xref: /openbmc/linux/sound/pci/ymfpci/ymfpci_main.c (revision 4a075bd4)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/mutex.h>
29 #include <linux/module.h>
30 #include <linux/io.h>
31 
32 #include <sound/core.h>
33 #include <sound/control.h>
34 #include <sound/info.h>
35 #include <sound/tlv.h>
36 #include "ymfpci.h"
37 #include <sound/asoundef.h>
38 #include <sound/mpu401.h>
39 
40 #include <asm/byteorder.h>
41 
42 /*
43  *  common I/O routines
44  */
45 
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47 
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50 	return readb(chip->reg_area_virt + offset);
51 }
52 
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55 	writeb(val, chip->reg_area_virt + offset);
56 }
57 
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60 	return readw(chip->reg_area_virt + offset);
61 }
62 
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65 	writew(val, chip->reg_area_virt + offset);
66 }
67 
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70 	return readl(chip->reg_area_virt + offset);
71 }
72 
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75 	writel(val, chip->reg_area_virt + offset);
76 }
77 
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80 	unsigned long end_time;
81 	u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82 
83 	end_time = jiffies + msecs_to_jiffies(750);
84 	do {
85 		if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86 			return 0;
87 		schedule_timeout_uninterruptible(1);
88 	} while (time_before(jiffies, end_time));
89 	dev_err(chip->card->dev,
90 		"codec_ready: codec %i is not ready [0x%x]\n",
91 		secondary, snd_ymfpci_readw(chip, reg));
92 	return -EBUSY;
93 }
94 
95 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
96 {
97 	struct snd_ymfpci *chip = ac97->private_data;
98 	u32 cmd;
99 
100 	snd_ymfpci_codec_ready(chip, 0);
101 	cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
102 	snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
103 }
104 
105 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
106 {
107 	struct snd_ymfpci *chip = ac97->private_data;
108 
109 	if (snd_ymfpci_codec_ready(chip, 0))
110 		return ~0;
111 	snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
112 	if (snd_ymfpci_codec_ready(chip, 0))
113 		return ~0;
114 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
115 		int i;
116 		for (i = 0; i < 600; i++)
117 			snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
118 	}
119 	return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
120 }
121 
122 /*
123  *  Misc routines
124  */
125 
126 static u32 snd_ymfpci_calc_delta(u32 rate)
127 {
128 	switch (rate) {
129 	case 8000:	return 0x02aaab00;
130 	case 11025:	return 0x03accd00;
131 	case 16000:	return 0x05555500;
132 	case 22050:	return 0x07599a00;
133 	case 32000:	return 0x0aaaab00;
134 	case 44100:	return 0x0eb33300;
135 	default:	return ((rate << 16) / 375) << 5;
136 	}
137 }
138 
139 static u32 def_rate[8] = {
140 	100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
141 };
142 
143 static u32 snd_ymfpci_calc_lpfK(u32 rate)
144 {
145 	u32 i;
146 	static u32 val[8] = {
147 		0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
148 		0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
149 	};
150 
151 	if (rate == 44100)
152 		return 0x40000000;	/* FIXME: What's the right value? */
153 	for (i = 0; i < 8; i++)
154 		if (rate <= def_rate[i])
155 			return val[i];
156 	return val[0];
157 }
158 
159 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
160 {
161 	u32 i;
162 	static u32 val[8] = {
163 		0x35280000, 0x34A70000, 0x32020000, 0x31770000,
164 		0x31390000, 0x31C90000, 0x33D00000, 0x40000000
165 	};
166 
167 	if (rate == 44100)
168 		return 0x370A0000;
169 	for (i = 0; i < 8; i++)
170 		if (rate <= def_rate[i])
171 			return val[i];
172 	return val[0];
173 }
174 
175 /*
176  *  Hardware start management
177  */
178 
179 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
180 {
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&chip->reg_lock, flags);
184 	if (chip->start_count++ > 0)
185 		goto __end;
186 	snd_ymfpci_writel(chip, YDSXGR_MODE,
187 			  snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
188 	chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
189       __end:
190       	spin_unlock_irqrestore(&chip->reg_lock, flags);
191 }
192 
193 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
194 {
195 	unsigned long flags;
196 	long timeout = 1000;
197 
198 	spin_lock_irqsave(&chip->reg_lock, flags);
199 	if (--chip->start_count > 0)
200 		goto __end;
201 	snd_ymfpci_writel(chip, YDSXGR_MODE,
202 			  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
203 	while (timeout-- > 0) {
204 		if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
205 			break;
206 	}
207 	if (atomic_read(&chip->interrupt_sleep_count)) {
208 		atomic_set(&chip->interrupt_sleep_count, 0);
209 		wake_up(&chip->interrupt_sleep);
210 	}
211       __end:
212       	spin_unlock_irqrestore(&chip->reg_lock, flags);
213 }
214 
215 /*
216  *  Playback voice management
217  */
218 
219 static int voice_alloc(struct snd_ymfpci *chip,
220 		       enum snd_ymfpci_voice_type type, int pair,
221 		       struct snd_ymfpci_voice **rvoice)
222 {
223 	struct snd_ymfpci_voice *voice, *voice2;
224 	int idx;
225 
226 	*rvoice = NULL;
227 	for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
228 		voice = &chip->voices[idx];
229 		voice2 = pair ? &chip->voices[idx+1] : NULL;
230 		if (voice->use || (voice2 && voice2->use))
231 			continue;
232 		voice->use = 1;
233 		if (voice2)
234 			voice2->use = 1;
235 		switch (type) {
236 		case YMFPCI_PCM:
237 			voice->pcm = 1;
238 			if (voice2)
239 				voice2->pcm = 1;
240 			break;
241 		case YMFPCI_SYNTH:
242 			voice->synth = 1;
243 			break;
244 		case YMFPCI_MIDI:
245 			voice->midi = 1;
246 			break;
247 		}
248 		snd_ymfpci_hw_start(chip);
249 		if (voice2)
250 			snd_ymfpci_hw_start(chip);
251 		*rvoice = voice;
252 		return 0;
253 	}
254 	return -ENOMEM;
255 }
256 
257 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
258 				  enum snd_ymfpci_voice_type type, int pair,
259 				  struct snd_ymfpci_voice **rvoice)
260 {
261 	unsigned long flags;
262 	int result;
263 
264 	if (snd_BUG_ON(!rvoice))
265 		return -EINVAL;
266 	if (snd_BUG_ON(pair && type != YMFPCI_PCM))
267 		return -EINVAL;
268 
269 	spin_lock_irqsave(&chip->voice_lock, flags);
270 	for (;;) {
271 		result = voice_alloc(chip, type, pair, rvoice);
272 		if (result == 0 || type != YMFPCI_PCM)
273 			break;
274 		/* TODO: synth/midi voice deallocation */
275 		break;
276 	}
277 	spin_unlock_irqrestore(&chip->voice_lock, flags);
278 	return result;
279 }
280 
281 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
282 {
283 	unsigned long flags;
284 
285 	if (snd_BUG_ON(!pvoice))
286 		return -EINVAL;
287 	snd_ymfpci_hw_stop(chip);
288 	spin_lock_irqsave(&chip->voice_lock, flags);
289 	if (pvoice->number == chip->src441_used) {
290 		chip->src441_used = -1;
291 		pvoice->ypcm->use_441_slot = 0;
292 	}
293 	pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
294 	pvoice->ypcm = NULL;
295 	pvoice->interrupt = NULL;
296 	spin_unlock_irqrestore(&chip->voice_lock, flags);
297 	return 0;
298 }
299 
300 /*
301  *  PCM part
302  */
303 
304 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
305 {
306 	struct snd_ymfpci_pcm *ypcm;
307 	u32 pos, delta;
308 
309 	if ((ypcm = voice->ypcm) == NULL)
310 		return;
311 	if (ypcm->substream == NULL)
312 		return;
313 	spin_lock(&chip->reg_lock);
314 	if (ypcm->running) {
315 		pos = le32_to_cpu(voice->bank[chip->active_bank].start);
316 		if (pos < ypcm->last_pos)
317 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
318 		else
319 			delta = pos - ypcm->last_pos;
320 		ypcm->period_pos += delta;
321 		ypcm->last_pos = pos;
322 		if (ypcm->period_pos >= ypcm->period_size) {
323 			/*
324 			dev_dbg(chip->card->dev,
325 			       "done - active_bank = 0x%x, start = 0x%x\n",
326 			       chip->active_bank,
327 			       voice->bank[chip->active_bank].start);
328 			*/
329 			ypcm->period_pos %= ypcm->period_size;
330 			spin_unlock(&chip->reg_lock);
331 			snd_pcm_period_elapsed(ypcm->substream);
332 			spin_lock(&chip->reg_lock);
333 		}
334 
335 		if (unlikely(ypcm->update_pcm_vol)) {
336 			unsigned int subs = ypcm->substream->number;
337 			unsigned int next_bank = 1 - chip->active_bank;
