1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for SiS7019 Audio Accelerator 4 * 5 * Copyright (C) 2004-2007, David Dillow 6 * Written by David Dillow <dave@thedillows.org> 7 * Inspired by the Trident 4D-WaveDX/NX driver. 8 * 9 * All rights reserved. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/time.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/interrupt.h> 18 #include <linux/delay.h> 19 #include <sound/core.h> 20 #include <sound/ac97_codec.h> 21 #include <sound/initval.h> 22 #include "sis7019.h" 23 24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 25 MODULE_DESCRIPTION("SiS7019"); 26 MODULE_LICENSE("GPL"); 27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); 28 29 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 30 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 31 static bool enable = 1; 32 static int codecs = 1; 33 34 module_param(index, int, 0444); 35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 36 module_param(id, charp, 0444); 37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 38 module_param(enable, bool, 0444); 39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 40 module_param(codecs, int, 0444); 41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); 42 43 static const struct pci_device_id snd_sis7019_ids[] = { 44 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 45 { 0, } 46 }; 47 48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 49 50 /* There are three timing modes for the voices. 51 * 52 * For both playback and capture, when the buffer is one or two periods long, 53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 54 * to let us know when the periods have ended. 55 * 56 * When performing playback with more than two periods per buffer, we set 57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 58 * reach it. We then update the offset and continue on until we are 59 * interrupted for the next period. 60 * 61 * Capture channels do not have a SSO, so we allocate a playback channel to 62 * use as a timer for the capture periods. We use the SSO on the playback 63 * channel to clock out virtual periods, and adjust the virtual period length 64 * to maintain synchronization. This algorithm came from the Trident driver. 65 * 66 * FIXME: It'd be nice to make use of some of the synth features in the 67 * hardware, but a woeful lack of documentation is a significant roadblock. 68 */ 69 struct voice { 70 u16 flags; 71 #define VOICE_IN_USE 1 72 #define VOICE_CAPTURE 2 73 #define VOICE_SSO_TIMING 4 74 #define VOICE_SYNC_TIMING 8 75 u16 sync_cso; 76 u16 period_size; 77 u16 buffer_size; 78 u16 sync_period_size; 79 u16 sync_buffer_size; 80 u32 sso; 81 u32 vperiod; 82 struct snd_pcm_substream *substream; 83 struct voice *timing; 84 void __iomem *ctrl_base; 85 void __iomem *wave_base; 86 void __iomem *sync_base; 87 int num; 88 }; 89 90 /* We need four pages to store our wave parameters during a suspend. If 91 * we're not doing power management, we still need to allocate a page 92 * for the silence buffer. 93 */ 94 #ifdef CONFIG_PM_SLEEP 95 #define SIS_SUSPEND_PAGES 4 96 #else 97 #define SIS_SUSPEND_PAGES 1 98 #endif 99 100 struct sis7019 { 101 unsigned long ioport; 102 void __iomem *ioaddr; 103 int irq; 104 int codecs_present; 105 106 struct pci_dev *pci; 107 struct snd_pcm *pcm; 108 struct snd_card *card; 109 struct snd_ac97 *ac97[3]; 110 111 /* Protect against more than one thread hitting the AC97 112 * registers (in a more polite manner than pounding the hardware 113 * semaphore) 114 */ 115 struct mutex ac97_mutex; 116 117 /* voice_lock protects allocation/freeing of the voice descriptions 118 */ 119 spinlock_t voice_lock; 120 121 struct voice voices[64]; 122 struct voice capture_voice; 123 124 /* Allocate pages to store the internal wave state during 125 * suspends. When we're operating, this can be used as a silence 126 * buffer for a timing channel. 127 */ 128 void *suspend_state[SIS_SUSPEND_PAGES]; 129 130 int silence_users; 131 dma_addr_t silence_dma_addr; 132 }; 133 134 /* These values are also used by the module param 'codecs' to indicate 135 * which codecs should be present. 136 */ 137 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 138 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 139 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 140 141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 142 * documented range of 8-0xfff8 samples. Given that they are 0-based, 143 * that places our period/buffer range at 9-0xfff9 samples. That makes the 144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 145 * max samples / min samples gives us the max periods in a buffer. 146 * 147 * We'll add a constraint upon open that limits the period and buffer sample 148 * size to values that are legal for the hardware. 