xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision e5b7b1fe)
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41 #include <linux/init.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 #include <linux/pci.h>
47 #include <linux/math64.h>
48 #include <asm/io.h>
49 
50 #include <sound/core.h>
51 #include <sound/control.h>
52 #include <sound/pcm.h>
53 #include <sound/pcm_params.h>
54 #include <sound/info.h>
55 #include <sound/asoundef.h>
56 #include <sound/rawmidi.h>
57 #include <sound/hwdep.h>
58 #include <sound/initval.h>
59 
60 #include <sound/hdspm.h>
61 
62 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
63 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
64 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
65 
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
68 
69 module_param_array(id, charp, NULL, 0444);
70 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
71 
72 module_param_array(enable, bool, NULL, 0444);
73 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
74 
75 
76 MODULE_AUTHOR
77 (
78 	"Winfried Ritsch <ritsch_AT_iem.at>, "
79 	"Paul Davis <paul@linuxaudiosystems.com>, "
80 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
81 	"Remy Bruno <remy.bruno@trinnov.com>, "
82 	"Florian Faber <faberman@linuxproaudio.org>, "
83 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
84 );
85 MODULE_DESCRIPTION("RME HDSPM");
86 MODULE_LICENSE("GPL");
87 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88 
89 /* --- Write registers. ---
90   These are defined as byte-offsets from the iobase value.  */
91 
92 #define HDSPM_WR_SETTINGS             0
93 #define HDSPM_outputBufferAddress    32
94 #define HDSPM_inputBufferAddress     36
95 #define HDSPM_controlRegister	     64
96 #define HDSPM_interruptConfirmation  96
97 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
98 #define HDSPM_freqReg                256  /* for AES32 */
99 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
100 #define HDSPM_midiDataOut1	     356
101 #define HDSPM_eeprom_wr		     384  /* for AES32 */
102 
103 /* DMA enable for 64 channels, only Bit 0 is relevant */
104 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
105 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
106 
107 /* 16 page addresses for each of the 64 channels DMA buffer in and out
108    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
109 #define HDSPM_pageAddressBufferOut       8192
110 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
111 
112 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
113 
114 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
115 
116 /* --- Read registers. ---
117    These are defined as byte-offsets from the iobase value */
118 #define HDSPM_statusRegister    0
119 /*#define HDSPM_statusRegister2  96 */
120 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
121  * offset 192, for AES32 *and* MADI
122  * => need to check that offset 192 is working on MADI */
123 #define HDSPM_statusRegister2  192
124 #define HDSPM_timecodeRegister 128
125 
126 /* AIO, RayDAT */
127 #define HDSPM_RD_STATUS_0 0
128 #define HDSPM_RD_STATUS_1 64
129 #define HDSPM_RD_STATUS_2 128
130 #define HDSPM_RD_STATUS_3 192
131 
132 #define HDSPM_RD_TCO           256
133 #define HDSPM_RD_PLL_FREQ      512
134 #define HDSPM_WR_TCO           128
135 
136 #define HDSPM_TCO1_TCO_lock			0x00000001
137 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
138 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
139 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
140 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
141 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
142 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
143 
144 #define HDSPM_TCO1_set_TC			0x00000100
145 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
146 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
147 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
148 
149 #define HDSPM_TCO2_TC_run			0x00010000
150 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
151 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
152 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
153 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
154 #define HDSPM_TCO2_set_jam_sync			0x00200000
155 #define HDSPM_TCO2_set_flywheel			0x00400000
156 
157 #define HDSPM_TCO2_set_01_4			0x01000000
158 #define HDSPM_TCO2_set_pull_down		0x02000000
159 #define HDSPM_TCO2_set_pull_up			0x04000000
160 #define HDSPM_TCO2_set_freq			0x08000000
161 #define HDSPM_TCO2_set_term_75R			0x10000000
162 #define HDSPM_TCO2_set_input_LSB		0x20000000
163 #define HDSPM_TCO2_set_input_MSB		0x40000000
164 #define HDSPM_TCO2_set_freq_from_app		0x80000000
165 
166 
167 #define HDSPM_midiDataOut0    352
168 #define HDSPM_midiDataOut1    356
169 #define HDSPM_midiDataOut2    368
170 
171 #define HDSPM_midiDataIn0     360
172 #define HDSPM_midiDataIn1     364
173 #define HDSPM_midiDataIn2     372
174 #define HDSPM_midiDataIn3     376
175 
176 /* status is data bytes in MIDI-FIFO (0-128) */
177 #define HDSPM_midiStatusOut0  384
178 #define HDSPM_midiStatusOut1  388
179 #define HDSPM_midiStatusOut2  400
180 
181 #define HDSPM_midiStatusIn0   392
182 #define HDSPM_midiStatusIn1   396
183 #define HDSPM_midiStatusIn2   404
184 #define HDSPM_midiStatusIn3   408
185 
186 
187 /* the meters are regular i/o-mapped registers, but offset
188    considerably from the rest. the peak registers are reset
189    when read; the least-significant 4 bits are full-scale counters;
190    the actual peak value is in the most-significant 24 bits.
