xref: /openbmc/linux/sound/pci/sis7019.c (revision 9257bd80b917cc7908abd27ed5a5211964563f62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23 
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27 
28 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
29 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
30 static bool enable = 1;
31 static int codecs = 1;
32 
33 module_param(index, int, 0444);
34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id, charp, 0444);
36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable, bool, 0444);
38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs, int, 0444);
40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41 
42 static const struct pci_device_id snd_sis7019_ids[] = {
43 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44 	{ 0, }
45 };
46 
47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48 
49 /* There are three timing modes for the voices.
50  *
51  * For both playback and capture, when the buffer is one or two periods long,
52  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53  * to let us know when the periods have ended.
54  *
55  * When performing playback with more than two periods per buffer, we set
56  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57  * reach it. We then update the offset and continue on until we are
58  * interrupted for the next period.
59  *
60  * Capture channels do not have a SSO, so we allocate a playback channel to
61  * use as a timer for the capture periods. We use the SSO on the playback
62  * channel to clock out virtual periods, and adjust the virtual period length
63  * to maintain synchronization. This algorithm came from the Trident driver.
64  *
65  * FIXME: It'd be nice to make use of some of the synth features in the
66  * hardware, but a woeful lack of documentation is a significant roadblock.
67  */
68 struct voice {
69 	u16 flags;
70 #define 	VOICE_IN_USE		1
71 #define 	VOICE_CAPTURE		2
72 #define 	VOICE_SSO_TIMING	4
73 #define 	VOICE_SYNC_TIMING	8
74 	u16 sync_cso;
75 	u16 period_size;
76 	u16 buffer_size;
77 	u16 sync_period_size;
78 	u16 sync_buffer_size;
79 	u32 sso;
80 	u32 vperiod;
81 	struct snd_pcm_substream *substream;
82 	struct voice *timing;
83 	void __iomem *ctrl_base;
84 	void __iomem *wave_base;
85 	void __iomem *sync_base;
86 	int num;
87 };
88 
89 /* We need four pages to store our wave parameters during a suspend. If
90  * we're not doing power management, we still need to allocate a page
91  * for the silence buffer.
92  */
93 #ifdef CONFIG_PM_SLEEP
94 #define SIS_SUSPEND_PAGES	4
95 #else
96 #define SIS_SUSPEND_PAGES	1
97 #endif
98 
99 struct sis7019 {
100 	unsigned long ioport;
101 	void __iomem *ioaddr;
102 	int irq;
103 	int codecs_present;
104 
105 	struct pci_dev *pci;
106 	struct snd_pcm *pcm;
107 	struct snd_card *card;
108 	struct snd_ac97 *ac97[3];
109 
110 	/* Protect against more than one thread hitting the AC97
111 	 * registers (in a more polite manner than pounding the hardware
112 	 * semaphore)
113 	 */
114 	struct mutex ac97_mutex;
115 
116 	/* voice_lock protects allocation/freeing of the voice descriptions
117 	 */
118 	spinlock_t voice_lock;
119 
120 	struct voice voices[64];
121 	struct voice capture_voice;
122 
123 	/* Allocate pages to store the internal wave state during
124 	 * suspends. When we're operating, this can be used as a silence
125 	 * buffer for a timing channel.
126 	 */
127 	void *suspend_state[SIS_SUSPEND_PAGES];
128 
129 	int silence_users;
130 	dma_addr_t silence_dma_addr;
131 };
132 
133 /* These values are also used by the module param 'codecs' to indicate
134  * which codecs should be present.
135  */
136 #define SIS_PRIMARY_CODEC_PRESENT	0x0001
137 #define SIS_SECONDARY_CODEC_PRESENT	0x0002
138 #define SIS_TERTIARY_CODEC_PRESENT	0x0004
139 
140 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
141  * documented range of 8-0xfff8 samples. Given that they are 0-based,
142  * that places our period/buffer range at 9-0xfff9 samples. That makes the
143  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
144  * max samples / min samples gives us the max periods in a buffer.
145  *
146  * We'll add a constraint upon open that limits the period and buffer sample
147  * size to values that are legal for the hardware.
148  */
149 static const struct snd_pcm_hardware sis_playback_hw_info = {
150 	.info = (SNDRV_PCM_INFO_MMAP |
151 		 SNDRV_PCM_INFO_MMAP_VALID |
152 		 SNDRV_PCM_INFO_INTERLEAVED |
153 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
154 		 SNDRV_PCM_INFO_SYNC_START |
155 		 SNDRV_PCM_INFO_RESUME),
156 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
157 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
158 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
159 	.rate_min = 4000,
160 	.rate_max = 48000,
161 	.channels_min = 1,
162 	.channels_max = 2,
163 	.buffer_bytes_max = (0xfff9 * 4),
164 	.period_bytes_min = 9,
165 	.period_bytes_max = (0xfff9 * 4),
166 	.periods_min = 1,
167 	.periods_max = (0xfff9 / 9),
168 };
169 
170 static const struct snd_pcm_hardware sis_capture_hw_info = {
171 	.info = (SNDRV_PCM_INFO_MMAP |
172 		 SNDRV_PCM_INFO_MMAP_VALID |
173 		 SNDRV_PCM_INFO_INTERLEAVED |
174 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
175 		 SNDRV_PCM_INFO_SYNC_START |
176 		 SNDRV_PCM_INFO_RESUME),
177 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
178 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
179 	.rates = SNDRV_PCM_RATE_48000,
180 	.rate_min = 4000,
181 	.rate_max = 48000,
182 	.channels_min = 1,
183 	.channels_max = 2,
184 	.buffer_bytes_max = (0xfff9 * 4),
185 	.period_bytes_min = 9,
186 	.period_bytes_max = (0xfff9 * 4),
187 	.periods_min = 1,
188 	.periods_max = (0xfff9 / 9),
189 };
190 
191 static void sis_update_sso(struct voice *voice, u16 period)
192 {
193 	void __iomem *base = voice->ctrl_base;
194 
195 	voice->sso += period;
196 	if (voice->sso >= voice->buffer_size)
197 		voice->sso -= voice->buffer_size;
198 
199 	/* Enforce the documented hardware minimum offset */
200 	if (voice->sso < 8)
201 		voice->sso = 8;
202 
203 	/* The SSO is in the upper 16 bits of the register. */
204 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
205 }
206 
207 static void sis_update_voice(struct voice *voice)
208 {
209 	if (voice->flags & VOICE_SSO_TIMING) {
210 		sis_update_sso(voice, voice->period_size);
211 	} else if (voice->flags & VOICE_SYNC_TIMING) {
212 		int sync;
213 
214 		/* If we've not hit the end of the virtual period, update
215 		 * our records and keep going.