338 			struct snd_ymfpci_playback_bank *bank;
339 			__le32 volume;
340 
341 			bank = &voice->bank[next_bank];
342 			volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
343 			bank->left_gain_end = volume;
344 			if (ypcm->output_rear)
345 				bank->eff2_gain_end = volume;
346 			if (ypcm->voices[1])
347 				bank = &ypcm->voices[1]->bank[next_bank];
348 			volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
349 			bank->right_gain_end = volume;
350 			if (ypcm->output_rear)
351 				bank->eff3_gain_end = volume;
352 			ypcm->update_pcm_vol--;
353 		}
354 	}
355 	spin_unlock(&chip->reg_lock);
356 }
357 
358 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
359 {
360 	struct snd_pcm_runtime *runtime = substream->runtime;
361 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
362 	struct snd_ymfpci *chip = ypcm->chip;
363 	u32 pos, delta;
364 
365 	spin_lock(&chip->reg_lock);
366 	if (ypcm->running) {
367 		pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
368 		if (pos < ypcm->last_pos)
369 			delta = pos + (ypcm->buffer_size - ypcm->last_pos);
370 		else
371 			delta = pos - ypcm->last_pos;
372 		ypcm->period_pos += delta;
373 		ypcm->last_pos = pos;
374 		if (ypcm->period_pos >= ypcm->period_size) {
375 			ypcm->period_pos %= ypcm->period_size;
376 			/*
377 			dev_dbg(chip->card->dev,
378 			       "done - active_bank = 0x%x, start = 0x%x\n",
379 			       chip->active_bank,
380 			       voice->bank[chip->active_bank].start);
381 			*/
382 			spin_unlock(&chip->reg_lock);
383 			snd_pcm_period_elapsed(substream);
384 			spin_lock(&chip->reg_lock);
385 		}
386 	}
387 	spin_unlock(&chip->reg_lock);
388 }
389 
390 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
391 				       int cmd)
392 {
393 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
394 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
395 	struct snd_kcontrol *kctl = NULL;
396 	int result = 0;
397 
398 	spin_lock(&chip->reg_lock);
399 	if (ypcm->voices[0] == NULL) {
400 		result = -EINVAL;
401 		goto __unlock;
402 	}
403 	switch (cmd) {
404 	case SNDRV_PCM_TRIGGER_START:
405 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
406 	case SNDRV_PCM_TRIGGER_RESUME:
407 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
408 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
409 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
410 		ypcm->running = 1;
411 		break;
412 	case SNDRV_PCM_TRIGGER_STOP:
413 		if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
414 			kctl = chip->pcm_mixer[substream->number].ctl;
415 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
416 		}
417 		/* fall through */
418 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
419 	case SNDRV_PCM_TRIGGER_SUSPEND:
420 		chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
421 		if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
422 			chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
423 		ypcm->running = 0;
424 		break;
425 	default:
426 		result = -EINVAL;
427 		break;
428 	}
429       __unlock:
430 	spin_unlock(&chip->reg_lock);
431 	if (kctl)
432 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
433 	return result;
434 }
435 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
436 				      int cmd)
437 {
438 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
439 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
440 	int result = 0;
441 	u32 tmp;
442 
443 	spin_lock(&chip->reg_lock);
444 	switch (cmd) {
445 	case SNDRV_PCM_TRIGGER_START:
446 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
447 	case SNDRV_PCM_TRIGGER_RESUME:
448 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
449 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
450 		ypcm->running = 1;
451 		break;
452 	case SNDRV_PCM_TRIGGER_STOP:
453 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
454 	case SNDRV_PCM_TRIGGER_SUSPEND:
455 		tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
456 		snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
457 		ypcm->running = 0;
458 		break;
459 	default:
460 		result = -EINVAL;
461 		break;
462 	}
463 	spin_unlock(&chip->reg_lock);
464 	return result;
465 }
466 
467 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
468 {
469 	int err;
470 
471 	if (ypcm->voices[1] != NULL && voices < 2) {
472 		snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
473 		ypcm->voices[1] = NULL;
474 	}
475 	if (voices == 1 && ypcm->voices[0] != NULL)
476 		return 0;		/* already allocated */
477 	if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
478 		return 0;		/* already allocated */
479 	if (voices > 1) {
480 		if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
481 			snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
482 			ypcm->voices[0] = NULL;
483 		}
484 	}
485 	err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
486 	if (err < 0)
487 		return err;
488 	ypcm->voices[0]->ypcm = ypcm;
489 	ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
490 	if (voices > 1) {
491 		ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
492 		ypcm->voices[1]->ypcm = ypcm;
493 	}
494 	return 0;
495 }
496 
497 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
498 				      struct snd_pcm_runtime *runtime,
499 				      int has_pcm_volume)
500 {
501 	struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
502 	u32 format;
503 	u32 delta = snd_ymfpci_calc_delta(runtime->rate);
504 	u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
505 	u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
506 	struct snd_ymfpci_playback_bank *bank;
507 	unsigned int nbank;
508 	__le32 vol_left, vol_right;
509 	u8 use_left, use_right;
510 	unsigned long flags;
511 
512 	if (snd_BUG_ON(!voice))
513 		return;
514 	if (runtime->channels == 1) {
515 		use_left = 1;
516 		use_right = 1;
517 	} else {
518 		use_left = (voiceidx & 1) == 0;
519 		use_right = !use_left;
520 	}
521 	if (has_pcm_volume) {
522 		vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
523 				       [ypcm->substream->number].left << 15);
524 		vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
525 					[ypcm->substream->number].right << 15);
526 	} else {
527 		vol_left = cpu_to_le32(0x40000000);
528 		vol_right = cpu_to_le32(0x40000000);
529 	}
530 	spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
531 	format = runtime->channels == 2 ? 0x00010000 : 0;
532 	if (snd_pcm_format_width(runtime->format) == 8)
533 		format |= 0x80000000;
534 	else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
535 		 runtime->rate == 44100 && runtime->channels == 2 &&
536 		 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
537 				   ypcm->chip->src441_used == voice->number)) {
538 		ypcm->chip->src441_used = voice->number;
539 		ypcm->use_441_slot = 1;
540 		format |= 0x10000000;
541 	}
542 	if (ypcm->chip->src441_used == voice->number &&
543 	    (format & 0x10000000) == 0) {
544 		ypcm->chip->src441_used = -1;
545 		ypcm->use_441_slot = 0;
546 	}
547 	if (runtime->channels == 2 && (voiceidx & 1) != 0)
548 		format |= 1;
549 	spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
550 	for (nbank = 0; nbank < 2; nbank++) {
551 		bank = &voice->bank[nbank];
552 		memset(bank, 0, sizeof(*bank));
553 		bank->format = cpu_to_le32(format);
554 		bank->base = cpu_to_le32(runtime->dma_addr);
555 		bank->loop_end = cpu_to_le32(ypcm->buffer_size);
556 		bank->lpfQ = cpu_to_le32(lpfQ);
557 		bank->delta =
558 		bank->delta_end = cpu_to_le32(delta);
559 		bank->lpfK =
560 		bank->lpfK_end = cpu_to_le32(lpfK);
561 		bank->eg_gain =
562 		bank->eg_gain_end = cpu_to_le32(0x40000000);
563 
564 		if (ypcm->output_front) {
565 			if (use_left) {
566 				bank->left_gain =
567 				bank->left_gain_end = vol_left;
568 			}
569 			if (use_right) {
570 				bank->right_gain =
571 				bank->right_gain_end = vol_right;
572 			}
573 		}
574 		if (ypcm->output_rear) {
575 		        if (!ypcm->swap_rear) {
576         			if (use_left) {
577         				bank->eff2_gain =
578         				bank->eff2_gain_end = vol_left;
579         			}
580         			if (use_right) {
581         				bank->eff3_gain =
582         				bank->eff3_gain_end = vol_right;
583         			}
584 		        } else {
585         			/* The SPDIF out channels seem to be swapped, so we have
586         			 * to swap them here, too.  The rear analog out channels
587         			 * will be wrong, but otherwise AC3 would not work.