191 */
192 
193 #define HDSPM_MADI_INPUT_PEAK		4096
194 #define HDSPM_MADI_PLAYBACK_PEAK	4352
195 #define HDSPM_MADI_OUTPUT_PEAK		4608
196 
197 #define HDSPM_MADI_INPUT_RMS_L		6144
198 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
199 #define HDSPM_MADI_OUTPUT_RMS_L		6656
200 
201 #define HDSPM_MADI_INPUT_RMS_H		7168
202 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
203 #define HDSPM_MADI_OUTPUT_RMS_H		7680
204 
205 /* --- Control Register bits --------- */
206 #define HDSPM_Start                (1<<0) /* start engine */
207 
208 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
209 #define HDSPM_Latency1             (1<<2) /* where n is defined */
210 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
211 
212 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
213 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
214 					  register [RayDAT, AIO] */
215 
216 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
217 
218 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
219 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
220 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
221 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
222 
223 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
224 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
225 				     56channelMODE=0 */ /* MADI ONLY*/
226 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
227 
228 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
229                                      0=off, 1=on  */ /* MADI ONLY */
230 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
231 
232 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
233 				    * -- MADI ONLY
234 				    */
235 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
236 
237 #define HDSPM_SyncRef2     (1<<13)
238 #define HDSPM_SyncRef3     (1<<25)
239 
240 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
241 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
242                                       AES additional bits in
243 				      lower 5 Audiodatabits ??? */
244 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
245 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
246 
247 #define HDSPM_Midi0InterruptEnable 0x0400000
248 #define HDSPM_Midi1InterruptEnable 0x0800000
249 #define HDSPM_Midi2InterruptEnable 0x0200000
250 #define HDSPM_Midi3InterruptEnable 0x4000000
251 
252 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
253 #define HDSPe_FLOAT_FORMAT         0x2000000
254 
255 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
256 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
257 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
258 
259 #define HDSPM_wclk_sel (1<<30)
260 
261 /* --- bit helper defines */
262 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
263 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
264 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
265 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
266 #define HDSPM_InputOptical   0
267 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
268 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
269 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
270 
271 #define HDSPM_c0_SyncRef0      0x2
272 #define HDSPM_c0_SyncRef1      0x4
273 #define HDSPM_c0_SyncRef2      0x8
274 #define HDSPM_c0_SyncRef3      0x10
275 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
276 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
277 
278 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
279 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
280 #define HDSPM_SYNC_FROM_TCO     2
281 #define HDSPM_SYNC_FROM_SYNC_IN 3
282 
283 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
284 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
285 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
286 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
287 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
288 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
289 				HDSPM_Frequency0)
290 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
291 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
292 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
293 				 HDSPM_Frequency0)
294 
295 
296 /* Synccheck Status */
297 #define HDSPM_SYNC_CHECK_NO_LOCK 0
298 #define HDSPM_SYNC_CHECK_LOCK    1
299 #define HDSPM_SYNC_CHECK_SYNC	 2
300 
301 /* AutoSync References - used by "autosync_ref" control switch */
302 #define HDSPM_AUTOSYNC_FROM_WORD      0
303 #define HDSPM_AUTOSYNC_FROM_MADI      1
304 #define HDSPM_AUTOSYNC_FROM_TCO       2
305 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
306 #define HDSPM_AUTOSYNC_FROM_NONE      4
307 
308 /* Possible sources of MADI input */
309 #define HDSPM_OPTICAL 0		/* optical   */
310 #define HDSPM_COAXIAL 1		/* BNC */
311 
312 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
313 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
314 
315 #define hdspm_encode_in(x) (((x)&0x3)<<14)
316 #define hdspm_decode_in(x) (((x)>>14)&0x3)
317 
318 /* --- control2 register bits --- */
319 #define HDSPM_TMS             (1<<0)
320 #define HDSPM_TCK             (1<<1)
321 #define HDSPM_TDI             (1<<2)
322 #define HDSPM_JTAG            (1<<3)
323 #define HDSPM_PWDN            (1<<4)
324 #define HDSPM_PROGRAM	      (1<<5)
325 #define HDSPM_CONFIG_MODE_0   (1<<6)
326 #define HDSPM_CONFIG_MODE_1   (1<<7)
327 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
328 #define HDSPM_BIGENDIAN_MODE  (1<<9)
329 #define HDSPM_RD_MULTIPLE     (1<<10)
330 
331 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
332      that do not conflict with specific bits for AES32 seem to be valid also
333      for the AES32
334  */
335 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
336 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
337 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
338 					 * (like inp0)
339 					 */
340 
341 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
342 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
343 
344 #define HDSPM_tcoLock    0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
345 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status */
346 
347 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
348 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */
349 
350 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