216 		 */
217 		if (voice->vperiod > voice->period_size) {
218 			voice->vperiod -= voice->period_size;
219 			if (voice->vperiod < voice->period_size)
220 				sis_update_sso(voice, voice->vperiod);
221 			else
222 				sis_update_sso(voice, voice->period_size);
223 			return;
224 		}
225 
226 		/* Calculate our relative offset between the target and
227 		 * the actual CSO value. Since we're operating in a loop,
228 		 * if the value is more than half way around, we can
229 		 * consider ourselves wrapped.
230 		 */
231 		sync = voice->sync_cso;
232 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
233 		if (sync > (voice->sync_buffer_size / 2))
234 			sync -= voice->sync_buffer_size;
235 
236 		/* If sync is positive, then we interrupted too early, and
237 		 * we'll need to come back in a few samples and try again.
238 		 * There's a minimum wait, as it takes some time for the DMA
239 		 * engine to startup, etc...
240 		 */
241 		if (sync > 0) {
242 			if (sync < 16)
243 				sync = 16;
244 			sis_update_sso(voice, sync);
245 			return;
246 		}
247 
248 		/* Ok, we interrupted right on time, or (hopefully) just
249 		 * a bit late. We'll adjst our next waiting period based
250 		 * on how close we got.
251 		 *
252 		 * We need to stay just behind the actual channel to ensure
253 		 * it really is past a period when we get our interrupt --
254 		 * otherwise we'll fall into the early code above and have
255 		 * a minimum wait time, which makes us quite late here,
256 		 * eating into the user's time to refresh the buffer, esp.
257 		 * if using small periods.
258 		 *
259 		 * If we're less than 9 samples behind, we're on target.
260 		 * Otherwise, shorten the next vperiod by the amount we've
261 		 * been delayed.
262 		 */
263 		if (sync > -9)
264 			voice->vperiod = voice->sync_period_size + 1;
265 		else
266 			voice->vperiod = voice->sync_period_size + sync + 10;
267 
268 		if (voice->vperiod < voice->buffer_size) {
269 			sis_update_sso(voice, voice->vperiod);
270 			voice->vperiod = 0;
271 		} else
272 			sis_update_sso(voice, voice->period_size);
273 
274 		sync = voice->sync_cso + voice->sync_period_size;
275 		if (sync >= voice->sync_buffer_size)
276 			sync -= voice->sync_buffer_size;
277 		voice->sync_cso = sync;
278 	}
279 
280 	snd_pcm_period_elapsed(voice->substream);
281 }
282 
283 static void sis_voice_irq(u32 status, struct voice *voice)
284 {
285 	int bit;
286 
287 	while (status) {
288 		bit = __ffs(status);
289 		status >>= bit + 1;
290 		voice += bit;
291 		sis_update_voice(voice);
292 		voice++;
293 	}
294 }
295 
296 static irqreturn_t sis_interrupt(int irq, void *dev)
297 {
298 	struct sis7019 *sis = dev;
299 	unsigned long io = sis->ioport;
300 	struct voice *voice;
301 	u32 intr, status;
302 
303 	/* We only use the DMA interrupts, and we don't enable any other
304 	 * source of interrupts. But, it is possible to see an interrupt
305 	 * status that didn't actually interrupt us, so eliminate anything
306 	 * we're not expecting to avoid falsely claiming an IRQ, and an
307 	 * ensuing endless loop.
308 	 */
309 	intr = inl(io + SIS_GISR);
310 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
311 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
312 	if (!intr)
313 		return IRQ_NONE;
314 
315 	do {
316 		status = inl(io + SIS_PISR_A);
317 		if (status) {
318 			sis_voice_irq(status, sis->voices);
319 			outl(status, io + SIS_PISR_A);
320 		}
321 
322 		status = inl(io + SIS_PISR_B);
323 		if (status) {
324 			sis_voice_irq(status, &sis->voices[32]);
325 			outl(status, io + SIS_PISR_B);
326 		}
327 
328 		status = inl(io + SIS_RISR);
329 		if (status) {
330 			voice = &sis->capture_voice;
331 			if (!voice->timing)
332 				snd_pcm_period_elapsed(voice->substream);
333 
334 			outl(status, io + SIS_RISR);
335 		}
336 
337 		outl(intr, io + SIS_GISR);
338 		intr = inl(io + SIS_GISR);
339 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
340 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
341 	} while (intr);
342 
343 	return IRQ_HANDLED;
344 }
345 
346 static u32 sis_rate_to_delta(unsigned int rate)
347 {
348 	u32 delta;
349 
350 	/* This was copied from the trident driver, but it seems its gotten
351 	 * around a bit... nevertheless, it works well.