149 */ 150 static const struct snd_pcm_hardware sis_playback_hw_info = { 151 .info = (SNDRV_PCM_INFO_MMAP | 152 SNDRV_PCM_INFO_MMAP_VALID | 153 SNDRV_PCM_INFO_INTERLEAVED | 154 SNDRV_PCM_INFO_BLOCK_TRANSFER | 155 SNDRV_PCM_INFO_SYNC_START | 156 SNDRV_PCM_INFO_RESUME), 157 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 158 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 159 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 160 .rate_min = 4000, 161 .rate_max = 48000, 162 .channels_min = 1, 163 .channels_max = 2, 164 .buffer_bytes_max = (0xfff9 * 4), 165 .period_bytes_min = 9, 166 .period_bytes_max = (0xfff9 * 4), 167 .periods_min = 1, 168 .periods_max = (0xfff9 / 9), 169 }; 170 171 static const struct snd_pcm_hardware sis_capture_hw_info = { 172 .info = (SNDRV_PCM_INFO_MMAP | 173 SNDRV_PCM_INFO_MMAP_VALID | 174 SNDRV_PCM_INFO_INTERLEAVED | 175 SNDRV_PCM_INFO_BLOCK_TRANSFER | 176 SNDRV_PCM_INFO_SYNC_START | 177 SNDRV_PCM_INFO_RESUME), 178 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 179 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 180 .rates = SNDRV_PCM_RATE_48000, 181 .rate_min = 4000, 182 .rate_max = 48000, 183 .channels_min = 1, 184 .channels_max = 2, 185 .buffer_bytes_max = (0xfff9 * 4), 186 .period_bytes_min = 9, 187 .period_bytes_max = (0xfff9 * 4), 188 .periods_min = 1, 189 .periods_max = (0xfff9 / 9), 190 }; 191 192 static void sis_update_sso(struct voice *voice, u16 period) 193 { 194 void __iomem *base = voice->ctrl_base; 195 196 voice->sso += period; 197 if (voice->sso >= voice->buffer_size) 198 voice->sso -= voice->buffer_size; 199 200 /* Enforce the documented hardware minimum offset */ 201 if (voice->sso < 8) 202 voice->sso = 8; 203 204 /* The SSO is in the upper 16 bits of the register. */ 205 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 206 } 207 208 static void sis_update_voice(struct voice *voice) 209 { 210 if (voice->flags & VOICE_SSO_TIMING) { 211 sis_update_sso(voice, voice->period_size); 212 } else if (voice->flags & VOICE_SYNC_TIMING) { 213 int sync; 214 215 /* If we've not hit the end of the virtual period, update 216 * our records and keep going. 217 */ 218 if (voice->vperiod > voice->period_size) { 219 voice->vperiod -= voice->period_size; 220 if (voice->vperiod < voice->period_size) 221 sis_update_sso(voice, voice->vperiod); 222 else 223 sis_update_sso(voice, voice->period_size); 224 return; 225 } 226 227 /* Calculate our relative offset between the target and 228 * the actual CSO value. Since we're operating in a loop, 229 * if the value is more than half way around, we can 230 * consider ourselves wrapped. 231 */ 232 sync = voice->sync_cso; 233 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 234 if (sync > (voice->sync_buffer_size / 2)) 235 sync -= voice->sync_buffer_size; 236 237 /* If sync is positive, then we interrupted too early, and 238 * we'll need to come back in a few samples and try again. 239 * There's a minimum wait, as it takes some time for the DMA 240 * engine to startup, etc... 241 */ 242 if (sync > 0) { 243 if (sync < 16) 244 sync = 16; 245 sis_update_sso(voice, sync); 246 return; 247 } 248 249 /* Ok, we interrupted right on time, or (hopefully) just 250 * a bit late. We'll adjst our next waiting period based 251 * on how close we got. 252 * 253 * We need to stay just behind the actual channel to ensure 254 * it really is past a period when we get our interrupt -- 255 * otherwise we'll fall into the early code above and have 256 * a minimum wait time, which makes us quite late here, 257 * eating into the user's time to refresh the buffer, esp. 258 * if using small periods. 259 * 260 * If we're less than 9 samples behind, we're on target. 261 * Otherwise, shorten the next vperiod by the amount we've 262 * been delayed. 263 */ 264 if (sync > -9) 265 voice->vperiod = voice->sync_period_size + 1; 266 else 267 voice->vperiod = voice->sync_period_size + sync + 10; 268 269 if (voice->vperiod < voice->buffer_size) { 270 sis_update_sso(voice, voice->vperiod); 271 voice->vperiod = 0; 272 } else 273 sis_update_sso(voice, voice->period_size); 274 275 sync = voice->sync_cso + voice->sync_period_size; 276 if (sync >= voice->sync_buffer_size) 277 sync -= voice->sync_buffer_size; 278 voice->sync_cso = sync; 279 } 280 281 snd_pcm_period_elapsed(voice->substream); 282 } 283 284 static void sis_voice_irq(u32 status, struct voice *voice) 285 { 286 int bit; 287 288 while (status) { 289 bit = __ffs(status); 290 status >>= bit + 1; 291 voice += bit; 292 sis_update_voice(voice); 293 voice++; 294 } 295 } 296 297 static irqreturn_t sis_interrupt(int irq, void *dev) 298 { 299 struct sis7019 *sis = dev; 300 unsigned long io = sis->ioport; 301 struct voice *voice; 302 u32 intr, status; 303 304 /* We only use the DMA interrupts, and we don't enable any other 305 * source of interrupts. But, it is possible to see an interrupt 306 * status that didn't actually interrupt us, so eliminate anything 307 * we're not expecting to avoid falsely claiming an IRQ, and an 308 * ensuing endless loop. 309 */ 310 intr = inl(io + SIS_GISR); 311 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 312 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 313 if (!intr) 314 return IRQ_NONE; 315 316 do { 317 status = inl(io + SIS_PISR_A); 318 if (status) { 319 sis_voice_irq(status, sis->voices); 320 outl(status, io + SIS_PISR_A); 321 } 322 323 status = inl(io + SIS_PISR_B); 324 if (status) { 325 sis_voice_irq(status, &sis->voices[32]); 326 outl(status, io + SIS_PISR_B); 327 } 328 329 status = inl(io + SIS_RISR); 330 if (status) { 331 voice = &sis->capture_voice; 332 if (!voice->timing) 333 snd_pcm_period_elapsed(voice->substream); 334 335 outl(status, io + SIS_RISR); 336 } 337 338 outl(intr, io + SIS_GISR); 339 intr = inl(io + SIS_GISR); 340 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 341 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 342 } while (intr); 343 344 return IRQ_HANDLED; 345 } 346 347 static u32 sis_rate_to_delta(unsigned int rate) 348 { 349 u32 delta; 350 351 /* This was copied from the trident driver, but it seems its gotten 352 * around a bit... nevertheless, it works well. 353 * 354 * We