xref: /openbmc/linux/sound/pci/sis7019.c (revision 175859bf)
1 /*
2  *  Driver for SiS7019 Audio Accelerator
3  *
4  *  Copyright (C) 2004-2007, David Dillow
5  *  Written by David Dillow <dave@thedillows.org>
6  *  Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  *  All rights reserved.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation, version 2.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23 
24 #include <sound/driver.h>
25 #include <linux/init.h>
26 #include <linux/pci.h>
27 #include <linux/time.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
35 
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40 
41 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
43 static int enable = 1;
44 
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable, bool, 0444);
50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
51 
52 static struct pci_device_id snd_sis7019_ids[] = {
53 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
54 	{ 0, }
55 };
56 
57 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
58 
59 /* There are three timing modes for the voices.
60  *
61  * For both playback and capture, when the buffer is one or two periods long,
62  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
63  * to let us know when the periods have ended.
64  *
65  * When performing playback with more than two periods per buffer, we set
66  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
67  * reach it. We then update the offset and continue on until we are
68  * interrupted for the next period.
69  *
70  * Capture channels do not have a SSO, so we allocate a playback channel to
71  * use as a timer for the capture periods. We use the SSO on the playback
72  * channel to clock out virtual periods, and adjust the virtual period length
73  * to maintain synchronization. This algorithm came from the Trident driver.
74  *
75  * FIXME: It'd be nice to make use of some of the synth features in the
76  * hardware, but a woeful lack of documentation is a significant roadblock.
77  */
78 struct voice {
79 	u16 flags;
80 #define 	VOICE_IN_USE		1
81 #define 	VOICE_CAPTURE		2
82 #define 	VOICE_SSO_TIMING	4
83 #define 	VOICE_SYNC_TIMING	8
84 	u16 sync_cso;
85 	u16 period_size;
86 	u16 buffer_size;
87 	u16 sync_period_size;
88 	u16 sync_buffer_size;
89 	u32 sso;
90 	u32 vperiod;
91 	struct snd_pcm_substream *substream;
92 	struct voice *timing;
93 	void __iomem *ctrl_base;
94 	void __iomem *wave_base;
95 	void __iomem *sync_base;
96 	int num;
97 };
98 
99 /* We need four pages to store our wave parameters during a suspend. If
100  * we're not doing power management, we still need to allocate a page
101  * for the silence buffer.
102  */
103 #ifdef CONFIG_PM
104 #define SIS_SUSPEND_PAGES	4
105 #else
106 #define SIS_SUSPEND_PAGES	1
107 #endif
108 
109 struct sis7019 {
110 	unsigned long ioport;
111 	void __iomem *ioaddr;
112 	int irq;
113 	int codecs_present;
114 
115 	struct pci_dev *pci;
116 	struct snd_pcm *pcm;
117 	struct snd_card *card;
118 	struct snd_ac97 *ac97[3];
119 
120 	/* Protect against more than one thread hitting the AC97
121 	 * registers (in a more polite manner than pounding the hardware
122 	 * semaphore)
123 	 */
124 	struct mutex ac97_mutex;
125 
126 	/* voice_lock protects allocation/freeing of the voice descriptions
127 	 */
128 	spinlock_t voice_lock;
129 
130 	struct voice voices[64];
131 	struct voice capture_voice;
132 
133 	/* Allocate pages to store the internal wave state during
134 	 * suspends. When we're operating, this can be used as a silence
135 	 * buffer for a timing channel.
136 	 */
137 	void *suspend_state[SIS_SUSPEND_PAGES];
138 
139 	int silence_users;
140 	dma_addr_t silence_dma_addr;
141 };
142 
143 #define SIS_PRIMARY_CODEC_PRESENT	0x0001
144 #define SIS_SECONDARY_CODEC_PRESENT	0x0002
145 #define SIS_TERTIARY_CODEC_PRESENT	0x0004
146 
147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
148  * documented range of 8-0xfff8 samples. Given that they are 0-based,
149  * that places our period/buffer range at 9-0xfff9 samples. That makes the
150  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
151  * max samples / min samples gives us the max periods in a buffer.
152  *
153  * We'll add a constraint upon open that limits the period and buffer sample
154  * size to values that are legal for the hardware.
155  */
156 static struct snd_pcm_hardware sis_playback_hw_info = {
157 	.info = (SNDRV_PCM_INFO_MMAP |
158 		 SNDRV_PCM_INFO_MMAP_VALID |
159 		 SNDRV_PCM_INFO_INTERLEAVED |
160 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
161 		 SNDRV_PCM_INFO_SYNC_START |
162 		 SNDRV_PCM_INFO_RESUME),
163 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
164 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
165 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
166 	.rate_min = 4000,
167 	.rate_max = 48000,
168 	.channels_min = 1,
169 	.channels_max = 2,
170 	.buffer_bytes_max = (0xfff9 * 4),
171 	.period_bytes_min = 9,
172 	.period_bytes_max = (0xfff9 * 4),
173 	.periods_min = 1,
174 	.periods_max = (0xfff9 / 9),
175 };
176 
177 static struct snd_pcm_hardware sis_capture_hw_info = {
178 	.info = (SNDRV_PCM_INFO_MMAP |
179 		 SNDRV_PCM_INFO_MMAP_VALID |
180 		 SNDRV_PCM_INFO_INTERLEAVED |
181 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
182 		 SNDRV_PCM_INFO_SYNC_START |
183 		 SNDRV_PCM_INFO_RESUME),
184 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
185 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
186 	.rates = SNDRV_PCM_RATE_48000,
187 	.rate_min = 4000,
188 	.rate_max = 48000,
189 	.channels_min = 1,
190 	.channels_max = 2,
191 	.buffer_bytes_max = (0xfff9 * 4),
192 	.period_bytes_min = 9,
193 	.period_bytes_max = (0xfff9 * 4),
194 	.periods_min = 1,
195 	.periods_max = (0xfff9 / 9),
196 };
197 
198 static void sis_update_sso(struct voice *voice, u16 period)
199 {
200 	void __iomem *base = voice->ctrl_base;
201 
202 	voice->sso += period;
203 	if (voice->sso >= voice->buffer_size)
204 		voice->sso -= voice->buffer_size;
205 
206 	/* Enforce the documented hardware minimum offset */
207 	if (voice->sso < 8)
208 		voice->sso = 8;
209 
210 	/* The SSO is in the upper 16 bits of the register. */
211 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
212 }
213 
214 static void sis_update_voice(struct voice *voice)
215 {
216 	if (voice->flags & VOICE_SSO_TIMING) {
217 		sis_update_sso(voice, voice->period_size);
218 	} else if (voice->flags & VOICE_SYNC_TIMING) {
219 		int sync;
220 
221 		/* If we've not hit the end of the virtual period, update
222 		 * our records and keep going.
