xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
4  *
5  *      Copyright (c) 2003 Winfried Ritsch (IEM)
6  *      code based on hdsp.c   Paul Davis
7  *                             Marcus Andersson
8  *                             Thomas Charbonnel
9  *      Modified 2006-06-01 for AES32 support by Remy Bruno
10  *                                               <remy.bruno@trinnov.com>
11  *
12  *      Modified 2009-04-13 for proper metering by Florian Faber
13  *                                               <faber@faberman.de>
14  *
15  *      Modified 2009-04-14 for native float support by Florian Faber
16  *                                               <faber@faberman.de>
17  *
18  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
19  *                                               <faber@faberman.de>
20  *
21  *      Modified 2009-04-30 added hw serial number support by Florian Faber
22  *
23  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
24  *
25  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
26  *
27  *      Modified 2019-05-23 fix AIO single speed ADAT capture and playback
28  *      by Philippe.Bekaert@uhasselt.be
29  */
30 
31 /* *************    Register Documentation   *******************************************************
32  *
33  * Work in progress! Documentation is based on the code in this file.
34  *
35  * --------- HDSPM_controlRegister ---------
36  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
37  * :||||.||||:||||.||||:||||.||||:||||.||||:
38  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
39  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
40  * :||||.||||:||||.||||:||||.||||:||||.||||:
41  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
42  * :    .    :    .    :    .    :  x .    :  HDSPM_AudioInterruptEnable \_ setting both bits
43  * :    .    :    .    :    .    :    .   x:  HDSPM_Start                /  enables audio IO
44  * :    .    :    .    :    .    :   x.    :  HDSPM_ClockModeMaster - 1: Master, 0: Slave
45  * :    .    :    .    :    .    :    .210 :  HDSPM_LatencyMask - 3 Bit value for latency
46  * :    .    :    .    :    .    :    .    :      0:64, 1:128, 2:256, 3:512,
47  * :    .    :    .    :    .    :    .    :      4:1024, 5:2048, 6:4096, 7:8192
48  * :x   .    :    .    :    .   x:xx  .    :  HDSPM_FrequencyMask
49  * :    .    :    .    :    .    :10  .    :  HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=??
50  * :    .    :    .    :    .   x:    .    :  <MADI> HDSPM_DoubleSpeed
51  * :x   .    :    .    :    .    :    .    :  <MADI> HDSPM_QuadSpeed
52  * :    .  3 :    .  10:  2 .    :    .    :  HDSPM_SyncRefMask :
53  * :    .    :    .   x:    .    :    .    :  HDSPM_SyncRef0
54  * :    .    :    .  x :    .    :    .    :  HDSPM_SyncRef1
55  * :    .    :    .    :  x .    :    .    :  <AES32> HDSPM_SyncRef2
56  * :    .  x :    .    :    .    :    .    :  <AES32> HDSPM_SyncRef3
57  * :    .    :    .  10:    .    :    .    :  <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn
58  * :    .  3 :    .  10:  2 .    :    .    :  <AES32>  0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn?
59  * :    .  x :    .    :    .    :    .    :  <MADIe> HDSPe_FLOAT_FORMAT
60  * :    .    :    .    : x  .    :    .    :  <MADI> HDSPM_InputSelect0 : 0=optical,1=coax
61  * :    .    :    .    :x   .    :    .    :  <MADI> HDSPM_InputSelect1
62  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
63  * :    .    :    .    :    . x  :    .    :  <MADI> HDSPM_TX_64ch
64  * :    .    :    .    :    . x  :    .    :  <AES32> HDSPM_Emphasis
65  * :    .    :    .    :    .x   :    .    :  <MADI> HDSPM_AutoInp
66  * :    .    :    . x  :    .    :    .    :  <MADI> HDSPM_SMUX
67  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
68  * :    .    :   x.    :    .    :    .    :  <MADI> HDSPM_taxi_reset
69  * :    .   x:    .    :    .    :    .    :  <MADI> HDSPM_LineOut
70  * :    .   x:    .    :    .    :    .    :  <AES32> ??????????????????
71  * :    .    :   x.    :    .    :    .    :  <AES32> HDSPM_WCK48
72  * :    .    :    .    :    .x   :    .    :  <AES32> HDSPM_Dolby
73  * :    .    : x  .    :    .    :    .    :  HDSPM_Midi0InterruptEnable
74  * :    .    :x   .    :    .    :    .    :  HDSPM_Midi1InterruptEnable
75  * :    .    :  x .    :    .    :    .    :  HDSPM_Midi2InterruptEnable
76  * :    . x  :    .    :    .    :    .    :  <MADI> HDSPM_Midi3InterruptEnable
77  * :    . x  :    .    :    .    :    .    :  <AES32> HDSPM_DS_DoubleWire
78  * :    .x   :    .    :    .    :    .    :  <AES32> HDSPM_QS_DoubleWire
79  * :   x.    :    .    :    .    :    .    :  <AES32> HDSPM_QS_QuadWire
80  * :    .    :    .    :    .  x :    .    :  <AES32> HDSPM_Professional
81  * : x  .    :    .    :    .    :    .    :  HDSPM_wclk_sel
82  * :    .    :    .    :    .    :    .    :
83  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
84  * :||||.||||:||||.||||:||||.||||:||||.||||:
85  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
86  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
87  * :||||.||||:||||.||||:||||.||||:||||.||||:
88  * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit
89  *
90  *
91  *
92  * AIO / RayDAT only
93  *
94  * ------------ HDSPM_WR_SETTINGS ----------
95  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
96  * :1098.7654:3210.9876:5432.1098:7654.3210:
97  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
98  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
99  * :||||.||||:||||.||||:||||.||||:||||.||||:
100  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
101  * :    .    :    .    :    .    :    .   x: HDSPM_c0Master 1: Master, 0: Slave
102  * :    .    :    .    :    .    :    .  x : HDSPM_c0_SyncRef0
103  * :    .    :    .    :    .    :    . x  : HDSPM_c0_SyncRef1
104  * :    .    :    .    :    .    :    .x   : HDSPM_c0_SyncRef2
105  * :    .    :    .    :    .    :   x.    : HDSPM_c0_SyncRef3
106  * :    .    :    .    :    .    :   3.210 : HDSPM_c0_SyncRefMask:
107  * :    .    :    .    :    .    :    .    :  RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4,
108  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
109  * :    .    :    .    :    .    :    .    :  AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT,
110  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
111  * :    .    :    .    :    .    :    .    :
112  * :    .    :    .    :    .    :    .    :
113  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
114  * :1098.7654:3210.9876:5432.1098:7654.3210:
115  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
116  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
117  * :||||.||||:||||.||||:||||.||||:||||.||||:
118  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
119  *
120  */
121 #include <linux/init.h>
122 #include <linux/delay.h>
123 #include <linux/interrupt.h>
124 #include <linux/module.h>
125 #include <linux/slab.h>
126 #include <linux/pci.h>
127 #include <linux/math64.h>
128 #include <linux/io.h>
129 #include <linux/nospec.h>
130 
131 #include <sound/core.h>
132 #include <sound/control.h>
133 #include <sound/pcm.h>
134 #include <sound/pcm_params.h>
135 #include <sound/info.h>
136 #include <sound/asoundef.h>
137 #include <sound/rawmidi.h>
138 #include <sound/hwdep.h>
139 #include <sound/initval.h>
140 
141 #include <sound/hdspm.h>
142 
143 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
144 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
145 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
146 
147 module_param_array(index, int, NULL, 0444);
148 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
149 
150 module_param_array(id, charp, NULL, 0444);
151 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
152 
153 module_param_array(enable, bool, NULL, 0444);
154 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
155 
156 
157 MODULE_AUTHOR
158 (
159 	"Winfried Ritsch <ritsch_AT_iem.at>, "
160 	"Paul Davis <paul@linuxaudiosystems.com>, "
161 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
162 	"Remy Bruno <remy.bruno@trinnov.com>, "
163 	"Florian Faber <faberman@linuxproaudio.org>, "
164 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
165 );
166 MODULE_DESCRIPTION("RME HDSPM");
167 MODULE_LICENSE("GPL");
168 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
169 
170 /* --- Write registers. ---
171   These are defined as byte-offsets from the iobase value.  */
172 
173 #define HDSPM_WR_SETTINGS             0
174 #define HDSPM_outputBufferAddress    32
175 #define HDSPM_inputBufferAddress     36
176 #define HDSPM_controlRegister	     64
177 #define HDSPM_interruptConfirmation  96
178 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
179 #define HDSPM_freqReg                256  /* for setting arbitrary clock values (DDS feature) */
180 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
181 #define HDSPM_midiDataOut1	     356
182 #define HDSPM_eeprom_wr		     384  /* for AES32 */
183 
184 /* DMA enable for 64 channels, only Bit 0 is relevant */
185 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
186 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
187 
188 /* 16 page addresses for each of the 64 channels DMA buffer in and out
189    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
190 #define HDSPM_pageAddressBufferOut       8192
191 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
192 
193 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
194 
195 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
196 
197 /* --- Read registers. ---
198    These are defined as byte-offsets from the iobase value */
199 #define HDSPM_statusRegister    0
200 /*#define HDSPM_statusRegister2  96 */
201 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
202  * offset 192, for AES32 *and* MADI
203  * => need to check that offset 192 is working on MADI */
204 #define HDSPM_statusRegister2  192
205 #define HDSPM_timecodeRegister 128
206 
207 /* AIO, RayDAT */
208 #define HDSPM_RD_STATUS_0 0
209 #define HDSPM_RD_STATUS_1 64
210 #define HDSPM_RD_STATUS_2 128
211 #define HDSPM_RD_STATUS_3 192
212 
213 #define HDSPM_RD_TCO           256
214 #define HDSPM_RD_PLL_FREQ      512
215 #define HDSPM_WR_TCO           128
216 
217 #define HDSPM_TCO1_TCO_lock			0x00000001
218 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
219 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
220 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
221 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
222 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
223 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
224 
225 #define HDSPM_TCO1_set_TC			0x00000100
226 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
227 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
228 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
229 
230 #define HDSPM_TCO2_TC_run			0x00010000
231 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
232 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
233 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
234 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
235 #define HDSPM_TCO2_set_jam_sync			0x00200000
236 #define HDSPM_TCO2_set_flywheel			0x00400000
237 
238 #define HDSPM_TCO2_set_01_4			0x01000000
239 #define HDSPM_TCO2_set_pull_down		0x02000000
240 #define HDSPM_TCO2_set_pull_up			0x04000000
241 #define HDSPM_TCO2_set_freq			0x08000000
242 #define HDSPM_TCO2_set_term_75R			0x10000000
243 #define HDSPM_TCO2_set_input_LSB		0x20000000
244 #define HDSPM_TCO2_set_input_MSB		0x40000000
245 #define HDSPM_TCO2_set_freq_from_app		0x80000000
246 
247 
248 #define HDSPM_midiDataOut0    352
249 #define HDSPM_midiDataOut1    356
250 #define HDSPM_midiDataOut2    368
251 
252 #define HDSPM_midiDataIn0     360
253 #define HDSPM_midiDataIn1     364
254 #define HDSPM_midiDataIn2     372
255 #define HDSPM_midiDataIn3     376
256 
257 /* status is data bytes in MIDI-FIFO (0-128) */
258 #define HDSPM_midiStatusOut0  384
259 #define HDSPM_midiStatusOut1  388
260 #define HDSPM_midiStatusOut2  400
261 
262 #define HDSPM_midiStatusIn0   392
263 #define HDSPM_midiStatusIn1   396
264 #define HDSPM_midiStatusIn2   404
265 #define HDSPM_midiStatusIn3   408
266 
267 
268 /* the meters are regular i/o-mapped registers, but offset
269    considerably from the rest. the peak registers are reset
270    when read; the least-significant 4 bits are full-scale counters;
271    the actual peak value is in the most-significant 24 bits.
272 */
273 
274 #define HDSPM_MADI_INPUT_PEAK		4096
275 #define HDSPM_MADI_PLAYBACK_PEAK	4352
276 #define HDSPM_MADI_OUTPUT_PEAK		4608
277 
278 #define HDSPM_MADI_INPUT_RMS_L		6144
279 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
280 #define HDSPM_MADI_OUTPUT_RMS_L		6656
281 
282 #define HDSPM_MADI_INPUT_RMS_H		7168
283 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
284 #define HDSPM_MADI_OUTPUT_RMS_H		7680
285 
286 /* --- Control Register bits --------- */
287 #define HDSPM_Start                (1<<0) /* start engine */
288 
289 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
290 #define HDSPM_Latency1             (1<<2) /* where n is defined */
291 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
292 
293 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
294 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
295 					  register [RayDAT, AIO] */
296 
297 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
298 
299 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
300 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
301 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
302 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
303 
304 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
305 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
306 				     56channelMODE=0 */ /* MADI ONLY*/
307 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
308 
309 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
310                                      0=off, 1=on  */ /* MADI ONLY */
311 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
312 
313 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
314 				    * -- MADI ONLY
315 				    */
316 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
317 
318 #define HDSPM_SyncRef2     (1<<13)
319 #define HDSPM_SyncRef3     (1<<25)
320 
321 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
322 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
323                                       AES additional bits in
324 				      lower 5 Audiodatabits ??? */
325 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
326 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
327 
328 #define HDSPM_Midi0InterruptEnable 0x0400000
329 #define HDSPM_Midi1InterruptEnable 0x0800000
330 #define HDSPM_Midi2InterruptEnable 0x0200000
331 #define HDSPM_Midi3InterruptEnable 0x4000000
332 
333 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
334 #define HDSPe_FLOAT_FORMAT         0x2000000
335 
336 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
337 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
338 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
339 
340 #define HDSPM_wclk_sel (1<<30)
341 
342 /* additional control register bits for AIO*/
343 #define HDSPM_c0_Wck48				0x20 /* also RayDAT */
344 #define HDSPM_c0_Input0				0x1000
345 #define HDSPM_c0_Input1				0x2000
346 #define HDSPM_c0_Spdif_Opt			0x4000
347 #define HDSPM_c0_Pro				0x8000
348 #define HDSPM_c0_clr_tms			0x10000
349 #define HDSPM_c0_AEB1				0x20000
350 #define HDSPM_c0_AEB2				0x40000
351 #define HDSPM_c0_LineOut			0x80000
352 #define HDSPM_c0_AD_GAIN0			0x100000
353 #define HDSPM_c0_AD_GAIN1			0x200000
354 #define HDSPM_c0_DA_GAIN0			0x400000
355 #define HDSPM_c0_DA_GAIN1			0x800000
356 #define HDSPM_c0_PH_GAIN0			0x1000000
357 #define HDSPM_c0_PH_GAIN1			0x2000000
358 #define HDSPM_c0_Sym6db				0x4000000
359 
360 
361 /* --- bit helper defines */
362 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
363 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
364 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
365 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
366 #define HDSPM_InputOptical   0
367 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
368 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
369 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
370 
371 #define HDSPM_c0_SyncRef0      0x2
372 #define HDSPM_c0_SyncRef1      0x4
373 #define HDSPM_c0_SyncRef2      0x8
374 #define HDSPM_c0_SyncRef3      0x10
375 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
376 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
377 
378 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
379 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
380 #define HDSPM_SYNC_FROM_TCO     2
381 #define HDSPM_SYNC_FROM_SYNC_IN 3
382 
383 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
384 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
385 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
386 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
387 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
388 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
389 				HDSPM_Frequency0)
390 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
391 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
392 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
393 				 HDSPM_Frequency0)
394 
395 
396 /* Synccheck Status */
397 #define HDSPM_SYNC_CHECK_NO_LOCK 0
398 #define HDSPM_SYNC_CHECK_LOCK    1
399 #define HDSPM_SYNC_CHECK_SYNC	 2
400 
401 /* AutoSync References - used by "autosync_ref" control switch */
402 #define HDSPM_AUTOSYNC_FROM_WORD      0
403 #define HDSPM_AUTOSYNC_FROM_MADI      1
404 #define HDSPM_AUTOSYNC_FROM_TCO       2
405 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
406 #define HDSPM_AUTOSYNC_FROM_NONE      4
407 
408 /* Possible sources of MADI input */
409 #define HDSPM_OPTICAL 0		/* optical   */
410 #define HDSPM_COAXIAL 1		/* BNC */
411 
412 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
413 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
414 
415 #define hdspm_encode_in(x) (((x)&0x3)<<14)
416 #define hdspm_decode_in(x) (((x)>>14)&0x3)
417 
418 /* --- control2 register bits --- */
419 #define HDSPM_TMS             (1<<0)
420 #define HDSPM_TCK             (1<<1)
421 #define HDSPM_TDI             (1<<2)
422 #define HDSPM_JTAG            (1<<3)
423 #define HDSPM_PWDN            (1<<4)
424 #define HDSPM_PROGRAM	      (1<<5)
425 #define HDSPM_CONFIG_MODE_0   (1<<6)
426 #define HDSPM_CONFIG_MODE_1   (1<<7)
427 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
428 #define HDSPM_BIGENDIAN_MODE  (1<<9)
429 #define HDSPM_RD_MULTIPLE     (1<<10)
430 
431 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
432      that do not conflict with specific bits for AES32 seem to be valid also
433      for the AES32
434  */
435 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
436 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
437 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
438 					 * (like inp0)
439 					 */
440 
441 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
442 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
443 
444 #define HDSPM_tcoLockMadi    0x00000020 /* Optional TCO locked status for HDSPe MADI*/
445 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/
446 
447 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */
448 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */
449 
450 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
451 			/* since 64byte accurate, last 6 bits are not used */
452 
453 
454 
455 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
456 
457 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
458 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
459 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
460 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
461 
462 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
463 					 * Interrupt
464 					 */
465 #define HDSPM_tco_detect         0x08000000
466 #define HDSPM_tcoLockAes         0x20000000 /* Optional TCO locked status for HDSPe AES */
467 
468 #define HDSPM_s2_tco_detect      0x00000040
469 #define HDSPM_s2_AEBO_D          0x00000080
470 #define HDSPM_s2_AEBI_D          0x00000100
471 
472 
473 #define HDSPM_midi0IRQPending    0x40000000
474 #define HDSPM_midi1IRQPending    0x80000000
475 #define HDSPM_midi2IRQPending    0x20000000
476 #define HDSPM_midi2IRQPendingAES 0x00000020
477 #define HDSPM_midi3IRQPending    0x00200000
478 
479 /* --- status bit helpers */
480 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
481 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
482 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
483 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
484 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
485 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
486 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
487 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
488 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
489 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
490 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
491 
492 /* Status2 Register bits */ /* MADI ONLY */
493 
494 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
495 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
496 #define HDSPM_version2 (1<<2)
497 
498 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
499 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
500 
501 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
502 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
503 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, 111=128 */
504 #define HDSPM_wc_freq3 0x800	/* 1000=176.4, 1001=192 */
505 
506 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
507 #define HDSPM_SyncRef1 0x20000
508 
509 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
510 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
511 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
512 
513 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
514 
515 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\
516 			    HDSPM_wc_freq3)
517 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
518 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
519 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
520 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
521 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
522 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
523 #define HDSPM_wcFreq128   (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
524 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3)
525 #define HDSPM_wcFreq192   (HDSPM_wc_freq0|HDSPM_wc_freq3)
526 
527 #define HDSPM_status1_F_0 0x0400000
528 #define HDSPM_status1_F_1 0x0800000
529 #define HDSPM_status1_F_2 0x1000000
530 #define HDSPM_status1_F_3 0x2000000
531 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
532 
533 
534 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
535 				    HDSPM_SelSyncRef2)
536 #define HDSPM_SelSyncRef_WORD      0
537 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
538 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
539 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
540 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
541 				    HDSPM_SelSyncRef2)
542 
543 /*
544    For AES32, bits for status, status2 and timecode are different
545 */
546 /* status */
547 #define HDSPM_AES32_wcLock	0x0200000
548 #define HDSPM_AES32_wcSync	0x0100000
549 #define HDSPM_AES32_wcFreq_bit  22
550 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
551   HDSPM_bit2freq */
552 #define HDSPM_AES32_syncref_bit  16
553 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
554 
555 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
556 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
557 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
558 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
559 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
560 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
561 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
562 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
563 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
564 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9
565 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10
566 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11
567 
568 /*  status2 */
569 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
570 #define HDSPM_LockAES   0x80
571 #define HDSPM_LockAES1  0x80
572 #define HDSPM_LockAES2  0x40
573 #define HDSPM_LockAES3  0x20
574 #define HDSPM_LockAES4  0x10
575 #define HDSPM_LockAES5  0x8
576 #define HDSPM_LockAES6  0x4
577 #define HDSPM_LockAES7  0x2
578 #define HDSPM_LockAES8  0x1
579 /*
580    Timecode
581    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
582    AES i+1
583  bits 3210
584       0001  32kHz
585       0010  44.1kHz
586       0011  48kHz
587       0100  64kHz
588       0101  88.2kHz
589       0110  96kHz
590       0111  128kHz
591       1000  176.4kHz
592       1001  192kHz
593   NB: Timecode register doesn't seem to work on AES32 card revision 230
594 */
595 
596 /* Mixer Values */
597 #define UNITY_GAIN          32768	/* = 65536/2 */
598 #define MINUS_INFINITY_GAIN 0
599 
600 /* Number of channels for different Speed Modes */
601 #define MADI_SS_CHANNELS       64
602 #define MADI_DS_CHANNELS       32
603 #define MADI_QS_CHANNELS       16
604 
605 #define RAYDAT_SS_CHANNELS     36
606 #define RAYDAT_DS_CHANNELS     20
607 #define RAYDAT_QS_CHANNELS     12
608 
609 #define AIO_IN_SS_CHANNELS        14
610 #define AIO_IN_DS_CHANNELS        10
611 #define AIO_IN_QS_CHANNELS        8
612 #define AIO_OUT_SS_CHANNELS        16
613 #define AIO_OUT_DS_CHANNELS        12
614 #define AIO_OUT_QS_CHANNELS        10
615 
616 #define AES32_CHANNELS		16
617 
618 /* the size of a substream (1 mono data stream) */
619 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
620 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
621 
622 /* the size of the area we need to allocate for DMA transfers. the
623    size is the same regardless of the number of channels, and
624    also the latency to use.
625    for one direction !!!
626 */
627 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
628 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
629 
630 #define HDSPM_RAYDAT_REV	211
631 #define HDSPM_AIO_REV		212
632 #define HDSPM_MADIFACE_REV	213
633 
634 /* speed factor modes */
635 #define HDSPM_SPEED_SINGLE 0
636 #define HDSPM_SPEED_DOUBLE 1
637 #define HDSPM_SPEED_QUAD   2
638 
639 /* names for speed modes */
640 static const char * const hdspm_speed_names[] = { "single", "double", "quad" };
641 
642 static const char *const texts_autosync_aes_tco[] = { "Word Clock",
643 					  "AES1", "AES2", "AES3", "AES4",
644 					  "AES5", "AES6", "AES7", "AES8",
645 					  "TCO", "Sync In"
646 };
647 static const char *const texts_autosync_aes[] = { "Word Clock",
648 				      "AES1", "AES2", "AES3", "AES4",
649 				      "AES5", "AES6", "AES7", "AES8",
650 				      "Sync In"
651 };
652 static const char *const texts_autosync_madi_tco[] = { "Word Clock",
653 					   "MADI", "TCO", "Sync In" };
654 static const char *const texts_autosync_madi[] = { "Word Clock",
655 				       "MADI", "Sync In" };
656 
657 static const char *const texts_autosync_raydat_tco[] = {
658 	"Word Clock",
659 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
660 	"AES", "SPDIF", "TCO", "Sync In"
661 };
662 static const char *const texts_autosync_raydat[] = {
663 	"Word Clock",
664 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
665 	"AES", "SPDIF", "Sync In"
666 };
667 static const char *const texts_autosync_aio_tco[] = {
668 	"Word Clock",
669 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
670 };
671 static const char *const texts_autosync_aio[] = { "Word Clock",
672 				      "ADAT", "AES", "SPDIF", "Sync In" };
673 
674 static const char *const texts_freq[] = {
675 	"No Lock",
676 	"32 kHz",
677 	"44.1 kHz",
678 	"48 kHz",
679 	"64 kHz",
680 	"88.2 kHz",
681 	"96 kHz",
682 	"128 kHz",
683 	"176.4 kHz",
684 	"192 kHz"
685 };
686 
687 static const char * const texts_ports_madi[] = {
688 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
689 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
690 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
691 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
692 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
693 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
694 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
695 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
696 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
697 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
698 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
699 };
700 
701 
702 static const char * const texts_ports_raydat_ss[] = {
703 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
704 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
705 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
706 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
707 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
708 	"ADAT4.7", "ADAT4.8",
709 	"AES.L", "AES.R",
710 	"SPDIF.L", "SPDIF.R"
711 };
712 
713 static const char * const texts_ports_raydat_ds[] = {
714 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
715 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
716 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
717 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
718 	"AES.L", "AES.R",
719 	"SPDIF.L", "SPDIF.R"
720 };
721 
722 static const char * const texts_ports_raydat_qs[] = {
723 	"ADAT1.1", "ADAT1.2",
724 	"ADAT2.1", "ADAT2.2",
725 	"ADAT3.1", "ADAT3.2",
726 	"ADAT4.1", "ADAT4.2",
727 	"AES.L", "AES.R",
728 	"SPDIF.L", "SPDIF.R"
729 };
730 
731 
732 static const char * const texts_ports_aio_in_ss[] = {
733 	"Analogue.L", "Analogue.R",
734 	"AES.L", "AES.R",
735 	"SPDIF.L", "SPDIF.R",
736 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
737 	"ADAT.7", "ADAT.8",
738 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
739 };
740 
741 static const char * const texts_ports_aio_out_ss[] = {
742 	"Analogue.L", "Analogue.R",
743 	"AES.L", "AES.R",
744 	"SPDIF.L", "SPDIF.R",
745 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
746 	"ADAT.7", "ADAT.8",
747 	"Phone.L", "Phone.R",
748 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
749 };
750 
751 static const char * const texts_ports_aio_in_ds[] = {
752 	"Analogue.L", "Analogue.R",
753 	"AES.L", "AES.R",
754 	"SPDIF.L", "SPDIF.R",
755 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
756 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
757 };
758 
759 static const char * const texts_ports_aio_out_ds[] = {
760 	"Analogue.L", "Analogue.R",
761 	"AES.L", "AES.R",
762 	"SPDIF.L", "SPDIF.R",
763 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
764 	"Phone.L", "Phone.R",
765 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
766 };
767 
768 static const char * const texts_ports_aio_in_qs[] = {
769 	"Analogue.L", "Analogue.R",
770 	"AES.L", "AES.R",
771 	"SPDIF.L", "SPDIF.R",
772 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
773 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
774 };
775 
776 static const char * const texts_ports_aio_out_qs[] = {
777 	"Analogue.L", "Analogue.R",
778 	"AES.L", "AES.R",
779 	"SPDIF.L", "SPDIF.R",
780 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
781 	"Phone.L", "Phone.R",
782 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
783 };
784 
785 static const char * const texts_ports_aes32[] = {
786 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
787 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
788 	"AES.15", "AES.16"
789 };
790 
791 /* These tables map the ALSA channels 1..N to the channels that we
792    need to use in order to find the relevant channel buffer. RME
793    refers to this kind of mapping as between "the ADAT channel and
794    the DMA channel." We index it using the logical audio channel,
795    and the value is the DMA channel (i.e. channel buffer number)
796    where the data for that channel can be read/written from/to.
