xref: /openbmc/linux/sound/pci/sis7019.c (revision 8bd1369b)
1 /*
2  *  Driver for SiS7019 Audio Accelerator
3  *
4  *  Copyright (C) 2004-2007, David Dillow
5  *  Written by David Dillow <dave@thedillows.org>
6  *  Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  *  All rights reserved.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation, version 2.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23 
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
35 
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40 
41 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
43 static bool enable = 1;
44 static int codecs = 1;
45 
46 module_param(index, int, 0444);
47 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
48 module_param(id, charp, 0444);
49 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
50 module_param(enable, bool, 0444);
51 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
52 module_param(codecs, int, 0444);
53 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
54 
55 static const struct pci_device_id snd_sis7019_ids[] = {
56 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
57 	{ 0, }
58 };
59 
60 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
61 
62 /* There are three timing modes for the voices.
63  *
64  * For both playback and capture, when the buffer is one or two periods long,
65  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
66  * to let us know when the periods have ended.
67  *
68  * When performing playback with more than two periods per buffer, we set
69  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
70  * reach it. We then update the offset and continue on until we are
71  * interrupted for the next period.
72  *
73  * Capture channels do not have a SSO, so we allocate a playback channel to
74  * use as a timer for the capture periods. We use the SSO on the playback
75  * channel to clock out virtual periods, and adjust the virtual period length
76  * to maintain synchronization. This algorithm came from the Trident driver.
77  *
78  * FIXME: It'd be nice to make use of some of the synth features in the
79  * hardware, but a woeful lack of documentation is a significant roadblock.
80  */
81 struct voice {
82 	u16 flags;
83 #define 	VOICE_IN_USE		1
84 #define 	VOICE_CAPTURE		2
85 #define 	VOICE_SSO_TIMING	4
86 #define 	VOICE_SYNC_TIMING	8
87 	u16 sync_cso;
88 	u16 period_size;
89 	u16 buffer_size;
90 	u16 sync_period_size;
91 	u16 sync_buffer_size;
92 	u32 sso;
93 	u32 vperiod;
94 	struct snd_pcm_substream *substream;
95 	struct voice *timing;
96 	void __iomem *ctrl_base;
97 	void __iomem *wave_base;
98 	void __iomem *sync_base;
99 	int num;
100 };
101 
102 /* We need four pages to store our wave parameters during a suspend. If
103  * we're not doing power management, we still need to allocate a page
104  * for the silence buffer.
105  */
106 #ifdef CONFIG_PM_SLEEP
107 #define SIS_SUSPEND_PAGES	4
108 #else
109 #define SIS_SUSPEND_PAGES	1
110 #endif
111 
112 struct sis7019 {
113 	unsigned long ioport;
114 	void __iomem *ioaddr;
115 	int irq;
116 	int codecs_present;
117 
118 	struct pci_dev *pci;
119 	struct snd_pcm *pcm;
120 	struct snd_card *card;
121 	struct snd_ac97 *ac97[3];
122 
123 	/* Protect against more than one thread hitting the AC97
124 	 * registers (in a more polite manner than pounding the hardware
125 	 * semaphore)
126 	 */
127 	struct mutex ac97_mutex;
128 
129 	/* voice_lock protects allocation/freeing of the voice descriptions
130 	 */
131 	spinlock_t voice_lock;
132 
133 	struct voice voices[64];
134 	struct voice capture_voice;
135 
136 	/* Allocate pages to store the internal wave state during
137 	 * suspends. When we're operating, this can be used as a silence
138 	 * buffer for a timing channel.
139 	 */
140 	void *suspend_state[SIS_SUSPEND_PAGES];
141 
142 	int silence_users;
143 	dma_addr_t silence_dma_addr;
144 };
145 
146 /* These values are also used by the module param 'codecs' to indicate
147  * which codecs should be present.
148  */
149 #define SIS_PRIMARY_CODEC_PRESENT	0x0001
150 #define SIS_SECONDARY_CODEC_PRESENT	0x0002
151 #define SIS_TERTIARY_CODEC_PRESENT	0x0004
152 
153 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
154  * documented range of 8-0xfff8 samples. Given that they are 0-based,
155  * that places our period/buffer range at 9-0xfff9 samples. That makes the
156  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
157  * max samples / min samples gives us the max periods in a buffer.
158  *
159  * We'll add a constraint upon open that limits the period and buffer sample
160  * size to values that are legal for the hardware.