223 		 */
224 		if (voice->vperiod > voice->period_size) {
225 			voice->vperiod -= voice->period_size;
226 			if (voice->vperiod < voice->period_size)
227 				sis_update_sso(voice, voice->vperiod);
228 			else
229 				sis_update_sso(voice, voice->period_size);
230 			return;
231 		}
232 
233 		/* Calculate our relative offset between the target and
234 		 * the actual CSO value. Since we're operating in a loop,
235 		 * if the value is more than half way around, we can
236 		 * consider ourselves wrapped.
237 		 */
238 		sync = voice->sync_cso;
239 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
240 		if (sync > (voice->sync_buffer_size / 2))
241 			sync -= voice->sync_buffer_size;
242 
243 		/* If sync is positive, then we interrupted too early, and
244 		 * we'll need to come back in a few samples and try again.
245 		 * There's a minimum wait, as it takes some time for the DMA
246 		 * engine to startup, etc...
247 		 */
248 		if (sync > 0) {
249 			if (sync < 16)
250 				sync = 16;
251 			sis_update_sso(voice, sync);
252 			return;
253 		}
254 
255 		/* Ok, we interrupted right on time, or (hopefully) just
256 		 * a bit late. We'll adjst our next waiting period based
257 		 * on how close we got.
258 		 *
259 		 * We need to stay just behind the actual channel to ensure
260 		 * it really is past a period when we get our interrupt --
261 		 * otherwise we'll fall into the early code above and have
262 		 * a minimum wait time, which makes us quite late here,
263 		 * eating into the user's time to refresh the buffer, esp.
264 		 * if using small periods.
265 		 *
266 		 * If we're less than 9 samples behind, we're on target.
267 		 */
268 		if (sync > -9)
269 			voice->vperiod = voice->sync_period_size + 1;
270 		else
271 			voice->vperiod = voice->sync_period_size - 4;
272 
273 		if (voice->vperiod < voice->buffer_size) {
274 			sis_update_sso(voice, voice->vperiod);
275 			voice->vperiod = 0;
276 		} else
277 			sis_update_sso(voice, voice->period_size);
278 
279 		sync = voice->sync_cso + voice->sync_period_size;
280 		if (sync >= voice->sync_buffer_size)
281 			sync -= voice->sync_buffer_size;
282 		voice->sync_cso = sync;
283 	}
284 
285 	snd_pcm_period_elapsed(voice->substream);
286 }
287 
288 static void sis_voice_irq(u32 status, struct voice *voice)
289 {
290 	int bit;
291 
292 	while (status) {
293 		bit = __ffs(status);
294 		status >>= bit + 1;
295 		voice += bit;
296 		sis_update_voice(voice);
297 		voice++;
298 	}
299 }
300 
301 static irqreturn_t sis_interrupt(int irq, void *dev)
302 {
303 	struct sis7019 *sis = dev;
304 	unsigned long io = sis->ioport;
305 	struct voice *voice;
306 	u32 intr, status;
307 
308 	/* We only use the DMA interrupts, and we don't enable any other
309 	 * source of interrupts. But, it is possible to see an interupt
310 	 * status that didn't actually interrupt us, so eliminate anything
311 	 * we're not expecting to avoid falsely claiming an IRQ, and an
312 	 * ensuing endless loop.
313 	 */
314 	intr = inl(io + SIS_GISR);
315 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
316 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
317 	if (!intr)
318 		return IRQ_NONE;
319 
320 	do {
321 		status = inl(io + SIS_PISR_A);
322 		if (status) {
323 			sis_voice_irq(status, sis->voices);
324 			outl(status, io + SIS_PISR_A);
325 		}
326 
327 		status = inl(io + SIS_PISR_B);
328 		if (status) {
329 			sis_voice_irq(status, &sis->voices[32]);
330 			outl(status, io + SIS_PISR_B);
331 		}
332 
333 		status = inl(io + SIS_RISR);
334 		if (status) {
335 			voice = &sis->capture_voice;
336 			if (!voice->timing)
337 				snd_pcm_period_elapsed(voice->substream);
338 
339 			outl(status, io + SIS_RISR);
340 		}
341 
342 		outl(intr, io + SIS_GISR);
343 		intr = inl(io + SIS_GISR);
344 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
345 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
346 	} while (intr);
347 
348 	return IRQ_HANDLED;
349 }
350 
351 static u32 sis_rate_to_delta(unsigned int rate)
352 {
353 	u32 delta;
354 
355 	/* This was copied from the trident driver, but it seems its gotten
356 	 * around a bit... nevertheless, it works well.