352 	 *
353 	 * We special case 44100 and 8000 since rounding with the equation
354 	 * does not give us an accurate enough value. For 11025 and 22050
355 	 * the equation gives us the best answer. All other frequencies will
356 	 * also use the equation. JDW
357 	 */
358 	if (rate == 44100)
359 		delta = 0xeb3;
360 	else if (rate == 8000)
361 		delta = 0x2ab;
362 	else if (rate == 48000)
363 		delta = 0x1000;
364 	else
365 		delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
366 	return delta;
367 }
368 
369 static void __sis_map_silence(struct sis7019 *sis)
370 {
371 	/* Helper function: must hold sis->voice_lock on entry */
372 	if (!sis->silence_users)
373 		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
374 						sis->suspend_state[0],
375 						4096, DMA_TO_DEVICE);
376 	sis->silence_users++;
377 }
378 
379 static void __sis_unmap_silence(struct sis7019 *sis)
380 {
381 	/* Helper function: must hold sis->voice_lock on entry */
382 	sis->silence_users--;
383 	if (!sis->silence_users)
384 		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
385 					DMA_TO_DEVICE);
386 }
387 
388 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
389 {
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(&sis->voice_lock, flags);
393 	if (voice->timing) {
394 		__sis_unmap_silence(sis);
395 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
396 						VOICE_SYNC_TIMING);
397 		voice->timing = NULL;
398 	}
399 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
400 	spin_unlock_irqrestore(&sis->voice_lock, flags);
401 }
402 
403 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
404 {
405 	/* Must hold the voice_lock on entry */
406 	struct voice *voice;
407 	int i;
408 
409 	for (i = 0; i < 64; i++) {
410 		voice = &sis->voices[i];
411 		if (voice->flags & VOICE_IN_USE)
412 			continue;
413 		voice->flags |= VOICE_IN_USE;
414 		goto found_one;
415 	}
416 	voice = NULL;
417 
418 found_one:
419 	return voice;
420 }
421 
422 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
423 {
424 	struct voice *voice;
425 	unsigned long flags;
426 
427 	spin_lock_irqsave(&sis->voice_lock, flags);
428 	voice = __sis_alloc_playback_voice(sis);
429 	spin_unlock_irqrestore(&sis->voice_lock, flags);
430 
431 	return voice;
432 }
433 
434 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
435 					struct snd_pcm_hw_params *hw_params)
436 {
437 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
438 	struct snd_pcm_runtime *runtime = substream->runtime;
439 	struct voice *voice = runtime->private_data;
440 	unsigned int period_size, buffer_size;
441 	unsigned long flags;
442 	int needed;
443 
444 	/* If there are one or two periods per buffer, we don't need a
445 	 * timing voice, as we can use the capture channel's interrupts
446 	 * to clock out the periods.
447 	 */
448 	period_size = params_period_size(hw_params);
449 	buffer_size = params_buffer_size(hw_params);
450 	needed = (period_size != buffer_size &&
451 			period_size != (buffer_size / 2));
452 
453 	if (needed && !voice->timing) {
454 		spin_lock_irqsave(&sis->voice_lock, flags);
455 		voice->timing = __sis_alloc_playback_voice(sis);
456 		if (voice->timing)
457 			__sis_map_silence(sis);
458 		spin_unlock_irqrestore(&sis->voice_lock, flags);
459 		if (!voice->timing)
460 			return -ENOMEM;
461 		voice->timing->substream = substream;
462 	} else if (!needed && voice->timing) {
463 		sis_free_voice(sis, voice);
464 		voice->timing = NULL;
465 	}
466 
467 	return 0;
468 }
469 
470 static int sis_playback_open(struct snd_pcm_substream *substream)
471 {
472 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
473 	struct snd_pcm_runtime *runtime = substream->runtime;
474 	struct voice *voice;
475 
476 	voice = sis_alloc_playback_voice(sis);
477 	if (!voice)
478 		return -EAGAIN;
479 
480 	voice->substream = substream;
481 	runtime->private_data = voice;
482 	runtime->hw = sis_playback_hw_info;
483 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
484 						9, 0xfff9);
485 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
486 						9, 0xfff9);
487 	snd_pcm_set_sync(substream);
488 	return 0;
489 }
490 
491 static int sis_substream_close(struct snd_pcm_substream *substream)
492 {
493 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
494 	struct snd_pcm_runtime *runtime = substream->runtime;
495 	struct voice *voice = runtime->private_data;
496 
497 	sis_free_voice(sis, voice);
498 	return 0;
499 }
500 
501 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
502 {
503 	struct snd_pcm_runtime *runtime = substream->runtime;
504 	struct voice *voice = runtime->private_data;
505 	void __iomem *ctrl_base = voice->ctrl_base;
506 	void __iomem *wave_base = voice->wave_base;
507 	u32 format, dma_addr, control, sso_eso, delta, reg;
508 	u16 leo;
509 
510 	/* We rely on the PCM core to ensure that the parameters for this
511 	 * substream do not change on us while we're programming the HW.
512 	 */
513 	format = 0;
514 	if (snd_pcm_format_width(runtime->format) == 8)
515 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
516 	if (!snd_pcm_format_signed(runtime->format))
517 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
518 	if (runtime->channels == 1)
519 		format |= SIS_PLAY_DMA_FORMAT_MONO;
520 
521 	/* The baseline setup is for a single period per buffer, and
522 	 * we add bells and whistles as needed from there.
