  */
176 
177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
178 {
179 	unsigned long flags;
180 
181 	spin_lock_irqsave(&chip->reg_lock, flags);
182 	if (chip->start_count++ > 0)
183 		goto __end;
184 	snd_ymfpci_writel(chip, YDSXGR_MODE,
185 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
186 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
187       __end:
188       	spin_unlock_irqrestore(&chip->reg_lock, flags);
189 }
190 
191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
192 {
193 	unsigned long flags;
194 	long timeout = 1000;
195 
196 	spin_lock_irqsave(&chip->reg_lock, flags);
197 	if (--chip->start_count > 0)
198 		goto __end;
199 	snd_ymfpci_writel(chip, YDSXGR_MODE,
200 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
201 	while (timeout-- > 0) {
202 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
203 			break;
204 	}
205 	if (atomic_read(&chip->interrupt_sleep_count)) {
206 		atomic_set(&chip->interrupt_sleep_count, 0);
207 		wake_up(&chip->interrupt_sleep);
208 	}
209       __end:
210       	spin_unlock_irqrestore(&chip->reg_lock, flags);
211 }
212 
213 /*
214  *  Playback voice management
215  */
216 
217 static int voice_alloc(struct snd_ymfpci *chip,
218 		       enum snd_ymfpci_voice_type type, int pair,
219 		       struct snd_ymfpci_voice **rvoice)
220 {
221 	struct snd_ymfpci_voice *voice, *voice2;
222 	int idx;
223 
224 	*rvoice = NULL;
225 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
226 		voice = &chip->voices[idx];
227 		voice2 = pair ? &chip->voices[idx+1] : NULL;
228 		if (voice->use || (voice2 && voice2->use))
229 			continue;
230 		voice->use = 1;
231 		if (voice2)
232 			voice2->use = 1;
233 		switch (type) {
234 		case YMFPCI_PCM:
235 			voice->pcm = 1;
236 			if (voice2)
237 				voice2->pcm = 1;
238 			break;
239 		case YMFPCI_SYNTH:
240 			voice->synth = 1;
241 			break;
242 		case YMFPCI_MIDI:
243 			voice->midi = 1;
244 			break;
245 		}
246 		snd_ymfpci_hw_start(chip);
247 		if (voice2)
248 			snd_ymfpci_hw_start(chip);
249 		*rvoice = voice;
250 		return 0;
251 	}
252 	return -ENOMEM;
253 }
254 
255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
256 				  enum snd_ymfpci_voice_type type, int pair,
257 				  struct snd_ymfpci_voice **rvoice)
258 {
259 	unsigned long flags;
260 	int result;
261 
262 	snd_assert(rvoice != NULL, return -EINVAL);
263 	snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
264 
265 	spin_lock_irqsave(&chip->voice_lock, flags);
266 	for (;;) {
267 		result = voice_alloc(chip, type, pair, rvoice);
268 		if (result == 0 || type != YMFPCI_PCM)
269 			break;
270 		/* TODO: synth/midi voice deallocation */
271 		break;
272 	}
273 	spin_unlock_irqrestore(&chip->voice_lock, flags);
274 	return result;
275 }
276 
277 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
278 {
279 	unsigned long flags;
280 
281 	snd_assert(pvoice != NULL, return -EINVAL);
282 	snd_ymfpci_hw_stop(chip);
283 	spin_lock_irqsave(&chip->voice_lock, flags);
284 	if (pvoice->number == chip->src441_used) {
285 		chip->src441_used = -1;
286 		pvoice->ypcm->use_441_slot = 0;
287 	}
288 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
289 	pvoice->ypcm = NULL;
290 	pvoice->interrupt = NULL;
291 	spin_unlock_irqrestore(&chip->voice_lock, flags);
292 	return 0;
293 }
294 
295 /*
296  *  PCM part
297  */
298 
299 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
300 {
301 	struct snd_ymfpci_pcm *ypcm;
302 	u32 pos, delta;
303 
304 	if ((ypcm = voice->ypcm) == NULL)
305 		return;
306 	if (ypcm->substream == NULL)
307 		return;
308 	spin_lock(&chip->reg_lock);
309 	if (ypcm->running) {
310 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
311 		if (pos < ypcm->last_pos)
312 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
313 		else
314 			delta = pos - ypcm->last_pos;
315 		ypcm->period_pos += delta;
316 		ypcm->last_pos = pos;
317 		if (ypcm->period_pos >= ypcm->period_size) {
318 			// printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
319 			ypcm->period_pos %= ypcm->period_size;
320 			spin_unlock(&chip->reg_lock);
321 			snd_pcm_period_elapsed(ypcm->substream);
322 			spin_lock(&chip->reg_lock);
323 		}
324 
325 		if (unlikely(ypcm->update_pcm_vol)) {
326 			unsigned int subs = ypcm->substream->number;
327 			unsigned int next_bank = 1 - chip->active_bank;
328 			struct snd_ymfpci_playback_bank *bank;
329 			u32 volume;
330 
331 			bank = &voice->bank[next_bank];
332 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
333 			bank->left_gain_end = volume;
334 			if (ypcm->output_rear)
335 				bank->eff2_gain_end = volume;
336 			if (ypcm->voices[1])
337 				bank = &ypcm->voices[1]->bank[next_bank];
338 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
339 			bank->right_gain_end = volume;
340 			if (ypcm->output_rear)
341 				bank->eff3_gain_end = volume;
342 			ypcm->update_pcm_vol--;
343 		}
344 	}
345 	spin_unlock(&chip->reg_lock);
346 }
347 
348 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
349 {
350 	struct snd_pcm_runtime *runtime = substream->runtime;
351 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
352 	struct snd_ymfpci *chip = ypcm->chip;
353 	u32 pos, delta;
354 
355 	spin_lock(&chip->reg_lock);
356 	if (ypcm->running) {
357 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
358 		if (pos < ypcm->last_pos)
359 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
360 		else
361 			delta = pos - ypcm->last_pos;
362 		ypcm->period_pos += delta;
363 		ypcm->last_pos = pos;
364 		if (ypcm->period_pos >= ypcm->period_size) {
365 			ypcm->period_pos %= ypcm->period_size;
366 			// printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
367 			spin_unlock(&chip->reg_lock);
368 			snd_pcm_period_elapsed(substream);
369 			spin_lock(&chip->reg_lock);
370 		}
371 	}
372 	spin_unlock(&chip->reg_lock);
373 }
374 
375 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
376 				       int cmd)
377 {
378 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
379 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
380 	struct snd_kcontrol *kctl = NULL;
381 	int result = 0;
382 
383 	spin_lock(&chip->reg_lock);
384 	if (ypcm->voices[0] == NULL) {
385 		result = -EINVAL;
386 		goto __unlock;
387 	}
388 	switch (cmd) {
389 	case SNDRV_PCM_TRIGGER_START:
390 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
391 	case SNDRV_PCM_TRIGGER_RESUME:
392 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
393 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
394 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
395 		ypcm->running = 1;
396 		break;
397 	case SNDRV_PCM_TRIGGER_STOP:
398 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
399 			kctl = chip->pcm_mixer[substream->number].ctl;
400 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
401 		}
402 		/* fall through */
403 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
404 	case SNDRV_PCM_TRIGGER_SUSPEND:
405 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
406 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
407 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
408 		ypcm->running = 0;
409 		break;
410 	default:
411 		result = -EINVAL;
412 		break;
413 	}
414       __unlock:
415 	spin_unlock(&chip->reg_lock);
416 	if (kctl)
417 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
418 	return result;
419 }
420 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
421 				      int cmd)
422 {
423 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
424 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
425 	int result = 0;
426 	u32 tmp;
427 
428 	spin_lock(&chip->reg_lock);
429 	switch (cmd) {
430 	case SNDRV_PCM_TRIGGER_START:
431 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
432 	case SNDRV_PCM_TRIGGER_RESUME:
433 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
434 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
435 		ypcm->running = 1;
436 		break;
437 	case SNDRV_PCM_TRIGGER_STOP:
438 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
439 	case SNDRV_PCM_TRIGGER_SUSPEND:
440 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
441 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
442 		ypcm->running = 0;
443 		break;
444 	default:
445 		result = -EINVAL;
446 		break;
447 	}
448 	spin_unlock(&chip->reg_lock);
449 	return result;
450 }
451 
452 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
453 {
454 	int err;
455 
456 	if (ypcm->voices[1] != NULL && voices < 2) {
457 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
458 		ypcm->voices[1] = NULL;
459 	}
460 	if (voices == 1 && ypcm->voices[0] != NULL)
461 		return 0;		/* already allocated */
462 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
463 		return 0;		/* already allocated */
464 	if (voices > 1) {
465 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
466 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
467 			ypcm->voices[0] = NULL;
468 		}
469 	}
470 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
471 	if (err < 0)
472 		return err;
473 	ypcm->voices[0]->ypcm = ypcm;
474 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
475 	if (voices > 1) {
476 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
477 		ypcm->voices[1]->ypcm = ypcm;
478 	}
479 	return 0;
480 }
481 
482 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
483 				      struct snd_pcm_runtime *runtime,
484 				      int has_pcm_volume)
485 {