357 	 *
358 	 * We special case 44100 and 8000 since rounding with the equation
359 	 * does not give us an accurate enough value. For 11025 and 22050
360 	 * the equation gives us the best answer. All other frequencies will
361 	 * also use the equation. JDW
362 	 */
363 	if (rate == 44100)
364 		delta = 0xeb3;
365 	else if (rate == 8000)
366 		delta = 0x2ab;
367 	else if (rate == 48000)
368 		delta = 0x1000;
369 	else
370 		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
371 	return delta;
372 }
373 
374 static void __sis_map_silence(struct sis7019 *sis)
375 {
376 	/* Helper function: must hold sis->voice_lock on entry */
377 	if (!sis->silence_users)
378 		sis->silence_dma_addr = pci_map_single(sis->pci,
379 						sis->suspend_state[0],
380 						4096, PCI_DMA_TODEVICE);
381 	sis->silence_users++;
382 }
383 
384 static void __sis_unmap_silence(struct sis7019 *sis)
385 {
386 	/* Helper function: must hold sis->voice_lock on entry */
387 	sis->silence_users--;
388 	if (!sis->silence_users)
389 		pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
390 					PCI_DMA_TODEVICE);
391 }
392 
393 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
394 {
395 	unsigned long flags;
396 
397 	spin_lock_irqsave(&sis->voice_lock, flags);
398 	if (voice->timing) {
399 		__sis_unmap_silence(sis);
400 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
401 						VOICE_SYNC_TIMING);
402 		voice->timing = NULL;
403 	}
404 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
405 	spin_unlock_irqrestore(&sis->voice_lock, flags);
406 }
407 
408 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
409 {
410 	/* Must hold the voice_lock on entry */
411 	struct voice *voice;
412 	int i;
413 
414 	for (i = 0; i < 64; i++) {
415 		voice = &sis->voices[i];
416 		if (voice->flags & VOICE_IN_USE)
417 			continue;
418 		voice->flags |= VOICE_IN_USE;
419 		goto found_one;
420 	}
421 	voice = NULL;
422 
423 found_one:
424 	return voice;
425 }
426 
427 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
428 {
429 	struct voice *voice;
430 	unsigned long flags;
431 
432 	spin_lock_irqsave(&sis->voice_lock, flags);
433 	voice = __sis_alloc_playback_voice(sis);
434 	spin_unlock_irqrestore(&sis->voice_lock, flags);
435 
436 	return voice;
437 }
438 
439 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
440 					struct snd_pcm_hw_params *hw_params)
441 {
442 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
443 	struct snd_pcm_runtime *runtime = substream->runtime;
444 	struct voice *voice = runtime->private_data;
445 	unsigned int period_size, buffer_size;
446 	unsigned long flags;
447 	int needed;
448 
449 	/* If there are one or two periods per buffer, we don't need a
450 	 * timing voice, as we can use the capture channel's interrupts
451 	 * to clock out the periods.
452 	 */
453 	period_size = params_period_size(hw_params);
454 	buffer_size = params_buffer_size(hw_params);
455 	needed = (period_size != buffer_size &&
456 			period_size != (buffer_size / 2));
457 
458 	if (needed && !voice->timing) {
459 		spin_lock_irqsave(&sis->voice_lock, flags);
460 		voice->timing = __sis_alloc_playback_voice(sis);
461 		if (voice->timing)
462 			__sis_map_silence(sis);
463 		spin_unlock_irqrestore(&sis->voice_lock, flags);
464 		if (!voice->timing)
465 			return -ENOMEM;
466 		voice->timing->substream = substream;
467 	} else if (!needed && voice->timing) {
468 		sis_free_voice(sis, voice);
469 		voice->timing = NULL;
470 	}
471 
472 	return 0;
473 }
474 
475 static int sis_playback_open(struct snd_pcm_substream *substream)
476 {
477 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
478 	struct snd_pcm_runtime *runtime = substream->runtime;
479 	struct voice *voice;
480 
481 	voice = sis_alloc_playback_voice(sis);
482 	if (!voice)
483 		return -EAGAIN;
484 
485 	voice->substream = substream;
486 	runtime->private_data = voice;
487 	runtime->hw = sis_playback_hw_info;
488 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
489 						9, 0xfff9);
490 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
491 						9, 0xfff9);
492 	snd_pcm_set_sync(substream);
493 	return 0;
494 }
495 
496 static int sis_substream_close(struct snd_pcm_substream *substream)
497 {
498 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
499 	struct snd_pcm_runtime *runtime = substream->runtime;
500 	struct voice *voice = runtime->private_data;
501 
502 	sis_free_voice(sis, voice);
503 	return 0;
504 }
505 
506 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
507 					struct snd_pcm_hw_params *hw_params)
508 {
509 	return snd_pcm_lib_malloc_pages(substream,
510 					params_buffer_bytes(hw_params));
511 }
512 
513 static int sis_hw_free(struct snd_pcm_substream *substream)
514 {
515 	return snd_pcm_lib_free_pages(substream);
516 }
517 
518 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
519 {
520 	struct snd_pcm_runtime *runtime = substream->runtime;
521 	struct voice *voice = runtime->private_data;
522 	void __iomem *ctrl_base = voice->ctrl_base;
523 	void __iomem *wave_base = voice->wave_base;
524 	u32 format, dma_addr, control, sso_eso, delta, reg;
525 	u16 leo;
526 
527 	/* We rely on the PCM core to ensure that the parameters for this
528 	 * substream do not change on us while we're programming the HW.
