xref: /openbmc/linux/sound/pci/sis7019.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23 
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
28 
29 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
30 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
31 static bool enable = 1;
32 static int codecs = 1;
33 
34 module_param(index, int, 0444);
35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
36 module_param(id, charp, 0444);
37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
38 module_param(enable, bool, 0444);
39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
40 module_param(codecs, int, 0444);
41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
42 
43 static const struct pci_device_id snd_sis7019_ids[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
45 	{ 0, }
46 };
47 
48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49 
50 /* There are three timing modes for the voices.
51  *
52  * For both playback and capture, when the buffer is one or two periods long,
53  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
54  * to let us know when the periods have ended.
55  *
56  * When performing playback with more than two periods per buffer, we set
57  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
58  * reach it. We then update the offset and continue on until we are
59  * interrupted for the next period.
60  *
61  * Capture channels do not have a SSO, so we allocate a playback channel to
62  * use as a timer for the capture periods. We use the SSO on the playback
63  * channel to clock out virtual periods, and adjust the virtual period length
64  * to maintain synchronization. This algorithm came from the Trident driver.
65  *
66  * FIXME: It'd be nice to make use of some of the synth features in the
67  * hardware, but a woeful lack of documentation is a significant roadblock.
68  */
69 struct voice {
70 	u16 flags;
71 #define 	VOICE_IN_USE		1
72 #define 	VOICE_CAPTURE		2
73 #define 	VOICE_SSO_TIMING	4
74 #define 	VOICE_SYNC_TIMING	8
75 	u16 sync_cso;
76 	u16 period_size;
77 	u16 buffer_size;
78 	u16 sync_period_size;
79 	u16 sync_buffer_size;
80 	u32 sso;
81 	u32 vperiod;
82 	struct snd_pcm_substream *substream;
83 	struct voice *timing;
84 	void __iomem *ctrl_base;
85 	void __iomem *wave_base;
86 	void __iomem *sync_base;
87 	int num;
88 };
89 
90 /* We need four pages to store our wave parameters during a suspend. If
91  * we're not doing power management, we still need to allocate a page
92  * for the silence buffer.
93  */
94 #ifdef CONFIG_PM_SLEEP
95 #define SIS_SUSPEND_PAGES	4
96 #else
97 #define SIS_SUSPEND_PAGES	1
98 #endif
99 
100 struct sis7019 {
101 	unsigned long ioport;
102 	void __iomem *ioaddr;
103 	int irq;
104 	int codecs_present;
105 
106 	struct pci_dev *pci;
107 	struct snd_pcm *pcm;
108 	struct snd_card *card;
109 	struct snd_ac97 *ac97[3];
110 
111 	/* Protect against more than one thread hitting the AC97
112 	 * registers (in a more polite manner than pounding the hardware
113 	 * semaphore)
114 	 */
115 	struct mutex ac97_mutex;
116 
117 	/* voice_lock protects allocation/freeing of the voice descriptions
118 	 */
119 	spinlock_t voice_lock;
120 
121 	struct voice voices[64];
122 	struct voice capture_voice;
123 
124 	/* Allocate pages to store the internal wave state during
125 	 * suspends. When we're operating, this can be used as a silence
126 	 * buffer for a timing channel.
127 	 */
128 	void *suspend_state[SIS_SUSPEND_PAGES];
129 
130 	int silence_users;
131 	dma_addr_t silence_dma_addr;
132 };
133 
134 /* These values are also used by the module param 'codecs' to indicate
135  * which codecs should be present.
136  */
137 #define SIS_PRIMARY_CODEC_PRESENT	0x0001
138 #define SIS_SECONDARY_CODEC_PRESENT	0x0002
139 #define SIS_TERTIARY_CODEC_PRESENT	0x0004
140 
141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
142  * documented range of 8-0xfff8 samples. Given that they are 0-based,
143  * that places our period/buffer range at 9-0xfff9 samples. That makes the
144  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
145  * max samples / min samples gives us the max periods in a buffer.
146  *
147  * We'll add a constraint upon open that limits the period and buffer sample
148  * size to values that are legal for the hardware.
149  */
150 static const struct snd_pcm_hardware sis_playback_hw_info = {
151 	.info = (SNDRV_PCM_INFO_MMAP |
152 		 SNDRV_PCM_INFO_MMAP_VALID |
153 		 SNDRV_PCM_INFO_INTERLEAVED |
154 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
155 		 SNDRV_PCM_INFO_SYNC_START |
156 		 SNDRV_PCM_INFO_RESUME),
157 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
158 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
159 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
160 	.rate_min = 4000,
161 	.rate_max = 48000,
162 	.channels_min = 1,
163 	.channels_max = 2,
164 	.buffer_bytes_max = (0xfff9 * 4),
165 	.period_bytes_min = 9,
166 	.period_bytes_max = (0xfff9 * 4),
167 	.periods_min = 1,
168 	.periods_max = (0xfff9 / 9),
169 };
170 
171 static const struct snd_pcm_hardware sis_capture_hw_info = {
172 	.info = (SNDRV_PCM_INFO_MMAP |
173 		 SNDRV_PCM_INFO_MMAP_VALID |
174 		 SNDRV_PCM_INFO_INTERLEAVED |
175 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
176 		 SNDRV_PCM_INFO_SYNC_START |
177 		 SNDRV_PCM_INFO_RESUME),
178 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
179 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
180 	.rates = SNDRV_PCM_RATE_48000,
181 	.rate_min = 4000,
182 	.rate_max = 48000,
183 	.channels_min = 1,
184 	.channels_max = 2,
185 	.buffer_bytes_max = (0xfff9 * 4),
186 	.period_bytes_min = 9,
187 	.period_bytes_max = (0xfff9 * 4),
188 	.periods_min = 1,
189 	.periods_max = (0xfff9 / 9),
190 };
191 
192 static void sis_update_sso(struct voice *voice, u16 period)
193 {
194 	void __iomem *base = voice->ctrl_base;
195 
196 	voice->sso += period;
197 	if (voice->sso >= voice->buffer_size)
198 		voice->sso -= voice->buffer_size;
199 
200 	/* Enforce the documented hardware minimum offset */
201 	if (voice->sso < 8)
202 		voice->sso = 8;
203 
204 	/* The SSO is in the upper 16 bits of the register. */
205 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
206 }
207 
208 static void sis_update_voice(struct voice *voice)
209 {
210 	if (voice->flags & VOICE_SSO_TIMING) {
211 		sis_update_sso(voice, voice->period_size);
212 	} else if (voice->flags & VOICE_SYNC_TIMING) {
213 		int sync;
214 
215 		/* If we've not hit the end of the virtual period, update
216 		 * our records and keep going.
