1 /* 2 * Driver for SiS7019 Audio Accelerator 3 * 4 * Copyright (C) 2004-2007, David Dillow 5 * Written by David Dillow <dave@thedillows.org> 6 * Inspired by the Trident 4D-WaveDX/NX driver. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, version 2. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/init.h> 25 #include <linux/pci.h> 26 #include <linux/time.h> 27 #include <linux/slab.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> 30 #include <linux/delay.h> 31 #include <sound/core.h> 32 #include <sound/ac97_codec.h> 33 #include <sound/initval.h> 34 #include "sis7019.h" 35 36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 37 MODULE_DESCRIPTION("SiS7019"); 38 MODULE_LICENSE("GPL"); 39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); 40 41 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 42 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 43 static int enable = 1; 44 45 module_param(index, int, 0444); 46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 47 module_param(id, charp, 0444); 48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 49 module_param(enable, bool, 0444); 50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 51 52 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = { 53 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 54 { 0, } 55 }; 56 57 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 58 59 /* There are three timing modes for the voices. 60 * 61 * For both playback and capture, when the buffer is one or two periods long, 62 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 63 * to let us know when the periods have ended. 64 * 65 * When performing playback with more than two periods per buffer, we set 66 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 67 * reach it. We then update the offset and continue on until we are 68 * interrupted for the next period. 69 * 70 * Capture channels do not have a SSO, so we allocate a playback channel to 71 * use as a timer for the capture periods. We use the SSO on the playback 72 * channel to clock out virtual periods, and adjust the virtual period length 73 * to maintain synchronization. This algorithm came from the Trident driver. 74 * 75 * FIXME: It'd be nice to make use of some of the synth features in the 76 * hardware, but a woeful lack of documentation is a significant roadblock. 77 */ 78 struct voice { 79 u16 flags; 80 #define VOICE_IN_USE 1 81 #define VOICE_CAPTURE 2 82 #define VOICE_SSO_TIMING 4 83 #define VOICE_SYNC_TIMING 8 84 u16 sync_cso; 85 u16 period_size; 86 u16 buffer_size; 87 u16 sync_period_size; 88 u16 sync_buffer_size; 89 u32 sso; 90 u32 vperiod; 91 struct snd_pcm_substream *substream; 92 struct voice *timing; 93 void __iomem *ctrl_base; 94 void __iomem *wave_base; 95 void __iomem *sync_base; 96 int num; 97 }; 98 99 /* We need four pages to store our wave parameters during a suspend. If 100 * we're not doing power management, we still need to allocate a page 101 * for the silence buffer. 102 */ 103 #ifdef CONFIG_PM 104 #define SIS_SUSPEND_PAGES 4 105 #else 106 #define SIS_SUSPEND_PAGES 1 107 #endif 108 109 struct sis7019 { 110 unsigned long ioport; 111 void __iomem *ioaddr; 112 int irq; 113 int codecs_present; 114 115 struct pci_dev *pci; 116 struct snd_pcm *pcm; 117 struct snd_card *card; 118 struct snd_ac97 *ac97[3]; 119 120 /* Protect against more than one thread hitting the AC97 121 * registers (in a more polite manner than pounding the hardware 122 * semaphore) 123 */ 124 struct mutex ac97_mutex; 125 126 /* voice_lock protects allocation/freeing of the voice descriptions 127 */ 128 spinlock_t voice_lock; 129 130 struct voice voices[64]; 131 struct voice capture_voice; 132 133 /* Allocate pages to store the internal wave state during 134 * suspends. When we're operating, this can be used as a silence 135 * buffer for a timing channel. 136 */ 137 void *suspend_state[SIS_SUSPEND_PAGES]; 138 139 int silence_users; 140 dma_addr_t silence_dma_addr; 141 }; 142 143 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 144 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 145 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 146 147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 148 * documented range of 8-0xfff8 samples. Given that they are 0-based, 149 * that places our period/buffer range at 9-0xfff9 samples. That makes the 150 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 151 * max samples / min samples gives us the max periods in a buffer. 152 * 153 * We'll add a constraint upon open that limits the period and buffer sample 154 * size to values that are legal for the hardware. 