529 	 */
530 	format = 0;
531 	if (snd_pcm_format_width(runtime->format) == 8)
532 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
533 	if (!snd_pcm_format_signed(runtime->format))
534 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
535 	if (runtime->channels == 1)
536 		format |= SIS_PLAY_DMA_FORMAT_MONO;
537 
538 	/* The baseline setup is for a single period per buffer, and
539 	 * we add bells and whistles as needed from there.
540 	 */
541 	dma_addr = runtime->dma_addr;
542 	leo = runtime->buffer_size - 1;
543 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
544 	sso_eso = leo;
545 
546 	if (runtime->period_size == (runtime->buffer_size / 2)) {
547 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
548 	} else if (runtime->period_size != runtime->buffer_size) {
549 		voice->flags |= VOICE_SSO_TIMING;
550 		voice->sso = runtime->period_size - 1;
551 		voice->period_size = runtime->period_size;
552 		voice->buffer_size = runtime->buffer_size;
553 
554 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
555 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
556 		sso_eso |= (runtime->period_size - 1) << 16;
557 	}
558 
559 	delta = sis_rate_to_delta(runtime->rate);
560 
561 	/* Ok, we're ready to go, set up the channel.
562 	 */
563 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
564 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
565 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
566 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
567 
568 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
569 		writel(0, wave_base + reg);
570 
571 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
572 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
573 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
574 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
575 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
576 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
577 
578 	/* Force PCI writes to post. */
579 	readl(ctrl_base);
580 
581 	return 0;
582 }
583 
584 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
585 {
586 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
587 	unsigned long io = sis->ioport;
588 	struct snd_pcm_substream *s;
589 	struct voice *voice;
590 	void *chip;
591 	int starting;
592 	u32 record = 0;
593 	u32 play[2] = { 0, 0 };
594 
595 	/* No locks needed, as the PCM core will hold the locks on the
596 	 * substreams, and the HW will only start/stop the indicated voices
597 	 * without changing the state of the others.
598 	 */
599 	switch (cmd) {
600 	case SNDRV_PCM_TRIGGER_START:
601 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
602 	case SNDRV_PCM_TRIGGER_RESUME:
603 		starting = 1;
604 		break;
605 	case SNDRV_PCM_TRIGGER_STOP:
606 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
607 	case SNDRV_PCM_TRIGGER_SUSPEND:
608 		starting = 0;
609 		break;
610 	default:
611 		return -EINVAL;
612 	}
613 
614 	snd_pcm_group_for_each_entry(s, substream) {
615 		/* Make sure it is for us... */
616 		chip = snd_pcm_substream_chip(s);
617 		if (chip != sis)
618 			continue;
619 
620 		voice = s->runtime->private_data;
621 		if (voice->flags & VOICE_CAPTURE) {
622 			record |= 1 << voice->num;
623 			voice = voice->timing;
624 		}
625 
626 		/* voice could be NULL if this a recording stream, and it
627 		 * doesn't have an external timing channel.
628 		 */
629 		if (voice)
630 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
631 
632 		snd_pcm_trigger_done(s, substream);
633 	}
634 
635 	if (starting) {
636 		if (record)
637 			outl(record, io + SIS_RECORD_START_REG);
638 		if (play[0])
639 			outl(play[0], io + SIS_PLAY_START_A_REG);
640 		if (play[1])
641 			outl(play[1], io + SIS_PLAY_START_B_REG);
642 	} else {
643 		if (record)
644 			outl(record, io + SIS_RECORD_STOP_REG);
645 		if (play[0])
646 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
647 		if (play[1])
648 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
649 	}
650 	return 0;
651 }
652 
653 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
654 {
655 	struct snd_pcm_runtime *runtime = substream->runtime;
656 	struct voice *voice = runtime->private_data;
657 	u32 cso;
658 
659 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
660 	cso &= 0xffff;
661 	return cso;
662 }
663 
664 static int sis_capture_open(struct snd_pcm_substream *substream)
665 {
666 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
667 	struct snd_pcm_runtime *runtime = substream->runtime;
668 	struct voice *voice = &sis->capture_voice;
669 	unsigned long flags;
670 
671 	/* FIXME: The driver only supports recording from one channel
672 	 * at the moment, but it could support more.
673 	 */
674 	spin_lock_irqsave(&sis->voice_lock, flags);
675 	if (voice->flags & VOICE_IN_USE)
676 		voice = NULL;
677 	else
678 		voice->flags |= VOICE_IN_USE;
679 	spin_unlock_irqrestore(&sis->voice_lock, flags);
680 
681 	if (!voice)
682 		return -EAGAIN;
683 
684 	voice->substream = substream;
685 	runtime->private_data = voice;
686 	runtime->hw = sis_capture_hw_info;
687 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
688 	snd_pcm_limit_hw_rates(runtime);
689 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
690 						9, 0xfff9);
691 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
692 						9, 0xfff9);
693 	snd_pcm_set_sync(substream);
694 	return 0;
695 }
696 
697 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
698 					struct snd_pcm_hw_params *hw_params)
699 {
700 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
701 	int rc;
702 
703 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
704 						params_rate(hw_params));
705 	if (rc)
706 		goto out;
707 
708 	rc = snd_pcm_lib_malloc_pages(substream,
709 					params_buffer_bytes(hw_params));
710 	if (rc < 0)
711 		goto out;
712 
713 	rc = sis_alloc_timing_voice(substream, hw_params);
714 
715 out:
716 	return rc;
717 }
718 
719 static void sis_prepare_timing_voice(struct voice *voice,
720 					struct snd_pcm_substream *substream)
721 {
722 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
723 	struct snd_pcm_runtime *runtime = substream->runtime;
724 	struct voice *timing = voice->timing;
725 	void __iomem *play_base = timing->ctrl_base;
726 	void __iomem *wave_base = timing->wave_base;
727 	u16 buffer_size, period_size;
728 	u32 format, control, sso_eso, delta;
729 	u32 vperiod, sso, reg;
730 
731 	/* Set our initial buffer and period as large as we can given a
732 	 * single page of silence.