217 		 */
218 		if (voice->vperiod > voice->period_size) {
219 			voice->vperiod -= voice->period_size;
220 			if (voice->vperiod < voice->period_size)
221 				sis_update_sso(voice, voice->vperiod);
222 			else
223 				sis_update_sso(voice, voice->period_size);
224 			return;
225 		}
226 
227 		/* Calculate our relative offset between the target and
228 		 * the actual CSO value. Since we're operating in a loop,
229 		 * if the value is more than half way around, we can
230 		 * consider ourselves wrapped.
231 		 */
232 		sync = voice->sync_cso;
233 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
234 		if (sync > (voice->sync_buffer_size / 2))
235 			sync -= voice->sync_buffer_size;
236 
237 		/* If sync is positive, then we interrupted too early, and
238 		 * we'll need to come back in a few samples and try again.
239 		 * There's a minimum wait, as it takes some time for the DMA
240 		 * engine to startup, etc...
241 		 */
242 		if (sync > 0) {
243 			if (sync < 16)
244 				sync = 16;
245 			sis_update_sso(voice, sync);
246 			return;
247 		}
248 
249 		/* Ok, we interrupted right on time, or (hopefully) just
250 		 * a bit late. We'll adjst our next waiting period based
251 		 * on how close we got.
252 		 *
253 		 * We need to stay just behind the actual channel to ensure
254 		 * it really is past a period when we get our interrupt --
255 		 * otherwise we'll fall into the early code above and have
256 		 * a minimum wait time, which makes us quite late here,
257 		 * eating into the user's time to refresh the buffer, esp.
258 		 * if using small periods.
259 		 *
260 		 * If we're less than 9 samples behind, we're on target.
261 		 * Otherwise, shorten the next vperiod by the amount we've
262 		 * been delayed.
263 		 */
264 		if (sync > -9)
265 			voice->vperiod = voice->sync_period_size + 1;
266 		else
267 			voice->vperiod = voice->sync_period_size + sync + 10;
268 
269 		if (voice->vperiod < voice->buffer_size) {
270 			sis_update_sso(voice, voice->vperiod);
271 			voice->vperiod = 0;
272 		} else
273 			sis_update_sso(voice, voice->period_size);
274 
275 		sync = voice->sync_cso + voice->sync_period_size;
276 		if (sync >= voice->sync_buffer_size)
277 			sync -= voice->sync_buffer_size;
278 		voice->sync_cso = sync;
279 	}
280 
281 	snd_pcm_period_elapsed(voice->substream);
282 }
283 
284 static void sis_voice_irq(u32 status, struct voice *voice)
285 {
286 	int bit;
287 
288 	while (status) {
289 		bit = __ffs(status);
290 		status >>= bit + 1;
291 		voice += bit;
292 		sis_update_voice(voice);
293 		voice++;
294 	}
295 }
296 
297 static irqreturn_t sis_interrupt(int irq, void *dev)
298 {
299 	struct sis7019 *sis = dev;
300 	unsigned long io = sis->ioport;
301 	struct voice *voice;
302 	u32 intr, status;
303 
304 	/* We only use the DMA interrupts, and we don't enable any other
305 	 * source of interrupts. But, it is possible to see an interrupt
306 	 * status that didn't actually interrupt us, so eliminate anything
307 	 * we're not expecting to avoid falsely claiming an IRQ, and an
308 	 * ensuing endless loop.
309 	 */
310 	intr = inl(io + SIS_GISR);
311 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
312 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
313 	if (!intr)
314 		return IRQ_NONE;
315 
316 	do {
317 		status = inl(io + SIS_PISR_A);
318 		if (status) {
319 			sis_voice_irq(status, sis->voices);
320 			outl(status, io + SIS_PISR_A);
321 		}
322 
323 		status = inl(io + SIS_PISR_B);
324 		if (status) {
325 			sis_voice_irq(status, &sis->voices[32]);
326 			outl(status, io + SIS_PISR_B);
327 		}
328 
329 		status = inl(io + SIS_RISR);
330 		if (status) {
331 			voice = &sis->capture_voice;
332 			if (!voice->timing)
333 				snd_pcm_period_elapsed(voice->substream);
334 
335 			outl(status, io + SIS_RISR);
336 		}
337 
338 		outl(intr, io + SIS_GISR);
339 		intr = inl(io + SIS_GISR);
340 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
341 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
342 	} while (intr);
343 
344 	return IRQ_HANDLED;
345 }
346 
347 static u32 sis_rate_to_delta(unsigned int rate)
348 {
349 	u32 delta;
350 
351 	/* This was copied from the trident driver, but it seems its gotten
352 	 * around a bit... nevertheless, it works well.