351 			/* since 64byte accurate, last 6 bits are not used */
352 
353 
354 
355 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
356 
357 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
358 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
359 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
360 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
361 
362 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
363 					 * Interrupt
364 					 */
365 #define HDSPM_tco_detect         0x08000000
366 #define HDSPM_tco_lock	         0x20000000
367 
368 #define HDSPM_s2_tco_detect      0x00000040
369 #define HDSPM_s2_AEBO_D          0x00000080
370 #define HDSPM_s2_AEBI_D          0x00000100
371 
372 
373 #define HDSPM_midi0IRQPending    0x40000000
374 #define HDSPM_midi1IRQPending    0x80000000
375 #define HDSPM_midi2IRQPending    0x20000000
376 #define HDSPM_midi2IRQPendingAES 0x00000020
377 #define HDSPM_midi3IRQPending    0x00200000
378 
379 /* --- status bit helpers */
380 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
381 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
382 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
383 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
384 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
385 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
386 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
387 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
388 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
389 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
390 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
391 
392 /* Status2 Register bits */ /* MADI ONLY */
393 
394 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
395 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
396 #define HDSPM_version2 (1<<2)
397 
398 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
399 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
400 
401 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
402 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
403 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, */
404 /* missing Bit   for               111=128, 1000=176.4, 1001=192 */
405 
406 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
407 #define HDSPM_SyncRef1 0x20000
408 
409 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
410 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
411 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
412 
413 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
414 
415 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
416 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
417 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
418 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
419 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
420 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
421 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
422 
423 #define HDSPM_status1_F_0 0x0400000
424 #define HDSPM_status1_F_1 0x0800000
425 #define HDSPM_status1_F_2 0x1000000
426 #define HDSPM_status1_F_3 0x2000000
427 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
428 
429 
430 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
431 				    HDSPM_SelSyncRef2)
432 #define HDSPM_SelSyncRef_WORD      0
433 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
434 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
435 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
436 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
437 				    HDSPM_SelSyncRef2)
438 
439 /*
440    For AES32, bits for status, status2 and timecode are different
441 */
442 /* status */
443 #define HDSPM_AES32_wcLock	0x0200000
444 #define HDSPM_AES32_wcSync	0x0100000
445 #define HDSPM_AES32_wcFreq_bit  22
446 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
447   HDSPM_bit2freq */
448 #define HDSPM_AES32_syncref_bit  16
449 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
450 
451 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
452 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
453 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
454 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
455 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
456 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
457 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
458 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
459 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
460 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
461 
462 /*  status2 */
463 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
464 #define HDSPM_LockAES   0x80
465 #define HDSPM_LockAES1  0x80
466 #define HDSPM_LockAES2  0x40
467 #define HDSPM_LockAES3  0x20
468 #define HDSPM_LockAES4  0x10
469 #define HDSPM_LockAES5  0x8
470 #define HDSPM_LockAES6  0x4
471 #define HDSPM_LockAES7  0x2
472 #define HDSPM_LockAES8  0x1
473 /*
474    Timecode
475    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
476    AES i+1
477  bits 3210
478       0001  32kHz
479       0010  44.1kHz
480       0011  48kHz
481       0100  64kHz
482       0101  88.2kHz
483       0110  96kHz
484       0111  128kHz
485       1000  176.4kHz
486       1001  192kHz
487   NB: Timecode register doesn't seem to work on AES32 card revision 230
488 */
489 
490 /* Mixer Values */
491 #define UNITY_GAIN          32768	/* = 65536/2 */
492 #define MINUS_INFINITY_GAIN 0
493 
494 /* Number of channels for different Speed Modes */
495 #define MADI_SS_CHANNELS       64
496 #define MADI_DS_CHANNELS       32
497 #define MADI_QS_CHANNELS       16
498 
499 #define RAYDAT_SS_CHANNELS     36
500 #define RAYDAT_DS_CHANNELS     20
501 #define RAYDAT_QS_CHANNELS     12
502 
503 #define AIO_IN_SS_CHANNELS        14
504 #define AIO_IN_DS_CHANNELS        10
505 #define AIO_IN_QS_CHANNELS        8
506 #define AIO_OUT_SS_CHANNELS        16
507 #define AIO_OUT_DS_CHANNELS        12
508 #define AIO_OUT_QS_CHANNELS        10
509 
510 #define AES32_CHANNELS		16
511 
512 /* the size of a substream (1 mono data stream) */
513 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
514 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
515 
516 /* the size of the area we need to allocate for DMA transfers. the
517    size is the same regardless of the number of channels, and
518    also the latency to use.
519    for one direction !!!