733 	 */
734 	buffer_size = 4096 / runtime->channels;
735 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
736 	period_size = buffer_size;
737 
738 	/* Initially, we want to interrupt just a bit behind the end of
739 	 * the period we're clocking out. 10 samples seems to give a good
740 	 * delay.
741 	 *
742 	 * We want to spread our interrupts throughout the virtual period,
743 	 * so that we don't end up with two interrupts back to back at the
744 	 * end -- this helps minimize the effects of any jitter. Adjust our
745 	 * clocking period size so that the last period is at least a fourth
746 	 * of a full period.
747 	 *
748 	 * This is all moot if we don't need to use virtual periods.
749 	 */
750 	vperiod = runtime->period_size + 10;
751 	if (vperiod > period_size) {
752 		u16 tail = vperiod % period_size;
753 		u16 quarter_period = period_size / 4;
754 
755 		if (tail && tail < quarter_period) {
756 			u16 loops = vperiod / period_size;
757 
758 			tail = quarter_period - tail;
759 			tail += loops - 1;
760 			tail /= loops;
761 			period_size -= tail;
762 		}
763 
764 		sso = period_size - 1;
765 	} else {
766 		/* The initial period will fit inside the buffer, so we
767 		 * don't need to use virtual periods -- disable them.
768 		 */
769 		period_size = runtime->period_size;
770 		sso = vperiod - 1;
771 		vperiod = 0;
772 	}
773 
774 	/* The interrupt handler implements the timing syncronization, so
775 	 * setup its state.
776 	 */
777 	timing->flags |= VOICE_SYNC_TIMING;
778 	timing->sync_base = voice->ctrl_base;
779 	timing->sync_cso = runtime->period_size - 1;
780 	timing->sync_period_size = runtime->period_size;
781 	timing->sync_buffer_size = runtime->buffer_size;
782 	timing->period_size = period_size;
783 	timing->buffer_size = buffer_size;
784 	timing->sso = sso;
785 	timing->vperiod = vperiod;
786 
787 	/* Using unsigned samples with the all-zero silence buffer
788 	 * forces the output to the lower rail, killing playback.
789 	 * So ignore unsigned vs signed -- it doesn't change the timing.
790 	 */
791 	format = 0;
792 	if (snd_pcm_format_width(runtime->format) == 8)
793 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
794 	if (runtime->channels == 1)
795 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
796 
797 	control = timing->buffer_size - 1;
798 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
799 	sso_eso = timing->buffer_size - 1;
800 	sso_eso |= timing->sso << 16;
801 
802 	delta = sis_rate_to_delta(runtime->rate);
803 
804 	/* We've done the math, now configure the channel.
805 	 */
806 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
807 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
808 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
809 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
810 
811 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
812 		writel(0, wave_base + reg);
813 
814 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
815 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
816 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
817 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
818 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
819 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
820 }
821 
822 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
823 {
824 	struct snd_pcm_runtime *runtime = substream->runtime;
825 	struct voice *voice = runtime->private_data;
826 	void __iomem *rec_base = voice->ctrl_base;
827 	u32 format, dma_addr, control;
828 	u16 leo;
829 
830 	/* We rely on the PCM core to ensure that the parameters for this
831 	 * substream do not change on us while we're programming the HW.
832 	 */
833 	format = 0;
834 	if (snd_pcm_format_width(runtime->format) == 8)
835 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
836 	if (!snd_pcm_format_signed(runtime->format))
837 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
838 	if (runtime->channels == 1)
839 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
840 
841 	dma_addr = runtime->dma_addr;
842 	leo = runtime->buffer_size - 1;
843 	control = leo | SIS_CAPTURE_DMA_LOOP;
844 
845 	/* If we've got more than two periods per buffer, then we have
846 	 * use a timing voice to clock out the periods. Otherwise, we can
847 	 * use the capture channel's interrupts.
848 	 */
849 	if (voice->timing) {
850 		sis_prepare_timing_voice(voice, substream);
851 	} else {
852 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
853 		if (runtime->period_size != runtime->buffer_size)
854 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
855 	}
856 
857 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
858 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
859 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
860 
861 	/* Force the writes to post. */
862 	readl(rec_base);
863 
864 	return 0;
865 }
866 
867 static struct snd_pcm_ops sis_playback_ops = {
868 	.open = sis_playback_open,
869 	.close = sis_substream_close,
870 	.ioctl = snd_pcm_lib_ioctl,
871 	.hw_params = sis_playback_hw_params,
872 	.hw_free = sis_hw_free,
873 	.prepare = sis_pcm_playback_prepare,
874 	.trigger = sis_pcm_trigger,
875 	.pointer = sis_pcm_pointer,
876 };
877 
878 static struct snd_pcm_ops sis_capture_ops = {
879 	.open = sis_capture_open,
880 	.close = sis_substream_close,
881 	.ioctl = snd_pcm_lib_ioctl,
882 	.hw_params = sis_capture_hw_params,
883 	.hw_free = sis_hw_free,
884 	.prepare = sis_pcm_capture_prepare,
885 	.trigger = sis_pcm_trigger,
886 	.pointer = sis_pcm_pointer,
887 };
888 
889 static int __devinit sis_pcm_create(struct sis7019 *sis)
890 {
891 	struct snd_pcm *pcm;
892 	int rc;
893 
894 	/* We have 64 voices, and the driver currently records from
895 	 * only one channel, though that could change in the future.
