1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for SiS7019 Audio Accelerator 4 * 5 * Copyright (C) 2004-2007, David Dillow 6 * Written by David Dillow <dave@thedillows.org> 7 * Inspired by the Trident 4D-WaveDX/NX driver. 8 * 9 * All rights reserved. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/time.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/interrupt.h> 18 #include <linux/delay.h> 19 #include <sound/core.h> 20 #include <sound/ac97_codec.h> 21 #include <sound/initval.h> 22 #include "sis7019.h" 23 24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 25 MODULE_DESCRIPTION("SiS7019"); 26 MODULE_LICENSE("GPL"); 27 28 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 29 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 30 static bool enable = 1; 31 static int codecs = 1; 32 33 module_param(index, int, 0444); 34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 35 module_param(id, charp, 0444); 36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 37 module_param(enable, bool, 0444); 38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 39 module_param(codecs, int, 0444); 40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); 41 42 static const struct pci_device_id snd_sis7019_ids[] = { 43 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 44 { 0, } 45 }; 46 47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 48 49 /* There are three timing modes for the voices. 50 * 51 * For both playback and capture, when the buffer is one or two periods long, 52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 53 * to let us know when the periods have ended. 54 * 55 * When performing playback with more than two periods per buffer, we set 56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 57 * reach it. We then update the offset and continue on until we are 58 * interrupted for the next period. 59 * 60 * Capture channels do not have a SSO, so we allocate a playback channel to 61 * use as a timer for the capture periods. We use the SSO on the playback 62 * channel to clock out virtual periods, and adjust the virtual period length 63 * to maintain synchronization. This algorithm came from the Trident driver. 64 * 65 * FIXME: It'd be nice to make use of some of the synth features in the 66 * hardware, but a woeful lack of documentation is a significant roadblock. 67 */ 68 struct voice { 69 u16 flags; 70 #define VOICE_IN_USE 1 71 #define VOICE_CAPTURE 2 72 #define VOICE_SSO_TIMING 4 73 #define VOICE_SYNC_TIMING 8 74 u16 sync_cso; 75 u16 period_size; 76 u16 buffer_size; 77 u16 sync_period_size; 78 u16 sync_buffer_size; 79 u32 sso; 80 u32 vperiod; 81 struct snd_pcm_substream *substream; 82 struct voice *timing; 83 void __iomem *ctrl_base; 84 void __iomem *wave_base; 85 void __iomem *sync_base; 86 int num; 87 }; 88 89 /* We need four pages to store our wave parameters during a suspend. If 90 * we're not doing power management, we still need to allocate a page 91 * for the silence buffer. 92 */ 93 #ifdef CONFIG_PM_SLEEP 94 #define SIS_SUSPEND_PAGES 4 95 #else 96 #define SIS_SUSPEND_PAGES 1 97 #endif 98 99 struct sis7019 { 100 unsigned long ioport; 101 void __iomem *ioaddr; 102 int irq; 103 int codecs_present; 104 105 struct pci_dev *pci; 106 struct snd_pcm *pcm; 107 struct snd_card *card; 108 struct snd_ac97 *ac97[3]; 109 110 /* Protect against more than one thread hitting the AC97 111 * registers (in a more polite manner than pounding the hardware 112 * semaphore) 113 */ 114 struct mutex ac97_mutex; 115 116 /* voice_lock protects allocation/freeing of the voice descriptions 117 */ 118 spinlock_t voice_lock; 119 120 struct voice voices[64]; 121 struct voice capture_voice; 122 123 /* Allocate pages to store the internal wave state during 124 * suspends. When we're operating, this can be used as a silence 125 * buffer for a timing channel. 126 */ 127 void *suspend_state[SIS_SUSPEND_PAGES]; 128 129 int silence_users; 130 dma_addr_t silence_dma_addr; 131 }; 132 133 /* These values are also used by the module param 'codecs' to indicate 134 * which codecs should be present. 135 */ 136 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 137 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 138 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 139 140 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 141 * documented range of 8-0xfff8 samples. Given that they are 0-based, 142 * that places our period/buffer range at 9-0xfff9 samples. That makes the 143 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 144 * max samples / min samples gives us the max periods in a buffer. 145 * 146 * We'll add a constraint upon open that limits the period and buffer sample 147 * size to values that are legal for the hardware. 