797 */
798 
799 static const char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
800 	0, 1, 2, 3, 4, 5, 6, 7,
801 	8, 9, 10, 11, 12, 13, 14, 15,
802 	16, 17, 18, 19, 20, 21, 22, 23,
803 	24, 25, 26, 27, 28, 29, 30, 31,
804 	32, 33, 34, 35, 36, 37, 38, 39,
805 	40, 41, 42, 43, 44, 45, 46, 47,
806 	48, 49, 50, 51, 52, 53, 54, 55,
807 	56, 57, 58, 59, 60, 61, 62, 63
808 };
809 
810 static const char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
811 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
812 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
813 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
814 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
815 	0, 1,			/* AES */
816 	2, 3,			/* SPDIF */
817 	-1, -1, -1, -1,
818 	-1, -1, -1, -1, -1, -1, -1, -1,
819 	-1, -1, -1, -1, -1, -1, -1, -1,
820 	-1, -1, -1, -1, -1, -1, -1, -1,
821 };
822 
823 static const char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
824 	4, 5, 6, 7,		/* ADAT 1 */
825 	8, 9, 10, 11,		/* ADAT 2 */
826 	12, 13, 14, 15,		/* ADAT 3 */
827 	16, 17, 18, 19,		/* ADAT 4 */
828 	0, 1,			/* AES */
829 	2, 3,			/* SPDIF */
830 	-1, -1, -1, -1,
831 	-1, -1, -1, -1, -1, -1, -1, -1,
832 	-1, -1, -1, -1, -1, -1, -1, -1,
833 	-1, -1, -1, -1, -1, -1, -1, -1,
834 	-1, -1, -1, -1, -1, -1, -1, -1,
835 	-1, -1, -1, -1, -1, -1, -1, -1,
836 };
837 
838 static const char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
839 	4, 5,			/* ADAT 1 */
840 	6, 7,			/* ADAT 2 */
841 	8, 9,			/* ADAT 3 */
842 	10, 11,			/* ADAT 4 */
843 	0, 1,			/* AES */
844 	2, 3,			/* SPDIF */
845 	-1, -1, -1, -1,
846 	-1, -1, -1, -1, -1, -1, -1, -1,
847 	-1, -1, -1, -1, -1, -1, -1, -1,
848 	-1, -1, -1, -1, -1, -1, -1, -1,
849 	-1, -1, -1, -1, -1, -1, -1, -1,
850 	-1, -1, -1, -1, -1, -1, -1, -1,
851 	-1, -1, -1, -1, -1, -1, -1, -1,
852 };
853 
854 static const char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
855 	0, 1,			/* line in */
856 	8, 9,			/* aes in, */
857 	10, 11,			/* spdif in */
858 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
859 	2, 3, 4, 5,		/* AEB */
860 	-1, -1, -1, -1, -1, -1,
861 	-1, -1, -1, -1, -1, -1, -1, -1,
862 	-1, -1, -1, -1, -1, -1, -1, -1,
863 	-1, -1, -1, -1, -1, -1, -1, -1,
864 	-1, -1, -1, -1, -1, -1, -1, -1,
865 	-1, -1, -1, -1, -1, -1, -1, -1,
866 };
867 
868 static const char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
869 	0, 1,			/* line out */
870 	8, 9,			/* aes out */
871 	10, 11,			/* spdif out */
872 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
873 	6, 7,			/* phone out */
874 	2, 3, 4, 5,		/* AEB */
875 	-1, -1, -1, -1,
876 	-1, -1, -1, -1, -1, -1, -1, -1,
877 	-1, -1, -1, -1, -1, -1, -1, -1,
878 	-1, -1, -1, -1, -1, -1, -1, -1,
879 	-1, -1, -1, -1, -1, -1, -1, -1,
880 	-1, -1, -1, -1, -1, -1, -1, -1,
881 };
882 
883 static const char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
884 	0, 1,			/* line in */
885 	8, 9,			/* aes in */
886 	10, 11,			/* spdif in */
887 	12, 14, 16, 18,		/* adat in */
888 	2, 3, 4, 5,		/* AEB */
889 	-1, -1,
890 	-1, -1, -1, -1, -1, -1, -1, -1,
891 	-1, -1, -1, -1, -1, -1, -1, -1,
892 	-1, -1, -1, -1, -1, -1, -1, -1,
893 	-1, -1, -1, -1, -1, -1, -1, -1,
894 	-1, -1, -1, -1, -1, -1, -1, -1,
895 	-1, -1, -1, -1, -1, -1, -1, -1
896 };
897 
898 static const char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
899 	0, 1,			/* line out */
900 	8, 9,			/* aes out */
901 	10, 11,			/* spdif out */
902 	12, 14, 16, 18,		/* adat out */
903 	6, 7,			/* phone out */
904 	2, 3, 4, 5,		/* AEB */
905 	-1, -1, -1, -1, -1, -1, -1, -1,
906 	-1, -1, -1, -1, -1, -1, -1, -1,
907 	-1, -1, -1, -1, -1, -1, -1, -1,
908 	-1, -1, -1, -1, -1, -1, -1, -1,
909 	-1, -1, -1, -1, -1, -1, -1, -1,
910 	-1, -1, -1, -1, -1, -1, -1, -1
911 };
912 
913 static const char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
914 	0, 1,			/* line in */
915 	8, 9,			/* aes in */
916 	10, 11,			/* spdif in */
917 	12, 16,			/* adat in */
918 	2, 3, 4, 5,		/* AEB */
919 	-1, -1, -1, -1,
920 	-1, -1, -1, -1, -1, -1, -1, -1,
921 	-1, -1, -1, -1, -1, -1, -1, -1,
922 	-1, -1, -1, -1, -1, -1, -1, -1,
923 	-1, -1, -1, -1, -1, -1, -1, -1,
924 	-1, -1, -1, -1, -1, -1, -1, -1,
925 	-1, -1, -1, -1, -1, -1, -1, -1
926 };
927 
928 static const char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
929 	0, 1,			/* line out */
930 	8, 9,			/* aes out */
931 	10, 11,			/* spdif out */
932 	12, 16,			/* adat out */
933 	6, 7,			/* phone out */
934 	2, 3, 4, 5,		/* AEB */
935 	-1, -1,
936 	-1, -1, -1, -1, -1, -1, -1, -1,
937 	-1, -1, -1, -1, -1, -1, -1, -1,
938 	-1, -1, -1, -1, -1, -1, -1, -1,
939 	-1, -1, -1, -1, -1, -1, -1, -1,
940 	-1, -1, -1, -1, -1, -1, -1, -1,
941 	-1, -1, -1, -1, -1, -1, -1, -1
942 };
943 
944 static const char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
945 	0, 1, 2, 3, 4, 5, 6, 7,
946 	8, 9, 10, 11, 12, 13, 14, 15,
947 	-1, -1, -1, -1, -1, -1, -1, -1,
948 	-1, -1, -1, -1, -1, -1, -1, -1,
949 	-1, -1, -1, -1, -1, -1, -1, -1,
950 	-1, -1, -1, -1, -1, -1, -1, -1,
951 	-1, -1, -1, -1, -1, -1, -1, -1,
952 	-1, -1, -1, -1, -1, -1, -1, -1
953 };
954 
955 struct hdspm_midi {
956 	struct hdspm *hdspm;
957 	int id;
958 	struct snd_rawmidi *rmidi;
959 	struct snd_rawmidi_substream *input;
960 	struct snd_rawmidi_substream *output;
961 	char istimer;		/* timer in use */
962 	struct timer_list timer;
963 	spinlock_t lock;
964 	int pending;
965 	int dataIn;
966 	int statusIn;
967 	int dataOut;
968 	int statusOut;
969 	int ie;
970 	int irq;
971 };
972 
973 struct hdspm_tco {
974 	int input; /* 0: LTC, 1:Video, 2: WC*/
975 	int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */
976 	int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */
977 	int samplerate; /* 0=44.1, 1=48, 2= freq from app */
978 	int pull; /*   0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/
979 	int term; /* 0 = off, 1 = on */
980 };
981 
982 struct hdspm {
983         spinlock_t lock;
984 	/* only one playback and/or capture stream */
985         struct snd_pcm_substream *capture_substream;
986         struct snd_pcm_substream *playback_substream;
987 
988 	char *card_name;	     /* for procinfo */
989 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
990 
991 	uint8_t io_type;
992 
993 	int monitor_outs;	/* set up monitoring outs init flag */
994 
995 	u32 control_register;	/* cached value */
996 	u32 control2_register;	/* cached value */
997 	u32 settings_register;  /* cached value for AIO / RayDat (sync reference, master/slave) */
998 
999 	struct hdspm_midi midi[4];
1000 	struct tasklet_struct midi_tasklet;
1001 
1002 	size_t period_bytes;
1003 	unsigned char ss_in_channels;
1004 	unsigned char ds_in_channels;
1005 	unsigned char qs_in_channels;
1006 	unsigned char ss_out_channels;
1007 	unsigned char ds_out_channels;
1008 	unsigned char qs_out_channels;
1009 
1010 	unsigned char max_channels_in;
1011 	unsigned char max_channels_out;
1012 
1013 	const signed char *channel_map_in;
1014 	const signed char *channel_map_out;
1015 
1016 	const signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
1017 	const signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
1018 
1019 	const char * const *port_names_in;
1020 	const char * const *port_names_out;
1021 
1022 	const char * const *port_names_in_ss;
1023 	const char * const *port_names_in_ds;
1024 	const char * const *port_names_in_qs;
1025 	const char * const *port_names_out_ss;
1026 	const char * const *port_names_out_ds;
1027 	const char * const *port_names_out_qs;
1028 
1029 	unsigned char *playback_buffer;	/* suitably aligned address */
1030 	unsigned char *capture_buffer;	/* suitably aligned address */
1031 
1032 	pid_t capture_pid;	/* process id which uses capture */
1033 	pid_t playback_pid;	/* process id which uses capture */
1034 	int running;		/* running status */
1035 
1036 	int last_external_sample_rate;	/* samplerate mystic ... */
1037 	int last_internal_sample_rate;
1038 	int system_sample_rate;
1039 
1040 	int dev;		/* Hardware vars... */
1041 	int irq;
1042 	unsigned long port;
1043 	void __iomem *iobase;
1044 
1045 	int irq_count;		/* for debug */
1046 	int midiPorts;
1047 
1048 	struct snd_card *card;	/* one card */
1049 	struct snd_pcm *pcm;		/* has one pcm */
1050 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
1051 	struct pci_dev *pci;	/* and an pci info */
1052 
1053 	/* Mixer vars */
1054 	/* fast alsa mixer */
1055 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
1056 	/* but input to much, so not used */
1057 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
1058 	/* full mixer accessible over mixer ioctl or hwdep-device */
1059 	struct hdspm_mixer *mixer;
1060 
1061 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
1062 
1063 	const char *const *texts_autosync;
1064 	int texts_autosync_items;
1065 
1066 	cycles_t last_interrupt;
1067 
1068 	unsigned int serial;
1069 
1070 	struct hdspm_peak_rms peak_rms;
1071 };
1072 
1073 
1074 static const struct pci_device_id snd_hdspm_ids[] = {
1075 	{
1076 	 .vendor = PCI_VENDOR_ID_XILINX,
1077 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
1078 	 .subvendor = PCI_ANY_ID,
1079 	 .subdevice = PCI_ANY_ID,
1080 	 .class = 0,
1081 	 .class_mask = 0,
1082 	 .driver_data = 0},
1083 	{0,}
1084 };
1085 
1086 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
1087 
1088 /* prototypes */
1089 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
1090 					 struct hdspm *hdspm);
1091 static int snd_hdspm_create_pcm(struct snd_card *card,
1092 				struct hdspm *hdspm);
1093 
1094 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
1095 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
1096 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
1097 static int hdspm_autosync_ref(struct hdspm *hdspm);
1098 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out);
1099 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
1100 static int hdspm_system_clock_mode(struct hdspm *hdspm);
1101 static void hdspm_set_channel_dma_addr(struct hdspm *hdspm,
1102 				       struct snd_pcm_substream *substream,
1103 				       unsigned int reg, int channels);
1104 
1105 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx);
1106 static int hdspm_wc_sync_check(struct hdspm *hdspm);
1107 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1108 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1109 
1110 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index);
1111 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm);
1112 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm);
1113 
1114 
1115 
1116 static inline int HDSPM_bit2freq(int n)
1117 {
1118 	static const int bit2freq_tab[] = {
1119 		0, 32000, 44100, 48000, 64000, 88200,
1120 		96000, 128000, 176400, 192000 };
1121 	if (n < 1 || n > 9)
1122 		return 0;
1123 	return bit2freq_tab[n];
1124 }
1125 
1126 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm)
1127 {
1128 	return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type));
1129 }
1130 
1131 
1132 /* Write/read to/from HDSPM with Adresses in Bytes
1133    not words but only 32Bit writes are allowed */
1134 
1135 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
1136 			       unsigned int val)
1137 {
1138 	writel(val, hdspm->iobase + reg);
1139 }
1140 
1141 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1142 {
1143 	return readl(hdspm->iobase + reg);
1144 }
1145 
1146 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1147    mixer is write only on hardware so we have to cache him for read
1148    each fader is a u32, but uses only the first 16 bit */
1149 
1150 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1151 				     unsigned int in)
1152 {
1153 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1154 		return 0;
1155 
1156 	return hdspm->mixer->ch[chan].in[in];
1157 }
1158 
1159 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1160 				     unsigned int pb)
1161 {
1162 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1163 		return 0;
1164 	return hdspm->mixer->ch[chan].pb[pb];
1165 }
1166 
1167 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1168 				      unsigned int in, unsigned short data)
1169 {
1170 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1171 		return -1;
1172 
1173 	hdspm_write(hdspm,
1174 		    HDSPM_MADI_mixerBase +
1175 		    ((in + 128 * chan) * sizeof(u32)),
1176 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1177 	return 0;
1178 }
1179 
1180 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1181 				      unsigned int pb, unsigned short data)
1182 {
1183 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1184 		return -1;
1185 
1186 	hdspm_write(hdspm,
1187 		    HDSPM_MADI_mixerBase +
1188 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1189 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1190 	return 0;
1191 }
1192 
1193 
1194 /* enable DMA for specific channels, now available for DSP-MADI */
1195 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1196 {
1197 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1198 }
1199 
1200 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1201 {
1202 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1203 }
1204 
1205 /* check if same process is writing and reading */
1206 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1207 {
1208 	unsigned long flags;
1209 	int ret = 1;
1210 
1211 	spin_lock_irqsave(&hdspm->lock, flags);
1212 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1213 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1214 		ret = 0;
1215 	}
1216 	spin_unlock_irqrestore(&hdspm->lock, flags);
1217 	return ret;
1218 }
1219 
1220 /* round arbitary sample rates to commonly known rates */
1221 static int hdspm_round_frequency(int rate)
1222 {
1223 	if (rate < 38050)
1224 		return 32000;
1225 	if (rate < 46008)
1226 		return 44100;
1227 	else
1228 		return 48000;
1229 }
1230 
1231 /* QS and DS rates normally can not be detected
1232  * automatically by the card. Only exception is MADI
1233  * in 96k frame mode.
1234  *
1235  * So if we read SS values (32 .. 48k), check for
1236  * user-provided DS/QS bits in the control register
1237  * and multiply the base frequency accordingly.
1238  */
1239 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate)
1240 {
1241 	if (rate <= 48000) {
1242 		if (hdspm->control_register & HDSPM_QuadSpeed)
1243 			return rate * 4;
1244 		else if (hdspm->control_register &
1245 				HDSPM_DoubleSpeed)
1246 			return rate * 2;
1247 	}
1248 	return rate;
1249 }
1250 
1251 /* check for external sample rate, returns the sample rate in Hz*/
1252 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1253 {
1254 	unsigned int status, status2;
1255 	int syncref, rate = 0, rate_bits;
1256 
1257 	switch (hdspm->io_type) {
1258 	case AES32:
1259 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1260 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1261 
1262 		syncref = hdspm_autosync_ref(hdspm);
1263 		switch (syncref) {
1264 		case HDSPM_AES32_AUTOSYNC_FROM_WORD:
1265 		/* Check WC sync and get sample rate */
1266 			if (hdspm_wc_sync_check(hdspm))
1267 				return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm));
1268 			break;
1269 
1270 		case HDSPM_AES32_AUTOSYNC_FROM_AES1:
1271 		case HDSPM_AES32_AUTOSYNC_FROM_AES2:
1272 		case HDSPM_AES32_AUTOSYNC_FROM_AES3:
1273 		case HDSPM_AES32_AUTOSYNC_FROM_AES4:
1274 		case HDSPM_AES32_AUTOSYNC_FROM_AES5:
1275 		case HDSPM_AES32_AUTOSYNC_FROM_AES6:
1276 		case HDSPM_AES32_AUTOSYNC_FROM_AES7:
1277 		case HDSPM_AES32_AUTOSYNC_FROM_AES8:
1278 		/* Check AES sync and get sample rate */
1279 			if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))
1280 				return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm,
1281 							syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1));
1282 			break;
1283 
1284 
1285 		case HDSPM_AES32_AUTOSYNC_FROM_TCO:
1286 		/* Check TCO sync and get sample rate */
1287 			if (hdspm_tco_sync_check(hdspm))
1288 				return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm));
1289 			break;
1290 		default:
1291 			return 0;
1292 		} /* end switch(syncref) */
1293 		break;
1294 
1295 	case MADIface:
1296 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1297 
1298 		if (!(status & HDSPM_madiLock)) {
1299 			rate = 0;  /* no lock */
1300 		} else {
1301 			switch (status & (HDSPM_status1_freqMask)) {
1302 			case HDSPM_status1_F_0*1:
1303 				rate = 32000; break;
1304 			case HDSPM_status1_F_0*2:
1305 				rate = 44100; break;
1306 			case HDSPM_status1_F_0*3:
1307 				rate = 48000; break;
1308 			case HDSPM_status1_F_0*4:
1309 				rate = 64000; break;
1310 			case HDSPM_status1_F_0*5:
1311 				rate = 88200; break;
1312 			case HDSPM_status1_F_0*6:
1313 				rate = 96000; break;
1314 			case HDSPM_status1_F_0*7:
1315 				rate = 128000; break;
1316 			case HDSPM_status1_F_0*8:
1317 				rate = 176400; break;
1318 			case HDSPM_status1_F_0*9:
1319 				rate = 192000; break;
1320 			default:
1321 				rate = 0; break;
1322 			}
1323 		}
1324 
1325 		break;
1326 
1327 	case MADI:
1328 	case AIO:
1329 	case RayDAT:
1330 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1331 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1332 		rate = 0;
1333 
1334 		/* if wordclock has synced freq and wordclock is valid */
1335 		if ((status2 & HDSPM_wcLock) != 0 &&
1336 				(status2 & HDSPM_SelSyncRef0) == 0) {
1337 
1338 			rate_bits = status2 & HDSPM_wcFreqMask;
1339 
1340 
1341 			switch (rate_bits) {
1342 			case HDSPM_wcFreq32:
1343 				rate = 32000;
1344 				break;
1345 			case HDSPM_wcFreq44_1:
1346 				rate = 44100;
1347 				break;
1348 			case HDSPM_wcFreq48:
1349 				rate = 48000;
1350 				break;
1351 			case HDSPM_wcFreq64:
1352 				rate = 64000;
1353 				break;
1354 			case HDSPM_wcFreq88_2:
1355 				rate = 88200;
1356 				break;
1357 			case HDSPM_wcFreq96:
1358 				rate = 96000;
1359 				break;
1360 			case HDSPM_wcFreq128:
1361 				rate = 128000;
1362 				break;
1363 			case HDSPM_wcFreq176_4:
1364 				rate = 176400;
1365 				break;
1366 			case HDSPM_wcFreq192:
1367 				rate = 192000;
1368 				break;
1369 			default:
1370 				rate = 0;
1371 				break;
1372 			}
1373 		}
1374 
1375 		/* if rate detected and Syncref is Word than have it,
1376 		 * word has priority to MADI
1377 		 */
1378 		if (rate != 0 &&
1379 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1380 			return hdspm_rate_multiplier(hdspm, rate);
1381 
1382 		/* maybe a madi input (which is taken if sel sync is madi) */
1383 		if (status & HDSPM_madiLock) {
1384 			rate_bits = status & HDSPM_madiFreqMask;
1385 
1386 			switch (rate_bits) {
1387 			case HDSPM_madiFreq32:
1388 				rate = 32000;
1389 				break;
1390 			case HDSPM_madiFreq44_1:
1391 				rate = 44100;
1392 				break;
1393 			case HDSPM_madiFreq48:
1394 				rate = 48000;
1395 				break;
1396 			case HDSPM_madiFreq64:
1397 				rate = 64000;
1398 				break;
1399 			case HDSPM_madiFreq88_2:
1400 				rate = 88200;
1401 				break;
1402 			case HDSPM_madiFreq96:
1403 				rate = 96000;
1404 				break;
1405 			case HDSPM_madiFreq128:
1406 				rate = 128000;
1407 				break;
1408 			case HDSPM_madiFreq176_4:
1409 				rate = 176400;
1410 				break;
1411 			case HDSPM_madiFreq192:
1412 				rate = 192000;
1413 				break;
1414 			default:
1415 				rate = 0;
1416 				break;
1417 			}
1418 
1419 		} /* endif HDSPM_madiLock */
1420 
1421 		/* check sample rate from TCO or SYNC_IN */
1422 		{
1423 			bool is_valid_input = 0;
1424 			bool has_sync = 0;
1425 
1426 			syncref = hdspm_autosync_ref(hdspm);
1427 			if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1428 				is_valid_input = 1;
1429 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1430 					hdspm_tco_sync_check(hdspm));
1431 			} else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1432 				is_valid_input = 1;
1433 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1434 					hdspm_sync_in_sync_check(hdspm));
1435 			}
1436 
1437 			if (is_valid_input && has_sync) {
1438 				rate = hdspm_round_frequency(
1439 					hdspm_get_pll_freq(hdspm));
1440 			}
1441 		}
1442 
1443 		rate = hdspm_rate_multiplier(hdspm, rate);
1444 
1445 		break;
1446 	}
1447 
1448 	return rate;
1449 }
1450 
1451 /* return latency in samples per period */
1452 static int hdspm_get_latency(struct hdspm *hdspm)
1453 {
1454 	int n;
1455 
1456 	n = hdspm_decode_latency(hdspm->control_register);
1457 
1458 	/* Special case for new RME cards with 32 samples period size.
1459 	 * The three latency bits in the control register
1460 	 * (HDSP_LatencyMask) encode latency values of 64 samples as
1461 	 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1462 	 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1463 	 * it corresponds to 32 samples.
1464 	 */
1465 	if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1466 		n = -1;
1467 
1468 	return 1 << (n + 6);
1469 }
1470 
1471 /* Latency function */
1472 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1473 {
1474 	hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1475 }
1476 
1477 
1478 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1479 {
1480 	int position;
1481 
1482 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1483 
1484 	switch (hdspm->io_type) {
1485 	case RayDAT:
1486 	case AIO:
1487 		position &= HDSPM_BufferPositionMask;
1488 		position /= 4; /* Bytes per sample */
1489 		break;
1490 	default:
1491 		position = (position & HDSPM_BufferID) ?
1492 			(hdspm->period_bytes / 4) : 0;
1493 	}
1494 
1495 	return position;
1496 }
1497 
1498 
1499 static inline void hdspm_start_audio(struct hdspm * s)
1500 {
1501 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1502 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1503 }
1504 
1505 static inline void hdspm_stop_audio(struct hdspm * s)
1506 {
1507 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1508 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1509 }
1510 
1511 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1512 static void hdspm_silence_playback(struct hdspm *hdspm)
1513 {
1514 	int i;
1515 	int n = hdspm->period_bytes;
1516 	void *buf = hdspm->playback_buffer;
1517 
1518 	if (!buf)
1519 		return;
1520 
1521 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1522 		memset(buf, 0, n);
1523 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1524 	}
1525 }
1526 
1527 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1528 {
1529 	int n;
1530 
1531 	spin_lock_irq(&s->lock);
1532 
1533 	if (32 == frames) {
1534 		/* Special case for new RME cards like RayDAT/AIO which
1535 		 * support period sizes of 32 samples. Since latency is
1536 		 * encoded in the three bits of HDSP_LatencyMask, we can only
1537 		 * have values from 0 .. 7. While 0 still means 64 samples and
1538 		 * 6 represents 4096 samples on all cards, 7 represents 8192
1539 		 * on older cards and 32 samples on new cards.
1540 		 *
1541 		 * In other words, period size in samples is calculated by
1542 		 * 2^(n+6) with n ranging from 0 .. 7.