896 	 */
897 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
898 	if (rc)
899 		return rc;
900 
901 	pcm->private_data = sis;
902 	strcpy(pcm->name, "SiS7019");
903 	sis->pcm = pcm;
904 
905 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
906 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
907 
908 	/* Try to preallocate some memory, but it's not the end of the
909 	 * world if this fails.
910 	 */
911 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
912 				snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
913 
914 	return 0;
915 }
916 
917 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
918 {
919 	unsigned long io = sis->ioport;
920 	unsigned short val = 0xffff;
921 	u16 status;
922 	u16 rdy;
923 	int count;
924 	const static u16 codec_ready[3] = {
925 		SIS_AC97_STATUS_CODEC_READY,
926 		SIS_AC97_STATUS_CODEC2_READY,
927 		SIS_AC97_STATUS_CODEC3_READY,
928 	};
929 
930 	rdy = codec_ready[codec];
931 
932 
933 	/* Get the AC97 semaphore -- software first, so we don't spin
934 	 * pounding out IO reads on the hardware semaphore...
935 	 */
936 	mutex_lock(&sis->ac97_mutex);
937 
938 	count = 0xffff;
939 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
940 		udelay(1);
941 
942 	if (!count)
943 		goto timeout;
944 
945 	/* ... and wait for any outstanding commands to complete ...
946 	 */
947 	count = 0xffff;
948 	do {
949 		status = inw(io + SIS_AC97_STATUS);
950 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
951 			break;
952 
953 		udelay(1);
954 	} while (--count);
955 
956 	if (!count)
957 		goto timeout_sema;
958 
959 	/* ... before sending our command and waiting for it to finish ...
960 	 */
961 	outl(cmd, io + SIS_AC97_CMD);
962 	udelay(10);
963 
964 	count = 0xffff;
965 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
966 		udelay(1);
967 
968 	/* ... and reading the results (if any).
969 	 */
970 	val = inl(io + SIS_AC97_CMD) >> 16;
971 
972 timeout_sema:
973 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
974 timeout:
975 	mutex_unlock(&sis->ac97_mutex);
976 
977 	if (!count) {
978 		printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
979 					codec, cmd);
980 	}
981 
982 	return val;
983 }
984 
985 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
986 				unsigned short val)
987 {
988 	const static u32 cmd[3] = {
989 		SIS_AC97_CMD_CODEC_WRITE,
990 		SIS_AC97_CMD_CODEC2_WRITE,
991 		SIS_AC97_CMD_CODEC3_WRITE,
992 	};
993 	sis_ac97_rw(ac97->private_data, ac97->num,
994 			(val << 16) | (reg << 8) | cmd[ac97->num]);
995 }
996 
997 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
998 {
999 	const static u32 cmd[3] = {
1000 		SIS_AC97_CMD_CODEC_READ,
1001 		SIS_AC97_CMD_CODEC2_READ,
1002 		SIS_AC97_CMD_CODEC3_READ,
1003 	};
1004 	return sis_ac97_rw(ac97->private_data, ac97->num,
1005 					(reg << 8) | cmd[ac97->num]);
1006 }
1007 
1008 static int __devinit sis_mixer_create(struct sis7019 *sis)
1009 {
1010 	struct snd_ac97_bus *bus;
1011 	struct snd_ac97_template ac97;
1012 	static struct snd_ac97_bus_ops ops = {
1013 		.write = sis_ac97_write,
1014 		.read = sis_ac97_read,
1015 	};
1016 	int rc;
1017 
1018 	memset(&ac97, 0, sizeof(ac97));
1019 	ac97.private_data = sis;
1020 
1021 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1022 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1023 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1024 	ac97.num = 1;
1025 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1026 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1027 	ac97.num = 2;
1028 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1029 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1030 
1031 	/* If we return an error here, then snd_card_free() should
1032 	 * free up any ac97 codecs that got created, as well as the bus.
1033 	 */
1034 	return rc;
1035 }
1036 
1037 static void sis_free_suspend(struct sis7019 *sis)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1042 		kfree(sis->suspend_state[i]);
1043 }
1044 
1045 static int sis_chip_free(struct sis7019 *sis)
1046 {
1047 	/* Reset the chip, and disable all interrputs.
1048 	 */
1049 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1050 	udelay(10);
1051 	outl(0, sis->ioport + SIS_GCR);
1052 	outl(0, sis->ioport + SIS_GIER);
1053 
1054 	/* Now, free everything we allocated.
1055 	 */
1056 	if (sis->irq >= 0)
1057 		free_irq(sis->irq, sis);
1058 
1059 	if (sis->ioaddr)
1060 		iounmap(sis->ioaddr);
1061 
1062 	pci_release_regions(sis->pci);
1063 	pci_disable_device(sis->pci);
1064 
1065 	sis_free_suspend(sis);
1066 	return 0;
1067 }
1068 
1069 static int sis_dev_free(struct snd_device *dev)
1070 {
1071 	struct sis7019 *sis = dev->device_data;
1072 	return sis_chip_free(sis);
1073 }
1074 
1075 static int sis_chip_init(struct sis7019 *sis)
1076 {
1077 	unsigned long io = sis->ioport;
1078 	void __iomem *ioaddr = sis->ioaddr;
1079 	u16 status;
1080 	int count;
1081 	int i;
1082 
1083 	/* Reset the audio controller
1084 	 */
1085 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1086 	udelay(10);
1087 	outl(0, io + SIS_GCR);
1088 
1089 	/* Get the AC-link semaphore, and reset the codecs
1090 	 */
1091 	count = 0xffff;
1092 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1093 		udelay(1);
1094 
1095 	if (!count)
1096 		return -EIO;
1097 
1098 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1099 	udelay(10);
1100 
1101 	count = 0xffff;
1102 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1103 		udelay(1);
1104 
1105 	/* Now that we've finished the reset, find out what's attached.