353 	 *
354 	 * We special case 44100 and 8000 since rounding with the equation
355 	 * does not give us an accurate enough value. For 11025 and 22050
356 	 * the equation gives us the best answer. All other frequencies will
357 	 * also use the equation. JDW
358 	 */
359 	if (rate == 44100)
360 		delta = 0xeb3;
361 	else if (rate == 8000)
362 		delta = 0x2ab;
363 	else if (rate == 48000)
364 		delta = 0x1000;
365 	else
366 		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
367 	return delta;
368 }
369 
370 static void __sis_map_silence(struct sis7019 *sis)
371 {
372 	/* Helper function: must hold sis->voice_lock on entry */
373 	if (!sis->silence_users)
374 		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
375 						sis->suspend_state[0],
376 						4096, DMA_TO_DEVICE);
377 	sis->silence_users++;
378 }
379 
380 static void __sis_unmap_silence(struct sis7019 *sis)
381 {
382 	/* Helper function: must hold sis->voice_lock on entry */
383 	sis->silence_users--;
384 	if (!sis->silence_users)
385 		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
386 					DMA_TO_DEVICE);
387 }
388 
389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
390 {
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(&sis->voice_lock, flags);
394 	if (voice->timing) {
395 		__sis_unmap_silence(sis);
396 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397 						VOICE_SYNC_TIMING);
398 		voice->timing = NULL;
399 	}
400 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
401 	spin_unlock_irqrestore(&sis->voice_lock, flags);
402 }
403 
404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405 {
406 	/* Must hold the voice_lock on entry */
407 	struct voice *voice;
408 	int i;
409 
410 	for (i = 0; i < 64; i++) {
411 		voice = &sis->voices[i];
412 		if (voice->flags & VOICE_IN_USE)
413 			continue;
414 		voice->flags |= VOICE_IN_USE;
415 		goto found_one;
416 	}
417 	voice = NULL;
418 
419 found_one:
420 	return voice;
421 }
422 
423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
424 {
425 	struct voice *voice;
426 	unsigned long flags;
427 
428 	spin_lock_irqsave(&sis->voice_lock, flags);
429 	voice = __sis_alloc_playback_voice(sis);
430 	spin_unlock_irqrestore(&sis->voice_lock, flags);
431 
432 	return voice;
433 }
434 
435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
436 					struct snd_pcm_hw_params *hw_params)
437 {
438 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
439 	struct snd_pcm_runtime *runtime = substream->runtime;
440 	struct voice *voice = runtime->private_data;
441 	unsigned int period_size, buffer_size;
442 	unsigned long flags;
443 	int needed;
444 
445 	/* If there are one or two periods per buffer, we don't need a
446 	 * timing voice, as we can use the capture channel's interrupts
447 	 * to clock out the periods.
448 	 */
449 	period_size = params_period_size(hw_params);
450 	buffer_size = params_buffer_size(hw_params);
451 	needed = (period_size != buffer_size &&
452 			period_size != (buffer_size / 2));
453 
454 	if (needed && !voice->timing) {
455 		spin_lock_irqsave(&sis->voice_lock, flags);
456 		voice->timing = __sis_alloc_playback_voice(sis);
457 		if (voice->timing)
458 			__sis_map_silence(sis);
459 		spin_unlock_irqrestore(&sis->voice_lock, flags);
460 		if (!voice->timing)
461 			return -ENOMEM;
462 		voice->timing->substream = substream;
463 	} else if (!needed && voice->timing) {
464 		sis_free_voice(sis, voice);
465 		voice->timing = NULL;
466 	}
467 
468 	return 0;
469 }
470 
471 static int sis_playback_open(struct snd_pcm_substream *substream)
472 {
473 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
474 	struct snd_pcm_runtime *runtime = substream->runtime;
475 	struct voice *voice;
476 
477 	voice = sis_alloc_playback_voice(sis);
478 	if (!voice)
479 		return -EAGAIN;
480 
481 	voice->substream = substream;
482 	runtime->private_data = voice;
483 	runtime->hw = sis_playback_hw_info;
484 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485 						9, 0xfff9);
486 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487 						9, 0xfff9);
488 	snd_pcm_set_sync(substream);
489 	return 0;
490 }
491 
492 static int sis_substream_close(struct snd_pcm_substream *substream)
493 {
494 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
495 	struct snd_pcm_runtime *runtime = substream->runtime;
496 	struct voice *voice = runtime->private_data;
497 
498 	sis_free_voice(sis, voice);
499 	return 0;
500 }
501 
502 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
503 {
504 	struct snd_pcm_runtime *runtime = substream->runtime;
505 	struct voice *voice = runtime->private_data;
506 	void __iomem *ctrl_base = voice->ctrl_base;
507 	void __iomem *wave_base = voice->wave_base;
508 	u32 format, dma_addr, control, sso_eso, delta, reg;
509 	u16 leo;
510 
511 	/* We rely on the PCM core to ensure that the parameters for this
512 	 * substream do not change on us while we're programming the HW.
513 	 */
514 	format = 0;
515 	if (snd_pcm_format_width(runtime->format) == 8)
516 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
517 	if (!snd_pcm_format_signed(runtime->format))
518 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
519 	if (runtime->channels == 1)
520 		format |= SIS_PLAY_DMA_FORMAT_MONO;
521 
522 	/* The baseline setup is for a single period per buffer, and
523 	 * we add bells and whistles as needed from there.