161  */
162 static const struct snd_pcm_hardware sis_playback_hw_info = {
163 	.info = (SNDRV_PCM_INFO_MMAP |
164 		 SNDRV_PCM_INFO_MMAP_VALID |
165 		 SNDRV_PCM_INFO_INTERLEAVED |
166 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
167 		 SNDRV_PCM_INFO_SYNC_START |
168 		 SNDRV_PCM_INFO_RESUME),
169 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
170 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
171 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
172 	.rate_min = 4000,
173 	.rate_max = 48000,
174 	.channels_min = 1,
175 	.channels_max = 2,
176 	.buffer_bytes_max = (0xfff9 * 4),
177 	.period_bytes_min = 9,
178 	.period_bytes_max = (0xfff9 * 4),
179 	.periods_min = 1,
180 	.periods_max = (0xfff9 / 9),
181 };
182 
183 static const struct snd_pcm_hardware sis_capture_hw_info = {
184 	.info = (SNDRV_PCM_INFO_MMAP |
185 		 SNDRV_PCM_INFO_MMAP_VALID |
186 		 SNDRV_PCM_INFO_INTERLEAVED |
187 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
188 		 SNDRV_PCM_INFO_SYNC_START |
189 		 SNDRV_PCM_INFO_RESUME),
190 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
191 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
192 	.rates = SNDRV_PCM_RATE_48000,
193 	.rate_min = 4000,
194 	.rate_max = 48000,
195 	.channels_min = 1,
196 	.channels_max = 2,
197 	.buffer_bytes_max = (0xfff9 * 4),
198 	.period_bytes_min = 9,
199 	.period_bytes_max = (0xfff9 * 4),
200 	.periods_min = 1,
201 	.periods_max = (0xfff9 / 9),
202 };
203 
204 static void sis_update_sso(struct voice *voice, u16 period)
205 {
206 	void __iomem *base = voice->ctrl_base;
207 
208 	voice->sso += period;
209 	if (voice->sso >= voice->buffer_size)
210 		voice->sso -= voice->buffer_size;
211 
212 	/* Enforce the documented hardware minimum offset */
213 	if (voice->sso < 8)
214 		voice->sso = 8;
215 
216 	/* The SSO is in the upper 16 bits of the register. */
217 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
218 }
219 
220 static void sis_update_voice(struct voice *voice)
221 {
222 	if (voice->flags & VOICE_SSO_TIMING) {
223 		sis_update_sso(voice, voice->period_size);
224 	} else if (voice->flags & VOICE_SYNC_TIMING) {
225 		int sync;
226 
227 		/* If we've not hit the end of the virtual period, update
228 		 * our records and keep going.
229 		 */
230 		if (voice->vperiod > voice->period_size) {
231 			voice->vperiod -= voice->period_size;
232 			if (voice->vperiod < voice->period_size)
233 				sis_update_sso(voice, voice->vperiod);
234 			else
235 				sis_update_sso(voice, voice->period_size);
236 			return;
237 		}
238 
239 		/* Calculate our relative offset between the target and
240 		 * the actual CSO value. Since we're operating in a loop,
241 		 * if the value is more than half way around, we can
242 		 * consider ourselves wrapped.
243 		 */
244 		sync = voice->sync_cso;
245 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
246 		if (sync > (voice->sync_buffer_size / 2))
247 			sync -= voice->sync_buffer_size;
248 
249 		/* If sync is positive, then we interrupted too early, and
250 		 * we'll need to come back in a few samples and try again.
251 		 * There's a minimum wait, as it takes some time for the DMA
252 		 * engine to startup, etc...
253 		 */
254 		if (sync > 0) {
255 			if (sync < 16)
256 				sync = 16;
257 			sis_update_sso(voice, sync);
258 			return;
259 		}
260 
261 		/* Ok, we interrupted right on time, or (hopefully) just
262 		 * a bit late. We'll adjst our next waiting period based
263 		 * on how close we got.
264 		 *
265 		 * We need to stay just behind the actual channel to ensure
266 		 * it really is past a period when we get our interrupt --
267 		 * otherwise we'll fall into the early code above and have
268 		 * a minimum wait time, which makes us quite late here,
269 		 * eating into the user's time to refresh the buffer, esp.
270 		 * if using small periods.
271 		 *
272 		 * If we're less than 9 samples behind, we're on target.
273 		 * Otherwise, shorten the next vperiod by the amount we've
274 		 * been delayed.
275 		 */
276 		if (sync > -9)
277 			voice->vperiod = voice->sync_period_size + 1;
278 		else
279 			voice->vperiod = voice->sync_period_size + sync + 10;
280 
281 		if (voice->vperiod < voice->buffer_size) {
282 			sis_update_sso(voice, voice->vperiod);
283 			voice->vperiod = 0;
284 		} else
285 			sis_update_sso(voice, voice->period_size);
286 
287 		sync = voice->sync_cso + voice->sync_period_size;
288 		if (sync >= voice->sync_buffer_size)
289 			sync -= voice->sync_buffer_size;
290 		voice->sync_cso = sync;
291 	}
292 
293 	snd_pcm_period_elapsed(voice->substream);
294 }
295 
296 static void sis_voice_irq(u32 status, struct voice *voice)
297 {
298 	int bit;
299 
300 	while (status) {
301 		bit = __ffs(status);
302 		status >>= bit + 1;
303 		voice += bit;
304 		sis_update_voice(voice);
305 		voice++;
306 	}
307 }
308 
309 static irqreturn_t sis_interrupt(int irq, void *dev)
310 {
311 	struct sis7019 *sis = dev;
312 	unsigned long io = sis->ioport;
313 	struct voice *voice;
314 	u32 intr, status;
315 
316 	/* We only use the DMA interrupts, and we don't enable any other
317 	 * source of interrupts. But, it is possible to see an interrupt
318 	 * status that didn't actually interrupt us, so eliminate anything
319 	 * we're not expecting to avoid falsely claiming an IRQ, and an
320 	 * ensuing endless loop.
321 	 */
322 	intr = inl(io + SIS_GISR);
323 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
324 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
325 	if (!intr)
326 		return IRQ_NONE;
327 
328 	do {
329 		status = inl(io + SIS_PISR_A);
330 		if (status) {
331 			sis_voice_irq(status, sis->voices);
332 			outl(status, io + SIS_PISR_A);
333 		}
334 
335 		status = inl(io + SIS_PISR_B);
336 		if (status) {
337 			sis_voice_irq(status, &sis->voices[32]);
338 			outl(status, io + SIS_PISR_B);
339 		}
340 
341 		status = inl(io + SIS_RISR);
342 		if (status) {
343 			voice = &sis->capture_voice;
344 			if (!voice->timing)
345 				snd_pcm_period_elapsed(voice->substream);
346 
347 			outl(status, io + SIS_RISR);
348 		}
349 
350 		outl(intr, io + SIS_GISR);
351 		intr = inl(io + SIS_GISR);
352 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
353 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
354 	} while (intr);
355 
356 	return IRQ_HANDLED;
357 }
358 
359 static u32 sis_rate_to_delta(unsigned int rate)
360 {
361 	u32 delta;
362 
363 	/* This was copied from the trident driver, but it seems its gotten
364 	 * around a bit... nevertheless, it works well.