523 	 */
524 	dma_addr = runtime->dma_addr;
525 	leo = runtime->buffer_size - 1;
526 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
527 	sso_eso = leo;
528 
529 	if (runtime->period_size == (runtime->buffer_size / 2)) {
530 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
531 	} else if (runtime->period_size != runtime->buffer_size) {
532 		voice->flags |= VOICE_SSO_TIMING;
533 		voice->sso = runtime->period_size - 1;
534 		voice->period_size = runtime->period_size;
535 		voice->buffer_size = runtime->buffer_size;
536 
537 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
538 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
539 		sso_eso |= (runtime->period_size - 1) << 16;
540 	}
541 
542 	delta = sis_rate_to_delta(runtime->rate);
543 
544 	/* Ok, we're ready to go, set up the channel.
545 	 */
546 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
547 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
548 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
549 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
550 
551 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
552 		writel(0, wave_base + reg);
553 
554 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
555 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
556 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
557 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
558 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
559 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
560 
561 	/* Force PCI writes to post. */
562 	readl(ctrl_base);
563 
564 	return 0;
565 }
566 
567 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
568 {
569 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
570 	unsigned long io = sis->ioport;
571 	struct snd_pcm_substream *s;
572 	struct voice *voice;
573 	void *chip;
574 	int starting;
575 	u32 record = 0;
576 	u32 play[2] = { 0, 0 };
577 
578 	/* No locks needed, as the PCM core will hold the locks on the
579 	 * substreams, and the HW will only start/stop the indicated voices
580 	 * without changing the state of the others.
581 	 */
582 	switch (cmd) {
583 	case SNDRV_PCM_TRIGGER_START:
584 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
585 	case SNDRV_PCM_TRIGGER_RESUME:
586 		starting = 1;
587 		break;
588 	case SNDRV_PCM_TRIGGER_STOP:
589 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
590 	case SNDRV_PCM_TRIGGER_SUSPEND:
591 		starting = 0;
592 		break;
593 	default:
594 		return -EINVAL;
595 	}
596 
597 	snd_pcm_group_for_each_entry(s, substream) {
598 		/* Make sure it is for us... */
599 		chip = snd_pcm_substream_chip(s);
600 		if (chip != sis)
601 			continue;
602 
603 		voice = s->runtime->private_data;
604 		if (voice->flags & VOICE_CAPTURE) {
605 			record |= 1 << voice->num;
606 			voice = voice->timing;
607 		}
608 
609 		/* voice could be NULL if this a recording stream, and it
610 		 * doesn't have an external timing channel.
611 		 */
612 		if (voice)
613 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
614 
615 		snd_pcm_trigger_done(s, substream);
616 	}
617 
618 	if (starting) {
619 		if (record)
620 			outl(record, io + SIS_RECORD_START_REG);
621 		if (play[0])
622 			outl(play[0], io + SIS_PLAY_START_A_REG);
623 		if (play[1])
624 			outl(play[1], io + SIS_PLAY_START_B_REG);
625 	} else {
626 		if (record)
627 			outl(record, io + SIS_RECORD_STOP_REG);
628 		if (play[0])
629 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
630 		if (play[1])
631 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
632 	}
633 	return 0;
634 }
635 
636 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
637 {
638 	struct snd_pcm_runtime *runtime = substream->runtime;
639 	struct voice *voice = runtime->private_data;
640 	u32 cso;
641 
642 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
643 	cso &= 0xffff;
644 	return cso;
645 }
646 
647 static int sis_capture_open(struct snd_pcm_substream *substream)
648 {
649 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
650 	struct snd_pcm_runtime *runtime = substream->runtime;
651 	struct voice *voice = &sis->capture_voice;
652 	unsigned long flags;
653 
654 	/* FIXME: The driver only supports recording from one channel
655 	 * at the moment, but it could support more.
656 	 */
657 	spin_lock_irqsave(&sis->voice_lock, flags);
658 	if (voice->flags & VOICE_IN_USE)
659 		voice = NULL;
660 	else
661 		voice->flags |= VOICE_IN_USE;
662 	spin_unlock_irqrestore(&sis->voice_lock, flags);
663 
664 	if (!voice)
665 		return -EAGAIN;
666 
667 	voice->substream = substream;
668 	runtime->private_data = voice;
669 	runtime->hw = sis_capture_hw_info;
670 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
671 	snd_pcm_limit_hw_rates(runtime);
672 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
673 						9, 0xfff9);
674 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
675 						9, 0xfff9);
676 	snd_pcm_set_sync(substream);
677 	return 0;
678 }
679 
680 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
681 					struct snd_pcm_hw_params *hw_params)
682 {
683 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
684 	int rc;
685 
686 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
687 						params_rate(hw_params));
688 	if (rc)
689 		goto out;
690 
691 	rc = sis_alloc_timing_voice(substream, hw_params);
692 
693 out:
694 	return rc;
695 }
696 
697 static void sis_prepare_timing_voice(struct voice *voice,
698 					struct snd_pcm_substream *substream)
699 {
700 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
701 	struct snd_pcm_runtime *runtime = substream->runtime;
702 	struct voice *timing = voice->timing;
703 	void __iomem *play_base = timing->ctrl_base;
704 	void __iomem *wave_base = timing->wave_base;
705 	u16 buffer_size, period_size;
706 	u32 format, control, sso_eso, delta;
707 	u32 vperiod, sso, reg;
708 
709 	/* Set our initial buffer and period as large as we can given a
710 	 * single page of silence.