524 	 */
525 	dma_addr = runtime->dma_addr;
526 	leo = runtime->buffer_size - 1;
527 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
528 	sso_eso = leo;
529 
530 	if (runtime->period_size == (runtime->buffer_size / 2)) {
531 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
532 	} else if (runtime->period_size != runtime->buffer_size) {
533 		voice->flags |= VOICE_SSO_TIMING;
534 		voice->sso = runtime->period_size - 1;
535 		voice->period_size = runtime->period_size;
536 		voice->buffer_size = runtime->buffer_size;
537 
538 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
539 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
540 		sso_eso |= (runtime->period_size - 1) << 16;
541 	}
542 
543 	delta = sis_rate_to_delta(runtime->rate);
544 
545 	/* Ok, we're ready to go, set up the channel.
546 	 */
547 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
548 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
549 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
550 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
551 
552 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
553 		writel(0, wave_base + reg);
554 
555 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
556 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
557 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
558 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
559 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
560 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
561 
562 	/* Force PCI writes to post. */
563 	readl(ctrl_base);
564 
565 	return 0;
566 }
567 
568 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
569 {
570 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
571 	unsigned long io = sis->ioport;
572 	struct snd_pcm_substream *s;
573 	struct voice *voice;
574 	void *chip;
575 	int starting;
576 	u32 record = 0;
577 	u32 play[2] = { 0, 0 };
578 
579 	/* No locks needed, as the PCM core will hold the locks on the
580 	 * substreams, and the HW will only start/stop the indicated voices
581 	 * without changing the state of the others.
582 	 */
583 	switch (cmd) {
584 	case SNDRV_PCM_TRIGGER_START:
585 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
586 	case SNDRV_PCM_TRIGGER_RESUME:
587 		starting = 1;
588 		break;
589 	case SNDRV_PCM_TRIGGER_STOP:
590 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
591 	case SNDRV_PCM_TRIGGER_SUSPEND:
592 		starting = 0;
593 		break;
594 	default:
595 		return -EINVAL;
596 	}
597 
598 	snd_pcm_group_for_each_entry(s, substream) {
599 		/* Make sure it is for us... */
600 		chip = snd_pcm_substream_chip(s);
601 		if (chip != sis)
602 			continue;
603 
604 		voice = s->runtime->private_data;
605 		if (voice->flags & VOICE_CAPTURE) {
606 			record |= 1 << voice->num;
607 			voice = voice->timing;
608 		}
609 
610 		/* voice could be NULL if this a recording stream, and it
611 		 * doesn't have an external timing channel.
612 		 */
613 		if (voice)
614 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
615 
616 		snd_pcm_trigger_done(s, substream);
617 	}
618 
619 	if (starting) {
620 		if (record)
621 			outl(record, io + SIS_RECORD_START_REG);
622 		if (play[0])
623 			outl(play[0], io + SIS_PLAY_START_A_REG);
624 		if (play[1])
625 			outl(play[1], io + SIS_PLAY_START_B_REG);
626 	} else {
627 		if (record)
628 			outl(record, io + SIS_RECORD_STOP_REG);
629 		if (play[0])
630 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
631 		if (play[1])
632 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
633 	}
634 	return 0;
635 }
636 
637 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
638 {
639 	struct snd_pcm_runtime *runtime = substream->runtime;
640 	struct voice *voice = runtime->private_data;
641 	u32 cso;
642 
643 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
644 	cso &= 0xffff;
645 	return cso;
646 }
647 
648 static int sis_capture_open(struct snd_pcm_substream *substream)
649 {
650 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
651 	struct snd_pcm_runtime *runtime = substream->runtime;
652 	struct voice *voice = &sis->capture_voice;
653 	unsigned long flags;
654 
655 	/* FIXME: The driver only supports recording from one channel
656 	 * at the moment, but it could support more.
657 	 */
658 	spin_lock_irqsave(&sis->voice_lock, flags);
659 	if (voice->flags & VOICE_IN_USE)
660 		voice = NULL;
661 	else
662 		voice->flags |= VOICE_IN_USE;
663 	spin_unlock_irqrestore(&sis->voice_lock, flags);
664 
665 	if (!voice)
666 		return -EAGAIN;
667 
668 	voice->substream = substream;
669 	runtime->private_data = voice;
670 	runtime->hw = sis_capture_hw_info;
671 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
672 	snd_pcm_limit_hw_rates(runtime);
673 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
674 						9, 0xfff9);
675 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
676 						9, 0xfff9);
677 	snd_pcm_set_sync(substream);
678 	return 0;
679 }
680 
681 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
682 					struct snd_pcm_hw_params *hw_params)
683 {
684 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
685 	int rc;
686 
687 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
688 						params_rate(hw_params));
689 	if (rc)
690 		goto out;
691 
692 	rc = sis_alloc_timing_voice(substream, hw_params);
693 
694 out:
695 	return rc;
696 }
697 
698 static void sis_prepare_timing_voice(struct voice *voice,
699 					struct snd_pcm_substream *substream)
700 {
701 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
702 	struct snd_pcm_runtime *runtime = substream->runtime;
703 	struct voice *timing = voice->timing;
704 	void __iomem *play_base = timing->ctrl_base;
705 	void __iomem *wave_base = timing->wave_base;
706 	u16 buffer_size, period_size;
707 	u32 format, control, sso_eso, delta;
708 	u32 vperiod, sso, reg;
709 
710 	/* Set our initial buffer and period as large as we can given a
711 	 * single page of silence.