148 */ 149 static const struct snd_pcm_hardware sis_playback_hw_info = { 150 .info = (SNDRV_PCM_INFO_MMAP | 151 SNDRV_PCM_INFO_MMAP_VALID | 152 SNDRV_PCM_INFO_INTERLEAVED | 153 SNDRV_PCM_INFO_BLOCK_TRANSFER | 154 SNDRV_PCM_INFO_SYNC_START | 155 SNDRV_PCM_INFO_RESUME), 156 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 157 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 158 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 159 .rate_min = 4000, 160 .rate_max = 48000, 161 .channels_min = 1, 162 .channels_max = 2, 163 .buffer_bytes_max = (0xfff9 * 4), 164 .period_bytes_min = 9, 165 .period_bytes_max = (0xfff9 * 4), 166 .periods_min = 1, 167 .periods_max = (0xfff9 / 9), 168 }; 169 170 static const struct snd_pcm_hardware sis_capture_hw_info = { 171 .info = (SNDRV_PCM_INFO_MMAP | 172 SNDRV_PCM_INFO_MMAP_VALID | 173 SNDRV_PCM_INFO_INTERLEAVED | 174 SNDRV_PCM_INFO_BLOCK_TRANSFER | 175 SNDRV_PCM_INFO_SYNC_START | 176 SNDRV_PCM_INFO_RESUME), 177 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 178 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 179 .rates = SNDRV_PCM_RATE_48000, 180 .rate_min = 4000, 181 .rate_max = 48000, 182 .channels_min = 1, 183 .channels_max = 2, 184 .buffer_bytes_max = (0xfff9 * 4), 185 .period_bytes_min = 9, 186 .period_bytes_max = (0xfff9 * 4), 187 .periods_min = 1, 188 .periods_max = (0xfff9 / 9), 189 }; 190 191 static void sis_update_sso(struct voice *voice, u16 period) 192 { 193 void __iomem *base = voice->ctrl_base; 194 195 voice->sso += period; 196 if (voice->sso >= voice->buffer_size) 197 voice->sso -= voice->buffer_size; 198 199 /* Enforce the documented hardware minimum offset */ 200 if (voice->sso < 8) 201 voice->sso = 8; 202 203 /* The SSO is in the upper 16 bits of the register. */ 204 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 205 } 206 207 static void sis_update_voice(struct voice *voice) 208 { 209 if (voice->flags & VOICE_SSO_TIMING) { 210 sis_update_sso(voice, voice->period_size); 211 } else if (voice->flags & VOICE_SYNC_TIMING) { 212 int sync; 213 214 /* If we've not hit the end of the virtual period, update 215 * our records and keep going. 216 */ 217 if (voice->vperiod > voice->period_size) { 218 voice->vperiod -= voice->period_size; 219 if (voice->vperiod < voice->period_size) 220 sis_update_sso(voice, voice->vperiod); 221 else 222 sis_update_sso(voice, voice->period_size); 223 return; 224 } 225 226 /* Calculate our relative offset between the target and 227 * the actual CSO value. Since we're operating in a loop, 228 * if the value is more than half way around, we can 229 * consider ourselves wrapped. 230 */ 231 sync = voice->sync_cso; 232 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 233 if (sync > (voice->sync_buffer_size / 2)) 234 sync -= voice->sync_buffer_size; 235 236 /* If sync is positive, then we interrupted too early, and 237 * we'll need to come back in a few samples and try again. 238 * There's a minimum wait, as it takes some time for the DMA 239 * engine to startup, etc... 240 */ 241 if (sync > 0) { 242 if (sync < 16) 243 sync = 16; 244 sis_update_sso(voice, sync); 245 return; 246 } 247 248 /* Ok, we interrupted right on time, or (hopefully) just 249 * a bit late. We'll adjst our next waiting period based 250 * on how close we got. 251 * 252 * We need to stay just behind the actual channel to ensure 253 * it really is past a period when we get our interrupt -- 254 * otherwise we'll fall into the early code above and have 255 * a minimum wait time, which makes us quite late here, 256 * eating into the user's time to refresh the buffer, esp. 257 * if using small periods. 258 * 259 * If we're less than 9 samples behind, we're on target. 260 * Otherwise, shorten the next vperiod by the amount we've 261 * been delayed. 262 */ 263 if (sync > -9) 264 voice->vperiod = voice->sync_period_size + 1; 265 else 266 voice->vperiod = voice->sync_period_size + sync + 10; 267 268 if (voice->vperiod < voice->buffer_size) { 269 sis_update_sso(voice, voice->vperiod); 270 voice->vperiod = 0; 271 } else 272 sis_update_sso(voice, voice->period_size); 273 274 sync = voice->sync_cso + voice->sync_period_size; 275 if (sync >= voice->sync_buffer_size) 276 sync -= voice->sync_buffer_size; 277 voice->sync_cso = sync; 278 } 279 280 snd_pcm_period_elapsed(voice->substream); 281 } 282 283 static void sis_voice_irq(u32 status, struct voice *voice) 284 { 285 int bit; 286 287 while (status) { 288 bit = __ffs(status); 289 status >>= bit + 1; 290 voice += bit; 291 sis_update_voice(voice); 292 voice++; 293 } 294 } 295 296 static irqreturn_t sis_interrupt(int irq, void *dev) 297 { 298 struct sis7019 *sis = dev; 299 unsigned long io = sis->ioport; 300 struct voice *voice; 301 u32 intr, status; 302 303 /* We only use the DMA interrupts, and we don't enable any other 304 * source of interrupts. But, it is possible to see an interrupt 305 * status that didn't actually interrupt us, so eliminate anything 306 * we're not expecting to avoid falsely claiming an IRQ, and an 307 * ensuing endless loop. 308 */ 309 intr = inl(io + SIS_GISR); 310 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 311 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 312 if (!intr) 313 return IRQ_NONE; 314 315 do { 316 status = inl(io + SIS_PISR_A); 317 if (status) { 318 sis_voice_irq(status, sis->voices); 319 outl(status, io + SIS_PISR_A); 320 } 321 322 status = inl(io + SIS_PISR_B); 323 if (status) { 324 sis_voice_irq(status, &sis->voices[32]); 325 outl(status, io + SIS_PISR_B); 326 } 327 328 status = inl(io + SIS_RISR); 329 if (status) { 330 voice = &sis->capture_voice; 331 if (!voice->timing) 332 snd_pcm_period_elapsed(voice->substream); 333 334 outl(status, io + SIS_RISR); 335 } 336 337 outl(intr, io + SIS_GISR); 338 intr = inl(io + SIS_GISR); 339 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 