588         			 */
589         			if (use_left) {
590         				bank->eff3_gain =
591         				bank->eff3_gain_end = vol_left;
592         			}
593         			if (use_right) {
594         				bank->eff2_gain =
595         				bank->eff2_gain_end = vol_right;
596         			}
597         		}
598                 }
599 	}
600 }
601 
602 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
603 {
604 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
605 				4096, &chip->ac3_tmp_base) < 0)
606 		return -ENOMEM;
607 
608 	chip->bank_effect[3][0]->base =
609 	chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
610 	chip->bank_effect[3][0]->loop_end =
611 	chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
612 	chip->bank_effect[4][0]->base =
613 	chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
614 	chip->bank_effect[4][0]->loop_end =
615 	chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
616 
617 	spin_lock_irq(&chip->reg_lock);
618 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
619 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
620 	spin_unlock_irq(&chip->reg_lock);
621 	return 0;
622 }
623 
624 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
625 {
626 	spin_lock_irq(&chip->reg_lock);
627 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
628 			  snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
629 	spin_unlock_irq(&chip->reg_lock);
630 	// snd_ymfpci_irq_wait(chip);
631 	if (chip->ac3_tmp_base.area) {
632 		snd_dma_free_pages(&chip->ac3_tmp_base);
633 		chip->ac3_tmp_base.area = NULL;
634 	}
635 	return 0;
636 }
637 
638 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
639 					 struct snd_pcm_hw_params *hw_params)
640 {
641 	struct snd_pcm_runtime *runtime = substream->runtime;
642 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
643 	int err;
644 
645 	if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
646 		return err;
647 	if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
648 		return err;
649 	return 0;
650 }
651 
652 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
653 {
654 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
655 	struct snd_pcm_runtime *runtime = substream->runtime;
656 	struct snd_ymfpci_pcm *ypcm;
657 
658 	if (runtime->private_data == NULL)
659 		return 0;
660 	ypcm = runtime->private_data;
661 
662 	/* wait, until the PCI operations are not finished */
663 	snd_ymfpci_irq_wait(chip);
664 	snd_pcm_lib_free_pages(substream);
665 	if (ypcm->voices[1]) {
666 		snd_ymfpci_voice_free(chip, ypcm->voices[1]);
667 		ypcm->voices[1] = NULL;
668 	}
669 	if (ypcm->voices[0]) {
670 		snd_ymfpci_voice_free(chip, ypcm->voices[0]);
671 		ypcm->voices[0] = NULL;
672 	}
673 	return 0;
674 }
675 
676 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
677 {
678 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
679 	struct snd_pcm_runtime *runtime = substream->runtime;
680 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
681 	struct snd_kcontrol *kctl;
682 	unsigned int nvoice;
683 
684 	ypcm->period_size = runtime->period_size;
685 	ypcm->buffer_size = runtime->buffer_size;
686 	ypcm->period_pos = 0;
687 	ypcm->last_pos = 0;
688 	for (nvoice = 0; nvoice < runtime->channels; nvoice++)
689 		snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
690 					  substream->pcm == chip->pcm);
691 
692 	if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
693 		kctl = chip->pcm_mixer[substream->number].ctl;
694 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
695 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
696 	}
697 	return 0;
698 }
699 
700 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
701 					struct snd_pcm_hw_params *hw_params)
702 {
703 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
704 }
705 
706 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
707 {
708 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
709 
710 	/* wait, until the PCI operations are not finished */
711 	snd_ymfpci_irq_wait(chip);
712 	return snd_pcm_lib_free_pages(substream);
713 }
714 
715 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
716 {
717 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
718 	struct snd_pcm_runtime *runtime = substream->runtime;
719 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
720 	struct snd_ymfpci_capture_bank * bank;
721 	int nbank;
722 	u32 rate, format;
723 
724 	ypcm->period_size = runtime->period_size;
725 	ypcm->buffer_size = runtime->buffer_size;
726 	ypcm->period_pos = 0;
727 	ypcm->last_pos = 0;
728 	ypcm->shift = 0;
729 	rate = ((48000 * 4096) / runtime->rate) - 1;
730 	format = 0;
731 	if (runtime->channels == 2) {
732 		format |= 2;
733 		ypcm->shift++;
734 	}
735 	if (snd_pcm_format_width(runtime->format) == 8)
736 		format |= 1;
737 	else
738 		ypcm->shift++;
739 	switch (ypcm->capture_bank_number) {
740 	case 0:
741 		snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
742 		snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
743 		break;
744 	case 1:
745 		snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
746 		snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
747 		break;
748 	}
749 	for (nbank = 0; nbank < 2; nbank++) {
750 		bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
751 		bank->base = cpu_to_le32(runtime->dma_addr);
752 		bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
753 		bank->start = 0;
754 		bank->num_of_loops = 0;
755 	}
756 	return 0;
757 }
758 
759 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
760 {
761 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
762 	struct snd_pcm_runtime *runtime = substream->runtime;
763 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
764 	struct snd_ymfpci_voice *voice = ypcm->voices[0];
765 
766 	if (!(ypcm->running && voice))
767 		return 0;
768 	return le32_to_cpu(voice->bank[chip->active_bank].start);
769 }
770 
771 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
772 {
773 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
774 	struct snd_pcm_runtime *runtime = substream->runtime;
775 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
776 
777 	if (!ypcm->running)
778 		return 0;
779 	return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
780 }
781 
782 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
783 {
784 	wait_queue_entry_t wait;
785 	int loops = 4;
786 
787 	while (loops-- > 0) {
788 		if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
789 		 	continue;
790 		init_waitqueue_entry(&wait, current);
791 		add_wait_queue(&chip->interrupt_sleep, &wait);
792 		atomic_inc(&chip->interrupt_sleep_count);
793 		schedule_timeout_uninterruptible(msecs_to_jiffies(50));
794 		remove_wait_queue(&chip->interrupt_sleep, &wait);
795 	}
796 }
797 
798 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
799 {
800 	struct snd_ymfpci *chip = dev_id;
801 	u32 status, nvoice, mode;
802 	struct snd_ymfpci_voice *voice;
803 
804 	status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
805 	if (status & 0x80000000) {
806 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
807 		spin_lock(&chip->voice_lock);
808 		for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
809 			voice = &chip->voices[nvoice];
810 			if (voice->interrupt)
811 				voice->interrupt(chip, voice);
812 		}
813 		for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
814 			if (chip->capture_substream[nvoice])
815 				snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
816 		}
817 #if 0
818 		for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
819 			if (chip->effect_substream[nvoice])
820 				snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
821 		}
822 #endif
823 		spin_unlock(&chip->voice_lock);
824 		spin_lock(&chip->reg_lock);
825 		snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
826 		mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
827 		snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
828 		spin_unlock(&chip->reg_lock);
829 
830 		if (atomic_read(&chip->interrupt_sleep_count)) {
831 			atomic_set(&chip->interrupt_sleep_count, 0);
832 			wake_up(&chip->interrupt_sleep);
833 		}
834 	}
835 
836 	status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
837 	if (status & 1) {
838 		if (chip->timer)
839 			snd_timer_interrupt(chip->timer, chip->timer_ticks);
840 	}
841 	snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
842 
843 	if (chip->rawmidi)
844 		snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
845 	return IRQ_HANDLED;
846 }
847 
848 static const struct snd_pcm_hardware snd_ymfpci_playback =
849 {
850 	.info =			(SNDRV_PCM_INFO_MMAP |
851 				 SNDRV_PCM_INFO_MMAP_VALID |
852 				 SNDRV_PCM_INFO_INTERLEAVED |
853 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
854 				 SNDRV_PCM_INFO_PAUSE |
855 				 SNDRV_PCM_INFO_RESUME),
856 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
857 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
858 	.rate_min =		8000,
859 	.rate_max =		48000,
860 	.channels_min =		1,
861 	.channels_max =		2,
862 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
863 	.period_bytes_min =	64,
864 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
865 	.periods_min =		3,
866 	.periods_max =		1024,
867 	.fifo_size =		0,
868 };
869 
870 static const struct snd_pcm_hardware snd_ymfpci_capture =
871 {
872 	.info =			(SNDRV_PCM_INFO_MMAP |
873 				 SNDRV_PCM_INFO_MMAP_VALID |
874 				 SNDRV_PCM_INFO_INTERLEAVED |
875 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
876 				 SNDRV_PCM_INFO_PAUSE |
877 				 SNDRV_PCM_INFO_RESUME),
878 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
879 	.rates =		SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
880 	.rate_min =		8000,
881 	.rate_max =		48000,
882 	.channels_min =		1,
883 	.channels_max =		2,
884 	.buffer_bytes_max =	256 * 1024, /* FIXME: enough? */
885 	.period_bytes_min =	64,
886 	.period_bytes_max =	256 * 1024, /* FIXME: enough? */
887 	.periods_min =		3,
888 	.periods_max =		1024,
889 	.fifo_size =		0,
890 };
891 
892 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
893 {
894 	kfree(runtime->private_data);
895 }
896 
897 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
898 {
899 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
900 	struct snd_pcm_runtime *runtime = substream->runtime;
901 	struct snd_ymfpci_pcm *ypcm;
902 	int err;
903 
904 	runtime->hw = snd_ymfpci_playback;
905 	/* FIXME? True value is 256/48 = 5.33333 ms */
906 	err = snd_pcm_hw_constraint_minmax(runtime,
907 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
908 					   5334, UINT_MAX);
909 	if (err < 0)
910 		return err;
911 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
912 	if (err < 0)
913 		return err;
914 
915 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
916 	if (ypcm == NULL)
917 		return -ENOMEM;
918 	ypcm->chip = chip;
919 	ypcm->type = PLAYBACK_VOICE;
920 	ypcm->substream = substream;
921 	runtime->private_data = ypcm;