712 	 */
713 	buffer_size = 4096 / runtime->channels;
714 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
715 	period_size = buffer_size;
716 
717 	/* Initially, we want to interrupt just a bit behind the end of
718 	 * the period we're clocking out. 12 samples seems to give a good
719 	 * delay.
720 	 *
721 	 * We want to spread our interrupts throughout the virtual period,
722 	 * so that we don't end up with two interrupts back to back at the
723 	 * end -- this helps minimize the effects of any jitter. Adjust our
724 	 * clocking period size so that the last period is at least a fourth
725 	 * of a full period.
726 	 *
727 	 * This is all moot if we don't need to use virtual periods.
728 	 */
729 	vperiod = runtime->period_size + 12;
730 	if (vperiod > period_size) {
731 		u16 tail = vperiod % period_size;
732 		u16 quarter_period = period_size / 4;
733 
734 		if (tail && tail < quarter_period) {
735 			u16 loops = vperiod / period_size;
736 
737 			tail = quarter_period - tail;
738 			tail += loops - 1;
739 			tail /= loops;
740 			period_size -= tail;
741 		}
742 
743 		sso = period_size - 1;
744 	} else {
745 		/* The initial period will fit inside the buffer, so we
746 		 * don't need to use virtual periods -- disable them.
747 		 */
748 		period_size = runtime->period_size;
749 		sso = vperiod - 1;
750 		vperiod = 0;
751 	}
752 
753 	/* The interrupt handler implements the timing synchronization, so
754 	 * setup its state.
755 	 */
756 	timing->flags |= VOICE_SYNC_TIMING;
757 	timing->sync_base = voice->ctrl_base;
758 	timing->sync_cso = runtime->period_size;
759 	timing->sync_period_size = runtime->period_size;
760 	timing->sync_buffer_size = runtime->buffer_size;
761 	timing->period_size = period_size;
762 	timing->buffer_size = buffer_size;
763 	timing->sso = sso;
764 	timing->vperiod = vperiod;
765 
766 	/* Using unsigned samples with the all-zero silence buffer
767 	 * forces the output to the lower rail, killing playback.
768 	 * So ignore unsigned vs signed -- it doesn't change the timing.
769 	 */
770 	format = 0;
771 	if (snd_pcm_format_width(runtime->format) == 8)
772 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
773 	if (runtime->channels == 1)
774 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
775 
776 	control = timing->buffer_size - 1;
777 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
778 	sso_eso = timing->buffer_size - 1;
779 	sso_eso |= timing->sso << 16;
780 
781 	delta = sis_rate_to_delta(runtime->rate);
782 
783 	/* We've done the math, now configure the channel.
784 	 */
785 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
786 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
787 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
788 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
789 
790 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
791 		writel(0, wave_base + reg);
792 
793 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
794 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
795 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
796 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
797 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
798 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
799 }
800 
801 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
802 {
803 	struct snd_pcm_runtime *runtime = substream->runtime;
804 	struct voice *voice = runtime->private_data;
805 	void __iomem *rec_base = voice->ctrl_base;
806 	u32 format, dma_addr, control;
807 	u16 leo;
808 
809 	/* We rely on the PCM core to ensure that the parameters for this
810 	 * substream do not change on us while we're programming the HW.
811 	 */
812 	format = 0;
813 	if (snd_pcm_format_width(runtime->format) == 8)
814 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
815 	if (!snd_pcm_format_signed(runtime->format))
816 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
817 	if (runtime->channels == 1)
818 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
819 
820 	dma_addr = runtime->dma_addr;
821 	leo = runtime->buffer_size - 1;
822 	control = leo | SIS_CAPTURE_DMA_LOOP;
823 
824 	/* If we've got more than two periods per buffer, then we have
825 	 * use a timing voice to clock out the periods. Otherwise, we can
826 	 * use the capture channel's interrupts.
827 	 */
828 	if (voice->timing) {
829 		sis_prepare_timing_voice(voice, substream);
830 	} else {
831 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
832 		if (runtime->period_size != runtime->buffer_size)
833 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
834 	}
835 
836 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
837 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
838 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
839 
840 	/* Force the writes to post. */
841 	readl(rec_base);
842 
843 	return 0;
844 }
845 
846 static const struct snd_pcm_ops sis_playback_ops = {
847 	.open = sis_playback_open,
848 	.close = sis_substream_close,
849 	.prepare = sis_pcm_playback_prepare,
850 	.trigger = sis_pcm_trigger,
851 	.pointer = sis_pcm_pointer,
852 };
853 
854 static const struct snd_pcm_ops sis_capture_ops = {
855 	.open = sis_capture_open,
856 	.close = sis_substream_close,
857 	.hw_params = sis_capture_hw_params,
858 	.prepare = sis_pcm_capture_prepare,
859 	.trigger = sis_pcm_trigger,
860 	.pointer = sis_pcm_pointer,
861 };
862 
863 static int sis_pcm_create(struct sis7019 *sis)
864 {
865 	struct snd_pcm *pcm;
866 	int rc;
867 
868 	/* We have 64 voices, and the driver currently records from
869 	 * only one channel, though that could change in the future.
870 	 */
871 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
872 	if (rc)
873 		return rc;
874 
875 	pcm->private_data = sis;
876 	strcpy(pcm->name, "SiS7019");
877 	sis->pcm = pcm;
878 
879 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
880 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
881 
882 	/* Try to preallocate some memory, but it's not the end of the
883 	 * world if this fails.