340 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 341 } while (intr); 342 343 return IRQ_HANDLED; 344 } 345 346 static u32 sis_rate_to_delta(unsigned int rate) 347 { 348 u32 delta; 349 350 /* This was copied from the trident driver, but it seems its gotten 351 * around a bit... nevertheless, it works well. 352 * 353 * We special case 44100 and 8000 since rounding with the equation 354 * does not give us an accurate enough value. For 11025 and 22050 355 * the equation gives us the best answer. All other frequencies will 356 * also use the equation. JDW 357 */ 358 if (rate == 44100) 359 delta = 0xeb3; 360 else if (rate == 8000) 361 delta = 0x2ab; 362 else if (rate == 48000) 363 delta = 0x1000; 364 else 365 delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff; 366 return delta; 367 } 368 369 static void __sis_map_silence(struct sis7019 *sis) 370 { 371 /* Helper function: must hold sis->voice_lock on entry */ 372 if (!sis->silence_users) 373 sis->silence_dma_addr = dma_map_single(&sis->pci->dev, 374 sis->suspend_state[0], 375 4096, DMA_TO_DEVICE); 376 sis->silence_users++; 377 } 378 379 static void __sis_unmap_silence(struct sis7019 *sis) 380 { 381 /* Helper function: must hold sis->voice_lock on entry */ 382 sis->silence_users--; 383 if (!sis->silence_users) 384 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096, 385 DMA_TO_DEVICE); 386 } 387 388 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 389 { 390 unsigned long flags; 391 392 spin_lock_irqsave(&sis->voice_lock, flags); 393 if (voice->timing) { 394 __sis_unmap_silence(sis); 395 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 396 VOICE_SYNC_TIMING); 397 voice->timing = NULL; 398 } 399 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 400 spin_unlock_irqrestore(&sis->voice_lock, flags); 401 } 402 403 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 404 { 405 /* Must hold the voice_lock on entry */ 406 struct voice *voice; 407 int i; 408 409 for (i = 0; i < 64; i++) { 410 voice = &sis->voices[i]; 411 if (voice->flags & VOICE_IN_USE) 412 continue; 413 voice->flags |= VOICE_IN_USE; 414 goto found_one; 415 } 416 voice = NULL; 417 418 found_one: 419 return voice; 420 } 421 422 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 423 { 424 struct voice *voice; 425 unsigned long flags; 426 427 spin_lock_irqsave(&sis->voice_lock, flags); 428 voice = __sis_alloc_playback_voice(sis); 429 spin_unlock_irqrestore(&sis->voice_lock, flags); 430 431 return voice; 432 } 433 434 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 435 struct snd_pcm_hw_params *hw_params) 436 { 437 struct sis7019 *sis = snd_pcm_substream_chip(substream); 438 struct snd_pcm_runtime *runtime = substream->runtime; 439 struct voice *voice = runtime->private_data; 440 unsigned int period_size, buffer_size; 441 unsigned long flags; 442 int needed; 443 444 /* If there are one or two periods per buffer, we don't need a 445 * timing voice, as we can use the capture channel's interrupts 446 * to clock out the periods. 447 */ 448 period_size = params_period_size(hw_params); 449 buffer_size = params_buffer_size(hw_params); 450 needed = (period_size != buffer_size && 451 period_size != (buffer_size / 2)); 452 453 if (needed && !voice->timing) { 454 spin_lock_irqsave(&sis->voice_lock, flags); 455 voice->timing = __sis_alloc_playback_voice(sis); 456 if (voice->timing) 457 __sis_map_silence(sis); 458 spin_unlock_irqrestore(&sis->voice_lock, flags); 459 if (!voice->timing) 460 return -ENOMEM; 461 voice->timing->substream = substream; 462 } else if (!needed && voice->timing) { 463 sis_free_voice(sis, voice); 464 voice->timing = NULL; 465 } 466 467 return 0; 468 } 469 470 static int sis_playback_open(struct snd_pcm_substream *substream) 471 { 472 struct sis7019 *sis = snd_pcm_substream_chip(substream); 473 struct snd_pcm_runtime *runtime = substream->runtime; 474 struct voice *voice; 475 476 voice = sis_alloc_playback_voice(sis); 477 if (!voice) 478 return -EAGAIN; 479 480 voice->substream = substream; 481 runtime->private_data = voice; 482 runtime->hw = sis_playback_hw_info; 483 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 484 9, 0xfff9); 485 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 486 9, 0xfff9); 487 snd_pcm_set_sync(substream); 488 return 0; 489 } 490 491 static int sis_substream_close(struct snd_pcm_substream *substream) 492 { 493 struct sis7019 *sis = snd_pcm_substream_chip(substream); 494 struct snd_pcm_runtime *runtime = substream->runtime; 495 struct voice *voice = runtime->private_data; 496 497 sis_free_voice(sis, voice); 498 return 0; 499 } 500 501 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 502 { 503 struct snd_pcm_runtime *runtime = substream->runtime; 504 struct voice *voice = runtime->private_data; 505 void __iomem *ctrl_base = voice->ctrl_base; 506 void __iomem *wave_base = voice->wave_base; 507 u32 format, dma_addr, control, sso_eso, delta, reg; 508 u16 leo; 509 510 /* We rely on the PCM core to ensure that the parameters for this 511 * substream do not change on us while we're programming the HW. 512 */ 513 format = 0; 514 if (snd_pcm_format_width(runtime->format) == 8) 515 format |= SIS_PLAY_DMA_FORMAT_8BIT; 516 if (!snd_pcm_format_signed(runtime->format)) 517 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 518 if (runtime->channels == 1) 519 format |= SIS_PLAY_DMA_FORMAT_MONO; 520 521 /* The baseline setup is for a single period per buffer, and 522 * we add bells and whistles as needed from there. 