155 */ 156 static struct snd_pcm_hardware sis_playback_hw_info = { 157 .info = (SNDRV_PCM_INFO_MMAP | 158 SNDRV_PCM_INFO_MMAP_VALID | 159 SNDRV_PCM_INFO_INTERLEAVED | 160 SNDRV_PCM_INFO_BLOCK_TRANSFER | 161 SNDRV_PCM_INFO_SYNC_START | 162 SNDRV_PCM_INFO_RESUME), 163 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 164 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 165 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 166 .rate_min = 4000, 167 .rate_max = 48000, 168 .channels_min = 1, 169 .channels_max = 2, 170 .buffer_bytes_max = (0xfff9 * 4), 171 .period_bytes_min = 9, 172 .period_bytes_max = (0xfff9 * 4), 173 .periods_min = 1, 174 .periods_max = (0xfff9 / 9), 175 }; 176 177 static struct snd_pcm_hardware sis_capture_hw_info = { 178 .info = (SNDRV_PCM_INFO_MMAP | 179 SNDRV_PCM_INFO_MMAP_VALID | 180 SNDRV_PCM_INFO_INTERLEAVED | 181 SNDRV_PCM_INFO_BLOCK_TRANSFER | 182 SNDRV_PCM_INFO_SYNC_START | 183 SNDRV_PCM_INFO_RESUME), 184 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 185 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 186 .rates = SNDRV_PCM_RATE_48000, 187 .rate_min = 4000, 188 .rate_max = 48000, 189 .channels_min = 1, 190 .channels_max = 2, 191 .buffer_bytes_max = (0xfff9 * 4), 192 .period_bytes_min = 9, 193 .period_bytes_max = (0xfff9 * 4), 194 .periods_min = 1, 195 .periods_max = (0xfff9 / 9), 196 }; 197 198 static void sis_update_sso(struct voice *voice, u16 period) 199 { 200 void __iomem *base = voice->ctrl_base; 201 202 voice->sso += period; 203 if (voice->sso >= voice->buffer_size) 204 voice->sso -= voice->buffer_size; 205 206 /* Enforce the documented hardware minimum offset */ 207 if (voice->sso < 8) 208 voice->sso = 8; 209 210 /* The SSO is in the upper 16 bits of the register. */ 211 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 212 } 213 214 static void sis_update_voice(struct voice *voice) 215 { 216 if (voice->flags & VOICE_SSO_TIMING) { 217 sis_update_sso(voice, voice->period_size); 218 } else if (voice->flags & VOICE_SYNC_TIMING) { 219 int sync; 220 221 /* If we've not hit the end of the virtual period, update 222 * our records and keep going. 223 */ 224 if (voice->vperiod > voice->period_size) { 225 voice->vperiod -= voice->period_size; 226 if (voice->vperiod < voice->period_size) 227 sis_update_sso(voice, voice->vperiod); 228 else 229 sis_update_sso(voice, voice->period_size); 230 return; 231 } 232 233 /* Calculate our relative offset between the target and 234 * the actual CSO value. Since we're operating in a loop, 235 * if the value is more than half way around, we can 236 * consider ourselves wrapped. 237 */ 238 sync = voice->sync_cso; 239 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 240 if (sync > (voice->sync_buffer_size / 2)) 241 sync -= voice->sync_buffer_size; 242 243 /* If sync is positive, then we interrupted too early, and 244 * we'll need to come back in a few samples and try again. 245 * There's a minimum wait, as it takes some time for the DMA 246 * engine to startup, etc... 247 */ 248 if (sync > 0) { 249 if (sync < 16) 250 sync = 16; 251 sis_update_sso(voice, sync); 252 return; 253 } 254 255 /* Ok, we interrupted right on time, or (hopefully) just 256 * a bit late. We'll adjst our next waiting period based 257 * on how close we got. 258 * 259 * We need to stay just behind the actual channel to ensure 260 * it really is past a period when we get our interrupt -- 261 * otherwise we'll fall into the early code above and have 262 * a minimum wait time, which makes us quite late here, 263 * eating into the user's time to refresh the buffer, esp. 264 * if using small periods. 265 * 266 * If we're less than 9 samples behind, we're on target. 267 * Otherwise, shorten the next vperiod by the amount we've 268 * been delayed. 269 */ 270 if (sync > -9) 271 voice->vperiod = voice->sync_period_size + 1; 272 else 273 voice->vperiod = voice->sync_period_size + sync + 10; 274 275 if (voice->vperiod < voice->buffer_size) { 276 sis_update_sso(voice, voice->vperiod); 277 voice->vperiod = 0; 278 } else 279 sis_update_sso(voice, voice->period_size); 280 281 sync = voice->sync_cso + voice->sync_period_size; 282 if (sync >= voice->sync_buffer_size) 283 sync -= voice->sync_buffer_size; 284 voice->sync_cso = sync; 285 } 286 287 snd_pcm_period_elapsed(voice->substream); 288 } 289 290 static void sis_voice_irq(u32 status, struct voice *voice) 291 { 292 int bit; 293 294 while (status) { 295 bit = __ffs(status); 296 status >>= bit + 1; 297 voice += bit; 298 sis_update_voice(voice); 299 voice++; 300 } 301 } 302 303 static irqreturn_t sis_interrupt(int irq, void *dev) 304 { 305 struct sis7019 *sis = dev; 306 unsigned long io = sis->ioport; 307 struct voice *voice; 308 u32 intr, status; 309 310 /* We only use the DMA interrupts, and we don't enable any other 311 * source of interrupts. But, it is possible to see an interupt 312 * status that didn't actually interrupt us, so eliminate anything 313 * we're not expecting to avoid falsely claiming an IRQ, and an 314 * ensuing endless loop. 315 */ 316 intr = inl(io + SIS_GISR); 317 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 318 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 319 if (!intr) 320 return IRQ_NONE; 321 322 do { 323 status = inl(io + SIS_PISR_A); 324 if (status) { 325 sis_voice_irq(status, sis->voices); 326 outl(status, io + SIS_PISR_A); 327 } 328 329 status = inl(io + SIS_PISR_B); 330 if (status) { 331 sis_voice_irq(status, &sis->voices[32]); 332 outl(status, io + SIS_PISR_B); 333 } 334 335 status = inl(io + SIS_RISR); 336 if (status) { 337 voice = &sis->capture_voice; 338 if (!voice->timing) 339 snd_pcm_period_elapsed(voice->substream); 340 341 outl(status, io + SIS_RISR); 342 } 343 344 outl(intr, io + SIS_GISR); 345 intr = inl(io + SIS_GISR); 346 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 347 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 348 } while (intr); 349 350 return IRQ_HANDLED; 351 } 352 353 static u32 sis_rate_to_delta(unsigned int rate) 354 { 355 u32 delta; 356 357 /* This was copied from the trident driver, but it seems its gotten 358 * around a bit... nevertheless, it works well. 359 * 360 * We special case 44100 and 