884 	 */
885 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
886 				       &sis->pci->dev, 64*1024, 128*1024);
887 
888 	return 0;
889 }
890 
891 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
892 {
893 	unsigned long io = sis->ioport;
894 	unsigned short val = 0xffff;
895 	u16 status;
896 	u16 rdy;
897 	int count;
898 	static const u16 codec_ready[3] = {
899 		SIS_AC97_STATUS_CODEC_READY,
900 		SIS_AC97_STATUS_CODEC2_READY,
901 		SIS_AC97_STATUS_CODEC3_READY,
902 	};
903 
904 	rdy = codec_ready[codec];
905 
906 
907 	/* Get the AC97 semaphore -- software first, so we don't spin
908 	 * pounding out IO reads on the hardware semaphore...
909 	 */
910 	mutex_lock(&sis->ac97_mutex);
911 
912 	count = 0xffff;
913 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
914 		udelay(1);
915 
916 	if (!count)
917 		goto timeout;
918 
919 	/* ... and wait for any outstanding commands to complete ...
920 	 */
921 	count = 0xffff;
922 	do {
923 		status = inw(io + SIS_AC97_STATUS);
924 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
925 			break;
926 
927 		udelay(1);
928 	} while (--count);
929 
930 	if (!count)
931 		goto timeout_sema;
932 
933 	/* ... before sending our command and waiting for it to finish ...
934 	 */
935 	outl(cmd, io + SIS_AC97_CMD);
936 	udelay(10);
937 
938 	count = 0xffff;
939 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
940 		udelay(1);
941 
942 	/* ... and reading the results (if any).
943 	 */
944 	val = inl(io + SIS_AC97_CMD) >> 16;
945 
946 timeout_sema:
947 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
948 timeout:
949 	mutex_unlock(&sis->ac97_mutex);
950 
951 	if (!count) {
952 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
953 					codec, cmd);
954 	}
955 
956 	return val;
957 }
958 
959 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
960 				unsigned short val)
961 {
962 	static const u32 cmd[3] = {
963 		SIS_AC97_CMD_CODEC_WRITE,
964 		SIS_AC97_CMD_CODEC2_WRITE,
965 		SIS_AC97_CMD_CODEC3_WRITE,
966 	};
967 	sis_ac97_rw(ac97->private_data, ac97->num,
968 			(val << 16) | (reg << 8) | cmd[ac97->num]);
969 }
970 
971 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
972 {
973 	static const u32 cmd[3] = {
974 		SIS_AC97_CMD_CODEC_READ,
975 		SIS_AC97_CMD_CODEC2_READ,
976 		SIS_AC97_CMD_CODEC3_READ,
977 	};
978 	return sis_ac97_rw(ac97->private_data, ac97->num,
979 					(reg << 8) | cmd[ac97->num]);
980 }
981 
982 static int sis_mixer_create(struct sis7019 *sis)
983 {
984 	struct snd_ac97_bus *bus;
985 	struct snd_ac97_template ac97;
986 	static const struct snd_ac97_bus_ops ops = {
987 		.write = sis_ac97_write,
988 		.read = sis_ac97_read,
989 	};
990 	int rc;
991 
992 	memset(&ac97, 0, sizeof(ac97));
993 	ac97.private_data = sis;
994 
995 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
996 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
997 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
998 	ac97.num = 1;
999 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1000 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1001 	ac97.num = 2;
1002 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1003 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1004 
1005 	/* If we return an error here, then snd_card_free() should
1006 	 * free up any ac97 codecs that got created, as well as the bus.
1007 	 */
1008 	return rc;
1009 }
1010 
1011 static void sis_free_suspend(struct sis7019 *sis)
1012 {
1013 	int i;
1014 
1015 	for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1016 		kfree(sis->suspend_state[i]);
1017 }
1018 
1019 static int sis_chip_free(struct sis7019 *sis)
1020 {
1021 	/* Reset the chip, and disable all interrputs.
1022 	 */
1023 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1024 	udelay(25);
1025 	outl(0, sis->ioport + SIS_GCR);
1026 	outl(0, sis->ioport + SIS_GIER);
1027 
1028 	/* Now, free everything we allocated.
1029 	 */
1030 	if (sis->irq >= 0)
1031 		free_irq(sis->irq, sis);
1032 
1033 	iounmap(sis->ioaddr);
1034 	pci_release_regions(sis->pci);
1035 	pci_disable_device(sis->pci);
1036 	sis_free_suspend(sis);
1037 	return 0;
1038 }
1039 
1040 static int sis_dev_free(struct snd_device *dev)
1041 {
1042 	struct sis7019 *sis = dev->device_data;
1043 	return sis_chip_free(sis);
1044 }
1045 
1046 static int sis_chip_init(struct sis7019 *sis)
1047 {
1048 	unsigned long io = sis->ioport;
1049 	void __iomem *ioaddr = sis->ioaddr;
1050 	unsigned long timeout;
1051 	u16 status;
1052 	int count;
1053 	int i;
1054 
1055 	/* Reset the audio controller
1056 	 */
1057 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1058 	udelay(25);
1059 	outl(0, io + SIS_GCR);
1060 
1061 	/* Get the AC-link semaphore, and reset the codecs
1062 	 */
1063 	count = 0xffff;
1064 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1065 		udelay(1);
1066 
1067 	if (!count)
1068 		return -EIO;
1069 
1070 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1071 	udelay(250);
1072 
1073 	count = 0xffff;
1074 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1075 		udelay(1);
1076 
1077 	/* Command complete, we can let go of the semaphore now.