711 	 */
712 	buffer_size = 4096 / runtime->channels;
713 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
714 	period_size = buffer_size;
715 
716 	/* Initially, we want to interrupt just a bit behind the end of
717 	 * the period we're clocking out. 12 samples seems to give a good
718 	 * delay.
719 	 *
720 	 * We want to spread our interrupts throughout the virtual period,
721 	 * so that we don't end up with two interrupts back to back at the
722 	 * end -- this helps minimize the effects of any jitter. Adjust our
723 	 * clocking period size so that the last period is at least a fourth
724 	 * of a full period.
725 	 *
726 	 * This is all moot if we don't need to use virtual periods.
727 	 */
728 	vperiod = runtime->period_size + 12;
729 	if (vperiod > period_size) {
730 		u16 tail = vperiod % period_size;
731 		u16 quarter_period = period_size / 4;
732 
733 		if (tail && tail < quarter_period) {
734 			u16 loops = vperiod / period_size;
735 
736 			tail = quarter_period - tail;
737 			tail += loops - 1;
738 			tail /= loops;
739 			period_size -= tail;
740 		}
741 
742 		sso = period_size - 1;
743 	} else {
744 		/* The initial period will fit inside the buffer, so we
745 		 * don't need to use virtual periods -- disable them.
746 		 */
747 		period_size = runtime->period_size;
748 		sso = vperiod - 1;
749 		vperiod = 0;
750 	}
751 
752 	/* The interrupt handler implements the timing synchronization, so
753 	 * setup its state.
754 	 */
755 	timing->flags |= VOICE_SYNC_TIMING;
756 	timing->sync_base = voice->ctrl_base;
757 	timing->sync_cso = runtime->period_size;
758 	timing->sync_period_size = runtime->period_size;
759 	timing->sync_buffer_size = runtime->buffer_size;
760 	timing->period_size = period_size;
761 	timing->buffer_size = buffer_size;
762 	timing->sso = sso;
763 	timing->vperiod = vperiod;
764 
765 	/* Using unsigned samples with the all-zero silence buffer
766 	 * forces the output to the lower rail, killing playback.
767 	 * So ignore unsigned vs signed -- it doesn't change the timing.
768 	 */
769 	format = 0;
770 	if (snd_pcm_format_width(runtime->format) == 8)
771 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
772 	if (runtime->channels == 1)
773 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
774 
775 	control = timing->buffer_size - 1;
776 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
777 	sso_eso = timing->buffer_size - 1;
778 	sso_eso |= timing->sso << 16;
779 
780 	delta = sis_rate_to_delta(runtime->rate);
781 
782 	/* We've done the math, now configure the channel.
783 	 */
784 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
785 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
786 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
787 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
788 
789 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
790 		writel(0, wave_base + reg);
791 
792 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
793 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
794 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
795 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
796 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
797 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
798 }
799 
800 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
801 {
802 	struct snd_pcm_runtime *runtime = substream->runtime;
803 	struct voice *voice = runtime->private_data;
804 	void __iomem *rec_base = voice->ctrl_base;
805 	u32 format, dma_addr, control;
806 	u16 leo;
807 
808 	/* We rely on the PCM core to ensure that the parameters for this
809 	 * substream do not change on us while we're programming the HW.
810 	 */
811 	format = 0;
812 	if (snd_pcm_format_width(runtime->format) == 8)
813 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
814 	if (!snd_pcm_format_signed(runtime->format))
815 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
816 	if (runtime->channels == 1)
817 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
818 
819 	dma_addr = runtime->dma_addr;
820 	leo = runtime->buffer_size - 1;
821 	control = leo | SIS_CAPTURE_DMA_LOOP;
822 
823 	/* If we've got more than two periods per buffer, then we have
824 	 * use a timing voice to clock out the periods. Otherwise, we can
825 	 * use the capture channel's interrupts.
826 	 */
827 	if (voice->timing) {
828 		sis_prepare_timing_voice(voice, substream);
829 	} else {
830 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
831 		if (runtime->period_size != runtime->buffer_size)
832 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
833 	}
834 
835 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
836 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
837 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
838 
839 	/* Force the writes to post. */
840 	readl(rec_base);
841 
842 	return 0;
843 }
844 
845 static const struct snd_pcm_ops sis_playback_ops = {
846 	.open = sis_playback_open,
847 	.close = sis_substream_close,
848 	.prepare = sis_pcm_playback_prepare,
849 	.trigger = sis_pcm_trigger,
850 	.pointer = sis_pcm_pointer,
851 };
852 
853 static const struct snd_pcm_ops sis_capture_ops = {
854 	.open = sis_capture_open,
855 	.close = sis_substream_close,
856 	.hw_params = sis_capture_hw_params,
857 	.prepare = sis_pcm_capture_prepare,
858 	.trigger = sis_pcm_trigger,
859 	.pointer = sis_pcm_pointer,
860 };
861 
862 static int sis_pcm_create(struct sis7019 *sis)
863 {
864 	struct snd_pcm *pcm;
865 	int rc;
866 
867 	/* We have 64 voices, and the driver currently records from
868 	 * only one channel, though that could change in the future.
869 	 */
870 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
871 	if (rc)
872 		return rc;
873 
874 	pcm->private_data = sis;
875 	strcpy(pcm->name, "SiS7019");
876 	sis->pcm = pcm;
877 
878 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
879 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
880 
881 	/* Try to preallocate some memory, but it's not the end of the
882 	 * world if this fails.