922 	runtime->private_free = snd_ymfpci_pcm_free_substream;
923 	return 0;
924 }
925 
926 /* call with spinlock held */
927 static void ymfpci_open_extension(struct snd_ymfpci *chip)
928 {
929 	if (! chip->rear_opened) {
930 		if (! chip->spdif_opened) /* set AC3 */
931 			snd_ymfpci_writel(chip, YDSXGR_MODE,
932 					  snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
933 		/* enable second codec (4CHEN) */
934 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
935 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
936 	}
937 }
938 
939 /* call with spinlock held */
940 static void ymfpci_close_extension(struct snd_ymfpci *chip)
941 {
942 	if (! chip->rear_opened) {
943 		if (! chip->spdif_opened)
944 			snd_ymfpci_writel(chip, YDSXGR_MODE,
945 					  snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
946 		snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
947 				  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
948 	}
949 }
950 
951 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
952 {
953 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
954 	struct snd_pcm_runtime *runtime = substream->runtime;
955 	struct snd_ymfpci_pcm *ypcm;
956 	int err;
957 
958 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
959 		return err;
960 	ypcm = runtime->private_data;
961 	ypcm->output_front = 1;
962 	ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
963 	ypcm->swap_rear = 0;
964 	spin_lock_irq(&chip->reg_lock);
965 	if (ypcm->output_rear) {
966 		ymfpci_open_extension(chip);
967 		chip->rear_opened++;
968 	}
969 	spin_unlock_irq(&chip->reg_lock);
970 	return 0;
971 }
972 
973 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
974 {
975 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
976 	struct snd_pcm_runtime *runtime = substream->runtime;
977 	struct snd_ymfpci_pcm *ypcm;
978 	int err;
979 
980 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
981 		return err;
982 	ypcm = runtime->private_data;
983 	ypcm->output_front = 0;
984 	ypcm->output_rear = 1;
985 	ypcm->swap_rear = 1;
986 	spin_lock_irq(&chip->reg_lock);
987 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
988 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
989 	ymfpci_open_extension(chip);
990 	chip->spdif_pcm_bits = chip->spdif_bits;
991 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
992 	chip->spdif_opened++;
993 	spin_unlock_irq(&chip->reg_lock);
994 
995 	chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
996 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
997 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
998 	return 0;
999 }
1000 
1001 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
1002 {
1003 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1004 	struct snd_pcm_runtime *runtime = substream->runtime;
1005 	struct snd_ymfpci_pcm *ypcm;
1006 	int err;
1007 
1008 	if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
1009 		return err;
1010 	ypcm = runtime->private_data;
1011 	ypcm->output_front = 0;
1012 	ypcm->output_rear = 1;
1013 	ypcm->swap_rear = 0;
1014 	spin_lock_irq(&chip->reg_lock);
1015 	ymfpci_open_extension(chip);
1016 	chip->rear_opened++;
1017 	spin_unlock_irq(&chip->reg_lock);
1018 	return 0;
1019 }
1020 
1021 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1022 				   u32 capture_bank_number)
1023 {
1024 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1025 	struct snd_pcm_runtime *runtime = substream->runtime;
1026 	struct snd_ymfpci_pcm *ypcm;
1027 	int err;
1028 
1029 	runtime->hw = snd_ymfpci_capture;
1030 	/* FIXME? True value is 256/48 = 5.33333 ms */
1031 	err = snd_pcm_hw_constraint_minmax(runtime,
1032 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1033 					   5334, UINT_MAX);
1034 	if (err < 0)
1035 		return err;
1036 	err = snd_pcm_hw_rule_noresample(runtime, 48000);
1037 	if (err < 0)
1038 		return err;
1039 
1040 	ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1041 	if (ypcm == NULL)
1042 		return -ENOMEM;
1043 	ypcm->chip = chip;
1044 	ypcm->type = capture_bank_number + CAPTURE_REC;
1045 	ypcm->substream = substream;
1046 	ypcm->capture_bank_number = capture_bank_number;
1047 	chip->capture_substream[capture_bank_number] = substream;
1048 	runtime->private_data = ypcm;
1049 	runtime->private_free = snd_ymfpci_pcm_free_substream;
1050 	snd_ymfpci_hw_start(chip);
1051 	return 0;
1052 }
1053 
1054 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1055 {
1056 	return snd_ymfpci_capture_open(substream, 0);
1057 }
1058 
1059 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1060 {
1061 	return snd_ymfpci_capture_open(substream, 1);
1062 }
1063 
1064 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1065 {
1066 	return 0;
1067 }
1068 
1069 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1070 {
1071 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1072 	struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1073 
1074 	spin_lock_irq(&chip->reg_lock);
1075 	if (ypcm->output_rear && chip->rear_opened > 0) {
1076 		chip->rear_opened--;
1077 		ymfpci_close_extension(chip);
1078 	}
1079 	spin_unlock_irq(&chip->reg_lock);
1080 	return snd_ymfpci_playback_close_1(substream);
1081 }
1082 
1083 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1084 {
1085 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1086 
1087 	spin_lock_irq(&chip->reg_lock);
1088 	chip->spdif_opened = 0;
1089 	ymfpci_close_extension(chip);
1090 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1091 			  snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1092 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1093 	spin_unlock_irq(&chip->reg_lock);
1094 	chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1095 	snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1096 		       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1097 	return snd_ymfpci_playback_close_1(substream);
1098 }
1099 
1100 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1101 {
1102 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1103 
1104 	spin_lock_irq(&chip->reg_lock);
1105 	if (chip->rear_opened > 0) {
1106 		chip->rear_opened--;
1107 		ymfpci_close_extension(chip);
1108 	}
1109 	spin_unlock_irq(&chip->reg_lock);
1110 	return snd_ymfpci_playback_close_1(substream);
1111 }
1112 
1113 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1114 {
1115 	struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1116 	struct snd_pcm_runtime *runtime = substream->runtime;
1117 	struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1118 
1119 	if (ypcm != NULL) {
1120 		chip->capture_substream[ypcm->capture_bank_number] = NULL;
1121 		snd_ymfpci_hw_stop(chip);
1122 	}
1123 	return 0;
1124 }
1125 
1126 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1127 	.open =			snd_ymfpci_playback_open,
1128 	.close =		snd_ymfpci_playback_close,
1129 	.ioctl =		snd_pcm_lib_ioctl,
1130 	.hw_params =		snd_ymfpci_playback_hw_params,
1131 	.hw_free =		snd_ymfpci_playback_hw_free,
1132 	.prepare =		snd_ymfpci_playback_prepare,
1133 	.trigger =		snd_ymfpci_playback_trigger,
1134 	.pointer =		snd_ymfpci_playback_pointer,
1135 };
1136 
1137 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1138 	.open =			snd_ymfpci_capture_rec_open,
1139 	.close =		snd_ymfpci_capture_close,
1140 	.ioctl =		snd_pcm_lib_ioctl,
1141 	.hw_params =		snd_ymfpci_capture_hw_params,
1142 	.hw_free =		snd_ymfpci_capture_hw_free,
1143 	.prepare =		snd_ymfpci_capture_prepare,
1144 	.trigger =		snd_ymfpci_capture_trigger,
1145 	.pointer =		snd_ymfpci_capture_pointer,
1146 };
1147 
1148 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1149 {
1150 	struct snd_pcm *pcm;
1151 	int err;
1152 
1153 	if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1154 		return err;
1155 	pcm->private_data = chip;
1156 
1157 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1158 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1159 
1160 	/* global setup */
1161 	pcm->info_flags = 0;
1162 	strcpy(pcm->name, "YMFPCI");
1163 	chip->pcm = pcm;
1164 
1165 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1166 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1167 
1168 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1169 				     snd_pcm_std_chmaps, 2, 0, NULL);
1170 }
1171 
1172 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1173 	.open =			snd_ymfpci_capture_ac97_open,
1174 	.close =		snd_ymfpci_capture_close,
1175 	.ioctl =		snd_pcm_lib_ioctl,
1176 	.hw_params =		snd_ymfpci_capture_hw_params,
1177 	.hw_free =		snd_ymfpci_capture_hw_free,
1178 	.prepare =		snd_ymfpci_capture_prepare,
1179 	.trigger =		snd_ymfpci_capture_trigger,
1180 	.pointer =		snd_ymfpci_capture_pointer,
1181 };
1182 
1183 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1184 {
1185 	struct snd_pcm *pcm;
1186 	int err;
1187 
1188 	if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1189 		return err;
1190 	pcm->private_data = chip;
1191 
1192 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1193 
1194 	/* global setup */
1195 	pcm->info_flags = 0;
1196 	sprintf(pcm->name, "YMFPCI - %s",
1197 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1198 	chip->pcm2 = pcm;
1199 
1200 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1201 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1202 
1203 	return 0;
1204 }
1205 
1206 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1207 	.open =			snd_ymfpci_playback_spdif_open,
1208 	.close =		snd_ymfpci_playback_spdif_close,
1209 	.ioctl =		snd_pcm_lib_ioctl,
1210 	.hw_params =		snd_ymfpci_playback_hw_params,
1211 	.hw_free =		snd_ymfpci_playback_hw_free,
1212 	.prepare =		snd_ymfpci_playback_prepare,
1213 	.trigger =		snd_ymfpci_playback_trigger,
1214 	.pointer =		snd_ymfpci_playback_pointer,
1215 };
1216 
1217 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1218 {
1219 	struct snd_pcm *pcm;
1220 	int err;
1221 
1222 	if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1223 		return err;
1224 	pcm->private_data = chip;
1225 
1226 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1227 
1228 	/* global setup */
1229 	pcm->info_flags = 0;
1230 	strcpy(pcm->name, "YMFPCI - IEC958");
1231 	chip->pcm_spdif = pcm;
1232 
1233 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1234 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1235 
1236 	return 0;
1237 }
1238 
1239 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1240 	.open =			snd_ymfpci_playback_4ch_open,
1241 	.close =		snd_ymfpci_playback_4ch_close,
1242 	.ioctl =		snd_pcm_lib_ioctl,
1243 	.hw_params =		snd_ymfpci_playback_hw_params,
1244 	.hw_free =		snd_ymfpci_playback_hw_free,
1245 	.prepare =		snd_ymfpci_playback_prepare,
1246 	.trigger =		snd_ymfpci_playback_trigger,
1247 	.pointer =		snd_ymfpci_playback_pointer,
1248 };
1249 
1250 static const struct snd_pcm_chmap_elem surround_map[] = {
1251 	{ .channels = 1,
1252 	  .map = { SNDRV_CHMAP_MONO } },
1253 	{ .channels = 2,