1106 	 */
1107 	status = inl(io + SIS_AC97_STATUS);
1108 	if (status & SIS_AC97_STATUS_CODEC_READY)
1109 		sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1110 	if (status & SIS_AC97_STATUS_CODEC2_READY)
1111 		sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1112 	if (status & SIS_AC97_STATUS_CODEC3_READY)
1113 		sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1114 
1115 	/* All done, let go of the semaphore, and check for errors
1116 	 */
1117 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1118 	if (!sis->codecs_present || !count)
1119 		return -EIO;
1120 
1121 	/* Let the hardware know that the audio driver is alive,
1122 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1123 	 * record channels. We're going to want to use Variable Rate Audio
1124 	 * for recording, to avoid needlessly resampling from 48kHZ.
1125 	 */
1126 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1127 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1128 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1129 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1130 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1131 
1132 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1133 	 */
1134 	outl(0, io + SIS_AC97_PSR);
1135 
1136 	/* There is only one valid DMA setup for a PCI environment.
1137 	 */
1138 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1139 
1140 	/* Reset the syncronization groups for all of the channels
1141 	 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1142 	 * we'll need to change how we handle these. Until then, we just
1143 	 * assign sub-mixer 0 to all playback channels, and avoid any
1144 	 * attenuation on the audio.
1145 	 */
1146 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1147 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1148 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1149 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1150 	outl(0, io + SIS_MIXER_SYNC_GROUP);
1151 
1152 	for (i = 0; i < 64; i++) {
1153 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1154 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1155 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1156 	}
1157 
1158 	/* Don't attenuate any audio set for the wave amplifier.
1159 	 *
1160 	 * FIXME: Maximum attenuation is set for the music amp, which will
1161 	 * need to change if we start using the synth engine.
1162 	 */
1163 	outl(0xffff0000, io + SIS_WEVCR);
1164 
1165 	/* Ensure that the wave engine is in normal operating mode.
1166 	 */
1167 	outl(0, io + SIS_WECCR);
1168 
1169 	/* Go ahead and enable the DMA interrupts. They won't go live
1170 	 * until we start a channel.
1171 	 */
1172 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1173 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1174 
1175 	return 0;
1176 }
1177 
1178 #ifdef CONFIG_PM
1179 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1180 {
1181 	struct snd_card *card = pci_get_drvdata(pci);
1182 	struct sis7019 *sis = card->private_data;
1183 	void __iomem *ioaddr = sis->ioaddr;
1184 	int i;
1185 
1186 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1187 	snd_pcm_suspend_all(sis->pcm);
1188 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1189 		snd_ac97_suspend(sis->ac97[0]);
1190 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1191 		snd_ac97_suspend(sis->ac97[1]);
1192 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1193 		snd_ac97_suspend(sis->ac97[2]);
1194 
1195 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1196 	 */
1197 	if (sis->irq >= 0) {
1198 		synchronize_irq(sis->irq);
1199 		free_irq(sis->irq, sis);
1200 		sis->irq = -1;
1201 	}
1202 
1203 	/* Save the internal state away
1204 	 */
1205 	for (i = 0; i < 4; i++) {
1206 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1207 		ioaddr += 4096;
1208 	}
1209 
1210 	pci_disable_device(pci);
1211 	pci_save_state(pci);
1212 	pci_set_power_state(pci, pci_choose_state(pci, state));
1213 	return 0;
1214 }
1215 
1216 static int sis_resume(struct pci_dev *pci)
1217 {
1218 	struct snd_card *card = pci_get_drvdata(pci);
1219 	struct sis7019 *sis = card->private_data;
1220 	void __iomem *ioaddr = sis->ioaddr;
1221 	int i;
1222 
1223 	pci_set_power_state(pci, PCI_D0);
1224 	pci_restore_state(pci);
1225 
1226 	if (pci_enable_device(pci) < 0) {
1227 		printk(KERN_ERR "sis7019: unable to re-enable device\n");
1228 		goto error;
1229 	}
1230 
1231 	if (sis_chip_init(sis)) {
1232 		printk(KERN_ERR "sis7019: unable to re-init controller\n");
1233 		goto error;
1234 	}
1235 
1236 	if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1237 				card->shortname, sis)) {
1238 		printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1239 		goto error;
1240 	}
1241 
1242 	/* Restore saved state, then clear out the page we use for the
1243 	 * silence buffer.
1244 	 */
1245 	for (i = 0; i < 4; i++) {
1246 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1247 		ioaddr += 4096;
1248 	}
1249 
1250 	memset(sis->suspend_state[0], 0, 4096);
1251 
1252 	sis->irq = pci->irq;
1253 	pci_set_master(pci);
1254 
1255 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1256 		snd_ac97_resume(sis->ac97[0]);
1257 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1258 		snd_ac97_resume(sis->ac97[1]);
1259 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1260 		snd_ac97_resume(sis->ac97[2]);
1261 
1262 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1263 	return 0;
1264 
1265 error:
1266 	snd_card_disconnect(card);
1267 	return -EIO;
1268 }
1269 #endif /* CONFIG_PM */
1270 
1271 static int sis_alloc_suspend(struct sis7019 *sis)
1272 {
1273 	int i;
1274 
1275 	/* We need 16K to store the internal wave engine state during a
1276 	 * suspend, but we don't need it to be contiguous, so play nice
1277 	 * with the memory system. We'll also use this area for a silence
1278 	 * buffer.