486 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
487 	u32 format;
488 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
489 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
490 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
491 	struct snd_ymfpci_playback_bank *bank;
492 	unsigned int nbank;
493 	u32 vol_left, vol_right;
494 	u8 use_left, use_right;
495 	unsigned long flags;
496 
497 	snd_assert(voice != NULL, return);
498 	if (runtime->channels == 1) {
499 		use_left = 1;
500 		use_right = 1;
501 	} else {
502 		use_left = (voiceidx & 1) == 0;
503 		use_right = !use_left;
504 	}
505 	if (has_pcm_volume) {
506 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
507 				       [ypcm->substream->number].left << 15);
508 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
509 					[ypcm->substream->number].right << 15);
510 	} else {
511 		vol_left = cpu_to_le32(0x40000000);
512 		vol_right = cpu_to_le32(0x40000000);
513 	}
514 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
515 	format = runtime->channels == 2 ? 0x00010000 : 0;
516 	if (snd_pcm_format_width(runtime->format) == 8)
517 		format |= 0x80000000;
518 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
519 		 runtime->rate == 44100 && runtime->channels == 2 &&
520 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
521 				   ypcm->chip->src441_used == voice->number)) {
522 		ypcm->chip->src441_used = voice->number;
523 		ypcm->use_441_slot = 1;
524 		format |= 0x10000000;
525 	}
526 	if (ypcm->chip->src441_used == voice->number &&
527 	    (format & 0x10000000) == 0) {
528 		ypcm->chip->src441_used = -1;
529 		ypcm->use_441_slot = 0;
530 	}
531 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
532 		format |= 1;
533 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
534 	for (nbank = 0; nbank < 2; nbank++) {
535 		bank = &voice->bank[nbank];
536 		memset(bank, 0, sizeof(*bank));
537 		bank->format = cpu_to_le32(format);
538 		bank->base = cpu_to_le32(runtime->dma_addr);
539 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
540 		bank->lpfQ = cpu_to_le32(lpfQ);
541 		bank->delta =
542 		bank->delta_end = cpu_to_le32(delta);
543 		bank->lpfK =
544 		bank->lpfK_end = cpu_to_le32(lpfK);
545 		bank->eg_gain =
546 		bank->eg_gain_end = cpu_to_le32(0x40000000);
547 
548 		if (ypcm->output_front) {
549 			if (use_left) {
550 				bank->left_gain =
551 				bank->left_gain_end = vol_left;
552 			}
553 			if (use_right) {
554 				bank->right_gain =
555 				bank->right_gain_end = vol_right;
556 			}
557 		}
558 		if (ypcm->output_rear) {
559 		        if (!ypcm->swap_rear) {
560         			if (use_left) {
561         				bank->eff2_gain =
562         				bank->eff2_gain_end = vol_left;
563         			}
564         			if (use_right) {
565         				bank->eff3_gain =
566         				bank->eff3_gain_end = vol_right;
567         			}
568 		        } else {
569         			/* The SPDIF out channels seem to be swapped, so we have
570         			 * to swap them here, too.  The rear analog out channels
571         			 * will be wrong, but otherwise AC3 would not work.
572         			 */
573         			if (use_left) {
574         				bank->eff3_gain =
575         				bank->eff3_gain_end = vol_left;
576         			}
577         			if (use_right) {
578         				bank->eff2_gain =
579         				bank->eff2_gain_end = vol_right;
580         			}
581         		}
582                 }
583 	}
584 }
585 
586 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
587 {
588 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
589 				4096, &chip->ac3_tmp_base) < 0)
590 		return -ENOMEM;
591 
592 	chip->bank_effect[3][0]->base =
593 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
594 	chip->bank_effect[3][0]->loop_end =
595 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
596 	chip->bank_effect[4][0]->base =
597 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
598 	chip->bank_effect[4][0]->loop_end =
599 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
600 
601 	spin_lock_irq(&chip->reg_lock);
602 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
603 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
604 	spin_unlock_irq(&chip->reg_lock);
605 	return 0;
606 }
607 
608 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
609 {
610 	spin_lock_irq(&chip->reg_lock);
611 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
612 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
613 	spin_unlock_irq(&chip->reg_lock);
614 	// snd_ymfpci_irq_wait(chip);
615 	if (chip->ac3_tmp_base.area) {
616 		snd_dma_free_pages(&chip->ac3_tmp_base);
617 		chip->ac3_tmp_base.area = NULL;
618 	}
619 	return 0;
620 }
621 
622 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
623 					 struct snd_pcm_hw_params *hw_params)
624 {
625 	struct snd_pcm_runtime *runtime = substream->runtime;
626 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
627 	int err;
628 
629 	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
630 		return err;
631 	if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
632 		return err;
633 	return 0;
634 }
635 
636 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
637 {
638 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
639 	struct snd_pcm_runtime *runtime = substream->runtime;
640 	struct snd_ymfpci_pcm *ypcm;
641 
642 	if (runtime->private_data == NULL)
643 		return 0;
644 	ypcm = runtime->private_data;
645 
646 	/* wait, until the PCI operations are not finished */
647 	snd_ymfpci_irq_wait(chip);
648 	snd_pcm_lib_free_pages(substream);
649 	if (ypcm->voices[1]) {
650 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
651 		ypcm->voices[1] = NULL;
652 	}
653 	if (ypcm->voices[0]) {
654 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
655 		ypcm->voices[0] = NULL;
656 	}
657 	return 0;
658 }
659 
660 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
661 {
662 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
663 	struct snd_pcm_runtime *runtime = substream->runtime;
664 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
665 	struct snd_kcontrol *kctl;
666 	unsigned int nvoice;
667 
668 	ypcm->period_size = runtime->period_size;
669 	ypcm->buffer_size = runtime->buffer_size;
670 	ypcm->period_pos = 0;
671 	ypcm->last_pos = 0;
672 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
673 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
674 					  substream->pcm == chip->pcm);
675 
676 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
677 		kctl = chip->pcm_mixer[substream->number].ctl;
678 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
679 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
680 	}
681 	return 0;
682 }
683 
684 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
685 					struct snd_pcm_hw_params *hw_params)
686 {
687 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
688 }
689 
690 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
691 {
692 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
693 
694 	/* wait, until the PCI operations are not finished */
695 	snd_ymfpci_irq_wait(chip);
696 	return snd_pcm_lib_free_pages(substream);
697 }
698 
699 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
700 {
701 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
702 	struct snd_pcm_runtime *runtime = substream->runtime;
703 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
704 	struct snd_ymfpci_capture_bank * bank;
705 	int nbank;
706 	u32 rate, format;
707 
708 	ypcm->period_size = runtime->period_size;
709 	ypcm->buffer_size = runtime->buffer_size;
710 	ypcm->period_pos = 0;
711 	ypcm->last_pos = 0;
712 	ypcm->shift = 0;
713 	rate = ((48000 * 4096) / runtime->rate) - 1;
714 	format = 0;
715 	if (runtime->channels == 2) {
716 		format |= 2;
717 		ypcm->shift++;
718 	}
719 	if (snd_pcm_format_width(runtime->format) == 8)
720 		format |= 1;
721 	else
722 		ypcm->shift++;
723 	switch (ypcm->capture_bank_number) {
724 	case 0:
725 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
726 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
727 		break;
728 	case 1:
729 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
730 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
731 		break;
732 	}
733 	for (nbank = 0; nbank < 2; nbank++) {
734 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
735 		bank->base = cpu_to_le32(runtime->dma_addr);
736 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
737 		bank->start = 0;
738 		bank->num_of_loops = 0;
739 	}
740 	return 0;
741 }
742 
743 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
744 {
745 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
746 	struct snd_pcm_runtime *runtime = substream->runtime;
747 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
748 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
749 
750 	if (!(ypcm->running && voice))
751 		return 0;
752 	return le32_to_cpu(voice->bank[chip->active_bank].start);
753 }
754 
755 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
756 {
757 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
758 	struct snd_pcm_runtime *runtime = substream->runtime;
759 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
760 
761 	if (!ypcm->running)
762 		return 0;
763 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
764 }
765 
766 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
767 {
768 	wait_queue_t wait;
769 	int loops = 4;
770 
771 	while (loops-- > 0) {