1543 		 */
1544 		n = 7;
1545 	} else {
1546 		frames >>= 7;
1547 		n = 0;
1548 		while (frames) {
1549 			n++;
1550 			frames >>= 1;
1551 		}
1552 	}
1553 
1554 	s->control_register &= ~HDSPM_LatencyMask;
1555 	s->control_register |= hdspm_encode_latency(n);
1556 
1557 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1558 
1559 	hdspm_compute_period_size(s);
1560 
1561 	spin_unlock_irq(&s->lock);
1562 
1563 	return 0;
1564 }
1565 
1566 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1567 {
1568 	u64 freq_const;
1569 
1570 	if (period == 0)
1571 		return 0;
1572 
1573 	switch (hdspm->io_type) {
1574 	case MADI:
1575 	case AES32:
1576 		freq_const = 110069313433624ULL;
1577 		break;
1578 	case RayDAT:
1579 	case AIO:
1580 		freq_const = 104857600000000ULL;
1581 		break;
1582 	case MADIface:
1583 		freq_const = 131072000000000ULL;
1584 		break;
1585 	default:
1586 		snd_BUG();
1587 		return 0;
1588 	}
1589 
1590 	return div_u64(freq_const, period);
1591 }
1592 
1593 
1594 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1595 {
1596 	u64 n;
1597 
1598 	if (snd_BUG_ON(rate <= 0))
1599 		return;
1600 
1601 	if (rate >= 112000)
1602 		rate /= 4;
1603 	else if (rate >= 56000)
1604 		rate /= 2;
1605 
1606 	switch (hdspm->io_type) {
1607 	case MADIface:
1608 		n = 131072000000000ULL;  /* 125 MHz */
1609 		break;
1610 	case MADI:
1611 	case AES32:
1612 		n = 110069313433624ULL;  /* 105 MHz */
1613 		break;
1614 	case RayDAT:
1615 	case AIO:
1616 		n = 104857600000000ULL;  /* 100 MHz */
1617 		break;
1618 	default:
1619 		snd_BUG();
1620 		return;
1621 	}
1622 
1623 	n = div_u64(n, rate);
1624 	/* n should be less than 2^32 for being written to FREQ register */
1625 	snd_BUG_ON(n >> 32);
1626 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1627 }
1628 
1629 /* dummy set rate lets see what happens */
1630 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1631 {
1632 	int current_rate;
1633 	int rate_bits;
1634 	int not_set = 0;
1635 	int current_speed, target_speed;
1636 
1637 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1638 	   it (e.g. during module initialization).
1639 	 */
1640 
1641 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1642 
1643 		/* SLAVE --- */
1644 		if (called_internally) {
1645 
1646 			/* request from ctl or card initialization
1647 			   just make a warning an remember setting
1648 			   for future master mode switching */
1649 
1650 			dev_warn(hdspm->card->dev,
1651 				 "Warning: device is not running as a clock master.\n");
1652 			not_set = 1;
1653 		} else {
1654 
1655 			/* hw_param request while in AutoSync mode */
1656 			int external_freq =
1657 			    hdspm_external_sample_rate(hdspm);
1658 
1659 			if (hdspm_autosync_ref(hdspm) ==
1660 			    HDSPM_AUTOSYNC_FROM_NONE) {
1661 
1662 				dev_warn(hdspm->card->dev,
1663 					 "Detected no External Sync\n");
1664 				not_set = 1;
1665 
1666 			} else if (rate != external_freq) {
1667 
1668 				dev_warn(hdspm->card->dev,
1669 					 "Warning: No AutoSync source for requested rate\n");
1670 				not_set = 1;
1671 			}
1672 		}
1673 	}
1674 
1675 	current_rate = hdspm->system_sample_rate;
1676 
1677 	/* Changing between Singe, Double and Quad speed is not
1678 	   allowed if any substreams are open. This is because such a change
1679 	   causes a shift in the location of the DMA buffers and a reduction
1680 	   in the number of available buffers.
1681 
1682 	   Note that a similar but essentially insoluble problem exists for
1683 	   externally-driven rate changes. All we can do is to flag rate
1684 	   changes in the read/write routines.
1685 	 */
1686 
1687 	if (current_rate <= 48000)
1688 		current_speed = HDSPM_SPEED_SINGLE;
1689 	else if (current_rate <= 96000)
1690 		current_speed = HDSPM_SPEED_DOUBLE;
1691 	else
1692 		current_speed = HDSPM_SPEED_QUAD;
1693 
1694 	if (rate <= 48000)
1695 		target_speed = HDSPM_SPEED_SINGLE;
1696 	else if (rate <= 96000)
1697 		target_speed = HDSPM_SPEED_DOUBLE;
1698 	else
1699 		target_speed = HDSPM_SPEED_QUAD;
1700 
1701 	switch (rate) {
1702 	case 32000:
1703 		rate_bits = HDSPM_Frequency32KHz;
1704 		break;
1705 	case 44100:
1706 		rate_bits = HDSPM_Frequency44_1KHz;
1707 		break;
1708 	case 48000:
1709 		rate_bits = HDSPM_Frequency48KHz;
1710 		break;
1711 	case 64000:
1712 		rate_bits = HDSPM_Frequency64KHz;
1713 		break;
1714 	case 88200:
1715 		rate_bits = HDSPM_Frequency88_2KHz;
1716 		break;
1717 	case 96000:
1718 		rate_bits = HDSPM_Frequency96KHz;
1719 		break;
1720 	case 128000:
1721 		rate_bits = HDSPM_Frequency128KHz;
1722 		break;
1723 	case 176400:
1724 		rate_bits = HDSPM_Frequency176_4KHz;
1725 		break;
1726 	case 192000:
1727 		rate_bits = HDSPM_Frequency192KHz;
1728 		break;
1729 	default:
1730 		return -EINVAL;
1731 	}
1732 
1733 	if (current_speed != target_speed
1734 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1735 		dev_err(hdspm->card->dev,
1736 			"cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n",
1737 			hdspm_speed_names[current_speed],
1738 			hdspm_speed_names[target_speed],
1739 			hdspm->capture_pid, hdspm->playback_pid);
1740 		return -EBUSY;
1741 	}
1742 
1743 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1744 	hdspm->control_register |= rate_bits;
1745 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1746 
1747 	/* For AES32, need to set DDS value in FREQ register
1748 	   For MADI, also apparently */
1749 	hdspm_set_dds_value(hdspm, rate);
1750 
1751 	if (AES32 == hdspm->io_type && rate != current_rate)
1752 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1753 
1754 	hdspm->system_sample_rate = rate;
1755 
1756 	if (rate <= 48000) {
1757 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1758 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1759 		hdspm->max_channels_in = hdspm->ss_in_channels;
1760 		hdspm->max_channels_out = hdspm->ss_out_channels;
1761 		hdspm->port_names_in = hdspm->port_names_in_ss;
1762 		hdspm->port_names_out = hdspm->port_names_out_ss;
1763 	} else if (rate <= 96000) {
1764 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1765 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1766 		hdspm->max_channels_in = hdspm->ds_in_channels;
1767 		hdspm->max_channels_out = hdspm->ds_out_channels;
1768 		hdspm->port_names_in = hdspm->port_names_in_ds;
1769 		hdspm->port_names_out = hdspm->port_names_out_ds;
1770 	} else {
1771 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1772 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1773 		hdspm->max_channels_in = hdspm->qs_in_channels;
1774 		hdspm->max_channels_out = hdspm->qs_out_channels;
1775 		hdspm->port_names_in = hdspm->port_names_in_qs;
1776 		hdspm->port_names_out = hdspm->port_names_out_qs;
1777 	}
1778 
1779 	if (not_set != 0)
1780 		return -1;
1781 
1782 	return 0;
1783 }
1784 
1785 /* mainly for init to 0 on load */
1786 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1787 {
1788 	int i, j;
1789 	unsigned int gain;
1790 
1791 	if (sgain > UNITY_GAIN)
1792 		gain = UNITY_GAIN;
1793 	else if (sgain < 0)
1794 		gain = 0;
1795 	else
1796 		gain = sgain;
1797 
1798 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1799 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1800 			hdspm_write_in_gain(hdspm, i, j, gain);
1801 			hdspm_write_pb_gain(hdspm, i, j, gain);
1802 		}
1803 }
1804 
1805 /*----------------------------------------------------------------------------
1806    MIDI
1807   ----------------------------------------------------------------------------*/
1808 
1809 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1810 						      int id)
1811 {
1812 	/* the hardware already does the relevant bit-mask with 0xff */
1813 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1814 }
1815 
1816 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1817 					      int val)
1818 {
1819 	/* the hardware already does the relevant bit-mask with 0xff */
1820 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1821 }
1822 
1823 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1824 {
1825 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1826 }
1827 
1828 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1829 {
1830 	int fifo_bytes_used;
1831 
1832 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1833 
1834 	if (fifo_bytes_used < 128)
1835 		return  128 - fifo_bytes_used;
1836 	else
1837 		return 0;
1838 }
1839 
1840 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1841 {
1842 	while (snd_hdspm_midi_input_available (hdspm, id))
1843 		snd_hdspm_midi_read_byte (hdspm, id);
1844 }
1845 
1846 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1847 {
1848 	unsigned long flags;
1849 	int n_pending;
1850 	int to_write;
1851 	int i;
1852 	unsigned char buf[128];
1853 
1854 	/* Output is not interrupt driven */
1855 
1856 	spin_lock_irqsave (&hmidi->lock, flags);
1857 	if (hmidi->output &&
1858 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1859 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1860 							    hmidi->id);
1861 		if (n_pending > 0) {
1862 			if (n_pending > (int)sizeof (buf))
1863 				n_pending = sizeof (buf);
1864 
1865 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1866 							 n_pending);
1867 			if (to_write > 0) {
1868 				for (i = 0; i < to_write; ++i)
1869 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1870 								   hmidi->id,
1871 								   buf[i]);
1872 			}
1873 		}
1874 	}
1875 	spin_unlock_irqrestore (&hmidi->lock, flags);
1876 	return 0;
1877 }
1878 
1879 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1880 {
1881 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1882 				 * input FIFO size
1883 				 */
1884 	unsigned long flags;
1885 	int n_pending;
1886 	int i;
1887 
1888 	spin_lock_irqsave (&hmidi->lock, flags);
1889 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1890 	if (n_pending > 0) {
1891 		if (hmidi->input) {
1892 			if (n_pending > (int)sizeof (buf))
1893 				n_pending = sizeof (buf);
1894 			for (i = 0; i < n_pending; ++i)
1895 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1896 								   hmidi->id);
1897 			if (n_pending)
1898 				snd_rawmidi_receive (hmidi->input, buf,
1899 						     n_pending);
1900 		} else {
1901 			/* flush the MIDI input FIFO */
1902 			while (n_pending--)
1903 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1904 							  hmidi->id);
1905 		}
1906 	}
1907 	hmidi->pending = 0;
1908 	spin_unlock_irqrestore(&hmidi->lock, flags);
1909 
1910 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1911 	hmidi->hdspm->control_register |= hmidi->ie;
1912 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1913 		    hmidi->hdspm->control_register);
1914 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1915 
1916 	return snd_hdspm_midi_output_write (hmidi);
1917 }
1918 
1919 static void
1920 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1921 {
1922 	struct hdspm *hdspm;
1923 	struct hdspm_midi *hmidi;
1924 	unsigned long flags;
1925 
1926 	hmidi = substream->rmidi->private_data;
1927 	hdspm = hmidi->hdspm;
1928 
1929 	spin_lock_irqsave (&hdspm->lock, flags);
1930 	if (up) {
1931 		if (!(hdspm->control_register & hmidi->ie)) {
1932 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1933 			hdspm->control_register |= hmidi->ie;
1934 		}
1935 	} else {
1936 		hdspm->control_register &= ~hmidi->ie;
1937 	}
1938 
1939 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1940 	spin_unlock_irqrestore (&hdspm->lock, flags);
1941 }
1942 
1943 static void snd_hdspm_midi_output_timer(struct timer_list *t)
1944 {
1945 	struct hdspm_midi *hmidi = from_timer(hmidi, t, timer);
1946 	unsigned long flags;
1947 
1948 	snd_hdspm_midi_output_write(hmidi);
1949 	spin_lock_irqsave (&hmidi->lock, flags);
1950 
1951 	/* this does not bump hmidi->istimer, because the
1952 	   kernel automatically removed the timer when it
1953 	   expired, and we are now adding it back, thus
1954 	   leaving istimer wherever it was set before.
1955 	*/
1956 
1957 	if (hmidi->istimer)
1958 		mod_timer(&hmidi->timer, 1 + jiffies);
1959 
1960 	spin_unlock_irqrestore (&hmidi->lock, flags);
1961 }
1962 
1963 static void
1964 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1965 {
1966 	struct hdspm_midi *hmidi;
1967 	unsigned long flags;
1968 
1969 	hmidi = substream->rmidi->private_data;
1970 	spin_lock_irqsave (&hmidi->lock, flags);
1971 	if (up) {
1972 		if (!hmidi->istimer) {
1973 			timer_setup(&hmidi->timer,
1974 				    snd_hdspm_midi_output_timer, 0);
1975 			mod_timer(&hmidi->timer, 1 + jiffies);
1976 			hmidi->istimer++;
1977 		}
1978 	} else {
1979 		if (hmidi->istimer && --hmidi->istimer <= 0)
1980 			del_timer (&hmidi->timer);
1981 	}
1982 	spin_unlock_irqrestore (&hmidi->lock, flags);
1983 	if (up)
1984 		snd_hdspm_midi_output_write(hmidi);
1985 }
1986 
1987 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1988 {
1989 	struct hdspm_midi *hmidi;
1990 
1991 	hmidi = substream->rmidi->private_data;
1992 	spin_lock_irq (&hmidi->lock);
1993 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1994 	hmidi->input = substream;
1995 	spin_unlock_irq (&hmidi->lock);
1996 
1997 	return 0;
1998 }
1999 
2000 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
2001 {
2002 	struct hdspm_midi *hmidi;
2003 
2004 	hmidi = substream->rmidi->private_data;
2005 	spin_lock_irq (&hmidi->lock);
2006 	hmidi->output = substream;
2007 	spin_unlock_irq (&hmidi->lock);
2008 
2009 	return 0;
2010 }
2011 
2012 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
2013 {
2014 	struct hdspm_midi *hmidi;
2015 
2016 	snd_hdspm_midi_input_trigger (substream, 0);
2017 
2018 	hmidi = substream->rmidi->private_data;
2019 	spin_lock_irq (&hmidi->lock);
2020 	hmidi->input = NULL;
2021 	spin_unlock_irq (&hmidi->lock);
2022 
2023 	return 0;
2024 }
2025 
2026 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
2027 {
2028 	struct hdspm_midi *hmidi;
2029 
2030 	snd_hdspm_midi_output_trigger (substream, 0);
2031 
2032 	hmidi = substream->rmidi->private_data;
2033 	spin_lock_irq (&hmidi->lock);
2034 	hmidi->output = NULL;
2035 	spin_unlock_irq (&hmidi->lock);
2036 
2037 	return 0;
2038 }
2039 
2040 static const struct snd_rawmidi_ops snd_hdspm_midi_output =
2041 {
2042 	.open =		snd_hdspm_midi_output_open,
2043 	.close =	snd_hdspm_midi_output_close,
2044 	.trigger =	snd_hdspm_midi_output_trigger,
2045 };
2046 
2047 static const struct snd_rawmidi_ops snd_hdspm_midi_input =
2048 {
2049 	.open =		snd_hdspm_midi_input_open,
2050 	.close =	snd_hdspm_midi_input_close,
2051 	.trigger =	snd_hdspm_midi_input_trigger,
2052 };
2053 
2054 static int snd_hdspm_create_midi(struct snd_card *card,
2055 				 struct hdspm *hdspm, int id)
2056 {
2057 	int err;
2058 	char buf[64];
2059 
2060 	hdspm->midi[id].id = id;
2061 	hdspm->midi[id].hdspm = hdspm;
2062 	spin_lock_init (&hdspm->midi[id].lock);
2063 
2064 	if (0 == id) {
2065 		if (MADIface == hdspm->io_type) {
2066 			/* MIDI-over-MADI on HDSPe MADIface */
2067 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
2068 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
2069 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
2070 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
2071 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
2072 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
2073 		} else {
2074 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
2075 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
2076 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
2077 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
2078 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
2079 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
2080 		}
2081 	} else if (1 == id) {
2082 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
2083 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
2084 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
2085 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
2086 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
2087 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
2088 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
2089 		/* MIDI-over-MADI on HDSPe MADI */
2090 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2091 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2092 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
2093 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
2094 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2095 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
2096 	} else if (2 == id) {
2097 		/* TCO MTC, read only */
2098 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2099 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2100 		hdspm->midi[2].dataOut = -1;
2101 		hdspm->midi[2].statusOut = -1;
2102 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2103 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
2104 	} else if (3 == id) {
2105 		/* TCO MTC on HDSPe MADI */
2106 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
2107 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
2108 		hdspm->midi[3].dataOut = -1;
2109 		hdspm->midi[3].statusOut = -1;
2110 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
2111 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
2112 	}
2113 
2114 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
2115 					(MADIface == hdspm->io_type)))) {
2116 		if ((id == 0) && (MADIface == hdspm->io_type)) {
2117 			snprintf(buf, sizeof(buf), "%s MIDIoverMADI",
2118 				 card->shortname);
2119 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
2120 			snprintf(buf, sizeof(buf), "%s MIDIoverMADI",
2121 				 card->shortname);
2122 		} else {
2123 			snprintf(buf, sizeof(buf), "%s MIDI %d",
2124 				 card->shortname, id+1);
2125 		}
2126 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2127 				&hdspm->midi[id].rmidi);
2128 		if (err < 0)
2129 			return err;
2130 
2131 		snprintf(hdspm->midi[id].rmidi->name,
2132 			 sizeof(hdspm->midi[id].rmidi->name),
2133 			 "%s MIDI %d", card->id, id+1);
2134 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2135 
2136 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2137 				SNDRV_RAWMIDI_STREAM_OUTPUT,
2138 				&snd_hdspm_midi_output);
2139 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2140 				SNDRV_RAWMIDI_STREAM_INPUT,
2141 				&snd_hdspm_midi_input);
2142 
2143 		hdspm->midi[id].rmidi->info_flags |=
2144 			SNDRV_RAWMIDI_INFO_OUTPUT |
2145 			SNDRV_RAWMIDI_INFO_INPUT |
2146 			SNDRV_RAWMIDI_INFO_DUPLEX;
2147 	} else {
2148 		/* TCO MTC, read only */
2149 		snprintf(buf, sizeof(buf), "%s MTC %d",
2150 			 card->shortname, id+1);
2151 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2152 				&hdspm->midi[id].rmidi);
2153 		if (err < 0)
2154 			return err;
2155 
2156 		snprintf(hdspm->midi[id].rmidi->name,
2157 			 sizeof(hdspm->midi[id].rmidi->name),
2158 			 "%s MTC %d", card->id, id+1);
2159 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2160 
2161 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2162 				SNDRV_RAWMIDI_STREAM_INPUT,
2163 				&snd_hdspm_midi_input);
2164 
2165 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 
2172 static void hdspm_midi_tasklet(struct tasklet_struct *t)
2173 {
2174 	struct hdspm *hdspm = from_tasklet(hdspm, t, midi_tasklet);
2175 	int i = 0;
2176 
2177 	while (i < hdspm->midiPorts) {
2178 		if (hdspm->midi[i].pending)
2179 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
2180 
2181 		i++;
2182 	}
2183 }
2184 
2185 
2186 /*-----------------------------------------------------------------------------
2187   Status Interface
2188   ----------------------------------------------------------------------------*/
2189 
2190 /* get the system sample rate which is set */
2191 
2192 
2193 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2194 {
2195 	unsigned int period, rate;
2196 
2197 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2198 	rate = hdspm_calc_dds_value(hdspm, period);
2199 
2200 	return rate;
2201 }
2202 
2203 /*
2204  * Calculate the real sample rate from the
2205  * current DDS value.
2206  */
2207 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2208 {
2209 	unsigned int rate;
2210 
2211 	rate = hdspm_get_pll_freq(hdspm);
2212 
2213 	if (rate > 207000) {
2214 		/* Unreasonable high sample rate as seen on PCI MADI cards. */
2215 		if (0 == hdspm_system_clock_mode(hdspm)) {
2216 			/* master mode, return internal sample rate */
2217 			rate = hdspm->system_sample_rate;
2218 		} else {
2219 			/* slave mode, return external sample rate */
2220 			rate = hdspm_external_sample_rate(hdspm);
2221 			if (!rate)
2222 				rate = hdspm->system_sample_rate;
2223 		}
2224 	}
2225 
2226 	return rate;
2227 }
2228 
2229 
2230 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2231 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2232 	.name = xname, \
2233 	.index = xindex, \
2234 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2235 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2236 	.info = snd_hdspm_info_system_sample_rate, \
2237 	.put = snd_hdspm_put_system_sample_rate, \
2238 	.get = snd_hdspm_get_system_sample_rate \
2239 }
2240 
2241 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2242 					     struct snd_ctl_elem_info *uinfo)
2243 {
2244 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2245 	uinfo->count = 1;
2246 	uinfo->value.integer.min = 27000;
2247 	uinfo->value.integer.max = 207000;
2248 	uinfo->value.integer.step = 1;
2249 	return 0;
2250 }
2251 
2252 
2253 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2254 					    struct snd_ctl_elem_value *
2255 					    ucontrol)
2256 {
2257 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2258 
2259 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2260 	return 0;
2261 }
2262 
2263 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2264 					    struct snd_ctl_elem_value *
2265 					    ucontrol)
2266 {
2267 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2268 	int rate = ucontrol->value.integer.value[0];
2269 
2270 	if (rate < 27000 || rate > 207000)
2271 		return -EINVAL;
2272 	hdspm_set_dds_value(hdspm, ucontrol->value.integer.value[0]);
2273 	return 0;
2274 }
2275 
2276 
2277 /*
2278  * Returns the WordClock sample rate class for the given card.
2279  */
2280 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2281 {
2282 	int status;
2283 
2284 	switch (hdspm->io_type) {
2285 	case RayDAT:
2286 	case AIO:
2287 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2288 		return (status >> 16) & 0xF;
2289 		break;
2290 	case AES32:
2291 		status = hdspm_read(hdspm, HDSPM_statusRegister);
2292 		return (status >> HDSPM_AES32_wcFreq_bit) & 0xF;
2293 	default:
2294 		break;
2295 	}
2296 
2297 
2298 	return 0;
2299 }
2300 
2301 
2302 /*
2303  * Returns the TCO sample rate class for the given card.
2304  */
2305 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2306 {
2307 	int status;
2308 
2309 	if (hdspm->tco) {
2310 		switch (hdspm->io_type) {
2311 		case RayDAT:
2312 		case AIO:
2313 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2314 			return (status >> 20) & 0xF;
2315 			break;
2316 		case AES32:
2317 			status = hdspm_read(hdspm, HDSPM_statusRegister);
2318 			return (status >> 1) & 0xF;
2319 		default:
2320 			break;
2321 		}
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 
2328 /*
2329  * Returns the SYNC_IN sample rate class for the given card.
2330  */
2331 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2332 {
2333 	int status;
2334 
2335 	if (hdspm->tco) {
2336 		switch (hdspm->io_type) {
2337 		case RayDAT:
2338 		case AIO:
2339 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2340 			return (status >> 12) & 0xF;
2341 			break;
2342 		default:
2343 			break;
2344 		}
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Returns the AES sample rate class for the given card.
2352  */
2353 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index)
2354 {
2355 	int timecode;
2356 
2357 	switch (hdspm->io_type) {
2358 	case AES32:
2359 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
2360 		return (timecode >> (4*index)) & 0xF;
2361 		break;
2362 	default:
2363 		break;
2364 	}
2365 	return 0;
2366 }
2367 
2368 /*
2369  * Returns the sample rate class for input source <idx> for
2370  * 'new style' cards like the AIO and RayDAT.
2371  */
2372 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2373 {
2374 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2375 
2376 	return (status >> (idx*4)) & 0xF;
2377 }
2378 
2379 #define ENUMERATED_CTL_INFO(info, texts) \
2380 	snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts)
2381 
2382 
2383 /* Helper function to query the external sample rate and return the
2384  * corresponding enum to be returned to userspace.
2385  */
2386 static int hdspm_external_rate_to_enum(struct hdspm *hdspm)
2387 {
2388 	int rate = hdspm_external_sample_rate(hdspm);
2389 	int i, selected_rate = 0;
2390 	for (i = 1; i < 10; i++)
2391 		if (HDSPM_bit2freq(i) == rate) {
2392 			selected_rate = i;
2393 			break;
2394 		}
2395 	return selected_rate;
2396 }
2397 
2398 
2399 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2400 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2401 	.name = xname, \
2402 	.private_value = xindex, \
2403 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2404 	.info = snd_hdspm_info_autosync_sample_rate, \
2405 	.get = snd_hdspm_get_autosync_sample_rate \
2406 }
2407 
2408 
2409 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2410 					       struct snd_ctl_elem_info *uinfo)
2411 {
2412 	ENUMERATED_CTL_INFO(uinfo, texts_freq);
2413 	return 0;
2414 }
2415 
2416 
2417 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2418 					      struct snd_ctl_elem_value *
2419 					      ucontrol)
2420 {
2421 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2422 
2423 	switch (hdspm->io_type) {
2424 	case RayDAT:
2425 		switch (kcontrol->private_value) {
2426 		case 0:
2427 			ucontrol->value.enumerated.item[0] =
2428 				hdspm_get_wc_sample_rate(hdspm);
2429 			break;
2430 		case 7:
2431 			ucontrol->value.enumerated.item[0] =
2432 				hdspm_get_tco_sample_rate(hdspm);
2433 			break;
2434 		case 8:
2435 			ucontrol->value.enumerated.item[0] =
2436 				hdspm_get_sync_in_sample_rate(hdspm);
2437 			break;
2438 		default:
2439 			ucontrol->value.enumerated.item[0] =
2440 				hdspm_get_s1_sample_rate(hdspm,
2441 						kcontrol->private_value-1);
2442 		}
2443 		break;
2444 
2445 	case AIO:
2446 		switch (kcontrol->private_value) {
2447 		case 0: /* WC */
2448 			ucontrol->value.enumerated.item[0] =
2449 				hdspm_get_wc_sample_rate(hdspm);
2450 			break;
2451 		case 4: /* TCO */
2452 			ucontrol->value.enumerated.item[0] =
2453 				hdspm_get_tco_sample_rate(hdspm);
2454 			break;
2455 		case 5: /* SYNC_IN */
2456 			ucontrol->value.enumerated.item[0] =
2457 				hdspm_get_sync_in_sample_rate(hdspm);
2458 			break;
2459 		default:
2460 			ucontrol->value.enumerated.item[0] =
2461 				hdspm_get_s1_sample_rate(hdspm,
2462 						kcontrol->private_value-1);
2463 		}
2464 		break;
2465 
2466 	case AES32:
2467 
2468 		switch (kcontrol->private_value) {
2469 		case 0: /* WC */
2470 			ucontrol->value.enumerated.item[0] =
2471 				hdspm_get_wc_sample_rate(hdspm);
2472 			break;
2473 		case 9: /* TCO */
2474 			ucontrol->value.enumerated.item[0] =
2475 				hdspm_get_tco_sample_rate(hdspm);
2476 			break;
2477 		case 10: /* SYNC_IN */
2478 			ucontrol->value.enumerated.item[0] =
2479 				hdspm_get_sync_in_sample_rate(hdspm);
2480 			break;
2481 		case 11: /* External Rate */
2482 			ucontrol->value.enumerated.item[0] =
2483 				hdspm_external_rate_to_enum(hdspm);
2484 			break;
2485 		default: /* AES1 to AES8 */
2486 			ucontrol->value.enumerated.item[0] =
2487 				hdspm_get_aes_sample_rate(hdspm,
2488 						kcontrol->private_value -
2489 						HDSPM_AES32_AUTOSYNC_FROM_AES1);
2490 			break;
2491 		}
2492 		break;
2493 
2494 	case MADI:
2495 	case MADIface:
2496 		ucontrol->value.enumerated.item[0] =
2497 			hdspm_external_rate_to_enum(hdspm);
2498 		break;
2499 	default:
2500 		break;
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 
2507 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2508 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2509 	.name = xname, \
2510 	.index = xindex, \
2511 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2512 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2513 	.info = snd_hdspm_info_system_clock_mode, \
2514 	.get = snd_hdspm_get_system_clock_mode, \
2515 	.put = snd_hdspm_put_system_clock_mode, \
2516 }
2517 
2518 
2519 /*
2520  * Returns the system clock mode for the given card.