1254 	  .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1255 	{ }
1256 };
1257 
1258 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1259 {
1260 	struct snd_pcm *pcm;
1261 	int err;
1262 
1263 	if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1264 		return err;
1265 	pcm->private_data = chip;
1266 
1267 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1268 
1269 	/* global setup */
1270 	pcm->info_flags = 0;
1271 	strcpy(pcm->name, "YMFPCI - Rear PCM");
1272 	chip->pcm_4ch = pcm;
1273 
1274 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1275 					      snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1276 
1277 	return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1278 				     surround_map, 2, 0, NULL);
1279 }
1280 
1281 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1282 {
1283 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1284 	uinfo->count = 1;
1285 	return 0;
1286 }
1287 
1288 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1289 					struct snd_ctl_elem_value *ucontrol)
1290 {
1291 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1292 
1293 	spin_lock_irq(&chip->reg_lock);
1294 	ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1295 	ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1296 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1297 	spin_unlock_irq(&chip->reg_lock);
1298 	return 0;
1299 }
1300 
1301 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1302 					 struct snd_ctl_elem_value *ucontrol)
1303 {
1304 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1305 	unsigned int val;
1306 	int change;
1307 
1308 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1309 	      (ucontrol->value.iec958.status[1] << 8);
1310 	spin_lock_irq(&chip->reg_lock);
1311 	change = chip->spdif_bits != val;
1312 	chip->spdif_bits = val;
1313 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1314 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1315 	spin_unlock_irq(&chip->reg_lock);
1316 	return change;
1317 }
1318 
1319 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1320 {
1321 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1322 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1323 	.info =		snd_ymfpci_spdif_default_info,
1324 	.get =		snd_ymfpci_spdif_default_get,
1325 	.put =		snd_ymfpci_spdif_default_put
1326 };
1327 
1328 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1329 {
1330 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1331 	uinfo->count = 1;
1332 	return 0;
1333 }
1334 
1335 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1336 				      struct snd_ctl_elem_value *ucontrol)
1337 {
1338 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1339 
1340 	spin_lock_irq(&chip->reg_lock);
1341 	ucontrol->value.iec958.status[0] = 0x3e;
1342 	ucontrol->value.iec958.status[1] = 0xff;
1343 	spin_unlock_irq(&chip->reg_lock);
1344 	return 0;
1345 }
1346 
1347 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1348 {
1349 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1350 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1351 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1352 	.info =		snd_ymfpci_spdif_mask_info,
1353 	.get =		snd_ymfpci_spdif_mask_get,
1354 };
1355 
1356 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1357 {
1358 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1359 	uinfo->count = 1;
1360 	return 0;
1361 }
1362 
1363 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1364 					struct snd_ctl_elem_value *ucontrol)
1365 {
1366 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1367 
1368 	spin_lock_irq(&chip->reg_lock);
1369 	ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1370 	ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1371 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1372 	spin_unlock_irq(&chip->reg_lock);
1373 	return 0;
1374 }
1375 
1376 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1377 					struct snd_ctl_elem_value *ucontrol)
1378 {
1379 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1380 	unsigned int val;
1381 	int change;
1382 
1383 	val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1384 	      (ucontrol->value.iec958.status[1] << 8);
1385 	spin_lock_irq(&chip->reg_lock);
1386 	change = chip->spdif_pcm_bits != val;
1387 	chip->spdif_pcm_bits = val;
1388 	if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1389 		snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1390 	spin_unlock_irq(&chip->reg_lock);
1391 	return change;
1392 }
1393 
1394 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1395 {
1396 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1397 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1398 	.name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1399 	.info =		snd_ymfpci_spdif_stream_info,
1400 	.get =		snd_ymfpci_spdif_stream_get,
1401 	.put =		snd_ymfpci_spdif_stream_put
1402 };
1403 
1404 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1405 {
1406 	static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1407 
1408 	return snd_ctl_enum_info(info, 1, 3, texts);
1409 }
1410 
1411 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1412 {
1413 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1414 	u16 reg;
1415 
1416 	spin_lock_irq(&chip->reg_lock);
1417 	reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1418 	spin_unlock_irq(&chip->reg_lock);
1419 	if (!(reg & 0x100))
1420 		value->value.enumerated.item[0] = 0;
1421 	else
1422 		value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1423 	return 0;
1424 }
1425 
1426 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1427 {
1428 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1429 	u16 reg, old_reg;
1430 
1431 	spin_lock_irq(&chip->reg_lock);
1432 	old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1433 	if (value->value.enumerated.item[0] == 0)
1434 		reg = old_reg & ~0x100;
1435 	else
1436 		reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1437 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1438 	spin_unlock_irq(&chip->reg_lock);
1439 	return reg != old_reg;
1440 }
1441 
1442 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1443 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE,
1444 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1445 	.name =		"Direct Recording Source",
1446 	.info =		snd_ymfpci_drec_source_info,
1447 	.get =		snd_ymfpci_drec_source_get,
1448 	.put =		snd_ymfpci_drec_source_put
1449 };
1450 
1451 /*
1452  *  Mixer controls
1453  */
1454 
1455 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1456 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1457   .info = snd_ymfpci_info_single, \
1458   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1459   .private_value = ((reg) | ((shift) << 16)) }
1460 
1461 #define snd_ymfpci_info_single		snd_ctl_boolean_mono_info
1462 
1463 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1464 				 struct snd_ctl_elem_value *ucontrol)
1465 {
1466 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1467 	int reg = kcontrol->private_value & 0xffff;
1468 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1469 	unsigned int mask = 1;
1470 
1471 	switch (reg) {
1472 	case YDSXGR_SPDIFOUTCTRL: break;
1473 	case YDSXGR_SPDIFINCTRL: break;
1474 	default: return -EINVAL;
1475 	}
1476 	ucontrol->value.integer.value[0] =
1477 		(snd_ymfpci_readl(chip, reg) >> shift) & mask;
1478 	return 0;
1479 }
1480 
1481 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1482 				 struct snd_ctl_elem_value *ucontrol)
1483 {
1484 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1485 	int reg = kcontrol->private_value & 0xffff;
1486 	unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1487  	unsigned int mask = 1;
1488 	int change;
1489 	unsigned int val, oval;
1490 
1491 	switch (reg) {
1492 	case YDSXGR_SPDIFOUTCTRL: break;
1493 	case YDSXGR_SPDIFINCTRL: break;
1494 	default: return -EINVAL;
1495 	}
1496 	val = (ucontrol->value.integer.value[0] & mask);
1497 	val <<= shift;
1498 	spin_lock_irq(&chip->reg_lock);
1499 	oval = snd_ymfpci_readl(chip, reg);
1500 	val = (oval & ~(mask << shift)) | val;
1501 	change = val != oval;
1502 	snd_ymfpci_writel(chip, reg, val);
1503 	spin_unlock_irq(&chip->reg_lock);
1504 	return change;
1505 }
1506 
1507 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1508 
1509 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1510 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1511   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1512   .info = snd_ymfpci_info_double, \
1513   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1514   .private_value = reg, \
1515   .tlv = { .p = db_scale_native } }
1516 
1517 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1518 {
1519 	unsigned int reg = kcontrol->private_value;
1520 
1521 	if (reg < 0x80 || reg >= 0xc0)
1522 		return -EINVAL;
1523 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1524 	uinfo->count = 2;
1525 	uinfo->value.integer.min = 0;
1526 	uinfo->value.integer.max = 16383;
1527 	return 0;
1528 }
1529 
1530 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1531 {
1532 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1533 	unsigned int reg = kcontrol->private_value;
1534 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1535 	unsigned int val;
1536 
1537 	if (reg < 0x80 || reg >= 0xc0)
1538 		return -EINVAL;
1539 	spin_lock_irq(&chip->reg_lock);
1540 	val = snd_ymfpci_readl(chip, reg);
1541 	spin_unlock_irq(&chip->reg_lock);
1542 	ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1543 	ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1544 	return 0;
1545 }
1546 
1547 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1548 {
1549 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1550 	unsigned int reg = kcontrol->private_value;
1551 	unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1552 	int change;
1553 	unsigned int val1, val2, oval;
1554 
1555 	if (reg < 0x80 || reg >= 0xc0)
1556 		return -EINVAL;
1557 	val1 = ucontrol->value.integer.value[0] & mask;
1558 	val2 = ucontrol->value.integer.value[1] & mask;
1559 	val1 <<= shift_left;
1560 	val2 <<= shift_right;
1561 	spin_lock_irq(&chip->reg_lock);
1562 	oval = snd_ymfpci_readl(chip, reg);
1563 	val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1564 	change = val1 != oval;
1565 	snd_ymfpci_writel(chip, reg, val1);
1566 	spin_unlock_irq(&chip->reg_lock);
1567 	return change;
1568 }
1569 
1570 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1571 				       struct snd_ctl_elem_value *ucontrol)
1572 {
1573 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1574 	unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1575 	unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1576 	int change;
1577 	unsigned int value, oval;
1578 
1579 	value = ucontrol->value.integer.value[0] & 0x3fff;
1580 	value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1581 	spin_lock_irq(&chip->reg_lock);
