1 /* 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 3 * Routines for control of YMF724/740/744/754 chips 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/firmware.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/mutex.h> 30 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/info.h> 34 #include <sound/tlv.h> 35 #include <sound/ymfpci.h> 36 #include <sound/asoundef.h> 37 #include <sound/mpu401.h> 38 39 #include <asm/io.h> 40 #include <asm/byteorder.h> 41 42 /* 43 * common I/O routines 44 */ 45 46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 47 48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 49 { 50 return readb(chip->reg_area_virt + offset); 51 } 52 53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 54 { 55 writeb(val, chip->reg_area_virt + offset); 56 } 57 58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 59 { 60 return readw(chip->reg_area_virt + offset); 61 } 62 63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 64 { 65 writew(val, chip->reg_area_virt + offset); 66 } 67 68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 69 { 70 return readl(chip->reg_area_virt + offset); 71 } 72 73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 74 { 75 writel(val, chip->reg_area_virt + offset); 76 } 77 78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 79 { 80 unsigned long end_time; 81 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 82 83 end_time = jiffies + msecs_to_jiffies(750); 84 do { 85 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 86 return 0; 87 schedule_timeout_uninterruptible(1); 88 } while (time_before(jiffies, end_time)); 89 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); 90 return -EBUSY; 91 } 92 93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 94 { 95 struct snd_ymfpci *chip = ac97->private_data; 96 u32 cmd; 97 98 snd_ymfpci_codec_ready(chip, 0); 99 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 100 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 101 } 102 103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 104 { 105 struct snd_ymfpci *chip = ac97->private_data; 106 107 if (snd_ymfpci_codec_ready(chip, 0)) 108 return ~0; 109 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 110 if (snd_ymfpci_codec_ready(chip, 0)) 111 return ~0; 112 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 113 int i; 114 for (i = 0; i < 600; i++) 115 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 116 } 117 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 118 } 119 120 /* 121 * Misc routines 122 */ 123 124 static u32 snd_ymfpci_calc_delta(u32 rate) 125 { 126 switch (rate) { 127 case 8000: return 0x02aaab00; 128 case 11025: return 0x03accd00; 129 case 16000: return 0x05555500; 130 case 22050: return 0x07599a00; 131 case 32000: return 0x0aaaab00; 132 case 44100: return 0x0eb33300; 133 default: return ((rate << 16) / 375) << 5; 134 } 135 } 136 137 static u32 def_rate[8] = { 138 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 139 }; 140 141 static u32 snd_ymfpci_calc_lpfK(u32 rate) 142 { 143 u32 i; 144 static u32 val[8] = { 145 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 146 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 147 }; 148 149 if (rate == 44100) 150 return 0x40000000; /* FIXME: What's the right value? */ 151 for (i = 0; i < 8; i++) 152 if (rate <= def_rate[i]) 153 return val[i]; 154 return val[0]; 155 } 156 157 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 158 { 159 u32 i; 160 static u32 val[8] = { 161 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 162 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 163 }; 164 165 if (rate == 44100) 166 return 0x370A0000; 167 for (i = 0; i < 8; i++) 168 if (rate <= def_rate[i]) 169 return val[i]; 170 return val[0]; 171 } 172 173 /* 174 * Hardware start management 175 */ 176 177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 178 { 179 unsigned long flags; 180 181 spin_lock_irqsave(&chip->reg_lock, flags); 182 if (chip->start_count++ > 0) 183 goto __end; 184 snd_ymfpci_writel(chip, YDSXGR_MODE, 185 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 186 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 187 __end: 188 spin_unlock_irqrestore(&chip->reg_lock, flags); 189 } 190 191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 192 { 193 unsigned long flags; 194 long timeout = 1000; 195 196 spin_lock_irqsave(&chip->reg_lock, flags); 197 if (--chip->start_count > 0) 198 goto __end; 199 snd_ymfpci_writel(chip, YDSXGR_MODE, 200 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 201 while (timeout-- > 0) { 202 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 203 break; 204 } 205 if (atomic_read(&chip->interrupt_sleep_count)) { 206 atomic_set(&chip->interrupt_sleep_count, 0); 207 wake_up(&chip->interrupt_sleep); 208 } 209 __end: 210 spin_unlock_irqrestore(&chip->reg_lock, flags); 211 } 212 213 /* 214 * Playback voice management 215 */ 216 217 static int voice_alloc(struct snd_ymfpci *chip, 218 enum snd_ymfpci_voice_type type, int pair, 219 struct snd_ymfpci_voice **rvoice) 220 { 221 struct snd_ymfpci_voice *voice, *voice2; 222 int idx; 223 224 *rvoice = NULL; 225 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 226 voice = &chip->voices[idx]; 227 voice2 = pair ? &chip->voices[idx+1] : NULL; 228 if (voice->use || (voice2 && voice2->use)) 229 continue; 230 voice->use = 1; 231 if (voice2) 232 voice2->use = 1; 233 switch (type) { 234 case YMFPCI_PCM: 235 voice->pcm = 1; 236 if (voice2) 237 voice2->pcm = 1; 238 break; 239 case YMFPCI_SYNTH: 240 voice->synth = 1; 241 break; 242 case YMFPCI_MIDI: 243 voice->midi = 1; 244 break; 245 } 246 snd_ymfpci_hw_start(chip); 247 if (voice2) 248 snd_ymfpci_hw_start(chip); 249 *rvoice = voice; 250 return 0; 251 } 252 return -ENOMEM; 253 } 254 255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 256 enum snd_ymfpci_voice_type type, int pair, 257 struct snd_ymfpci_voice **rvoice) 258 { 259 unsigned long flags; 260 int result; 261 262 snd_assert(rvoice != NULL, return -EINVAL); 263 snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL); 264 265 spin_lock_irqsave(&chip->voice_lock, flags); 266 for (;;) { 267 result = voice_alloc(chip, type, pair, rvoice); 268 if (result == 0 || type != YMFPCI_PCM) 269 break; 270 /* TODO: synth/midi voice deallocation */ 271 break; 272 } 273 spin_unlock_irqrestore(&chip->voice_lock, flags); 274 return result; 275 } 276 277 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 278 { 279 unsigned long flags; 280 281 snd_assert(pvoice != NULL, return -EINVAL); 282 snd_ymfpci_hw_stop(chip); 283 spin_lock_irqsave(&chip->voice_lock, flags); 284 if (pvoice->number == chip->src441_used) { 285 chip->src441_used = -1; 286 pvoice->ypcm->use_441_slot = 0; 287 } 288 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 289 pvoice->ypcm = NULL; 290 pvoice->interrupt = NULL; 291 spin_unlock_irqrestore(&chip->voice_lock, flags); 292 return 0; 293 } 294 295 /* 296 * PCM part 297 */ 298 299 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 300 { 301 struct snd_ymfpci_pcm *ypcm; 302 u32 pos, delta; 303 304 if ((ypcm = voice->ypcm) == NULL) 305 return; 306 if (ypcm->substream == NULL) 307 return; 308 spin_lock(&chip->reg_lock); 309 if (ypcm->running) { 310 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 311 if (pos < ypcm->last_pos) 312 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 313 else 314 delta = pos - ypcm->last_pos; 315 ypcm->period_pos += delta; 316 ypcm->last_pos = pos; 317 if (ypcm->period_pos >= ypcm->period_size) { 318 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); 319 ypcm->period_pos %= ypcm->period_size; 320 spin_unlock(&chip->reg_lock); 321 snd_pcm_period_elapsed(ypcm->substream); 322 spin_lock(&chip->reg_lock); 323 } 324 325 if (unlikely(ypcm->update_pcm_vol)) { 326 unsigned int subs = ypcm->substream->number; 327 unsigned int next_bank = 1 - chip->active_bank; 328 struct snd_ymfpci_playback_bank *bank; 329 u32 volume; 330 331 bank = &voice->bank[next_bank]; 332 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 333 bank->left_gain_end = volume; 334 if (ypcm->output_rear) 335 bank->eff2_gain_end = volume; 336 if (ypcm->voices[1]) 337 bank = &ypcm->voices[1]->bank[next_bank]; 338 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 339 bank->right_gain_end = volume; 340 if (ypcm->output_rear) 341 bank->eff3_gain_end = volume; 342 ypcm->update_pcm_vol--; 343 } 344 } 345 spin_unlock(&chip->reg_lock); 346 } 347 348 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 349 { 350 struct snd_pcm_runtime *runtime = substream->runtime; 351 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 352 struct snd_ymfpci *chip = ypcm->chip; 353 u32 pos, delta; 354 355 spin_lock(&chip->reg_lock); 356 if (ypcm->running) { 357 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 358 if (pos < ypcm->last_pos) 359 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 360 else 361 delta = pos - ypcm->last_pos; 362 ypcm->period_pos += delta; 363 ypcm->last_pos = pos; 364 if (ypcm->period_pos >= ypcm->period_size) { 365 ypcm->period_pos %= ypcm->period_size; 366 // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); 367 spin_unlock(&chip->reg_lock); 368 snd_pcm_period_elapsed(substream); 