1 /* 2 * Driver for SiS7019 Audio Accelerator 3 * 4 * Copyright (C) 2004-2007, David Dillow 5 * Written by David Dillow <dave@thedillows.org> 6 * Inspired by the Trident 4D-WaveDX/NX driver. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, version 2. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/init.h> 25 #include <linux/pci.h> 26 #include <linux/time.h> 27 #include <linux/slab.h> 28 #include <linux/module.h> 29 #include <linux/interrupt.h> 30 #include <linux/delay.h> 31 #include <sound/core.h> 32 #include <sound/ac97_codec.h> 33 #include <sound/initval.h> 34 #include "sis7019.h" 35 36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 37 MODULE_DESCRIPTION("SiS7019"); 38 MODULE_LICENSE("GPL"); 39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); 40 41 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 42 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 43 static bool enable = 1; 44 static int codecs = 1; 45 46 module_param(index, int, 0444); 47 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 48 module_param(id, charp, 0444); 49 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 50 module_param(enable, bool, 0444); 51 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 52 module_param(codecs, int, 0444); 53 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); 54 55 static const struct pci_device_id snd_sis7019_ids[] = { 56 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 57 { 0, } 58 }; 59 60 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 61 62 /* There are three timing modes for the voices. 63 * 64 * For both playback and capture, when the buffer is one or two periods long, 65 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 66 * to let us know when the periods have ended. 67 * 68 * When performing playback with more than two periods per buffer, we set 69 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 70 * reach it. We then update the offset and continue on until we are 71 * interrupted for the next period. 72 * 73 * Capture channels do not have a SSO, so we allocate a playback channel to 74 * use as a timer for the capture periods. We use the SSO on the playback 75 * channel to clock out virtual periods, and adjust the virtual period length 76 * to maintain synchronization. This algorithm came from the Trident driver. 77 * 78 * FIXME: It'd be nice to make use of some of the synth features in the 79 * hardware, but a woeful lack of documentation is a significant roadblock. 80 */ 81 struct voice { 82 u16 flags; 83 #define VOICE_IN_USE 1 84 #define VOICE_CAPTURE 2 85 #define VOICE_SSO_TIMING 4 86 #define VOICE_SYNC_TIMING 8 87 u16 sync_cso; 88 u16 period_size; 89 u16 buffer_size; 90 u16 sync_period_size; 91 u16 sync_buffer_size; 92 u32 sso; 93 u32 vperiod; 94 struct snd_pcm_substream *substream; 95 struct voice *timing; 96 void __iomem *ctrl_base; 97 void __iomem *wave_base; 98 void __iomem *sync_base; 99 int num; 100 }; 101 102 /* We need four pages to store our wave parameters during a suspend. If 103 * we're not doing power management, we still need to allocate a page 104 * for the silence buffer. 105 */ 106 #ifdef CONFIG_PM_SLEEP 107 #define SIS_SUSPEND_PAGES 4 108 #else 109 #define SIS_SUSPEND_PAGES 1 110 #endif 111 112 struct sis7019 { 113 unsigned long ioport; 114 void __iomem *ioaddr; 115 int irq; 116 int codecs_present; 117 118 struct pci_dev *pci; 119 struct snd_pcm *pcm; 120 struct snd_card *card; 121 struct snd_ac97 *ac97[3]; 122 123 /* Protect against more than one thread hitting the AC97 124 * registers (in a more polite manner than pounding the hardware 125 * semaphore) 126 */ 127 struct mutex ac97_mutex; 128 129 /* voice_lock protects allocation/freeing of the voice descriptions 130 */ 131 spinlock_t voice_lock; 132 133 struct voice voices[64]; 134 struct voice capture_voice; 135 136 /* Allocate pages to store the internal wave state during 137 * suspends. When we're operating, this can be used as a silence 138 * buffer for a timing channel. 139 */ 140 void *suspend_state[SIS_SUSPEND_PAGES]; 141 142 int silence_users; 143 dma_addr_t silence_dma_addr; 144 }; 145 146 /* These values are also used by the module param 'codecs' to indicate 147 * which codecs should be present. 148 */ 149 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 150 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 151 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 152 153 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 154 * documented range of 8-0xfff8 samples. Given that they are 0-based, 155 * that places our period/buffer range at 9-0xfff9 samples. That makes the 156 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 157 * max samples / min samples gives us the max periods in a buffer. 158 * 159 * We'll add a constraint upon open that limits the period and buffer sample 160 * size to values that are legal for the hardware. 