special case 44100 and 8000 since rounding with the equation 355 * does not give us an accurate enough value. For 11025 and 22050 356 * the equation gives us the best answer. All other frequencies will 357 * also use the equation. JDW 358 */ 359 if (rate == 44100) 360 delta = 0xeb3; 361 else if (rate == 8000) 362 delta = 0x2ab; 363 else if (rate == 48000) 364 delta = 0x1000; 365 else 366 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; 367 return delta; 368 } 369 370 static void __sis_map_silence(struct sis7019 *sis) 371 { 372 /* Helper function: must hold sis->voice_lock on entry */ 373 if (!sis->silence_users) 374 sis->silence_dma_addr = dma_map_single(&sis->pci->dev, 375 sis->suspend_state[0], 376 4096, DMA_TO_DEVICE); 377 sis->silence_users++; 378 } 379 380 static void __sis_unmap_silence(struct sis7019 *sis) 381 { 382 /* Helper function: must hold sis->voice_lock on entry */ 383 sis->silence_users--; 384 if (!sis->silence_users) 385 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096, 386 DMA_TO_DEVICE); 387 } 388 389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 390 { 391 unsigned long flags; 392 393 spin_lock_irqsave(&sis->voice_lock, flags); 394 if (voice->timing) { 395 __sis_unmap_silence(sis); 396 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 397 VOICE_SYNC_TIMING); 398 voice->timing = NULL; 399 } 400 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 401 spin_unlock_irqrestore(&sis->voice_lock, flags); 402 } 403 404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 405 { 406 /* Must hold the voice_lock on entry */ 407 struct voice *voice; 408 int i; 409 410 for (i = 0; i < 64; i++) { 411 voice = &sis->voices[i]; 412 if (voice->flags & VOICE_IN_USE) 413 continue; 414 voice->flags |= VOICE_IN_USE; 415 goto found_one; 416 } 417 voice = NULL; 418 419 found_one: 420 return voice; 421 } 422 423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 424 { 425 struct voice *voice; 426 unsigned long flags; 427 428 spin_lock_irqsave(&sis->voice_lock, flags); 429 voice = __sis_alloc_playback_voice(sis); 430 spin_unlock_irqrestore(&sis->voice_lock, flags); 431 432 return voice; 433 } 434 435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 436 struct snd_pcm_hw_params *hw_params) 437 { 438 struct sis7019 *sis = snd_pcm_substream_chip(substream); 439 struct snd_pcm_runtime *runtime = substream->runtime; 440 struct voice *voice = runtime->private_data; 441 unsigned int period_size, buffer_size; 442 unsigned long flags; 443 int needed; 444 445 /* If there are one or two periods per buffer, we don't need a 446 * timing voice, as we can use the capture channel's interrupts 447 * to clock out the periods. 448 */ 449 period_size = params_period_size(hw_params); 450 buffer_size = params_buffer_size(hw_params); 451 needed = (period_size != buffer_size && 452 period_size != (buffer_size / 2)); 453 454 if (needed && !voice->timing) { 455 spin_lock_irqsave(&sis->voice_lock, flags); 456 voice->timing = __sis_alloc_playback_voice(sis); 457 if (voice->timing) 458 __sis_map_silence(sis); 459 spin_unlock_irqrestore(&sis->voice_lock, flags); 460 if (!voice->timing) 461 return -ENOMEM; 462 voice->timing->substream = substream; 463 } else if (!needed && voice->timing) { 464 sis_free_voice(sis, voice); 465 voice->timing = NULL; 466 } 467 468 return 0; 469 } 470 471 static int sis_playback_open(struct snd_pcm_substream *substream) 472 { 473 struct sis7019 *sis = snd_pcm_substream_chip(substream); 474 struct snd_pcm_runtime *runtime = substream->runtime; 475 struct voice *voice; 476 477 voice = sis_alloc_playback_voice(sis); 478 if (!voice) 479 return -EAGAIN; 480 481 voice->substream = substream; 482 runtime->private_data = voice; 483 runtime->hw = sis_playback_hw_info; 484 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 485 9, 0xfff9); 486 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 487 9, 0xfff9); 488 snd_pcm_set_sync(substream); 489 return 0; 490 } 491 492 static int sis_substream_close(struct snd_pcm_substream *substream) 493 { 494 struct sis7019 *sis = snd_pcm_substream_chip(substream); 495 struct snd_pcm_runtime *runtime = substream->runtime; 496 struct voice *voice = runtime->private_data; 497 498 sis_free_voice(sis, voice); 499 return 0; 500 } 501 502 static int sis_playback_hw_params(struct snd_pcm_substream *substream, 503 struct snd_pcm_hw_params *hw_params) 504 { 505 return snd_pcm_lib_malloc_pages(substream, 506 params_buffer_bytes(hw_params)); 507 } 508 509 static int sis_hw_free(struct snd_pcm_substream *substream) 510 { 511 return snd_pcm_lib_free_pages(substream); 512 } 513 514 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 515 { 516 struct snd_pcm_runtime *runtime = substream->runtime; 517 struct voice *voice = runtime->private_data; 518 void __iomem *ctrl_base = voice->ctrl_base; 519 void __iomem *wave_base = voice->wave_base; 520 u32 format, dma_addr, control, sso_eso, delta, reg; 521 u16 leo; 522 523 /* We rely on the PCM core to ensure that the parameters for this 524 * substream do not change on us while we're programming the HW. 525 */ 526 format = 0; 527 if (snd_pcm_format_width(runtime->format) == 8) 528 format |= SIS_PLAY_DMA_FORMAT_8BIT; 529 if (!snd_pcm_format_signed(runtime->format)) 530 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 531 if (runtime->channels == 1) 532 format |= SIS_PLAY_DMA_FORMAT_MONO; 533 534 /* The baseline setup is for a single period per buffer, and 535 * we add bells and whistles as needed from there. 