369 spin_lock(&chip->reg_lock); 370 } 371 } 372 spin_unlock(&chip->reg_lock); 373 } 374 375 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 376 int cmd) 377 { 378 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 379 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 380 struct snd_kcontrol *kctl = NULL; 381 int result = 0; 382 383 spin_lock(&chip->reg_lock); 384 if (ypcm->voices[0] == NULL) { 385 result = -EINVAL; 386 goto __unlock; 387 } 388 switch (cmd) { 389 case SNDRV_PCM_TRIGGER_START: 390 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 391 case SNDRV_PCM_TRIGGER_RESUME: 392 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 393 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 394 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 395 ypcm->running = 1; 396 break; 397 case SNDRV_PCM_TRIGGER_STOP: 398 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 399 kctl = chip->pcm_mixer[substream->number].ctl; 400 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 401 } 402 /* fall through */ 403 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 404 case SNDRV_PCM_TRIGGER_SUSPEND: 405 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 406 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 407 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 408 ypcm->running = 0; 409 break; 410 default: 411 result = -EINVAL; 412 break; 413 } 414 __unlock: 415 spin_unlock(&chip->reg_lock); 416 if (kctl) 417 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 418 return result; 419 } 420 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 421 int cmd) 422 { 423 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 424 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 425 int result = 0; 426 u32 tmp; 427 428 spin_lock(&chip->reg_lock); 429 switch (cmd) { 430 case SNDRV_PCM_TRIGGER_START: 431 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 432 case SNDRV_PCM_TRIGGER_RESUME: 433 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 434 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 435 ypcm->running = 1; 436 break; 437 case SNDRV_PCM_TRIGGER_STOP: 438 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 439 case SNDRV_PCM_TRIGGER_SUSPEND: 440 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 441 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 442 ypcm->running = 0; 443 break; 444 default: 445 result = -EINVAL; 446 break; 447 } 448 spin_unlock(&chip->reg_lock); 449 return result; 450 } 451 452 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 453 { 454 int err; 455 456 if (ypcm->voices[1] != NULL && voices < 2) { 457 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 458 ypcm->voices[1] = NULL; 459 } 460 if (voices == 1 && ypcm->voices[0] != NULL) 461 return 0; /* already allocated */ 462 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 463 return 0; /* already allocated */ 464 if (voices > 1) { 465 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 466 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 467 ypcm->voices[0] = NULL; 468 } 469 } 470 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 471 if (err < 0) 472 return err; 473 ypcm->voices[0]->ypcm = ypcm; 474 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 475 if (voices > 1) { 476 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 477 ypcm->voices[1]->ypcm = ypcm; 478 } 479 return 0; 480 } 481 482 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 483 struct snd_pcm_runtime *runtime, 484 int has_pcm_volume) 485 { 486 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 487 u32 format; 488 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 489 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 490 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 491 struct snd_ymfpci_playback_bank *bank; 492 unsigned int nbank; 493 u32 vol_left, vol_right; 494 u8 use_left, use_right; 495 unsigned long flags; 496 497 snd_assert(voice != NULL, return); 498 if (runtime->channels == 1) { 499 use_left = 1; 500 use_right = 1; 501 } else { 502 use_left = (voiceidx & 1) == 0; 503 use_right = !use_left; 504 } 505 if (has_pcm_volume) { 506 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 507 [ypcm->substream->number].left << 15); 508 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 509 [ypcm->substream->number].right << 15); 510 } else { 511 vol_left = cpu_to_le32(0x40000000); 512 vol_right = cpu_to_le32(0x40000000); 513 } 514 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 515 format = runtime->channels == 2 ? 0x00010000 : 0; 516 if (snd_pcm_format_width(runtime->format) == 8) 517 format |= 0x80000000; 518 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 519 runtime->rate == 44100 && runtime->channels == 2 && 520 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 521 ypcm->chip->src441_used == voice->number)) { 522 ypcm->chip->src441_used = voice->number; 523 ypcm->use_441_slot = 1; 524 format |= 0x10000000; 525 } 526 if (ypcm->chip->src441_used == voice->number && 527 (format & 0x10000000) == 0) { 528 ypcm->chip->src441_used = -1; 529 ypcm->use_441_slot = 0; 530 } 531 if (runtime->channels == 2 && (voiceidx & 1) != 0) 532 format |= 1; 533 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 534 for (nbank = 0; nbank < 2; nbank++) { 535 bank = &voice->bank[nbank]; 536 memset(bank, 0, sizeof(*bank)); 537 bank->format = cpu_to_le32(format); 538 bank->base = cpu_to_le32(runtime->dma_addr); 539 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 540 bank->lpfQ = cpu_to_le32(lpfQ); 541 bank->delta = 542 bank->delta_end = cpu_to_le32(delta); 543 bank->lpfK = 544 bank->lpfK_end = cpu_to_le32(lpfK); 545 bank->eg_gain = 546 bank->eg_gain_end = cpu_to_le32(0x40000000); 547 548 if (ypcm->output_front) { 549 if (use_left) { 550 bank->left_gain = 551 bank->left_gain_end = vol_left; 552 } 553 if (use_right) { 554 bank->right_gain = 555 bank->right_gain_end = vol_right; 556 } 557 } 558 if (ypcm->output_rear) { 559 if (!ypcm->swap_rear) { 560 if (use_left) { 561 bank->eff2_gain = 562 bank->eff2_gain_end = vol_left; 563 } 564 if (use_right) { 565 bank->eff3_gain = 566 bank->eff3_gain_end = vol_right; 567 } 568 } else { 569 /* The SPDIF out channels seem to be swapped, so we have 570 * to swap them here, too. The rear analog out channels 571 * will be wrong, but otherwise AC3 would not work. 572 */ 573 if (use_left) { 574 bank->eff3_gain = 575 bank->eff3_gain_end = vol_left; 576 } 577 if (use_right) { 578 bank->eff2_gain = 579 bank->eff2_gain_end = vol_right; 580 } 581 } 582 } 583 } 584 } 585 586 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 587 { 588 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 589 4096, &chip->ac3_tmp_base) < 0) 590 return -ENOMEM; 591 592 chip->bank_effect[3][0]->base = 593 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 594 chip->bank_effect[3][0]->loop_end = 595 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 596 chip->bank_effect[4][0]->base = 597 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 598 chip->bank_effect[4][0]->loop_end = 599 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 600 601 spin_lock_irq(&chip->reg_lock); 602 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 603 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 604 spin_unlock_irq(&chip->reg_lock); 605 return 0; 606 } 607 608 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 609 { 610 spin_lock_irq(&chip->reg_lock); 611 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 612 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 613 spin_unlock_irq(&chip->reg_lock); 614 // snd_ymfpci_irq_wait(chip); 615 if (chip->ac3_tmp_base.area) { 616 snd_dma_free_pages(&chip->ac3_tmp_base); 617 chip->ac3_tmp_base.area = NULL; 618 } 619 return 0; 620 } 621 622 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 623 struct snd_pcm_hw_params *hw_params) 624 { 625 struct snd_pcm_runtime *runtime = substream->runtime; 626 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 627 int err; 628 629 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 630 return err; 631 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 632 return err; 633 return 0; 634 } 635 636 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 637 { 638 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 639 struct snd_pcm_runtime *runtime = substream->runtime; 640 struct snd_ymfpci_pcm *ypcm; 641 642 if (runtime->private_data == NULL) 643 return 0; 644 ypcm = runtime->private_data; 645 646 /* wait, until the PCI operations are not finished */ 647 snd_ymfpci_irq_wait(chip); 648 snd_pcm_lib_free_pages(substream); 649 if (ypcm->voices[1]) { 650 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 651 ypcm->voices[1] = NULL; 652 } 653 if (ypcm->voices[0]) { 654 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 655 ypcm->voices[0] = NULL; 656 } 657 return 0; 658 } 659 660 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 661 { 662 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 663 struct snd_pcm_runtime *runtime = substream->runtime; 664 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 665 struct snd_kcontrol *kctl; 666 unsigned int nvoice; 667 668 ypcm->period_size = runtime->period_size; 669 