365 	 *
366 	 * We special case 44100 and 8000 since rounding with the equation
367 	 * does not give us an accurate enough value. For 11025 and 22050
368 	 * the equation gives us the best answer. All other frequencies will
369 	 * also use the equation. JDW
370 	 */
371 	if (rate == 44100)
372 		delta = 0xeb3;
373 	else if (rate == 8000)
374 		delta = 0x2ab;
375 	else if (rate == 48000)
376 		delta = 0x1000;
377 	else
378 		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
379 	return delta;
380 }
381 
382 static void __sis_map_silence(struct sis7019 *sis)
383 {
384 	/* Helper function: must hold sis->voice_lock on entry */
385 	if (!sis->silence_users)
386 		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
387 						sis->suspend_state[0],
388 						4096, DMA_TO_DEVICE);
389 	sis->silence_users++;
390 }
391 
392 static void __sis_unmap_silence(struct sis7019 *sis)
393 {
394 	/* Helper function: must hold sis->voice_lock on entry */
395 	sis->silence_users--;
396 	if (!sis->silence_users)
397 		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
398 					DMA_TO_DEVICE);
399 }
400 
401 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
402 {
403 	unsigned long flags;
404 
405 	spin_lock_irqsave(&sis->voice_lock, flags);
406 	if (voice->timing) {
407 		__sis_unmap_silence(sis);
408 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
409 						VOICE_SYNC_TIMING);
410 		voice->timing = NULL;
411 	}
412 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
413 	spin_unlock_irqrestore(&sis->voice_lock, flags);
414 }
415 
416 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
417 {
418 	/* Must hold the voice_lock on entry */
419 	struct voice *voice;
420 	int i;
421 
422 	for (i = 0; i < 64; i++) {
423 		voice = &sis->voices[i];
424 		if (voice->flags & VOICE_IN_USE)
425 			continue;
426 		voice->flags |= VOICE_IN_USE;
427 		goto found_one;
428 	}
429 	voice = NULL;
430 
431 found_one:
432 	return voice;
433 }
434 
435 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
436 {
437 	struct voice *voice;
438 	unsigned long flags;
439 
440 	spin_lock_irqsave(&sis->voice_lock, flags);
441 	voice = __sis_alloc_playback_voice(sis);
442 	spin_unlock_irqrestore(&sis->voice_lock, flags);
443 
444 	return voice;
445 }
446 
447 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
448 					struct snd_pcm_hw_params *hw_params)
449 {
450 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
451 	struct snd_pcm_runtime *runtime = substream->runtime;
452 	struct voice *voice = runtime->private_data;
453 	unsigned int period_size, buffer_size;
454 	unsigned long flags;
455 	int needed;
456 
457 	/* If there are one or two periods per buffer, we don't need a
458 	 * timing voice, as we can use the capture channel's interrupts
459 	 * to clock out the periods.
460 	 */
461 	period_size = params_period_size(hw_params);
462 	buffer_size = params_buffer_size(hw_params);
463 	needed = (period_size != buffer_size &&
464 			period_size != (buffer_size / 2));
465 
466 	if (needed && !voice->timing) {
467 		spin_lock_irqsave(&sis->voice_lock, flags);
468 		voice->timing = __sis_alloc_playback_voice(sis);
469 		if (voice->timing)
470 			__sis_map_silence(sis);
471 		spin_unlock_irqrestore(&sis->voice_lock, flags);
472 		if (!voice->timing)
473 			return -ENOMEM;
474 		voice->timing->substream = substream;
475 	} else if (!needed && voice->timing) {
476 		sis_free_voice(sis, voice);
477 		voice->timing = NULL;
478 	}
479 
480 	return 0;
481 }
482 
483 static int sis_playback_open(struct snd_pcm_substream *substream)
484 {
485 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
486 	struct snd_pcm_runtime *runtime = substream->runtime;
487 	struct voice *voice;
488 
489 	voice = sis_alloc_playback_voice(sis);
490 	if (!voice)
491 		return -EAGAIN;
492 
493 	voice->substream = substream;
494 	runtime->private_data = voice;
495 	runtime->hw = sis_playback_hw_info;
496 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
497 						9, 0xfff9);
498 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
499 						9, 0xfff9);
500 	snd_pcm_set_sync(substream);
501 	return 0;
502 }
503 
504 static int sis_substream_close(struct snd_pcm_substream *substream)
505 {
506 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
507 	struct snd_pcm_runtime *runtime = substream->runtime;
508 	struct voice *voice = runtime->private_data;
509 
510 	sis_free_voice(sis, voice);
511 	return 0;
512 }
513 
514 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
515 					struct snd_pcm_hw_params *hw_params)
516 {
517 	return snd_pcm_lib_malloc_pages(substream,
518 					params_buffer_bytes(hw_params));
519 }
520 
521 static int sis_hw_free(struct snd_pcm_substream *substream)
522 {
523 	return snd_pcm_lib_free_pages(substream);
524 }
525 
526 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
527 {
528 	struct snd_pcm_runtime *runtime = substream->runtime;
529 	struct voice *voice = runtime->private_data;
530 	void __iomem *ctrl_base = voice->ctrl_base;
531 	void __iomem *wave_base = voice->wave_base;
532 	u32 format, dma_addr, control, sso_eso, delta, reg;
533 	u16 leo;
534 
535 	/* We rely on the PCM core to ensure that the parameters for this
536 	 * substream do not change on us while we're programming the HW.