523 */ 524 dma_addr = runtime->dma_addr; 525 leo = runtime->buffer_size - 1; 526 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 527 sso_eso = leo; 528 529 if (runtime->period_size == (runtime->buffer_size / 2)) { 530 control |= SIS_PLAY_DMA_INTR_AT_MLP; 531 } else if (runtime->period_size != runtime->buffer_size) { 532 voice->flags |= VOICE_SSO_TIMING; 533 voice->sso = runtime->period_size - 1; 534 voice->period_size = runtime->period_size; 535 voice->buffer_size = runtime->buffer_size; 536 537 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 538 control |= SIS_PLAY_DMA_INTR_AT_SSO; 539 sso_eso |= (runtime->period_size - 1) << 16; 540 } 541 542 delta = sis_rate_to_delta(runtime->rate); 543 544 /* Ok, we're ready to go, set up the channel. 545 */ 546 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 547 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 548 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 549 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 550 551 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 552 writel(0, wave_base + reg); 553 554 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 555 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 556 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 557 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 558 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 559 wave_base + SIS_WAVE_CHANNEL_CONTROL); 560 561 /* Force PCI writes to post. */ 562 readl(ctrl_base); 563 564 return 0; 565 } 566 567 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 568 { 569 struct sis7019 *sis = snd_pcm_substream_chip(substream); 570 unsigned long io = sis->ioport; 571 struct snd_pcm_substream *s; 572 struct voice *voice; 573 void *chip; 574 int starting; 575 u32 record = 0; 576 u32 play[2] = { 0, 0 }; 577 578 /* No locks needed, as the PCM core will hold the locks on the 579 * substreams, and the HW will only start/stop the indicated voices 580 * without changing the state of the others. 581 */ 582 switch (cmd) { 583 case SNDRV_PCM_TRIGGER_START: 584 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 585 case SNDRV_PCM_TRIGGER_RESUME: 586 starting = 1; 587 break; 588 case SNDRV_PCM_TRIGGER_STOP: 589 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 590 case SNDRV_PCM_TRIGGER_SUSPEND: 591 starting = 0; 592 break; 593 default: 594 return -EINVAL; 595 } 596 597 snd_pcm_group_for_each_entry(s, substream) { 598 /* Make sure it is for us... */ 599 chip = snd_pcm_substream_chip(s); 600 if (chip != sis) 601 continue; 602 603 voice = s->runtime->private_data; 604 if (voice->flags & VOICE_CAPTURE) { 605 record |= 1 << voice->num; 606 voice = voice->timing; 607 } 608 609 /* voice could be NULL if this a recording stream, and it 610 * doesn't have an external timing channel. 611 */ 612 if (voice) 613 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 614 615 snd_pcm_trigger_done(s, substream); 616 } 617 618 if (starting) { 619 if (record) 620 outl(record, io + SIS_RECORD_START_REG); 621 if (play[0]) 622 outl(play[0], io + SIS_PLAY_START_A_REG); 623 if (play[1]) 624 outl(play[1], io + SIS_PLAY_START_B_REG); 625 } else { 626 if (record) 627 outl(record, io + SIS_RECORD_STOP_REG); 628 if (play[0]) 629 outl(play[0], io + SIS_PLAY_STOP_A_REG); 630 if (play[1]) 631 outl(play[1], io + SIS_PLAY_STOP_B_REG); 632 } 633 return 0; 634 } 635 636 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 637 { 638 struct snd_pcm_runtime *runtime = substream->runtime; 639 struct voice *voice = runtime->private_data; 640 u32 cso; 641 642 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 643 cso &= 0xffff; 644 return cso; 645 } 646 647 static int sis_capture_open(struct snd_pcm_substream *substream) 648 { 649 struct sis7019 *sis = snd_pcm_substream_chip(substream); 650 struct snd_pcm_runtime *runtime = substream->runtime; 651 struct voice *voice = &sis->capture_voice; 652 unsigned long flags; 653 654 /* FIXME: The driver only supports recording from one channel 655 * at the moment, but it could support more. 656 */ 657 spin_lock_irqsave(&sis->voice_lock, flags); 658 if (voice->flags & VOICE_IN_USE) 659 voice = NULL; 660 else 661 voice->flags |= VOICE_IN_USE; 662 spin_unlock_irqrestore(&sis->voice_lock, flags); 663 664 if (!voice) 665 return -EAGAIN; 666 667 voice->substream = substream; 668 runtime->private_data = voice; 669 runtime->hw = sis_capture_hw_info; 670 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 671 snd_pcm_limit_hw_rates(runtime); 672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 673 9, 0xfff9); 674 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 675 9, 0xfff9); 676 snd_pcm_set_sync(substream); 677 return 0; 678 } 679 680 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 681 struct snd_pcm_hw_params *hw_params) 682 { 683 struct sis7019 *sis = snd_pcm_substream_chip(substream); 684 int rc; 685 686 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 687 params_rate(hw_params)); 688 if (rc) 689 goto out; 690 691 rc = sis_alloc_timing_voice(substream, hw_params); 692 693 out: 694 return rc; 695 } 696 697 static void sis_prepare_timing_voice(struct voice *voice, 698 struct snd_pcm_substream *substream) 699 { 700 struct sis7019 *sis = snd_pcm_substream_chip(substream); 701 struct snd_pcm_runtime *runtime = substream->runtime; 702 struct voice *timing = voice->timing; 703 void __iomem *play_base = timing->ctrl_base; 704 void __iomem *wave_base = timing->wave_base; 705 u16 buffer_size, period_size; 706 u32 format, control, sso_eso, delta; 707 u32 vperiod, sso, reg; 708 709 /* Set our initial buffer and period as large as we can given a 710 * single page of silence. 