161 */ 162 static const struct snd_pcm_hardware sis_playback_hw_info = { 163 .info = (SNDRV_PCM_INFO_MMAP | 164 SNDRV_PCM_INFO_MMAP_VALID | 165 SNDRV_PCM_INFO_INTERLEAVED | 166 SNDRV_PCM_INFO_BLOCK_TRANSFER | 167 SNDRV_PCM_INFO_SYNC_START | 168 SNDRV_PCM_INFO_RESUME), 169 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 170 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 171 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 172 .rate_min = 4000, 173 .rate_max = 48000, 174 .channels_min = 1, 175 .channels_max = 2, 176 .buffer_bytes_max = (0xfff9 * 4), 177 .period_bytes_min = 9, 178 .period_bytes_max = (0xfff9 * 4), 179 .periods_min = 1, 180 .periods_max = (0xfff9 / 9), 181 }; 182 183 static const struct snd_pcm_hardware sis_capture_hw_info = { 184 .info = (SNDRV_PCM_INFO_MMAP | 185 SNDRV_PCM_INFO_MMAP_VALID | 186 SNDRV_PCM_INFO_INTERLEAVED | 187 SNDRV_PCM_INFO_BLOCK_TRANSFER | 188 SNDRV_PCM_INFO_SYNC_START | 189 SNDRV_PCM_INFO_RESUME), 190 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 191 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 192 .rates = SNDRV_PCM_RATE_48000, 193 .rate_min = 4000, 194 .rate_max = 48000, 195 .channels_min = 1, 196 .channels_max = 2, 197 .buffer_bytes_max = (0xfff9 * 4), 198 .period_bytes_min = 9, 199 .period_bytes_max = (0xfff9 * 4), 200 .periods_min = 1, 201 .periods_max = (0xfff9 / 9), 202 }; 203 204 static void sis_update_sso(struct voice *voice, u16 period) 205 { 206 void __iomem *base = voice->ctrl_base; 207 208 voice->sso += period; 209 if (voice->sso >= voice->buffer_size) 210 voice->sso -= voice->buffer_size; 211 212 /* Enforce the documented hardware minimum offset */ 213 if (voice->sso < 8) 214 voice->sso = 8; 215 216 /* The SSO is in the upper 16 bits of the register. */ 217 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 218 } 219 220 static void sis_update_voice(struct voice *voice) 221 { 222 if (voice->flags & VOICE_SSO_TIMING) { 223 sis_update_sso(voice, voice->period_size); 224 } else if (voice->flags & VOICE_SYNC_TIMING) { 225 int sync; 226 227 /* If we've not hit the end of the virtual period, update 228 * our records and keep going. 229 */ 230 if (voice->vperiod > voice->period_size) { 231 voice->vperiod -= voice->period_size; 232 if (voice->vperiod < voice->period_size) 233 sis_update_sso(voice, voice->vperiod); 234 else 235 sis_update_sso(voice, voice->period_size); 236 return; 237 } 238 239 /* Calculate our relative offset between the target and 240 * the actual CSO value. Since we're operating in a loop, 241 * if the value is more than half way around, we can 242 * consider ourselves wrapped. 243 */ 244 sync = voice->sync_cso; 245 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 246 if (sync > (voice->sync_buffer_size / 2)) 247 sync -= voice->sync_buffer_size; 248 249 /* If sync is positive, then we interrupted too early, and 250 * we'll need to come back in a few samples and try again. 251 * There's a minimum wait, as it takes some time for the DMA 252 * engine to startup, etc... 253 */ 254 if (sync > 0) { 255 if (sync < 16) 256 sync = 16; 257 sis_update_sso(voice, sync); 258 return; 259 } 260 261 /* Ok, we interrupted right on time, or (hopefully) just 262 * a bit late. We'll adjst our next waiting period based 263 * on how close we got. 264 * 265 * We need to stay just behind the actual channel to ensure 266 * it really is past a period when we get our interrupt -- 267 * otherwise we'll fall into the early code above and have 268 * a minimum wait time, which makes us quite late here, 269 * eating into the user's time to refresh the buffer, esp. 270 * if using small periods. 271 * 272 * If we're less than 9 samples behind, we're on target. 273 * Otherwise, shorten the next vperiod by the amount we've 274 * been delayed. 275 */ 276 if (sync > -9) 277 voice->vperiod = voice->sync_period_size + 1; 278 else 279 voice->vperiod = voice->sync_period_size + sync + 10; 280 281 if (voice->vperiod < voice->buffer_size) { 282 sis_update_sso(voice, voice->vperiod); 283 voice->vperiod = 0; 284 } else 285 sis_update_sso(voice, voice->period_size); 286 287 sync = voice->sync_cso + voice->sync_period_size; 288 if (sync >= voice->sync_buffer_size) 289 sync -= voice->sync_buffer_size; 290 voice->sync_cso = sync; 291 } 292 293 snd_pcm_period_elapsed(voice->substream); 294 } 295 296 static void sis_voice_irq(u32 status, struct voice *voice) 297 { 298 int bit; 299 300 while (status) { 301 bit = __ffs(status); 302 status >>= bit + 1; 303 voice += bit; 304 sis_update_voice(voice); 305 voice++; 306 } 307 } 308 309 static irqreturn_t sis_interrupt(int irq, void *dev) 310 { 311 struct sis7019 *sis = dev; 312 unsigned long io = sis->ioport; 313 struct voice *voice; 314 u32 intr, status; 315 316 /* We only use the DMA interrupts, and we don't enable any other 317 * source of interrupts. But, it is possible to see an interrupt 318 * status that didn't actually interrupt us, so eliminate anything 319 * we're not expecting to avoid falsely claiming an IRQ, and an 320 * ensuing endless loop. 321 */ 322 intr = inl(io + SIS_GISR); 323 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 324 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 325 if (!intr) 326 return IRQ_NONE; 327 328 do { 329 status = inl(io + SIS_PISR_A); 330 if (status) { 331 sis_voice_irq(status, sis->voices); 332 outl(status, io + SIS_PISR_A); 333 } 334 335 status = inl(io + SIS_PISR_B); 336 if (status) { 337 sis_voice_irq(status, &sis->voices[32]); 338 outl(status, io + SIS_PISR_B); 339 } 340 341 status = inl(io + SIS_RISR); 342 if (status) { 343 voice = &sis->capture_voice; 344 if (!voice->timing) 345 snd_pcm_period_elapsed(voice->substream); 346 347 outl(status, io + SIS_RISR); 348 } 349 350 outl(intr, io + SIS_GISR); 351 intr = inl(io + SIS_GISR); 352 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 353 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 354 } while (intr); 355 356 return IRQ_HANDLED; 357 } 358 359 static u32 sis_rate_to_delta(unsigned int rate) 360 { 361 u32 delta; 362 363 /* This was copied from the trident driver, but it seems its gotten 364 * around