ypcm->buffer_size = runtime->buffer_size; 670 ypcm->period_pos = 0; 671 ypcm->last_pos = 0; 672 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 673 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 674 substream->pcm == chip->pcm); 675 676 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 677 kctl = chip->pcm_mixer[substream->number].ctl; 678 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 679 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 680 } 681 return 0; 682 } 683 684 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 685 struct snd_pcm_hw_params *hw_params) 686 { 687 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 688 } 689 690 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 691 { 692 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 693 694 /* wait, until the PCI operations are not finished */ 695 snd_ymfpci_irq_wait(chip); 696 return snd_pcm_lib_free_pages(substream); 697 } 698 699 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 700 { 701 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 702 struct snd_pcm_runtime *runtime = substream->runtime; 703 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 704 struct snd_ymfpci_capture_bank * bank; 705 int nbank; 706 u32 rate, format; 707 708 ypcm->period_size = runtime->period_size; 709 ypcm->buffer_size = runtime->buffer_size; 710 ypcm->period_pos = 0; 711 ypcm->last_pos = 0; 712 ypcm->shift = 0; 713 rate = ((48000 * 4096) / runtime->rate) - 1; 714 format = 0; 715 if (runtime->channels == 2) { 716 format |= 2; 717 ypcm->shift++; 718 } 719 if (snd_pcm_format_width(runtime->format) == 8) 720 format |= 1; 721 else 722 ypcm->shift++; 723 switch (ypcm->capture_bank_number) { 724 case 0: 725 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 726 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 727 break; 728 case 1: 729 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 730 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 731 break; 732 } 733 for (nbank = 0; nbank < 2; nbank++) { 734 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 735 bank->base = cpu_to_le32(runtime->dma_addr); 736 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 737 bank->start = 0; 738 bank->num_of_loops = 0; 739 } 740 return 0; 741 } 742 743 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 744 { 745 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 746 struct snd_pcm_runtime *runtime = substream->runtime; 747 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 748 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 749 750 if (!(ypcm->running && voice)) 751 return 0; 752 return le32_to_cpu(voice->bank[chip->active_bank].start); 753 } 754 755 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 756 { 757 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 758 struct snd_pcm_runtime *runtime = substream->runtime; 759 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 760 761 if (!ypcm->running) 762 return 0; 763 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 764 } 765 766 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 767 { 768 wait_queue_t wait; 769 int loops = 4; 770 771 while (loops-- > 0) { 772 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 773 continue; 774 init_waitqueue_entry(&wait, current); 775 add_wait_queue(&chip->interrupt_sleep, &wait); 776 atomic_inc(&chip->interrupt_sleep_count); 777 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 778 remove_wait_queue(&chip->interrupt_sleep, &wait); 779 } 780 } 781 782 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 783 { 784 struct snd_ymfpci *chip = dev_id; 785 u32 status, nvoice, mode; 786 struct snd_ymfpci_voice *voice; 787 788 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 789 if (status & 0x80000000) { 790 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 791 spin_lock(&chip->voice_lock); 792 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 793 voice = &chip->voices[nvoice]; 794 if (voice->interrupt) 795 voice->interrupt(chip, voice); 796 } 797 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 798 if (chip->capture_substream[nvoice]) 799 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 800 } 801 #if 0 802 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 803 if (chip->effect_substream[nvoice]) 804 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 805 } 806 #endif 807 spin_unlock(&chip->voice_lock); 808 spin_lock(&chip->reg_lock); 809 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 810 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 811 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 812 spin_unlock(&chip->reg_lock); 813 814 if (atomic_read(&chip->interrupt_sleep_count)) { 815 atomic_set(&chip->interrupt_sleep_count, 0); 816 wake_up(&chip->interrupt_sleep); 817 } 818 } 819 820 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 821 if (status & 1) { 822 if (chip->timer) 823 snd_timer_interrupt(chip->timer, chip->timer->sticks); 824 } 825 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 826 827 if (chip->rawmidi) 828 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 829 return IRQ_HANDLED; 830 } 831 832 static struct snd_pcm_hardware snd_ymfpci_playback = 833 { 834 .info = (SNDRV_PCM_INFO_MMAP | 835 SNDRV_PCM_INFO_MMAP_VALID | 836 SNDRV_PCM_INFO_INTERLEAVED | 837 SNDRV_PCM_INFO_BLOCK_TRANSFER | 838 SNDRV_PCM_INFO_PAUSE | 839 SNDRV_PCM_INFO_RESUME), 840 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 841 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 842 .rate_min = 8000, 843 .rate_max = 48000, 844 .channels_min = 1, 845 .channels_max = 2, 846 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 847 .period_bytes_min = 64, 848 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 849 .periods_min = 3, 850 .periods_max = 1024, 851 .fifo_size = 0, 852 }; 853 854 static struct snd_pcm_hardware snd_ymfpci_capture = 855 { 856 .info = (SNDRV_PCM_INFO_MMAP | 857 SNDRV_PCM_INFO_MMAP_VALID | 858 SNDRV_PCM_INFO_INTERLEAVED | 859 SNDRV_PCM_INFO_BLOCK_TRANSFER | 860 SNDRV_PCM_INFO_PAUSE | 861 SNDRV_PCM_INFO_RESUME), 862 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 863 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 864 .rate_min = 8000, 865 .rate_max = 48000, 866 .channels_min = 1, 867 .channels_max = 2, 868 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 869 .period_bytes_min = 64, 870 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 871 .periods_min = 3, 872 .periods_max = 1024, 873 .fifo_size = 0, 874 }; 875 876 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 877 { 878 kfree(runtime->private_data); 879 } 880 881 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 882 { 883 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 884 struct snd_pcm_runtime *runtime = substream->runtime; 885 struct snd_ymfpci_pcm *ypcm; 886 887 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 888 if (ypcm == NULL) 889 return -ENOMEM; 890 ypcm->chip = chip; 891 ypcm->type = PLAYBACK_VOICE; 892 ypcm->substream = substream; 893 runtime->hw = snd_ymfpci_playback; 894 runtime->private_data = ypcm; 895 runtime->private_free = snd_ymfpci_pcm_free_substream; 896 /* FIXME? True value is 256/48 = 5.33333 ms */ 897 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 898 return 0; 899 } 900 901 /* call with spinlock held */ 902 static void ymfpci_open_extension(struct snd_ymfpci *chip) 903 { 904 if (! chip->rear_opened) { 905 if (! chip->spdif_opened) /* set AC3 */ 906 snd_ymfpci_writel(chip, YDSXGR_MODE, 907 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 908 /* enable second codec (4CHEN) */ 909 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 910 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 911 } 912 } 913 914 /* call with spinlock held */ 915 static void ymfpci_close_extension(struct snd_ymfpci *chip) 916 { 917 if (! chip->rear_opened) { 918 if (! chip->spdif_opened) 919 snd_ymfpci_writel(chip, YDSXGR_MODE, 920 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 921 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 922 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 923 } 924 } 925 926 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 927 { 928 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 929 struct snd_pcm_runtime *runtime = substream->runtime; 930 struct snd_ymfpci_pcm *ypcm; 931 int err; 932 933 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 934 return err; 935 ypcm = runtime->private_data; 936 ypcm->output_front = 1; 937 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 938 ypcm->swap_rear = 0; 939 spin_lock_irq(&chip->reg_lock); 940 if (ypcm->output_rear) { 941 ymfpci_open_extension(chip); 942 chip->rear_opened++; 943 } 944 spin_unlock_irq(&chip->reg_lock); 945 return 0; 946 } 947 948 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 949 { 950 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 951 struct snd_pcm_runtime *runtime = substream->runtime; 952 struct snd_ymfpci_pcm *ypcm; 953 int err; 954 955 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 956 return err; 957 ypcm = runtime->private_data; 958 ypcm->output_front = 0; 959 ypcm->output_rear = 1; 960 ypcm->swap_rear = 1; 961 spin_lock_irq(&chip->reg_lock); 962 