537 	 */
538 	format = 0;
539 	if (snd_pcm_format_width(runtime->format) == 8)
540 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
541 	if (!snd_pcm_format_signed(runtime->format))
542 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
543 	if (runtime->channels == 1)
544 		format |= SIS_PLAY_DMA_FORMAT_MONO;
545 
546 	/* The baseline setup is for a single period per buffer, and
547 	 * we add bells and whistles as needed from there.
548 	 */
549 	dma_addr = runtime->dma_addr;
550 	leo = runtime->buffer_size - 1;
551 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
552 	sso_eso = leo;
553 
554 	if (runtime->period_size == (runtime->buffer_size / 2)) {
555 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
556 	} else if (runtime->period_size != runtime->buffer_size) {
557 		voice->flags |= VOICE_SSO_TIMING;
558 		voice->sso = runtime->period_size - 1;
559 		voice->period_size = runtime->period_size;
560 		voice->buffer_size = runtime->buffer_size;
561 
562 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
563 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
564 		sso_eso |= (runtime->period_size - 1) << 16;
565 	}
566 
567 	delta = sis_rate_to_delta(runtime->rate);
568 
569 	/* Ok, we're ready to go, set up the channel.
570 	 */
571 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
572 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
573 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
574 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
575 
576 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
577 		writel(0, wave_base + reg);
578 
579 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
580 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
581 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
582 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
583 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
584 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
585 
586 	/* Force PCI writes to post. */
587 	readl(ctrl_base);
588 
589 	return 0;
590 }
591 
592 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
593 {
594 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
595 	unsigned long io = sis->ioport;
596 	struct snd_pcm_substream *s;
597 	struct voice *voice;
598 	void *chip;
599 	int starting;
600 	u32 record = 0;
601 	u32 play[2] = { 0, 0 };
602 
603 	/* No locks needed, as the PCM core will hold the locks on the
604 	 * substreams, and the HW will only start/stop the indicated voices
605 	 * without changing the state of the others.
606 	 */
607 	switch (cmd) {
608 	case SNDRV_PCM_TRIGGER_START:
609 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
610 	case SNDRV_PCM_TRIGGER_RESUME:
611 		starting = 1;
612 		break;
613 	case SNDRV_PCM_TRIGGER_STOP:
614 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
615 	case SNDRV_PCM_TRIGGER_SUSPEND:
616 		starting = 0;
617 		break;
618 	default:
619 		return -EINVAL;
620 	}
621 
622 	snd_pcm_group_for_each_entry(s, substream) {
623 		/* Make sure it is for us... */
624 		chip = snd_pcm_substream_chip(s);
625 		if (chip != sis)
626 			continue;
627 
628 		voice = s->runtime->private_data;
629 		if (voice->flags & VOICE_CAPTURE) {
630 			record |= 1 << voice->num;
631 			voice = voice->timing;
632 		}
633 
634 		/* voice could be NULL if this a recording stream, and it
635 		 * doesn't have an external timing channel.
636 		 */
637 		if (voice)
638 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
639 
640 		snd_pcm_trigger_done(s, substream);
641 	}
642 
643 	if (starting) {
644 		if (record)
645 			outl(record, io + SIS_RECORD_START_REG);
646 		if (play[0])
647 			outl(play[0], io + SIS_PLAY_START_A_REG);
648 		if (play[1])
649 			outl(play[1], io + SIS_PLAY_START_B_REG);
650 	} else {
651 		if (record)
652 			outl(record, io + SIS_RECORD_STOP_REG);
653 		if (play[0])
654 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
655 		if (play[1])
656 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
657 	}
658 	return 0;
659 }
660 
661 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
662 {
663 	struct snd_pcm_runtime *runtime = substream->runtime;
664 	struct voice *voice = runtime->private_data;
665 	u32 cso;
666 
667 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
668 	cso &= 0xffff;
669 	return cso;
670 }
671 
672 static int sis_capture_open(struct snd_pcm_substream *substream)
673 {
674 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
675 	struct snd_pcm_runtime *runtime = substream->runtime;
676 	struct voice *voice = &sis->capture_voice;
677 	unsigned long flags;
678 
679 	/* FIXME: The driver only supports recording from one channel
680 	 * at the moment, but it could support more.
681 	 */
682 	spin_lock_irqsave(&sis->voice_lock, flags);
683 	if (voice->flags & VOICE_IN_USE)
684 		voice = NULL;
685 	else
686 		voice->flags |= VOICE_IN_USE;
687 	spin_unlock_irqrestore(&sis->voice_lock, flags);
688 
689 	if (!voice)
690 		return -EAGAIN;
691 
692 	voice->substream = substream;
693 	runtime->private_data = voice;
694 	runtime->hw = sis_capture_hw_info;
695 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
696 	snd_pcm_limit_hw_rates(runtime);
697 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
698 						9, 0xfff9);
699 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
700 						9, 0xfff9);
701 	snd_pcm_set_sync(substream);
702 	return 0;
703 }
704 
705 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
706 					struct snd_pcm_hw_params *hw_params)
707 {
708 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
709 	int rc;
710 
711 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
712 						params_rate(hw_params));
713 	if (rc)
714 		goto out;
715 
716 	rc = snd_pcm_lib_malloc_pages(substream,
717 					params_buffer_bytes(hw_params));
718 	if (rc < 0)
719 		goto out;
720 
721 	rc = sis_alloc_timing_voice(substream, hw_params);
722 
723 out:
724 	return rc;
725 }
726 
727 static void sis_prepare_timing_voice(struct voice *voice,
728 					struct snd_pcm_substream *substream)
729 {
730 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
731 	struct snd_pcm_runtime *runtime = substream->runtime;
732 	struct voice *timing = voice->timing;
733 	void __iomem *play_base = timing->ctrl_base;
734 	void __iomem *wave_base = timing->wave_base;
735 	u16 buffer_size, period_size;
736 	u32 format, control, sso_eso, delta;
737 	u32 vperiod, sso, reg;
738 
739 	/* Set our initial buffer and period as large as we can given a
740 	 * single page of silence.