772 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
773 		 	continue;
774 		init_waitqueue_entry(&wait, current);
775 		add_wait_queue(&chip->interrupt_sleep, &wait);
776 		atomic_inc(&chip->interrupt_sleep_count);
777 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
778 		remove_wait_queue(&chip->interrupt_sleep, &wait);
779 	}
780 }
781 
782 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
783 {
784 	struct snd_ymfpci *chip = dev_id;
785 	u32 status, nvoice, mode;
786 	struct snd_ymfpci_voice *voice;
787 
788 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
789 	if (status & 0x80000000) {
790 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
791 		spin_lock(&chip->voice_lock);
792 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
793 			voice = &chip->voices[nvoice];
794 			if (voice->interrupt)
795 				voice->interrupt(chip, voice);
796 		}
797 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
798 			if (chip->capture_substream[nvoice])
799 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
800 		}
801 #if 0
802 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
803 			if (chip->effect_substream[nvoice])
804 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
805 		}
806 #endif
807 		spin_unlock(&chip->voice_lock);
808 		spin_lock(&chip->reg_lock);
809 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
810 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
811 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
812 		spin_unlock(&chip->reg_lock);
813 
814 		if (atomic_read(&chip->interrupt_sleep_count)) {
815 			atomic_set(&chip->interrupt_sleep_count, 0);
816 			wake_up(&chip->interrupt_sleep);
817 		}
818 	}
819 
820 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
821 	if (status & 1) {
822 		if (chip->timer)
823 			snd_timer_interrupt(chip->timer, chip->timer->sticks);
824 	}
825 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
826 
827 	if (chip->rawmidi)
828 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
829 	return IRQ_HANDLED;
830 }
831 
832 static struct snd_pcm_hardware snd_ymfpci_playback =
833 {
834 	.info =			(SNDRV_PCM_INFO_MMAP |
835 				 SNDRV_PCM_INFO_MMAP_VALID |
836 				 SNDRV_PCM_INFO_INTERLEAVED |
837 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
838 				 SNDRV_PCM_INFO_PAUSE |
839 				 SNDRV_PCM_INFO_RESUME),
840 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
841 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
842 	.rate_min =		8000,
843 	.rate_max =		48000,
844 	.channels_min =		1,
845 	.channels_max =		2,
846 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
847 	.period_bytes_min =	64,
848 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
849 	.periods_min =		3,
850 	.periods_max =		1024,
851 	.fifo_size =		0,
852 };
853 
854 static struct snd_pcm_hardware snd_ymfpci_capture =
855 {
856 	.info =			(SNDRV_PCM_INFO_MMAP |
857 				 SNDRV_PCM_INFO_MMAP_VALID |
858 				 SNDRV_PCM_INFO_INTERLEAVED |
859 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
860 				 SNDRV_PCM_INFO_PAUSE |
861 				 SNDRV_PCM_INFO_RESUME),
862 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
863 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
864 	.rate_min =		8000,
865 	.rate_max =		48000,
866 	.channels_min =		1,
867 	.channels_max =		2,
868 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
869 	.period_bytes_min =	64,
870 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
871 	.periods_min =		3,
872 	.periods_max =		1024,
873 	.fifo_size =		0,
874 };
875 
876 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
877 {
878 	kfree(runtime->private_data);
879 }
880 
881 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
882 {
883 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
884 	struct snd_pcm_runtime *runtime = substream->runtime;
885 	struct snd_ymfpci_pcm *ypcm;
886 
887 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
888 	if (ypcm == NULL)
889 		return -ENOMEM;
890 	ypcm->chip = chip;
891 	ypcm->type = PLAYBACK_VOICE;
892 	ypcm->substream = substream;
893 	runtime->hw = snd_ymfpci_playback;
894 	runtime->private_data = ypcm;
895 	runtime->private_free = snd_ymfpci_pcm_free_substream;
896 	/* FIXME? True value is 256/48 = 5.33333 ms */
897 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
898 	return 0;
899 }
900 
901 /* call with spinlock held */
902 static void ymfpci_open_extension(struct snd_ymfpci *chip)
903 {
904 	if (! chip->rear_opened) {
905 		if (! chip->spdif_opened) /* set AC3 */
906 			snd_ymfpci_writel(chip, YDSXGR_MODE,
907 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
908 		/* enable second codec (4CHEN) */
909 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
910 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
911 	}
912 }
913 
914 /* call with spinlock held */
915 static void ymfpci_close_extension(struct snd_ymfpci *chip)
916 {
917 	if (! chip->rear_opened) {
918 		if (! chip->spdif_opened)
919 			snd_ymfpci_writel(chip, YDSXGR_MODE,
920 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
921 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
922 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
923 	}
924 }
925 
926 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
927 {
928 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
929 	struct snd_pcm_runtime *runtime = substream->runtime;
930 	struct snd_ymfpci_pcm *ypcm;
931 	int err;
932 
933 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
934 		return err;
935 	ypcm = runtime->private_data;
936 	ypcm->output_front = 1;
937 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
938 	ypcm->swap_rear = 0;
939 	spin_lock_irq(&chip->reg_lock);
940 	if (ypcm->output_rear) {
941 		ymfpci_open_extension(chip);
942 		chip->rear_opened++;
943 	}
944 	spin_unlock_irq(&chip->reg_lock);
945 	return 0;
946 }
947 
948 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
949 {
950 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
951 	struct snd_pcm_runtime *runtime = substream->runtime;
952 	struct snd_ymfpci_pcm *ypcm;
953 	int err;
954 
955 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
956 		return err;
957 	ypcm = runtime->private_data;
958 	ypcm->output_front = 0;
959 	ypcm->output_rear = 1;
960 	ypcm->swap_rear = 1;
961 	spin_lock_irq(&chip->reg_lock);
962 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
963 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
964 	ymfpci_open_extension(chip);
965 	chip->spdif_pcm_bits = chip->spdif_bits;
966 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
967 	chip->spdif_opened++;
968 	spin_unlock_irq(&chip->reg_lock);
969 
970 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
971 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
972 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
973 	return 0;
974 }
975 
976 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
977 {
978 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
979 	struct snd_pcm_runtime *runtime = substream->runtime;
980 	struct snd_ymfpci_pcm *ypcm;
981 	int err;
982 
983 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
984 		return err;
985 	ypcm = runtime->private_data;
986 	ypcm->output_front = 0;
987 	ypcm->output_rear = 1;
988 	ypcm->swap_rear = 0;
989 	spin_lock_irq(&chip->reg_lock);
990 	ymfpci_open_extension(chip);
991 	chip->rear_opened++;
992 	spin_unlock_irq(&chip->reg_lock);
993 	return 0;
994 }
995 
996 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
997 				   u32 capture_bank_number)
998 {
999 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1000 	struct snd_pcm_runtime *runtime = substream->runtime;
1001 	struct snd_ymfpci_pcm *ypcm;
1002 
1003 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1004 	if (ypcm == NULL)
1005 		return -ENOMEM;
1006 	ypcm->chip = chip;
1007 	ypcm->type = capture_bank_number + CAPTURE_REC;
1008 	ypcm->substream = substream;
1009 	ypcm->capture_bank_number = capture_bank_number;
1010 	chip->capture_substream[capture_bank_number] = substream;
1011 	runtime->hw = snd_ymfpci_capture;
1012 	/* FIXME? True value is 256/48 = 5.33333 ms */
1013 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1014 	runtime->private_data = ypcm;
1015 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1016 	snd_ymfpci_hw_start(chip);
1017 	return 0;
1018 }
1019 
1020 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1021 {
1022 	return snd_ymfpci_capture_open(substream, 0);
1023 }
1024 
1025 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1026 {
1027 	return snd_ymfpci_capture_open(substream, 1);
1028 }
1029 
1030 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1031 {
1032 	return 0;
1033 }
1034 
1035 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1036 {
1037 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1038 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1039 
1040 	spin_lock_irq(&chip->reg_lock);
1041 	if (ypcm->output_rear && chip->rear_opened > 0) {
1042 		chip->rear_opened--;
1043 		ymfpci_close_extension(chip);
1044 	}
1045 	spin_unlock_irq(&chip->reg_lock);
1046 	return snd_ymfpci_playback_close_1(substream);
1047 }
1048 
1049 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1050 {
1051 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1052 
1053 	spin_lock_irq(&chip->reg_lock);
1054 	chip->spdif_opened = 0;
1055 	ymfpci_close_extension(chip);