2521  * @returns 0 - master, 1 - slave
2522  */
2523 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2524 {
2525 	switch (hdspm->io_type) {
2526 	case AIO:
2527 	case RayDAT:
2528 		if (hdspm->settings_register & HDSPM_c0Master)
2529 			return 0;
2530 		break;
2531 
2532 	default:
2533 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2534 			return 0;
2535 	}
2536 
2537 	return 1;
2538 }
2539 
2540 
2541 /*
2542  * Sets the system clock mode.
2543  * @param mode 0 - master, 1 - slave
2544  */
2545 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2546 {
2547 	hdspm_set_toggle_setting(hdspm,
2548 			(hdspm_is_raydat_or_aio(hdspm)) ?
2549 			HDSPM_c0Master : HDSPM_ClockModeMaster,
2550 			(0 == mode));
2551 }
2552 
2553 
2554 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2555 					    struct snd_ctl_elem_info *uinfo)
2556 {
2557 	static const char *const texts[] = { "Master", "AutoSync" };
2558 	ENUMERATED_CTL_INFO(uinfo, texts);
2559 	return 0;
2560 }
2561 
2562 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2563 					   struct snd_ctl_elem_value *ucontrol)
2564 {
2565 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2566 
2567 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2568 	return 0;
2569 }
2570 
2571 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2572 					   struct snd_ctl_elem_value *ucontrol)
2573 {
2574 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2575 	int val;
2576 
2577 	if (!snd_hdspm_use_is_exclusive(hdspm))
2578 		return -EBUSY;
2579 
2580 	val = ucontrol->value.enumerated.item[0];
2581 	if (val < 0)
2582 		val = 0;
2583 	else if (val > 1)
2584 		val = 1;
2585 
2586 	hdspm_set_system_clock_mode(hdspm, val);
2587 
2588 	return 0;
2589 }
2590 
2591 
2592 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2593 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2594 	.name = xname, \
2595 	.index = xindex, \
2596 	.info = snd_hdspm_info_clock_source, \
2597 	.get = snd_hdspm_get_clock_source, \
2598 	.put = snd_hdspm_put_clock_source \
2599 }
2600 
2601 
2602 static int hdspm_clock_source(struct hdspm * hdspm)
2603 {
2604 	switch (hdspm->system_sample_rate) {
2605 	case 32000: return 0;
2606 	case 44100: return 1;
2607 	case 48000: return 2;
2608 	case 64000: return 3;
2609 	case 88200: return 4;
2610 	case 96000: return 5;
2611 	case 128000: return 6;
2612 	case 176400: return 7;
2613 	case 192000: return 8;
2614 	}
2615 
2616 	return -1;
2617 }
2618 
2619 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2620 {
2621 	int rate;
2622 	switch (mode) {
2623 	case 0:
2624 		rate = 32000; break;
2625 	case 1:
2626 		rate = 44100; break;
2627 	case 2:
2628 		rate = 48000; break;
2629 	case 3:
2630 		rate = 64000; break;
2631 	case 4:
2632 		rate = 88200; break;
2633 	case 5:
2634 		rate = 96000; break;
2635 	case 6:
2636 		rate = 128000; break;
2637 	case 7:
2638 		rate = 176400; break;
2639 	case 8:
2640 		rate = 192000; break;
2641 	default:
2642 		rate = 48000;
2643 	}
2644 	hdspm_set_rate(hdspm, rate, 1);
2645 	return 0;
2646 }
2647 
2648 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2649 				       struct snd_ctl_elem_info *uinfo)
2650 {
2651 	return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1);
2652 }
2653 
2654 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2655 				      struct snd_ctl_elem_value *ucontrol)
2656 {
2657 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2658 
2659 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2660 	return 0;
2661 }
2662 
2663 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2664 				      struct snd_ctl_elem_value *ucontrol)
2665 {
2666 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2667 	int change;
2668 	int val;
2669 
2670 	if (!snd_hdspm_use_is_exclusive(hdspm))
2671 		return -EBUSY;
2672 	val = ucontrol->value.enumerated.item[0];
2673 	if (val < 0)
2674 		val = 0;
2675 	if (val > 9)
2676 		val = 9;
2677 	spin_lock_irq(&hdspm->lock);
2678 	if (val != hdspm_clock_source(hdspm))
2679 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2680 	else
2681 		change = 0;
2682 	spin_unlock_irq(&hdspm->lock);
2683 	return change;
2684 }
2685 
2686 
2687 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2688 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2689 	.name = xname, \
2690 	.index = xindex, \
2691 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2692 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2693 	.info = snd_hdspm_info_pref_sync_ref, \
2694 	.get = snd_hdspm_get_pref_sync_ref, \
2695 	.put = snd_hdspm_put_pref_sync_ref \
2696 }
2697 
2698 
2699 /*
2700  * Returns the current preferred sync reference setting.
2701  * The semantics of the return value are depending on the
2702  * card, please see the comments for clarification.
2703  */
2704 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2705 {
2706 	switch (hdspm->io_type) {
2707 	case AES32:
2708 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2709 		case 0: return 0;  /* WC */
2710 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2711 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2712 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2713 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2714 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2715 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2716 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2717 						    return 7; /* AES 7 */
2718 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2719 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2720 		}
2721 		break;
2722 
2723 	case MADI:
2724 	case MADIface:
2725 		if (hdspm->tco) {
2726 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2727 			case 0: return 0;  /* WC */
2728 			case HDSPM_SyncRef0: return 1;  /* MADI */
2729 			case HDSPM_SyncRef1: return 2;  /* TCO */
2730 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2731 					     return 3;  /* SYNC_IN */
2732 			}
2733 		} else {
2734 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2735 			case 0: return 0;  /* WC */
2736 			case HDSPM_SyncRef0: return 1;  /* MADI */
2737 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2738 					     return 2;  /* SYNC_IN */
2739 			}
2740 		}
2741 		break;
2742 
2743 	case RayDAT:
2744 		if (hdspm->tco) {
2745 			switch ((hdspm->settings_register &
2746 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2747 			case 0: return 0;  /* WC */
2748 			case 3: return 1;  /* ADAT 1 */
2749 			case 4: return 2;  /* ADAT 2 */
2750 			case 5: return 3;  /* ADAT 3 */
2751 			case 6: return 4;  /* ADAT 4 */
2752 			case 1: return 5;  /* AES */
2753 			case 2: return 6;  /* SPDIF */
2754 			case 9: return 7;  /* TCO */
2755 			case 10: return 8; /* SYNC_IN */
2756 			}
2757 		} else {
2758 			switch ((hdspm->settings_register &
2759 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2760 			case 0: return 0;  /* WC */
2761 			case 3: return 1;  /* ADAT 1 */
2762 			case 4: return 2;  /* ADAT 2 */
2763 			case 5: return 3;  /* ADAT 3 */
2764 			case 6: return 4;  /* ADAT 4 */
2765 			case 1: return 5;  /* AES */
2766 			case 2: return 6;  /* SPDIF */
2767 			case 10: return 7; /* SYNC_IN */
2768 			}
2769 		}
2770 
2771 		break;
2772 
2773 	case AIO:
2774 		if (hdspm->tco) {
2775 			switch ((hdspm->settings_register &
2776 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2777 			case 0: return 0;  /* WC */
2778 			case 3: return 1;  /* ADAT */
2779 			case 1: return 2;  /* AES */
2780 			case 2: return 3;  /* SPDIF */
2781 			case 9: return 4;  /* TCO */
2782 			case 10: return 5; /* SYNC_IN */
2783 			}
2784 		} else {
2785 			switch ((hdspm->settings_register &
2786 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2787 			case 0: return 0;  /* WC */
2788 			case 3: return 1;  /* ADAT */
2789 			case 1: return 2;  /* AES */
2790 			case 2: return 3;  /* SPDIF */
2791 			case 10: return 4; /* SYNC_IN */
2792 			}
2793 		}
2794 
2795 		break;
2796 	}
2797 
2798 	return -1;
2799 }
2800 
2801 
2802 /*
2803  * Set the preferred sync reference to <pref>. The semantics
2804  * of <pref> are depending on the card type, see the comments
2805  * for clarification.
2806  */
2807 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2808 {
2809 	int p = 0;
2810 
2811 	switch (hdspm->io_type) {
2812 	case AES32:
2813 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2814 		switch (pref) {
2815 		case 0: /* WC  */
2816 			break;
2817 		case 1: /* AES 1 */
2818 			hdspm->control_register |= HDSPM_SyncRef0;
2819 			break;
2820 		case 2: /* AES 2 */
2821 			hdspm->control_register |= HDSPM_SyncRef1;
2822 			break;
2823 		case 3: /* AES 3 */
2824 			hdspm->control_register |=
2825 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2826 			break;
2827 		case 4: /* AES 4 */
2828 			hdspm->control_register |= HDSPM_SyncRef2;
2829 			break;
2830 		case 5: /* AES 5 */
2831 			hdspm->control_register |=
2832 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2833 			break;
2834 		case 6: /* AES 6 */
2835 			hdspm->control_register |=
2836 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2837 			break;
2838 		case 7: /* AES 7 */
2839 			hdspm->control_register |=
2840 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2841 			break;
2842 		case 8: /* AES 8 */
2843 			hdspm->control_register |= HDSPM_SyncRef3;
2844 			break;
2845 		case 9: /* TCO */
2846 			hdspm->control_register |=
2847 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2848 			break;
2849 		default:
2850 			return -1;
2851 		}
2852 
2853 		break;
2854 
2855 	case MADI:
2856 	case MADIface:
2857 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2858 		if (hdspm->tco) {
2859 			switch (pref) {
2860 			case 0: /* WC */
2861 				break;
2862 			case 1: /* MADI */
2863 				hdspm->control_register |= HDSPM_SyncRef0;
2864 				break;
2865 			case 2: /* TCO */
2866 				hdspm->control_register |= HDSPM_SyncRef1;
2867 				break;
2868 			case 3: /* SYNC_IN */
2869 				hdspm->control_register |=
2870 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2871 				break;
2872 			default:
2873 				return -1;
2874 			}
2875 		} else {
2876 			switch (pref) {
2877 			case 0: /* WC */
2878 				break;
2879 			case 1: /* MADI */
2880 				hdspm->control_register |= HDSPM_SyncRef0;
2881 				break;
2882 			case 2: /* SYNC_IN */
2883 				hdspm->control_register |=
2884 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2885 				break;
2886 			default:
2887 				return -1;
2888 			}
2889 		}
2890 
2891 		break;
2892 
2893 	case RayDAT:
2894 		if (hdspm->tco) {
2895 			switch (pref) {
2896 			case 0: p = 0; break;  /* WC */
2897 			case 1: p = 3; break;  /* ADAT 1 */
2898 			case 2: p = 4; break;  /* ADAT 2 */
2899 			case 3: p = 5; break;  /* ADAT 3 */
2900 			case 4: p = 6; break;  /* ADAT 4 */
2901 			case 5: p = 1; break;  /* AES */
2902 			case 6: p = 2; break;  /* SPDIF */
2903 			case 7: p = 9; break;  /* TCO */
2904 			case 8: p = 10; break; /* SYNC_IN */
2905 			default: return -1;
2906 			}
2907 		} else {
2908 			switch (pref) {
2909 			case 0: p = 0; break;  /* WC */
2910 			case 1: p = 3; break;  /* ADAT 1 */
2911 			case 2: p = 4; break;  /* ADAT 2 */
2912 			case 3: p = 5; break;  /* ADAT 3 */
2913 			case 4: p = 6; break;  /* ADAT 4 */
2914 			case 5: p = 1; break;  /* AES */
2915 			case 6: p = 2; break;  /* SPDIF */
2916 			case 7: p = 10; break; /* SYNC_IN */
2917 			default: return -1;
2918 			}
2919 		}
2920 		break;
2921 
2922 	case AIO:
2923 		if (hdspm->tco) {
2924 			switch (pref) {
2925 			case 0: p = 0; break;  /* WC */
2926 			case 1: p = 3; break;  /* ADAT */
2927 			case 2: p = 1; break;  /* AES */
2928 			case 3: p = 2; break;  /* SPDIF */
2929 			case 4: p = 9; break;  /* TCO */
2930 			case 5: p = 10; break; /* SYNC_IN */
2931 			default: return -1;
2932 			}
2933 		} else {
2934 			switch (pref) {
2935 			case 0: p = 0; break;  /* WC */
2936 			case 1: p = 3; break;  /* ADAT */
2937 			case 2: p = 1; break;  /* AES */
2938 			case 3: p = 2; break;  /* SPDIF */
2939 			case 4: p = 10; break; /* SYNC_IN */
2940 			default: return -1;
2941 			}
2942 		}
2943 		break;
2944 	}
2945 
2946 	switch (hdspm->io_type) {
2947 	case RayDAT:
2948 	case AIO:
2949 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2950 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2951 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2952 		break;
2953 
2954 	case MADI:
2955 	case MADIface:
2956 	case AES32:
2957 		hdspm_write(hdspm, HDSPM_controlRegister,
2958 				hdspm->control_register);
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 
2965 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2966 					struct snd_ctl_elem_info *uinfo)
2967 {
2968 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2969 
2970 	snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync);
2971 
2972 	return 0;
2973 }
2974 
2975 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2976 				       struct snd_ctl_elem_value *ucontrol)
2977 {
2978 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2979 	int psf = hdspm_pref_sync_ref(hdspm);
2980 
2981 	if (psf >= 0) {
2982 		ucontrol->value.enumerated.item[0] = psf;
2983 		return 0;
2984 	}
2985 
2986 	return -1;
2987 }
2988 
2989 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2990 				       struct snd_ctl_elem_value *ucontrol)
2991 {
2992 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2993 	int val, change = 0;
2994 
2995 	if (!snd_hdspm_use_is_exclusive(hdspm))
2996 		return -EBUSY;
2997 
2998 	val = ucontrol->value.enumerated.item[0];
2999 
3000 	if (val < 0)
3001 		val = 0;
3002 	else if (val >= hdspm->texts_autosync_items)
3003 		val = hdspm->texts_autosync_items-1;
3004 
3005 	spin_lock_irq(&hdspm->lock);
3006 	if (val != hdspm_pref_sync_ref(hdspm))
3007 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
3008 
3009 	spin_unlock_irq(&hdspm->lock);
3010 	return change;
3011 }
3012 
3013 
3014 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
3015 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3016 	.name = xname, \
3017 	.index = xindex, \
3018 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
3019 	.info = snd_hdspm_info_autosync_ref, \
3020 	.get = snd_hdspm_get_autosync_ref, \
3021 }
3022 
3023 static int hdspm_autosync_ref(struct hdspm *hdspm)
3024 {
3025 	/* This looks at the autosync selected sync reference */
3026 	if (AES32 == hdspm->io_type) {
3027 
3028 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
3029 		unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
3030 		/* syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD is always true */
3031 		if (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN) {
3032 			return syncref;
3033 		}
3034 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
3035 
3036 	} else if (MADI == hdspm->io_type) {
3037 
3038 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3039 		switch (status2 & HDSPM_SelSyncRefMask) {
3040 		case HDSPM_SelSyncRef_WORD:
3041 			return HDSPM_AUTOSYNC_FROM_WORD;
3042 		case HDSPM_SelSyncRef_MADI:
3043 			return HDSPM_AUTOSYNC_FROM_MADI;
3044 		case HDSPM_SelSyncRef_TCO:
3045 			return HDSPM_AUTOSYNC_FROM_TCO;
3046 		case HDSPM_SelSyncRef_SyncIn:
3047 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3048 		case HDSPM_SelSyncRef_NVALID:
3049 			return HDSPM_AUTOSYNC_FROM_NONE;
3050 		default:
3051 			return HDSPM_AUTOSYNC_FROM_NONE;
3052 		}
3053 
3054 	}
3055 	return 0;
3056 }
3057 
3058 
3059 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
3060 				       struct snd_ctl_elem_info *uinfo)
3061 {
3062 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3063 
3064 	if (AES32 == hdspm->io_type) {
3065 		static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3",
3066 			"AES4",	"AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"};
3067 
3068 		ENUMERATED_CTL_INFO(uinfo, texts);
3069 	} else if (MADI == hdspm->io_type) {
3070 		static const char *const texts[] = {"Word Clock", "MADI", "TCO",
3071 			"Sync In", "None" };
3072 
3073 		ENUMERATED_CTL_INFO(uinfo, texts);
3074 	}
3075 	return 0;
3076 }
3077 
3078 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
3079 				      struct snd_ctl_elem_value *ucontrol)
3080 {
3081 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3082 
3083 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
3084 	return 0;
3085 }
3086 
3087 
3088 
3089 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \
3090 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3091 	.name = xname, \
3092 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3093 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3094 	.info = snd_hdspm_info_tco_video_input_format, \
3095 	.get = snd_hdspm_get_tco_video_input_format, \
3096 }
3097 
3098 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol,
3099 				       struct snd_ctl_elem_info *uinfo)
3100 {
3101 	static const char *const texts[] = {"No video", "NTSC", "PAL"};
3102 	ENUMERATED_CTL_INFO(uinfo, texts);
3103 	return 0;
3104 }
3105 
3106 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol,
3107 				      struct snd_ctl_elem_value *ucontrol)
3108 {
3109 	u32 status;
3110 	int ret = 0;
3111 
3112 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3113 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3114 	switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC |
3115 			HDSPM_TCO1_Video_Input_Format_PAL)) {
3116 	case HDSPM_TCO1_Video_Input_Format_NTSC:
3117 		/* ntsc */
3118 		ret = 1;
3119 		break;
3120 	case HDSPM_TCO1_Video_Input_Format_PAL:
3121 		/* pal */
3122 		ret = 2;
3123 		break;
3124 	default:
3125 		/* no video */
3126 		ret = 0;
3127 		break;
3128 	}
3129 	ucontrol->value.enumerated.item[0] = ret;
3130 	return 0;
3131 }
3132 
3133 
3134 
3135 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \
3136 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3137 	.name = xname, \
3138 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3139 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3140 	.info = snd_hdspm_info_tco_ltc_frames, \
3141 	.get = snd_hdspm_get_tco_ltc_frames, \
3142 }
3143 
3144 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3145 				       struct snd_ctl_elem_info *uinfo)
3146 {
3147 	static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps",
3148 				"30 fps"};
3149 	ENUMERATED_CTL_INFO(uinfo, texts);
3150 	return 0;
3151 }
3152 
3153 static int hdspm_tco_ltc_frames(struct hdspm *hdspm)
3154 {
3155 	u32 status;
3156 	int ret = 0;
3157 
3158 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3159 	if (status & HDSPM_TCO1_LTC_Input_valid) {
3160 		switch (status & (HDSPM_TCO1_LTC_Format_LSB |
3161 					HDSPM_TCO1_LTC_Format_MSB)) {
3162 		case 0:
3163 			/* 24 fps */
3164 			ret = fps_24;
3165 			break;
3166 		case HDSPM_TCO1_LTC_Format_LSB:
3167 			/* 25 fps */
3168 			ret = fps_25;
3169 			break;
3170 		case HDSPM_TCO1_LTC_Format_MSB:
3171 			/* 29.97 fps */
3172 			ret = fps_2997;
3173 			break;
3174 		default:
3175 			/* 30 fps */
3176 			ret = fps_30;
3177 			break;
3178 		}
3179 	}
3180 
3181 	return ret;
3182 }
3183 
3184 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3185 				      struct snd_ctl_elem_value *ucontrol)
3186 {
3187 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3188 
3189 	ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm);
3190 	return 0;
3191 }
3192 
3193 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
3194 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3195 	.name = xname, \
3196 	.private_value = xindex, \
3197 	.info = snd_hdspm_info_toggle_setting, \
3198 	.get = snd_hdspm_get_toggle_setting, \
3199 	.put = snd_hdspm_put_toggle_setting \
3200 }
3201 
3202 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
3203 {
3204 	u32 reg;
3205 
3206 	if (hdspm_is_raydat_or_aio(hdspm))
3207 		reg = hdspm->settings_register;
3208 	else
3209 		reg = hdspm->control_register;
3210 
3211 	return (reg & regmask) ? 1 : 0;
3212 }
3213 
3214 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
3215 {
3216 	u32 *reg;
3217 	u32 target_reg;
3218 
3219 	if (hdspm_is_raydat_or_aio(hdspm)) {
3220 		reg = &(hdspm->settings_register);
3221 		target_reg = HDSPM_WR_SETTINGS;
3222 	} else {
3223 		reg = &(hdspm->control_register);
3224 		target_reg = HDSPM_controlRegister;
3225 	}
3226 
3227 	if (out)
3228 		*reg |= regmask;
3229 	else
3230 		*reg &= ~regmask;
3231 
3232 	hdspm_write(hdspm, target_reg, *reg);
3233 
3234 	return 0;
3235 }
3236 
3237 #define snd_hdspm_info_toggle_setting		snd_ctl_boolean_mono_info
3238 
3239 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
3240 			       struct snd_ctl_elem_value *ucontrol)
3241 {
3242 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3243 	u32 regmask = kcontrol->private_value;
3244 
3245 	spin_lock_irq(&hdspm->lock);
3246 	ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
3247 	spin_unlock_irq(&hdspm->lock);
3248 	return 0;
3249 }
3250 
3251 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
3252 			       struct snd_ctl_elem_value *ucontrol)
3253 {
3254 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3255 	u32 regmask = kcontrol->private_value;
3256 	int change;
3257 	unsigned int val;
3258 
3259 	if (!snd_hdspm_use_is_exclusive(hdspm))
3260 		return -EBUSY;
3261 	val = ucontrol->value.integer.value[0] & 1;
3262 	spin_lock_irq(&hdspm->lock);
3263 	change = (int) val != hdspm_toggle_setting(hdspm, regmask);
3264 	hdspm_set_toggle_setting(hdspm, regmask, val);
3265 	spin_unlock_irq(&hdspm->lock);
3266 	return change;
3267 }
3268 
3269 #define HDSPM_INPUT_SELECT(xname, xindex) \
3270 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3271 	.name = xname, \
3272 	.index = xindex, \
3273 	.info = snd_hdspm_info_input_select, \
3274 	.get = snd_hdspm_get_input_select, \
3275 	.put = snd_hdspm_put_input_select \
3276 }
3277 
3278 static int hdspm_input_select(struct hdspm * hdspm)
3279 {
3280 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3281 }
3282 
3283 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3284 {
3285 	if (out)
3286 		hdspm->control_register |= HDSPM_InputSelect0;
3287 	else
3288 		hdspm->control_register &= ~HDSPM_InputSelect0;
3289 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3290 
3291 	return 0;
3292 }
3293 
3294 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3295 				       struct snd_ctl_elem_info *uinfo)
3296 {
3297 	static const char *const texts[] = { "optical", "coaxial" };
3298 	ENUMERATED_CTL_INFO(uinfo, texts);
3299 	return 0;
3300 }
3301 
3302 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3303 				      struct snd_ctl_elem_value *ucontrol)
3304 {
3305 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3306 
3307 	spin_lock_irq(&hdspm->lock);
3308 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3309 	spin_unlock_irq(&hdspm->lock);
3310 	return 0;
3311 }
3312 
3313 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3314 				      struct snd_ctl_elem_value *ucontrol)
3315 {
3316 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3317 	int change;
3318 	unsigned int val;
3319 
3320 	if (!snd_hdspm_use_is_exclusive(hdspm))
3321 		return -EBUSY;
3322 	val = ucontrol->value.integer.value[0] & 1;
3323 	spin_lock_irq(&hdspm->lock);
3324 	change = (int) val != hdspm_input_select(hdspm);
3325 	hdspm_set_input_select(hdspm, val);
3326 	spin_unlock_irq(&hdspm->lock);
3327 	return change;
3328 }
3329 
3330 
3331 #define HDSPM_DS_WIRE(xname, xindex) \
3332 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3333 	.name = xname, \
3334 	.index = xindex, \
3335 	.info = snd_hdspm_info_ds_wire, \
3336 	.get = snd_hdspm_get_ds_wire, \
3337 	.put = snd_hdspm_put_ds_wire \
3338 }
3339 
3340 static int hdspm_ds_wire(struct hdspm * hdspm)
3341 {
3342 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3343 }
3344 
3345 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3346 {
3347 	if (ds)
3348 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3349 	else
3350 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3351 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3352 
3353 	return 0;
3354 }
3355 
3356 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3357 				  struct snd_ctl_elem_info *uinfo)
3358 {
3359 	static const char *const texts[] = { "Single", "Double" };
3360 	ENUMERATED_CTL_INFO(uinfo, texts);
3361 	return 0;
3362 }
3363 
3364 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3365 				 struct snd_ctl_elem_value *ucontrol)
3366 {
3367 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3368 
3369 	spin_lock_irq(&hdspm->lock);
3370 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3371 	spin_unlock_irq(&hdspm->lock);
3372 	return 0;
3373 }
3374 
3375 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3376 				 struct snd_ctl_elem_value *ucontrol)
3377 {
3378 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3379 	int change;
3380 	unsigned int val;
3381 
3382 	if (!snd_hdspm_use_is_exclusive(hdspm))
3383 		return -EBUSY;
3384 	val = ucontrol->value.integer.value[0] & 1;
3385 	spin_lock_irq(&hdspm->lock);
3386 	change = (int) val != hdspm_ds_wire(hdspm);
3387 	hdspm_set_ds_wire(hdspm, val);
3388 	spin_unlock_irq(&hdspm->lock);
3389 	return change;
3390 }
3391 
3392 
3393 #define HDSPM_QS_WIRE(xname, xindex) \
3394 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3395 	.name = xname, \
3396 	.index = xindex, \
3397 	.info = snd_hdspm_info_qs_wire, \
3398 	.get = snd_hdspm_get_qs_wire, \
3399 	.put = snd_hdspm_put_qs_wire \
3400 }
3401 
3402 static int hdspm_qs_wire(struct hdspm * hdspm)
3403 {
3404 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3405 		return 1;
3406 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3407 		return 2;
3408 	return 0;
3409 }
3410 
3411 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3412 {
3413 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3414 	switch (mode) {
3415 	case 0:
3416 		break;
3417 	case 1:
3418 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3419 		break;
3420 	case 2:
3421 		hdspm->control_register |= HDSPM_QS_QuadWire;
3422 		break;
3423 	}
3424 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3425 
3426 	return 0;
3427 }
3428 
3429 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3430 				       struct snd_ctl_elem_info *uinfo)
3431 {
3432 	static const char *const texts[] = { "Single", "Double", "Quad" };
3433 	ENUMERATED_CTL_INFO(uinfo, texts);
3434 	return 0;
3435 }
3436 
3437 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3438 				      struct snd_ctl_elem_value *ucontrol)
3439 {
3440 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3441 
3442 	spin_lock_irq(&hdspm->lock);
3443 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3444 	spin_unlock_irq(&hdspm->lock);
3445 	return 0;
3446 }
3447 
3448 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3449 				      struct snd_ctl_elem_value *ucontrol)
3450 {
3451 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3452 	int change;
3453 	int val;
3454 
3455 	if (!snd_hdspm_use_is_exclusive(hdspm))
3456 		return -EBUSY;
3457 	val = ucontrol->value.integer.value[0];
3458 	if (val < 0)
3459 		val = 0;
3460 	if (val > 2)
3461 		val = 2;
3462 	spin_lock_irq(&hdspm->lock);
3463 	change = val != hdspm_qs_wire(hdspm);
3464 	hdspm_set_qs_wire(hdspm, val);
3465 	spin_unlock_irq(&hdspm->lock);
3466 	return change;
3467 }
3468 
3469 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \
3470 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3471 	.name = xname, \
3472 	.private_value = xindex, \
3473 	.info = snd_hdspm_info_tristate, \
3474 	.get = snd_hdspm_get_tristate, \
3475 	.put = snd_hdspm_put_tristate \
3476 }
3477 
3478 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask)
3479 {
3480 	u32 reg = hdspm->settings_register & (regmask * 3);
3481 	return reg / regmask;
3482 }
3483 
3484 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask)
3485 {
3486 	hdspm->settings_register &= ~(regmask * 3);
3487 	hdspm->settings_register |= (regmask * mode);
3488 	hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
3489 
3490 	return 0;
3491 }
3492 
3493 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol,
3494 				       struct snd_ctl_elem_info *uinfo)
3495 {
3496 	u32 regmask = kcontrol->private_value;
3497 
3498 	static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" };
3499 	static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" };
3500 
3501 	switch (regmask) {
3502 	case HDSPM_c0_Input0:
3503 		ENUMERATED_CTL_INFO(uinfo, texts_spdif);
3504 		break;
3505 	default:
3506 		ENUMERATED_CTL_INFO(uinfo, texts_levels);
3507 		break;
3508 	}
3509 	return 0;
3510 }
3511 