8000 since rounding with the equation 361 * does not give us an accurate enough value. For 11025 and 22050 362 * the equation gives us the best answer. All other frequencies will 363 * also use the equation. JDW 364 */ 365 if (rate == 44100) 366 delta = 0xeb3; 367 else if (rate == 8000) 368 delta = 0x2ab; 369 else if (rate == 48000) 370 delta = 0x1000; 371 else 372 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; 373 return delta; 374 } 375 376 static void __sis_map_silence(struct sis7019 *sis) 377 { 378 /* Helper function: must hold sis->voice_lock on entry */ 379 if (!sis->silence_users) 380 sis->silence_dma_addr = pci_map_single(sis->pci, 381 sis->suspend_state[0], 382 4096, PCI_DMA_TODEVICE); 383 sis->silence_users++; 384 } 385 386 static void __sis_unmap_silence(struct sis7019 *sis) 387 { 388 /* Helper function: must hold sis->voice_lock on entry */ 389 sis->silence_users--; 390 if (!sis->silence_users) 391 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, 392 PCI_DMA_TODEVICE); 393 } 394 395 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 396 { 397 unsigned long flags; 398 399 spin_lock_irqsave(&sis->voice_lock, flags); 400 if (voice->timing) { 401 __sis_unmap_silence(sis); 402 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 403 VOICE_SYNC_TIMING); 404 voice->timing = NULL; 405 } 406 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 407 spin_unlock_irqrestore(&sis->voice_lock, flags); 408 } 409 410 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 411 { 412 /* Must hold the voice_lock on entry */ 413 struct voice *voice; 414 int i; 415 416 for (i = 0; i < 64; i++) { 417 voice = &sis->voices[i]; 418 if (voice->flags & VOICE_IN_USE) 419 continue; 420 voice->flags |= VOICE_IN_USE; 421 goto found_one; 422 } 423 voice = NULL; 424 425 found_one: 426 return voice; 427 } 428 429 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 430 { 431 struct voice *voice; 432 unsigned long flags; 433 434 spin_lock_irqsave(&sis->voice_lock, flags); 435 voice = __sis_alloc_playback_voice(sis); 436 spin_unlock_irqrestore(&sis->voice_lock, flags); 437 438 return voice; 439 } 440 441 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 442 struct snd_pcm_hw_params *hw_params) 443 { 444 struct sis7019 *sis = snd_pcm_substream_chip(substream); 445 struct snd_pcm_runtime *runtime = substream->runtime; 446 struct voice *voice = runtime->private_data; 447 unsigned int period_size, buffer_size; 448 unsigned long flags; 449 int needed; 450 451 /* If there are one or two periods per buffer, we don't need a 452 * timing voice, as we can use the capture channel's interrupts 453 * to clock out the periods. 454 */ 455 period_size = params_period_size(hw_params); 456 buffer_size = params_buffer_size(hw_params); 457 needed = (period_size != buffer_size && 458 period_size != (buffer_size / 2)); 459 460 if (needed && !voice->timing) { 461 spin_lock_irqsave(&sis->voice_lock, flags); 462 voice->timing = __sis_alloc_playback_voice(sis); 463 if (voice->timing) 464 __sis_map_silence(sis); 465 spin_unlock_irqrestore(&sis->voice_lock, flags); 466 if (!voice->timing) 467 return -ENOMEM; 468 voice->timing->substream = substream; 469 } else if (!needed && voice->timing) { 470 sis_free_voice(sis, voice); 471 voice->timing = NULL; 472 } 473 474 return 0; 475 } 476 477 static int sis_playback_open(struct snd_pcm_substream *substream) 478 { 479 struct sis7019 *sis = snd_pcm_substream_chip(substream); 480 struct snd_pcm_runtime *runtime = substream->runtime; 481 struct voice *voice; 482 483 voice = sis_alloc_playback_voice(sis); 484 if (!voice) 485 return -EAGAIN; 486 487 voice->substream = substream; 488 runtime->private_data = voice; 489 runtime->hw = sis_playback_hw_info; 490 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 491 9, 0xfff9); 492 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 493 9, 0xfff9); 494 snd_pcm_set_sync(substream); 495 return 0; 496 } 497 498 static int sis_substream_close(struct snd_pcm_substream *substream) 499 { 500 struct sis7019 *sis = snd_pcm_substream_chip(substream); 501 struct snd_pcm_runtime *runtime = substream->runtime; 502 struct voice *voice = runtime->private_data; 503 504 sis_free_voice(sis, voice); 505 return 0; 506 } 507 508 static int sis_playback_hw_params(struct snd_pcm_substream *substream, 509 struct snd_pcm_hw_params *hw_params) 510 { 511 return snd_pcm_lib_malloc_pages(substream, 512 params_buffer_bytes(hw_params)); 513 } 514 515 static int sis_hw_free(struct snd_pcm_substream *substream) 516 { 517 return snd_pcm_lib_free_pages(substream); 518 } 519 520 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 521 { 522 struct snd_pcm_runtime *runtime = substream->runtime; 523 struct voice *voice = runtime->private_data; 524 void __iomem *ctrl_base = voice->ctrl_base; 525 void __iomem *wave_base = voice->wave_base; 526 u32 format, dma_addr, control, sso_eso, delta, reg; 527 u16 leo; 528 529 /* We rely on the PCM core to ensure that the parameters for this 530 * substream do not change on us while we're programming the HW. 531 */ 532 format = 0; 533 if (snd_pcm_format_width(runtime->format) == 8) 534 format |= SIS_PLAY_DMA_FORMAT_8BIT; 535 if (!snd_pcm_format_signed(runtime->format)) 536 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 537 if (runtime->channels == 1) 538 format |= SIS_PLAY_DMA_FORMAT_MONO; 539 540 /* The baseline setup is for a single period per buffer, and 541 * we add bells and whistles as needed from there. 