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 963 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 964 ymfpci_open_extension(chip); 965 chip->spdif_pcm_bits = chip->spdif_bits; 966 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 967 chip->spdif_opened++; 968 spin_unlock_irq(&chip->reg_lock); 969 970 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 971 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 972 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 973 return 0; 974 } 975 976 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 977 { 978 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 979 struct snd_pcm_runtime *runtime = substream->runtime; 980 struct snd_ymfpci_pcm *ypcm; 981 int err; 982 983 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 984 return err; 985 ypcm = runtime->private_data; 986 ypcm->output_front = 0; 987 ypcm->output_rear = 1; 988 ypcm->swap_rear = 0; 989 spin_lock_irq(&chip->reg_lock); 990 ymfpci_open_extension(chip); 991 chip->rear_opened++; 992 spin_unlock_irq(&chip->reg_lock); 993 return 0; 994 } 995 996 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 997 u32 capture_bank_number) 998 { 999 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1000 struct snd_pcm_runtime *runtime = substream->runtime; 1001 struct snd_ymfpci_pcm *ypcm; 1002 1003 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1004 if (ypcm == NULL) 1005 return -ENOMEM; 1006 ypcm->chip = chip; 1007 ypcm->type = capture_bank_number + CAPTURE_REC; 1008 ypcm->substream = substream; 1009 ypcm->capture_bank_number = capture_bank_number; 1010 chip->capture_substream[capture_bank_number] = substream; 1011 runtime->hw = snd_ymfpci_capture; 1012 /* FIXME? True value is 256/48 = 5.33333 ms */ 1013 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX); 1014 runtime->private_data = ypcm; 1015 runtime->private_free = snd_ymfpci_pcm_free_substream; 1016 snd_ymfpci_hw_start(chip); 1017 return 0; 1018 } 1019 1020 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1021 { 1022 return snd_ymfpci_capture_open(substream, 0); 1023 } 1024 1025 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1026 { 1027 return snd_ymfpci_capture_open(substream, 1); 1028 } 1029 1030 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1031 { 1032 return 0; 1033 } 1034 1035 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1036 { 1037 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1038 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1039 1040 spin_lock_irq(&chip->reg_lock); 1041 if (ypcm->output_rear && chip->rear_opened > 0) { 1042 chip->rear_opened--; 1043 ymfpci_close_extension(chip); 1044 } 1045 spin_unlock_irq(&chip->reg_lock); 1046 return snd_ymfpci_playback_close_1(substream); 1047 } 1048 1049 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1050 { 1051 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1052 1053 spin_lock_irq(&chip->reg_lock); 1054 chip->spdif_opened = 0; 1055 ymfpci_close_extension(chip); 1056 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1057 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1058 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1059 spin_unlock_irq(&chip->reg_lock); 1060 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1061 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1062 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1063 return snd_ymfpci_playback_close_1(substream); 1064 } 1065 1066 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1067 { 1068 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1069 1070 spin_lock_irq(&chip->reg_lock); 1071 if (chip->rear_opened > 0) { 1072 chip->rear_opened--; 1073 ymfpci_close_extension(chip); 1074 } 1075 spin_unlock_irq(&chip->reg_lock); 1076 return snd_ymfpci_playback_close_1(substream); 1077 } 1078 1079 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1080 { 1081 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1082 struct snd_pcm_runtime *runtime = substream->runtime; 1083 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1084 1085 if (ypcm != NULL) { 1086 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1087 snd_ymfpci_hw_stop(chip); 1088 } 1089 return 0; 1090 } 1091 1092 static struct snd_pcm_ops snd_ymfpci_playback_ops = { 1093 .open = snd_ymfpci_playback_open, 1094 .close = snd_ymfpci_playback_close, 1095 .ioctl = snd_pcm_lib_ioctl, 1096 .hw_params = snd_ymfpci_playback_hw_params, 1097 .hw_free = snd_ymfpci_playback_hw_free, 1098 .prepare = snd_ymfpci_playback_prepare, 1099 .trigger = snd_ymfpci_playback_trigger, 1100 .pointer = snd_ymfpci_playback_pointer, 1101 }; 1102 1103 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1104 .open = snd_ymfpci_capture_rec_open, 1105 .close = snd_ymfpci_capture_close, 1106 .ioctl = snd_pcm_lib_ioctl, 1107 .hw_params = snd_ymfpci_capture_hw_params, 1108 .hw_free = snd_ymfpci_capture_hw_free, 1109 .prepare = snd_ymfpci_capture_prepare, 1110 .trigger = snd_ymfpci_capture_trigger, 1111 .pointer = snd_ymfpci_capture_pointer, 1112 }; 1113 1114 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1115 { 1116 struct snd_pcm *pcm; 1117 int err; 1118 1119 if (rpcm) 1120 *rpcm = NULL; 1121 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1122 return err; 1123 pcm->private_data = chip; 1124 1125 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1126 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1127 1128 /* global setup */ 1129 pcm->info_flags = 0; 1130 strcpy(pcm->name, "YMFPCI"); 1131 chip->pcm = pcm; 1132 1133 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1134 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1135 1136 if (rpcm) 1137 *rpcm = pcm; 1138 return 0; 1139 } 1140 1141 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1142 .open = snd_ymfpci_capture_ac97_open, 1143 .close = snd_ymfpci_capture_close, 1144 .ioctl = snd_pcm_lib_ioctl, 1145 .hw_params = snd_ymfpci_capture_hw_params, 1146 .hw_free = snd_ymfpci_capture_hw_free, 1147 .prepare = snd_ymfpci_capture_prepare, 1148 .trigger = snd_ymfpci_capture_trigger, 1149 .pointer = snd_ymfpci_capture_pointer, 1150 }; 1151 1152 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1153 { 1154 struct snd_pcm *pcm; 1155 int err; 1156 1157 if (rpcm) 1158 *rpcm = NULL; 1159 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1160 return err; 1161 pcm->private_data = chip; 1162 1163 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1164 1165 /* global setup */ 1166 pcm->info_flags = 0; 1167 sprintf(pcm->name, "YMFPCI - %s", 1168 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1169 chip->pcm2 = pcm; 1170 1171 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1172 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1173 1174 if (rpcm) 1175 *rpcm = pcm; 1176 return 0; 1177 } 1178 1179 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1180 .open = snd_ymfpci_playback_spdif_open, 1181 .close = snd_ymfpci_playback_spdif_close, 1182 .ioctl = snd_pcm_lib_ioctl, 1183 .hw_params = snd_ymfpci_playback_hw_params, 1184 .hw_free = snd_ymfpci_playback_hw_free, 1185 .prepare = snd_ymfpci_playback_prepare, 1186 .trigger = snd_ymfpci_playback_trigger, 1187 .pointer = snd_ymfpci_playback_pointer, 1188 }; 1189 1190 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1191 { 1192 struct snd_pcm *pcm; 1193 int err; 1194 1195 if (rpcm) 1196 *rpcm = NULL; 1197 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1198 return err; 1199 pcm->private_data = chip; 1200 1201 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1202 1203 /* global setup */ 1204 pcm->info_flags = 0; 1205 strcpy(pcm->name, "YMFPCI - IEC958"); 1206 chip->pcm_spdif = pcm; 1207 1208 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1209 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1210 1211 if (rpcm) 1212 *rpcm = pcm; 1213 return 0; 1214 } 1215 1216 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1217 .open = snd_ymfpci_playback_4ch_open, 1218 .close = snd_ymfpci_playback_4ch_close, 1219 .ioctl = snd_pcm_lib_ioctl, 1220 .hw_params = snd_ymfpci_playback_hw_params, 1221 .hw_free = snd_ymfpci_playback_hw_free, 1222 .prepare = snd_ymfpci_playback_prepare, 1223 .trigger = snd_ymfpci_playback_trigger, 1224 .pointer = snd_ymfpci_playback_pointer, 1225 }; 1226 1227 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1228 { 1229 struct snd_pcm *pcm; 1230 int err; 1231 1232 if (rpcm) 1233 *rpcm = NULL; 1234 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1235 return err; 1236 pcm->private_data = chip; 1237 1238 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1239 1240 /* global setup */ 1241 pcm->info_flags = 0; 1242 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1243 chip->pcm_4ch = pcm; 1244 1245 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1246 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1247 1248 if (rpcm) 1249 *rpcm = pcm; 1250 return 0; 1251 } 1252 1253 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1254 { 1255 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1256 uinfo->count = 1; 1257 return 0; 1258 } 1259 1260 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1261 struct snd_ctl_elem_value *ucontrol) 1262 { 1263 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1264 