3512 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol,
3513 				      struct snd_ctl_elem_value *ucontrol)
3514 {
3515 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3516 	u32 regmask = kcontrol->private_value;
3517 
3518 	spin_lock_irq(&hdspm->lock);
3519 	ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask);
3520 	spin_unlock_irq(&hdspm->lock);
3521 	return 0;
3522 }
3523 
3524 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol,
3525 				      struct snd_ctl_elem_value *ucontrol)
3526 {
3527 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3528 	u32 regmask = kcontrol->private_value;
3529 	int change;
3530 	int val;
3531 
3532 	if (!snd_hdspm_use_is_exclusive(hdspm))
3533 		return -EBUSY;
3534 	val = ucontrol->value.integer.value[0];
3535 	if (val < 0)
3536 		val = 0;
3537 	if (val > 2)
3538 		val = 2;
3539 
3540 	spin_lock_irq(&hdspm->lock);
3541 	change = val != hdspm_tristate(hdspm, regmask);
3542 	hdspm_set_tristate(hdspm, val, regmask);
3543 	spin_unlock_irq(&hdspm->lock);
3544 	return change;
3545 }
3546 
3547 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3548 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3549 	.name = xname, \
3550 	.index = xindex, \
3551 	.info = snd_hdspm_info_madi_speedmode, \
3552 	.get = snd_hdspm_get_madi_speedmode, \
3553 	.put = snd_hdspm_put_madi_speedmode \
3554 }
3555 
3556 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3557 {
3558 	if (hdspm->control_register & HDSPM_QuadSpeed)
3559 		return 2;
3560 	if (hdspm->control_register & HDSPM_DoubleSpeed)
3561 		return 1;
3562 	return 0;
3563 }
3564 
3565 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3566 {
3567 	hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3568 	switch (mode) {
3569 	case 0:
3570 		break;
3571 	case 1:
3572 		hdspm->control_register |= HDSPM_DoubleSpeed;
3573 		break;
3574 	case 2:
3575 		hdspm->control_register |= HDSPM_QuadSpeed;
3576 		break;
3577 	}
3578 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3579 
3580 	return 0;
3581 }
3582 
3583 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3584 				       struct snd_ctl_elem_info *uinfo)
3585 {
3586 	static const char *const texts[] = { "Single", "Double", "Quad" };
3587 	ENUMERATED_CTL_INFO(uinfo, texts);
3588 	return 0;
3589 }
3590 
3591 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3592 				      struct snd_ctl_elem_value *ucontrol)
3593 {
3594 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3595 
3596 	spin_lock_irq(&hdspm->lock);
3597 	ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3598 	spin_unlock_irq(&hdspm->lock);
3599 	return 0;
3600 }
3601 
3602 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3603 				      struct snd_ctl_elem_value *ucontrol)
3604 {
3605 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3606 	int change;
3607 	int val;
3608 
3609 	if (!snd_hdspm_use_is_exclusive(hdspm))
3610 		return -EBUSY;
3611 	val = ucontrol->value.integer.value[0];
3612 	if (val < 0)
3613 		val = 0;
3614 	if (val > 2)
3615 		val = 2;
3616 	spin_lock_irq(&hdspm->lock);
3617 	change = val != hdspm_madi_speedmode(hdspm);
3618 	hdspm_set_madi_speedmode(hdspm, val);
3619 	spin_unlock_irq(&hdspm->lock);
3620 	return change;
3621 }
3622 
3623 #define HDSPM_MIXER(xname, xindex) \
3624 {	.iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3625 	.name = xname, \
3626 	.index = xindex, \
3627 	.device = 0, \
3628 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3629 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3630 	.info = snd_hdspm_info_mixer, \
3631 	.get = snd_hdspm_get_mixer, \
3632 	.put = snd_hdspm_put_mixer \
3633 }
3634 
3635 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3636 				struct snd_ctl_elem_info *uinfo)
3637 {
3638 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3639 	uinfo->count = 3;
3640 	uinfo->value.integer.min = 0;
3641 	uinfo->value.integer.max = 65535;
3642 	uinfo->value.integer.step = 1;
3643 	return 0;
3644 }
3645 
3646 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3647 			       struct snd_ctl_elem_value *ucontrol)
3648 {
3649 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3650 	int source;
3651 	int destination;
3652 
3653 	source = ucontrol->value.integer.value[0];
3654 	if (source < 0)
3655 		source = 0;
3656 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3657 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3658 
3659 	destination = ucontrol->value.integer.value[1];
3660 	if (destination < 0)
3661 		destination = 0;
3662 	else if (destination >= HDSPM_MAX_CHANNELS)
3663 		destination = HDSPM_MAX_CHANNELS - 1;
3664 
3665 	spin_lock_irq(&hdspm->lock);
3666 	if (source >= HDSPM_MAX_CHANNELS)
3667 		ucontrol->value.integer.value[2] =
3668 		    hdspm_read_pb_gain(hdspm, destination,
3669 				       source - HDSPM_MAX_CHANNELS);
3670 	else
3671 		ucontrol->value.integer.value[2] =
3672 		    hdspm_read_in_gain(hdspm, destination, source);
3673 
3674 	spin_unlock_irq(&hdspm->lock);
3675 
3676 	return 0;
3677 }
3678 
3679 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3680 			       struct snd_ctl_elem_value *ucontrol)
3681 {
3682 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3683 	int change;
3684 	int source;
3685 	int destination;
3686 	int gain;
3687 
3688 	if (!snd_hdspm_use_is_exclusive(hdspm))
3689 		return -EBUSY;
3690 
3691 	source = ucontrol->value.integer.value[0];
3692 	destination = ucontrol->value.integer.value[1];
3693 
3694 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3695 		return -1;
3696 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3697 		return -1;
3698 
3699 	gain = ucontrol->value.integer.value[2];
3700 
3701 	spin_lock_irq(&hdspm->lock);
3702 
3703 	if (source >= HDSPM_MAX_CHANNELS)
3704 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3705 						    source -
3706 						    HDSPM_MAX_CHANNELS);
3707 	else
3708 		change = gain != hdspm_read_in_gain(hdspm, destination,
3709 						    source);
3710 
3711 	if (change) {
3712 		if (source >= HDSPM_MAX_CHANNELS)
3713 			hdspm_write_pb_gain(hdspm, destination,
3714 					    source - HDSPM_MAX_CHANNELS,
3715 					    gain);
3716 		else
3717 			hdspm_write_in_gain(hdspm, destination, source,
3718 					    gain);
3719 	}
3720 	spin_unlock_irq(&hdspm->lock);
3721 
3722 	return change;
3723 }
3724 
3725 /* The simple mixer control(s) provide gain control for the
3726    basic 1:1 mappings of playback streams to output
3727    streams.
3728 */
3729 
3730 #define HDSPM_PLAYBACK_MIXER \
3731 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3732 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3733 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3734 	.info = snd_hdspm_info_playback_mixer, \
3735 	.get = snd_hdspm_get_playback_mixer, \
3736 	.put = snd_hdspm_put_playback_mixer \
3737 }
3738 
3739 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3740 					 struct snd_ctl_elem_info *uinfo)
3741 {
3742 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3743 	uinfo->count = 1;
3744 	uinfo->value.integer.min = 0;
3745 	uinfo->value.integer.max = 64;
3746 	uinfo->value.integer.step = 1;
3747 	return 0;
3748 }
3749 
3750 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3751 					struct snd_ctl_elem_value *ucontrol)
3752 {
3753 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3754 	int channel;
3755 
3756 	channel = ucontrol->id.index - 1;
3757 
3758 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3759 		return -EINVAL;
3760 
3761 	spin_lock_irq(&hdspm->lock);
3762 	ucontrol->value.integer.value[0] =
3763 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3764 	spin_unlock_irq(&hdspm->lock);
3765 
3766 	return 0;
3767 }
3768 
3769 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3770 					struct snd_ctl_elem_value *ucontrol)
3771 {
3772 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3773 	int change;
3774 	int channel;
3775 	int gain;
3776 
3777 	if (!snd_hdspm_use_is_exclusive(hdspm))
3778 		return -EBUSY;
3779 
3780 	channel = ucontrol->id.index - 1;
3781 
3782 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3783 		return -EINVAL;
3784 
3785 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3786 
3787 	spin_lock_irq(&hdspm->lock);
3788 	change =
3789 	    gain != hdspm_read_pb_gain(hdspm, channel,
3790 				       channel);
3791 	if (change)
3792 		hdspm_write_pb_gain(hdspm, channel, channel,
3793 				    gain);
3794 	spin_unlock_irq(&hdspm->lock);
3795 	return change;
3796 }
3797 
3798 #define HDSPM_SYNC_CHECK(xname, xindex) \
3799 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3800 	.name = xname, \
3801 	.private_value = xindex, \
3802 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3803 	.info = snd_hdspm_info_sync_check, \
3804 	.get = snd_hdspm_get_sync_check \
3805 }
3806 
3807 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3808 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3809 	.name = xname, \
3810 	.private_value = xindex, \
3811 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3812 	.info = snd_hdspm_tco_info_lock_check, \
3813 	.get = snd_hdspm_get_sync_check \
3814 }
3815 
3816 
3817 
3818 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3819 				     struct snd_ctl_elem_info *uinfo)
3820 {
3821 	static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3822 	ENUMERATED_CTL_INFO(uinfo, texts);
3823 	return 0;
3824 }
3825 
3826 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3827 				     struct snd_ctl_elem_info *uinfo)
3828 {
3829 	static const char *const texts[] = { "No Lock", "Lock" };
3830 	ENUMERATED_CTL_INFO(uinfo, texts);
3831 	return 0;
3832 }
3833 
3834 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3835 {
3836 	int status, status2;
3837 
3838 	switch (hdspm->io_type) {
3839 	case AES32:
3840 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3841 		if (status & HDSPM_AES32_wcLock) {
3842 			if (status & HDSPM_AES32_wcSync)
3843 				return 2;
3844 			else
3845 				return 1;
3846 		}
3847 		return 0;
3848 		break;
3849 
3850 	case MADI:
3851 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3852 		if (status2 & HDSPM_wcLock) {
3853 			if (status2 & HDSPM_wcSync)
3854 				return 2;
3855 			else
3856 				return 1;
3857 		}
3858 		return 0;
3859 		break;
3860 
3861 	case RayDAT:
3862 	case AIO:
3863 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3864 
3865 		if (status & 0x2000000)
3866 			return 2;
3867 		else if (status & 0x1000000)
3868 			return 1;
3869 		return 0;
3870 
3871 		break;
3872 
3873 	case MADIface:
3874 		break;
3875 	}
3876 
3877 
3878 	return 3;
3879 }
3880 
3881 
3882 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3883 {
3884 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3885 	if (status & HDSPM_madiLock) {
3886 		if (status & HDSPM_madiSync)
3887 			return 2;
3888 		else
3889 			return 1;
3890 	}
3891 	return 0;
3892 }
3893 
3894 
3895 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3896 {
3897 	int status, lock, sync;
3898 
3899 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3900 
3901 	lock = (status & (0x1<<idx)) ? 1 : 0;
3902 	sync = (status & (0x100<<idx)) ? 1 : 0;
3903 
3904 	if (lock && sync)
3905 		return 2;
3906 	else if (lock)
3907 		return 1;
3908 	return 0;
3909 }
3910 
3911 
3912 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3913 {
3914 	int status, lock = 0, sync = 0;
3915 
3916 	switch (hdspm->io_type) {
3917 	case RayDAT:
3918 	case AIO:
3919 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3920 		lock = (status & 0x400) ? 1 : 0;
3921 		sync = (status & 0x800) ? 1 : 0;
3922 		break;
3923 
3924 	case MADI:
3925 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3926 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3927 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3928 		break;
3929 
3930 	case AES32:
3931 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3932 		lock = (status & 0x100000) ? 1 : 0;
3933 		sync = (status & 0x200000) ? 1 : 0;
3934 		break;
3935 
3936 	case MADIface:
3937 		break;
3938 	}
3939 
3940 	if (lock && sync)
3941 		return 2;
3942 	else if (lock)
3943 		return 1;
3944 
3945 	return 0;
3946 }
3947 
3948 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3949 {
3950 	int status2, lock, sync;
3951 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3952 
3953 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3954 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3955 
3956 	if (sync)
3957 		return 2;
3958 	else if (lock)
3959 		return 1;
3960 	return 0;
3961 }
3962 
3963 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3964 {
3965 	u32 status;
3966 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3967 
3968 	return (status & mask) ? 1 : 0;
3969 }
3970 
3971 
3972 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3973 {
3974 	int status;
3975 
3976 	if (hdspm->tco) {
3977 		switch (hdspm->io_type) {
3978 		case MADI:
3979 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3980 			if (status & HDSPM_tcoLockMadi) {
3981 				if (status & HDSPM_tcoSync)
3982 					return 2;
3983 				else
3984 					return 1;
3985 			}
3986 			return 0;
3987 		case AES32:
3988 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3989 			if (status & HDSPM_tcoLockAes) {
3990 				if (status & HDSPM_tcoSync)
3991 					return 2;
3992 				else
3993 					return 1;
3994 			}
3995 			return 0;
3996 		case RayDAT:
3997 		case AIO:
3998 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3999 
4000 			if (status & 0x8000000)
4001 				return 2; /* Sync */
4002 			if (status & 0x4000000)
4003 				return 1; /* Lock */
4004 			return 0; /* No signal */
4005 
4006 		default:
4007 			break;
4008 		}
4009 	}
4010 
4011 	return 3; /* N/A */
4012 }
4013 
4014 
4015 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
4016 				    struct snd_ctl_elem_value *ucontrol)
4017 {
4018 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4019 	int val = -1;
4020 
4021 	switch (hdspm->io_type) {
4022 	case RayDAT:
4023 		switch (kcontrol->private_value) {
4024 		case 0: /* WC */
4025 			val = hdspm_wc_sync_check(hdspm); break;
4026 		case 7: /* TCO */
4027 			val = hdspm_tco_sync_check(hdspm); break;
4028 		case 8: /* SYNC IN */
4029 			val = hdspm_sync_in_sync_check(hdspm); break;
4030 		default:
4031 			val = hdspm_s1_sync_check(hdspm,
4032 					kcontrol->private_value-1);
4033 		}
4034 		break;
4035 
4036 	case AIO:
4037 		switch (kcontrol->private_value) {
4038 		case 0: /* WC */
4039 			val = hdspm_wc_sync_check(hdspm); break;
4040 		case 4: /* TCO */
4041 			val = hdspm_tco_sync_check(hdspm); break;
4042 		case 5: /* SYNC IN */
4043 			val = hdspm_sync_in_sync_check(hdspm); break;
4044 		default:
4045 			val = hdspm_s1_sync_check(hdspm,
4046 					kcontrol->private_value-1);
4047 		}
4048 		break;
4049 
4050 	case MADI:
4051 		switch (kcontrol->private_value) {
4052 		case 0: /* WC */
4053 			val = hdspm_wc_sync_check(hdspm); break;
4054 		case 1: /* MADI */
4055 			val = hdspm_madi_sync_check(hdspm); break;
4056 		case 2: /* TCO */
4057 			val = hdspm_tco_sync_check(hdspm); break;
4058 		case 3: /* SYNC_IN */
4059 			val = hdspm_sync_in_sync_check(hdspm); break;
4060 		}
4061 		break;
4062 
4063 	case MADIface:
4064 		val = hdspm_madi_sync_check(hdspm); /* MADI */
4065 		break;
4066 
4067 	case AES32:
4068 		switch (kcontrol->private_value) {
4069 		case 0: /* WC */
4070 			val = hdspm_wc_sync_check(hdspm); break;
4071 		case 9: /* TCO */
4072 			val = hdspm_tco_sync_check(hdspm); break;
4073 		case 10 /* SYNC IN */:
4074 			val = hdspm_sync_in_sync_check(hdspm); break;
4075 		default: /* AES1 to AES8 */
4076 			 val = hdspm_aes_sync_check(hdspm,
4077 					 kcontrol->private_value-1);
4078 		}
4079 		break;
4080 
4081 	}
4082 
4083 	if (hdspm->tco) {
4084 		switch (kcontrol->private_value) {
4085 		case 11:
4086 			/* Check TCO for lock state of its current input */
4087 			val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
4088 			break;
4089 		case 12:
4090 			/* Check TCO for valid time code on LTC input. */
4091 			val = hdspm_tco_input_check(hdspm,
4092 				HDSPM_TCO1_LTC_Input_valid);
4093 			break;
4094 		default:
4095 			break;
4096 		}
4097 	}
4098 
4099 	if (-1 == val)
4100 		val = 3;
4101 
4102 	ucontrol->value.enumerated.item[0] = val;
4103 	return 0;
4104 }
4105 
4106 
4107 
4108 /*
4109  * TCO controls
4110  */
4111 static void hdspm_tco_write(struct hdspm *hdspm)
4112 {
4113 	unsigned int tc[4] = { 0, 0, 0, 0};
4114 
4115 	switch (hdspm->tco->input) {
4116 	case 0:
4117 		tc[2] |= HDSPM_TCO2_set_input_MSB;
4118 		break;
4119 	case 1:
4120 		tc[2] |= HDSPM_TCO2_set_input_LSB;
4121 		break;
4122 	default:
4123 		break;
4124 	}
4125 
4126 	switch (hdspm->tco->framerate) {
4127 	case 1:
4128 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4129 		break;
4130 	case 2:
4131 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4132 		break;
4133 	case 3:
4134 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4135 			HDSPM_TCO1_set_drop_frame_flag;
4136 		break;
4137 	case 4:
4138 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4139 			HDSPM_TCO1_LTC_Format_MSB;
4140 		break;
4141 	case 5:
4142 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4143 			HDSPM_TCO1_LTC_Format_MSB +
4144 			HDSPM_TCO1_set_drop_frame_flag;
4145 		break;
4146 	default:
4147 		break;
4148 	}
4149 
4150 	switch (hdspm->tco->wordclock) {
4151 	case 1:
4152 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4153 		break;
4154 	case 2:
4155 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4156 		break;
4157 	default:
4158 		break;
4159 	}
4160 
4161 	switch (hdspm->tco->samplerate) {
4162 	case 1:
4163 		tc[2] |= HDSPM_TCO2_set_freq;
4164 		break;
4165 	case 2:
4166 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
4167 		break;
4168 	default:
4169 		break;
4170 	}
4171 
4172 	switch (hdspm->tco->pull) {
4173 	case 1:
4174 		tc[2] |= HDSPM_TCO2_set_pull_up;
4175 		break;
4176 	case 2:
4177 		tc[2] |= HDSPM_TCO2_set_pull_down;
4178 		break;
4179 	case 3:
4180 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4181 		break;
4182 	case 4:
4183 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4184 		break;
4185 	default:
4186 		break;
4187 	}
4188 
4189 	if (1 == hdspm->tco->term) {
4190 		tc[2] |= HDSPM_TCO2_set_term_75R;
4191 	}
4192 
4193 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4194 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4195 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4196 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4197 }
4198 
4199 
4200 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4201 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4202 	.name = xname, \
4203 	.index = xindex, \
4204 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4205 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4206 	.info = snd_hdspm_info_tco_sample_rate, \
4207 	.get = snd_hdspm_get_tco_sample_rate, \
4208 	.put = snd_hdspm_put_tco_sample_rate \
4209 }
4210 
4211 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4212 					  struct snd_ctl_elem_info *uinfo)
4213 {
4214 	/* TODO freq from app could be supported here, see tco->samplerate */
4215 	static const char *const texts[] = { "44.1 kHz", "48 kHz" };
4216 	ENUMERATED_CTL_INFO(uinfo, texts);
4217 	return 0;
4218 }
4219 
4220 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4221 				      struct snd_ctl_elem_value *ucontrol)
4222 {
4223 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4224 
4225 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4226 
4227 	return 0;
4228 }
4229 
4230 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4231 					 struct snd_ctl_elem_value *ucontrol)
4232 {
4233 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4234 
4235 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4236 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4237 
4238 		hdspm_tco_write(hdspm);
4239 
4240 		return 1;
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 
4247 #define HDSPM_TCO_PULL(xname, xindex) \
4248 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4249 	.name = xname, \
4250 	.index = xindex, \
4251 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4252 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4253 	.info = snd_hdspm_info_tco_pull, \
4254 	.get = snd_hdspm_get_tco_pull, \
4255 	.put = snd_hdspm_put_tco_pull \
4256 }
4257 
4258 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4259 				   struct snd_ctl_elem_info *uinfo)
4260 {
4261 	static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %",
4262 		"+ 4 %", "- 4 %" };
4263 	ENUMERATED_CTL_INFO(uinfo, texts);
4264 	return 0;
4265 }
4266 
4267 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4268 				  struct snd_ctl_elem_value *ucontrol)
4269 {
4270 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4271 
4272 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4273 
4274 	return 0;
4275 }
4276 
4277 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4278 				  struct snd_ctl_elem_value *ucontrol)
4279 {
4280 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4281 
4282 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4283 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4284 
4285 		hdspm_tco_write(hdspm);
4286 
4287 		return 1;
4288 	}
4289 
4290 	return 0;
4291 }
4292 
4293 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4294 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4295 	.name = xname, \
4296 	.index = xindex, \
4297 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4298 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4299 	.info = snd_hdspm_info_tco_wck_conversion, \
4300 	.get = snd_hdspm_get_tco_wck_conversion, \
4301 	.put = snd_hdspm_put_tco_wck_conversion \
4302 }
4303 
4304 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4305 					     struct snd_ctl_elem_info *uinfo)
4306 {
4307 	static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4308 	ENUMERATED_CTL_INFO(uinfo, texts);
4309 	return 0;
4310 }
4311 
4312 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4313 					    struct snd_ctl_elem_value *ucontrol)
4314 {
4315 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4316 
4317 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4318 
4319 	return 0;
4320 }
4321 
4322 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4323 					    struct snd_ctl_elem_value *ucontrol)
4324 {
4325 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4326 
4327 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4328 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4329 
4330 		hdspm_tco_write(hdspm);
4331 
4332 		return 1;
4333 	}
4334 
4335 	return 0;
4336 }
4337 
4338 
4339 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4340 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4341 	.name = xname, \
4342 	.index = xindex, \
4343 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4344 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4345 	.info = snd_hdspm_info_tco_frame_rate, \
4346 	.get = snd_hdspm_get_tco_frame_rate, \
4347 	.put = snd_hdspm_put_tco_frame_rate \
4348 }
4349 
4350 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4351 					  struct snd_ctl_elem_info *uinfo)
4352 {
4353 	static const char *const texts[] = { "24 fps", "25 fps", "29.97fps",
4354 		"29.97 dfps", "30 fps", "30 dfps" };
4355 	ENUMERATED_CTL_INFO(uinfo, texts);
4356 	return 0;
4357 }
4358 
4359 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4360 					struct snd_ctl_elem_value *ucontrol)
4361 {
4362 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4363 
4364 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4365 
4366 	return 0;
4367 }
4368 
4369 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4370 					struct snd_ctl_elem_value *ucontrol)
4371 {
4372 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4373 
4374 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4375 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4376 
4377 		hdspm_tco_write(hdspm);
4378 
4379 		return 1;
4380 	}
4381 
4382 	return 0;
4383 }
4384 
4385 
4386 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4387 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4388 	.name = xname, \
4389 	.index = xindex, \
4390 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4391 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4392 	.info = snd_hdspm_info_tco_sync_source, \
4393 	.get = snd_hdspm_get_tco_sync_source, \
4394 	.put = snd_hdspm_put_tco_sync_source \
4395 }
4396 
4397 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4398 					  struct snd_ctl_elem_info *uinfo)
4399 {
4400 	static const char *const texts[] = { "LTC", "Video", "WCK" };
4401 	ENUMERATED_CTL_INFO(uinfo, texts);
4402 	return 0;
4403 }
4404 
4405 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4406 					 struct snd_ctl_elem_value *ucontrol)
4407 {
4408 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4409 
4410 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4411 
4412 	return 0;
4413 }
4414 
4415 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4416 					 struct snd_ctl_elem_value *ucontrol)
4417 {
4418 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4419 
4420 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4421 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4422 
4423 		hdspm_tco_write(hdspm);
4424 
4425 		return 1;
4426 	}
4427 
4428 	return 0;
4429 }
4430 
4431 
4432 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4433 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4434 	.name = xname, \
4435 	.index = xindex, \
4436 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4437 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4438 	.info = snd_hdspm_info_tco_word_term, \
4439 	.get = snd_hdspm_get_tco_word_term, \
4440 	.put = snd_hdspm_put_tco_word_term \
4441 }
4442 
4443 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4444 					struct snd_ctl_elem_info *uinfo)
4445 {
4446 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4447 	uinfo->count = 1;
4448 	uinfo->value.integer.min = 0;
4449 	uinfo->value.integer.max = 1;
4450 
4451 	return 0;
4452 }
4453 
4454 
4455 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4456 				       struct snd_ctl_elem_value *ucontrol)
4457 {
4458 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4459 
4460 	ucontrol->value.integer.value[0] = hdspm->tco->term;
4461 
4462 	return 0;
4463 }
4464 
4465 
4466 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4467 				       struct snd_ctl_elem_value *ucontrol)
4468 {
4469 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4470 
4471 	if (hdspm->tco->term != ucontrol->value.integer.value[0]) {
4472 		hdspm->tco->term = ucontrol->value.integer.value[0];
4473 
4474 		hdspm_tco_write(hdspm);
4475 
4476 		return 1;
4477 	}
4478 
4479 	return 0;
4480 }
4481 
4482 
4483 
4484 
4485 static const struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4486 	HDSPM_MIXER("Mixer", 0),
4487 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4488 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4489 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4490 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4491 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4492 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4493 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4494 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4495 	HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4496 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4497 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4498 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4499 	HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4500 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4501 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4502 	HDSPM_INPUT_SELECT("Input Select", 0),
4503 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4504 };
4505 
4506 
4507 static const struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4508 	HDSPM_MIXER("Mixer", 0),
4509 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4510 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4511 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4512 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4513 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4514 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4515 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4516 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4517 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4518 };
4519 
4520 static const struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4521 	HDSPM_MIXER("Mixer", 0),