536 */ 537 dma_addr = runtime->dma_addr; 538 leo = runtime->buffer_size - 1; 539 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 540 sso_eso = leo; 541 542 if (runtime->period_size == (runtime->buffer_size / 2)) { 543 control |= SIS_PLAY_DMA_INTR_AT_MLP; 544 } else if (runtime->period_size != runtime->buffer_size) { 545 voice->flags |= VOICE_SSO_TIMING; 546 voice->sso = runtime->period_size - 1; 547 voice->period_size = runtime->period_size; 548 voice->buffer_size = runtime->buffer_size; 549 550 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 551 control |= SIS_PLAY_DMA_INTR_AT_SSO; 552 sso_eso |= (runtime->period_size - 1) << 16; 553 } 554 555 delta = sis_rate_to_delta(runtime->rate); 556 557 /* Ok, we're ready to go, set up the channel. 558 */ 559 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 560 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 561 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 562 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 563 564 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 565 writel(0, wave_base + reg); 566 567 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 568 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 569 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 570 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 571 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 572 wave_base + SIS_WAVE_CHANNEL_CONTROL); 573 574 /* Force PCI writes to post. */ 575 readl(ctrl_base); 576 577 return 0; 578 } 579 580 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 581 { 582 struct sis7019 *sis = snd_pcm_substream_chip(substream); 583 unsigned long io = sis->ioport; 584 struct snd_pcm_substream *s; 585 struct voice *voice; 586 void *chip; 587 int starting; 588 u32 record = 0; 589 u32 play[2] = { 0, 0 }; 590 591 /* No locks needed, as the PCM core will hold the locks on the 592 * substreams, and the HW will only start/stop the indicated voices 593 * without changing the state of the others. 594 */ 595 switch (cmd) { 596 case SNDRV_PCM_TRIGGER_START: 597 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 598 case SNDRV_PCM_TRIGGER_RESUME: 599 starting = 1; 600 break; 601 case SNDRV_PCM_TRIGGER_STOP: 602 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 603 case SNDRV_PCM_TRIGGER_SUSPEND: 604 starting = 0; 605 break; 606 default: 607 return -EINVAL; 608 } 609 610 snd_pcm_group_for_each_entry(s, substream) { 611 /* Make sure it is for us... */ 612 chip = snd_pcm_substream_chip(s); 613 if (chip != sis) 614 continue; 615 616 voice = s->runtime->private_data; 617 if (voice->flags & VOICE_CAPTURE) { 618 record |= 1 << voice->num; 619 voice = voice->timing; 620 } 621 622 /* voice could be NULL if this a recording stream, and it 623 * doesn't have an external timing channel. 624 */ 625 if (voice) 626 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 627 628 snd_pcm_trigger_done(s, substream); 629 } 630 631 if (starting) { 632 if (record) 633 outl(record, io + SIS_RECORD_START_REG); 634 if (play[0]) 635 outl(play[0], io + SIS_PLAY_START_A_REG); 636 if (play[1]) 637 outl(play[1], io + SIS_PLAY_START_B_REG); 638 } else { 639 if (record) 640 outl(record, io + SIS_RECORD_STOP_REG); 641 if (play[0]) 642 outl(play[0], io + SIS_PLAY_STOP_A_REG); 643 if (play[1]) 644 outl(play[1], io + SIS_PLAY_STOP_B_REG); 645 } 646 return 0; 647 } 648 649 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 650 { 651 struct snd_pcm_runtime *runtime = substream->runtime; 652 struct voice *voice = runtime->private_data; 653 u32 cso; 654 655 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 656 cso &= 0xffff; 657 return cso; 658 } 659 660 static int sis_capture_open(struct snd_pcm_substream *substream) 661 { 662 struct sis7019 *sis = snd_pcm_substream_chip(substream); 663 struct snd_pcm_runtime *runtime = substream->runtime; 664 struct voice *voice = &sis->capture_voice; 665 unsigned long flags; 666 667 /* FIXME: The driver only supports recording from one channel 668 * at the moment, but it could support more. 669 */ 670 spin_lock_irqsave(&sis->voice_lock, flags); 671 if (voice->flags & VOICE_IN_USE) 672 voice = NULL; 673 else 674 voice->flags |= VOICE_IN_USE; 675 spin_unlock_irqrestore(&sis->voice_lock, flags); 676 677 if (!voice) 678 return -EAGAIN; 679 680 voice->substream = substream; 681 runtime->private_data = voice; 682 runtime->hw = sis_capture_hw_info; 683 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 684 snd_pcm_limit_hw_rates(runtime); 685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 686 9, 0xfff9); 687 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 688 9, 0xfff9); 689 snd_pcm_set_sync(substream); 690 return 0; 691 } 692 693 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 694 struct snd_pcm_hw_params *hw_params) 695 { 696 struct sis7019 *sis = snd_pcm_substream_chip(substream); 697 int rc; 698 699 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 700 params_rate(hw_params)); 701 if (rc) 702 goto out; 703 704 rc = snd_pcm_lib_malloc_pages(substream, 705 params_buffer_bytes(hw_params)); 706 if (rc < 0) 707 goto out; 708 709 rc = sis_alloc_timing_voice(substream, hw_params); 710 711 out: 712 return rc; 713 } 714 715 static void sis_prepare_timing_voice(struct voice *voice, 716 struct snd_pcm_substream *substream) 717 { 718 struct sis7019 *sis = snd_pcm_substream_chip(substream); 719 struct snd_pcm_runtime *runtime = substream->runtime; 720 struct voice *timing = voice->timing; 721 void __iomem *play_base = timing->ctrl_base; 722 void __iomem *wave_base = timing->wave_base; 723 u16 buffer_size, period_size; 724 u32 format, control, sso_eso, delta; 725 u32 vperiod, sso, reg; 726 727 /* Set our initial buffer and period as large as we can given a 728 * single page of silence. 