883 	 */
884 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
885 				       &sis->pci->dev, 64*1024, 128*1024);
886 
887 	return 0;
888 }
889 
890 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
891 {
892 	unsigned long io = sis->ioport;
893 	unsigned short val = 0xffff;
894 	u16 status;
895 	u16 rdy;
896 	int count;
897 	static const u16 codec_ready[3] = {
898 		SIS_AC97_STATUS_CODEC_READY,
899 		SIS_AC97_STATUS_CODEC2_READY,
900 		SIS_AC97_STATUS_CODEC3_READY,
901 	};
902 
903 	rdy = codec_ready[codec];
904 
905 
906 	/* Get the AC97 semaphore -- software first, so we don't spin
907 	 * pounding out IO reads on the hardware semaphore...
908 	 */
909 	mutex_lock(&sis->ac97_mutex);
910 
911 	count = 0xffff;
912 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
913 		udelay(1);
914 
915 	if (!count)
916 		goto timeout;
917 
918 	/* ... and wait for any outstanding commands to complete ...
919 	 */
920 	count = 0xffff;
921 	do {
922 		status = inw(io + SIS_AC97_STATUS);
923 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
924 			break;
925 
926 		udelay(1);
927 	} while (--count);
928 
929 	if (!count)
930 		goto timeout_sema;
931 
932 	/* ... before sending our command and waiting for it to finish ...
933 	 */
934 	outl(cmd, io + SIS_AC97_CMD);
935 	udelay(10);
936 
937 	count = 0xffff;
938 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
939 		udelay(1);
940 
941 	/* ... and reading the results (if any).
942 	 */
943 	val = inl(io + SIS_AC97_CMD) >> 16;
944 
945 timeout_sema:
946 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
947 timeout:
948 	mutex_unlock(&sis->ac97_mutex);
949 
950 	if (!count) {
951 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
952 					codec, cmd);
953 	}
954 
955 	return val;
956 }
957 
958 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
959 				unsigned short val)
960 {
961 	static const u32 cmd[3] = {
962 		SIS_AC97_CMD_CODEC_WRITE,
963 		SIS_AC97_CMD_CODEC2_WRITE,
964 		SIS_AC97_CMD_CODEC3_WRITE,
965 	};
966 	sis_ac97_rw(ac97->private_data, ac97->num,
967 			(val << 16) | (reg << 8) | cmd[ac97->num]);
968 }
969 
970 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
971 {
972 	static const u32 cmd[3] = {
973 		SIS_AC97_CMD_CODEC_READ,
974 		SIS_AC97_CMD_CODEC2_READ,
975 		SIS_AC97_CMD_CODEC3_READ,
976 	};
977 	return sis_ac97_rw(ac97->private_data, ac97->num,
978 					(reg << 8) | cmd[ac97->num]);
979 }
980 
981 static int sis_mixer_create(struct sis7019 *sis)
982 {
983 	struct snd_ac97_bus *bus;
984 	struct snd_ac97_template ac97;
985 	static const struct snd_ac97_bus_ops ops = {
986 		.write = sis_ac97_write,
987 		.read = sis_ac97_read,
988 	};
989 	int rc;
990 
991 	memset(&ac97, 0, sizeof(ac97));
992 	ac97.private_data = sis;
993 
994 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
995 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
996 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
997 	ac97.num = 1;
998 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
999 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1000 	ac97.num = 2;
1001 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1002 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1003 
1004 	/* If we return an error here, then snd_card_free() should
1005 	 * free up any ac97 codecs that got created, as well as the bus.
1006 	 */
1007 	return rc;
1008 }
1009 
1010 static void sis_free_suspend(struct sis7019 *sis)
1011 {
1012 	int i;
1013 
1014 	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1015 		kfree(sis->suspend_state[i]);
1016 }
1017 
1018 static int sis_chip_free(struct sis7019 *sis)
1019 {
1020 	/* Reset the chip, and disable all interrputs.
1021 	 */
1022 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1023 	udelay(25);
1024 	outl(0, sis->ioport + SIS_GCR);
1025 	outl(0, sis->ioport + SIS_GIER);
1026 
1027 	/* Now, free everything we allocated.
1028 	 */
1029 	if (sis->irq >= 0)
1030 		free_irq(sis->irq, sis);
1031 
1032 	iounmap(sis->ioaddr);
1033 	pci_release_regions(sis->pci);
1034 	pci_disable_device(sis->pci);
1035 	sis_free_suspend(sis);
1036 	return 0;
1037 }
1038 
1039 static int sis_dev_free(struct snd_device *dev)
1040 {
1041 	struct sis7019 *sis = dev->device_data;
1042 	return sis_chip_free(sis);
1043 }
1044 
1045 static int sis_chip_init(struct sis7019 *sis)
1046 {
1047 	unsigned long io = sis->ioport;
1048 	void __iomem *ioaddr = sis->ioaddr;
1049 	unsigned long timeout;
1050 	u16 status;
1051 	int count;
1052 	int i;
1053 
1054 	/* Reset the audio controller
1055 	 */
1056 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1057 	udelay(25);
1058 	outl(0, io + SIS_GCR);
1059 
1060 	/* Get the AC-link semaphore, and reset the codecs
1061 	 */
1062 	count = 0xffff;
1063 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1064 		udelay(1);
1065 
1066 	if (!count)
1067 		return -EIO;
1068 
1069 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1070 	udelay(250);
1071 
1072 	count = 0xffff;
1073 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1074 		udelay(1);
1075 
1076 	/* Command complete, we can let go of the semaphore now.