1078 	 */
1079 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1080 	if (!count)
1081 		return -EIO;
1082 
1083 	/* Now that we've finished the reset, find out what's attached.
1084 	 * There are some codec/board combinations that take an extremely
1085 	 * long time to come up. 350+ ms has been observed in the field,
1086 	 * so we'll give them up to 500ms.
1087 	 */
1088 	sis->codecs_present = 0;
1089 	timeout = msecs_to_jiffies(500) + jiffies;
1090 	while (time_before_eq(jiffies, timeout)) {
1091 		status = inl(io + SIS_AC97_STATUS);
1092 		if (status & SIS_AC97_STATUS_CODEC_READY)
1093 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1094 		if (status & SIS_AC97_STATUS_CODEC2_READY)
1095 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1096 		if (status & SIS_AC97_STATUS_CODEC3_READY)
1097 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1098 
1099 		if (sis->codecs_present == codecs)
1100 			break;
1101 
1102 		msleep(1);
1103 	}
1104 
1105 	/* All done, check for errors.
1106 	 */
1107 	if (!sis->codecs_present) {
1108 		dev_err(&sis->pci->dev, "could not find any codecs\n");
1109 		return -EIO;
1110 	}
1111 
1112 	if (sis->codecs_present != codecs) {
1113 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1114 					 sis->codecs_present, codecs);
1115 	}
1116 
1117 	/* Let the hardware know that the audio driver is alive,
1118 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1119 	 * record channels. We're going to want to use Variable Rate Audio
1120 	 * for recording, to avoid needlessly resampling from 48kHZ.
1121 	 */
1122 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1123 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1124 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1125 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1126 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1127 
1128 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1129 	 */
1130 	outl(0, io + SIS_AC97_PSR);
1131 
1132 	/* There is only one valid DMA setup for a PCI environment.
1133 	 */
1134 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1135 
1136 	/* Reset the synchronization groups for all of the channels
1137 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1138 	 * we'll need to change how we handle these. Until then, we just
1139 	 * assign sub-mixer 0 to all playback channels, and avoid any
1140 	 * attenuation on the audio.
1141 	 */
1142 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1143 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1144 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1145 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1146 	outl(0, io + SIS_MIXER_SYNC_GROUP);
1147 
1148 	for (i = 0; i < 64; i++) {
1149 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1150 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1151 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1152 	}
1153 
1154 	/* Don't attenuate any audio set for the wave amplifier.
1155 	 *
1156 	 * FIXME: Maximum attenuation is set for the music amp, which will
1157 	 * need to change if we start using the synth engine.
1158 	 */
1159 	outl(0xffff0000, io + SIS_WEVCR);
1160 
1161 	/* Ensure that the wave engine is in normal operating mode.
1162 	 */
1163 	outl(0, io + SIS_WECCR);
1164 
1165 	/* Go ahead and enable the DMA interrupts. They won't go live
1166 	 * until we start a channel.
1167 	 */
1168 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1169 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1170 
1171 	return 0;
1172 }
1173 
1174 #ifdef CONFIG_PM_SLEEP
1175 static int sis_suspend(struct device *dev)
1176 {
1177 	struct snd_card *card = dev_get_drvdata(dev);
1178 	struct sis7019 *sis = card->private_data;
1179 	void __iomem *ioaddr = sis->ioaddr;
1180 	int i;
1181 
1182 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1183 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1184 		snd_ac97_suspend(sis->ac97[0]);
1185 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1186 		snd_ac97_suspend(sis->ac97[1]);
1187 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1188 		snd_ac97_suspend(sis->ac97[2]);
1189 
1190 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1191 	 */
1192 	if (sis->irq >= 0) {
1193 		free_irq(sis->irq, sis);
1194 		sis->irq = -1;
1195 	}
1196 
1197 	/* Save the internal state away
1198 	 */
1199 	for (i = 0; i < 4; i++) {
1200 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1201 		ioaddr += 4096;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static int sis_resume(struct device *dev)
1208 {
1209 	struct pci_dev *pci = to_pci_dev(dev);
1210 	struct snd_card *card = dev_get_drvdata(dev);
1211 	struct sis7019 *sis = card->private_data;
1212 	void __iomem *ioaddr = sis->ioaddr;
1213 	int i;
1214 
1215 	if (sis_chip_init(sis)) {
1216 		dev_err(&pci->dev, "unable to re-init controller\n");
1217 		goto error;
1218 	}
1219 
1220 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1221 			KBUILD_MODNAME, sis)) {
1222 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1223 		goto error;
1224 	}
1225 
1226 	/* Restore saved state, then clear out the page we use for the
1227 	 * silence buffer.
1228 	 */
1229 	for (i = 0; i < 4; i++) {
1230 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1231 		ioaddr += 4096;
1232 	}
1233 
1234 	memset(sis->suspend_state[0], 0, 4096);
1235 
1236 	sis->irq = pci->irq;
1237 
1238 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1239 		snd_ac97_resume(sis->ac97[0]);
1240 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1241 		snd_ac97_resume(sis->ac97[1]);
1242 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1243 		snd_ac97_resume(sis->ac97[2]);
1244 
1245 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1246 	return 0;
1247 
1248 error:
1249 	snd_card_disconnect(card);
1250 	return -EIO;
1251 }
1252 
1253 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1254 #define SIS_PM_OPS	&sis_pm
1255 #else
1256 #define SIS_PM_OPS	NULL
1257 #endif /* CONFIG_PM_SLEEP */
1258 
1259 static int sis_alloc_suspend(struct sis7019 *sis)
1260 {
1261 	int i;
1262 
1263 	/* We need 16K to store the internal wave engine state during a
1264 	 * suspend, but we don't need it to be contiguous, so play nice
1265 	 * with the memory system. We'll also use this area for a silence
1266 	 * buffer.