4522 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4523 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4524 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4525 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4526 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4527 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4528 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4529 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4530 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4531 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4532 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4533 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4534 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4535 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4536 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4537 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4538 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5),
4539 	HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0),
4540 	HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt),
4541 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4542 	HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1),
4543 	HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db),
4544 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48),
4545 	HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0),
4546 	HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0),
4547 	HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0)
4548 
4549 		/*
4550 		   HDSPM_INPUT_SELECT("Input Select", 0),
4551 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4552 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4553 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4554 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4555 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4556 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4557 		   HDSPM_PHONES("Phones", 0);
4558 		   */
4559 };
4560 
4561 static const struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4562 	HDSPM_MIXER("Mixer", 0),
4563 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4564 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4565 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4566 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4567 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4568 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4569 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4570 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4571 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4572 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4573 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4574 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4575 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4576 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4577 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4578 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4579 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4580 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4581 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4582 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4583 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4584 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8),
4585 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4586 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48)
4587 };
4588 
4589 static const struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4590 	HDSPM_MIXER("Mixer", 0),
4591 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4592 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4593 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4594 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4595 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4596 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11),
4597 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4598 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4599 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4600 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4601 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4602 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4603 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4604 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4605 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4606 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4607 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4608 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4609 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4610 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4611 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4612 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4613 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4614 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4615 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4616 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4617 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4618 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4619 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4620 	HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4621 	HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4622 	HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4623 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4624 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4625 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4626 };
4627 
4628 
4629 
4630 /* Control elements for the optional TCO module */
4631 static const struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4632 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4633 	HDSPM_TCO_PULL("TCO Pull", 0),
4634 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4635 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4636 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4637 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0),
4638 	HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11),
4639 	HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12),
4640 	HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0),
4641 	HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0)
4642 };
4643 
4644 
4645 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4646 
4647 
4648 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4649 {
4650 	int i;
4651 
4652 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4653 		if (hdspm->system_sample_rate > 48000) {
4654 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4655 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4656 				SNDRV_CTL_ELEM_ACCESS_READ |
4657 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4658 		} else {
4659 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4660 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4661 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4662 		}
4663 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4664 				SNDRV_CTL_EVENT_MASK_INFO,
4665 				&hdspm->playback_mixer_ctls[i]->id);
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 
4672 static int snd_hdspm_create_controls(struct snd_card *card,
4673 					struct hdspm *hdspm)
4674 {
4675 	unsigned int idx, limit;
4676 	int err;
4677 	struct snd_kcontrol *kctl;
4678 	const struct snd_kcontrol_new *list = NULL;
4679 
4680 	switch (hdspm->io_type) {
4681 	case MADI:
4682 		list = snd_hdspm_controls_madi;
4683 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4684 		break;
4685 	case MADIface:
4686 		list = snd_hdspm_controls_madiface;
4687 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4688 		break;
4689 	case AIO:
4690 		list = snd_hdspm_controls_aio;
4691 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4692 		break;
4693 	case RayDAT:
4694 		list = snd_hdspm_controls_raydat;
4695 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4696 		break;
4697 	case AES32:
4698 		list = snd_hdspm_controls_aes32;
4699 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4700 		break;
4701 	}
4702 
4703 	if (list) {
4704 		for (idx = 0; idx < limit; idx++) {
4705 			err = snd_ctl_add(card,
4706 					snd_ctl_new1(&list[idx], hdspm));
4707 			if (err < 0)
4708 				return err;
4709 		}
4710 	}
4711 
4712 
4713 	/* create simple 1:1 playback mixer controls */
4714 	snd_hdspm_playback_mixer.name = "Chn";
4715 	if (hdspm->system_sample_rate >= 128000) {
4716 		limit = hdspm->qs_out_channels;
4717 	} else if (hdspm->system_sample_rate >= 64000) {
4718 		limit = hdspm->ds_out_channels;
4719 	} else {
4720 		limit = hdspm->ss_out_channels;
4721 	}
4722 	for (idx = 0; idx < limit; ++idx) {
4723 		snd_hdspm_playback_mixer.index = idx + 1;
4724 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4725 		err = snd_ctl_add(card, kctl);
4726 		if (err < 0)
4727 			return err;
4728 		hdspm->playback_mixer_ctls[idx] = kctl;
4729 	}
4730 
4731 
4732 	if (hdspm->tco) {
4733 		/* add tco control elements */
4734 		list = snd_hdspm_controls_tco;
4735 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4736 		for (idx = 0; idx < limit; idx++) {
4737 			err = snd_ctl_add(card,
4738 					snd_ctl_new1(&list[idx], hdspm));
4739 			if (err < 0)
4740 				return err;
4741 		}
4742 	}
4743 
4744 	return 0;
4745 }
4746 
4747 /*------------------------------------------------------------
4748    /proc interface
4749  ------------------------------------------------------------*/
4750 
4751 static void
4752 snd_hdspm_proc_read_tco(struct snd_info_entry *entry,
4753 					struct snd_info_buffer *buffer)
4754 {
4755 	struct hdspm *hdspm = entry->private_data;
4756 	unsigned int status, control;
4757 	int a, ltc, frames, seconds, minutes, hours;
4758 	unsigned int period;
4759 	u64 freq_const = 0;
4760 	u32 rate;
4761 
4762 	snd_iprintf(buffer, "--- TCO ---\n");
4763 
4764 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4765 	control = hdspm->control_register;
4766 
4767 
4768 	if (status & HDSPM_tco_detect) {
4769 		snd_iprintf(buffer, "TCO module detected.\n");
4770 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4771 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4772 			snd_iprintf(buffer, "  LTC valid, ");
4773 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4774 						HDSPM_TCO1_LTC_Format_MSB)) {
4775 			case 0:
4776 				snd_iprintf(buffer, "24 fps, ");
4777 				break;
4778 			case HDSPM_TCO1_LTC_Format_LSB:
4779 				snd_iprintf(buffer, "25 fps, ");
4780 				break;
4781 			case HDSPM_TCO1_LTC_Format_MSB:
4782 				snd_iprintf(buffer, "29.97 fps, ");
4783 				break;
4784 			default:
4785 				snd_iprintf(buffer, "30 fps, ");
4786 				break;
4787 			}
4788 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4789 				snd_iprintf(buffer, "drop frame\n");
4790 			} else {
4791 				snd_iprintf(buffer, "full frame\n");
4792 			}
4793 		} else {
4794 			snd_iprintf(buffer, "  no LTC\n");
4795 		}
4796 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4797 			snd_iprintf(buffer, "  Video: NTSC\n");
4798 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4799 			snd_iprintf(buffer, "  Video: PAL\n");
4800 		} else {
4801 			snd_iprintf(buffer, "  No video\n");
4802 		}
4803 		if (a & HDSPM_TCO1_TCO_lock) {
4804 			snd_iprintf(buffer, "  Sync: lock\n");
4805 		} else {
4806 			snd_iprintf(buffer, "  Sync: no lock\n");
4807 		}
4808 
4809 		switch (hdspm->io_type) {
4810 		case MADI:
4811 		case AES32:
4812 			freq_const = 110069313433624ULL;
4813 			break;
4814 		case RayDAT:
4815 		case AIO:
4816 			freq_const = 104857600000000ULL;
4817 			break;
4818 		case MADIface:
4819 			break; /* no TCO possible */
4820 		}
4821 
4822 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4823 		snd_iprintf(buffer, "    period: %u\n", period);
4824 
4825 
4826 		/* rate = freq_const/period; */
4827 		rate = div_u64(freq_const, period);
4828 
4829 		if (control & HDSPM_QuadSpeed) {
4830 			rate *= 4;
4831 		} else if (control & HDSPM_DoubleSpeed) {
4832 			rate *= 2;
4833 		}
4834 
4835 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4836 				(unsigned int) rate);
4837 
4838 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4839 		frames = ltc & 0xF;
4840 		ltc >>= 4;
4841 		frames += (ltc & 0x3) * 10;
4842 		ltc >>= 4;
4843 		seconds = ltc & 0xF;
4844 		ltc >>= 4;
4845 		seconds += (ltc & 0x7) * 10;
4846 		ltc >>= 4;
4847 		minutes = ltc & 0xF;
4848 		ltc >>= 4;
4849 		minutes += (ltc & 0x7) * 10;
4850 		ltc >>= 4;
4851 		hours = ltc & 0xF;
4852 		ltc >>= 4;
4853 		hours += (ltc & 0x3) * 10;
4854 		snd_iprintf(buffer,
4855 			"  LTC In: %02d:%02d:%02d:%02d\n",
4856 			hours, minutes, seconds, frames);
4857 
4858 	} else {
4859 		snd_iprintf(buffer, "No TCO module detected.\n");
4860 	}
4861 }
4862 
4863 static void
4864 snd_hdspm_proc_read_madi(struct snd_info_entry *entry,
4865 			 struct snd_info_buffer *buffer)
4866 {
4867 	struct hdspm *hdspm = entry->private_data;
4868 	unsigned int status, status2;
4869 
4870 	char *pref_sync_ref;
4871 	char *autosync_ref;
4872 	char *system_clock_mode;
4873 	int x, x2;
4874 
4875 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4876 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4877 
4878 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4879 			hdspm->card_name, hdspm->card->number + 1,
4880 			hdspm->firmware_rev,
4881 			(status2 & HDSPM_version0) |
4882 			(status2 & HDSPM_version1) | (status2 &
4883 				HDSPM_version2));
4884 
4885 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4886 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4887 			hdspm->serial);
4888 
4889 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4890 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4891 
4892 	snd_iprintf(buffer, "--- System ---\n");
4893 
4894 	snd_iprintf(buffer,
4895 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4896 		status & HDSPM_audioIRQPending,
4897 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4898 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4899 		hdspm->irq_count);
4900 	snd_iprintf(buffer,
4901 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4902 		"estimated= %ld (bytes)\n",
4903 		((status & HDSPM_BufferID) ? 1 : 0),
4904 		(status & HDSPM_BufferPositionMask),
4905 		(status & HDSPM_BufferPositionMask) %
4906 		(2 * (int)hdspm->period_bytes),
4907 		((status & HDSPM_BufferPositionMask) - 64) %
4908 		(2 * (int)hdspm->period_bytes),
4909 		(long) hdspm_hw_pointer(hdspm) * 4);
4910 
4911 	snd_iprintf(buffer,
4912 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4913 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4914 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4915 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4916 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4917 	snd_iprintf(buffer,
4918 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4919 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4920 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4921 	snd_iprintf(buffer,
4922 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4923 		"status2=0x%x\n",
4924 		hdspm->control_register, hdspm->control2_register,
4925 		status, status2);
4926 
4927 
4928 	snd_iprintf(buffer, "--- Settings ---\n");
4929 
4930 	x = hdspm_get_latency(hdspm);
4931 
4932 	snd_iprintf(buffer,
4933 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4934 		x, (unsigned long) hdspm->period_bytes);
4935 
4936 	snd_iprintf(buffer, "Line out: %s\n",
4937 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4938 
4939 	snd_iprintf(buffer,
4940 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4941 		"Auto Input %s\n",
4942 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4943 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4944 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4945 
4946 
4947 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4948 		system_clock_mode = "AutoSync";
4949 	else
4950 		system_clock_mode = "Master";
4951 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4952 
4953 	switch (hdspm_pref_sync_ref(hdspm)) {
4954 	case HDSPM_SYNC_FROM_WORD:
4955 		pref_sync_ref = "Word Clock";
4956 		break;
4957 	case HDSPM_SYNC_FROM_MADI:
4958 		pref_sync_ref = "MADI Sync";
4959 		break;
4960 	case HDSPM_SYNC_FROM_TCO:
4961 		pref_sync_ref = "TCO";
4962 		break;
4963 	case HDSPM_SYNC_FROM_SYNC_IN:
4964 		pref_sync_ref = "Sync In";
4965 		break;
4966 	default:
4967 		pref_sync_ref = "XXXX Clock";
4968 		break;
4969 	}
4970 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4971 			pref_sync_ref);
4972 
4973 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4974 			hdspm->system_sample_rate);
4975 
4976 
4977 	snd_iprintf(buffer, "--- Status:\n");
4978 
4979 	x = status & HDSPM_madiSync;
4980 	x2 = status2 & HDSPM_wcSync;
4981 
4982 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4983 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4984 			"NoLock",
4985 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4986 			"NoLock");
4987 
4988 	switch (hdspm_autosync_ref(hdspm)) {
4989 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4990 		autosync_ref = "Sync In";
4991 		break;
4992 	case HDSPM_AUTOSYNC_FROM_TCO:
4993 		autosync_ref = "TCO";
4994 		break;
4995 	case HDSPM_AUTOSYNC_FROM_WORD:
4996 		autosync_ref = "Word Clock";
4997 		break;
4998 	case HDSPM_AUTOSYNC_FROM_MADI:
4999 		autosync_ref = "MADI Sync";
5000 		break;
5001 	case HDSPM_AUTOSYNC_FROM_NONE:
5002 		autosync_ref = "Input not valid";
5003 		break;
5004 	default:
5005 		autosync_ref = "---";
5006 		break;
5007 	}
5008 	snd_iprintf(buffer,
5009 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
5010 		autosync_ref, hdspm_external_sample_rate(hdspm),
5011 		(status & HDSPM_madiFreqMask) >> 22,
5012 		(status2 & HDSPM_wcFreqMask) >> 5);
5013 
5014 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
5015 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
5016 		(status & HDSPM_RX_64ch) ? "64 channels" :
5017 		"56 channels");
5018 
5019 	/* call readout function for TCO specific status */
5020 	snd_hdspm_proc_read_tco(entry, buffer);
5021 
5022 	snd_iprintf(buffer, "\n");
5023 }
5024 
5025 static void
5026 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
5027 			  struct snd_info_buffer *buffer)
5028 {
5029 	struct hdspm *hdspm = entry->private_data;
5030 	unsigned int status;
5031 	unsigned int status2;
5032 	unsigned int timecode;
5033 	unsigned int wcLock, wcSync;
5034 	int pref_syncref;
5035 	char *autosync_ref;
5036 	int x;
5037 
5038 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5039 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5040 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
5041 
5042 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
5043 		    hdspm->card_name, hdspm->card->number + 1,
5044 		    hdspm->firmware_rev);
5045 
5046 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
5047 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
5048 
5049 	snd_iprintf(buffer, "--- System ---\n");
5050 
5051 	snd_iprintf(buffer,
5052 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
5053 		    status & HDSPM_audioIRQPending,
5054 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
5055 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
5056 		    hdspm->irq_count);
5057 	snd_iprintf(buffer,
5058 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
5059 		    "estimated= %ld (bytes)\n",
5060 		    ((status & HDSPM_BufferID) ? 1 : 0),
5061 		    (status & HDSPM_BufferPositionMask),
5062 		    (status & HDSPM_BufferPositionMask) %
5063 		    (2 * (int)hdspm->period_bytes),
5064 		    ((status & HDSPM_BufferPositionMask) - 64) %
5065 		    (2 * (int)hdspm->period_bytes),
5066 		    (long) hdspm_hw_pointer(hdspm) * 4);
5067 
5068 	snd_iprintf(buffer,
5069 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
5070 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
5071 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
5072 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
5073 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
5074 	snd_iprintf(buffer,
5075 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
5076 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
5077 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
5078 	snd_iprintf(buffer,
5079 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
5080 		    "status2=0x%x\n",
5081 		    hdspm->control_register, hdspm->control2_register,
5082 		    status, status2);
5083 
5084 	snd_iprintf(buffer, "--- Settings ---\n");
5085 
5086 	x = hdspm_get_latency(hdspm);
5087 
5088 	snd_iprintf(buffer,
5089 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5090 		    x, (unsigned long) hdspm->period_bytes);
5091 
5092 	snd_iprintf(buffer, "Line out: %s\n",
5093 		    (hdspm->
5094 		     control_register & HDSPM_LineOut) ? "on " : "off");
5095 
5096 	snd_iprintf(buffer,
5097 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5098 		    (hdspm->
5099 		     control_register & HDSPM_clr_tms) ? "on" : "off",
5100 		    (hdspm->
5101 		     control_register & HDSPM_Emphasis) ? "on" : "off",
5102 		    (hdspm->
5103 		     control_register & HDSPM_Dolby) ? "on" : "off");
5104 
5105 
5106 	pref_syncref = hdspm_pref_sync_ref(hdspm);
5107 	if (pref_syncref == 0)
5108 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5109 	else
5110 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5111 				pref_syncref);
5112 
5113 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
5114 		    hdspm->system_sample_rate);
5115 
5116 	snd_iprintf(buffer, "Double speed: %s\n",
5117 			hdspm->control_register & HDSPM_DS_DoubleWire?
5118 			"Double wire" : "Single wire");
5119 	snd_iprintf(buffer, "Quad speed: %s\n",
5120 			hdspm->control_register & HDSPM_QS_DoubleWire?
5121 			"Double wire" :
5122 			hdspm->control_register & HDSPM_QS_QuadWire?
5123 			"Quad wire" : "Single wire");
5124 
5125 	snd_iprintf(buffer, "--- Status:\n");
5126 
5127 	wcLock = status & HDSPM_AES32_wcLock;
5128 	wcSync = wcLock && (status & HDSPM_AES32_wcSync);
5129 
5130 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
5131 		    (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
5132 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
5133 
5134 	for (x = 0; x < 8; x++) {
5135 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
5136 			    x+1,
5137 			    (status2 & (HDSPM_LockAES >> x)) ?
5138 			    "Sync   " : "No Lock",
5139 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
5140 	}
5141 
5142 	switch (hdspm_autosync_ref(hdspm)) {
5143 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5144 		autosync_ref = "None"; break;
5145 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5146 		autosync_ref = "Word Clock"; break;
5147 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5148 		autosync_ref = "AES1"; break;
5149 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5150 		autosync_ref = "AES2"; break;
5151 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5152 		autosync_ref = "AES3"; break;
5153 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5154 		autosync_ref = "AES4"; break;
5155 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5156 		autosync_ref = "AES5"; break;
5157 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5158 		autosync_ref = "AES6"; break;
5159 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5160 		autosync_ref = "AES7"; break;
5161 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5162 		autosync_ref = "AES8"; break;
5163 	case HDSPM_AES32_AUTOSYNC_FROM_TCO:
5164 		autosync_ref = "TCO"; break;
5165 	case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN:
5166 		autosync_ref = "Sync In"; break;
5167 	default:
5168 		autosync_ref = "---"; break;
5169 	}
5170 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5171 
5172 	/* call readout function for TCO specific status */
5173 	snd_hdspm_proc_read_tco(entry, buffer);
5174 
5175 	snd_iprintf(buffer, "\n");
5176 }
5177 
5178 static void
5179 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5180 			 struct snd_info_buffer *buffer)
5181 {
5182 	struct hdspm *hdspm = entry->private_data;
5183 	unsigned int status1, status2, status3, i;
5184 	unsigned int lock, sync;
5185 
5186 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5187 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5188 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5189 
5190 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5191 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5192 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5193 
5194 
5195 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5196 
5197 	snd_iprintf(buffer, "Clock mode      : %s\n",
5198 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5199 	snd_iprintf(buffer, "System frequency: %d Hz\n",
5200 		hdspm_get_system_sample_rate(hdspm));
5201 
5202 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5203 
5204 	lock = 0x1;
5205 	sync = 0x100;
5206 
5207 	for (i = 0; i < 8; i++) {
5208 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5209 				i,
5210 				(status1 & lock) ? 1 : 0,
5211 				(status1 & sync) ? 1 : 0,
5212 				texts_freq[(status2 >> (i * 4)) & 0xF]);
5213 
5214 		lock = lock<<1;
5215 		sync = sync<<1;
5216 	}
5217 
5218 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5219 			(status1 & 0x1000000) ? 1 : 0,
5220 			(status1 & 0x2000000) ? 1 : 0,
5221 			texts_freq[(status1 >> 16) & 0xF]);
5222 
5223 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5224 			(status1 & 0x4000000) ? 1 : 0,
5225 			(status1 & 0x8000000) ? 1 : 0,
5226 			texts_freq[(status1 >> 20) & 0xF]);
5227 
5228 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5229 			(status3 & 0x400) ? 1 : 0,
5230 			(status3 & 0x800) ? 1 : 0,
5231 			texts_freq[(status2 >> 12) & 0xF]);
5232 
5233 }
5234 
5235 #ifdef CONFIG_SND_DEBUG
5236 static void
5237 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5238 			  struct snd_info_buffer *buffer)
5239 {
5240 	struct hdspm *hdspm = entry->private_data;
5241 
5242 	int j,i;
5243 
5244 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
5245 		snd_iprintf(buffer, "0x%08X: ", i);
5246 		for (j = 0; j < 16; j += 4)
5247 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5248 		snd_iprintf(buffer, "\n");
5249 	}
5250 }
5251 #endif
5252 
5253 
5254 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5255 			  struct snd_info_buffer *buffer)
5256 {
5257 	struct hdspm *hdspm = entry->private_data;
5258 	int i;
5259 
5260 	snd_iprintf(buffer, "# generated by hdspm\n");
5261 
5262 	for (i = 0; i < hdspm->max_channels_in; i++) {
5263 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5264 	}
5265 }
5266 
5267 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5268 			  struct snd_info_buffer *buffer)
5269 {
5270 	struct hdspm *hdspm = entry->private_data;
5271 	int i;
5272 
5273 	snd_iprintf(buffer, "# generated by hdspm\n");
5274 
5275 	for (i = 0; i < hdspm->max_channels_out; i++) {
5276 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5277 	}
5278 }
5279 
5280 
5281 static void snd_hdspm_proc_init(struct hdspm *hdspm)
5282 {
5283 	void (*read)(struct snd_info_entry *, struct snd_info_buffer *) = NULL;
5284 
5285 	switch (hdspm->io_type) {
5286 	case AES32:
5287 		read = snd_hdspm_proc_read_aes32;
5288 		break;
5289 	case MADI:
5290 		read = snd_hdspm_proc_read_madi;
5291 		break;
5292 	case MADIface:
5293 		/* read = snd_hdspm_proc_read_madiface; */
5294 		break;
5295 	case RayDAT:
5296 		read = snd_hdspm_proc_read_raydat;
5297 		break;
5298 	case AIO:
5299 		break;
5300 	}
5301 
5302 	snd_card_ro_proc_new(hdspm->card, "hdspm", hdspm, read);
5303 	snd_card_ro_proc_new(hdspm->card, "ports.in", hdspm,
5304 			     snd_hdspm_proc_ports_in);
5305 	snd_card_ro_proc_new(hdspm->card, "ports.out", hdspm,
5306 			     snd_hdspm_proc_ports_out);
5307 
5308 #ifdef CONFIG_SND_DEBUG
5309 	/* debug file to read all hdspm registers */
5310 	snd_card_ro_proc_new(hdspm->card, "debug", hdspm,
5311 			     snd_hdspm_proc_read_debug);
5312 #endif
5313 }
5314 
5315 /*------------------------------------------------------------
5316    hdspm intitialize
5317  ------------------------------------------------------------*/
5318 
5319 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5320 {
5321 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
5322 	   hold it (e.g. during module initialization).