542 */ 543 dma_addr = runtime->dma_addr; 544 leo = runtime->buffer_size - 1; 545 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 546 sso_eso = leo; 547 548 if (runtime->period_size == (runtime->buffer_size / 2)) { 549 control |= SIS_PLAY_DMA_INTR_AT_MLP; 550 } else if (runtime->period_size != runtime->buffer_size) { 551 voice->flags |= VOICE_SSO_TIMING; 552 voice->sso = runtime->period_size - 1; 553 voice->period_size = runtime->period_size; 554 voice->buffer_size = runtime->buffer_size; 555 556 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 557 control |= SIS_PLAY_DMA_INTR_AT_SSO; 558 sso_eso |= (runtime->period_size - 1) << 16; 559 } 560 561 delta = sis_rate_to_delta(runtime->rate); 562 563 /* Ok, we're ready to go, set up the channel. 564 */ 565 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 566 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 567 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 568 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 569 570 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 571 writel(0, wave_base + reg); 572 573 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 574 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 575 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 576 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 577 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 578 wave_base + SIS_WAVE_CHANNEL_CONTROL); 579 580 /* Force PCI writes to post. */ 581 readl(ctrl_base); 582 583 return 0; 584 } 585 586 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 587 { 588 struct sis7019 *sis = snd_pcm_substream_chip(substream); 589 unsigned long io = sis->ioport; 590 struct snd_pcm_substream *s; 591 struct voice *voice; 592 void *chip; 593 int starting; 594 u32 record = 0; 595 u32 play[2] = { 0, 0 }; 596 597 /* No locks needed, as the PCM core will hold the locks on the 598 * substreams, and the HW will only start/stop the indicated voices 599 * without changing the state of the others. 600 */ 601 switch (cmd) { 602 case SNDRV_PCM_TRIGGER_START: 603 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 604 case SNDRV_PCM_TRIGGER_RESUME: 605 starting = 1; 606 break; 607 case SNDRV_PCM_TRIGGER_STOP: 608 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 609 case SNDRV_PCM_TRIGGER_SUSPEND: 610 starting = 0; 611 break; 612 default: 613 return -EINVAL; 614 } 615 616 snd_pcm_group_for_each_entry(s, substream) { 617 /* Make sure it is for us... */ 618 chip = snd_pcm_substream_chip(s); 619 if (chip != sis) 620 continue; 621 622 voice = s->runtime->private_data; 623 if (voice->flags & VOICE_CAPTURE) { 624 record |= 1 << voice->num; 625 voice = voice->timing; 626 } 627 628 /* voice could be NULL if this a recording stream, and it 629 * doesn't have an external timing channel. 630 */ 631 if (voice) 632 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 633 634 snd_pcm_trigger_done(s, substream); 635 } 636 637 if (starting) { 638 if (record) 639 outl(record, io + SIS_RECORD_START_REG); 640 if (play[0]) 641 outl(play[0], io + SIS_PLAY_START_A_REG); 642 if (play[1]) 643 outl(play[1], io + SIS_PLAY_START_B_REG); 644 } else { 645 if (record) 646 outl(record, io + SIS_RECORD_STOP_REG); 647 if (play[0]) 648 outl(play[0], io + SIS_PLAY_STOP_A_REG); 649 if (play[1]) 650 outl(play[1], io + SIS_PLAY_STOP_B_REG); 651 } 652 return 0; 653 } 654 655 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 656 { 657 struct snd_pcm_runtime *runtime = substream->runtime; 658 struct voice *voice = runtime->private_data; 659 u32 cso; 660 661 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 662 cso &= 0xffff; 663 return cso; 664 } 665 666 static int sis_capture_open(struct snd_pcm_substream *substream) 667 { 668 struct sis7019 *sis = snd_pcm_substream_chip(substream); 669 struct snd_pcm_runtime *runtime = substream->runtime; 670 struct voice *voice = &sis->capture_voice; 671 unsigned long flags; 672 673 /* FIXME: The driver only supports recording from one channel 674 * at the moment, but it could support more. 675 */ 676 spin_lock_irqsave(&sis->voice_lock, flags); 677 if (voice->flags & VOICE_IN_USE) 678 voice = NULL; 679 else 680 voice->flags |= VOICE_IN_USE; 681 spin_unlock_irqrestore(&sis->voice_lock, flags); 682 683 if (!voice) 684 return -EAGAIN; 685 686 voice->substream = substream; 687 runtime->private_data = voice; 688 runtime->hw = sis_capture_hw_info; 689 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 690 snd_pcm_limit_hw_rates(runtime); 691 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 692 9, 0xfff9); 693 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 694 9, 0xfff9); 695 snd_pcm_set_sync(substream); 696 return 0; 697 } 698 699 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 700 struct snd_pcm_hw_params *hw_params) 701 { 702 struct sis7019 *sis = snd_pcm_substream_chip(substream); 703 int rc; 704 705 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 706 params_rate(hw_params)); 707 if (rc) 708 goto out; 709 710 rc = snd_pcm_lib_malloc_pages(substream, 711 params_buffer_bytes(hw_params)); 712 if (rc < 0) 713 goto out; 714 715 rc = sis_alloc_timing_voice(substream, hw_params); 716 717 out: 718 return rc; 719 } 720 721 static void sis_prepare_timing_voice(struct voice *voice, 722 struct snd_pcm_substream *substream) 723 { 724 struct sis7019 *sis = snd_pcm_substream_chip(substream); 725 struct snd_pcm_runtime *runtime = substream->runtime; 726 struct voice *timing = voice->timing; 727 void __iomem *play_base = timing->ctrl_base; 728 void __iomem *wave_base = timing->wave_base; 729 u16 buffer_size, period_size; 730 u32 format, control, sso_eso, delta; 731 u32 vperiod, sso, reg; 732 733 /* Set our initial buffer and period as large as we can given a 734 * single page of silence. 