741 	 */
742 	buffer_size = 4096 / runtime->channels;
743 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
744 	period_size = buffer_size;
745 
746 	/* Initially, we want to interrupt just a bit behind the end of
747 	 * the period we're clocking out. 12 samples seems to give a good
748 	 * delay.
749 	 *
750 	 * We want to spread our interrupts throughout the virtual period,
751 	 * so that we don't end up with two interrupts back to back at the
752 	 * end -- this helps minimize the effects of any jitter. Adjust our
753 	 * clocking period size so that the last period is at least a fourth
754 	 * of a full period.
755 	 *
756 	 * This is all moot if we don't need to use virtual periods.
757 	 */
758 	vperiod = runtime->period_size + 12;
759 	if (vperiod > period_size) {
760 		u16 tail = vperiod % period_size;
761 		u16 quarter_period = period_size / 4;
762 
763 		if (tail && tail < quarter_period) {
764 			u16 loops = vperiod / period_size;
765 
766 			tail = quarter_period - tail;
767 			tail += loops - 1;
768 			tail /= loops;
769 			period_size -= tail;
770 		}
771 
772 		sso = period_size - 1;
773 	} else {
774 		/* The initial period will fit inside the buffer, so we
775 		 * don't need to use virtual periods -- disable them.
776 		 */
777 		period_size = runtime->period_size;
778 		sso = vperiod - 1;
779 		vperiod = 0;
780 	}
781 
782 	/* The interrupt handler implements the timing synchronization, so
783 	 * setup its state.
784 	 */
785 	timing->flags |= VOICE_SYNC_TIMING;
786 	timing->sync_base = voice->ctrl_base;
787 	timing->sync_cso = runtime->period_size;
788 	timing->sync_period_size = runtime->period_size;
789 	timing->sync_buffer_size = runtime->buffer_size;
790 	timing->period_size = period_size;
791 	timing->buffer_size = buffer_size;
792 	timing->sso = sso;
793 	timing->vperiod = vperiod;
794 
795 	/* Using unsigned samples with the all-zero silence buffer
796 	 * forces the output to the lower rail, killing playback.
797 	 * So ignore unsigned vs signed -- it doesn't change the timing.
798 	 */
799 	format = 0;
800 	if (snd_pcm_format_width(runtime->format) == 8)
801 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
802 	if (runtime->channels == 1)
803 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
804 
805 	control = timing->buffer_size - 1;
806 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
807 	sso_eso = timing->buffer_size - 1;
808 	sso_eso |= timing->sso << 16;
809 
810 	delta = sis_rate_to_delta(runtime->rate);
811 
812 	/* We've done the math, now configure the channel.
813 	 */
814 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
815 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
816 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
817 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
818 
819 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
820 		writel(0, wave_base + reg);
821 
822 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
823 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
824 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
825 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
826 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
827 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
828 }
829 
830 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
831 {
832 	struct snd_pcm_runtime *runtime = substream->runtime;
833 	struct voice *voice = runtime->private_data;
834 	void __iomem *rec_base = voice->ctrl_base;
835 	u32 format, dma_addr, control;
836 	u16 leo;
837 
838 	/* We rely on the PCM core to ensure that the parameters for this
839 	 * substream do not change on us while we're programming the HW.
840 	 */
841 	format = 0;
842 	if (snd_pcm_format_width(runtime->format) == 8)
843 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
844 	if (!snd_pcm_format_signed(runtime->format))
845 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
846 	if (runtime->channels == 1)
847 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
848 
849 	dma_addr = runtime->dma_addr;
850 	leo = runtime->buffer_size - 1;
851 	control = leo | SIS_CAPTURE_DMA_LOOP;
852 
853 	/* If we've got more than two periods per buffer, then we have
854 	 * use a timing voice to clock out the periods. Otherwise, we can
855 	 * use the capture channel's interrupts.
856 	 */
857 	if (voice->timing) {
858 		sis_prepare_timing_voice(voice, substream);
859 	} else {
860 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
861 		if (runtime->period_size != runtime->buffer_size)
862 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
863 	}
864 
865 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
866 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
867 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
868 
869 	/* Force the writes to post. */
870 	readl(rec_base);
871 
872 	return 0;
873 }
874 
875 static const struct snd_pcm_ops sis_playback_ops = {
876 	.open = sis_playback_open,
877 	.close = sis_substream_close,
878 	.ioctl = snd_pcm_lib_ioctl,
879 	.hw_params = sis_playback_hw_params,
880 	.hw_free = sis_hw_free,
881 	.prepare = sis_pcm_playback_prepare,
882 	.trigger = sis_pcm_trigger,
883 	.pointer = sis_pcm_pointer,
884 };
885 
886 static const struct snd_pcm_ops sis_capture_ops = {
887 	.open = sis_capture_open,
888 	.close = sis_substream_close,
889 	.ioctl = snd_pcm_lib_ioctl,
890 	.hw_params = sis_capture_hw_params,
891 	.hw_free = sis_hw_free,
892 	.prepare = sis_pcm_capture_prepare,
893 	.trigger = sis_pcm_trigger,
894 	.pointer = sis_pcm_pointer,
895 };
896 
897 static int sis_pcm_create(struct sis7019 *sis)
898 {
899 	struct snd_pcm *pcm;
900 	int rc;
901 
902 	/* We have 64 voices, and the driver currently records from
903 	 * only one channel, though that could change in the future.