1056 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1057 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1058 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1059 	spin_unlock_irq(&chip->reg_lock);
1060 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1061 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1062 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1063 	return snd_ymfpci_playback_close_1(substream);
1064 }
1065 
1066 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1067 {
1068 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1069 
1070 	spin_lock_irq(&chip->reg_lock);
1071 	if (chip->rear_opened > 0) {
1072 		chip->rear_opened--;
1073 		ymfpci_close_extension(chip);
1074 	}
1075 	spin_unlock_irq(&chip->reg_lock);
1076 	return snd_ymfpci_playback_close_1(substream);
1077 }
1078 
1079 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1080 {
1081 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1082 	struct snd_pcm_runtime *runtime = substream->runtime;
1083 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1084 
1085 	if (ypcm != NULL) {
1086 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1087 		snd_ymfpci_hw_stop(chip);
1088 	}
1089 	return 0;
1090 }
1091 
1092 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1093 	.open =			snd_ymfpci_playback_open,
1094 	.close =		snd_ymfpci_playback_close,
1095 	.ioctl =		snd_pcm_lib_ioctl,
1096 	.hw_params =		snd_ymfpci_playback_hw_params,
1097 	.hw_free =		snd_ymfpci_playback_hw_free,
1098 	.prepare =		snd_ymfpci_playback_prepare,
1099 	.trigger =		snd_ymfpci_playback_trigger,
1100 	.pointer =		snd_ymfpci_playback_pointer,
1101 };
1102 
1103 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1104 	.open =			snd_ymfpci_capture_rec_open,
1105 	.close =		snd_ymfpci_capture_close,
1106 	.ioctl =		snd_pcm_lib_ioctl,
1107 	.hw_params =		snd_ymfpci_capture_hw_params,
1108 	.hw_free =		snd_ymfpci_capture_hw_free,
1109 	.prepare =		snd_ymfpci_capture_prepare,
1110 	.trigger =		snd_ymfpci_capture_trigger,
1111 	.pointer =		snd_ymfpci_capture_pointer,
1112 };
1113 
1114 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1115 {
1116 	struct snd_pcm *pcm;
1117 	int err;
1118 
1119 	if (rpcm)
1120 		*rpcm = NULL;
1121 	if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1122 		return err;
1123 	pcm->private_data = chip;
1124 
1125 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1126 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1127 
1128 	/* global setup */
1129 	pcm->info_flags = 0;
1130 	strcpy(pcm->name, "YMFPCI");
1131 	chip->pcm = pcm;
1132 
1133 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1134 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1135 
1136 	if (rpcm)
1137 		*rpcm = pcm;
1138 	return 0;
1139 }
1140 
1141 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1142 	.open =			snd_ymfpci_capture_ac97_open,
1143 	.close =		snd_ymfpci_capture_close,
1144 	.ioctl =		snd_pcm_lib_ioctl,
1145 	.hw_params =		snd_ymfpci_capture_hw_params,
1146 	.hw_free =		snd_ymfpci_capture_hw_free,
1147 	.prepare =		snd_ymfpci_capture_prepare,
1148 	.trigger =		snd_ymfpci_capture_trigger,
1149 	.pointer =		snd_ymfpci_capture_pointer,
1150 };
1151 
1152 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1153 {
1154 	struct snd_pcm *pcm;
1155 	int err;
1156 
1157 	if (rpcm)
1158 		*rpcm = NULL;
1159 	if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1160 		return err;
1161 	pcm->private_data = chip;
1162 
1163 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1164 
1165 	/* global setup */
1166 	pcm->info_flags = 0;
1167 	sprintf(pcm->name, "YMFPCI - %s",
1168 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1169 	chip->pcm2 = pcm;
1170 
1171 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1172 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1173 
1174 	if (rpcm)
1175 		*rpcm = pcm;
1176 	return 0;
1177 }
1178 
1179 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1180 	.open =			snd_ymfpci_playback_spdif_open,
1181 	.close =		snd_ymfpci_playback_spdif_close,
1182 	.ioctl =		snd_pcm_lib_ioctl,
1183 	.hw_params =		snd_ymfpci_playback_hw_params,
1184 	.hw_free =		snd_ymfpci_playback_hw_free,
1185 	.prepare =		snd_ymfpci_playback_prepare,
1186 	.trigger =		snd_ymfpci_playback_trigger,
1187 	.pointer =		snd_ymfpci_playback_pointer,
1188 };
1189 
1190 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1191 {
1192 	struct snd_pcm *pcm;
1193 	int err;
1194 
1195 	if (rpcm)
1196 		*rpcm = NULL;
1197 	if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1198 		return err;
1199 	pcm->private_data = chip;
1200 
1201 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1202 
1203 	/* global setup */
1204 	pcm->info_flags = 0;
1205 	strcpy(pcm->name, "YMFPCI - IEC958");
1206 	chip->pcm_spdif = pcm;
1207 
1208 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1209 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1210 
1211 	if (rpcm)
1212 		*rpcm = pcm;
1213 	return 0;
1214 }
1215 
1216 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1217 	.open =			snd_ymfpci_playback_4ch_open,
1218 	.close =		snd_ymfpci_playback_4ch_close,
1219 	.ioctl =		snd_pcm_lib_ioctl,
1220 	.hw_params =		snd_ymfpci_playback_hw_params,
1221 	.hw_free =		snd_ymfpci_playback_hw_free,
1222 	.prepare =		snd_ymfpci_playback_prepare,
1223 	.trigger =		snd_ymfpci_playback_trigger,
1224 	.pointer =		snd_ymfpci_playback_pointer,
1225 };
1226 
1227 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1228 {
1229 	struct snd_pcm *pcm;
1230 	int err;
1231 
1232 	if (rpcm)
1233 		*rpcm = NULL;
1234 	if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1235 		return err;
1236 	pcm->private_data = chip;
1237 
1238 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1239 
1240 	/* global setup */
1241 	pcm->info_flags = 0;
1242 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1243 	chip->pcm_4ch = pcm;
1244 
1245 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1246 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1247 
1248 	if (rpcm)
1249 		*rpcm = pcm;
1250 	return 0;
1251 }
1252 
1253 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1254 {
1255 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1256 	uinfo->count = 1;
1257 	return 0;
1258 }
1259 
1260 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1261 					struct snd_ctl_elem_value *ucontrol)
1262 {
1263 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1264 
1265 	spin_lock_irq(&chip->reg_lock);
1266 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1267 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1268 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1269 	spin_unlock_irq(&chip->reg_lock);
1270 	return 0;
1271 }
1272 
1273 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1274 					 struct snd_ctl_elem_value *ucontrol)
1275 {
1276 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1277 	unsigned int val;
1278 	int change;
1279 
1280 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1281 	      (ucontrol->value.iec958.status[1] << 8);
1282 	spin_lock_irq(&chip->reg_lock);
1283 	change = chip->spdif_bits != val;
1284 	chip->spdif_bits = val;
1285 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1286 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1287 	spin_unlock_irq(&chip->reg_lock);
1288 	return change;
1289 }
1290 
1291 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1292 {
1293 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1294 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1295 	.info =		snd_ymfpci_spdif_default_info,
1296 	.get =		snd_ymfpci_spdif_default_get,
1297 	.put =		snd_ymfpci_spdif_default_put
1298 };
1299 
1300 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1301 {
1302 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1303 	uinfo->count = 1;
1304 	return 0;
1305 }
1306 
1307 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1308 				      struct snd_ctl_elem_value *ucontrol)
1309 {
1310 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1311 
1312 	spin_lock_irq(&chip->reg_lock);
1313 	ucontrol->value.iec958.status[0] = 0x3e;
1314 	ucontrol->value.iec958.status[1] = 0xff;
1315 	spin_unlock_irq(&chip->reg_lock);
1316 	return 0;
1317 }
1318 
1319 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1320 {
1321 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1322 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1323 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1324 	.info =		snd_ymfpci_spdif_mask_info,
1325 	.get =		snd_ymfpci_spdif_mask_get,
1326 };
1327 
1328 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1329 {
1330 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1331 	uinfo->count = 1;
1332 	return 0;
1333 }
1334 
1335 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1336 					struct snd_ctl_elem_value *ucontrol)
1337 {
1338 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1339 
1340 	spin_lock_irq(&chip->reg_lock);
1341 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1342 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1343 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1344 	spin_unlock_irq(&chip->reg_lock);
1345 	return 0;
1346 }
1347 
1348 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1349 					struct snd_ctl_elem_value *ucontrol)
1350 {
1351 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1352 	unsigned int val;
1353 	int change;
1354 