711 */ 712 buffer_size = 4096 / runtime->channels; 713 buffer_size /= snd_pcm_format_size(runtime->format, 1); 714 period_size = buffer_size; 715 716 /* Initially, we want to interrupt just a bit behind the end of 717 * the period we're clocking out. 12 samples seems to give a good 718 * delay. 719 * 720 * We want to spread our interrupts throughout the virtual period, 721 * so that we don't end up with two interrupts back to back at the 722 * end -- this helps minimize the effects of any jitter. Adjust our 723 * clocking period size so that the last period is at least a fourth 724 * of a full period. 725 * 726 * This is all moot if we don't need to use virtual periods. 727 */ 728 vperiod = runtime->period_size + 12; 729 if (vperiod > period_size) { 730 u16 tail = vperiod % period_size; 731 u16 quarter_period = period_size / 4; 732 733 if (tail && tail < quarter_period) { 734 u16 loops = vperiod / period_size; 735 736 tail = quarter_period - tail; 737 tail += loops - 1; 738 tail /= loops; 739 period_size -= tail; 740 } 741 742 sso = period_size - 1; 743 } else { 744 /* The initial period will fit inside the buffer, so we 745 * don't need to use virtual periods -- disable them. 746 */ 747 period_size = runtime->period_size; 748 sso = vperiod - 1; 749 vperiod = 0; 750 } 751 752 /* The interrupt handler implements the timing synchronization, so 753 * setup its state. 754 */ 755 timing->flags |= VOICE_SYNC_TIMING; 756 timing->sync_base = voice->ctrl_base; 757 timing->sync_cso = runtime->period_size; 758 timing->sync_period_size = runtime->period_size; 759 timing->sync_buffer_size = runtime->buffer_size; 760 timing->period_size = period_size; 761 timing->buffer_size = buffer_size; 762 timing->sso = sso; 763 timing->vperiod = vperiod; 764 765 /* Using unsigned samples with the all-zero silence buffer 766 * forces the output to the lower rail, killing playback. 767 * So ignore unsigned vs signed -- it doesn't change the timing. 768 */ 769 format = 0; 770 if (snd_pcm_format_width(runtime->format) == 8) 771 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 772 if (runtime->channels == 1) 773 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 774 775 control = timing->buffer_size - 1; 776 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 777 sso_eso = timing->buffer_size - 1; 778 sso_eso |= timing->sso << 16; 779 780 delta = sis_rate_to_delta(runtime->rate); 781 782 /* We've done the math, now configure the channel. 783 */ 784 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 785 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 786 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 787 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 788 789 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 790 writel(0, wave_base + reg); 791 792 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 793 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 794 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 795 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 796 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 797 wave_base + SIS_WAVE_CHANNEL_CONTROL); 798 } 799 800 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 801 { 802 struct snd_pcm_runtime *runtime = substream->runtime; 803 struct voice *voice = runtime->private_data; 804 void __iomem *rec_base = voice->ctrl_base; 805 u32 format, dma_addr, control; 806 u16 leo; 807 808 /* We rely on the PCM core to ensure that the parameters for this 809 * substream do not change on us while we're programming the HW. 810 */ 811 format = 0; 812 if (snd_pcm_format_width(runtime->format) == 8) 813 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 814 if (!snd_pcm_format_signed(runtime->format)) 815 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 816 if (runtime->channels == 1) 817 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 818 819 dma_addr = runtime->dma_addr; 820 leo = runtime->buffer_size - 1; 821 control = leo | SIS_CAPTURE_DMA_LOOP; 822 823 /* If we've got more than two periods per buffer, then we have 824 * use a timing voice to clock out the periods. Otherwise, we can 825 * use the capture channel's interrupts. 