520 */
521 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
522 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
523 
524 #define HDSPM_RAYDAT_REV	211
525 #define HDSPM_AIO_REV		212
526 #define HDSPM_MADIFACE_REV	213
527 
528 /* speed factor modes */
529 #define HDSPM_SPEED_SINGLE 0
530 #define HDSPM_SPEED_DOUBLE 1
531 #define HDSPM_SPEED_QUAD   2
532 
533 /* names for speed modes */
534 static char *hdspm_speed_names[] = { "single", "double", "quad" };
535 
536 static char *texts_autosync_aes_tco[] = { "Word Clock",
537 					  "AES1", "AES2", "AES3", "AES4",
538 					  "AES5", "AES6", "AES7", "AES8",
539 					  "TCO" };
540 static char *texts_autosync_aes[] = { "Word Clock",
541 				      "AES1", "AES2", "AES3", "AES4",
542 				      "AES5", "AES6", "AES7", "AES8" };
543 static char *texts_autosync_madi_tco[] = { "Word Clock",
544 					   "MADI", "TCO", "Sync In" };
545 static char *texts_autosync_madi[] = { "Word Clock",
546 				       "MADI", "Sync In" };
547 
548 static char *texts_autosync_raydat_tco[] = {
549 	"Word Clock",
550 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
551 	"AES", "SPDIF", "TCO", "Sync In"
552 };
553 static char *texts_autosync_raydat[] = {
554 	"Word Clock",
555 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
556 	"AES", "SPDIF", "Sync In"
557 };
558 static char *texts_autosync_aio_tco[] = {
559 	"Word Clock",
560 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
561 };
562 static char *texts_autosync_aio[] = { "Word Clock",
563 				      "ADAT", "AES", "SPDIF", "Sync In" };
564 
565 static char *texts_freq[] = {
566 	"No Lock",
567 	"32 kHz",
568 	"44.1 kHz",
569 	"48 kHz",
570 	"64 kHz",
571 	"88.2 kHz",
572 	"96 kHz",
573 	"128 kHz",
574 	"176.4 kHz",
575 	"192 kHz"
576 };
577 
578 static char *texts_ports_madi[] = {
579 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
580 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
581 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
582 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
583 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
584 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
585 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
586 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
587 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
588 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
589 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
590 };
591 
592 
593 static char *texts_ports_raydat_ss[] = {
594 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
595 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
596 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
597 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
598 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
599 	"ADAT4.7", "ADAT4.8",
600 	"AES.L", "AES.R",
601 	"SPDIF.L", "SPDIF.R"
602 };
603 
604 static char *texts_ports_raydat_ds[] = {
605 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
606 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
607 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
608 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
609 	"AES.L", "AES.R",
610 	"SPDIF.L", "SPDIF.R"
611 };
612 
613 static char *texts_ports_raydat_qs[] = {
614 	"ADAT1.1", "ADAT1.2",
615 	"ADAT2.1", "ADAT2.2",
616 	"ADAT3.1", "ADAT3.2",
617 	"ADAT4.1", "ADAT4.2",
618 	"AES.L", "AES.R",
619 	"SPDIF.L", "SPDIF.R"
620 };
621 
622 
623 static char *texts_ports_aio_in_ss[] = {
624 	"Analogue.L", "Analogue.R",
625 	"AES.L", "AES.R",
626 	"SPDIF.L", "SPDIF.R",
627 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
628 	"ADAT.7", "ADAT.8"
629 };
630 
631 static char *texts_ports_aio_out_ss[] = {
632 	"Analogue.L", "Analogue.R",
633 	"AES.L", "AES.R",
634 	"SPDIF.L", "SPDIF.R",
635 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
636 	"ADAT.7", "ADAT.8",
637 	"Phone.L", "Phone.R"
638 };
639 
640 static char *texts_ports_aio_in_ds[] = {
641 	"Analogue.L", "Analogue.R",
642 	"AES.L", "AES.R",
643 	"SPDIF.L", "SPDIF.R",
644 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
645 };
646 
647 static char *texts_ports_aio_out_ds[] = {
648 	"Analogue.L", "Analogue.R",
649 	"AES.L", "AES.R",
650 	"SPDIF.L", "SPDIF.R",
651 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
652 	"Phone.L", "Phone.R"
653 };
654 
655 static char *texts_ports_aio_in_qs[] = {
656 	"Analogue.L", "Analogue.R",
657 	"AES.L", "AES.R",
658 	"SPDIF.L", "SPDIF.R",
659 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
660 };
661 
662 static char *texts_ports_aio_out_qs[] = {
663 	"Analogue.L", "Analogue.R",
664 	"AES.L", "AES.R",
665 	"SPDIF.L", "SPDIF.R",
666 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
667 	"Phone.L", "Phone.R"
668 };
669 
670 static char *texts_ports_aes32[] = {
671 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
672 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
673 	"AES.15", "AES.16"
674 };
675 
676 /* These tables map the ALSA channels 1..N to the channels that we
677    need to use in order to find the relevant channel buffer. RME
678    refers to this kind of mapping as between "the ADAT channel and
679    the DMA channel." We index it using the logical audio channel,
680    and the value is the DMA channel (i.e. channel buffer number)
681    where the data for that channel can be read/written from/to.