735 */ 736 buffer_size = 4096 / runtime->channels; 737 buffer_size /= snd_pcm_format_size(runtime->format, 1); 738 period_size = buffer_size; 739 740 /* Initially, we want to interrupt just a bit behind the end of 741 * the period we're clocking out. 12 samples seems to give a good 742 * delay. 743 * 744 * We want to spread our interrupts throughout the virtual period, 745 * so that we don't end up with two interrupts back to back at the 746 * end -- this helps minimize the effects of any jitter. Adjust our 747 * clocking period size so that the last period is at least a fourth 748 * of a full period. 749 * 750 * This is all moot if we don't need to use virtual periods. 751 */ 752 vperiod = runtime->period_size + 12; 753 if (vperiod > period_size) { 754 u16 tail = vperiod % period_size; 755 u16 quarter_period = period_size / 4; 756 757 if (tail && tail < quarter_period) { 758 u16 loops = vperiod / period_size; 759 760 tail = quarter_period - tail; 761 tail += loops - 1; 762 tail /= loops; 763 period_size -= tail; 764 } 765 766 sso = period_size - 1; 767 } else { 768 /* The initial period will fit inside the buffer, so we 769 * don't need to use virtual periods -- disable them. 770 */ 771 period_size = runtime->period_size; 772 sso = vperiod - 1; 773 vperiod = 0; 774 } 775 776 /* The interrupt handler implements the timing syncronization, so 777 * setup its state. 778 */ 779 timing->flags |= VOICE_SYNC_TIMING; 780 timing->sync_base = voice->ctrl_base; 781 timing->sync_cso = runtime->period_size; 782 timing->sync_period_size = runtime->period_size; 783 timing->sync_buffer_size = runtime->buffer_size; 784 timing->period_size = period_size; 785 timing->buffer_size = buffer_size; 786 timing->sso = sso; 787 timing->vperiod = vperiod; 788 789 /* Using unsigned samples with the all-zero silence buffer 790 * forces the output to the lower rail, killing playback. 791 * So ignore unsigned vs signed -- it doesn't change the timing. 792 */ 793 format = 0; 794 if (snd_pcm_format_width(runtime->format) == 8) 795 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 796 if (runtime->channels == 1) 797 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 798 799 control = timing->buffer_size - 1; 800 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 801 sso_eso = timing->buffer_size - 1; 802 sso_eso |= timing->sso << 16; 803 804 delta = sis_rate_to_delta(runtime->rate); 805 806 /* We've done the math, now configure the channel. 807 */ 808 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 809 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 810 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 811 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 812 813 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 814 writel(0, wave_base + reg); 815 816 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 817 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 818 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 819 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 820 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 821 wave_base + SIS_WAVE_CHANNEL_CONTROL); 822 } 823 824 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 825 { 826 struct snd_pcm_runtime *runtime = substream->runtime; 827 struct voice *voice = runtime->private_data; 828 void __iomem *rec_base = voice->ctrl_base; 829 u32 format, dma_addr, control; 830 u16 leo; 831 832 /* We rely on the PCM core to ensure that the parameters for this 833 * substream do not change on us while we're programming the HW. 834 */ 835 format = 0; 836 if (snd_pcm_format_width(runtime->format) == 8) 837 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 838 if (!snd_pcm_format_signed(runtime->format)) 839 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 840 if (runtime->channels == 1) 841 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 842 843 dma_addr = runtime->dma_addr; 844 leo = runtime->buffer_size - 1; 845 control = leo | SIS_CAPTURE_DMA_LOOP; 846 847 /* If we've got more than two periods per buffer, then we have 848 * use a timing voice to clock out the periods. Otherwise, we can 849 * use the capture channel's interrupts. 850 */ 851 if (voice->timing) { 852 sis_prepare_timing_voice(voice, substream); 853 } else { 854 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 855 if (runtime->period_size != runtime->buffer_size) 856 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 857 } 858 859 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 860 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 861 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 862 863 /* Force the writes to post. */ 864 readl(rec_base); 865 866 return 0; 867 } 868 869 static struct snd_pcm_ops sis_playback_ops = { 870 .open = sis_playback_open, 871 .close = sis_substream_close, 872 .ioctl = snd_pcm_lib_ioctl, 873 .hw_params = sis_playback_hw_params, 874 .hw_free = sis_hw_free, 875 .prepare = sis_pcm_playback_prepare, 876 .trigger = sis_pcm_trigger, 877 .pointer = sis_pcm_pointer, 878 }; 879 880 static struct snd_pcm_ops sis_capture_ops = { 881 .open = sis_capture_open, 882 .close = sis_substream_close, 883 .ioctl = snd_pcm_lib_ioctl, 884 .hw_params = sis_capture_hw_params, 885 .hw_free = sis_hw_free, 886 .prepare = sis_pcm_capture_prepare, 887 .trigger = sis_pcm_trigger, 888 .pointer = sis_pcm_pointer, 889 }; 890 891 static int __devinit sis_pcm_create(struct sis7019 *sis) 892 { 893 struct snd_pcm *pcm; 894 int rc; 895 896 /* We have 64 voices, and the driver currently records from 897 * only one channel, though that could change in the future. 