826 */ 827 if (voice->timing) { 828 sis_prepare_timing_voice(voice, substream); 829 } else { 830 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 831 if (runtime->period_size != runtime->buffer_size) 832 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 833 } 834 835 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 836 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 837 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 838 839 /* Force the writes to post. */ 840 readl(rec_base); 841 842 return 0; 843 } 844 845 static const struct snd_pcm_ops sis_playback_ops = { 846 .open = sis_playback_open, 847 .close = sis_substream_close, 848 .prepare = sis_pcm_playback_prepare, 849 .trigger = sis_pcm_trigger, 850 .pointer = sis_pcm_pointer, 851 }; 852 853 static const struct snd_pcm_ops sis_capture_ops = { 854 .open = sis_capture_open, 855 .close = sis_substream_close, 856 .hw_params = sis_capture_hw_params, 857 .prepare = sis_pcm_capture_prepare, 858 .trigger = sis_pcm_trigger, 859 .pointer = sis_pcm_pointer, 860 }; 861 862 static int sis_pcm_create(struct sis7019 *sis) 863 { 864 struct snd_pcm *pcm; 865 int rc; 866 867 /* We have 64 voices, and the driver currently records from 868 * only one channel, though that could change in the future. 869 */ 870 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 871 if (rc) 872 return rc; 873 874 pcm->private_data = sis; 875 strcpy(pcm->name, "SiS7019"); 876 sis->pcm = pcm; 877 878 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 879 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 880 881 /* Try to preallocate some memory, but it's not the end of the 882 * world if this fails. 883 */ 884 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 885 &sis->pci->dev, 64*1024, 128*1024); 886 887 return 0; 888 } 889 890 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 891 { 892 unsigned long io = sis->ioport; 893 unsigned short val = 0xffff; 894 u16 status; 895 u16 rdy; 896 int count; 897 static const u16 codec_ready[3] = { 898 SIS_AC97_STATUS_CODEC_READY, 899 SIS_AC97_STATUS_CODEC2_READY, 900 SIS_AC97_STATUS_CODEC3_READY, 901 }; 902 903 rdy = codec_ready[codec]; 904 905 906 /* Get the AC97 semaphore -- software first, so we don't spin 907 * pounding out IO reads on the hardware semaphore... 908 */ 909 mutex_lock(&sis->ac97_mutex); 910 911 count = 0xffff; 912 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 913 udelay(1); 914 915 if (!count) 916 goto timeout; 917 918 /* ... and wait for any outstanding commands to complete ... 919 */ 920 count = 0xffff; 921 do { 922 status = inw(io + SIS_AC97_STATUS); 923 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 924 break; 925 926 udelay(1); 927 } while (--count); 928 929 if (!count) 930 goto timeout_sema; 931 932 /* ... before sending our command and waiting for it to finish ... 933 */ 934 outl(cmd, io + SIS_AC97_CMD); 935 udelay(10); 936 937 count = 0xffff; 938 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 939 udelay(1); 940 941 /* ... and reading the results (if any). 942 */ 943 val = inl(io + SIS_AC97_CMD) >> 16; 944 945 timeout_sema: 946 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 947 timeout: 948 mutex_unlock(&sis->ac97_mutex); 949 950 if (!count) { 951 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", 952 codec, cmd); 953 } 954 955 return val; 956 } 957 958 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 959 unsigned short val) 960 { 961 static const u32 cmd[3] = { 962 SIS_AC97_CMD_CODEC_WRITE, 963 SIS_AC97_CMD_CODEC2_WRITE, 964 SIS_AC97_CMD_CODEC3_WRITE, 965 }; 966 sis_ac97_rw(ac97->private_data, ac97->num, 967 (val << 16) | (reg << 8) | cmd[ac97->num]); 968 } 969 970 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 971 { 972 static const u32 cmd[3] = { 973 SIS_AC97_CMD_CODEC_READ, 974 SIS_AC97_CMD_CODEC2_READ, 975 SIS_AC97_CMD_CODEC3_READ, 976 }; 977 return sis_ac97_rw(ac97->private_data, ac97->num, 978 (reg << 8) | cmd[ac97->num]); 979 } 980 981 static int sis_mixer_create(struct sis7019 *sis) 982 { 983 struct snd_ac97_bus *bus; 984 struct snd_ac97_template ac97; 985 static const struct snd_ac97_bus_ops ops = { 986 .write = sis_ac97_write, 987 .read = sis_ac97_read, 988 }; 989 int rc; 990 991 memset(&ac97, 0, sizeof(ac97)); 992 ac97.private_data = sis; 993 994 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 995 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 996 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 997 ac97.num = 1; 998 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 999 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1000 ac97.num = 2; 1001 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1002 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1003 1004 /* If we return an error here, then snd_card_free() should 1005 * free up any ac97 codecs that got created, as well as the bus. 1006 */ 1007 return rc; 1008 } 1009 1010 static void sis_chip_free(struct snd_card *card) 1011 { 1012 struct sis7019 *sis = card->private_data; 1013 1014 /* Reset the chip, and disable all interrputs. 1015 */ 1016 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1017 udelay(25); 1018 outl(0, sis->ioport + SIS_GCR); 1019 outl(0, sis->ioport + SIS_GIER); 1020 1021 /* Now, free everything we allocated. 