1355 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1356 	      (ucontrol->value.iec958.status[1] << 8);
1357 	spin_lock_irq(&chip->reg_lock);
1358 	change = chip->spdif_pcm_bits != val;
1359 	chip->spdif_pcm_bits = val;
1360 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1361 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1362 	spin_unlock_irq(&chip->reg_lock);
1363 	return change;
1364 }
1365 
1366 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1367 {
1368 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1369 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1370 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1371 	.info =		snd_ymfpci_spdif_stream_info,
1372 	.get =		snd_ymfpci_spdif_stream_get,
1373 	.put =		snd_ymfpci_spdif_stream_put
1374 };
1375 
1376 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1377 {
1378 	static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1379 
1380 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1381 	info->count = 1;
1382 	info->value.enumerated.items = 3;
1383 	if (info->value.enumerated.item > 2)
1384 		info->value.enumerated.item = 2;
1385 	strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1386 	return 0;
1387 }
1388 
1389 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1390 {
1391 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1392 	u16 reg;
1393 
1394 	spin_lock_irq(&chip->reg_lock);
1395 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1396 	spin_unlock_irq(&chip->reg_lock);
1397 	if (!(reg & 0x100))
1398 		value->value.enumerated.item[0] = 0;
1399 	else
1400 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1401 	return 0;
1402 }
1403 
1404 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1405 {
1406 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1407 	u16 reg, old_reg;
1408 
1409 	spin_lock_irq(&chip->reg_lock);
1410 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1411 	if (value->value.enumerated.item[0] == 0)
1412 		reg = old_reg & ~0x100;
1413 	else
1414 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1415 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1416 	spin_unlock_irq(&chip->reg_lock);
1417 	return reg != old_reg;
1418 }
1419 
1420 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1421 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1422 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1423 	.name =		"Direct Recording Source",
1424 	.info =		snd_ymfpci_drec_source_info,
1425 	.get =		snd_ymfpci_drec_source_get,
1426 	.put =		snd_ymfpci_drec_source_put
1427 };
1428 
1429 /*
1430  *  Mixer controls
1431  */
1432 
1433 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1434 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1435   .info = snd_ymfpci_info_single, \
1436   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1437   .private_value = ((reg) | ((shift) << 16)) }
1438 
1439 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1440 
1441 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1442 				 struct snd_ctl_elem_value *ucontrol)
1443 {
1444 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1445 	int reg = kcontrol->private_value & 0xffff;
1446 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1447 	unsigned int mask = 1;
1448 
1449 	switch (reg) {
1450 	case YDSXGR_SPDIFOUTCTRL: break;
1451 	case YDSXGR_SPDIFINCTRL: break;
1452 	default: return -EINVAL;
1453 	}
1454 	ucontrol->value.integer.value[0] =
1455 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1456 	return 0;
1457 }
1458 
1459 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1460 				 struct snd_ctl_elem_value *ucontrol)
1461 {
1462 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1463 	int reg = kcontrol->private_value & 0xffff;
1464 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1465  	unsigned int mask = 1;
1466 	int change;
1467 	unsigned int val, oval;
1468 
1469 	switch (reg) {
1470 	case YDSXGR_SPDIFOUTCTRL: break;
1471 	case YDSXGR_SPDIFINCTRL: break;
1472 	default: return -EINVAL;
1473 	}
1474 	val = (ucontrol->value.integer.value[0] & mask);
1475 	val <<= shift;
1476 	spin_lock_irq(&chip->reg_lock);
1477 	oval = snd_ymfpci_readl(chip, reg);
1478 	val = (oval & ~(mask << shift)) | val;
1479 	change = val != oval;
1480 	snd_ymfpci_writel(chip, reg, val);
1481 	spin_unlock_irq(&chip->reg_lock);
1482 	return change;
1483 }
1484 
1485 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1486 
1487 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1488 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1489   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1490   .info = snd_ymfpci_info_double, \
1491   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1492   .private_value = reg, \
1493   .tlv = { .p = db_scale_native } }
1494 
1495 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1496 {
1497 	unsigned int reg = kcontrol->private_value;
1498 
1499 	if (reg < 0x80 || reg >= 0xc0)
1500 		return -EINVAL;
1501 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1502 	uinfo->count = 2;
1503 	uinfo->value.integer.min = 0;
1504 	uinfo->value.integer.max = 16383;
1505 	return 0;
1506 }
1507 
1508 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1509 {
1510 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1511 	unsigned int reg = kcontrol->private_value;
1512 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1513 	unsigned int val;
1514 
1515 	if (reg < 0x80 || reg >= 0xc0)
1516 		return -EINVAL;
1517 	spin_lock_irq(&chip->reg_lock);
1518 	val = snd_ymfpci_readl(chip, reg);
1519 	spin_unlock_irq(&chip->reg_lock);
1520 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1521 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1522 	return 0;
1523 }
1524 
1525 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1526 {
1527 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1528 	unsigned int reg = kcontrol->private_value;
1529 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1530 	int change;
1531 	unsigned int val1, val2, oval;
1532 
1533 	if (reg < 0x80 || reg >= 0xc0)
1534 		return -EINVAL;
1535 	val1 = ucontrol->value.integer.value[0] & mask;
1536 	val2 = ucontrol->value.integer.value[1] & mask;
1537 	val1 <<= shift_left;
1538 	val2 <<= shift_right;
1539 	spin_lock_irq(&chip->reg_lock);
1540 	oval = snd_ymfpci_readl(chip, reg);
1541 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1542 	change = val1 != oval;
1543 	snd_ymfpci_writel(chip, reg, val1);
1544 	spin_unlock_irq(&chip->reg_lock);
1545 	return change;
1546 }
1547 
1548 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1549 				       struct snd_ctl_elem_value *ucontrol)
1550 {
1551 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1552 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1553 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1554 	int change;
1555 	unsigned int value, oval;
1556 
1557 	value = ucontrol->value.integer.value[0] & 0x3fff;
1558 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1559 	spin_lock_irq(&chip->reg_lock);
1560 	oval = snd_ymfpci_readl(chip, reg);
1561 	change = value != oval;
1562 	snd_ymfpci_writel(chip, reg, value);
1563 	snd_ymfpci_writel(chip, reg2, value);
1564 	spin_unlock_irq(&chip->reg_lock);
1565 	return change;
1566 }
1567 
1568 /*
1569  * 4ch duplication
1570  */
1571 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1572 
1573 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1574 {
1575 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1576 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1577 	return 0;
1578 }
1579 
1580 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1581 {
1582 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1583 	int change;
1584 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1585 	if (change)
1586 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1587 	return change;
1588 }
1589 
1590 
1591 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1592 {
1593 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1594 	.name = "Wave Playback Volume",
1595 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1596 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1597 	.info = snd_ymfpci_info_double,
1598 	.get = snd_ymfpci_get_double,
1599 	.put = snd_ymfpci_put_nativedacvol,
1600 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1601 	.tlv = { .p = db_scale_native },
1602 },
1603 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1605 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1606 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1607 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1608 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1609 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1610 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1614 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1617 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1618 {
1619 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1620 	.name = "4ch Duplication",
1621 	.info = snd_ymfpci_info_dup4ch,
1622 	.get = snd_ymfpci_get_dup4ch,
1623 	.put = snd_ymfpci_put_dup4ch,
1624 },
1625 };
1626 
1627 
1628 /*
1629  * GPIO
1630  */
1631 
1632 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1633 {
1634 	u16 reg, mode;
1635 	unsigned long flags;
1636 
1637 	spin_lock_irqsave(&chip->reg_lock, flags);
1638 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1639 	reg &= ~(1 << (pin + 8));
1640 	reg |= (1 << pin);