898 */ 899 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 900 if (rc) 901 return rc; 902 903 pcm->private_data = sis; 904 strcpy(pcm->name, "SiS7019"); 905 sis->pcm = pcm; 906 907 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 908 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 909 910 /* Try to preallocate some memory, but it's not the end of the 911 * world if this fails. 912 */ 913 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 914 snd_dma_pci_data(sis->pci), 64*1024, 128*1024); 915 916 return 0; 917 } 918 919 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 920 { 921 unsigned long io = sis->ioport; 922 unsigned short val = 0xffff; 923 u16 status; 924 u16 rdy; 925 int count; 926 static const u16 codec_ready[3] = { 927 SIS_AC97_STATUS_CODEC_READY, 928 SIS_AC97_STATUS_CODEC2_READY, 929 SIS_AC97_STATUS_CODEC3_READY, 930 }; 931 932 rdy = codec_ready[codec]; 933 934 935 /* Get the AC97 semaphore -- software first, so we don't spin 936 * pounding out IO reads on the hardware semaphore... 937 */ 938 mutex_lock(&sis->ac97_mutex); 939 940 count = 0xffff; 941 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 942 udelay(1); 943 944 if (!count) 945 goto timeout; 946 947 /* ... and wait for any outstanding commands to complete ... 948 */ 949 count = 0xffff; 950 do { 951 status = inw(io + SIS_AC97_STATUS); 952 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 953 break; 954 955 udelay(1); 956 } while (--count); 957 958 if (!count) 959 goto timeout_sema; 960 961 /* ... before sending our command and waiting for it to finish ... 962 */ 963 outl(cmd, io + SIS_AC97_CMD); 964 udelay(10); 965 966 count = 0xffff; 967 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 968 udelay(1); 969 970 /* ... and reading the results (if any). 971 */ 972 val = inl(io + SIS_AC97_CMD) >> 16; 973 974 timeout_sema: 975 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 976 timeout: 977 mutex_unlock(&sis->ac97_mutex); 978 979 if (!count) { 980 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n", 981 codec, cmd); 982 } 983 984 return val; 985 } 986 987 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 988 unsigned short val) 989 { 990 static const u32 cmd[3] = { 991 SIS_AC97_CMD_CODEC_WRITE, 992 SIS_AC97_CMD_CODEC2_WRITE, 993 SIS_AC97_CMD_CODEC3_WRITE, 994 }; 995 sis_ac97_rw(ac97->private_data, ac97->num, 996 (val << 16) | (reg << 8) | cmd[ac97->num]); 997 } 998 999 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 1000 { 1001 static const u32 cmd[3] = { 1002 SIS_AC97_CMD_CODEC_READ, 1003 SIS_AC97_CMD_CODEC2_READ, 1004 SIS_AC97_CMD_CODEC3_READ, 1005 }; 1006 return sis_ac97_rw(ac97->private_data, ac97->num, 1007 (reg << 8) | cmd[ac97->num]); 1008 } 1009 1010 static int __devinit sis_mixer_create(struct sis7019 *sis) 1011 { 1012 struct snd_ac97_bus *bus; 1013 struct snd_ac97_template ac97; 1014 static struct snd_ac97_bus_ops ops = { 1015 .write = sis_ac97_write, 1016 .read = sis_ac97_read, 1017 }; 1018 int rc; 1019 1020 memset(&ac97, 0, sizeof(ac97)); 1021 ac97.private_data = sis; 1022 1023 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 1024 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1025 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 1026 ac97.num = 1; 1027 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 1028 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1029 ac97.num = 2; 1030 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1031 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1032 1033 /* If we return an error here, then snd_card_free() should 1034 * free up any ac97 codecs that got created, as well as the bus. 1035 */ 1036 return rc; 1037 } 1038 1039 static void sis_free_suspend(struct sis7019 *sis) 1040 { 1041 int i; 1042 1043 for (i = 0; i < SIS_SUSPEND_PAGES; i++) 1044 kfree(sis->suspend_state[i]); 1045 } 1046 1047 static int sis_chip_free(struct sis7019 *sis) 1048 { 1049 /* Reset the chip, and disable all interrputs. 1050 */ 1051 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1052 udelay(25); 1053 outl(0, sis->ioport + SIS_GCR); 1054 outl(0, sis->ioport + SIS_GIER); 1055 1056 /* Now, free everything we allocated. 