a bit... nevertheless, it works well. 365 * 366 * We special case 44100 and 8000 since rounding with the equation 367 * does not give us an accurate enough value. For 11025 and 22050 368 * the equation gives us the best answer. All other frequencies will 369 * also use the equation. JDW 370 */ 371 if (rate == 44100) 372 delta = 0xeb3; 373 else if (rate == 8000) 374 delta = 0x2ab; 375 else if (rate == 48000) 376 delta = 0x1000; 377 else 378 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; 379 return delta; 380 } 381 382 static void __sis_map_silence(struct sis7019 *sis) 383 { 384 /* Helper function: must hold sis->voice_lock on entry */ 385 if (!sis->silence_users) 386 sis->silence_dma_addr = dma_map_single(&sis->pci->dev, 387 sis->suspend_state[0], 388 4096, DMA_TO_DEVICE); 389 sis->silence_users++; 390 } 391 392 static void __sis_unmap_silence(struct sis7019 *sis) 393 { 394 /* Helper function: must hold sis->voice_lock on entry */ 395 sis->silence_users--; 396 if (!sis->silence_users) 397 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096, 398 DMA_TO_DEVICE); 399 } 400 401 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 402 { 403 unsigned long flags; 404 405 spin_lock_irqsave(&sis->voice_lock, flags); 406 if (voice->timing) { 407 __sis_unmap_silence(sis); 408 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 409 VOICE_SYNC_TIMING); 410 voice->timing = NULL; 411 } 412 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 413 spin_unlock_irqrestore(&sis->voice_lock, flags); 414 } 415 416 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 417 { 418 /* Must hold the voice_lock on entry */ 419 struct voice *voice; 420 int i; 421 422 for (i = 0; i < 64; i++) { 423 voice = &sis->voices[i]; 424 if (voice->flags & VOICE_IN_USE) 425 continue; 426 voice->flags |= VOICE_IN_USE; 427 goto found_one; 428 } 429 voice = NULL; 430 431 found_one: 432 return voice; 433 } 434 435 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 436 { 437 struct voice *voice; 438 unsigned long flags; 439 440 spin_lock_irqsave(&sis->voice_lock, flags); 441 voice = __sis_alloc_playback_voice(sis); 442 spin_unlock_irqrestore(&sis->voice_lock, flags); 443 444 return voice; 445 } 446 447 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 448 struct snd_pcm_hw_params *hw_params) 449 { 450 struct sis7019 *sis = snd_pcm_substream_chip(substream); 451 struct snd_pcm_runtime *runtime = substream->runtime; 452 struct voice *voice = runtime->private_data; 453 unsigned int period_size, buffer_size; 454 unsigned long flags; 455 int needed; 456 457 /* If there are one or two periods per buffer, we don't need a 458 * timing voice, as we can use the capture channel's interrupts 459 * to clock out the periods. 460 */ 461 period_size = params_period_size(hw_params); 462 buffer_size = params_buffer_size(hw_params); 463 needed = (period_size != buffer_size && 464 period_size != (buffer_size / 2)); 465 466 if (needed && !voice->timing) { 467 spin_lock_irqsave(&sis->voice_lock, flags); 468 voice->timing = __sis_alloc_playback_voice(sis); 469 if (voice->timing) 470 __sis_map_silence(sis); 471 spin_unlock_irqrestore(&sis->voice_lock, flags); 472 if (!voice->timing) 473 return -ENOMEM; 474 voice->timing->substream = substream; 475 } else if (!needed && voice->timing) { 476 sis_free_voice(sis, voice); 477 voice->timing = NULL; 478 } 479 480 return 0; 481 } 482 483 static int sis_playback_open(struct snd_pcm_substream *substream) 484 { 485 struct sis7019 *sis = snd_pcm_substream_chip(substream); 486 struct snd_pcm_runtime *runtime = substream->runtime; 487 struct voice *voice; 488 489 voice = sis_alloc_playback_voice(sis); 490 if (!voice) 491 return -EAGAIN; 492 493 voice->substream = substream; 494 runtime->private_data = voice; 495 runtime->hw = sis_playback_hw_info; 496 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 497 9, 0xfff9); 498 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 499 9, 0xfff9); 500 snd_pcm_set_sync(substream); 501 return 0; 502 } 503 504 static int sis_substream_close(struct snd_pcm_substream *substream) 505 { 506 struct sis7019 *sis = snd_pcm_substream_chip(substream); 507 struct snd_pcm_runtime *runtime = substream->runtime; 508 struct voice *voice = runtime->private_data; 509 510 sis_free_voice(sis, voice); 511 return 0; 512 } 513 514 static int sis_playback_hw_params(struct snd_pcm_substream *substream, 515 struct snd_pcm_hw_params *hw_params) 516 { 517 return snd_pcm_lib_malloc_pages(substream, 518 params_buffer_bytes(hw_params)); 519 } 520 521 static int sis_hw_free(struct snd_pcm_substream *substream) 522 { 523 return snd_pcm_lib_free_pages(substream); 524 } 525 526 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 527 { 528 struct snd_pcm_runtime *runtime = substream->runtime; 529 struct voice *voice = runtime->private_data; 530 void __iomem *ctrl_base = voice->ctrl_base; 531 void __iomem *wave_base = voice->wave_base; 532 u32 format, dma_addr, control, sso_eso, delta, reg; 533 u16 leo; 534 535 /* We rely on the PCM core to ensure that the parameters for this 536 * substream do not change on us while we're programming the HW. 537 */ 538 format = 0; 539 if (snd_pcm_format_width(runtime->format) == 8) 540 format |= SIS_PLAY_DMA_FORMAT_8BIT; 541 if (!snd_pcm_format_signed(runtime->format)) 542 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 543 if (runtime->channels == 1) 544 format |= SIS_PLAY_DMA_FORMAT_MONO; 545 546 /* The baseline setup is for a single period per buffer, and 547 * we add bells and whistles as needed from there. 