1641 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1642 	/* set the level mode for input line */
1643 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1644 	mode &= ~(3 << (pin * 2));
1645 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1646 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1647 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1648 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1649 	return (mode >> pin) & 1;
1650 }
1651 
1652 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1653 {
1654 	u16 reg;
1655 	unsigned long flags;
1656 
1657 	spin_lock_irqsave(&chip->reg_lock, flags);
1658 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1659 	reg &= ~(1 << pin);
1660 	reg &= ~(1 << (pin + 8));
1661 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1662 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1663 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1664 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1665 
1666 	return 0;
1667 }
1668 
1669 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1670 
1671 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1672 {
1673 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1674 	int pin = (int)kcontrol->private_value;
1675 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1676 	return 0;
1677 }
1678 
1679 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1680 {
1681 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1682 	int pin = (int)kcontrol->private_value;
1683 
1684 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1685 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1686 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1687 		return 1;
1688 	}
1689 	return 0;
1690 }
1691 
1692 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1693 	.name = "Shared Rear/Line-In Switch",
1694 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1695 	.info = snd_ymfpci_gpio_sw_info,
1696 	.get = snd_ymfpci_gpio_sw_get,
1697 	.put = snd_ymfpci_gpio_sw_put,
1698 	.private_value = 2,
1699 };
1700 
1701 /*
1702  * PCM voice volume
1703  */
1704 
1705 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1706 				   struct snd_ctl_elem_info *uinfo)
1707 {
1708 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1709 	uinfo->count = 2;
1710 	uinfo->value.integer.min = 0;
1711 	uinfo->value.integer.max = 0x8000;
1712 	return 0;
1713 }
1714 
1715 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1716 				  struct snd_ctl_elem_value *ucontrol)
1717 {
1718 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1719 	unsigned int subs = kcontrol->id.subdevice;
1720 
1721 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1722 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1723 	return 0;
1724 }
1725 
1726 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1727 				  struct snd_ctl_elem_value *ucontrol)
1728 {
1729 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1730 	unsigned int subs = kcontrol->id.subdevice;
1731 	struct snd_pcm_substream *substream;
1732 	unsigned long flags;
1733 
1734 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1735 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1736 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1737 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1738 		if (chip->pcm_mixer[subs].left > 0x8000)
1739 			chip->pcm_mixer[subs].left = 0x8000;
1740 		if (chip->pcm_mixer[subs].right > 0x8000)
1741 			chip->pcm_mixer[subs].right = 0x8000;
1742 
1743 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1744 		spin_lock_irqsave(&chip->voice_lock, flags);
1745 		if (substream->runtime && substream->runtime->private_data) {
1746 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1747 			if (!ypcm->use_441_slot)
1748 				ypcm->update_pcm_vol = 2;
1749 		}
1750 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1751 		return 1;
1752 	}
1753 	return 0;
1754 }
1755 
1756 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1757 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1758 	.name = "PCM Playback Volume",
1759 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1760 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1761 	.info = snd_ymfpci_pcm_vol_info,
1762 	.get = snd_ymfpci_pcm_vol_get,
1763 	.put = snd_ymfpci_pcm_vol_put,
1764 };
1765 
1766 
1767 /*
1768  *  Mixer routines
1769  */
1770 
1771 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1772 {
1773 	struct snd_ymfpci *chip = bus->private_data;
1774 	chip->ac97_bus = NULL;
1775 }
1776 
1777 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1778 {
1779 	struct snd_ymfpci *chip = ac97->private_data;
1780 	chip->ac97 = NULL;
1781 }
1782 
1783 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1784 {
1785 	struct snd_ac97_template ac97;
1786 	struct snd_kcontrol *kctl;
1787 	struct snd_pcm_substream *substream;
1788 	unsigned int idx;
1789 	int err;
1790 	static struct snd_ac97_bus_ops ops = {
1791 		.write = snd_ymfpci_codec_write,
1792 		.read = snd_ymfpci_codec_read,
1793 	};
1794 
1795 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1796 		return err;
1797 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1798 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1799 
1800 	memset(&ac97, 0, sizeof(ac97));
1801 	ac97.private_data = chip;
1802 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1803 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1804 		return err;
1805 
1806 	/* to be sure */
1807 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1808 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1809 
1810 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1811 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1812 			return err;
1813 	}
1814 
1815 	/* add S/PDIF control */
1816 	snd_assert(chip->pcm_spdif != NULL, return -EIO);
1817 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1818 		return err;
1819 	kctl->id.device = chip->pcm_spdif->device;
1820 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1821 		return err;
1822 	kctl->id.device = chip->pcm_spdif->device;
1823 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1824 		return err;
1825 	kctl->id.device = chip->pcm_spdif->device;
1826 	chip->spdif_pcm_ctl = kctl;
1827 
1828 	/* direct recording source */
1829 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1830 	    (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1831 		return err;
1832 
1833 	/*
1834 	 * shared rear/line-in
1835 	 */
1836 	if (rear_switch) {
1837 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1838 			return err;
1839 	}
1840 
1841 	/* per-voice volume */
1842 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1843 	for (idx = 0; idx < 32; ++idx) {
1844 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1845 		if (!kctl)
1846 			return -ENOMEM;
1847 		kctl->id.device = chip->pcm->device;
1848 		kctl->id.subdevice = idx;
1849 		kctl->private_value = (unsigned long)substream;
1850 		if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1851 			return err;
1852 		chip->pcm_mixer[idx].left = 0x8000;
1853 		chip->pcm_mixer[idx].right = 0x8000;
1854 		chip->pcm_mixer[idx].ctl = kctl;
1855 		substream = substream->next;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 
1862 /*
1863  * timer
1864  */
1865 
1866 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1867 {
1868 	struct snd_ymfpci *chip;
1869 	unsigned long flags;
1870 	unsigned int count;
1871 
1872 	chip = snd_timer_chip(timer);
1873 	count = (timer->sticks << 1) - 1;
1874 	spin_lock_irqsave(&chip->reg_lock, flags);
1875 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1876 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1877 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1878 	return 0;
1879 }
1880 
1881 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1882 {
1883 	struct snd_ymfpci *chip;
1884 	unsigned long flags;
1885 
1886 	chip = snd_timer_chip(timer);
1887 	spin_lock_irqsave(&chip->reg_lock, flags);
1888 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1889 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1890 	return 0;
1891 }
1892 
1893 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1894 					       unsigned long *num, unsigned long *den)
1895 {
1896 	*num = 1;
1897 	*den = 48000;
1898 	return 0;
1899 }
1900 
1901 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1902 	.flags = SNDRV_TIMER_HW_AUTO,
1903 	.resolution = 20833, /* 1/fs = 20.8333...us */
1904 	.ticks = 0x8000,
1905 	.start = snd_ymfpci_timer_start,
1906 	.stop = snd_ymfpci_timer_stop,
1907 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1908 };
1909 
1910 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1911 {
1912 	struct snd_timer *timer = NULL;
1913 	struct snd_timer_id tid;
1914 	int err;
1915 
1916 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1917 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1918 	tid.card = chip->card->number;
1919 	tid.device = device;
1920 	tid.subdevice = 0;
1921 	if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1922 		strcpy(timer->name, "YMFPCI timer");
1923 		timer->private_data = chip;
1924 		timer->hw = snd_ymfpci_timer_hw;
1925 	}
1926 	chip->timer = timer;
1927 	return err;
1928 }
1929 
1930 
1931 /*
1932  *  proc interface
1933  */
1934 
1935 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1936 				 struct snd_info_buffer *buffer)
1937 {
1938 	struct snd_ymfpci *chip = entry->private_data;