729 */ 730 buffer_size = 4096 / runtime->channels; 731 buffer_size /= snd_pcm_format_size(runtime->format, 1); 732 period_size = buffer_size; 733 734 /* Initially, we want to interrupt just a bit behind the end of 735 * the period we're clocking out. 12 samples seems to give a good 736 * delay. 737 * 738 * We want to spread our interrupts throughout the virtual period, 739 * so that we don't end up with two interrupts back to back at the 740 * end -- this helps minimize the effects of any jitter. Adjust our 741 * clocking period size so that the last period is at least a fourth 742 * of a full period. 743 * 744 * This is all moot if we don't need to use virtual periods. 745 */ 746 vperiod = runtime->period_size + 12; 747 if (vperiod > period_size) { 748 u16 tail = vperiod % period_size; 749 u16 quarter_period = period_size / 4; 750 751 if (tail && tail < quarter_period) { 752 u16 loops = vperiod / period_size; 753 754 tail = quarter_period - tail; 755 tail += loops - 1; 756 tail /= loops; 757 period_size -= tail; 758 } 759 760 sso = period_size - 1; 761 } else { 762 /* The initial period will fit inside the buffer, so we 763 * don't need to use virtual periods -- disable them. 764 */ 765 period_size = runtime->period_size; 766 sso = vperiod - 1; 767 vperiod = 0; 768 } 769 770 /* The interrupt handler implements the timing synchronization, so 771 * setup its state. 772 */ 773 timing->flags |= VOICE_SYNC_TIMING; 774 timing->sync_base = voice->ctrl_base; 775 timing->sync_cso = runtime->period_size; 776 timing->sync_period_size = runtime->period_size; 777 timing->sync_buffer_size = runtime->buffer_size; 778 timing->period_size = period_size; 779 timing->buffer_size = buffer_size; 780 timing->sso = sso; 781 timing->vperiod = vperiod; 782 783 /* Using unsigned samples with the all-zero silence buffer 784 * forces the output to the lower rail, killing playback. 785 * So ignore unsigned vs signed -- it doesn't change the timing. 786 */ 787 format = 0; 788 if (snd_pcm_format_width(runtime->format) == 8) 789 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 790 if (runtime->channels == 1) 791 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 792 793 control = timing->buffer_size - 1; 794 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 795 sso_eso = timing->buffer_size - 1; 796 sso_eso |= timing->sso << 16; 797 798 delta = sis_rate_to_delta(runtime->rate); 799 800 /* We've done the math, now configure the channel. 801 */ 802 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 803 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 804 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 805 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 806 807 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 808 writel(0, wave_base + reg); 809 810 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 811 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 812 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 813 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 814 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 815 wave_base + SIS_WAVE_CHANNEL_CONTROL); 816 } 817 818 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 819 { 820 struct snd_pcm_runtime *runtime = substream->runtime; 821 struct voice *voice = runtime->private_data; 822 void __iomem *rec_base = voice->ctrl_base; 823 u32 format, dma_addr, control; 824 u16 leo; 825 826 /* We rely on the PCM core to ensure that the parameters for this 827 * substream do not change on us while we're programming the HW. 828 */ 829 format = 0; 830 if (snd_pcm_format_width(runtime->format) == 8) 831 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 832 if (!snd_pcm_format_signed(runtime->format)) 833 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 834 if (runtime->channels == 1) 835 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 836 837 dma_addr = runtime->dma_addr; 838 leo = runtime->buffer_size - 1; 839 control = leo | SIS_CAPTURE_DMA_LOOP; 840 841 /* If we've got more than two periods per buffer, then we have 842 * use a timing voice to clock out the periods. Otherwise, we can 843 * use the capture channel's interrupts. 844 */ 845 if (voice->timing) { 846 sis_prepare_timing_voice(voice, substream); 847 } else { 848 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 849 if (runtime->period_size != runtime->buffer_size) 850 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 851 } 852 853 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 854 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 855 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 856 857 /* Force the writes to post. */ 858 readl(rec_base); 859 860 return 0; 861 } 862 863 static const struct snd_pcm_ops sis_playback_ops = { 864 .open = sis_playback_open, 865 .close = sis_substream_close, 866 .ioctl = snd_pcm_lib_ioctl, 867 .hw_params = sis_playback_hw_params, 868 .hw_free = sis_hw_free, 869 .prepare = sis_pcm_playback_prepare, 870 .trigger = sis_pcm_trigger, 871 .pointer = sis_pcm_pointer, 872 }; 873 874 static const struct snd_pcm_ops sis_capture_ops = { 875 .open = sis_capture_open, 876 .close = sis_substream_close, 877 .ioctl = snd_pcm_lib_ioctl, 878 .hw_params = sis_capture_hw_params, 879 .hw_free = sis_hw_free, 880 .prepare = sis_pcm_capture_prepare, 881 .trigger = sis_pcm_trigger, 882 .pointer = sis_pcm_pointer, 883 }; 884 885 static int sis_pcm_create(struct sis7019 *sis) 886 { 887 struct snd_pcm *pcm; 888 int rc; 889 890 /* We have 64 voices, and the driver currently records from 891 * only one channel, though that could change in the future. 