5323 	   */
5324 
5325 	/* set defaults:       */
5326 
5327 	hdspm->settings_register = 0;
5328 
5329 	switch (hdspm->io_type) {
5330 	case MADI:
5331 	case MADIface:
5332 		hdspm->control_register =
5333 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5334 		break;
5335 
5336 	case RayDAT:
5337 	case AIO:
5338 		hdspm->settings_register = 0x1 + 0x1000;
5339 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5340 		 * line_out */
5341 		hdspm->control_register =
5342 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5343 		break;
5344 
5345 	case AES32:
5346 		hdspm->control_register =
5347 			HDSPM_ClockModeMaster |	/* Master Clock Mode on */
5348 			hdspm_encode_latency(7) | /* latency max=8192samples */
5349 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
5350 			HDSPM_LineOut |	/* Analog output in */
5351 			HDSPM_Professional;  /* Professional mode */
5352 		break;
5353 	}
5354 
5355 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5356 
5357 	if (AES32 == hdspm->io_type) {
5358 		/* No control2 register for AES32 */
5359 #ifdef SNDRV_BIG_ENDIAN
5360 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5361 #else
5362 		hdspm->control2_register = 0;
5363 #endif
5364 
5365 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5366 	}
5367 	hdspm_compute_period_size(hdspm);
5368 
5369 	/* silence everything */
5370 
5371 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5372 
5373 	if (hdspm_is_raydat_or_aio(hdspm))
5374 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5375 
5376 	/* set a default rate so that the channel map is set up. */
5377 	hdspm_set_rate(hdspm, 48000, 1);
5378 
5379 	return 0;
5380 }
5381 
5382 
5383 /*------------------------------------------------------------
5384    interrupt
5385  ------------------------------------------------------------*/
5386 
5387 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5388 {
5389 	struct hdspm *hdspm = (struct hdspm *) dev_id;
5390 	unsigned int status;
5391 	int i, audio, midi, schedule = 0;
5392 	/* cycles_t now; */
5393 
5394 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5395 
5396 	audio = status & HDSPM_audioIRQPending;
5397 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5398 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5399 
5400 	/* now = get_cycles(); */
5401 	/*
5402 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5403 	 *          6       4096   ~256053425     ~514672358
5404 	 *          5       2048   ~128024983     ~257373821
5405 	 *          4       1024    ~64023706     ~128718089
5406 	 *          3        512    ~32005945      ~64385999
5407 	 *          2        256    ~16003039      ~32260176
5408 	 *          1        128     ~7998738      ~16194507
5409 	 *          0         64     ~3998231       ~8191558
5410 	 */
5411 	/*
5412 	  dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n",
5413 	   now-hdspm->last_interrupt, status & 0xFFC0);
5414 	   hdspm->last_interrupt = now;
5415 	*/
5416 
5417 	if (!audio && !midi)
5418 		return IRQ_NONE;
5419 
5420 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5421 	hdspm->irq_count++;
5422 
5423 
5424 	if (audio) {
5425 		if (hdspm->capture_substream)
5426 			snd_pcm_period_elapsed(hdspm->capture_substream);
5427 
5428 		if (hdspm->playback_substream)
5429 			snd_pcm_period_elapsed(hdspm->playback_substream);
5430 	}
5431 
5432 	if (midi) {
5433 		i = 0;
5434 		while (i < hdspm->midiPorts) {
5435 			if ((hdspm_read(hdspm,
5436 				hdspm->midi[i].statusIn) & 0xff) &&
5437 					(status & hdspm->midi[i].irq)) {
5438 				/* we disable interrupts for this input until
5439 				 * processing is done
5440 				 */
5441 				hdspm->control_register &= ~hdspm->midi[i].ie;
5442 				hdspm_write(hdspm, HDSPM_controlRegister,
5443 						hdspm->control_register);
5444 				hdspm->midi[i].pending = 1;
5445 				schedule = 1;
5446 			}
5447 
5448 			i++;
5449 		}
5450 
5451 		if (schedule)
5452 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5453 	}
5454 
5455 	return IRQ_HANDLED;
5456 }
5457 
5458 /*------------------------------------------------------------
5459    pcm interface
5460   ------------------------------------------------------------*/
5461 
5462 
5463 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5464 					      *substream)
5465 {
5466 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5467 	return hdspm_hw_pointer(hdspm);
5468 }
5469 
5470 
5471 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5472 {
5473 	struct snd_pcm_runtime *runtime = substream->runtime;
5474 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5475 	struct snd_pcm_substream *other;
5476 
5477 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5478 		other = hdspm->capture_substream;
5479 	else
5480 		other = hdspm->playback_substream;
5481 
5482 	if (hdspm->running)
5483 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5484 	else
5485 		runtime->status->hw_ptr = 0;
5486 	if (other) {
5487 		struct snd_pcm_substream *s;
5488 		struct snd_pcm_runtime *oruntime = other->runtime;
5489 		snd_pcm_group_for_each_entry(s, substream) {
5490 			if (s == other) {
5491 				oruntime->status->hw_ptr =
5492 					runtime->status->hw_ptr;
5493 				break;
5494 			}
5495 		}
5496 	}
5497 	return 0;
5498 }
5499 
5500 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5501 			       struct snd_pcm_hw_params *params)
5502 {
5503 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5504 	int err;
5505 	int i;
5506 	pid_t this_pid;
5507 	pid_t other_pid;
5508 
5509 	spin_lock_irq(&hdspm->lock);
5510 
5511 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5512 		this_pid = hdspm->playback_pid;
5513 		other_pid = hdspm->capture_pid;
5514 	} else {
5515 		this_pid = hdspm->capture_pid;
5516 		other_pid = hdspm->playback_pid;
5517 	}
5518 
5519 	if (other_pid > 0 && this_pid != other_pid) {
5520 
5521 		/* The other stream is open, and not by the same
5522 		   task as this one. Make sure that the parameters
5523 		   that matter are the same.
5524 		   */
5525 
5526 		if (params_rate(params) != hdspm->system_sample_rate) {
5527 			spin_unlock_irq(&hdspm->lock);
5528 			_snd_pcm_hw_param_setempty(params,
5529 					SNDRV_PCM_HW_PARAM_RATE);
5530 			return -EBUSY;
5531 		}
5532 
5533 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5534 			spin_unlock_irq(&hdspm->lock);
5535 			_snd_pcm_hw_param_setempty(params,
5536 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5537 			return -EBUSY;
5538 		}
5539 
5540 	}
5541 	/* We're fine. */
5542 	spin_unlock_irq(&hdspm->lock);
5543 
5544 	/* how to make sure that the rate matches an externally-set one ?   */
5545 
5546 	spin_lock_irq(&hdspm->lock);
5547 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5548 	if (err < 0) {
5549 		dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err);
5550 		spin_unlock_irq(&hdspm->lock);
5551 		_snd_pcm_hw_param_setempty(params,
5552 				SNDRV_PCM_HW_PARAM_RATE);
5553 		return err;
5554 	}
5555 	spin_unlock_irq(&hdspm->lock);
5556 
5557 	err = hdspm_set_interrupt_interval(hdspm,
5558 			params_period_size(params));
5559 	if (err < 0) {
5560 		dev_info(hdspm->card->dev,
5561 			 "err on hdspm_set_interrupt_interval: %d\n", err);
5562 		_snd_pcm_hw_param_setempty(params,
5563 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5564 		return err;
5565 	}
5566 
5567 	/* Memory allocation, takashi's method, dont know if we should
5568 	 * spinlock
5569 	 */
5570 	/* malloc all buffer even if not enabled to get sure */
5571 	/* Update for MADI rev 204: we need to allocate for all channels,
5572 	 * otherwise it doesn't work at 96kHz */
5573 
5574 	err =
5575 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5576 	if (err < 0) {
5577 		dev_info(hdspm->card->dev,
5578 			 "err on snd_pcm_lib_malloc_pages: %d\n", err);
5579 		return err;
5580 	}
5581 
5582 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5583 
5584 		for (i = 0; i < params_channels(params); ++i) {
5585 			int c = hdspm->channel_map_out[i];
5586 
5587 			if (c < 0)
5588 				continue;      /* just make sure */
5589 			hdspm_set_channel_dma_addr(hdspm, substream,
5590 						   HDSPM_pageAddressBufferOut,
5591 						   c);
5592 			snd_hdspm_enable_out(hdspm, c, 1);
5593 		}
5594 
5595 		hdspm->playback_buffer =
5596 			(unsigned char *) substream->runtime->dma_area;
5597 		dev_dbg(hdspm->card->dev,
5598 			"Allocated sample buffer for playback at %p\n",
5599 				hdspm->playback_buffer);
5600 	} else {
5601 		for (i = 0; i < params_channels(params); ++i) {
5602 			int c = hdspm->channel_map_in[i];
5603 
5604 			if (c < 0)
5605 				continue;
5606 			hdspm_set_channel_dma_addr(hdspm, substream,
5607 						   HDSPM_pageAddressBufferIn,
5608 						   c);
5609 			snd_hdspm_enable_in(hdspm, c, 1);
5610 		}
5611 
5612 		hdspm->capture_buffer =
5613 			(unsigned char *) substream->runtime->dma_area;
5614 		dev_dbg(hdspm->card->dev,
5615 			"Allocated sample buffer for capture at %p\n",
5616 				hdspm->capture_buffer);
5617 	}
5618 
5619 	/*
5620 	   dev_dbg(hdspm->card->dev,
5621 	   "Allocated sample buffer for %s at 0x%08X\n",
5622 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5623 	   "playback" : "capture",
5624 	   snd_pcm_sgbuf_get_addr(substream, 0));
5625 	   */
5626 	/*
5627 	   dev_dbg(hdspm->card->dev,
5628 	   "set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5629 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5630 	   "playback" : "capture",
5631 	   params_rate(params), params_channels(params),
5632 	   params_buffer_size(params));
5633 	   */
5634 
5635 
5636 	/*  For AES cards, the float format bit is the same as the
5637 	 *  preferred sync reference. Since we don't want to break
5638 	 *  sync settings, we have to skip the remaining part of this
5639 	 *  function.
5640 	 */
5641 	if (hdspm->io_type == AES32) {
5642 		return 0;
5643 	}
5644 
5645 
5646 	/* Switch to native float format if requested */
5647 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5648 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5649 			dev_info(hdspm->card->dev,
5650 				 "Switching to native 32bit LE float format.\n");
5651 
5652 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5653 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5654 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5655 			dev_info(hdspm->card->dev,
5656 				 "Switching to native 32bit LE integer format.\n");
5657 
5658 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5659 	}
5660 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5661 
5662 	return 0;
5663 }
5664 
5665 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5666 {
5667 	int i;
5668 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5669 
5670 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5671 		/* Just disable all channels. The saving when disabling a */
5672 		/* smaller set is not worth the trouble. */
5673 		for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
5674 			snd_hdspm_enable_out(hdspm, i, 0);
5675 
5676 		hdspm->playback_buffer = NULL;
5677 	} else {
5678 		for (i = 0; i < HDSPM_MAX_CHANNELS; ++i)
5679 			snd_hdspm_enable_in(hdspm, i, 0);
5680 
5681 		hdspm->capture_buffer = NULL;
5682 	}
5683 
5684 	snd_pcm_lib_free_pages(substream);
5685 
5686 	return 0;
5687 }
5688 
5689 
5690 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5691 		struct snd_pcm_channel_info *info)
5692 {
5693 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5694 	unsigned int channel = info->channel;
5695 
5696 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5697 		if (snd_BUG_ON(channel >= hdspm->max_channels_out)) {
5698 			dev_info(hdspm->card->dev,
5699 				 "snd_hdspm_channel_info: output channel out of range (%d)\n",
5700 				 channel);
5701 			return -EINVAL;
5702 		}
5703 
5704 		channel = array_index_nospec(channel, hdspm->max_channels_out);
5705 		if (hdspm->channel_map_out[channel] < 0) {
5706 			dev_info(hdspm->card->dev,
5707 				 "snd_hdspm_channel_info: output channel %d mapped out\n",
5708 				 channel);
5709 			return -EINVAL;
5710 		}
5711 
5712 		info->offset = hdspm->channel_map_out[channel] *
5713 			HDSPM_CHANNEL_BUFFER_BYTES;
5714 	} else {
5715 		if (snd_BUG_ON(channel >= hdspm->max_channels_in)) {
5716 			dev_info(hdspm->card->dev,
5717 				 "snd_hdspm_channel_info: input channel out of range (%d)\n",
5718 				 channel);
5719 			return -EINVAL;
5720 		}
5721 
5722 		channel = array_index_nospec(channel, hdspm->max_channels_in);
5723 		if (hdspm->channel_map_in[channel] < 0) {
5724 			dev_info(hdspm->card->dev,
5725 				 "snd_hdspm_channel_info: input channel %d mapped out\n",
5726 				 channel);
5727 			return -EINVAL;
5728 		}
5729 
5730 		info->offset = hdspm->channel_map_in[channel] *
5731 			HDSPM_CHANNEL_BUFFER_BYTES;
5732 	}
5733 
5734 	info->first = 0;
5735 	info->step = 32;
5736 	return 0;
5737 }
5738 
5739 
5740 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5741 		unsigned int cmd, void *arg)
5742 {
5743 	switch (cmd) {
5744 	case SNDRV_PCM_IOCTL1_RESET:
5745 		return snd_hdspm_reset(substream);
5746 
5747 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5748 		{
5749 			struct snd_pcm_channel_info *info = arg;
5750 			return snd_hdspm_channel_info(substream, info);
5751 		}
5752 	default:
5753 		break;
5754 	}
5755 
5756 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5757 }
5758 
5759 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5760 {
5761 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5762 	struct snd_pcm_substream *other;
5763 	int running;
5764 
5765 	spin_lock(&hdspm->lock);
5766 	running = hdspm->running;
5767 	switch (cmd) {
5768 	case SNDRV_PCM_TRIGGER_START:
5769 		running |= 1 << substream->stream;
5770 		break;
5771 	case SNDRV_PCM_TRIGGER_STOP:
5772 		running &= ~(1 << substream->stream);
5773 		break;
5774 	default:
5775 		snd_BUG();
5776 		spin_unlock(&hdspm->lock);
5777 		return -EINVAL;
5778 	}
5779 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5780 		other = hdspm->capture_substream;
5781 	else
5782 		other = hdspm->playback_substream;
5783 
5784 	if (other) {
5785 		struct snd_pcm_substream *s;
5786 		snd_pcm_group_for_each_entry(s, substream) {
5787 			if (s == other) {
5788 				snd_pcm_trigger_done(s, substream);
5789 				if (cmd == SNDRV_PCM_TRIGGER_START)
5790 					running |= 1 << s->stream;
5791 				else
5792 					running &= ~(1 << s->stream);
5793 				goto _ok;
5794 			}
5795 		}
5796 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5797 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5798 					&& substream->stream ==
5799 					SNDRV_PCM_STREAM_CAPTURE)
5800 				hdspm_silence_playback(hdspm);
5801 		} else {
5802 			if (running &&
5803 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5804 				hdspm_silence_playback(hdspm);
5805 		}
5806 	} else {
5807 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5808 			hdspm_silence_playback(hdspm);
5809 	}
5810 _ok:
5811 	snd_pcm_trigger_done(substream, substream);
5812 	if (!hdspm->running && running)
5813 		hdspm_start_audio(hdspm);
5814 	else if (hdspm->running && !running)
5815 		hdspm_stop_audio(hdspm);
5816 	hdspm->running = running;
5817 	spin_unlock(&hdspm->lock);
5818 
5819 	return 0;
5820 }
5821 
5822 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5823 {
5824 	return 0;
5825 }
5826 
5827 static const struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5828 	.info = (SNDRV_PCM_INFO_MMAP |
5829 		 SNDRV_PCM_INFO_MMAP_VALID |
5830 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5831 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5832 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5833 	.rates = (SNDRV_PCM_RATE_32000 |
5834 		  SNDRV_PCM_RATE_44100 |
5835 		  SNDRV_PCM_RATE_48000 |
5836 		  SNDRV_PCM_RATE_64000 |
5837 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5838 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5839 	.rate_min = 32000,
5840 	.rate_max = 192000,
5841 	.channels_min = 1,
5842 	.channels_max = HDSPM_MAX_CHANNELS,
5843 	.buffer_bytes_max =
5844 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5845 	.period_bytes_min = (32 * 4),
5846 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5847 	.periods_min = 2,
5848 	.periods_max = 512,
5849 	.fifo_size = 0
5850 };
5851 
5852 static const struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5853 	.info = (SNDRV_PCM_INFO_MMAP |
5854 		 SNDRV_PCM_INFO_MMAP_VALID |
5855 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5856 		 SNDRV_PCM_INFO_SYNC_START),
5857 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5858 	.rates = (SNDRV_PCM_RATE_32000 |
5859 		  SNDRV_PCM_RATE_44100 |
5860 		  SNDRV_PCM_RATE_48000 |
5861 		  SNDRV_PCM_RATE_64000 |
5862 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5863 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5864 	.rate_min = 32000,
5865 	.rate_max = 192000,
5866 	.channels_min = 1,
5867 	.channels_max = HDSPM_MAX_CHANNELS,
5868 	.buffer_bytes_max =
5869 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5870 	.period_bytes_min = (32 * 4),
5871 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5872 	.periods_min = 2,
5873 	.periods_max = 512,
5874 	.fifo_size = 0
5875 };
5876 
5877 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5878 					   struct snd_pcm_hw_rule *rule)
5879 {
5880 	struct hdspm *hdspm = rule->private;
5881 	struct snd_interval *c =
5882 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5883 	struct snd_interval *r =
5884 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5885 
5886 	if (r->min > 96000 && r->max <= 192000) {
5887 		struct snd_interval t = {
5888 			.min = hdspm->qs_in_channels,
5889 			.max = hdspm->qs_in_channels,
5890 			.integer = 1,
5891 		};
5892 		return snd_interval_refine(c, &t);
5893 	} else if (r->min > 48000 && r->max <= 96000) {
5894 		struct snd_interval t = {
5895 			.min = hdspm->ds_in_channels,
5896 			.max = hdspm->ds_in_channels,
5897 			.integer = 1,
5898 		};
5899 		return snd_interval_refine(c, &t);
5900 	} else if (r->max < 64000) {
5901 		struct snd_interval t = {
5902 			.min = hdspm->ss_in_channels,
5903 			.max = hdspm->ss_in_channels,
5904 			.integer = 1,
5905 		};
5906 		return snd_interval_refine(c, &t);
5907 	}
5908 
5909 	return 0;
5910 }
5911 
5912 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5913 					   struct snd_pcm_hw_rule * rule)
5914 {
5915 	struct hdspm *hdspm = rule->private;
5916 	struct snd_interval *c =
5917 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5918 	struct snd_interval *r =
5919 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5920 
5921 	if (r->min > 96000 && r->max <= 192000) {
5922 		struct snd_interval t = {
5923 			.min = hdspm->qs_out_channels,
5924 			.max = hdspm->qs_out_channels,
5925 			.integer = 1,
5926 		};
5927 		return snd_interval_refine(c, &t);
5928 	} else if (r->min > 48000 && r->max <= 96000) {
5929 		struct snd_interval t = {
5930 			.min = hdspm->ds_out_channels,
5931 			.max = hdspm->ds_out_channels,
5932 			.integer = 1,
5933 		};
5934 		return snd_interval_refine(c, &t);
5935 	} else if (r->max < 64000) {
5936 		struct snd_interval t = {
5937 			.min = hdspm->ss_out_channels,
5938 			.max = hdspm->ss_out_channels,
5939 			.integer = 1,
5940 		};
5941 		return snd_interval_refine(c, &t);
5942 	} else {
5943 	}
5944 	return 0;
5945 }
5946 
5947 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5948 					   struct snd_pcm_hw_rule * rule)
5949 {
5950 	struct hdspm *hdspm = rule->private;
5951 	struct snd_interval *c =
5952 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5953 	struct snd_interval *r =
5954 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5955 
5956 	if (c->min >= hdspm->ss_in_channels) {
5957 		struct snd_interval t = {
5958 			.min = 32000,
5959 			.max = 48000,
5960 			.integer = 1,
5961 		};
5962 		return snd_interval_refine(r, &t);
5963 	} else if (c->max <= hdspm->qs_in_channels) {
5964 		struct snd_interval t = {
5965 			.min = 128000,
5966 			.max = 192000,
5967 			.integer = 1,
5968 		};
5969 		return snd_interval_refine(r, &t);
5970 	} else if (c->max <= hdspm->ds_in_channels) {
5971 		struct snd_interval t = {
5972 			.min = 64000,
5973 			.max = 96000,
5974 			.integer = 1,
5975 		};
5976 		return snd_interval_refine(r, &t);
5977 	}
5978 
5979 	return 0;
5980 }
5981 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5982 					   struct snd_pcm_hw_rule *rule)
5983 {
5984 	struct hdspm *hdspm = rule->private;
5985 	struct snd_interval *c =
5986 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5987 	struct snd_interval *r =
5988 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5989 
5990 	if (c->min >= hdspm->ss_out_channels) {
5991 		struct snd_interval t = {
5992 			.min = 32000,
5993 			.max = 48000,
5994 			.integer = 1,
5995 		};
5996 		return snd_interval_refine(r, &t);
5997 	} else if (c->max <= hdspm->qs_out_channels) {
5998 		struct snd_interval t = {
5999 			.min = 128000,
6000 			.max = 192000,
6001 			.integer = 1,
6002 		};
6003 		return snd_interval_refine(r, &t);
6004 	} else if (c->max <= hdspm->ds_out_channels) {
6005 		struct snd_interval t = {
6006 			.min = 64000,
6007 			.max = 96000,
6008 			.integer = 1,
6009 		};
6010 		return snd_interval_refine(r, &t);
6011 	}
6012 
6013 	return 0;
6014 }
6015 
6016 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
6017 				      struct snd_pcm_hw_rule *rule)
6018 {
6019 	unsigned int list[3];
6020 	struct hdspm *hdspm = rule->private;
6021 	struct snd_interval *c = hw_param_interval(params,
6022 			SNDRV_PCM_HW_PARAM_CHANNELS);
6023 
6024 	list[0] = hdspm->qs_in_channels;
6025 	list[1] = hdspm->ds_in_channels;
6026 	list[2] = hdspm->ss_in_channels;
6027 	return snd_interval_list(c, 3, list, 0);
6028 }
6029 
6030 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
6031 				      struct snd_pcm_hw_rule *rule)
6032 {
6033 	unsigned int list[3];
6034 	struct hdspm *hdspm = rule->private;
6035 	struct snd_interval *c = hw_param_interval(params,
6036 			SNDRV_PCM_HW_PARAM_CHANNELS);
6037 
6038 	list[0] = hdspm->qs_out_channels;
6039 	list[1] = hdspm->ds_out_channels;
6040 	list[2] = hdspm->ss_out_channels;
6041 	return snd_interval_list(c, 3, list, 0);
6042 }
6043 
6044 
6045 static const unsigned int hdspm_aes32_sample_rates[] = {
6046 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
6047 };
6048 
6049 static const struct snd_pcm_hw_constraint_list
6050 hdspm_hw_constraints_aes32_sample_rates = {
6051 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
6052 	.list = hdspm_aes32_sample_rates,
6053 	.mask = 0
6054 };
6055 
6056 static int snd_hdspm_open(struct snd_pcm_substream *substream)
6057 {
6058 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6059 	struct snd_pcm_runtime *runtime = substream->runtime;
6060 	bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
6061 
6062 	spin_lock_irq(&hdspm->lock);
6063 	snd_pcm_set_sync(substream);
6064 	runtime->hw = (playback) ? snd_hdspm_playback_subinfo :
6065 		snd_hdspm_capture_subinfo;
6066 
6067 	if (playback) {
6068 		if (!hdspm->capture_substream)
6069 			hdspm_stop_audio(hdspm);
6070 
6071 		hdspm->playback_pid = current->pid;
6072 		hdspm->playback_substream = substream;
6073 	} else {
6074 		if (!hdspm->playback_substream)
6075 			hdspm_stop_audio(hdspm);
6076 
6077 		hdspm->capture_pid = current->pid;
6078 		hdspm->capture_substream = substream;
6079 	}
6080 
6081 	spin_unlock_irq(&hdspm->lock);
6082 
6083 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6084 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6085 
6086 	switch (hdspm->io_type) {
6087 	case AIO:
6088 	case RayDAT:
6089 		snd_pcm_hw_constraint_minmax(runtime,
6090 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6091 					     32, 4096);
6092 		/* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
6093 		snd_pcm_hw_constraint_single(runtime,
6094 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6095 					     16384);
6096 		break;
6097 
6098 	default:
6099 		snd_pcm_hw_constraint_minmax(runtime,
6100 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6101 					     64, 8192);
6102 		snd_pcm_hw_constraint_single(runtime,
6103 					     SNDRV_PCM_HW_PARAM_PERIODS, 2);
6104 		break;
6105 	}
6106 
6107 	if (AES32 == hdspm->io_type) {
6108 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6109 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6110 				&hdspm_hw_constraints_aes32_sample_rates);
6111 	} else {
6112 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6113 				(playback ?