1939 	int i;
1940 
1941 	snd_iprintf(buffer, "YMFPCI\n\n");
1942 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1943 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1944 }
1945 
1946 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1947 {
1948 	struct snd_info_entry *entry;
1949 
1950 	if (! snd_card_proc_new(card, "ymfpci", &entry))
1951 		snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1952 	return 0;
1953 }
1954 
1955 /*
1956  *  initialization routines
1957  */
1958 
1959 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1960 {
1961 	u8 cmd;
1962 
1963 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1964 #if 0 // force to reset
1965 	if (cmd & 0x03) {
1966 #endif
1967 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1968 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1969 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1970 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1971 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1972 #if 0
1973 	}
1974 #endif
1975 }
1976 
1977 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1978 {
1979 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1980 }
1981 
1982 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1983 {
1984 	u32 val;
1985 	int timeout = 1000;
1986 
1987 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1988 	if (val)
1989 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1990 	while (timeout-- > 0) {
1991 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1992 		if ((val & 0x00000002) == 0)
1993 			break;
1994 	}
1995 }
1996 
1997 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
1998 {
1999 	int err, is_1e;
2000 	const char *name;
2001 
2002 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2003 			       &chip->pci->dev);
2004 	if (err >= 0) {
2005 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2006 			snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2007 			err = -EINVAL;
2008 		}
2009 	}
2010 	if (err < 0)
2011 		return err;
2012 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2013 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2014 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2015 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2016 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2017 	err = request_firmware(&chip->controller_microcode, name,
2018 			       &chip->pci->dev);
2019 	if (err >= 0) {
2020 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2021 			snd_printk(KERN_ERR "controller microcode"
2022 				   " has wrong size\n");
2023 			err = -EINVAL;
2024 		}
2025 	}
2026 	if (err < 0)
2027 		return err;
2028 	return 0;
2029 }
2030 
2031 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2032 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2033 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2034 
2035 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2036 {
2037 	int i;
2038 	u16 ctrl;
2039 	const __le32 *inst;
2040 
2041 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2042 	snd_ymfpci_disable_dsp(chip);
2043 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2044 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2045 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2046 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2047 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2048 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2049 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2050 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2051 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2052 
2053 	/* setup DSP instruction code */
2054 	inst = (const __le32 *)chip->dsp_microcode->data;
2055 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2056 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2057 				  le32_to_cpu(inst[i]));
2058 
2059 	/* setup control instruction code */
2060 	inst = (const __le32 *)chip->controller_microcode->data;
2061 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2062 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2063 				  le32_to_cpu(inst[i]));
2064 
2065 	snd_ymfpci_enable_dsp(chip);
2066 }
2067 
2068 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2069 {
2070 	long size, playback_ctrl_size;
2071 	int voice, bank, reg;
2072 	u8 *ptr;
2073 	dma_addr_t ptr_addr;
2074 
2075 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2076 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2077 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2078 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2079 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2080 
2081 	size = ALIGN(playback_ctrl_size, 0x100) +
2082 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2083 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2084 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2085 	       chip->work_size;
2086 	/* work_ptr must be aligned to 256 bytes, but it's already
2087 	   covered with the kernel page allocation mechanism */
2088 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2089 				size, &chip->work_ptr) < 0)
2090 		return -ENOMEM;
2091 	ptr = chip->work_ptr.area;
2092 	ptr_addr = chip->work_ptr.addr;
2093 	memset(ptr, 0, size);	/* for sure */
2094 
2095 	chip->bank_base_playback = ptr;
2096 	chip->bank_base_playback_addr = ptr_addr;
2097 	chip->ctrl_playback = (u32 *)ptr;
2098 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2099 	ptr += ALIGN(playback_ctrl_size, 0x100);
2100 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2101 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2102 		chip->voices[voice].number = voice;
2103 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2104 		chip->voices[voice].bank_addr = ptr_addr;
2105 		for (bank = 0; bank < 2; bank++) {
2106 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2107 			ptr += chip->bank_size_playback;
2108 			ptr_addr += chip->bank_size_playback;
2109 		}
2110 	}
2111 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2112 	ptr_addr = ALIGN(ptr_addr, 0x100);
2113 	chip->bank_base_capture = ptr;
2114 	chip->bank_base_capture_addr = ptr_addr;
2115 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2116 		for (bank = 0; bank < 2; bank++) {
2117 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2118 			ptr += chip->bank_size_capture;
2119 			ptr_addr += chip->bank_size_capture;
2120 		}
2121 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2122 	ptr_addr = ALIGN(ptr_addr, 0x100);
2123 	chip->bank_base_effect = ptr;
2124 	chip->bank_base_effect_addr = ptr_addr;
2125 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2126 		for (bank = 0; bank < 2; bank++) {
2127 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2128 			ptr += chip->bank_size_effect;
2129 			ptr_addr += chip->bank_size_effect;
2130 		}
2131 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2132 	ptr_addr = ALIGN(ptr_addr, 0x100);
2133 	chip->work_base = ptr;
2134 	chip->work_base_addr = ptr_addr;
2135 
2136 	snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2137 
2138 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2139 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2140 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2141 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2142 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2143 
2144 	/* S/PDIF output initialization */
2145 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2146 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2147 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2148 
2149 	/* S/PDIF input initialization */
2150 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2151 
2152 	/* digital mixer setup */
2153 	for (reg = 0x80; reg < 0xc0; reg += 4)
2154 		snd_ymfpci_writel(chip, reg, 0);
2155 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2156 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2157 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2158 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2159 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2160 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2161 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2162 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2163 
2164 	return 0;
2165 }
2166 
2167 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2168 {
2169 	u16 ctrl;
2170 
2171 	snd_assert(chip != NULL, return -EINVAL);
2172 
2173 	if (chip->res_reg_area) {	/* don't touch busy hardware */
2174 		snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2175 		snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2176 		snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2177 		snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2178 		snd_ymfpci_disable_dsp(chip);
2179 		snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2180 		snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2181 		snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2182 		snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2183 		snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2184 		ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2185 		snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2186 	}
2187 
2188 	snd_ymfpci_ac3_done(chip);
2189 
2190 	/* Set PCI device to D3 state */
2191 #if 0
2192 	/* FIXME: temporarily disabled, otherwise we cannot fire up
2193 	 * the chip again unless reboot.  ACPI bug?