892 */ 893 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 894 if (rc) 895 return rc; 896 897 pcm->private_data = sis; 898 strcpy(pcm->name, "SiS7019"); 899 sis->pcm = pcm; 900 901 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 902 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 903 904 /* Try to preallocate some memory, but it's not the end of the 905 * world if this fails. 906 */ 907 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 908 snd_dma_pci_data(sis->pci), 64*1024, 128*1024); 909 910 return 0; 911 } 912 913 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 914 { 915 unsigned long io = sis->ioport; 916 unsigned short val = 0xffff; 917 u16 status; 918 u16 rdy; 919 int count; 920 static const u16 codec_ready[3] = { 921 SIS_AC97_STATUS_CODEC_READY, 922 SIS_AC97_STATUS_CODEC2_READY, 923 SIS_AC97_STATUS_CODEC3_READY, 924 }; 925 926 rdy = codec_ready[codec]; 927 928 929 /* Get the AC97 semaphore -- software first, so we don't spin 930 * pounding out IO reads on the hardware semaphore... 931 */ 932 mutex_lock(&sis->ac97_mutex); 933 934 count = 0xffff; 935 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 936 udelay(1); 937 938 if (!count) 939 goto timeout; 940 941 /* ... and wait for any outstanding commands to complete ... 942 */ 943 count = 0xffff; 944 do { 945 status = inw(io + SIS_AC97_STATUS); 946 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 947 break; 948 949 udelay(1); 950 } while (--count); 951 952 if (!count) 953 goto timeout_sema; 954 955 /* ... before sending our command and waiting for it to finish ... 956 */ 957 outl(cmd, io + SIS_AC97_CMD); 958 udelay(10); 959 960 count = 0xffff; 961 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 962 udelay(1); 963 964 /* ... and reading the results (if any). 965 */ 966 val = inl(io + SIS_AC97_CMD) >> 16; 967 968 timeout_sema: 969 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 970 timeout: 971 mutex_unlock(&sis->ac97_mutex); 972 973 if (!count) { 974 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", 975 codec, cmd); 976 } 977 978 return val; 979 } 980 981 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 982 unsigned short val) 983 { 984 static const u32 cmd[3] = { 985 SIS_AC97_CMD_CODEC_WRITE, 986 SIS_AC97_CMD_CODEC2_WRITE, 987 SIS_AC97_CMD_CODEC3_WRITE, 988 }; 989 sis_ac97_rw(ac97->private_data, ac97->num, 990 (val << 16) | (reg << 8) | cmd[ac97->num]); 991 } 992 993 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 994 { 995 static const u32 cmd[3] = { 996 SIS_AC97_CMD_CODEC_READ, 997 SIS_AC97_CMD_CODEC2_READ, 998 SIS_AC97_CMD_CODEC3_READ, 999 }; 1000 return sis_ac97_rw(ac97->private_data, ac97->num, 1001 (reg << 8) | cmd[ac97->num]); 1002 } 1003 1004 static int sis_mixer_create(struct sis7019 *sis) 1005 { 1006 struct snd_ac97_bus *bus; 1007 struct snd_ac97_template ac97; 1008 static struct snd_ac97_bus_ops ops = { 1009 .write = sis_ac97_write, 1010 .read = sis_ac97_read, 1011 }; 1012 int rc; 1013 1014 memset(&ac97, 0, sizeof(ac97)); 1015 ac97.private_data = sis; 1016 1017 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 1018 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1019 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 1020 ac97.num = 1; 1021 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 1022 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1023 ac97.num = 2; 1024 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1025 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1026 1027 /* If we return an error here, then snd_card_free() should 1028 * free up any ac97 codecs that got created, as well as the bus. 1029 */ 1030 return rc; 1031 } 1032 1033 static void sis_free_suspend(struct sis7019 *sis) 1034 { 1035 int i; 1036 1037 for (i = 0; i < SIS_SUSPEND_PAGES; i++) 1038 kfree(sis->suspend_state[i]); 1039 } 1040 1041 static int sis_chip_free(struct sis7019 *sis) 1042 { 1043 /* Reset the chip, and disable all interrputs. 1044 */ 1045 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1046 udelay(25); 1047 outl(0, sis->ioport + SIS_GCR); 1048 outl(0, sis->ioport + SIS_GIER); 1049 1050 /* Now, free everything we allocated. 1051 */ 1052 if (sis->irq >= 0) 1053 free_irq(sis->irq, sis); 1054 1055 iounmap(sis->ioaddr); 1056 pci_release_regions(sis->pci); 1057 pci_disable_device(sis->pci); 1058 sis_free_suspend(sis); 1059 return 0; 1060 } 1061 1062 static int sis_dev_free(struct snd_device *dev) 1063 { 1064 struct sis7019 *sis = dev->device_data; 1065 return sis_chip_free(sis); 1066 } 1067 1068 static int sis_chip_init(struct sis7019 *sis) 1069 { 1070 unsigned long io = sis->ioport; 1071 void __iomem *ioaddr = sis->ioaddr; 1072 unsigned long timeout; 1073 u16 status; 1074 int count; 1075 int i; 1076 1077 /* Reset the audio controller 1078 */ 1079 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1080 udelay(25); 1081 outl(0, io + SIS_GCR); 1082 1083 /* Get the AC-link semaphore, and reset the codecs 1084 */ 1085 count = 0xffff; 1086 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1087 udelay(1); 1088 1089 if (!count) 1090 return -EIO; 1091 1092 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1093 udelay(250); 1094 1095 count = 0xffff; 1096 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1097 udelay(1); 1098 1099 /* Command complete, we can let go of the semaphore now. 1100 */ 1101 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1102 if (!count) 1103 return -EIO; 1104 1105 /* Now that we've finished the reset, find out what's attached. 