548 */ 549 dma_addr = runtime->dma_addr; 550 leo = runtime->buffer_size - 1; 551 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 552 sso_eso = leo; 553 554 if (runtime->period_size == (runtime->buffer_size / 2)) { 555 control |= SIS_PLAY_DMA_INTR_AT_MLP; 556 } else if (runtime->period_size != runtime->buffer_size) { 557 voice->flags |= VOICE_SSO_TIMING; 558 voice->sso = runtime->period_size - 1; 559 voice->period_size = runtime->period_size; 560 voice->buffer_size = runtime->buffer_size; 561 562 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 563 control |= SIS_PLAY_DMA_INTR_AT_SSO; 564 sso_eso |= (runtime->period_size - 1) << 16; 565 } 566 567 delta = sis_rate_to_delta(runtime->rate); 568 569 /* Ok, we're ready to go, set up the channel. 570 */ 571 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 572 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 573 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 574 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 575 576 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 577 writel(0, wave_base + reg); 578 579 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 580 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 581 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 582 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 583 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 584 wave_base + SIS_WAVE_CHANNEL_CONTROL); 585 586 /* Force PCI writes to post. */ 587 readl(ctrl_base); 588 589 return 0; 590 } 591 592 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 593 { 594 struct sis7019 *sis = snd_pcm_substream_chip(substream); 595 unsigned long io = sis->ioport; 596 struct snd_pcm_substream *s; 597 struct voice *voice; 598 void *chip; 599 int starting; 600 u32 record = 0; 601 u32 play[2] = { 0, 0 }; 602 603 /* No locks needed, as the PCM core will hold the locks on the 604 * substreams, and the HW will only start/stop the indicated voices 605 * without changing the state of the others. 606 */ 607 switch (cmd) { 608 case SNDRV_PCM_TRIGGER_START: 609 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 610 case SNDRV_PCM_TRIGGER_RESUME: 611 starting = 1; 612 break; 613 case SNDRV_PCM_TRIGGER_STOP: 614 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 615 case SNDRV_PCM_TRIGGER_SUSPEND: 616 starting = 0; 617 break; 618 default: 619 return -EINVAL; 620 } 621 622 snd_pcm_group_for_each_entry(s, substream) { 623 /* Make sure it is for us... */ 624 chip = snd_pcm_substream_chip(s); 625 if (chip != sis) 626 continue; 627 628 voice = s->runtime->private_data; 629 if (voice->flags & VOICE_CAPTURE) { 630 record |= 1 << voice->num; 631 voice = voice->timing; 632 } 633 634 /* voice could be NULL if this a recording stream, and it 635 * doesn't have an external timing channel. 636 */ 637 if (voice) 638 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 639 640 snd_pcm_trigger_done(s, substream); 641 } 642 643 if (starting) { 644 if (record) 645 outl(record, io + SIS_RECORD_START_REG); 646 if (play[0]) 647 outl(play[0], io + SIS_PLAY_START_A_REG); 648 if (play[1]) 649 outl(play[1], io + SIS_PLAY_START_B_REG); 650 } else { 651 if (record) 652 outl(record, io + SIS_RECORD_STOP_REG); 653 if (play[0]) 654 outl(play[0], io + SIS_PLAY_STOP_A_REG); 655 if (play[1]) 656 outl(play[1], io + SIS_PLAY_STOP_B_REG); 657 } 658 return 0; 659 } 660 661 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 662 { 663 struct snd_pcm_runtime *runtime = substream->runtime; 664 struct voice *voice = runtime->private_data; 665 u32 cso; 666 667 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 668 cso &= 0xffff; 669 return cso; 670 } 671 672 static int sis_capture_open(struct snd_pcm_substream *substream) 673 { 674 struct sis7019 *sis = snd_pcm_substream_chip(substream); 675 struct snd_pcm_runtime *runtime = substream->runtime; 676 struct voice *voice = &sis->capture_voice; 677 unsigned long flags; 678 679 /* FIXME: The driver only supports recording from one channel 680 * at the moment, but it could support more. 681 */ 682 spin_lock_irqsave(&sis->voice_lock, flags); 683 if (voice->flags & VOICE_IN_USE) 684 voice = NULL; 685 else 686 voice->flags |= VOICE_IN_USE; 687 spin_unlock_irqrestore(&sis->voice_lock, flags); 688 689 if (!voice) 690 return -EAGAIN; 691 692 voice->substream = substream; 693 runtime->private_data = voice; 694 runtime->hw = sis_capture_hw_info; 695 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 696 snd_pcm_limit_hw_rates(runtime); 697 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 698 9, 0xfff9); 699 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 700 9, 0xfff9); 701 snd_pcm_set_sync(substream); 702 return 0; 703 } 704 705 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 706 struct snd_pcm_hw_params *hw_params) 707 { 708 struct sis7019 *sis = snd_pcm_substream_chip(substream); 709 int rc; 710 711 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 712 params_rate(hw_params)); 713 if (rc) 714 goto out; 715 716 rc = snd_pcm_lib_malloc_pages(substream, 717 params_buffer_bytes(hw_params)); 718 if (rc < 0) 719 goto out; 720 721 rc = sis_alloc_timing_voice(substream, hw_params); 722 723 out: 724 return rc; 725 } 726 727 static void sis_prepare_timing_voice(struct voice *voice, 728 struct snd_pcm_substream *substream) 729 { 730 struct sis7019 *sis = snd_pcm_substream_chip(substream); 731 struct snd_pcm_runtime *runtime = substream->runtime; 732 struct voice *timing = voice->timing; 733 void __iomem *play_base = timing->ctrl_base; 734 void __iomem *wave_base = timing->wave_base; 735 u16 buffer_size, period_size; 736 u32 format, control, sso_eso, delta; 737 u32 vperiod, sso, reg; 738 739 /* Set our initial buffer and period as large as we can given a 740 * single page of silence. 