1279 	 */
1280 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1281 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1282 		if (!sis->suspend_state[i])
1283 			return -ENOMEM;
1284 	}
1285 	memset(sis->suspend_state[0], 0, 4096);
1286 
1287 	return 0;
1288 }
1289 
1290 static int __devinit sis_chip_create(struct snd_card *card,
1291 					struct pci_dev *pci)
1292 {
1293 	struct sis7019 *sis = card->private_data;
1294 	struct voice *voice;
1295 	static struct snd_device_ops ops = {
1296 		.dev_free = sis_dev_free,
1297 	};
1298 	int rc;
1299 	int i;
1300 
1301 	rc = pci_enable_device(pci);
1302 	if (rc)
1303 		goto error_out;
1304 
1305 	if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) {
1306 		printk(KERN_ERR "sis7019: architecture does not support "
1307 					"30-bit PCI busmaster DMA");
1308 		goto error_out_enabled;
1309 	}
1310 
1311 	memset(sis, 0, sizeof(*sis));
1312 	mutex_init(&sis->ac97_mutex);
1313 	spin_lock_init(&sis->voice_lock);
1314 	sis->card = card;
1315 	sis->pci = pci;
1316 	sis->irq = -1;
1317 	sis->ioport = pci_resource_start(pci, 0);
1318 
1319 	rc = pci_request_regions(pci, "SiS7019");
1320 	if (rc) {
1321 		printk(KERN_ERR "sis7019: unable request regions\n");
1322 		goto error_out_enabled;
1323 	}
1324 
1325 	rc = -EIO;
1326 	sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1327 	if (!sis->ioaddr) {
1328 		printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1329 		goto error_out_cleanup;
1330 	}
1331 
1332 	rc = sis_alloc_suspend(sis);
1333 	if (rc < 0) {
1334 		printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1335 		goto error_out_cleanup;
1336 	}
1337 
1338 	rc = sis_chip_init(sis);
1339 	if (rc)
1340 		goto error_out_cleanup;
1341 
1342 	if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1343 				card->shortname, sis)) {
1344 		printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1345 		goto error_out_cleanup;
1346 	}
1347 
1348 	sis->irq = pci->irq;
1349 	pci_set_master(pci);
1350 
1351 	for (i = 0; i < 64; i++) {
1352 		voice = &sis->voices[i];
1353 		voice->num = i;
1354 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1355 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1356 	}
1357 
1358 	voice = &sis->capture_voice;
1359 	voice->flags = VOICE_CAPTURE;
1360 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1361 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1362 
1363 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1364 	if (rc)
1365 		goto error_out_cleanup;
1366 
1367 	snd_card_set_dev(card, &pci->dev);
1368 
1369 	return 0;
1370 
1371 error_out_cleanup:
1372 	sis_chip_free(sis);
1373 
1374 error_out_enabled:
1375 	pci_disable_device(pci);
1376 
1377 error_out:
1378 	return rc;
1379 }
1380 
1381 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1382 					const struct pci_device_id *pci_id)
1383 {
1384 	struct snd_card *card;
1385 	struct sis7019 *sis;
1386 	int rc;
1387 
1388 	rc = -ENOENT;
1389 	if (!enable)
1390 		goto error_out;
1391 
1392 	rc = -ENOMEM;
1393 	card = snd_card_new(index, id, THIS_MODULE, sizeof(*sis));
1394 	if (!card)
1395 		goto error_out;
1396 
1397 	strcpy(card->driver, "SiS7019");
1398 	strcpy(card->shortname, "SiS7019");
1399 	rc = sis_chip_create(card, pci);
1400 	if (rc)
1401 		goto card_error_out;
1402 
1403 	sis = card->private_data;
1404 
1405 	rc = sis_mixer_create(sis);
1406 	if (rc)
1407 		goto card_error_out;
1408 
1409 	rc = sis_pcm_create(sis);
1410 	if (rc)
1411 		goto card_error_out;
1412 
1413 	snprintf(card->longname, sizeof(card->longname),
1414 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1415 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1416 			sis->ioport, sis->irq);
1417 
1418 	rc = snd_card_register(card);
1419 	if (rc)
1420 		goto card_error_out;
1421 
1422 	pci_set_drvdata(pci, card);
1423 	return 0;
1424 
1425 card_error_out:
1426 	snd_card_free(card);
1427 
1428 error_out:
1429 	return rc;
1430 }
1431 
1432 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1433 {
1434 	snd_card_free(pci_get_drvdata(pci));
1435 	pci_set_drvdata(pci, NULL);
1436 }
1437 
1438 static struct pci_driver sis7019_driver = {
1439 	.name = "SiS7019",
1440 	.id_table = snd_sis7019_ids,
1441 	.probe = snd_sis7019_probe,
1442 	.remove = __devexit_p(snd_sis7019_remove),
1443 
1444 #ifdef CONFIG_PM
1445 	.suspend = sis_suspend,
1446 	.resume = sis_resume,
1447 #endif
1448 };
1449 
1450 static int __init sis7019_init(void)
1451 {
1452 	return pci_register_driver(&sis7019_driver);
1453 }
1454 
1455 static void __exit sis7019_exit(void)
1456 {
1457 	pci_unregister_driver(&sis7019_driver);
1458 }
1459 
1460 module_init(sis7019_init);
1461 module_exit(sis7019_exit);
1462