682 */
683 
684 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
685 	0, 1, 2, 3, 4, 5, 6, 7,
686 	8, 9, 10, 11, 12, 13, 14, 15,
687 	16, 17, 18, 19, 20, 21, 22, 23,
688 	24, 25, 26, 27, 28, 29, 30, 31,
689 	32, 33, 34, 35, 36, 37, 38, 39,
690 	40, 41, 42, 43, 44, 45, 46, 47,
691 	48, 49, 50, 51, 52, 53, 54, 55,
692 	56, 57, 58, 59, 60, 61, 62, 63
693 };
694 
695 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
696 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
697 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
698 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
699 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
700 	0, 1,			/* AES */
701 	2, 3,			/* SPDIF */
702 	-1, -1, -1, -1,
703 	-1, -1, -1, -1, -1, -1, -1, -1,
704 	-1, -1, -1, -1, -1, -1, -1, -1,
705 	-1, -1, -1, -1, -1, -1, -1, -1,
706 };
707 
708 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
709 	4, 5, 6, 7,		/* ADAT 1 */
710 	8, 9, 10, 11,		/* ADAT 2 */
711 	12, 13, 14, 15,		/* ADAT 3 */
712 	16, 17, 18, 19,		/* ADAT 4 */
713 	0, 1,			/* AES */
714 	2, 3,			/* SPDIF */
715 	-1, -1, -1, -1,
716 	-1, -1, -1, -1, -1, -1, -1, -1,
717 	-1, -1, -1, -1, -1, -1, -1, -1,
718 	-1, -1, -1, -1, -1, -1, -1, -1,
719 	-1, -1, -1, -1, -1, -1, -1, -1,
720 	-1, -1, -1, -1, -1, -1, -1, -1,
721 };
722 
723 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
724 	4, 5,			/* ADAT 1 */
725 	6, 7,			/* ADAT 2 */
726 	8, 9,			/* ADAT 3 */
727 	10, 11,			/* ADAT 4 */
728 	0, 1,			/* AES */
729 	2, 3,			/* SPDIF */
730 	-1, -1, -1, -1,
731 	-1, -1, -1, -1, -1, -1, -1, -1,
732 	-1, -1, -1, -1, -1, -1, -1, -1,
733 	-1, -1, -1, -1, -1, -1, -1, -1,
734 	-1, -1, -1, -1, -1, -1, -1, -1,
735 	-1, -1, -1, -1, -1, -1, -1, -1,
736 	-1, -1, -1, -1, -1, -1, -1, -1,
737 };
738 
739 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
740 	0, 1,			/* line in */
741 	8, 9,			/* aes in, */
742 	10, 11,			/* spdif in */
743 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
744 	-1, -1,
745 	-1, -1, -1, -1, -1, -1, -1, -1,
746 	-1, -1, -1, -1, -1, -1, -1, -1,
747 	-1, -1, -1, -1, -1, -1, -1, -1,
748 	-1, -1, -1, -1, -1, -1, -1, -1,
749 	-1, -1, -1, -1, -1, -1, -1, -1,
750 	-1, -1, -1, -1, -1, -1, -1, -1,
751 };
752 
753 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
754 	0, 1,			/* line out */
755 	8, 9,			/* aes out */
756 	10, 11,			/* spdif out */
757 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
758 	6, 7,			/* phone out */
759 	-1, -1, -1, -1, -1, -1, -1, -1,
760 	-1, -1, -1, -1, -1, -1, -1, -1,
761 	-1, -1, -1, -1, -1, -1, -1, -1,
762 	-1, -1, -1, -1, -1, -1, -1, -1,
763 	-1, -1, -1, -1, -1, -1, -1, -1,
764 	-1, -1, -1, -1, -1, -1, -1, -1,
765 };
766 
767 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
768 	0, 1,			/* line in */
769 	8, 9,			/* aes in */
770 	10, 11,			/* spdif in */
771 	12, 14, 16, 18,		/* adat in */
772 	-1, -1, -1, -1, -1, -1,
773 	-1, -1, -1, -1, -1, -1, -1, -1,
774 	-1, -1, -1, -1, -1, -1, -1, -1,
775 	-1, -1, -1, -1, -1, -1, -1, -1,
776 	-1, -1, -1, -1, -1, -1, -1, -1,
777 	-1, -1, -1, -1, -1, -1, -1, -1,
778 	-1, -1, -1, -1, -1, -1, -1, -1
779 };
780 
781 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
782 	0, 1,			/* line out */
783 	8, 9,			/* aes out */
784 	10, 11,			/* spdif out */
785 	12, 14, 16, 18,		/* adat out */
786 	6, 7,			/* phone out */
787 	-1, -1, -1, -1,
788 	-1, -1, -1, -1, -1, -1, -1, -1,
789 	-1, -1, -1, -1, -1, -1, -1, -1,
790 	-1, -1, -1, -1, -1, -1, -1, -1,
791 	-1, -1, -1, -1, -1, -1, -1, -1,
792 	-1, -1, -1, -1, -1, -1, -1, -1,
793 	-1, -1, -1, -1, -1, -1, -1, -1
794 };
795 
796 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
797 	0, 1,			/* line in */
798 	8, 9,			/* aes in */
799 	10, 11,			/* spdif in */
800 	12, 16,			/* adat in */
801 	-1, -1, -1, -1, -1, -1, -1, -1,
802 	-1, -1, -1, -1, -1, -1, -1, -1,
803 	-1, -1, -1, -1, -1, -1, -1, -1,
804 	-1, -1, -1, -1, -1, -1, -1, -1,
805 	-1, -1, -1, -1, -1, -1, -1, -1,
806 	-1, -1, -1, -1, -1, -1, -1, -1,
807 	-1, -1, -1, -1, -1, -1, -1, -1
808 };
809 
810 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
811 	0, 1,			/* line out */
812 	8, 9,			/* aes out */
813 	10, 11,			/* spdif out */
814 	12, 16,			/* adat out */
815 	6, 7,			/* phone out */
816 	-1, -1, -1, -1, -1, -1,
817 	-1, -1, -1, -1, -1, -1, -1, -1,
818 	-1, -1, -1, -1, -1, -1, -1, -1,
819 	-1, -1, -1, -1, -1, -1, -1, -1,
820 	-1, -1, -1, -1, -1, -1, -1, -1,
821 	-1, -1, -1, -1, -1, -1, -1, -1,
822 	-1, -1, -1, -1, -1, -1, -1, -1
823 };
824 
825 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
826 	0, 1, 2, 3, 4, 5, 6, 7,
827 	8, 9, 10, 11, 12, 13, 14, 15,
828 	-1, -1, -1, -1, -1, -1, -1, -1,
829 	-1, -1, -1, -1, -1, -1, -1, -1,
830 	-1, -1, -1, -1, -1, -1, -1, -1,
831 	-1, -1, -1, -1, -1, -1, -1, -1,
832 	-1, -1, -1, -1, -1, -1, -1, -1,
833 	-1, -1, -1, -1, -1, -1, -1, -1
834 };
835 
836 struct hdspm_midi {
837 	struct hdspm *hdspm;
838 	int id;
839 	struct snd_rawmidi *rmidi;
840 	struct snd_rawmidi_substream *input;