741 */ 742 buffer_size = 4096 / runtime->channels; 743 buffer_size /= snd_pcm_format_size(runtime->format, 1); 744 period_size = buffer_size; 745 746 /* Initially, we want to interrupt just a bit behind the end of 747 * the period we're clocking out. 12 samples seems to give a good 748 * delay. 749 * 750 * We want to spread our interrupts throughout the virtual period, 751 * so that we don't end up with two interrupts back to back at the 752 * end -- this helps minimize the effects of any jitter. Adjust our 753 * clocking period size so that the last period is at least a fourth 754 * of a full period. 755 * 756 * This is all moot if we don't need to use virtual periods. 757 */ 758 vperiod = runtime->period_size + 12; 759 if (vperiod > period_size) { 760 u16 tail = vperiod % period_size; 761 u16 quarter_period = period_size / 4; 762 763 if (tail && tail < quarter_period) { 764 u16 loops = vperiod / period_size; 765 766 tail = quarter_period - tail; 767 tail += loops - 1; 768 tail /= loops; 769 period_size -= tail; 770 } 771 772 sso = period_size - 1; 773 } else { 774 /* The initial period will fit inside the buffer, so we 775 * don't need to use virtual periods -- disable them. 776 */ 777 period_size = runtime->period_size; 778 sso = vperiod - 1; 779 vperiod = 0; 780 } 781 782 /* The interrupt handler implements the timing synchronization, so 783 * setup its state. 784 */ 785 timing->flags |= VOICE_SYNC_TIMING; 786 timing->sync_base = voice->ctrl_base; 787 timing->sync_cso = runtime->period_size; 788 timing->sync_period_size = runtime->period_size; 789 timing->sync_buffer_size = runtime->buffer_size; 790 timing->period_size = period_size; 791 timing->buffer_size = buffer_size; 792 timing->sso = sso; 793 timing->vperiod = vperiod; 794 795 /* Using unsigned samples with the all-zero silence buffer 796 * forces the output to the lower rail, killing playback. 797 * So ignore unsigned vs signed -- it doesn't change the timing. 798 */ 799 format = 0; 800 if (snd_pcm_format_width(runtime->format) == 8) 801 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 802 if (runtime->channels == 1) 803 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 804 805 control = timing->buffer_size - 1; 806 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 807 sso_eso = timing->buffer_size - 1; 808 sso_eso |= timing->sso << 16; 809 810 delta = sis_rate_to_delta(runtime->rate); 811 812 /* We've done the math, now configure the channel. 813 */ 814 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 815 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 816 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 817 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 818 819 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 820 writel(0, wave_base + reg); 821 822 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 823 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 824 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 825 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 826 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 827 wave_base + SIS_WAVE_CHANNEL_CONTROL); 828 } 829 830 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 831 { 832 struct snd_pcm_runtime *runtime = substream->runtime; 833 struct voice *voice = runtime->private_data; 834 void __iomem *rec_base = voice->ctrl_base; 835 u32 format, dma_addr, control; 836 u16 leo; 837 838 /* We rely on the PCM core to ensure that the parameters for this 839 * substream do not change on us while we're programming the HW. 840 */ 841 format = 0; 842 if (snd_pcm_format_width(runtime->format) == 8) 843 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 844 if (!snd_pcm_format_signed(runtime->format)) 845 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 846 if (runtime->channels == 1) 847 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 848 849 dma_addr = runtime->dma_addr; 850 leo = runtime->buffer_size - 1; 851 control = leo | SIS_CAPTURE_DMA_LOOP; 852 853 /* If we've got more than two periods per buffer, then we have 854 * use a timing voice to clock out the periods. Otherwise, we can 855 * use the capture channel's interrupts. 856 */ 857 if (voice->timing) { 858 sis_prepare_timing_voice(voice, substream); 859 } else { 860 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 861 if (runtime->period_size != runtime->buffer_size) 862 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 863 } 864 865 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 866 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 867 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 868 869 /* Force the writes to post. */ 870 readl(rec_base); 871 872 return 0; 873 } 874 875 static const struct snd_pcm_ops sis_playback_ops = { 876 .open = sis_playback_open, 877 .close = sis_substream_close, 878 .ioctl = snd_pcm_lib_ioctl, 879 .hw_params = sis_playback_hw_params, 880 .hw_free = sis_hw_free, 881 .prepare = sis_pcm_playback_prepare, 882 .trigger = sis_pcm_trigger, 883 .pointer = sis_pcm_pointer, 884 }; 885 886 static const struct snd_pcm_ops sis_capture_ops = { 887 .open = sis_capture_open, 888 .close = sis_substream_close, 889 .ioctl = snd_pcm_lib_ioctl, 890 .hw_params = sis_capture_hw_params, 891 .hw_free = sis_hw_free, 892 .prepare = sis_pcm_capture_prepare, 893 .trigger = sis_pcm_trigger, 894 .pointer = sis_pcm_pointer, 895 }; 896 897 static int sis_pcm_create(struct sis7019 *sis) 898 { 899 struct snd_pcm *pcm; 900 int rc; 901 902 /* We have 64 voices, and the driver currently records from 903 * only one channel, though that could change in the future. 