904 	 */
905 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
906 	if (rc)
907 		return rc;
908 
909 	pcm->private_data = sis;
910 	strcpy(pcm->name, "SiS7019");
911 	sis->pcm = pcm;
912 
913 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
914 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
915 
916 	/* Try to preallocate some memory, but it's not the end of the
917 	 * world if this fails.
918 	 */
919 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
920 				snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
921 
922 	return 0;
923 }
924 
925 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
926 {
927 	unsigned long io = sis->ioport;
928 	unsigned short val = 0xffff;
929 	u16 status;
930 	u16 rdy;
931 	int count;
932 	static const u16 codec_ready[3] = {
933 		SIS_AC97_STATUS_CODEC_READY,
934 		SIS_AC97_STATUS_CODEC2_READY,
935 		SIS_AC97_STATUS_CODEC3_READY,
936 	};
937 
938 	rdy = codec_ready[codec];
939 
940 
941 	/* Get the AC97 semaphore -- software first, so we don't spin
942 	 * pounding out IO reads on the hardware semaphore...
943 	 */
944 	mutex_lock(&sis->ac97_mutex);
945 
946 	count = 0xffff;
947 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
948 		udelay(1);
949 
950 	if (!count)
951 		goto timeout;
952 
953 	/* ... and wait for any outstanding commands to complete ...
954 	 */
955 	count = 0xffff;
956 	do {
957 		status = inw(io + SIS_AC97_STATUS);
958 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
959 			break;
960 
961 		udelay(1);
962 	} while (--count);
963 
964 	if (!count)
965 		goto timeout_sema;
966 
967 	/* ... before sending our command and waiting for it to finish ...
968 	 */
969 	outl(cmd, io + SIS_AC97_CMD);
970 	udelay(10);
971 
972 	count = 0xffff;
973 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
974 		udelay(1);
975 
976 	/* ... and reading the results (if any).
977 	 */
978 	val = inl(io + SIS_AC97_CMD) >> 16;
979 
980 timeout_sema:
981 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
982 timeout:
983 	mutex_unlock(&sis->ac97_mutex);
984 
985 	if (!count) {
986 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
987 					codec, cmd);
988 	}
989 
990 	return val;
991 }
992 
993 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
994 				unsigned short val)
995 {
996 	static const u32 cmd[3] = {
997 		SIS_AC97_CMD_CODEC_WRITE,
998 		SIS_AC97_CMD_CODEC2_WRITE,
999 		SIS_AC97_CMD_CODEC3_WRITE,
1000 	};
1001 	sis_ac97_rw(ac97->private_data, ac97->num,
1002 			(val << 16) | (reg << 8) | cmd[ac97->num]);
1003 }
1004 
1005 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1006 {
1007 	static const u32 cmd[3] = {
1008 		SIS_AC97_CMD_CODEC_READ,
1009 		SIS_AC97_CMD_CODEC2_READ,
1010 		SIS_AC97_CMD_CODEC3_READ,
1011 	};
1012 	return sis_ac97_rw(ac97->private_data, ac97->num,
1013 					(reg << 8) | cmd[ac97->num]);
1014 }
1015 
1016 static int sis_mixer_create(struct sis7019 *sis)
1017 {
1018 	struct snd_ac97_bus *bus;
1019 	struct snd_ac97_template ac97;
1020 	static struct snd_ac97_bus_ops ops = {
1021 		.write = sis_ac97_write,
1022 		.read = sis_ac97_read,
1023 	};
1024 	int rc;
1025 
1026 	memset(&ac97, 0, sizeof(ac97));
1027 	ac97.private_data = sis;
1028 
1029 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1030 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1031 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1032 	ac97.num = 1;
1033 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1034 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1035 	ac97.num = 2;
1036 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1037 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1038 
1039 	/* If we return an error here, then snd_card_free() should
1040 	 * free up any ac97 codecs that got created, as well as the bus.
1041 	 */
1042 	return rc;
1043 }
1044 
1045 static void sis_free_suspend(struct sis7019 *sis)
1046 {
1047 	int i;
1048 
1049 	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1050 		kfree(sis->suspend_state[i]);
1051 }
1052 
1053 static int sis_chip_free(struct sis7019 *sis)
1054 {
1055 	/* Reset the chip, and disable all interrputs.
1056 	 */
1057 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1058 	udelay(25);
1059 	outl(0, sis->ioport + SIS_GCR);
1060 	outl(0, sis->ioport + SIS_GIER);
1061 
1062 	/* Now, free everything we allocated.
1063 	 */
1064 	if (sis->irq >= 0)
1065 		free_irq(sis->irq, sis);
1066 
1067 	iounmap(sis->ioaddr);
1068 	pci_release_regions(sis->pci);
1069 	pci_disable_device(sis->pci);
1070 	sis_free_suspend(sis);
1071 	return 0;
1072 }
1073 
1074 static int sis_dev_free(struct snd_device *dev)
1075 {
1076 	struct sis7019 *sis = dev->device_data;
1077 	return sis_chip_free(sis);
1078 }
1079 
1080 static int sis_chip_init(struct sis7019 *sis)
1081 {
1082 	unsigned long io = sis->ioport;
1083 	void __iomem *ioaddr = sis->ioaddr;
1084 	unsigned long timeout;
1085 	u16 status;
1086 	int count;
1087 	int i;
1088 
1089 	/* Reset the audio controller
1090 	 */
1091 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1092 	udelay(25);
1093 	outl(0, io + SIS_GCR);
1094 
1095 	/* Get the AC-link semaphore, and reset the codecs
1096 	 */
1097 	count = 0xffff;
1098 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1099 		udelay(1);
1100 
1101 	if (!count)
1102 		return -EIO;
1103 
1104 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1105 	udelay(250);
1106 
1107 	count = 0xffff;
1108 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1109 		udelay(1);
1110 
1111 	/* Command complete, we can let go of the semaphore now.