841 	struct snd_rawmidi_substream *output;
842 	char istimer;		/* timer in use */
843 	struct timer_list timer;
844 	spinlock_t lock;
845 	int pending;
846 	int dataIn;
847 	int statusIn;
848 	int dataOut;
849 	int statusOut;
850 	int ie;
851 	int irq;
852 };
853 
854 struct hdspm_tco {
855 	int input;
856 	int framerate;
857 	int wordclock;
858 	int samplerate;
859 	int pull;
860 	int term; /* 0 = off, 1 = on */
861 };
862 
863 struct hdspm {
864         spinlock_t lock;
865 	/* only one playback and/or capture stream */
866         struct snd_pcm_substream *capture_substream;
867         struct snd_pcm_substream *playback_substream;
868 
869 	char *card_name;	     /* for procinfo */
870 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
871 
872 	uint8_t io_type;
873 
874 	int monitor_outs;	/* set up monitoring outs init flag */
875 
876 	u32 control_register;	/* cached value */
877 	u32 control2_register;	/* cached value */
878 	u32 settings_register;
879 
880 	struct hdspm_midi midi[4];
881 	struct tasklet_struct midi_tasklet;
882 
883 	size_t period_bytes;
884 	unsigned char ss_in_channels;
885 	unsigned char ds_in_channels;
886 	unsigned char qs_in_channels;
887 	unsigned char ss_out_channels;
888 	unsigned char ds_out_channels;
889 	unsigned char qs_out_channels;
890 
891 	unsigned char max_channels_in;
892 	unsigned char max_channels_out;
893 
894 	signed char *channel_map_in;
895 	signed char *channel_map_out;
896 
897 	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
898 	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
899 
900 	char **port_names_in;
901 	char **port_names_out;
902 
903 	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
904 	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
905 
906 	unsigned char *playback_buffer;	/* suitably aligned address */
907 	unsigned char *capture_buffer;	/* suitably aligned address */
908 
909 	pid_t capture_pid;	/* process id which uses capture */
910 	pid_t playback_pid;	/* process id which uses capture */
911 	int running;		/* running status */
912 
913 	int last_external_sample_rate;	/* samplerate mystic ... */
914 	int last_internal_sample_rate;
915 	int system_sample_rate;
916 
917 	int dev;		/* Hardware vars... */
918 	int irq;
919 	unsigned long port;
920 	void __iomem *iobase;
921 
922 	int irq_count;		/* for debug */
923 	int midiPorts;
924 
925 	struct snd_card *card;	/* one card */
926 	struct snd_pcm *pcm;		/* has one pcm */
927 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
928 	struct pci_dev *pci;	/* and an pci info */
929 
930 	/* Mixer vars */
931 	/* fast alsa mixer */
932 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
933 	/* but input to much, so not used */
934 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
935 	/* full mixer accessible over mixer ioctl or hwdep-device */
936 	struct hdspm_mixer *mixer;
937 
938 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
939 
940 	char **texts_autosync;
941 	int texts_autosync_items;
942 
943 	cycles_t last_interrupt;
944 
945 	unsigned int serial;
946 
947 	struct hdspm_peak_rms peak_rms;
948 };
949 
950 
951 static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
952 	{
953 	 .vendor = PCI_VENDOR_ID_XILINX,
954 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
955 	 .subvendor = PCI_ANY_ID,
956 	 .subdevice = PCI_ANY_ID,
957 	 .class = 0,
958 	 .class_mask = 0,
959 	 .driver_data = 0},
960 	{0,}
961 };
962 
963 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
964 
965 /* prototypes */
966 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
967 					 struct hdspm *hdspm);
968 static int snd_hdspm_create_pcm(struct snd_card *card,
969 				struct hdspm *hdspm);
970 
971 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
972 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
973 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
974 static int hdspm_autosync_ref(struct hdspm *hdspm);
975 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
976 static int hdspm_system_clock_mode(struct hdspm *hdspm);
977 static void hdspm_set_sgbuf(struct hdspm *hdspm,
978 			    struct snd_pcm_substream *substream,
979 			     unsigned int reg, int channels);
980 
981 static inline int HDSPM_bit2freq(int n)
982 {
983 	static const int bit2freq_tab[] = {
984 		0, 32000, 44100, 48000, 64000, 88200,
985 		96000, 128000, 176400, 192000 };
986 	if (n < 1 || n > 9)
987 		return 0;
988 	return bit2freq_tab[n];
989 }
990 
991 /* Write/read to/from HDSPM with Adresses in Bytes
992    not words but only 32Bit writes are allowed */
993 
994 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
995 			       unsigned int val)
996 {
997 	writel(val, hdspm->iobase + reg);
998 }
999 
1000 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1001 {
1002 	return readl(hdspm->iobase + reg);
1003 }
1004 
1005 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1006    mixer is write only on hardware so we have to cache him for read