1022 */ 1023 if (sis->irq >= 0) 1024 free_irq(sis->irq, sis); 1025 } 1026 1027 static int sis_chip_init(struct sis7019 *sis) 1028 { 1029 unsigned long io = sis->ioport; 1030 void __iomem *ioaddr = sis->ioaddr; 1031 unsigned long timeout; 1032 u16 status; 1033 int count; 1034 int i; 1035 1036 /* Reset the audio controller 1037 */ 1038 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1039 udelay(25); 1040 outl(0, io + SIS_GCR); 1041 1042 /* Get the AC-link semaphore, and reset the codecs 1043 */ 1044 count = 0xffff; 1045 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1046 udelay(1); 1047 1048 if (!count) 1049 return -EIO; 1050 1051 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1052 udelay(250); 1053 1054 count = 0xffff; 1055 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1056 udelay(1); 1057 1058 /* Command complete, we can let go of the semaphore now. 1059 */ 1060 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1061 if (!count) 1062 return -EIO; 1063 1064 /* Now that we've finished the reset, find out what's attached. 1065 * There are some codec/board combinations that take an extremely 1066 * long time to come up. 350+ ms has been observed in the field, 1067 * so we'll give them up to 500ms. 1068 */ 1069 sis->codecs_present = 0; 1070 timeout = msecs_to_jiffies(500) + jiffies; 1071 while (time_before_eq(jiffies, timeout)) { 1072 status = inl(io + SIS_AC97_STATUS); 1073 if (status & SIS_AC97_STATUS_CODEC_READY) 1074 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1075 if (status & SIS_AC97_STATUS_CODEC2_READY) 1076 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1077 if (status & SIS_AC97_STATUS_CODEC3_READY) 1078 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1079 1080 if (sis->codecs_present == codecs) 1081 break; 1082 1083 msleep(1); 1084 } 1085 1086 /* All done, check for errors. 1087 */ 1088 if (!sis->codecs_present) { 1089 dev_err(&sis->pci->dev, "could not find any codecs\n"); 1090 return -EIO; 1091 } 1092 1093 if (sis->codecs_present != codecs) { 1094 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", 1095 sis->codecs_present, codecs); 1096 } 1097 1098 /* Let the hardware know that the audio driver is alive, 1099 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1100 * record channels. We're going to want to use Variable Rate Audio 1101 * for recording, to avoid needlessly resampling from 48kHZ. 1102 */ 1103 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1104 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1105 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1106 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1107 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1108 1109 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1110 */ 1111 outl(0, io + SIS_AC97_PSR); 1112 1113 /* There is only one valid DMA setup for a PCI environment. 1114 */ 1115 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1116 1117 /* Reset the synchronization groups for all of the channels 1118 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. 1119 * we'll need to change how we handle these. Until then, we just 1120 * assign sub-mixer 0 to all playback channels, and avoid any 1121 * attenuation on the audio. 1122 */ 1123 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1124 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1125 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1126 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1127 outl(0, io + SIS_MIXER_SYNC_GROUP); 1128 1129 for (i = 0; i < 64; i++) { 1130 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1131 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1132 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1133 } 1134 1135 /* Don't attenuate any audio set for the wave amplifier. 1136 * 1137 * FIXME: Maximum attenuation is set for the music amp, which will 1138 * need to change if we start using the synth engine. 1139 */ 1140 outl(0xffff0000, io + SIS_WEVCR); 1141 1142 /* Ensure that the wave engine is in normal operating mode. 1143 */ 1144 outl(0, io + SIS_WECCR); 1145 1146 /* Go ahead and enable the DMA interrupts. They won't go live 1147 * until we start a channel. 1148 */ 1149 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1150 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1151 1152 return 0; 1153 } 1154 1155 #ifdef CONFIG_PM_SLEEP 1156 static int sis_suspend(struct device *dev) 1157 { 1158 struct snd_card *card = dev_get_drvdata(dev); 1159 struct sis7019 *sis = card->private_data; 1160 void __iomem *ioaddr = sis->ioaddr; 1161 int i; 1162 1163 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1164 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1165 snd_ac97_suspend(sis->ac97[0]); 1166 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1167 snd_ac97_suspend(sis->ac97[1]); 1168 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1169 snd_ac97_suspend(sis->ac97[2]); 1170 1171 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1172 */ 1173 if (sis->irq >= 0) { 1174 free_irq(sis->irq, sis); 1175 sis->irq = -1; 1176 } 1177 1178 /* Save the internal state away 1179 */ 1180 for (i = 0; i < 4; i++) { 1181 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1182 ioaddr += 4096; 1183 } 1184 1185 return 0; 1186 } 1187 1188 static int sis_resume(struct device *dev) 1189 { 1190 struct pci_dev *pci = to_pci_dev(dev); 1191 struct snd_card *card = dev_get_drvdata(dev); 1192 struct sis7019 *sis = card->private_data; 1193 void __iomem *ioaddr = sis->ioaddr; 1194 int i; 1195 1196 if (sis_chip_init(sis)) { 1197 dev_err(&pci->dev, "unable to re-init controller\n"); 1198 goto error; 1199 } 1200 1201 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, 1202 KBUILD_MODNAME, sis)) { 1203 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); 1204 goto error; 1205 } 1206 1207 /* Restore saved state, then clear out the page we use for the 1208 * silence buffer. 