1582 	oval = snd_ymfpci_readl(chip, reg);
1583 	change = value != oval;
1584 	snd_ymfpci_writel(chip, reg, value);
1585 	snd_ymfpci_writel(chip, reg2, value);
1586 	spin_unlock_irq(&chip->reg_lock);
1587 	return change;
1588 }
1589 
1590 /*
1591  * 4ch duplication
1592  */
1593 #define snd_ymfpci_info_dup4ch		snd_ctl_boolean_mono_info
1594 
1595 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1596 {
1597 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1598 	ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1599 	return 0;
1600 }
1601 
1602 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1603 {
1604 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1605 	int change;
1606 	change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1607 	if (change)
1608 		chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1609 	return change;
1610 }
1611 
1612 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1613 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1614 	.name = "4ch Duplication",
1615 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1616 	.info = snd_ymfpci_info_dup4ch,
1617 	.get = snd_ymfpci_get_dup4ch,
1618 	.put = snd_ymfpci_put_dup4ch,
1619 };
1620 
1621 static struct snd_kcontrol_new snd_ymfpci_controls[] = {
1622 {
1623 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1624 	.name = "Wave Playback Volume",
1625 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1626 		  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1627 	.info = snd_ymfpci_info_double,
1628 	.get = snd_ymfpci_get_double,
1629 	.put = snd_ymfpci_put_nativedacvol,
1630 	.private_value = YDSXGR_NATIVEDACOUTVOL,
1631 	.tlv = { .p = db_scale_native },
1632 },
1633 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1634 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1635 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1636 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1637 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1638 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1639 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1640 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1641 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1642 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1643 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1644 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1645 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1646 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1647 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1648 };
1649 
1650 
1651 /*
1652  * GPIO
1653  */
1654 
1655 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1656 {
1657 	u16 reg, mode;
1658 	unsigned long flags;
1659 
1660 	spin_lock_irqsave(&chip->reg_lock, flags);
1661 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1662 	reg &= ~(1 << (pin + 8));
1663 	reg |= (1 << pin);
1664 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1665 	/* set the level mode for input line */
1666 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1667 	mode &= ~(3 << (pin * 2));
1668 	snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1669 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1670 	mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1671 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1672 	return (mode >> pin) & 1;
1673 }
1674 
1675 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1676 {
1677 	u16 reg;
1678 	unsigned long flags;
1679 
1680 	spin_lock_irqsave(&chip->reg_lock, flags);
1681 	reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1682 	reg &= ~(1 << pin);
1683 	reg &= ~(1 << (pin + 8));
1684 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1685 	snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1686 	snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1687 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1688 
1689 	return 0;
1690 }
1691 
1692 #define snd_ymfpci_gpio_sw_info		snd_ctl_boolean_mono_info
1693 
1694 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1695 {
1696 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1697 	int pin = (int)kcontrol->private_value;
1698 	ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1699 	return 0;
1700 }
1701 
1702 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1703 {
1704 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1705 	int pin = (int)kcontrol->private_value;
1706 
1707 	if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1708 		snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1709 		ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1710 		return 1;
1711 	}
1712 	return 0;
1713 }
1714 
1715 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1716 	.name = "Shared Rear/Line-In Switch",
1717 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1718 	.info = snd_ymfpci_gpio_sw_info,
1719 	.get = snd_ymfpci_gpio_sw_get,
1720 	.put = snd_ymfpci_gpio_sw_put,
1721 	.private_value = 2,
1722 };
1723 
1724 /*
1725  * PCM voice volume
1726  */
1727 
1728 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1729 				   struct snd_ctl_elem_info *uinfo)
1730 {
1731 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1732 	uinfo->count = 2;
1733 	uinfo->value.integer.min = 0;
1734 	uinfo->value.integer.max = 0x8000;
1735 	return 0;
1736 }
1737 
1738 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1739 				  struct snd_ctl_elem_value *ucontrol)
1740 {
1741 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1742 	unsigned int subs = kcontrol->id.subdevice;
1743 
1744 	ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1745 	ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1746 	return 0;
1747 }
1748 
1749 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1750 				  struct snd_ctl_elem_value *ucontrol)
1751 {
1752 	struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1753 	unsigned int subs = kcontrol->id.subdevice;
1754 	struct snd_pcm_substream *substream;
1755 	unsigned long flags;
1756 
1757 	if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1758 	    ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1759 		chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1760 		chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1761 		if (chip->pcm_mixer[subs].left > 0x8000)
1762 			chip->pcm_mixer[subs].left = 0x8000;
1763 		if (chip->pcm_mixer[subs].right > 0x8000)
1764 			chip->pcm_mixer[subs].right = 0x8000;
1765 
1766 		substream = (struct snd_pcm_substream *)kcontrol->private_value;
1767 		spin_lock_irqsave(&chip->voice_lock, flags);
1768 		if (substream->runtime && substream->runtime->private_data) {
1769 			struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1770 			if (!ypcm->use_441_slot)
1771 				ypcm->update_pcm_vol = 2;
1772 		}
1773 		spin_unlock_irqrestore(&chip->voice_lock, flags);
1774 		return 1;
1775 	}
1776 	return 0;
1777 }
1778 
1779 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1780 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1781 	.name = "PCM Playback Volume",
1782 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1783 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1784 	.info = snd_ymfpci_pcm_vol_info,
1785 	.get = snd_ymfpci_pcm_vol_get,
1786 	.put = snd_ymfpci_pcm_vol_put,
1787 };
1788 
1789 
1790 /*
1791  *  Mixer routines
1792  */
1793 
1794 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1795 {
1796 	struct snd_ymfpci *chip = bus->private_data;
1797 	chip->ac97_bus = NULL;
1798 }
1799 
1800 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1801 {
1802 	struct snd_ymfpci *chip = ac97->private_data;
1803 	chip->ac97 = NULL;
1804 }
1805 
1806 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1807 {
1808 	struct snd_ac97_template ac97;
1809 	struct snd_kcontrol *kctl;
1810 	struct snd_pcm_substream *substream;
1811 	unsigned int idx;
1812 	int err;
1813 	static struct snd_ac97_bus_ops ops = {
1814 		.write = snd_ymfpci_codec_write,
1815 		.read = snd_ymfpci_codec_read,
1816 	};
1817 
1818 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1819 		return err;
1820 	chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1821 	chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1822 
1823 	memset(&ac97, 0, sizeof(ac97));
1824 	ac97.private_data = chip;
1825 	ac97.private_free = snd_ymfpci_mixer_free_ac97;
1826 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1827 		return err;
1828 
1829 	/* to be sure */
1830 	snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1831 			     AC97_EA_VRA|AC97_EA_VRM, 0);
1832 
1833 	for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1834 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1835 			return err;
1836 	}
1837 	if (chip->ac97->ext_id & AC97_EI_SDAC) {
1838 		kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1839 		err = snd_ctl_add(chip->card, kctl);
1840 		if (err < 0)
1841 			return err;
1842 	}
1843 
1844 	/* add S/PDIF control */
1845 	if (snd_BUG_ON(!chip->pcm_spdif))
1846 		return -ENXIO;
1847 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1848 		return err;
1849 	kctl->id.device = chip->pcm_spdif->device;
1850 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1851 		return err;
1852 	kctl->id.device = chip->pcm_spdif->device;
1853 	if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1854 		return err;
1855 	kctl->id.device = chip->pcm_spdif->device;
1856 	chip->spdif_pcm_ctl = kctl;
1857 
1858 	/* direct recording source */
1859 	if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1860 	    (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1861 		return err;
1862 
1863 	/*
1864 	 * shared rear/line-in
1865 	 */
1866 	if (rear_switch) {
1867 		if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1868 			return err;
1869 	}
1870 
1871 	/* per-voice volume */
1872 	substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1873 	for (idx = 0; idx < 32; ++idx) {
1874 		kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1875 		if (!kctl)
1876 			return -ENOMEM;
1877 		kctl->id.device = chip->pcm->device;
1878 		kctl->id.subdevice = idx;
1879 		kctl->private_value = (unsigned long)substream;
1880 		if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1881 			return err;
1882 		chip->pcm_mixer[idx].left = 0x8000;
1883 		chip->pcm_mixer[idx].right = 0x8000;
1884 		chip->pcm_mixer[idx].ctl = kctl;
1885 		substream = substream->next;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 
1892 /*
1893  * timer
1894  */
1895 
1896 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1897 {
1898 	struct snd_ymfpci *chip;
1899 	unsigned long flags;
1900 	unsigned int count;
1901 
1902 	chip = snd_timer_chip(timer);
1903 	spin_lock_irqsave(&chip->reg_lock, flags);
1904 	if (timer->sticks > 1) {
1905 		chip->timer_ticks = timer->sticks;
1906 		count = timer->sticks - 1;
1907 	} else {
1908 		/*
1909 		 * Divisor 1 is not allowed; fake it by using divisor 2 and
1910 		 * counting two ticks for each interrupt.