1007    each fader is a u32, but uses only the first 16 bit */
1008 
1009 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1010 				     unsigned int in)
1011 {
1012 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1013 		return 0;
1014 
1015 	return hdspm->mixer->ch[chan].in[in];
1016 }
1017 
1018 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1019 				     unsigned int pb)
1020 {
1021 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1022 		return 0;
1023 	return hdspm->mixer->ch[chan].pb[pb];
1024 }
1025 
1026 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1027 				      unsigned int in, unsigned short data)
1028 {
1029 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1030 		return -1;
1031 
1032 	hdspm_write(hdspm,
1033 		    HDSPM_MADI_mixerBase +
1034 		    ((in + 128 * chan) * sizeof(u32)),
1035 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1036 	return 0;
1037 }
1038 
1039 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1040 				      unsigned int pb, unsigned short data)
1041 {
1042 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1043 		return -1;
1044 
1045 	hdspm_write(hdspm,
1046 		    HDSPM_MADI_mixerBase +
1047 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1048 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1049 	return 0;
1050 }
1051 
1052 
1053 /* enable DMA for specific channels, now available for DSP-MADI */
1054 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1055 {
1056 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1057 }
1058 
1059 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1060 {
1061 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1062 }
1063 
1064 /* check if same process is writing and reading */
1065 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1066 {
1067 	unsigned long flags;
1068 	int ret = 1;
1069 
1070 	spin_lock_irqsave(&hdspm->lock, flags);
1071 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1072 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1073 		ret = 0;
1074 	}
1075 	spin_unlock_irqrestore(&hdspm->lock, flags);
1076 	return ret;
1077 }
1078 
1079 /* round arbitary sample rates to commonly known rates */
1080 static int hdspm_round_frequency(int rate)
1081 {
1082 	if (rate < 38050)
1083 		return 32000;
1084 	if (rate < 46008)
1085 		return 44100;
1086 	else
1087 		return 48000;
1088 }
1089 
1090 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1091 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1092 
1093 /* check for external sample rate */
1094 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1095 {
1096 	unsigned int status, status2, timecode;
1097 	int syncref, rate = 0, rate_bits;
1098 
1099 	switch (hdspm->io_type) {
1100 	case AES32:
1101 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1102 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1103 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
1104 
1105 		syncref = hdspm_autosync_ref(hdspm);
1106 
1107 		if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
1108 				status & HDSPM_AES32_wcLock)
1109 			return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
1110 
1111 		if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
1112 				syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
1113 				status2 & (HDSPM_LockAES >>
1114 				(syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
1115 			return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
1116 		return 0;
1117 		break;
1118 
1119 	case MADIface:
1120 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1121 
1122 		if (!(status & HDSPM_madiLock)) {
1123 			rate = 0;  /* no lock */
1124 		} else {
1125 			switch (status & (HDSPM_status1_freqMask)) {
1126 			case HDSPM_status1_F_0*1:
1127 				rate = 32000; break;
1128 			case HDSPM_status1_F_0*2:
1129 				rate = 44100; break;
1130 			case HDSPM_status1_F_0*3:
1131 				rate = 48000; break;
1132 			case HDSPM_status1_F_0*4:
1133 				rate = 64000; break;
1134 			case HDSPM_status1_F_0*5:
1135 				rate = 88200; break;
1136 			case HDSPM_status1_F_0*6:
1137 				rate = 96000; break;
1138 			case HDSPM_status1_F_0*7:
1139 				rate = 128000; break;
1140 			case HDSPM_status1_F_0*8:
1141 				rate = 176400; break;
1142 			case HDSPM_status1_F_0*9:
1143 				rate = 192000; break;
1144 			default:
1145 				rate = 0; break;
1146 			}
1147 		}
1148 
1149 		break;
1150 
1151 	case MADI:
1152 	case AIO:
1153 	case RayDAT:
1154 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1155 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1156 		rate = 0;
1157 
1158 		/* if wordclock has synced freq and wordclock is valid */
1159 		if ((status2 & HDSPM_wcLock) != 0 &&
1160 				(status2 & HDSPM_SelSyncRef0) == 0) {
1161 
1162 			rate_bits = status2 & HDSPM_wcFreqMask;
1163 
1164 
1165 			switch (rate_bits) {
1166 			case HDSPM_wcFreq32:
1167 				rate = 32000;
1168 				break;
1169 			case HDSPM_wcFreq44_1:
1170 				rate = 44100;
1171 				break;