1265 spin_lock_irq(&chip->reg_lock); 1266 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1267 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1268 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1269 spin_unlock_irq(&chip->reg_lock); 1270 return 0; 1271 } 1272 1273 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1274 struct snd_ctl_elem_value *ucontrol) 1275 { 1276 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1277 unsigned int val; 1278 int change; 1279 1280 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1281 (ucontrol->value.iec958.status[1] << 8); 1282 spin_lock_irq(&chip->reg_lock); 1283 change = chip->spdif_bits != val; 1284 chip->spdif_bits = val; 1285 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1286 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1287 spin_unlock_irq(&chip->reg_lock); 1288 return change; 1289 } 1290 1291 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata = 1292 { 1293 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1294 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1295 .info = snd_ymfpci_spdif_default_info, 1296 .get = snd_ymfpci_spdif_default_get, 1297 .put = snd_ymfpci_spdif_default_put 1298 }; 1299 1300 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1301 { 1302 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1303 uinfo->count = 1; 1304 return 0; 1305 } 1306 1307 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1308 struct snd_ctl_elem_value *ucontrol) 1309 { 1310 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1311 1312 spin_lock_irq(&chip->reg_lock); 1313 ucontrol->value.iec958.status[0] = 0x3e; 1314 ucontrol->value.iec958.status[1] = 0xff; 1315 spin_unlock_irq(&chip->reg_lock); 1316 return 0; 1317 } 1318 1319 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata = 1320 { 1321 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1322 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1323 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1324 .info = snd_ymfpci_spdif_mask_info, 1325 .get = snd_ymfpci_spdif_mask_get, 1326 }; 1327 1328 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1329 { 1330 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1331 uinfo->count = 1; 1332 return 0; 1333 } 1334 1335 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1336 struct snd_ctl_elem_value *ucontrol) 1337 { 1338 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1339 1340 spin_lock_irq(&chip->reg_lock); 1341 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1342 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1343 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1344 spin_unlock_irq(&chip->reg_lock); 1345 return 0; 1346 } 1347 1348 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1349 struct snd_ctl_elem_value *ucontrol) 1350 { 1351 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1352 unsigned int val; 1353 int change; 1354 1355 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1356 (ucontrol->value.iec958.status[1] << 8); 1357 spin_lock_irq(&chip->reg_lock); 1358 change = chip->spdif_pcm_bits != val; 1359 chip->spdif_pcm_bits = val; 1360 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1361 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1362 spin_unlock_irq(&chip->reg_lock); 1363 return change; 1364 } 1365 1366 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata = 1367 { 1368 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1369 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1370 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1371 .info = snd_ymfpci_spdif_stream_info, 1372 .get = snd_ymfpci_spdif_stream_get, 1373 .put = snd_ymfpci_spdif_stream_put 1374 }; 1375 1376 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1377 { 1378 static char *texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1379 1380 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1381 info->count = 1; 1382 info->value.enumerated.items = 3; 1383 if (info->value.enumerated.item > 2) 1384 info->value.enumerated.item = 2; 1385 strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]); 1386 return 0; 1387 } 1388 1389 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1390 { 1391 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1392 u16 reg; 1393 1394 spin_lock_irq(&chip->reg_lock); 1395 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1396 spin_unlock_irq(&chip->reg_lock); 1397 if (!(reg & 0x100)) 1398 value->value.enumerated.item[0] = 0; 1399 else 1400 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1401 return 0; 1402 } 1403 1404 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1405 { 1406 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1407 u16 reg, old_reg; 1408 1409 spin_lock_irq(&chip->reg_lock); 1410 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1411 if (value->value.enumerated.item[0] == 0) 1412 reg = old_reg & ~0x100; 1413 else 1414 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1415 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1416 spin_unlock_irq(&chip->reg_lock); 1417 return reg != old_reg; 1418 } 1419 1420 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = { 1421 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1422 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1423 .name = "Direct Recording Source", 1424 .info = snd_ymfpci_drec_source_info, 1425 .get = snd_ymfpci_drec_source_get, 1426 .put = snd_ymfpci_drec_source_put 1427 }; 1428 1429 /* 1430 * Mixer controls 1431 */ 1432 1433 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1434 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1435 .info = snd_ymfpci_info_single, \ 1436 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1437 .private_value = ((reg) | ((shift) << 16)) } 1438 1439 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1440 1441 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1442 struct snd_ctl_elem_value *ucontrol) 1443 { 1444 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1445 int reg = kcontrol->private_value & 0xffff; 1446 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1447 unsigned int mask = 1; 1448 1449 switch (reg) { 1450 case YDSXGR_SPDIFOUTCTRL: break; 1451 case YDSXGR_SPDIFINCTRL: break; 1452 default: return -EINVAL; 1453 } 1454 ucontrol->value.integer.value[0] = 1455 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1456 return 0; 1457 } 1458 1459 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1460 struct snd_ctl_elem_value *ucontrol) 1461 { 1462 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1463 int reg = kcontrol->private_value & 0xffff; 1464 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1465 unsigned int mask = 1; 1466 int change; 1467 unsigned int val, oval; 1468 1469 switch (reg) { 1470 case YDSXGR_SPDIFOUTCTRL: break; 1471 case YDSXGR_SPDIFINCTRL: break; 1472 default: return -EINVAL; 1473 } 1474 val = (ucontrol->value.integer.value[0] & mask); 1475 val <<= shift; 1476 spin_lock_irq(&chip->reg_lock); 1477 oval = snd_ymfpci_readl(chip, reg); 1478 val = (oval & ~(mask << shift)) | val; 1479 change = val != oval; 1480 snd_ymfpci_writel(chip, reg, val); 1481 spin_unlock_irq(&chip->reg_lock); 1482 return change; 1483 } 1484 1485 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1486 1487 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1488 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1489 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1490 .info = snd_ymfpci_info_double, \ 1491 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1492 .private_value = reg, \ 1493 .tlv = { .p = db_scale_native } } 1494 1495 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1496 { 1497 unsigned int reg = kcontrol->private_value; 1498 1499 if (reg < 0x80 || reg >= 0xc0) 1500 return -EINVAL; 1501 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1502 uinfo->count = 2; 1503 uinfo->value.integer.min = 0; 1504 uinfo->value.integer.max = 16383; 1505 return 0; 1506 } 1507 1508 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1509 { 1510 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1511 unsigned int reg = kcontrol->private_value; 1512 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1513 unsigned int val; 1514 1515 if (reg < 0x80 || reg >= 0xc0) 1516 return -EINVAL; 1517 spin_lock_irq(&chip->reg_lock); 1518 val = snd_ymfpci_readl(chip, reg); 1519 spin_unlock_irq(&chip->reg_lock); 1520 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1521 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1522 return 0; 1523 } 1524 1525 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1526 { 1527 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1528 unsigned int reg = kcontrol->private_value; 1529 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1530 int change; 1531 unsigned int val1, val2, oval; 1532 1533 if (reg < 0x80 || reg >= 0xc0) 1534 return -EINVAL; 1535 val1 = ucontrol->value.integer.value[0] & mask; 1536 val2 = ucontrol->value.integer.value[1] & mask; 1537 val1 <<= shift_left; 1538 val2 <<= shift_right; 1539 spin_lock_irq(&chip->reg_lock); 1540 oval = snd_ymfpci_readl(chip, reg); 1541 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1542 change = val1 != oval; 1543 snd_ymfpci_writel(chip, reg, val1); 