1911 		 */
1912 		chip->timer_ticks = 2;
1913 		count = 2 - 1;
1914 	}
1915 	snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1916 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1917 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1918 	return 0;
1919 }
1920 
1921 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1922 {
1923 	struct snd_ymfpci *chip;
1924 	unsigned long flags;
1925 
1926 	chip = snd_timer_chip(timer);
1927 	spin_lock_irqsave(&chip->reg_lock, flags);
1928 	snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1929 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1930 	return 0;
1931 }
1932 
1933 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1934 					       unsigned long *num, unsigned long *den)
1935 {
1936 	*num = 1;
1937 	*den = 96000;
1938 	return 0;
1939 }
1940 
1941 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1942 	.flags = SNDRV_TIMER_HW_AUTO,
1943 	.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1944 	.ticks = 0x10000,
1945 	.start = snd_ymfpci_timer_start,
1946 	.stop = snd_ymfpci_timer_stop,
1947 	.precise_resolution = snd_ymfpci_timer_precise_resolution,
1948 };
1949 
1950 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1951 {
1952 	struct snd_timer *timer = NULL;
1953 	struct snd_timer_id tid;
1954 	int err;
1955 
1956 	tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1957 	tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1958 	tid.card = chip->card->number;
1959 	tid.device = device;
1960 	tid.subdevice = 0;
1961 	if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1962 		strcpy(timer->name, "YMFPCI timer");
1963 		timer->private_data = chip;
1964 		timer->hw = snd_ymfpci_timer_hw;
1965 	}
1966 	chip->timer = timer;
1967 	return err;
1968 }
1969 
1970 
1971 /*
1972  *  proc interface
1973  */
1974 
1975 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1976 				 struct snd_info_buffer *buffer)
1977 {
1978 	struct snd_ymfpci *chip = entry->private_data;
1979 	int i;
1980 
1981 	snd_iprintf(buffer, "YMFPCI\n\n");
1982 	for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1983 		snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1984 }
1985 
1986 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1987 {
1988 	return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1989 }
1990 
1991 /*
1992  *  initialization routines
1993  */
1994 
1995 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1996 {
1997 	u8 cmd;
1998 
1999 	pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
2000 #if 0 // force to reset
2001 	if (cmd & 0x03) {
2002 #endif
2003 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2004 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
2005 		pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2006 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2007 		pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2008 #if 0
2009 	}
2010 #endif
2011 }
2012 
2013 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2014 {
2015 	snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2016 }
2017 
2018 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2019 {
2020 	u32 val;
2021 	int timeout = 1000;
2022 
2023 	val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2024 	if (val)
2025 		snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2026 	while (timeout-- > 0) {
2027 		val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2028 		if ((val & 0x00000002) == 0)
2029 			break;
2030 	}
2031 }
2032 
2033 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2034 {
2035 	int err, is_1e;
2036 	const char *name;
2037 
2038 	err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2039 			       &chip->pci->dev);
2040 	if (err >= 0) {
2041 		if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2042 			dev_err(chip->card->dev,
2043 				"DSP microcode has wrong size\n");
2044 			err = -EINVAL;
2045 		}
2046 	}
2047 	if (err < 0)
2048 		return err;
2049 	is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2050 		chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2051 		chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2052 		chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2053 	name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2054 	err = request_firmware(&chip->controller_microcode, name,
2055 			       &chip->pci->dev);
2056 	if (err >= 0) {
2057 		if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2058 			dev_err(chip->card->dev,
2059 				"controller microcode has wrong size\n");
2060 			err = -EINVAL;
2061 		}
2062 	}
2063 	if (err < 0)
2064 		return err;
2065 	return 0;
2066 }
2067 
2068 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2069 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2070 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2071 
2072 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2073 {
2074 	int i;
2075 	u16 ctrl;
2076 	const __le32 *inst;
2077 
2078 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2079 	snd_ymfpci_disable_dsp(chip);
2080 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2081 	snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2082 	snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2083 	snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2084 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2085 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2086 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2087 	ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2088 	snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2089 
2090 	/* setup DSP instruction code */
2091 	inst = (const __le32 *)chip->dsp_microcode->data;
2092 	for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2093 		snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2094 				  le32_to_cpu(inst[i]));
2095 
2096 	/* setup control instruction code */
2097 	inst = (const __le32 *)chip->controller_microcode->data;
2098 	for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2099 		snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2100 				  le32_to_cpu(inst[i]));
2101 
2102 	snd_ymfpci_enable_dsp(chip);
2103 }
2104 
2105 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2106 {
2107 	long size, playback_ctrl_size;
2108 	int voice, bank, reg;
2109 	u8 *ptr;
2110 	dma_addr_t ptr_addr;
2111 
2112 	playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2113 	chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2114 	chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2115 	chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2116 	chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2117 
2118 	size = ALIGN(playback_ctrl_size, 0x100) +
2119 	       ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2120 	       ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2121 	       ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2122 	       chip->work_size;
2123 	/* work_ptr must be aligned to 256 bytes, but it's already
2124 	   covered with the kernel page allocation mechanism */
2125 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2126 				size, &chip->work_ptr) < 0)
2127 		return -ENOMEM;
2128 	ptr = chip->work_ptr.area;
2129 	ptr_addr = chip->work_ptr.addr;
2130 	memset(ptr, 0, size);	/* for sure */
2131 
2132 	chip->bank_base_playback = ptr;
2133 	chip->bank_base_playback_addr = ptr_addr;
2134 	chip->ctrl_playback = (__le32 *)ptr;
2135 	chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2136 	ptr += ALIGN(playback_ctrl_size, 0x100);
2137 	ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2138 	for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2139 		chip->voices[voice].number = voice;
2140 		chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2141 		chip->voices[voice].bank_addr = ptr_addr;
2142 		for (bank = 0; bank < 2; bank++) {
2143 			chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2144 			ptr += chip->bank_size_playback;
2145 			ptr_addr += chip->bank_size_playback;
2146 		}
2147 	}
2148 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2149 	ptr_addr = ALIGN(ptr_addr, 0x100);
2150 	chip->bank_base_capture = ptr;
2151 	chip->bank_base_capture_addr = ptr_addr;
2152 	for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2153 		for (bank = 0; bank < 2; bank++) {
2154 			chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2155 			ptr += chip->bank_size_capture;
2156 			ptr_addr += chip->bank_size_capture;
2157 		}
2158 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2159 	ptr_addr = ALIGN(ptr_addr, 0x100);
2160 	chip->bank_base_effect = ptr;
2161 	chip->bank_base_effect_addr = ptr_addr;
2162 	for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2163 		for (bank = 0; bank < 2; bank++) {
2164 			chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2165 			ptr += chip->bank_size_effect;
2166 			ptr_addr += chip->bank_size_effect;
2167 		}
2168 	ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2169 	ptr_addr = ALIGN(ptr_addr, 0x100);
2170 	chip->work_base = ptr;
2171 	chip->work_base_addr = ptr_addr;
2172 
2173 	snd_BUG_ON(ptr + chip->work_size !=
2174 		   chip->work_ptr.area + chip->work_ptr.bytes);
2175 
2176 	snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2177 	snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2178 	snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2179 	snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2180 	snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2181 
2182 	/* S/PDIF output initialization */
2183 	chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2184 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2185 	snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2186 
2187 	/* S/PDIF input initialization */
2188 	snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2189 
2190 	/* digital mixer setup */
2191 	for (reg = 0x80; reg < 0xc0; reg += 4)
2192 		snd_ymfpci_writel(chip, reg, 0);
2193 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2194 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2195 	snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2196 	snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2197 	snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2198 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2199 	snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2200 	snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2201 
2202 	return 0;
2203 }
2204 
2205 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2206 {
2207 	u16 ctrl;
2208 
2209 	if (snd_BUG_ON(!chip))
2210 		return -EINVAL;
2211 
2212 	if (chip->res_reg_area) {	/* don't touch busy hardware */
2213 		snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2214 		snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2215 		snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2216 		snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2217 		snd_ymfpci_disable_dsp(chip);
2218 		snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2219 		snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2220 		snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2221 		snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2222 		snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2223 		ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2224 		snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2225 	}
2226 
2227 	snd_ymfpci_ac3_done(chip);
2228 
2229 	/* Set PCI device to D3 state */
2230 #if 0
2231 	/* FIXME: temporarily disabled, otherwise we cannot fire up
2232 	 * the chip again unless reboot.  ACPI bug?