1209 */ 1210 for (i = 0; i < 4; i++) { 1211 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1212 ioaddr += 4096; 1213 } 1214 1215 memset(sis->suspend_state[0], 0, 4096); 1216 1217 sis->irq = pci->irq; 1218 1219 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1220 snd_ac97_resume(sis->ac97[0]); 1221 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1222 snd_ac97_resume(sis->ac97[1]); 1223 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1224 snd_ac97_resume(sis->ac97[2]); 1225 1226 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1227 return 0; 1228 1229 error: 1230 snd_card_disconnect(card); 1231 return -EIO; 1232 } 1233 1234 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); 1235 #define SIS_PM_OPS &sis_pm 1236 #else 1237 #define SIS_PM_OPS NULL 1238 #endif /* CONFIG_PM_SLEEP */ 1239 1240 static int sis_alloc_suspend(struct sis7019 *sis) 1241 { 1242 int i; 1243 1244 /* We need 16K to store the internal wave engine state during a 1245 * suspend, but we don't need it to be contiguous, so play nice 1246 * with the memory system. We'll also use this area for a silence 1247 * buffer. 1248 */ 1249 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1250 sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096, 1251 GFP_KERNEL); 1252 if (!sis->suspend_state[i]) 1253 return -ENOMEM; 1254 } 1255 memset(sis->suspend_state[0], 0, 4096); 1256 1257 return 0; 1258 } 1259 1260 static int sis_chip_create(struct snd_card *card, 1261 struct pci_dev *pci) 1262 { 1263 struct sis7019 *sis = card->private_data; 1264 struct voice *voice; 1265 int rc; 1266 int i; 1267 1268 rc = pcim_enable_device(pci); 1269 if (rc) 1270 return rc; 1271 1272 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30)); 1273 if (rc < 0) { 1274 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); 1275 return -ENXIO; 1276 } 1277 1278 mutex_init(&sis->ac97_mutex); 1279 spin_lock_init(&sis->voice_lock); 1280 sis->card = card; 1281 sis->pci = pci; 1282 sis->irq = -1; 1283 sis->ioport = pci_resource_start(pci, 0); 1284 1285 rc = pci_request_regions(pci, "SiS7019"); 1286 if (rc) { 1287 dev_err(&pci->dev, "unable request regions\n"); 1288 return rc; 1289 } 1290 1291 sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000); 1292 if (!sis->ioaddr) { 1293 dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); 1294 return -EIO; 1295 } 1296 1297 rc = sis_alloc_suspend(sis); 1298 if (rc < 0) { 1299 dev_err(&pci->dev, "unable to allocate state storage\n"); 1300 return rc; 1301 } 1302 1303 rc = sis_chip_init(sis); 1304 if (rc) 1305 return rc; 1306 card->private_free = sis_chip_free; 1307 1308 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, 1309 sis); 1310 if (rc) { 1311 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); 1312 return rc; 1313 } 1314 1315 sis->irq = pci->irq; 1316 card->sync_irq = sis->irq; 1317 pci_set_master(pci); 1318 1319 for (i = 0; i < 64; i++) { 1320 voice = &sis->voices[i]; 1321 voice->num = i; 1322 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1323 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1324 } 1325 1326 voice = &sis->capture_voice; 1327 voice->flags = VOICE_CAPTURE; 1328 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1329 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1330 1331 return 0; 1332 } 1333 1334 static int __snd_sis7019_probe(struct pci_dev *pci, 1335 const struct pci_device_id *pci_id) 1336 { 1337 struct snd_card *card; 1338 struct sis7019 *sis; 1339 int rc; 1340 1341 if (!enable) 1342 return -ENOENT; 1343 1344 /* The user can specify which codecs should be present so that we 1345 * can wait for them to show up if they are slow to recover from 1346 * the AC97 cold reset. We default to a single codec, the primary. 1347 * 1348 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. 1349 */ 1350 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | 1351 SIS_TERTIARY_CODEC_PRESENT; 1352 if (!codecs) 1353 codecs = SIS_PRIMARY_CODEC_PRESENT; 1354 1355 rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE, 1356 sizeof(*sis), &card); 1357 if (rc < 0) 1358 return rc; 1359 1360 strcpy(card->driver, "SiS7019"); 1361 strcpy(card->shortname, "SiS7019"); 1362 rc = sis_chip_create(card, pci); 1363 if (rc) 1364 return rc; 1365 1366 sis = card->private_data; 1367 1368 rc = sis_mixer_create(sis); 1369 if (rc) 1370 return rc; 1371 1372 rc = sis_pcm_create(sis); 1373 if (rc) 1374 return rc; 1375 1376 snprintf(card->longname, sizeof(card->longname), 1377 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1378 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1379 sis->ioport, sis->irq); 1380 1381 rc = snd_card_register(card); 1382 if (rc) 1383 return rc; 1384 1385 pci_set_drvdata(pci, card); 1386 return 0; 1387 } 1388 1389 static int snd_sis7019_probe(struct pci_dev *pci, 1390 const struct pci_device_id *pci_id) 1391 { 1392 return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id)); 1393 } 1394 1395 static struct pci_driver sis7019_driver = { 1396 .name = KBUILD_MODNAME, 1397 .id_table = snd_sis7019_ids, 1398 .probe = snd_sis7019_probe, 1399 .driver = { 1400 .pm = SIS_PM_OPS, 1401 }, 1402 }; 1403 1404 module_pci_driver(sis7019_driver); 1405