1544 spin_unlock_irq(&chip->reg_lock); 1545 return change; 1546 } 1547 1548 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1549 struct snd_ctl_elem_value *ucontrol) 1550 { 1551 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1552 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1553 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1554 int change; 1555 unsigned int value, oval; 1556 1557 value = ucontrol->value.integer.value[0] & 0x3fff; 1558 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1559 spin_lock_irq(&chip->reg_lock); 1560 oval = snd_ymfpci_readl(chip, reg); 1561 change = value != oval; 1562 snd_ymfpci_writel(chip, reg, value); 1563 snd_ymfpci_writel(chip, reg2, value); 1564 spin_unlock_irq(&chip->reg_lock); 1565 return change; 1566 } 1567 1568 /* 1569 * 4ch duplication 1570 */ 1571 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1572 1573 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1574 { 1575 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1576 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1577 return 0; 1578 } 1579 1580 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1581 { 1582 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1583 int change; 1584 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1585 if (change) 1586 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1587 return change; 1588 } 1589 1590 1591 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = { 1592 { 1593 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1594 .name = "Wave Playback Volume", 1595 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1596 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1597 .info = snd_ymfpci_info_double, 1598 .get = snd_ymfpci_get_double, 1599 .put = snd_ymfpci_put_nativedacvol, 1600 .private_value = YDSXGR_NATIVEDACOUTVOL, 1601 .tlv = { .p = db_scale_native }, 1602 }, 1603 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1604 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1605 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1606 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1607 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1608 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1609 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1610 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL), 1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1614 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1617 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1618 { 1619 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1620 .name = "4ch Duplication", 1621 .info = snd_ymfpci_info_dup4ch, 1622 .get = snd_ymfpci_get_dup4ch, 1623 .put = snd_ymfpci_put_dup4ch, 1624 }, 1625 }; 1626 1627 1628 /* 1629 * GPIO 1630 */ 1631 1632 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1633 { 1634 u16 reg, mode; 1635 unsigned long flags; 1636 1637 spin_lock_irqsave(&chip->reg_lock, flags); 1638 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1639 reg &= ~(1 << (pin + 8)); 1640 reg |= (1 << pin); 1641 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1642 /* set the level mode for input line */ 1643 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1644 mode &= ~(3 << (pin * 2)); 1645 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1646 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1647 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1648 spin_unlock_irqrestore(&chip->reg_lock, flags); 1649 return (mode >> pin) & 1; 1650 } 1651 1652 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1653 { 1654 u16 reg; 1655 unsigned long flags; 1656 1657 spin_lock_irqsave(&chip->reg_lock, flags); 1658 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1659 reg &= ~(1 << pin); 1660 reg &= ~(1 << (pin + 8)); 1661 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1662 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1663 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1664 spin_unlock_irqrestore(&chip->reg_lock, flags); 1665 1666 return 0; 1667 } 1668 1669 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1670 1671 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1672 { 1673 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1674 int pin = (int)kcontrol->private_value; 1675 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1676 return 0; 1677 } 1678 1679 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1680 { 1681 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1682 int pin = (int)kcontrol->private_value; 1683 1684 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1685 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1686 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1687 return 1; 1688 } 1689 return 0; 1690 } 1691 1692 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = { 1693 .name = "Shared Rear/Line-In Switch", 1694 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1695 .info = snd_ymfpci_gpio_sw_info, 1696 .get = snd_ymfpci_gpio_sw_get, 1697 .put = snd_ymfpci_gpio_sw_put, 1698 .private_value = 2, 1699 }; 1700 1701 /* 1702 * PCM voice volume 1703 */ 1704 1705 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1706 struct snd_ctl_elem_info *uinfo) 1707 { 1708 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1709 uinfo->count = 2; 1710 uinfo->value.integer.min = 0; 1711 uinfo->value.integer.max = 0x8000; 1712 return 0; 1713 } 1714 1715 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1716 struct snd_ctl_elem_value *ucontrol) 1717 { 1718 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1719 unsigned int subs = kcontrol->id.subdevice; 1720 1721 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1722 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1723 return 0; 1724 } 1725 1726 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1727 struct snd_ctl_elem_value *ucontrol) 1728 { 1729 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1730 unsigned int subs = kcontrol->id.subdevice; 1731 struct snd_pcm_substream *substream; 1732 unsigned long flags; 1733 1734 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1735 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1736 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1737 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1738 if (chip->pcm_mixer[subs].left > 0x8000) 1739 chip->pcm_mixer[subs].left = 0x8000; 1740 if (chip->pcm_mixer[subs].right > 0x8000) 1741 chip->pcm_mixer[subs].right = 0x8000; 1742 1743 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1744 spin_lock_irqsave(&chip->voice_lock, flags); 1745 if (substream->runtime && substream->runtime->private_data) { 1746 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1747 if (!ypcm->use_441_slot) 1748 ypcm->update_pcm_vol = 2; 1749 } 1750 spin_unlock_irqrestore(&chip->voice_lock, flags); 1751 return 1; 1752 } 1753 return 0; 1754 } 1755 1756 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = { 1757 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1758 .name = "PCM Playback Volume", 1759 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1760 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1761 .info = snd_ymfpci_pcm_vol_info, 1762 .get = snd_ymfpci_pcm_vol_get, 1763 .put = snd_ymfpci_pcm_vol_put, 1764 }; 1765 1766 1767 /* 1768 * Mixer routines 1769 */ 1770 1771 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1772 { 1773 struct snd_ymfpci *chip = bus->private_data; 1774 chip->ac97_bus = NULL; 1775 } 1776 1777 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1778 { 1779 struct snd_ymfpci *chip = ac97->private_data; 1780 chip->ac97 = NULL; 1781 } 1782 1783 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1784 { 1785 struct snd_ac97_template ac97; 1786 struct snd_kcontrol *kctl; 1787 struct snd_pcm_substream *substream; 1788 unsigned int idx; 1789 int err; 1790 static struct snd_ac97_bus_ops ops = { 1791 .write = snd_ymfpci_codec_write, 1792 .read = snd_ymfpci_codec_read, 1793 }; 1794 1795 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1796 return err; 1797 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1798 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1799 1800 memset(&ac97, 0, sizeof(ac97)); 1801 ac97.private_data = chip; 1802 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1803 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1804 return err; 1805 1806 /* to be sure */ 1807 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1808 AC97_EA_VRA|AC97_EA_VRM, 0); 1809 1810 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1811 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1812 return err; 1813 } 1814 1815 /* add S/PDIF control */ 1816 snd_assert(chip->pcm_spdif != NULL, return -EIO); 1817 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1818 return err; 1819 kctl->id.device = chip->pcm_spdif->device; 1820 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1821 return err; 1822 kctl->id.device = chip->pcm_spdif->device; 1823 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1824 return err; 1825 kctl->id.device = chip->pcm_spdif->device; 1826 chip->spdif_pcm_ctl = kctl; 1827 1828 /* direct recording source */ 1829 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1830 