1057 */ 1058 if (sis->irq >= 0) 1059 free_irq(sis->irq, sis); 1060 1061 if (sis->ioaddr) 1062 iounmap(sis->ioaddr); 1063 1064 pci_release_regions(sis->pci); 1065 pci_disable_device(sis->pci); 1066 1067 sis_free_suspend(sis); 1068 return 0; 1069 } 1070 1071 static int sis_dev_free(struct snd_device *dev) 1072 { 1073 struct sis7019 *sis = dev->device_data; 1074 return sis_chip_free(sis); 1075 } 1076 1077 static int sis_chip_init(struct sis7019 *sis) 1078 { 1079 unsigned long io = sis->ioport; 1080 void __iomem *ioaddr = sis->ioaddr; 1081 u16 status; 1082 int count; 1083 int i; 1084 1085 /* Reset the audio controller 1086 */ 1087 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1088 udelay(25); 1089 outl(0, io + SIS_GCR); 1090 1091 /* Get the AC-link semaphore, and reset the codecs 1092 */ 1093 count = 0xffff; 1094 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1095 udelay(1); 1096 1097 if (!count) 1098 return -EIO; 1099 1100 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1101 udelay(250); 1102 1103 count = 0xffff; 1104 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1105 udelay(1); 1106 1107 /* Now that we've finished the reset, find out what's attached. 1108 */ 1109 status = inl(io + SIS_AC97_STATUS); 1110 if (status & SIS_AC97_STATUS_CODEC_READY) 1111 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1112 if (status & SIS_AC97_STATUS_CODEC2_READY) 1113 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1114 if (status & SIS_AC97_STATUS_CODEC3_READY) 1115 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1116 1117 /* All done, let go of the semaphore, and check for errors 1118 */ 1119 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1120 if (!sis->codecs_present || !count) 1121 return -EIO; 1122 1123 /* Let the hardware know that the audio driver is alive, 1124 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1125 * record channels. We're going to want to use Variable Rate Audio 1126 * for recording, to avoid needlessly resampling from 48kHZ. 1127 */ 1128 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1129 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1130 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1131 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1132 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1133 1134 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1135 */ 1136 outl(0, io + SIS_AC97_PSR); 1137 1138 /* There is only one valid DMA setup for a PCI environment. 1139 */ 1140 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1141 1142 /* Reset the syncronization groups for all of the channels 1143 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. 1144 * we'll need to change how we handle these. Until then, we just 1145 * assign sub-mixer 0 to all playback channels, and avoid any 1146 * attenuation on the audio. 1147 */ 1148 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1149 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1150 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1151 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1152 outl(0, io + SIS_MIXER_SYNC_GROUP); 1153 1154 for (i = 0; i < 64; i++) { 1155 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1156 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1157 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1158 } 1159 1160 /* Don't attenuate any audio set for the wave amplifier. 1161 * 1162 * FIXME: Maximum attenuation is set for the music amp, which will 1163 * need to change if we start using the synth engine. 1164 */ 1165 outl(0xffff0000, io + SIS_WEVCR); 1166 1167 /* Ensure that the wave engine is in normal operating mode. 1168 */ 1169 outl(0, io + SIS_WECCR); 1170 1171 /* Go ahead and enable the DMA interrupts. They won't go live 1172 * until we start a channel. 1173 */ 1174 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1175 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1176 1177 return 0; 1178 } 1179 1180 #ifdef CONFIG_PM 1181 static int sis_suspend(struct pci_dev *pci, pm_message_t state) 1182 { 1183 struct snd_card *card = pci_get_drvdata(pci); 1184 struct sis7019 *sis = card->private_data; 1185 void __iomem *ioaddr = sis->ioaddr; 1186 int i; 1187 1188 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1189 snd_pcm_suspend_all(sis->pcm); 1190 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1191 snd_ac97_suspend(sis->ac97[0]); 1192 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1193 snd_ac97_suspend(sis->ac97[1]); 1194 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1195 snd_ac97_suspend(sis->ac97[2]); 1196 1197 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1198 */ 1199 if (sis->irq >= 0) { 1200 free_irq(sis->irq, sis); 1201 sis->irq = -1; 1202 } 1203 1204 /* Save the internal state away 1205 */ 1206 for (i = 0; i < 4; i++) { 1207 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1208 ioaddr += 4096; 1209 } 1210 1211 pci_disable_device(pci); 1212 pci_save_state(pci); 1213 pci_set_power_state(pci, pci_choose_state(pci, state)); 1214 return 0; 1215 } 1216 1217 static int sis_resume(struct pci_dev *pci) 1218 { 1219 struct snd_card *card = pci_get_drvdata(pci); 1220 struct sis7019 *sis = card->private_data; 1221 void __iomem *ioaddr = sis->ioaddr; 1222 int i; 1223 1224 pci_set_power_state(pci, PCI_D0); 1225 pci_restore_state(pci); 1226 1227 if (pci_enable_device(pci) < 0) { 1228 printk(KERN_ERR "sis7019: unable to re-enable device\n"); 1229 goto error; 1230 } 1231 1232 if (sis_chip_init(sis)) { 1233 printk(KERN_ERR "sis7019: unable to re-init controller\n"); 1234 goto error; 1235 } 1236 1237 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, 1238 card->shortname, sis)) { 1239 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq); 1240 goto error; 1241 } 1242 1243 /* Restore saved state, then clear out the page we use for the 1244 * silence buffer. 