1267 	 */
1268 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1269 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1270 		if (!sis->suspend_state[i])
1271 			return -ENOMEM;
1272 	}
1273 	memset(sis->suspend_state[0], 0, 4096);
1274 
1275 	return 0;
1276 }
1277 
1278 static int sis_chip_create(struct snd_card *card,
1279 			   struct pci_dev *pci)
1280 {
1281 	struct sis7019 *sis = card->private_data;
1282 	struct voice *voice;
1283 	static const struct snd_device_ops ops = {
1284 		.dev_free = sis_dev_free,
1285 	};
1286 	int rc;
1287 	int i;
1288 
1289 	rc = pci_enable_device(pci);
1290 	if (rc)
1291 		goto error_out;
1292 
1293 	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1294 	if (rc < 0) {
1295 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1296 		goto error_out_enabled;
1297 	}
1298 
1299 	memset(sis, 0, sizeof(*sis));
1300 	mutex_init(&sis->ac97_mutex);
1301 	spin_lock_init(&sis->voice_lock);
1302 	sis->card = card;
1303 	sis->pci = pci;
1304 	sis->irq = -1;
1305 	sis->ioport = pci_resource_start(pci, 0);
1306 
1307 	rc = pci_request_regions(pci, "SiS7019");
1308 	if (rc) {
1309 		dev_err(&pci->dev, "unable request regions\n");
1310 		goto error_out_enabled;
1311 	}
1312 
1313 	rc = -EIO;
1314 	sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1315 	if (!sis->ioaddr) {
1316 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1317 		goto error_out_cleanup;
1318 	}
1319 
1320 	rc = sis_alloc_suspend(sis);
1321 	if (rc < 0) {
1322 		dev_err(&pci->dev, "unable to allocate state storage\n");
1323 		goto error_out_cleanup;
1324 	}
1325 
1326 	rc = sis_chip_init(sis);
1327 	if (rc)
1328 		goto error_out_cleanup;
1329 
1330 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1331 			 sis);
1332 	if (rc) {
1333 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1334 		goto error_out_cleanup;
1335 	}
1336 
1337 	sis->irq = pci->irq;
1338 	card->sync_irq = sis->irq;
1339 	pci_set_master(pci);
1340 
1341 	for (i = 0; i < 64; i++) {
1342 		voice = &sis->voices[i];
1343 		voice->num = i;
1344 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1345 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1346 	}
1347 
1348 	voice = &sis->capture_voice;
1349 	voice->flags = VOICE_CAPTURE;
1350 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1351 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1352 
1353 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1354 	if (rc)
1355 		goto error_out_cleanup;
1356 
1357 	return 0;
1358 
1359 error_out_cleanup:
1360 	sis_chip_free(sis);
1361 
1362 error_out_enabled:
1363 	pci_disable_device(pci);
1364 
1365 error_out:
1366 	return rc;
1367 }
1368 
1369 static int snd_sis7019_probe(struct pci_dev *pci,
1370 			     const struct pci_device_id *pci_id)
1371 {
1372 	struct snd_card *card;
1373 	struct sis7019 *sis;
1374 	int rc;
1375 
1376 	rc = -ENOENT;
1377 	if (!enable)
1378 		goto error_out;
1379 
1380 	/* The user can specify which codecs should be present so that we
1381 	 * can wait for them to show up if they are slow to recover from
1382 	 * the AC97 cold reset. We default to a single codec, the primary.
1383 	 *
1384 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1385 	 */
1386 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1387 		  SIS_TERTIARY_CODEC_PRESENT;
1388 	if (!codecs)
1389 		codecs = SIS_PRIMARY_CODEC_PRESENT;
1390 
1391 	rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1392 			  sizeof(*sis), &card);
1393 	if (rc < 0)
1394 		goto error_out;
1395 
1396 	strcpy(card->driver, "SiS7019");
1397 	strcpy(card->shortname, "SiS7019");
1398 	rc = sis_chip_create(card, pci);
1399 	if (rc)
1400 		goto card_error_out;
1401 
1402 	sis = card->private_data;
1403 
1404 	rc = sis_mixer_create(sis);
1405 	if (rc)
1406 		goto card_error_out;
1407 
1408 	rc = sis_pcm_create(sis);
1409 	if (rc)
1410 		goto card_error_out;
1411 
1412 	snprintf(card->longname, sizeof(card->longname),
1413 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1414 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1415 			sis->ioport, sis->irq);
1416 
1417 	rc = snd_card_register(card);
1418 	if (rc)
1419 		goto card_error_out;
1420 
1421 	pci_set_drvdata(pci, card);
1422 	return 0;
1423 
1424 card_error_out:
1425 	snd_card_free(card);
1426 
1427 error_out:
1428 	return rc;
1429 }
1430 
1431 static void snd_sis7019_remove(struct pci_dev *pci)
1432 {
1433 	snd_card_free(pci_get_drvdata(pci));
1434 }
1435 
1436 static struct pci_driver sis7019_driver = {
1437 	.name = KBUILD_MODNAME,
1438 	.id_table = snd_sis7019_ids,
1439 	.probe = snd_sis7019_probe,
1440 	.remove = snd_sis7019_remove,
1441 	.driver = {
1442 		.pm = SIS_PM_OPS,
1443 	},
1444 };
1445 
1446 module_pci_driver(sis7019_driver);
1447