1112 	 */
1113 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1114 	if (!count)
1115 		return -EIO;
1116 
1117 	/* Now that we've finished the reset, find out what's attached.
1118 	 * There are some codec/board combinations that take an extremely
1119 	 * long time to come up. 350+ ms has been observed in the field,
1120 	 * so we'll give them up to 500ms.
1121 	 */
1122 	sis->codecs_present = 0;
1123 	timeout = msecs_to_jiffies(500) + jiffies;
1124 	while (time_before_eq(jiffies, timeout)) {
1125 		status = inl(io + SIS_AC97_STATUS);
1126 		if (status & SIS_AC97_STATUS_CODEC_READY)
1127 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1128 		if (status & SIS_AC97_STATUS_CODEC2_READY)
1129 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1130 		if (status & SIS_AC97_STATUS_CODEC3_READY)
1131 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1132 
1133 		if (sis->codecs_present == codecs)
1134 			break;
1135 
1136 		msleep(1);
1137 	}
1138 
1139 	/* All done, check for errors.
1140 	 */
1141 	if (!sis->codecs_present) {
1142 		dev_err(&sis->pci->dev, "could not find any codecs\n");
1143 		return -EIO;
1144 	}
1145 
1146 	if (sis->codecs_present != codecs) {
1147 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1148 					 sis->codecs_present, codecs);
1149 	}
1150 
1151 	/* Let the hardware know that the audio driver is alive,
1152 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1153 	 * record channels. We're going to want to use Variable Rate Audio
1154 	 * for recording, to avoid needlessly resampling from 48kHZ.
1155 	 */
1156 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1157 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1158 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1159 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1160 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1161 
1162 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1163 	 */
1164 	outl(0, io + SIS_AC97_PSR);
1165 
1166 	/* There is only one valid DMA setup for a PCI environment.
1167 	 */
1168 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1169 
1170 	/* Reset the synchronization groups for all of the channels
1171 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1172 	 * we'll need to change how we handle these. Until then, we just
1173 	 * assign sub-mixer 0 to all playback channels, and avoid any
1174 	 * attenuation on the audio.
1175 	 */
1176 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1177 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1178 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1179 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1180 	outl(0, io + SIS_MIXER_SYNC_GROUP);
1181 
1182 	for (i = 0; i < 64; i++) {
1183 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1184 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1185 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1186 	}
1187 
1188 	/* Don't attenuate any audio set for the wave amplifier.
1189 	 *
1190 	 * FIXME: Maximum attenuation is set for the music amp, which will
1191 	 * need to change if we start using the synth engine.
1192 	 */
1193 	outl(0xffff0000, io + SIS_WEVCR);
1194 
1195 	/* Ensure that the wave engine is in normal operating mode.
1196 	 */
1197 	outl(0, io + SIS_WECCR);
1198 
1199 	/* Go ahead and enable the DMA interrupts. They won't go live
1200 	 * until we start a channel.
1201 	 */
1202 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1203 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1204 
1205 	return 0;
1206 }
1207 
1208 #ifdef CONFIG_PM_SLEEP
1209 static int sis_suspend(struct device *dev)
1210 {
1211 	struct snd_card *card = dev_get_drvdata(dev);
1212 	struct sis7019 *sis = card->private_data;
1213 	void __iomem *ioaddr = sis->ioaddr;
1214 	int i;
1215 
1216 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1217 	snd_pcm_suspend_all(sis->pcm);
1218 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1219 		snd_ac97_suspend(sis->ac97[0]);
1220 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1221 		snd_ac97_suspend(sis->ac97[1]);
1222 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1223 		snd_ac97_suspend(sis->ac97[2]);
1224 
1225 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1226 	 */
1227 	if (sis->irq >= 0) {
1228 		free_irq(sis->irq, sis);
1229 		sis->irq = -1;
1230 	}
1231 
1232 	/* Save the internal state away
1233 	 */
1234 	for (i = 0; i < 4; i++) {
1235 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1236 		ioaddr += 4096;
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int sis_resume(struct device *dev)
1243 {
1244 	struct pci_dev *pci = to_pci_dev(dev);
1245 	struct snd_card *card = dev_get_drvdata(dev);
1246 	struct sis7019 *sis = card->private_data;
1247 	void __iomem *ioaddr = sis->ioaddr;
1248 	int i;
1249 
1250 	if (sis_chip_init(sis)) {
1251 		dev_err(&pci->dev, "unable to re-init controller\n");
1252 		goto error;
1253 	}
1254 
1255 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1256 			KBUILD_MODNAME, sis)) {
1257 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1258 		goto error;
1259 	}
1260 
1261 	/* Restore saved state, then clear out the page we use for the
1262 	 * silence buffer.
1263 	 */
1264 	for (i = 0; i < 4; i++) {
1265 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1266 		ioaddr += 4096;
1267 	}
1268 
1269 	memset(sis->suspend_state[0], 0, 4096);
1270 
1271 	sis->irq = pci->irq;
1272 
1273 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1274 		snd_ac97_resume(sis->ac97[0]);
1275 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1276 		snd_ac97_resume(sis->ac97[1]);
1277 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1278 		snd_ac97_resume(sis->ac97[2]);
1279 
1280 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1281 	return 0;
1282 
1283 error:
1284 	snd_card_disconnect(card);
1285 	return -EIO;
1286 }
1287 
1288 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1289 #define SIS_PM_OPS	&sis_pm
1290 #else
1291 #define SIS_PM_OPS	NULL
1292 #endif /* CONFIG_PM_SLEEP */
1293 
1294 static int sis_alloc_suspend(struct sis7019 *sis)
1295 {
1296 	int i;
1297 
1298 	/* We need 16K to store the internal wave engine state during a
1299 	 * suspend, but we don't need it to be contiguous, so play nice
1300 	 * with the memory system. We'll also use this area for a silence
1301 	 * buffer.