904 */ 905 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 906 if (rc) 907 return rc; 908 909 pcm->private_data = sis; 910 strcpy(pcm->name, "SiS7019"); 911 sis->pcm = pcm; 912 913 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 914 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 915 916 /* Try to preallocate some memory, but it's not the end of the 917 * world if this fails. 918 */ 919 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 920 snd_dma_pci_data(sis->pci), 64*1024, 128*1024); 921 922 return 0; 923 } 924 925 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 926 { 927 unsigned long io = sis->ioport; 928 unsigned short val = 0xffff; 929 u16 status; 930 u16 rdy; 931 int count; 932 static const u16 codec_ready[3] = { 933 SIS_AC97_STATUS_CODEC_READY, 934 SIS_AC97_STATUS_CODEC2_READY, 935 SIS_AC97_STATUS_CODEC3_READY, 936 }; 937 938 rdy = codec_ready[codec]; 939 940 941 /* Get the AC97 semaphore -- software first, so we don't spin 942 * pounding out IO reads on the hardware semaphore... 943 */ 944 mutex_lock(&sis->ac97_mutex); 945 946 count = 0xffff; 947 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 948 udelay(1); 949 950 if (!count) 951 goto timeout; 952 953 /* ... and wait for any outstanding commands to complete ... 954 */ 955 count = 0xffff; 956 do { 957 status = inw(io + SIS_AC97_STATUS); 958 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 959 break; 960 961 udelay(1); 962 } while (--count); 963 964 if (!count) 965 goto timeout_sema; 966 967 /* ... before sending our command and waiting for it to finish ... 968 */ 969 outl(cmd, io + SIS_AC97_CMD); 970 udelay(10); 971 972 count = 0xffff; 973 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 974 udelay(1); 975 976 /* ... and reading the results (if any). 977 */ 978 val = inl(io + SIS_AC97_CMD) >> 16; 979 980 timeout_sema: 981 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 982 timeout: 983 mutex_unlock(&sis->ac97_mutex); 984 985 if (!count) { 986 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", 987 codec, cmd); 988 } 989 990 return val; 991 } 992 993 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 994 unsigned short val) 995 { 996 static const u32 cmd[3] = { 997 SIS_AC97_CMD_CODEC_WRITE, 998 SIS_AC97_CMD_CODEC2_WRITE, 999 SIS_AC97_CMD_CODEC3_WRITE, 1000 }; 1001 sis_ac97_rw(ac97->private_data, ac97->num, 1002 (val << 16) | (reg << 8) | cmd[ac97->num]); 1003 } 1004 1005 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 1006 { 1007 static const u32 cmd[3] = { 1008 SIS_AC97_CMD_CODEC_READ, 1009 SIS_AC97_CMD_CODEC2_READ, 1010 SIS_AC97_CMD_CODEC3_READ, 1011 }; 1012 return sis_ac97_rw(ac97->private_data, ac97->num, 1013 (reg << 8) | cmd[ac97->num]); 1014 } 1015 1016 static int sis_mixer_create(struct sis7019 *sis) 1017 { 1018 struct snd_ac97_bus *bus; 1019 struct snd_ac97_template ac97; 1020 static struct snd_ac97_bus_ops ops = { 1021 .write = sis_ac97_write, 1022 .read = sis_ac97_read, 1023 }; 1024 int rc; 1025 1026 memset(&ac97, 0, sizeof(ac97)); 1027 ac97.private_data = sis; 1028 1029 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 1030 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1031 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 1032 ac97.num = 1; 1033 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 1034 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1035 ac97.num = 2; 1036 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1037 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1038 1039 /* If we return an error here, then snd_card_free() should 1040 * free up any ac97 codecs that got created, as well as the bus. 1041 */ 1042 return rc; 1043 } 1044 1045 static void sis_free_suspend(struct sis7019 *sis) 1046 { 1047 int i; 1048 1049 for (i = 0; i < SIS_SUSPEND_PAGES; i++) 1050 kfree(sis->suspend_state[i]); 1051 } 1052 1053 static int sis_chip_free(struct sis7019 *sis) 1054 { 1055 /* Reset the chip, and disable all interrputs. 1056 */ 1057 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1058 udelay(25); 1059 outl(0, sis->ioport + SIS_GCR); 1060 outl(0, sis->ioport + SIS_GIER); 1061 1062 /* Now, free everything we allocated. 1063 */ 1064 if (sis->irq >= 0) 1065 free_irq(sis->irq, sis); 1066 1067 iounmap(sis->ioaddr); 1068 pci_release_regions(sis->pci); 1069 pci_disable_device(sis->pci); 1070 sis_free_suspend(sis); 1071 return 0; 1072 } 1073 1074 static int sis_dev_free(struct snd_device *dev) 1075 { 1076 struct sis7019 *sis = dev->device_data; 1077 return sis_chip_free(sis); 1078 } 1079 1080 static int sis_chip_init(struct sis7019 *sis) 1081 { 1082 unsigned long io = sis->ioport; 1083 void __iomem *ioaddr = sis->ioaddr; 1084 unsigned long timeout; 1085 u16 status; 1086 int count; 1087 int i; 1088 1089 /* Reset the audio controller 1090 */ 1091 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1092 udelay(25); 1093 outl(0, io + SIS_GCR); 1094 1095 /* Get the AC-link semaphore, and reset the codecs 1096 */ 1097 count = 0xffff; 1098 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1099 udelay(1); 1100 1101 if (!count) 1102 return -EIO; 1103 1104 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1105 udelay(250); 1106 1107 count = 0xffff; 1108 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1109 udelay(1); 1110 1111 /* Command complete, we can let go of the semaphore now. 1112 */ 1113 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1114 if (!count) 1115 return -EIO; 1116 1117 /* Now that we've finished the reset, find out what's attached. 