2233 	 */
2234 	pci_set_power_state(chip->pci, PCI_D3hot);
2235 #endif
2236 
2237 #ifdef CONFIG_PM_SLEEP
2238 	kfree(chip->saved_regs);
2239 #endif
2240 	if (chip->irq >= 0)
2241 		free_irq(chip->irq, chip);
2242 	release_and_free_resource(chip->mpu_res);
2243 	release_and_free_resource(chip->fm_res);
2244 	snd_ymfpci_free_gameport(chip);
2245 	iounmap(chip->reg_area_virt);
2246 	if (chip->work_ptr.area)
2247 		snd_dma_free_pages(&chip->work_ptr);
2248 
2249 	release_and_free_resource(chip->res_reg_area);
2250 
2251 	pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2252 
2253 	pci_disable_device(chip->pci);
2254 	release_firmware(chip->dsp_microcode);
2255 	release_firmware(chip->controller_microcode);
2256 	kfree(chip);
2257 	return 0;
2258 }
2259 
2260 static int snd_ymfpci_dev_free(struct snd_device *device)
2261 {
2262 	struct snd_ymfpci *chip = device->device_data;
2263 	return snd_ymfpci_free(chip);
2264 }
2265 
2266 #ifdef CONFIG_PM_SLEEP
2267 static int saved_regs_index[] = {
2268 	/* spdif */
2269 	YDSXGR_SPDIFOUTCTRL,
2270 	YDSXGR_SPDIFOUTSTATUS,
2271 	YDSXGR_SPDIFINCTRL,
2272 	/* volumes */
2273 	YDSXGR_PRIADCLOOPVOL,
2274 	YDSXGR_NATIVEDACINVOL,
2275 	YDSXGR_NATIVEDACOUTVOL,
2276 	YDSXGR_BUF441OUTVOL,
2277 	YDSXGR_NATIVEADCINVOL,
2278 	YDSXGR_SPDIFLOOPVOL,
2279 	YDSXGR_SPDIFOUTVOL,
2280 	YDSXGR_ZVOUTVOL,
2281 	YDSXGR_LEGACYOUTVOL,
2282 	/* address bases */
2283 	YDSXGR_PLAYCTRLBASE,
2284 	YDSXGR_RECCTRLBASE,
2285 	YDSXGR_EFFCTRLBASE,
2286 	YDSXGR_WORKBASE,
2287 	/* capture set up */
2288 	YDSXGR_MAPOFREC,
2289 	YDSXGR_RECFORMAT,
2290 	YDSXGR_RECSLOTSR,
2291 	YDSXGR_ADCFORMAT,
2292 	YDSXGR_ADCSLOTSR,
2293 };
2294 #define YDSXGR_NUM_SAVED_REGS	ARRAY_SIZE(saved_regs_index)
2295 
2296 static int snd_ymfpci_suspend(struct device *dev)
2297 {
2298 	struct snd_card *card = dev_get_drvdata(dev);
2299 	struct snd_ymfpci *chip = card->private_data;
2300 	unsigned int i;
2301 
2302 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2303 	snd_ac97_suspend(chip->ac97);
2304 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2305 		chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2306 	chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2307 	pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2308 			     &chip->saved_dsxg_legacy);
2309 	pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2310 			     &chip->saved_dsxg_elegacy);
2311 	snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2312 	snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2313 	snd_ymfpci_disable_dsp(chip);
2314 	return 0;
2315 }
2316 
2317 static int snd_ymfpci_resume(struct device *dev)
2318 {
2319 	struct pci_dev *pci = to_pci_dev(dev);
2320 	struct snd_card *card = dev_get_drvdata(dev);
2321 	struct snd_ymfpci *chip = card->private_data;
2322 	unsigned int i;
2323 
2324 	snd_ymfpci_aclink_reset(pci);
2325 	snd_ymfpci_codec_ready(chip, 0);
2326 	snd_ymfpci_download_image(chip);
2327 	udelay(100);
2328 
2329 	for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2330 		snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2331 
2332 	snd_ac97_resume(chip->ac97);
2333 
2334 	pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2335 			      chip->saved_dsxg_legacy);
2336 	pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2337 			      chip->saved_dsxg_elegacy);
2338 
2339 	/* start hw again */
2340 	if (chip->start_count > 0) {
2341 		spin_lock_irq(&chip->reg_lock);
2342 		snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2343 		chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2344 		spin_unlock_irq(&chip->reg_lock);
2345 	}
2346 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2347 	return 0;
2348 }
2349 
2350 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2351 #endif /* CONFIG_PM_SLEEP */
2352 
2353 int snd_ymfpci_create(struct snd_card *card,
2354 		      struct pci_dev *pci,
2355 		      unsigned short old_legacy_ctrl,
2356 		      struct snd_ymfpci **rchip)
2357 {
2358 	struct snd_ymfpci *chip;
2359 	int err;
2360 	static struct snd_device_ops ops = {
2361 		.dev_free =	snd_ymfpci_dev_free,
2362 	};
2363 
2364 	*rchip = NULL;
2365 
2366 	/* enable PCI device */
2367 	if ((err = pci_enable_device(pci)) < 0)
2368 		return err;
2369 
2370 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2371 	if (chip == NULL) {
2372 		pci_disable_device(pci);
2373 		return -ENOMEM;
2374 	}
2375 	chip->old_legacy_ctrl = old_legacy_ctrl;
2376 	spin_lock_init(&chip->reg_lock);
2377 	spin_lock_init(&chip->voice_lock);
2378 	init_waitqueue_head(&chip->interrupt_sleep);
2379 	atomic_set(&chip->interrupt_sleep_count, 0);
2380 	chip->card = card;
2381 	chip->pci = pci;
2382 	chip->irq = -1;
2383 	chip->device_id = pci->device;
2384 	chip->rev = pci->revision;
2385 	chip->reg_area_phys = pci_resource_start(pci, 0);
2386 	chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2387 	pci_set_master(pci);
2388 	chip->src441_used = -1;
2389 
2390 	if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2391 		dev_err(chip->card->dev,
2392 			"unable to grab memory region 0x%lx-0x%lx\n",
2393 			chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2394 		err = -EBUSY;
2395 		goto free_chip;
2396 	}
2397 	if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2398 			KBUILD_MODNAME, chip)) {
2399 		dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2400 		err = -EBUSY;
2401 		goto free_chip;
2402 	}
2403 	chip->irq = pci->irq;
2404 
2405 	snd_ymfpci_aclink_reset(pci);
2406 	if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2407 		err = -EIO;
2408 		goto free_chip;
2409 	}
2410 
2411 	err = snd_ymfpci_request_firmware(chip);
2412 	if (err < 0) {
2413 		dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2414 		goto free_chip;
2415 	}
2416 	snd_ymfpci_download_image(chip);
2417 
2418 	udelay(100); /* seems we need a delay after downloading image.. */
2419 
2420 	if (snd_ymfpci_memalloc(chip) < 0) {
2421 		err = -EIO;
2422 		goto free_chip;
2423 	}
2424 
2425 	err = snd_ymfpci_ac3_init(chip);
2426 	if (err < 0)
2427 		goto free_chip;
2428 
2429 #ifdef CONFIG_PM_SLEEP
2430 	chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32),
2431 					 GFP_KERNEL);
2432 	if (chip->saved_regs == NULL) {
2433 		err = -ENOMEM;
2434 		goto free_chip;
2435 	}
2436 #endif
2437 
2438 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
2439 	if (err < 0)
2440 		goto free_chip;
2441 
2442 	snd_ymfpci_proc_init(card, chip);
2443 
2444 	*rchip = chip;
2445 	return 0;
2446 
2447 free_chip:
2448 	snd_ymfpci_free(chip);
2449 	return err;
2450 }
2451