1245 */ 1246 for (i = 0; i < 4; i++) { 1247 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1248 ioaddr += 4096; 1249 } 1250 1251 memset(sis->suspend_state[0], 0, 4096); 1252 1253 sis->irq = pci->irq; 1254 pci_set_master(pci); 1255 1256 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1257 snd_ac97_resume(sis->ac97[0]); 1258 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1259 snd_ac97_resume(sis->ac97[1]); 1260 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1261 snd_ac97_resume(sis->ac97[2]); 1262 1263 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1264 return 0; 1265 1266 error: 1267 snd_card_disconnect(card); 1268 return -EIO; 1269 } 1270 #endif /* CONFIG_PM */ 1271 1272 static int sis_alloc_suspend(struct sis7019 *sis) 1273 { 1274 int i; 1275 1276 /* We need 16K to store the internal wave engine state during a 1277 * suspend, but we don't need it to be contiguous, so play nice 1278 * with the memory system. We'll also use this area for a silence 1279 * buffer. 1280 */ 1281 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1282 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); 1283 if (!sis->suspend_state[i]) 1284 return -ENOMEM; 1285 } 1286 memset(sis->suspend_state[0], 0, 4096); 1287 1288 return 0; 1289 } 1290 1291 static int __devinit sis_chip_create(struct snd_card *card, 1292 struct pci_dev *pci) 1293 { 1294 struct sis7019 *sis = card->private_data; 1295 struct voice *voice; 1296 static struct snd_device_ops ops = { 1297 .dev_free = sis_dev_free, 1298 }; 1299 int rc; 1300 int i; 1301 1302 rc = pci_enable_device(pci); 1303 if (rc) 1304 goto error_out; 1305 1306 if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) { 1307 printk(KERN_ERR "sis7019: architecture does not support " 1308 "30-bit PCI busmaster DMA"); 1309 goto error_out_enabled; 1310 } 1311 1312 memset(sis, 0, sizeof(*sis)); 1313 mutex_init(&sis->ac97_mutex); 1314 spin_lock_init(&sis->voice_lock); 1315 sis->card = card; 1316 sis->pci = pci; 1317 sis->irq = -1; 1318 sis->ioport = pci_resource_start(pci, 0); 1319 1320 rc = pci_request_regions(pci, "SiS7019"); 1321 if (rc) { 1322 printk(KERN_ERR "sis7019: unable request regions\n"); 1323 goto error_out_enabled; 1324 } 1325 1326 rc = -EIO; 1327 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); 1328 if (!sis->ioaddr) { 1329 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n"); 1330 goto error_out_cleanup; 1331 } 1332 1333 rc = sis_alloc_suspend(sis); 1334 if (rc < 0) { 1335 printk(KERN_ERR "sis7019: unable to allocate state storage\n"); 1336 goto error_out_cleanup; 1337 } 1338 1339 rc = sis_chip_init(sis); 1340 if (rc) 1341 goto error_out_cleanup; 1342 1343 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, 1344 card->shortname, sis)) { 1345 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq); 1346 goto error_out_cleanup; 1347 } 1348 1349 sis->irq = pci->irq; 1350 pci_set_master(pci); 1351 1352 for (i = 0; i < 64; i++) { 1353 voice = &sis->voices[i]; 1354 voice->num = i; 1355 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1356 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1357 } 1358 1359 voice = &sis->capture_voice; 1360 voice->flags = VOICE_CAPTURE; 1361 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1362 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1363 1364 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); 1365 if (rc) 1366 goto error_out_cleanup; 1367 1368 snd_card_set_dev(card, &pci->dev); 1369 1370 return 0; 1371 1372 error_out_cleanup: 1373 sis_chip_free(sis); 1374 1375 error_out_enabled: 1376 pci_disable_device(pci); 1377 1378 error_out: 1379 return rc; 1380 } 1381 1382 static int __devinit snd_sis7019_probe(struct pci_dev *pci, 1383 const struct pci_device_id *pci_id) 1384 { 1385 struct snd_card *card; 1386 struct sis7019 *sis; 1387 int rc; 1388 1389 rc = -ENOENT; 1390 if (!enable) 1391 goto error_out; 1392 1393 rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card); 1394 if (rc < 0) 1395 goto error_out; 1396 1397 strcpy(card->driver, "SiS7019"); 1398 strcpy(card->shortname, "SiS7019"); 1399 rc = sis_chip_create(card, pci); 1400 if (rc) 1401 goto card_error_out; 1402 1403 sis = card->private_data; 1404 1405 rc = sis_mixer_create(sis); 1406 if (rc) 1407 goto card_error_out; 1408 1409 rc = sis_pcm_create(sis); 1410 if (rc) 1411 goto card_error_out; 1412 1413 snprintf(card->longname, sizeof(card->longname), 1414 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1415 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1416 sis->ioport, sis->irq); 1417 1418 rc = snd_card_register(card); 1419 if (rc) 1420 goto card_error_out; 1421 1422 pci_set_drvdata(pci, card); 1423 return 0; 1424 1425 card_error_out: 1426 snd_card_free(card); 1427 1428 error_out: 1429 return rc; 1430 } 1431 1432 static void __devexit snd_sis7019_remove(struct pci_dev *pci) 1433 { 1434 snd_card_free(pci_get_drvdata(pci)); 1435 pci_set_drvdata(pci, NULL); 1436 } 1437 1438 static struct pci_driver sis7019_driver = { 1439 .name = "SiS7019", 1440 .id_table = snd_sis7019_ids, 1441 .probe = snd_sis7019_probe, 1442 .remove = __devexit_p(snd_sis7019_remove), 1443 1444 #ifdef CONFIG_PM 1445 .suspend = sis_suspend, 1446 .resume = sis_resume, 1447 #endif 1448 }; 1449 1450 static int __init sis7019_init(void) 1451 { 1452 return pci_register_driver(&sis7019_driver); 1453 } 1454 1455 static void __exit sis7019_exit(void) 1456 { 1457 pci_unregister_driver(&sis7019_driver); 1458 } 1459 1460 module_init(sis7019_init); 1461 module_exit(sis7019_exit); 1462