1302 	 */
1303 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1304 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1305 		if (!sis->suspend_state[i])
1306 			return -ENOMEM;
1307 	}
1308 	memset(sis->suspend_state[0], 0, 4096);
1309 
1310 	return 0;
1311 }
1312 
1313 static int sis_chip_create(struct snd_card *card,
1314 			   struct pci_dev *pci)
1315 {
1316 	struct sis7019 *sis = card->private_data;
1317 	struct voice *voice;
1318 	static struct snd_device_ops ops = {
1319 		.dev_free = sis_dev_free,
1320 	};
1321 	int rc;
1322 	int i;
1323 
1324 	rc = pci_enable_device(pci);
1325 	if (rc)
1326 		goto error_out;
1327 
1328 	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1329 	if (rc < 0) {
1330 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1331 		goto error_out_enabled;
1332 	}
1333 
1334 	memset(sis, 0, sizeof(*sis));
1335 	mutex_init(&sis->ac97_mutex);
1336 	spin_lock_init(&sis->voice_lock);
1337 	sis->card = card;
1338 	sis->pci = pci;
1339 	sis->irq = -1;
1340 	sis->ioport = pci_resource_start(pci, 0);
1341 
1342 	rc = pci_request_regions(pci, "SiS7019");
1343 	if (rc) {
1344 		dev_err(&pci->dev, "unable request regions\n");
1345 		goto error_out_enabled;
1346 	}
1347 
1348 	rc = -EIO;
1349 	sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1350 	if (!sis->ioaddr) {
1351 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1352 		goto error_out_cleanup;
1353 	}
1354 
1355 	rc = sis_alloc_suspend(sis);
1356 	if (rc < 0) {
1357 		dev_err(&pci->dev, "unable to allocate state storage\n");
1358 		goto error_out_cleanup;
1359 	}
1360 
1361 	rc = sis_chip_init(sis);
1362 	if (rc)
1363 		goto error_out_cleanup;
1364 
1365 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1366 			 sis);
1367 	if (rc) {
1368 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1369 		goto error_out_cleanup;
1370 	}
1371 
1372 	sis->irq = pci->irq;
1373 	pci_set_master(pci);
1374 
1375 	for (i = 0; i < 64; i++) {
1376 		voice = &sis->voices[i];
1377 		voice->num = i;
1378 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1379 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1380 	}
1381 
1382 	voice = &sis->capture_voice;
1383 	voice->flags = VOICE_CAPTURE;
1384 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1385 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1386 
1387 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1388 	if (rc)
1389 		goto error_out_cleanup;
1390 
1391 	return 0;
1392 
1393 error_out_cleanup:
1394 	sis_chip_free(sis);
1395 
1396 error_out_enabled:
1397 	pci_disable_device(pci);
1398 
1399 error_out:
1400 	return rc;
1401 }
1402 
1403 static int snd_sis7019_probe(struct pci_dev *pci,
1404 			     const struct pci_device_id *pci_id)
1405 {
1406 	struct snd_card *card;
1407 	struct sis7019 *sis;
1408 	int rc;
1409 
1410 	rc = -ENOENT;
1411 	if (!enable)
1412 		goto error_out;
1413 
1414 	/* The user can specify which codecs should be present so that we
1415 	 * can wait for them to show up if they are slow to recover from
1416 	 * the AC97 cold reset. We default to a single codec, the primary.
1417 	 *
1418 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1419 	 */
1420 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1421 		  SIS_TERTIARY_CODEC_PRESENT;
1422 	if (!codecs)
1423 		codecs = SIS_PRIMARY_CODEC_PRESENT;
1424 
1425 	rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1426 			  sizeof(*sis), &card);
1427 	if (rc < 0)
1428 		goto error_out;
1429 
1430 	strcpy(card->driver, "SiS7019");
1431 	strcpy(card->shortname, "SiS7019");
1432 	rc = sis_chip_create(card, pci);
1433 	if (rc)
1434 		goto card_error_out;
1435 
1436 	sis = card->private_data;
1437 
1438 	rc = sis_mixer_create(sis);
1439 	if (rc)
1440 		goto card_error_out;
1441 
1442 	rc = sis_pcm_create(sis);
1443 	if (rc)
1444 		goto card_error_out;
1445 
1446 	snprintf(card->longname, sizeof(card->longname),
1447 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1448 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1449 			sis->ioport, sis->irq);
1450 
1451 	rc = snd_card_register(card);
1452 	if (rc)
1453 		goto card_error_out;
1454 
1455 	pci_set_drvdata(pci, card);
1456 	return 0;
1457 
1458 card_error_out:
1459 	snd_card_free(card);
1460 
1461 error_out:
1462 	return rc;
1463 }
1464 
1465 static void snd_sis7019_remove(struct pci_dev *pci)
1466 {
1467 	snd_card_free(pci_get_drvdata(pci));
1468 }
1469 
1470 static struct pci_driver sis7019_driver = {
1471 	.name = KBUILD_MODNAME,
1472 	.id_table = snd_sis7019_ids,
1473 	.probe = snd_sis7019_probe,
1474 	.remove = snd_sis7019_remove,
1475 	.driver = {
1476 		.pm = SIS_PM_OPS,
1477 	},
1478 };
1479 
1480 module_pci_driver(sis7019_driver);
1481