1106 * There are some codec/board combinations that take an extremely 1107 * long time to come up. 350+ ms has been observed in the field, 1108 * so we'll give them up to 500ms. 1109 */ 1110 sis->codecs_present = 0; 1111 timeout = msecs_to_jiffies(500) + jiffies; 1112 while (time_before_eq(jiffies, timeout)) { 1113 status = inl(io + SIS_AC97_STATUS); 1114 if (status & SIS_AC97_STATUS_CODEC_READY) 1115 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1116 if (status & SIS_AC97_STATUS_CODEC2_READY) 1117 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1118 if (status & SIS_AC97_STATUS_CODEC3_READY) 1119 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1120 1121 if (sis->codecs_present == codecs) 1122 break; 1123 1124 msleep(1); 1125 } 1126 1127 /* All done, check for errors. 1128 */ 1129 if (!sis->codecs_present) { 1130 dev_err(&sis->pci->dev, "could not find any codecs\n"); 1131 return -EIO; 1132 } 1133 1134 if (sis->codecs_present != codecs) { 1135 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", 1136 sis->codecs_present, codecs); 1137 } 1138 1139 /* Let the hardware know that the audio driver is alive, 1140 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1141 * record channels. We're going to want to use Variable Rate Audio 1142 * for recording, to avoid needlessly resampling from 48kHZ. 1143 */ 1144 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1145 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1146 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1147 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1148 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1149 1150 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1151 */ 1152 outl(0, io + SIS_AC97_PSR); 1153 1154 /* There is only one valid DMA setup for a PCI environment. 1155 */ 1156 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1157 1158 /* Reset the synchronization groups for all of the channels 1159 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. 1160 * we'll need to change how we handle these. Until then, we just 1161 * assign sub-mixer 0 to all playback channels, and avoid any 1162 * attenuation on the audio. 1163 */ 1164 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1165 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1166 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1167 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1168 outl(0, io + SIS_MIXER_SYNC_GROUP); 1169 1170 for (i = 0; i < 64; i++) { 1171 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1172 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1173 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1174 } 1175 1176 /* Don't attenuate any audio set for the wave amplifier. 1177 * 1178 * FIXME: Maximum attenuation is set for the music amp, which will 1179 * need to change if we start using the synth engine. 1180 */ 1181 outl(0xffff0000, io + SIS_WEVCR); 1182 1183 /* Ensure that the wave engine is in normal operating mode. 1184 */ 1185 outl(0, io + SIS_WECCR); 1186 1187 /* Go ahead and enable the DMA interrupts. They won't go live 1188 * until we start a channel. 1189 */ 1190 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1191 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1192 1193 return 0; 1194 } 1195 1196 #ifdef CONFIG_PM_SLEEP 1197 static int sis_suspend(struct device *dev) 1198 { 1199 struct snd_card *card = dev_get_drvdata(dev); 1200 struct sis7019 *sis = card->private_data; 1201 void __iomem *ioaddr = sis->ioaddr; 1202 int i; 1203 1204 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1205 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1206 snd_ac97_suspend(sis->ac97[0]); 1207 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1208 snd_ac97_suspend(sis->ac97[1]); 1209 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1210 snd_ac97_suspend(sis->ac97[2]); 1211 1212 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1213 */ 1214 if (sis->irq >= 0) { 1215 free_irq(sis->irq, sis); 1216 sis->irq = -1; 1217 } 1218 1219 /* Save the internal state away 1220 */ 1221 for (i = 0; i < 4; i++) { 1222 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1223 ioaddr += 4096; 1224 } 1225 1226 return 0; 1227 } 1228 1229 static int sis_resume(struct device *dev) 1230 { 1231 struct pci_dev *pci = to_pci_dev(dev); 1232 struct snd_card *card = dev_get_drvdata(dev); 1233 struct sis7019 *sis = card->private_data; 1234 void __iomem *ioaddr = sis->ioaddr; 1235 int i; 1236 1237 if (sis_chip_init(sis)) { 1238 dev_err(&pci->dev, "unable to re-init controller\n"); 1239 goto error; 1240 } 1241 1242 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, 1243 KBUILD_MODNAME, sis)) { 1244 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); 1245 goto error; 1246 } 1247 1248 /* Restore saved state, then clear out the page we use for the 1249 * silence buffer. 