1077 	 */
1078 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1079 	if (!count)
1080 		return -EIO;
1081 
1082 	/* Now that we've finished the reset, find out what's attached.
1083 	 * There are some codec/board combinations that take an extremely
1084 	 * long time to come up. 350+ ms has been observed in the field,
1085 	 * so we'll give them up to 500ms.
1086 	 */
1087 	sis->codecs_present = 0;
1088 	timeout = msecs_to_jiffies(500) + jiffies;
1089 	while (time_before_eq(jiffies, timeout)) {
1090 		status = inl(io + SIS_AC97_STATUS);
1091 		if (status & SIS_AC97_STATUS_CODEC_READY)
1092 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1093 		if (status & SIS_AC97_STATUS_CODEC2_READY)
1094 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1095 		if (status & SIS_AC97_STATUS_CODEC3_READY)
1096 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1097 
1098 		if (sis->codecs_present == codecs)
1099 			break;
1100 
1101 		msleep(1);
1102 	}
1103 
1104 	/* All done, check for errors.
1105 	 */
1106 	if (!sis->codecs_present) {
1107 		dev_err(&sis->pci->dev, "could not find any codecs\n");
1108 		return -EIO;
1109 	}
1110 
1111 	if (sis->codecs_present != codecs) {
1112 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1113 					 sis->codecs_present, codecs);
1114 	}
1115 
1116 	/* Let the hardware know that the audio driver is alive,
1117 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1118 	 * record channels. We're going to want to use Variable Rate Audio
1119 	 * for recording, to avoid needlessly resampling from 48kHZ.
1120 	 */
1121 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1122 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1123 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1124 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1125 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1126 
1127 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1128 	 */
1129 	outl(0, io + SIS_AC97_PSR);
1130 
1131 	/* There is only one valid DMA setup for a PCI environment.
1132 	 */
1133 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1134 
1135 	/* Reset the synchronization groups for all of the channels
1136 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1137 	 * we'll need to change how we handle these. Until then, we just
1138 	 * assign sub-mixer 0 to all playback channels, and avoid any
1139 	 * attenuation on the audio.
1140 	 */
1141 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1142 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1143 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1144 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1145 	outl(0, io + SIS_MIXER_SYNC_GROUP);
1146 
1147 	for (i = 0; i < 64; i++) {
1148 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1149 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1150 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1151 	}
1152 
1153 	/* Don't attenuate any audio set for the wave amplifier.
1154 	 *
1155 	 * FIXME: Maximum attenuation is set for the music amp, which will
1156 	 * need to change if we start using the synth engine.
1157 	 */
1158 	outl(0xffff0000, io + SIS_WEVCR);
1159 
1160 	/* Ensure that the wave engine is in normal operating mode.
1161 	 */
1162 	outl(0, io + SIS_WECCR);
1163 
1164 	/* Go ahead and enable the DMA interrupts. They won't go live
1165 	 * until we start a channel.
1166 	 */
1167 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1168 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1169 
1170 	return 0;
1171 }
1172 
1173 #ifdef CONFIG_PM_SLEEP
1174 static int sis_suspend(struct device *dev)
1175 {
1176 	struct snd_card *card = dev_get_drvdata(dev);
1177 	struct sis7019 *sis = card->private_data;
1178 	void __iomem *ioaddr = sis->ioaddr;
1179 	int i;
1180 
1181 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1182 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1183 		snd_ac97_suspend(sis->ac97[0]);
1184 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1185 		snd_ac97_suspend(sis->ac97[1]);
1186 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1187 		snd_ac97_suspend(sis->ac97[2]);
1188 
1189 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1190 	 */
1191 	if (sis->irq >= 0) {
1192 		free_irq(sis->irq, sis);
1193 		sis->irq = -1;
1194 	}
1195 
1196 	/* Save the internal state away
1197 	 */
1198 	for (i = 0; i < 4; i++) {
1199 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1200 		ioaddr += 4096;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int sis_resume(struct device *dev)
1207 {
1208 	struct pci_dev *pci = to_pci_dev(dev);
1209 	struct snd_card *card = dev_get_drvdata(dev);
1210 	struct sis7019 *sis = card->private_data;
1211 	void __iomem *ioaddr = sis->ioaddr;
1212 	int i;
1213 
1214 	if (sis_chip_init(sis)) {
1215 		dev_err(&pci->dev, "unable to re-init controller\n");
1216 		goto error;
1217 	}
1218 
1219 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1220 			KBUILD_MODNAME, sis)) {
1221 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1222 		goto error;
1223 	}
1224 
1225 	/* Restore saved state, then clear out the page we use for the
1226 	 * silence buffer.
1227 	 */
1228 	for (i = 0; i < 4; i++) {
1229 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1230 		ioaddr += 4096;
1231 	}
1232 
1233 	memset(sis->suspend_state[0], 0, 4096);
1234 
1235 	sis->irq = pci->irq;
1236 
1237 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1238 		snd_ac97_resume(sis->ac97[0]);
1239 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1240 		snd_ac97_resume(sis->ac97[1]);
1241 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1242 		snd_ac97_resume(sis->ac97[2]);
1243 
1244 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1245 	return 0;
1246 
1247 error:
1248 	snd_card_disconnect(card);
1249 	return -EIO;
1250 }
1251 
1252 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1253 #define SIS_PM_OPS	&sis_pm
1254 #else
1255 #define SIS_PM_OPS	NULL
1256 #endif /* CONFIG_PM_SLEEP */
1257 
1258 static int sis_alloc_suspend(struct sis7019 *sis)
1259 {
1260 	int i;
1261 
1262 	/* We need 16K to store the internal wave engine state during a
1263 	 * suspend, but we don't need it to be contiguous, so play nice
1264 	 * with the memory system. We'll also use this area for a silence
1265 	 * buffer.