2194 	 */
2195 	pci_set_power_state(chip->pci, 3);
2196 #endif
2197 
2198 #ifdef CONFIG_PM
2199 	vfree(chip->saved_regs);
2200 #endif
2201 	if (chip->irq >= 0)
2202 		free_irq(chip->irq, chip);
2203 	release_and_free_resource(chip->mpu_res);
2204 	release_and_free_resource(chip->fm_res);
2205 	snd_ymfpci_free_gameport(chip);
2206 	if (chip->reg_area_virt)
2207 		iounmap(chip->reg_area_virt);
2208 	if (chip->work_ptr.area)
2209 		snd_dma_free_pages(&chip->work_ptr);
2210 
2211 	release_and_free_resource(chip->res_reg_area);
2212 
2213 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2214 
2215 	pci_disable_device(chip->pci);
2216 	release_firmware(chip->dsp_microcode);
2217 	release_firmware(chip->controller_microcode);
2218 	kfree(chip);
2219 	return 0;
2220 }
2221 
2222 static int snd_ymfpci_dev_free(struct snd_device *device)
2223 {
2224 	struct snd_ymfpci *chip = device->device_data;
2225 	return snd_ymfpci_free(chip);
2226 }
2227 
2228 #ifdef CONFIG_PM
2229 static int saved_regs_index[] = {
2230 	/* spdif */
2231 	YDSXGR_SPDIFOUTCTRL,
2232 	YDSXGR_SPDIFOUTSTATUS,
2233 	YDSXGR_SPDIFINCTRL,
2234 	/* volumes */
2235 	YDSXGR_PRIADCLOOPVOL,
2236 	YDSXGR_NATIVEDACINVOL,
2237 	YDSXGR_NATIVEDACOUTVOL,
2238 	YDSXGR_BUF441OUTVOL,
2239 	YDSXGR_NATIVEADCINVOL,
2240 	YDSXGR_SPDIFLOOPVOL,
2241 	YDSXGR_SPDIFOUTVOL,
2242 	YDSXGR_ZVOUTVOL,
2243 	YDSXGR_LEGACYOUTVOL,
2244 	/* address bases */
2245 	YDSXGR_PLAYCTRLBASE,
2246 	YDSXGR_RECCTRLBASE,
2247 	YDSXGR_EFFCTRLBASE,
2248 	YDSXGR_WORKBASE,
2249 	/* capture set up */
2250 	YDSXGR_MAPOFREC,
2251 	YDSXGR_RECFORMAT,
2252 	YDSXGR_RECSLOTSR,
2253 	YDSXGR_ADCFORMAT,
2254 	YDSXGR_ADCSLOTSR,
2255 };
2256 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2257 
2258 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2259 {
2260 	struct snd_card *card = pci_get_drvdata(pci);
2261 	struct snd_ymfpci *chip = card->private_data;
2262 	unsigned int i;
2263 
2264 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2265 	snd_pcm_suspend_all(chip->pcm);
2266 	snd_pcm_suspend_all(chip->pcm2);
2267 	snd_pcm_suspend_all(chip->pcm_spdif);
2268 	snd_pcm_suspend_all(chip->pcm_4ch);
2269 	snd_ac97_suspend(chip->ac97);
2270 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2271 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2272 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2273 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2274 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2275 	snd_ymfpci_disable_dsp(chip);
2276 	pci_disable_device(pci);
2277 	pci_save_state(pci);
2278 	pci_set_power_state(pci, pci_choose_state(pci, state));
2279 	return 0;
2280 }
2281 
2282 int snd_ymfpci_resume(struct pci_dev *pci)
2283 {
2284 	struct snd_card *card = pci_get_drvdata(pci);
2285 	struct snd_ymfpci *chip = card->private_data;
2286 	unsigned int i;
2287 
2288 	pci_set_power_state(pci, PCI_D0);
2289 	pci_restore_state(pci);
2290 	if (pci_enable_device(pci) < 0) {
2291 		printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2292 		       "disabling device\n");
2293 		snd_card_disconnect(card);
2294 		return -EIO;
2295 	}
2296 	pci_set_master(pci);
2297 	snd_ymfpci_aclink_reset(pci);
2298 	snd_ymfpci_codec_ready(chip, 0);
2299 	snd_ymfpci_download_image(chip);
2300 	udelay(100);
2301 
2302 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2303 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2304 
2305 	snd_ac97_resume(chip->ac97);
2306 
2307 	/* start hw again */
2308 	if (chip->start_count > 0) {
2309 		spin_lock_irq(&chip->reg_lock);
2310 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2311 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2312 		spin_unlock_irq(&chip->reg_lock);
2313 	}
2314 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2315 	return 0;
2316 }
2317 #endif /* CONFIG_PM */
2318 
2319 int __devinit snd_ymfpci_create(struct snd_card *card,
2320 				struct pci_dev * pci,
2321 				unsigned short old_legacy_ctrl,
2322 				struct snd_ymfpci ** rchip)
2323 {
2324 	struct snd_ymfpci *chip;
2325 	int err;
2326 	static struct snd_device_ops ops = {
2327 		.dev_free =	snd_ymfpci_dev_free,
2328 	};
2329 
2330 	*rchip = NULL;
2331 
2332 	/* enable PCI device */
2333 	if ((err = pci_enable_device(pci)) < 0)
2334 		return err;
2335 
2336 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2337 	if (chip == NULL) {
2338 		pci_disable_device(pci);
2339 		return -ENOMEM;
2340 	}
2341 	chip->old_legacy_ctrl = old_legacy_ctrl;
2342 	spin_lock_init(&chip->reg_lock);
2343 	spin_lock_init(&chip->voice_lock);
2344 	init_waitqueue_head(&chip->interrupt_sleep);
2345 	atomic_set(&chip->interrupt_sleep_count, 0);
2346 	chip->card = card;
2347 	chip->pci = pci;
2348 	chip->irq = -1;
2349 	chip->device_id = pci->device;
2350 	chip->rev = pci->revision;
2351 	chip->reg_area_phys = pci_resource_start(pci, 0);
2352 	chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2353 	pci_set_master(pci);
2354 	chip->src441_used = -1;
2355 
2356 	if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2357 		snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2358 		snd_ymfpci_free(chip);
2359 		return -EBUSY;
2360 	}
2361 	if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2362 			"YMFPCI", chip)) {
2363 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2364 		snd_ymfpci_free(chip);
2365 		return -EBUSY;
2366 	}
2367 	chip->irq = pci->irq;
2368 
2369 	snd_ymfpci_aclink_reset(pci);
2370 	if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2371 		snd_ymfpci_free(chip);
2372 		return -EIO;
2373 	}
2374 
2375 	err = snd_ymfpci_request_firmware(chip);
2376 	if (err < 0) {
2377 		snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2378 		snd_ymfpci_free(chip);
2379 		return err;
2380 	}
2381 	snd_ymfpci_download_image(chip);
2382 
2383 	udelay(100); /* seems we need a delay after downloading image.. */
2384 
2385 	if (snd_ymfpci_memalloc(chip) < 0) {
2386 		snd_ymfpci_free(chip);
2387 		return -EIO;
2388 	}
2389 
2390 	if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2391 		snd_ymfpci_free(chip);
2392 		return err;
2393 	}
2394 
2395 #ifdef CONFIG_PM
2396 	chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2397 	if (chip->saved_regs == NULL) {
2398 		snd_ymfpci_free(chip);
2399 		return -ENOMEM;
2400 	}
2401 #endif
2402 
2403 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2404 		snd_ymfpci_free(chip);
2405 		return err;
2406 	}
2407 
2408 	snd_ymfpci_proc_init(card, chip);
2409 
2410 	snd_card_set_dev(card, &pci->dev);
2411 
2412 	*rchip = chip;
2413 	return 0;
2414 }
2415