1118 * There are some codec/board combinations that take an extremely 1119 * long time to come up. 350+ ms has been observed in the field, 1120 * so we'll give them up to 500ms. 1121 */ 1122 sis->codecs_present = 0; 1123 timeout = msecs_to_jiffies(500) + jiffies; 1124 while (time_before_eq(jiffies, timeout)) { 1125 status = inl(io + SIS_AC97_STATUS); 1126 if (status & SIS_AC97_STATUS_CODEC_READY) 1127 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1128 if (status & SIS_AC97_STATUS_CODEC2_READY) 1129 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1130 if (status & SIS_AC97_STATUS_CODEC3_READY) 1131 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1132 1133 if (sis->codecs_present == codecs) 1134 break; 1135 1136 msleep(1); 1137 } 1138 1139 /* All done, check for errors. 1140 */ 1141 if (!sis->codecs_present) { 1142 dev_err(&sis->pci->dev, "could not find any codecs\n"); 1143 return -EIO; 1144 } 1145 1146 if (sis->codecs_present != codecs) { 1147 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", 1148 sis->codecs_present, codecs); 1149 } 1150 1151 /* Let the hardware know that the audio driver is alive, 1152 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1153 * record channels. We're going to want to use Variable Rate Audio 1154 * for recording, to avoid needlessly resampling from 48kHZ. 1155 */ 1156 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1157 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1158 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1159 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1160 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1161 1162 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1163 */ 1164 outl(0, io + SIS_AC97_PSR); 1165 1166 /* There is only one valid DMA setup for a PCI environment. 1167 */ 1168 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1169 1170 /* Reset the synchronization groups for all of the channels 1171 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. 1172 * we'll need to change how we handle these. Until then, we just 1173 * assign sub-mixer 0 to all playback channels, and avoid any 1174 * attenuation on the audio. 1175 */ 1176 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1177 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1178 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1179 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1180 outl(0, io + SIS_MIXER_SYNC_GROUP); 1181 1182 for (i = 0; i < 64; i++) { 1183 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1184 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1185 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1186 } 1187 1188 /* Don't attenuate any audio set for the wave amplifier. 1189 * 1190 * FIXME: Maximum attenuation is set for the music amp, which will 1191 * need to change if we start using the synth engine. 1192 */ 1193 outl(0xffff0000, io + SIS_WEVCR); 1194 1195 /* Ensure that the wave engine is in normal operating mode. 1196 */ 1197 outl(0, io + SIS_WECCR); 1198 1199 /* Go ahead and enable the DMA interrupts. They won't go live 1200 * until we start a channel. 1201 */ 1202 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1203 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1204 1205 return 0; 1206 } 1207 1208 #ifdef CONFIG_PM_SLEEP 1209 static int sis_suspend(struct device *dev) 1210 { 1211 struct snd_card *card = dev_get_drvdata(dev); 1212 struct sis7019 *sis = card->private_data; 1213 void __iomem *ioaddr = sis->ioaddr; 1214 int i; 1215 1216 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1217 snd_pcm_suspend_all(sis->pcm); 1218 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1219 snd_ac97_suspend(sis->ac97[0]); 1220 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1221 snd_ac97_suspend(sis->ac97[1]); 1222 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1223 snd_ac97_suspend(sis->ac97[2]); 1224 1225 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1226 */ 1227 if (sis->irq >= 0) { 1228 free_irq(sis->irq, sis); 1229 sis->irq = -1; 1230 } 1231 1232 /* Save the internal state away 1233 */ 1234 for (i = 0; i < 4; i++) { 1235 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1236 ioaddr += 4096; 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int sis_resume(struct device *dev) 1243 { 1244 struct pci_dev *pci = to_pci_dev(dev); 1245 struct snd_card *card = dev_get_drvdata(dev); 1246 struct sis7019 *sis = card->private_data; 1247 void __iomem *ioaddr = sis->ioaddr; 1248 int i; 1249 1250 if (sis_chip_init(sis)) { 1251 dev_err(&pci->dev, "unable to re-init controller\n"); 1252 goto error; 1253 } 1254 1255 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, 1256 KBUILD_MODNAME, sis)) { 1257 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); 1258 goto error; 1259 } 1260 1261 /* Restore saved state, then clear out the page we use for the 1262 * silence buffer. 