1266 	 */
1267 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1268 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1269 		if (!sis->suspend_state[i])
1270 			return -ENOMEM;
1271 	}
1272 	memset(sis->suspend_state[0], 0, 4096);
1273 
1274 	return 0;
1275 }
1276 
1277 static int sis_chip_create(struct snd_card *card,
1278 			   struct pci_dev *pci)
1279 {
1280 	struct sis7019 *sis = card->private_data;
1281 	struct voice *voice;
1282 	static const struct snd_device_ops ops = {
1283 		.dev_free = sis_dev_free,
1284 	};
1285 	int rc;
1286 	int i;
1287 
1288 	rc = pci_enable_device(pci);
1289 	if (rc)
1290 		goto error_out;
1291 
1292 	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1293 	if (rc < 0) {
1294 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1295 		goto error_out_enabled;
1296 	}
1297 
1298 	memset(sis, 0, sizeof(*sis));
1299 	mutex_init(&sis->ac97_mutex);
1300 	spin_lock_init(&sis->voice_lock);
1301 	sis->card = card;
1302 	sis->pci = pci;
1303 	sis->irq = -1;
1304 	sis->ioport = pci_resource_start(pci, 0);
1305 
1306 	rc = pci_request_regions(pci, "SiS7019");
1307 	if (rc) {
1308 		dev_err(&pci->dev, "unable request regions\n");
1309 		goto error_out_enabled;
1310 	}
1311 
1312 	rc = -EIO;
1313 	sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1314 	if (!sis->ioaddr) {
1315 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1316 		goto error_out_cleanup;
1317 	}
1318 
1319 	rc = sis_alloc_suspend(sis);
1320 	if (rc < 0) {
1321 		dev_err(&pci->dev, "unable to allocate state storage\n");
1322 		goto error_out_cleanup;
1323 	}
1324 
1325 	rc = sis_chip_init(sis);
1326 	if (rc)
1327 		goto error_out_cleanup;
1328 
1329 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1330 			 sis);
1331 	if (rc) {
1332 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1333 		goto error_out_cleanup;
1334 	}
1335 
1336 	sis->irq = pci->irq;
1337 	card->sync_irq = sis->irq;
1338 	pci_set_master(pci);
1339 
1340 	for (i = 0; i < 64; i++) {
1341 		voice = &sis->voices[i];
1342 		voice->num = i;
1343 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1344 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1345 	}
1346 
1347 	voice = &sis->capture_voice;
1348 	voice->flags = VOICE_CAPTURE;
1349 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1350 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1351 
1352 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1353 	if (rc)
1354 		goto error_out_cleanup;
1355 
1356 	return 0;
1357 
1358 error_out_cleanup:
1359 	sis_chip_free(sis);
1360 
1361 error_out_enabled:
1362 	pci_disable_device(pci);
1363 
1364 error_out:
1365 	return rc;
1366 }
1367 
1368 static int snd_sis7019_probe(struct pci_dev *pci,
1369 			     const struct pci_device_id *pci_id)
1370 {
1371 	struct snd_card *card;
1372 	struct sis7019 *sis;
1373 	int rc;
1374 
1375 	rc = -ENOENT;
1376 	if (!enable)
1377 		goto error_out;
1378 
1379 	/* The user can specify which codecs should be present so that we
1380 	 * can wait for them to show up if they are slow to recover from
1381 	 * the AC97 cold reset. We default to a single codec, the primary.
1382 	 *
1383 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1384 	 */
1385 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1386 		  SIS_TERTIARY_CODEC_PRESENT;
1387 	if (!codecs)
1388 		codecs = SIS_PRIMARY_CODEC_PRESENT;
1389 
1390 	rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1391 			  sizeof(*sis), &card);
1392 	if (rc < 0)
1393 		goto error_out;
1394 
1395 	strcpy(card->driver, "SiS7019");
1396 	strcpy(card->shortname, "SiS7019");
1397 	rc = sis_chip_create(card, pci);
1398 	if (rc)
1399 		goto card_error_out;
1400 
1401 	sis = card->private_data;
1402 
1403 	rc = sis_mixer_create(sis);
1404 	if (rc)
1405 		goto card_error_out;
1406 
1407 	rc = sis_pcm_create(sis);
1408 	if (rc)
1409 		goto card_error_out;
1410 
1411 	snprintf(card->longname, sizeof(card->longname),
1412 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1413 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1414 			sis->ioport, sis->irq);
1415 
1416 	rc = snd_card_register(card);
1417 	if (rc)
1418 		goto card_error_out;
1419 
1420 	pci_set_drvdata(pci, card);
1421 	return 0;
1422 
1423 card_error_out:
1424 	snd_card_free(card);
1425 
1426 error_out:
1427 	return rc;
1428 }
1429 
1430 static void snd_sis7019_remove(struct pci_dev *pci)
1431 {
1432 	snd_card_free(pci_get_drvdata(pci));
1433 }
1434 
1435 static struct pci_driver sis7019_driver = {
1436 	.name = KBUILD_MODNAME,
1437 	.id_table = snd_sis7019_ids,
1438 	.probe = snd_sis7019_probe,
1439 	.remove = snd_sis7019_remove,
1440 	.driver = {
1441 		.pm = SIS_PM_OPS,
1442 	},
1443 };
1444 
1445 module_pci_driver(sis7019_driver);
1446