1250 */ 1251 for (i = 0; i < 4; i++) { 1252 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1253 ioaddr += 4096; 1254 } 1255 1256 memset(sis->suspend_state[0], 0, 4096); 1257 1258 sis->irq = pci->irq; 1259 1260 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1261 snd_ac97_resume(sis->ac97[0]); 1262 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1263 snd_ac97_resume(sis->ac97[1]); 1264 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1265 snd_ac97_resume(sis->ac97[2]); 1266 1267 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1268 return 0; 1269 1270 error: 1271 snd_card_disconnect(card); 1272 return -EIO; 1273 } 1274 1275 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); 1276 #define SIS_PM_OPS &sis_pm 1277 #else 1278 #define SIS_PM_OPS NULL 1279 #endif /* CONFIG_PM_SLEEP */ 1280 1281 static int sis_alloc_suspend(struct sis7019 *sis) 1282 { 1283 int i; 1284 1285 /* We need 16K to store the internal wave engine state during a 1286 * suspend, but we don't need it to be contiguous, so play nice 1287 * with the memory system. We'll also use this area for a silence 1288 * buffer. 1289 */ 1290 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1291 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); 1292 if (!sis->suspend_state[i]) 1293 return -ENOMEM; 1294 } 1295 memset(sis->suspend_state[0], 0, 4096); 1296 1297 return 0; 1298 } 1299 1300 static int sis_chip_create(struct snd_card *card, 1301 struct pci_dev *pci) 1302 { 1303 struct sis7019 *sis = card->private_data; 1304 struct voice *voice; 1305 static struct snd_device_ops ops = { 1306 .dev_free = sis_dev_free, 1307 }; 1308 int rc; 1309 int i; 1310 1311 rc = pci_enable_device(pci); 1312 if (rc) 1313 goto error_out; 1314 1315 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30)); 1316 if (rc < 0) { 1317 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); 1318 goto error_out_enabled; 1319 } 1320 1321 memset(sis, 0, sizeof(*sis)); 1322 mutex_init(&sis->ac97_mutex); 1323 spin_lock_init(&sis->voice_lock); 1324 sis->card = card; 1325 sis->pci = pci; 1326 sis->irq = -1; 1327 sis->ioport = pci_resource_start(pci, 0); 1328 1329 rc = pci_request_regions(pci, "SiS7019"); 1330 if (rc) { 1331 dev_err(&pci->dev, "unable request regions\n"); 1332 goto error_out_enabled; 1333 } 1334 1335 rc = -EIO; 1336 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); 1337 if (!sis->ioaddr) { 1338 dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); 1339 goto error_out_cleanup; 1340 } 1341 1342 rc = sis_alloc_suspend(sis); 1343 if (rc < 0) { 1344 dev_err(&pci->dev, "unable to allocate state storage\n"); 1345 goto error_out_cleanup; 1346 } 1347 1348 rc = sis_chip_init(sis); 1349 if (rc) 1350 goto error_out_cleanup; 1351 1352 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, 1353 sis); 1354 if (rc) { 1355 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); 1356 goto error_out_cleanup; 1357 } 1358 1359 sis->irq = pci->irq; 1360 pci_set_master(pci); 1361 1362 for (i = 0; i < 64; i++) { 1363 voice = &sis->voices[i]; 1364 voice->num = i; 1365 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1366 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1367 } 1368 1369 voice = &sis->capture_voice; 1370 voice->flags = VOICE_CAPTURE; 1371 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1372 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1373 1374 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); 1375 if (rc) 1376 goto error_out_cleanup; 1377 1378 return 0; 1379 1380 error_out_cleanup: 1381 sis_chip_free(sis); 1382 1383 error_out_enabled: 1384 pci_disable_device(pci); 1385 1386 error_out: 1387 return rc; 1388 } 1389 1390 static int snd_sis7019_probe(struct pci_dev *pci, 1391 const struct pci_device_id *pci_id) 1392 { 1393 struct snd_card *card; 1394 struct sis7019 *sis; 1395 int rc; 1396 1397 rc = -ENOENT; 1398 if (!enable) 1399 goto error_out; 1400 1401 /* The user can specify which codecs should be present so that we 1402 * can wait for them to show up if they are slow to recover from 1403 * the AC97 cold reset. We default to a single codec, the primary. 1404 * 1405 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. 1406 */ 1407 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | 1408 SIS_TERTIARY_CODEC_PRESENT; 1409 if (!codecs) 1410 codecs = SIS_PRIMARY_CODEC_PRESENT; 1411 1412 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE, 1413 sizeof(*sis), &card); 1414 if (rc < 0) 1415 goto error_out; 1416 1417 strcpy(card->driver, "SiS7019"); 1418 strcpy(card->shortname, "SiS7019"); 1419 rc = sis_chip_create(card, pci); 1420 if (rc) 1421 goto card_error_out; 1422 1423 sis = card->private_data; 1424 1425 rc = sis_mixer_create(sis); 1426 if (rc) 1427 goto card_error_out; 1428 1429 rc = sis_pcm_create(sis); 1430 if (rc) 1431 goto card_error_out; 1432 1433 snprintf(card->longname, sizeof(card->longname), 1434 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1435 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1436 sis->ioport, sis->irq); 1437 1438 rc = snd_card_register(card); 1439 if (rc) 1440 goto card_error_out; 1441 1442 pci_set_drvdata(pci, card); 1443 return 0; 1444 1445 card_error_out: 1446 snd_card_free(card); 1447 1448 error_out: 1449 return rc; 1450 } 1451 1452 static void snd_sis7019_remove(struct pci_dev *pci) 1453 { 1454 snd_card_free(pci_get_drvdata(pci)); 1455 } 1456 1457 static struct pci_driver sis7019_driver = { 1458 .name = KBUILD_MODNAME, 1459 .id_table = snd_sis7019_ids, 1460 .probe = snd_sis7019_probe, 1461 .remove = snd_sis7019_remove, 1462 .driver = { 1463 .pm = SIS_PM_OPS, 1464 }, 1465 }; 1466 1467 module_pci_driver(sis7019_driver); 1468