1263 */ 1264 for (i = 0; i < 4; i++) { 1265 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1266 ioaddr += 4096; 1267 } 1268 1269 memset(sis->suspend_state[0], 0, 4096); 1270 1271 sis->irq = pci->irq; 1272 1273 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1274 snd_ac97_resume(sis->ac97[0]); 1275 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1276 snd_ac97_resume(sis->ac97[1]); 1277 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1278 snd_ac97_resume(sis->ac97[2]); 1279 1280 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1281 return 0; 1282 1283 error: 1284 snd_card_disconnect(card); 1285 return -EIO; 1286 } 1287 1288 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); 1289 #define SIS_PM_OPS &sis_pm 1290 #else 1291 #define SIS_PM_OPS NULL 1292 #endif /* CONFIG_PM_SLEEP */ 1293 1294 static int sis_alloc_suspend(struct sis7019 *sis) 1295 { 1296 int i; 1297 1298 /* We need 16K to store the internal wave engine state during a 1299 * suspend, but we don't need it to be contiguous, so play nice 1300 * with the memory system. We'll also use this area for a silence 1301 * buffer. 1302 */ 1303 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1304 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); 1305 if (!sis->suspend_state[i]) 1306 return -ENOMEM; 1307 } 1308 memset(sis->suspend_state[0], 0, 4096); 1309 1310 return 0; 1311 } 1312 1313 static int sis_chip_create(struct snd_card *card, 1314 struct pci_dev *pci) 1315 { 1316 struct sis7019 *sis = card->private_data; 1317 struct voice *voice; 1318 static struct snd_device_ops ops = { 1319 .dev_free = sis_dev_free, 1320 }; 1321 int rc; 1322 int i; 1323 1324 rc = pci_enable_device(pci); 1325 if (rc) 1326 goto error_out; 1327 1328 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30)); 1329 if (rc < 0) { 1330 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); 1331 goto error_out_enabled; 1332 } 1333 1334 memset(sis, 0, sizeof(*sis)); 1335 mutex_init(&sis->ac97_mutex); 1336 spin_lock_init(&sis->voice_lock); 1337 sis->card = card; 1338 sis->pci = pci; 1339 sis->irq = -1; 1340 sis->ioport = pci_resource_start(pci, 0); 1341 1342 rc = pci_request_regions(pci, "SiS7019"); 1343 if (rc) { 1344 dev_err(&pci->dev, "unable request regions\n"); 1345 goto error_out_enabled; 1346 } 1347 1348 rc = -EIO; 1349 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); 1350 if (!sis->ioaddr) { 1351 dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); 1352 goto error_out_cleanup; 1353 } 1354 1355 rc = sis_alloc_suspend(sis); 1356 if (rc < 0) { 1357 dev_err(&pci->dev, "unable to allocate state storage\n"); 1358 goto error_out_cleanup; 1359 } 1360 1361 rc = sis_chip_init(sis); 1362 if (rc) 1363 goto error_out_cleanup; 1364 1365 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, 1366 sis); 1367 if (rc) { 1368 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); 1369 goto error_out_cleanup; 1370 } 1371 1372 sis->irq = pci->irq; 1373 pci_set_master(pci); 1374 1375 for (i = 0; i < 64; i++) { 1376 voice = &sis->voices[i]; 1377 voice->num = i; 1378 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1379 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1380 } 1381 1382 voice = &sis->capture_voice; 1383 voice->flags = VOICE_CAPTURE; 1384 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1385 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1386 1387 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); 1388 if (rc) 1389 goto error_out_cleanup; 1390 1391 return 0; 1392 1393 error_out_cleanup: 1394 sis_chip_free(sis); 1395 1396 error_out_enabled: 1397 pci_disable_device(pci); 1398 1399 error_out: 1400 return rc; 1401 } 1402 1403 static int snd_sis7019_probe(struct pci_dev *pci, 1404 const struct pci_device_id *pci_id) 1405 { 1406 struct snd_card *card; 1407 struct sis7019 *sis; 1408 int rc; 1409 1410 rc = -ENOENT; 1411 if (!enable) 1412 goto error_out; 1413 1414 /* The user can specify which codecs should be present so that we 1415 * can wait for them to show up if they are slow to recover from 1416 * the AC97 cold reset. We default to a single codec, the primary. 1417 * 1418 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. 1419 */ 1420 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | 1421 SIS_TERTIARY_CODEC_PRESENT; 1422 if (!codecs) 1423 codecs = SIS_PRIMARY_CODEC_PRESENT; 1424 1425 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE, 1426 sizeof(*sis), &card); 1427 if (rc < 0) 1428 goto error_out; 1429 1430 strcpy(card->driver, "SiS7019"); 1431 strcpy(card->shortname, "SiS7019"); 1432 rc = sis_chip_create(card, pci); 1433 if (rc) 1434 goto card_error_out; 1435 1436 sis = card->private_data; 1437 1438 rc = sis_mixer_create(sis); 1439 if (rc) 1440 goto card_error_out; 1441 1442 rc = sis_pcm_create(sis); 1443 if (rc) 1444 goto card_error_out; 1445 1446 snprintf(card->longname, sizeof(card->longname), 1447 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1448 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1449 sis->ioport, sis->irq); 1450 1451 rc = snd_card_register(card); 1452 if (rc) 1453 goto card_error_out; 1454 1455 pci_set_drvdata(pci, card); 1456 return 0; 1457 1458 card_error_out: 1459 snd_card_free(card); 1460 1461 error_out: 1462 return rc; 1463 } 1464 1465 static void snd_sis7019_remove(struct pci_dev *pci) 1466 { 1467 snd_card_free(pci_get_drvdata(pci)); 1468 } 1469 1470 static struct pci_driver sis7019_driver = { 1471 .name = KBUILD_MODNAME, 1472 .id_table = snd_sis7019_ids, 1473 .probe = snd_sis7019_probe, 1474 .remove = snd_sis7019_remove, 1475 .driver = { 1476 .pm = SIS_PM_OPS, 1477 }, 1478 }; 1479 1480 module_pci_driver(sis7019_driver); 1481