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1831 return err; 1832 1833 /* 1834 * shared rear/line-in 1835 */ 1836 if (rear_switch) { 1837 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1838 return err; 1839 } 1840 1841 /* per-voice volume */ 1842 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1843 for (idx = 0; idx < 32; ++idx) { 1844 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1845 if (!kctl) 1846 return -ENOMEM; 1847 kctl->id.device = chip->pcm->device; 1848 kctl->id.subdevice = idx; 1849 kctl->private_value = (unsigned long)substream; 1850 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1851 return err; 1852 chip->pcm_mixer[idx].left = 0x8000; 1853 chip->pcm_mixer[idx].right = 0x8000; 1854 chip->pcm_mixer[idx].ctl = kctl; 1855 substream = substream->next; 1856 } 1857 1858 return 0; 1859 } 1860 1861 1862 /* 1863 * timer 1864 */ 1865 1866 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1867 { 1868 struct snd_ymfpci *chip; 1869 unsigned long flags; 1870 unsigned int count; 1871 1872 chip = snd_timer_chip(timer); 1873 count = (timer->sticks << 1) - 1; 1874 spin_lock_irqsave(&chip->reg_lock, flags); 1875 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1876 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1877 spin_unlock_irqrestore(&chip->reg_lock, flags); 1878 return 0; 1879 } 1880 1881 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1882 { 1883 struct snd_ymfpci *chip; 1884 unsigned long flags; 1885 1886 chip = snd_timer_chip(timer); 1887 spin_lock_irqsave(&chip->reg_lock, flags); 1888 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1889 spin_unlock_irqrestore(&chip->reg_lock, flags); 1890 return 0; 1891 } 1892 1893 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1894 unsigned long *num, unsigned long *den) 1895 { 1896 *num = 1; 1897 *den = 48000; 1898 return 0; 1899 } 1900 1901 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1902 .flags = SNDRV_TIMER_HW_AUTO, 1903 .resolution = 20833, /* 1/fs = 20.8333...us */ 1904 .ticks = 0x8000, 1905 .start = snd_ymfpci_timer_start, 1906 .stop = snd_ymfpci_timer_stop, 1907 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1908 }; 1909 1910 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1911 { 1912 struct snd_timer *timer = NULL; 1913 struct snd_timer_id tid; 1914 int err; 1915 1916 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1917 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1918 tid.card = chip->card->number; 1919 tid.device = device; 1920 tid.subdevice = 0; 1921 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1922 strcpy(timer->name, "YMFPCI timer"); 1923 timer->private_data = chip; 1924 timer->hw = snd_ymfpci_timer_hw; 1925 } 1926 chip->timer = timer; 1927 return err; 1928 } 1929 1930 1931 /* 1932 * proc interface 1933 */ 1934 1935 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1936 struct snd_info_buffer *buffer) 1937 { 1938 struct snd_ymfpci *chip = entry->private_data; 1939 int i; 1940 1941 snd_iprintf(buffer, "YMFPCI\n\n"); 1942 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 1943 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 1944 } 1945 1946 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 1947 { 1948 struct snd_info_entry *entry; 1949 1950 if (! snd_card_proc_new(card, "ymfpci", &entry)) 1951 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); 1952 return 0; 1953 } 1954 1955 /* 1956 * initialization routines 1957 */ 1958 1959 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 1960 { 1961 u8 cmd; 1962 1963 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 1964 #if 0 // force to reset 1965 if (cmd & 0x03) { 1966 #endif 1967 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1968 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 1969 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 1970 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 1971 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 1972 #if 0 1973 } 1974 #endif 1975 } 1976 1977 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 1978 { 1979 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 1980 } 1981 1982 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 1983 { 1984 u32 val; 1985 int timeout = 1000; 1986 1987 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 1988 if (val) 1989 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 1990 while (timeout-- > 0) { 1991 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 1992 if ((val & 0x00000002) == 0) 1993 break; 1994 } 1995 } 1996 1997 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 1998 { 1999 int err, is_1e; 2000 const char *name; 2001 2002 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2003 &chip->pci->dev); 2004 if (err >= 0) { 2005 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2006 snd_printk(KERN_ERR "DSP microcode has wrong size\n"); 2007 err = -EINVAL; 2008 } 2009 } 2010 if (err < 0) 2011 return err; 2012 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2013 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2014 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2015 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2016 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2017 err = request_firmware(&chip->controller_microcode, name, 2018 &chip->pci->dev); 2019 if (err >= 0) { 2020 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2021 snd_printk(KERN_ERR "controller microcode" 2022 " has wrong size\n"); 2023 err = -EINVAL; 2024 } 2025 } 2026 if (err < 0) 2027 return err; 2028 return 0; 2029 } 2030 2031 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2032 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2033 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2034 2035 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2036 { 2037 int i; 2038 u16 ctrl; 2039 const __le32 *inst; 2040 2041 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2042 snd_ymfpci_disable_dsp(chip); 2043 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2044 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2045 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2046 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2047 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2048 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2049 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2050 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2051 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2052 2053 /* setup DSP instruction code */ 2054 inst = (const __le32 *)chip->dsp_microcode->data; 2055 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2056 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2057 le32_to_cpu(inst[i])); 2058 2059 /* setup control instruction code */ 2060 inst = (const __le32 *)chip->controller_microcode->data; 2061 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2062 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2063 le32_to_cpu(inst[i])); 2064 2065 snd_ymfpci_enable_dsp(chip); 2066 } 2067 2068 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2069 { 2070 long size, playback_ctrl_size; 2071 int voice, bank, reg; 2072 u8 *ptr; 2073 dma_addr_t ptr_addr; 2074 2075 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2076 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2077 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2078 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2079 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2080 2081 size = ALIGN(playback_ctrl_size, 0x100) + 2082 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2083 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2084 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2085 chip->work_size; 2086 /* work_ptr must be aligned to 256 bytes, but it's already 2087 covered with the kernel page allocation mechanism */ 2088 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 2089 size, &chip->work_ptr) < 0) 2090 return -ENOMEM; 2091 ptr = chip->work_ptr.area; 2092 ptr_addr = chip->work_ptr.addr; 2093 memset(ptr, 0, size); /* for sure */ 2094 2095 chip->bank_base_playback = ptr; 2096 chip->bank_base_playback_addr = ptr_addr; 2097 chip->ctrl_playback = (u32 *)ptr; 2098 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2099 ptr += ALIGN(playback_ctrl_size, 0x100); 2100 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2101 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2102 chip->voices[voice].number = voice; 2103 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2104 chip->voices[voice].bank_addr = ptr_addr; 2105 for (bank = 0; bank < 2; bank++) { 2106 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2107 ptr += chip->bank_size_playback; 2108 ptr_addr += chip->bank_size_playback; 2109 } 2110 } 2111 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2112 ptr_addr = ALIGN(ptr_addr, 0x100); 2113 chip->bank_base_capture = ptr; 2114 chip->bank_base_capture_addr = ptr_addr; 2115 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2116 for (bank = 0; bank < 2; bank++) { 2117 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2118 ptr += chip->bank_size_capture; 2119 ptr_addr += chip->bank_size_capture; 2120 } 2121 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2122 