6114 				 snd_hdspm_hw_rule_rate_out_channels :
6115 				 snd_hdspm_hw_rule_rate_in_channels), hdspm,
6116 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6117 	}
6118 
6119 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6120 			(playback ? snd_hdspm_hw_rule_out_channels :
6121 			 snd_hdspm_hw_rule_in_channels), hdspm,
6122 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6123 
6124 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6125 			(playback ? snd_hdspm_hw_rule_out_channels_rate :
6126 			 snd_hdspm_hw_rule_in_channels_rate), hdspm,
6127 			SNDRV_PCM_HW_PARAM_RATE, -1);
6128 
6129 	return 0;
6130 }
6131 
6132 static int snd_hdspm_release(struct snd_pcm_substream *substream)
6133 {
6134 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6135 	bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
6136 
6137 	spin_lock_irq(&hdspm->lock);
6138 
6139 	if (playback) {
6140 		hdspm->playback_pid = -1;
6141 		hdspm->playback_substream = NULL;
6142 	} else {
6143 		hdspm->capture_pid = -1;
6144 		hdspm->capture_substream = NULL;
6145 	}
6146 
6147 	spin_unlock_irq(&hdspm->lock);
6148 
6149 	return 0;
6150 }
6151 
6152 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6153 {
6154 	/* we have nothing to initialize but the call is required */
6155 	return 0;
6156 }
6157 
6158 static inline int copy_u32_le(void __user *dest, void __iomem *src)
6159 {
6160 	u32 val = readl(src);
6161 	return copy_to_user(dest, &val, 4);
6162 }
6163 
6164 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
6165 		unsigned int cmd, unsigned long arg)
6166 {
6167 	void __user *argp = (void __user *)arg;
6168 	struct hdspm *hdspm = hw->private_data;
6169 	struct hdspm_mixer_ioctl mixer;
6170 	struct hdspm_config info;
6171 	struct hdspm_status status;
6172 	struct hdspm_version hdspm_version;
6173 	struct hdspm_peak_rms *levels;
6174 	struct hdspm_ltc ltc;
6175 	unsigned int statusregister;
6176 	long unsigned int s;
6177 	int i = 0;
6178 
6179 	switch (cmd) {
6180 
6181 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
6182 		levels = &hdspm->peak_rms;
6183 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
6184 			levels->input_peaks[i] =
6185 				readl(hdspm->iobase +
6186 						HDSPM_MADI_INPUT_PEAK + i*4);
6187 			levels->playback_peaks[i] =
6188 				readl(hdspm->iobase +
6189 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
6190 			levels->output_peaks[i] =
6191 				readl(hdspm->iobase +
6192 						HDSPM_MADI_OUTPUT_PEAK + i*4);
6193 
6194 			levels->input_rms[i] =
6195 				((uint64_t) readl(hdspm->iobase +
6196 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6197 				(uint64_t) readl(hdspm->iobase +
6198 						HDSPM_MADI_INPUT_RMS_L + i*4);
6199 			levels->playback_rms[i] =
6200 				((uint64_t)readl(hdspm->iobase +
6201 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6202 				(uint64_t)readl(hdspm->iobase +
6203 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6204 			levels->output_rms[i] =
6205 				((uint64_t)readl(hdspm->iobase +
6206 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6207 				(uint64_t)readl(hdspm->iobase +
6208 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
6209 		}
6210 
6211 		if (hdspm->system_sample_rate > 96000) {
6212 			levels->speed = qs;
6213 		} else if (hdspm->system_sample_rate > 48000) {
6214 			levels->speed = ds;
6215 		} else {
6216 			levels->speed = ss;
6217 		}
6218 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6219 
6220 		s = copy_to_user(argp, levels, sizeof(*levels));
6221 		if (0 != s) {
6222 			/* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu
6223 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6224 			 */
6225 			return -EFAULT;
6226 		}
6227 		break;
6228 
6229 	case SNDRV_HDSPM_IOCTL_GET_LTC:
6230 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6231 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6232 		if (i & HDSPM_TCO1_LTC_Input_valid) {
6233 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6234 				HDSPM_TCO1_LTC_Format_MSB)) {
6235 			case 0:
6236 				ltc.format = fps_24;
6237 				break;
6238 			case HDSPM_TCO1_LTC_Format_LSB:
6239 				ltc.format = fps_25;
6240 				break;
6241 			case HDSPM_TCO1_LTC_Format_MSB:
6242 				ltc.format = fps_2997;
6243 				break;
6244 			default:
6245 				ltc.format = fps_30;
6246 				break;
6247 			}
6248 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
6249 				ltc.frame = drop_frame;
6250 			} else {
6251 				ltc.frame = full_frame;
6252 			}
6253 		} else {
6254 			ltc.format = format_invalid;
6255 			ltc.frame = frame_invalid;
6256 		}
6257 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6258 			ltc.input_format = ntsc;
6259 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6260 			ltc.input_format = pal;
6261 		} else {
6262 			ltc.input_format = no_video;
6263 		}
6264 
6265 		s = copy_to_user(argp, &ltc, sizeof(ltc));
6266 		if (0 != s) {
6267 			/*
6268 			  dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6269 			return -EFAULT;
6270 		}
6271 
6272 		break;
6273 
6274 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6275 
6276 		memset(&info, 0, sizeof(info));
6277 		spin_lock_irq(&hdspm->lock);
6278 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6279 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6280 
6281 		info.system_sample_rate = hdspm->system_sample_rate;
6282 		info.autosync_sample_rate =
6283 			hdspm_external_sample_rate(hdspm);
6284 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6285 		info.clock_source = hdspm_clock_source(hdspm);
6286 		info.autosync_ref = hdspm_autosync_ref(hdspm);
6287 		info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
6288 		info.passthru = 0;
6289 		spin_unlock_irq(&hdspm->lock);
6290 		if (copy_to_user(argp, &info, sizeof(info)))
6291 			return -EFAULT;
6292 		break;
6293 
6294 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
6295 		memset(&status, 0, sizeof(status));
6296 
6297 		status.card_type = hdspm->io_type;
6298 
6299 		status.autosync_source = hdspm_autosync_ref(hdspm);
6300 
6301 		status.card_clock = 110069313433624ULL;
6302 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6303 
6304 		switch (hdspm->io_type) {
6305 		case MADI:
6306 		case MADIface:
6307 			status.card_specific.madi.sync_wc =
6308 				hdspm_wc_sync_check(hdspm);
6309 			status.card_specific.madi.sync_madi =
6310 				hdspm_madi_sync_check(hdspm);
6311 			status.card_specific.madi.sync_tco =
6312 				hdspm_tco_sync_check(hdspm);
6313 			status.card_specific.madi.sync_in =
6314 				hdspm_sync_in_sync_check(hdspm);
6315 
6316 			statusregister =
6317 				hdspm_read(hdspm, HDSPM_statusRegister);
6318 			status.card_specific.madi.madi_input =
6319 				(statusregister & HDSPM_AB_int) ? 1 : 0;
6320 			status.card_specific.madi.channel_format =
6321 				(statusregister & HDSPM_RX_64ch) ? 1 : 0;
6322 			/* TODO: Mac driver sets it when f_s>48kHz */
6323 			status.card_specific.madi.frame_format = 0;
6324 
6325 		default:
6326 			break;
6327 		}
6328 
6329 		if (copy_to_user(argp, &status, sizeof(status)))
6330 			return -EFAULT;
6331 
6332 
6333 		break;
6334 
6335 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
6336 		memset(&hdspm_version, 0, sizeof(hdspm_version));
6337 
6338 		hdspm_version.card_type = hdspm->io_type;
6339 		strlcpy(hdspm_version.cardname, hdspm->card_name,
6340 				sizeof(hdspm_version.cardname));
6341 		hdspm_version.serial = hdspm->serial;
6342 		hdspm_version.firmware_rev = hdspm->firmware_rev;
6343 		hdspm_version.addons = 0;
6344 		if (hdspm->tco)
6345 			hdspm_version.addons |= HDSPM_ADDON_TCO;
6346 
6347 		if (copy_to_user(argp, &hdspm_version,
6348 					sizeof(hdspm_version)))
6349 			return -EFAULT;
6350 		break;
6351 
6352 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
6353 		if (copy_from_user(&mixer, argp, sizeof(mixer)))
6354 			return -EFAULT;
6355 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6356 				 sizeof(*mixer.mixer)))
6357 			return -EFAULT;
6358 		break;
6359 
6360 	default:
6361 		return -EINVAL;
6362 	}
6363 	return 0;
6364 }
6365 
6366 static const struct snd_pcm_ops snd_hdspm_ops = {
6367 	.open = snd_hdspm_open,
6368 	.close = snd_hdspm_release,
6369 	.ioctl = snd_hdspm_ioctl,
6370 	.hw_params = snd_hdspm_hw_params,
6371 	.hw_free = snd_hdspm_hw_free,
6372 	.prepare = snd_hdspm_prepare,
6373 	.trigger = snd_hdspm_trigger,
6374 	.pointer = snd_hdspm_hw_pointer,
6375 };
6376 
6377 static int snd_hdspm_create_hwdep(struct snd_card *card,
6378 				  struct hdspm *hdspm)
6379 {
6380 	struct snd_hwdep *hw;
6381 	int err;
6382 
6383 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6384 	if (err < 0)
6385 		return err;
6386 
6387 	hdspm->hwdep = hw;
6388 	hw->private_data = hdspm;
6389 	strcpy(hw->name, "HDSPM hwdep interface");
6390 
6391 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6392 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6393 	hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6394 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6395 
6396 	return 0;
6397 }
6398 
6399 
6400 /*------------------------------------------------------------
6401    memory interface
6402  ------------------------------------------------------------*/
6403 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6404 {
6405 	struct snd_pcm *pcm;
6406 	size_t wanted;
6407 
6408 	pcm = hdspm->pcm;
6409 
6410 	wanted = HDSPM_DMA_AREA_BYTES;
6411 
6412 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
6413 					      &hdspm->pci->dev,
6414 					      wanted, wanted);
6415 	dev_dbg(hdspm->card->dev, " Preallocated %zd Bytes\n", wanted);
6416 	return 0;
6417 }
6418 
6419 /* Inform the card what DMA addresses to use for the indicated channel. */
6420 /* Each channel got 16 4K pages allocated for DMA transfers. */
6421 static void hdspm_set_channel_dma_addr(struct hdspm *hdspm,
6422 				       struct snd_pcm_substream *substream,
6423 				       unsigned int reg, int channel)
6424 {
6425 	int i;
6426 
6427 	for (i = channel * 16; i < channel * 16 + 16; i++)
6428 		hdspm_write(hdspm, reg + 4 * i,
6429 			    snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6430 }
6431 
6432 
6433 /* ------------- ALSA Devices ---------------------------- */
6434 static int snd_hdspm_create_pcm(struct snd_card *card,
6435 				struct hdspm *hdspm)
6436 {
6437 	struct snd_pcm *pcm;
6438 	int err;
6439 
6440 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6441 	if (err < 0)
6442 		return err;
6443 
6444 	hdspm->pcm = pcm;
6445 	pcm->private_data = hdspm;
6446 	strcpy(pcm->name, hdspm->card_name);
6447 
6448 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6449 			&snd_hdspm_ops);
6450 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6451 			&snd_hdspm_ops);
6452 
6453 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6454 
6455 	err = snd_hdspm_preallocate_memory(hdspm);
6456 	if (err < 0)
6457 		return err;
6458 
6459 	return 0;
6460 }
6461 
6462 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6463 {
6464 	int i;
6465 
6466 	for (i = 0; i < hdspm->midiPorts; i++)
6467 		snd_hdspm_flush_midi_input(hdspm, i);
6468 }
6469 
6470 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6471 					 struct hdspm *hdspm)
6472 {
6473 	int err, i;
6474 
6475 	dev_dbg(card->dev, "Create card...\n");
6476 	err = snd_hdspm_create_pcm(card, hdspm);
6477 	if (err < 0)
6478 		return err;
6479 
6480 	i = 0;
6481 	while (i < hdspm->midiPorts) {
6482 		err = snd_hdspm_create_midi(card, hdspm, i);
6483 		if (err < 0) {
6484 			return err;
6485 		}
6486 		i++;
6487 	}
6488 
6489 	err = snd_hdspm_create_controls(card, hdspm);
6490 	if (err < 0)
6491 		return err;
6492 
6493 	err = snd_hdspm_create_hwdep(card, hdspm);
6494 	if (err < 0)
6495 		return err;
6496 
6497 	dev_dbg(card->dev, "proc init...\n");
6498 	snd_hdspm_proc_init(hdspm);
6499 
6500 	hdspm->system_sample_rate = -1;
6501 	hdspm->last_external_sample_rate = -1;
6502 	hdspm->last_internal_sample_rate = -1;
6503 	hdspm->playback_pid = -1;
6504 	hdspm->capture_pid = -1;
6505 	hdspm->capture_substream = NULL;
6506 	hdspm->playback_substream = NULL;
6507 
6508 	dev_dbg(card->dev, "Set defaults...\n");
6509 	err = snd_hdspm_set_defaults(hdspm);
6510 	if (err < 0)
6511 		return err;
6512 
6513 	dev_dbg(card->dev, "Update mixer controls...\n");
6514 	hdspm_update_simple_mixer_controls(hdspm);
6515 
6516 	dev_dbg(card->dev, "Initializing complete?\n");
6517 
6518 	err = snd_card_register(card);
6519 	if (err < 0) {
6520 		dev_err(card->dev, "error registering card\n");
6521 		return err;
6522 	}
6523 
6524 	dev_dbg(card->dev, "... yes now\n");
6525 
6526 	return 0;
6527 }
6528 
6529 static int snd_hdspm_create(struct snd_card *card,
6530 			    struct hdspm *hdspm)
6531 {
6532 
6533 	struct pci_dev *pci = hdspm->pci;
6534 	int err;
6535 	unsigned long io_extent;
6536 
6537 	hdspm->irq = -1;
6538 	hdspm->card = card;
6539 
6540 	spin_lock_init(&hdspm->lock);
6541 
6542 	pci_read_config_word(hdspm->pci,
6543 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6544 
6545 	strcpy(card->mixername, "Xilinx FPGA");
6546 	strcpy(card->driver, "HDSPM");
6547 
6548 	switch (hdspm->firmware_rev) {
6549 	case HDSPM_RAYDAT_REV:
6550 		hdspm->io_type = RayDAT;
6551 		hdspm->card_name = "RME RayDAT";
6552 		hdspm->midiPorts = 2;
6553 		break;
6554 	case HDSPM_AIO_REV:
6555 		hdspm->io_type = AIO;
6556 		hdspm->card_name = "RME AIO";
6557 		hdspm->midiPorts = 1;
6558 		break;
6559 	case HDSPM_MADIFACE_REV:
6560 		hdspm->io_type = MADIface;
6561 		hdspm->card_name = "RME MADIface";
6562 		hdspm->midiPorts = 1;
6563 		break;
6564 	default:
6565 		if ((hdspm->firmware_rev == 0xf0) ||
6566 			((hdspm->firmware_rev >= 0xe6) &&
6567 					(hdspm->firmware_rev <= 0xea))) {
6568 			hdspm->io_type = AES32;
6569 			hdspm->card_name = "RME AES32";
6570 			hdspm->midiPorts = 2;
6571 		} else if ((hdspm->firmware_rev == 0xd2) ||
6572 			((hdspm->firmware_rev >= 0xc8)  &&
6573 				(hdspm->firmware_rev <= 0xcf))) {
6574 			hdspm->io_type = MADI;
6575 			hdspm->card_name = "RME MADI";
6576 			hdspm->midiPorts = 3;
6577 		} else {
6578 			dev_err(card->dev,
6579 				"unknown firmware revision %x\n",
6580 				hdspm->firmware_rev);
6581 			return -ENODEV;
6582 		}
6583 	}
6584 
6585 	err = pci_enable_device(pci);
6586 	if (err < 0)
6587 		return err;
6588 
6589 	pci_set_master(hdspm->pci);
6590 
6591 	err = pci_request_regions(pci, "hdspm");
6592 	if (err < 0)
6593 		return err;
6594 
6595 	hdspm->port = pci_resource_start(pci, 0);
6596 	io_extent = pci_resource_len(pci, 0);
6597 
6598 	dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n",
6599 			hdspm->port, hdspm->port + io_extent - 1);
6600 
6601 	hdspm->iobase = ioremap(hdspm->port, io_extent);
6602 	if (!hdspm->iobase) {
6603 		dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n",
6604 				hdspm->port, hdspm->port + io_extent - 1);
6605 		return -EBUSY;
6606 	}
6607 	dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n",
6608 			(unsigned long)hdspm->iobase, hdspm->port,
6609 			hdspm->port + io_extent - 1);
6610 
6611 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6612 			IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6613 		dev_err(card->dev, "unable to use IRQ %d\n", pci->irq);
6614 		return -EBUSY;
6615 	}
6616 
6617 	dev_dbg(card->dev, "use IRQ %d\n", pci->irq);
6618 
6619 	hdspm->irq = pci->irq;
6620 	card->sync_irq = hdspm->irq;
6621 
6622 	dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n",
6623 		sizeof(*hdspm->mixer));
6624 	hdspm->mixer = kzalloc(sizeof(*hdspm->mixer), GFP_KERNEL);
6625 	if (!hdspm->mixer)
6626 		return -ENOMEM;
6627 
6628 	hdspm->port_names_in = NULL;
6629 	hdspm->port_names_out = NULL;
6630 
6631 	switch (hdspm->io_type) {
6632 	case AES32:
6633 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6634 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6635 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6636 
6637 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6638 			channel_map_aes32;
6639 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6640 			channel_map_aes32;
6641 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6642 			channel_map_aes32;
6643 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6644 			texts_ports_aes32;
6645 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6646 			texts_ports_aes32;
6647 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6648 			texts_ports_aes32;
6649 
6650 		hdspm->max_channels_out = hdspm->max_channels_in =
6651 			AES32_CHANNELS;
6652 		hdspm->port_names_in = hdspm->port_names_out =
6653 			texts_ports_aes32;
6654 		hdspm->channel_map_in = hdspm->channel_map_out =
6655 			channel_map_aes32;
6656 
6657 		break;
6658 
6659 	case MADI:
6660 	case MADIface:
6661 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6662 			MADI_SS_CHANNELS;
6663 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6664 			MADI_DS_CHANNELS;
6665 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6666 			MADI_QS_CHANNELS;
6667 
6668 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6669 			channel_map_unity_ss;
6670 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6671 			channel_map_unity_ss;
6672 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6673 			channel_map_unity_ss;
6674 
6675 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6676 			texts_ports_madi;
6677 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6678 			texts_ports_madi;
6679 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6680 			texts_ports_madi;
6681 		break;
6682 
6683 	case AIO:
6684 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6685 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6686 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6687 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6688 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6689 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6690 
6691 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6692 			dev_info(card->dev, "AEB input board found\n");
6693 			hdspm->ss_in_channels += 4;
6694 			hdspm->ds_in_channels += 4;
6695 			hdspm->qs_in_channels += 4;
6696 		}
6697 
6698 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) {
6699 			dev_info(card->dev, "AEB output board found\n");
6700 			hdspm->ss_out_channels += 4;
6701 			hdspm->ds_out_channels += 4;
6702 			hdspm->qs_out_channels += 4;
6703 		}
6704 
6705 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6706 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6707 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6708 
6709 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6710 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6711 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6712 
6713 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6714 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6715 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6716 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6717 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6718 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6719 
6720 		break;
6721 
6722 	case RayDAT:
6723 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6724 			RAYDAT_SS_CHANNELS;
6725 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6726 			RAYDAT_DS_CHANNELS;
6727 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6728 			RAYDAT_QS_CHANNELS;
6729 
6730 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6731 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6732 
6733 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6734 			channel_map_raydat_ss;
6735 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6736 			channel_map_raydat_ds;
6737 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6738 			channel_map_raydat_qs;
6739 		hdspm->channel_map_in = hdspm->channel_map_out =
6740 			channel_map_raydat_ss;
6741 
6742 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6743 			texts_ports_raydat_ss;
6744 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6745 			texts_ports_raydat_ds;
6746 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6747 			texts_ports_raydat_qs;
6748 
6749 
6750 		break;
6751 
6752 	}
6753 
6754 	/* TCO detection */
6755 	switch (hdspm->io_type) {
6756 	case AIO:
6757 	case RayDAT:
6758 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6759 				HDSPM_s2_tco_detect) {
6760 			hdspm->midiPorts++;
6761 			hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL);
6762 			if (hdspm->tco)
6763 				hdspm_tco_write(hdspm);
6764 
6765 			dev_info(card->dev, "AIO/RayDAT TCO module found\n");
6766 		} else {
6767 			hdspm->tco = NULL;
6768 		}
6769 		break;
6770 
6771 	case MADI:
6772 	case AES32:
6773 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6774 			hdspm->midiPorts++;
6775 			hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL);
6776 			if (hdspm->tco)
6777 				hdspm_tco_write(hdspm);
6778 
6779 			dev_info(card->dev, "MADI/AES TCO module found\n");
6780 		} else {
6781 			hdspm->tco = NULL;
6782 		}
6783 		break;
6784 
6785 	default:
6786 		hdspm->tco = NULL;
6787 	}
6788 
6789 	/* texts */
6790 	switch (hdspm->io_type) {
6791 	case AES32:
6792 		if (hdspm->tco) {
6793 			hdspm->texts_autosync = texts_autosync_aes_tco;
6794 			hdspm->texts_autosync_items =
6795 				ARRAY_SIZE(texts_autosync_aes_tco);
6796 		} else {
6797 			hdspm->texts_autosync = texts_autosync_aes;
6798 			hdspm->texts_autosync_items =
6799 				ARRAY_SIZE(texts_autosync_aes);
6800 		}
6801 		break;
6802 
6803 	case MADI:
6804 		if (hdspm->tco) {
6805 			hdspm->texts_autosync = texts_autosync_madi_tco;
6806 			hdspm->texts_autosync_items = 4;
6807 		} else {
6808 			hdspm->texts_autosync = texts_autosync_madi;
6809 			hdspm->texts_autosync_items = 3;
6810 		}
6811 		break;
6812 
6813 	case MADIface:
6814 
6815 		break;
6816 
6817 	case RayDAT:
6818 		if (hdspm->tco) {
6819 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6820 			hdspm->texts_autosync_items = 9;
6821 		} else {
6822 			hdspm->texts_autosync = texts_autosync_raydat;
6823 			hdspm->texts_autosync_items = 8;
6824 		}
6825 		break;
6826 
6827 	case AIO:
6828 		if (hdspm->tco) {
6829 			hdspm->texts_autosync = texts_autosync_aio_tco;
6830 			hdspm->texts_autosync_items = 6;
6831 		} else {
6832 			hdspm->texts_autosync = texts_autosync_aio;
6833 			hdspm->texts_autosync_items = 5;
6834 		}
6835 		break;
6836 
6837 	}
6838 
6839 	tasklet_setup(&hdspm->midi_tasklet, hdspm_midi_tasklet);
6840 
6841 
6842 	if (hdspm->io_type != MADIface) {
6843 		hdspm->serial = (hdspm_read(hdspm,
6844 				HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6845 		/* id contains either a user-provided value or the default
6846 		 * NULL. If it's the default, we're safe to
6847 		 * fill card->id with the serial number.
6848 		 *
6849 		 * If the serial number is 0xFFFFFF, then we're dealing with
6850 		 * an old PCI revision that comes without a sane number. In
6851 		 * this case, we don't set card->id to avoid collisions
6852 		 * when running with multiple cards.
6853 		 */
6854 		if (!id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6855 			snprintf(card->id, sizeof(card->id),
6856 				 "HDSPMx%06x", hdspm->serial);
6857 			snd_card_set_id(card, card->id);
6858 		}
6859 	}
6860 
6861 	dev_dbg(card->dev, "create alsa devices.\n");
6862 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6863 	if (err < 0)
6864 		return err;
6865 
6866 	snd_hdspm_initialize_midi_flush(hdspm);
6867 
6868 	return 0;
6869 }
6870 
6871 
6872 static int snd_hdspm_free(struct hdspm * hdspm)
6873 {
6874 
6875 	if (hdspm->port) {
6876 
6877 		/* stop th audio, and cancel all interrupts */
6878 		hdspm->control_register &=
6879 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6880 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6881 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6882 		hdspm_write(hdspm, HDSPM_controlRegister,
6883 			    hdspm->control_register);
6884 	}
6885 
6886 	if (hdspm->irq >= 0)
6887 		free_irq(hdspm->irq, (void *) hdspm);
6888 
6889 	kfree(hdspm->mixer);
6890 	iounmap(hdspm->iobase);
6891 
6892 	if (hdspm->port)
6893 		pci_release_regions(hdspm->pci);
6894 
6895 	pci_disable_device(hdspm->pci);
6896 	return 0;
6897 }
6898 
6899 
6900 static void snd_hdspm_card_free(struct snd_card *card)
6901 {
6902 	struct hdspm *hdspm = card->private_data;
6903 
6904 	if (hdspm)
6905 		snd_hdspm_free(hdspm);
6906 }
6907 
6908 
6909 static int snd_hdspm_probe(struct pci_dev *pci,
6910 			   const struct pci_device_id *pci_id)
6911 {
6912 	static int dev;
6913 	struct hdspm *hdspm;
6914 	struct snd_card *card;
6915 	int err;
6916 
6917 	if (dev >= SNDRV_CARDS)
6918 		return -ENODEV;
6919 	if (!enable[dev]) {
6920 		dev++;
6921 		return -ENOENT;
6922 	}
6923 
6924 	err = snd_card_new(&pci->dev, index[dev], id[dev],
6925 			   THIS_MODULE, sizeof(*hdspm), &card);
6926 	if (err < 0)
6927 		return err;
6928 
6929 	hdspm = card->private_data;
6930 	card->private_free = snd_hdspm_card_free;
6931 	hdspm->dev = dev;
6932 	hdspm->pci = pci;
6933 
6934 	err = snd_hdspm_create(card, hdspm);
6935 	if (err < 0)
6936 		goto free_card;
6937 
6938 	if (hdspm->io_type != MADIface) {
6939 		snprintf(card->shortname, sizeof(card->shortname), "%s_%x",
6940 			hdspm->card_name, hdspm->serial);
6941 		snprintf(card->longname, sizeof(card->longname),
6942 			 "%s S/N 0x%x at 0x%lx, irq %d",
6943 			 hdspm->card_name, hdspm->serial,
6944 			 hdspm->port, hdspm->irq);
6945 	} else {
6946 		snprintf(card->shortname, sizeof(card->shortname), "%s",
6947 			 hdspm->card_name);
6948 		snprintf(card->longname, sizeof(card->longname),
6949 			 "%s at 0x%lx, irq %d",
6950 			 hdspm->card_name, hdspm->port, hdspm->irq);
6951 	}
6952 
6953 	err = snd_card_register(card);
6954 	if (err < 0)
6955 		goto free_card;
6956 
6957 	pci_set_drvdata(pci, card);
6958 
6959 	dev++;
6960 	return 0;
6961 
6962 free_card:
6963 	snd_card_free(card);
6964 	return err;
6965 }
6966 
6967 static void snd_hdspm_remove(struct pci_dev *pci)
6968 {
6969 	snd_card_free(pci_get_drvdata(pci));
6970 }
6971 
6972 static struct pci_driver hdspm_driver = {
6973 	.name = KBUILD_MODNAME,
6974 	.id_table = snd_hdspm_ids,
6975 	.probe = snd_hdspm_probe,
6976 	.remove = snd_hdspm_remove,
6977 };
6978 
6979 module_pci_driver(hdspm_driver);
6980