ptr_addr = ALIGN(ptr_addr, 0x100); 2123 chip->bank_base_effect = ptr; 2124 chip->bank_base_effect_addr = ptr_addr; 2125 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2126 for (bank = 0; bank < 2; bank++) { 2127 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2128 ptr += chip->bank_size_effect; 2129 ptr_addr += chip->bank_size_effect; 2130 } 2131 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2132 ptr_addr = ALIGN(ptr_addr, 0x100); 2133 chip->work_base = ptr; 2134 chip->work_base_addr = ptr_addr; 2135 2136 snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, ); 2137 2138 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2139 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2140 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2141 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2142 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2143 2144 /* S/PDIF output initialization */ 2145 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2146 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2147 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2148 2149 /* S/PDIF input initialization */ 2150 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2151 2152 /* digital mixer setup */ 2153 for (reg = 0x80; reg < 0xc0; reg += 4) 2154 snd_ymfpci_writel(chip, reg, 0); 2155 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2156 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2157 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2158 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2159 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2160 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2161 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2162 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2163 2164 return 0; 2165 } 2166 2167 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2168 { 2169 u16 ctrl; 2170 2171 snd_assert(chip != NULL, return -EINVAL); 2172 2173 if (chip->res_reg_area) { /* don't touch busy hardware */ 2174 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2175 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2176 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2177 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2178 snd_ymfpci_disable_dsp(chip); 2179 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2180 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2181 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2182 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2183 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2184 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2185 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2186 } 2187 2188 snd_ymfpci_ac3_done(chip); 2189 2190 /* Set PCI device to D3 state */ 2191 #if 0 2192 /* FIXME: temporarily disabled, otherwise we cannot fire up 2193 * the chip again unless reboot. ACPI bug? 2194 */ 2195 pci_set_power_state(chip->pci, 3); 2196 #endif 2197 2198 #ifdef CONFIG_PM 2199 vfree(chip->saved_regs); 2200 #endif 2201 if (chip->irq >= 0) 2202 free_irq(chip->irq, chip); 2203 release_and_free_resource(chip->mpu_res); 2204 release_and_free_resource(chip->fm_res); 2205 snd_ymfpci_free_gameport(chip); 2206 if (chip->reg_area_virt) 2207 iounmap(chip->reg_area_virt); 2208 if (chip->work_ptr.area) 2209 snd_dma_free_pages(&chip->work_ptr); 2210 2211 release_and_free_resource(chip->res_reg_area); 2212 2213 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2214 2215 pci_disable_device(chip->pci); 2216 release_firmware(chip->dsp_microcode); 2217 release_firmware(chip->controller_microcode); 2218 kfree(chip); 2219 return 0; 2220 } 2221 2222 static int snd_ymfpci_dev_free(struct snd_device *device) 2223 { 2224 struct snd_ymfpci *chip = device->device_data; 2225 return snd_ymfpci_free(chip); 2226 } 2227 2228 #ifdef CONFIG_PM 2229 static int saved_regs_index[] = { 2230 /* spdif */ 2231 YDSXGR_SPDIFOUTCTRL, 2232 YDSXGR_SPDIFOUTSTATUS, 2233 YDSXGR_SPDIFINCTRL, 2234 /* volumes */ 2235 YDSXGR_PRIADCLOOPVOL, 2236 YDSXGR_NATIVEDACINVOL, 2237 YDSXGR_NATIVEDACOUTVOL, 2238 YDSXGR_BUF441OUTVOL, 2239 YDSXGR_NATIVEADCINVOL, 2240 YDSXGR_SPDIFLOOPVOL, 2241 YDSXGR_SPDIFOUTVOL, 2242 YDSXGR_ZVOUTVOL, 2243 YDSXGR_LEGACYOUTVOL, 2244 /* address bases */ 2245 YDSXGR_PLAYCTRLBASE, 2246 YDSXGR_RECCTRLBASE, 2247 YDSXGR_EFFCTRLBASE, 2248 YDSXGR_WORKBASE, 2249 /* capture set up */ 2250 YDSXGR_MAPOFREC, 2251 YDSXGR_RECFORMAT, 2252 YDSXGR_RECSLOTSR, 2253 YDSXGR_ADCFORMAT, 2254 YDSXGR_ADCSLOTSR, 2255 }; 2256 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2257 2258 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state) 2259 { 2260 struct snd_card *card = pci_get_drvdata(pci); 2261 struct snd_ymfpci *chip = card->private_data; 2262 unsigned int i; 2263 2264 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2265 snd_pcm_suspend_all(chip->pcm); 2266 snd_pcm_suspend_all(chip->pcm2); 2267 snd_pcm_suspend_all(chip->pcm_spdif); 2268 snd_pcm_suspend_all(chip->pcm_4ch); 2269 snd_ac97_suspend(chip->ac97); 2270 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2271 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2272 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2273 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2274 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2275 snd_ymfpci_disable_dsp(chip); 2276 pci_disable_device(pci); 2277 pci_save_state(pci); 2278 pci_set_power_state(pci, pci_choose_state(pci, state)); 2279 return 0; 2280 } 2281 2282 int snd_ymfpci_resume(struct pci_dev *pci) 2283 { 2284 struct snd_card *card = pci_get_drvdata(pci); 2285 struct snd_ymfpci *chip = card->private_data; 2286 unsigned int i; 2287 2288 pci_set_power_state(pci, PCI_D0); 2289 pci_restore_state(pci); 2290 if (pci_enable_device(pci) < 0) { 2291 printk(KERN_ERR "ymfpci: pci_enable_device failed, " 2292 "disabling device\n"); 2293 snd_card_disconnect(card); 2294 return -EIO; 2295 } 2296 pci_set_master(pci); 2297 snd_ymfpci_aclink_reset(pci); 2298 snd_ymfpci_codec_ready(chip, 0); 2299 snd_ymfpci_download_image(chip); 2300 udelay(100); 2301 2302 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2303 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2304 2305 snd_ac97_resume(chip->ac97); 2306 2307 /* start hw again */ 2308 if (chip->start_count > 0) { 2309 spin_lock_irq(&chip->reg_lock); 2310 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2311 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2312 spin_unlock_irq(&chip->reg_lock); 2313 } 2314 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2315 return 0; 2316 } 2317 #endif /* CONFIG_PM */ 2318 2319 int __devinit snd_ymfpci_create(struct snd_card *card, 2320 struct pci_dev * pci, 2321 unsigned short old_legacy_ctrl, 2322 struct snd_ymfpci ** rchip) 2323 { 2324 struct snd_ymfpci *chip; 2325 int err; 2326 static struct snd_device_ops ops = { 2327 .dev_free = snd_ymfpci_dev_free, 2328 }; 2329 2330 *rchip = NULL; 2331 2332 /* enable PCI device */ 2333 if ((err = pci_enable_device(pci)) < 0) 2334 return err; 2335 2336 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2337 if (chip == NULL) { 2338 pci_disable_device(pci); 2339 return -ENOMEM; 2340 } 2341 chip->old_legacy_ctrl = old_legacy_ctrl; 2342 spin_lock_init(&chip->reg_lock); 2343 spin_lock_init(&chip->voice_lock); 2344 init_waitqueue_head(&chip->interrupt_sleep); 2345 atomic_set(&chip->interrupt_sleep_count, 0); 2346 chip->card = card; 2347 chip->pci = pci; 2348 chip->irq = -1; 2349 chip->device_id = pci->device; 2350 chip->rev = pci->revision; 2351 chip->reg_area_phys = pci_resource_start(pci, 0); 2352 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2353 pci_set_master(pci); 2354 chip->src441_used = -1; 2355 2356 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2357 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2358 snd_ymfpci_free(chip); 2359 return -EBUSY; 2360 } 2361 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2362 "YMFPCI", chip)) { 2363 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2364 snd_ymfpci_free(chip); 2365 return -EBUSY; 2366 } 2367 chip->irq = pci->irq; 2368 2369 snd_ymfpci_aclink_reset(pci); 2370 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2371 snd_ymfpci_free(chip); 2372 return -EIO; 2373 } 2374 2375 err = snd_ymfpci_request_firmware(chip); 2376 if (err < 0) { 2377 snd_printk(KERN_ERR "firmware request failed: %d\n", err); 2378 snd_ymfpci_free(chip); 2379 return err; 2380 } 2381 snd_ymfpci_download_image(chip); 2382 2383 udelay(100); /* seems we need a delay after downloading image.. */ 2384 2385 if (snd_ymfpci_memalloc(chip) < 0) { 2386 snd_ymfpci_free(chip); 2387 return -EIO; 2388 } 2389 2390 if ((err = snd_ymfpci_ac3_init(chip)) < 0) { 2391 snd_ymfpci_free(chip); 2392 return err; 2393 } 2394 2395 #ifdef CONFIG_PM 2396 chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32)); 2397 if (chip->saved_regs == NULL) { 2398 snd_ymfpci_free(chip); 2399 return -ENOMEM; 2400 } 2401 #endif 2402 2403 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 2404 snd_ymfpci_free(chip); 2405 return err; 2406 } 2407 2408 snd_ymfpci_proc_init(card, chip); 2409 2410 snd_card_set_dev(card, &pci->dev); 2411 2412 *rchip = chip; 2413 return 0; 2414 } 2415