1172 			case HDSPM_wcFreq48:
1173 				rate = 48000;
1174 				break;
1175 			case HDSPM_wcFreq64:
1176 				rate = 64000;
1177 				break;
1178 			case HDSPM_wcFreq88_2:
1179 				rate = 88200;
1180 				break;
1181 			case HDSPM_wcFreq96:
1182 				rate = 96000;
1183 				break;
1184 			default:
1185 				rate = 0;
1186 				break;
1187 			}
1188 		}
1189 
1190 		/* if rate detected and Syncref is Word than have it,
1191 		 * word has priority to MADI
1192 		 */
1193 		if (rate != 0 &&
1194 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1195 			return rate;
1196 
1197 		/* maybe a madi input (which is taken if sel sync is madi) */
1198 		if (status & HDSPM_madiLock) {
1199 			rate_bits = status & HDSPM_madiFreqMask;
1200 
1201 			switch (rate_bits) {
1202 			case HDSPM_madiFreq32:
1203 				rate = 32000;
1204 				break;
1205 			case HDSPM_madiFreq44_1:
1206 				rate = 44100;
1207 				break;
1208 			case HDSPM_madiFreq48:
1209 				rate = 48000;
1210 				break;
1211 			case HDSPM_madiFreq64:
1212 				rate = 64000;
1213 				break;
1214 			case HDSPM_madiFreq88_2:
1215 				rate = 88200;
1216 				break;
1217 			case HDSPM_madiFreq96:
1218 				rate = 96000;
1219 				break;
1220 			case HDSPM_madiFreq128:
1221 				rate = 128000;
1222 				break;
1223 			case HDSPM_madiFreq176_4:
1224 				rate = 176400;
1225 				break;
1226 			case HDSPM_madiFreq192:
1227 				rate = 192000;
1228 				break;
1229 			default:
1230 				rate = 0;
1231 				break;
1232 			}
1233 
1234 		} /* endif HDSPM_madiLock */
1235 
1236 		/* check sample rate from TCO or SYNC_IN */
1237 		{
1238 			bool is_valid_input = 0;
1239 			bool has_sync = 0;
1240 
1241 			syncref = hdspm_autosync_ref(hdspm);
1242 			if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1243 				is_valid_input = 1;
1244 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1245 					hdspm_tco_sync_check(hdspm));
1246 			} else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1247 				is_valid_input = 1;
1248 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1249 					hdspm_sync_in_sync_check(hdspm));
1250 			}
1251 
1252 			if (is_valid_input && has_sync) {
1253 				rate = hdspm_round_frequency(
1254 					hdspm_get_pll_freq(hdspm));
1255 			}
1256 		}
1257 
1258 		/* QS and DS rates normally can not be detected
1259 		 * automatically by the card. Only exception is MADI
1260 		 * in 96k frame mode.
1261 		 *
1262 		 * So if we read SS values (32 .. 48k), check for
1263 		 * user-provided DS/QS bits in the control register
1264 		 * and multiply the base frequency accordingly.
1265 		 */
1266 		if (rate <= 48000) {
1267 			if (hdspm->control_register & HDSPM_QuadSpeed)
1268 				rate *= 4;
1269 			else if (hdspm->control_register &
1270 					HDSPM_DoubleSpeed)
1271 				rate *= 2;
1272 		}
1273 		break;
1274 	}
1275 
1276 	return rate;
1277 }
1278 
1279 /* return latency in samples per period */
1280 static int hdspm_get_latency(struct hdspm *hdspm)
1281 {
1282 	int n;
1283 
1284 	n = hdspm_decode_latency(hdspm->control_register);
1285 
1286 	/* Special case for new RME cards with 32 samples period size.
1287 	 * The three latency bits in the control register
1288 	 * (HDSP_LatencyMask) encode latency values of 64 samples as
1289 	 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1290 	 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1291 	 * it corresponds to 32 samples.
1292 	 */
1293 	if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1294 		n = -1;
1295 
1296 	return 1 << (n + 6);
1297 }
1298 
1299 /* Latency function */
1300 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1301 {
1302 	hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1303 }
1304 
1305 
1306 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1307 {
1308 	int position;
1309 
1310 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1311 
1312 	switch (hdspm->io_type) {
1313 	case RayDAT:
1314 	case AIO:
1315 		position &= HDSPM_BufferPositionMask;
1316 		position /= 4; /* Bytes per sample */
1317 		break;
1318 	default:
1319 		position = (position & HDSPM_BufferID) ?
1320 			(hdspm->period_bytes / 4) : 0;
1321 	}
1322 
1323 	return position;
1324 }
1325 
1326 
1327 static inline void hdspm_start_audio(struct hdspm * s)
1328 {
1329 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1330 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1331 }
1332 
1333 static inline void hdspm_stop_audio(struct hdspm * s)
1334 {
1335 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1336 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1337 }
1338 
1339 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1340 static void hdspm_silence_playback(struct hdspm *hdspm)
1341 {
1342 	int i;
1343 	int n = hdspm->period_bytes;
1344 	void *buf = hdspm->playback_buffer;
1345 
1346 	if (buf == NULL)
1347 		return;
1348 
1349 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1350 		memset(buf, 0, n);
1351 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1352 	}
1353 }
1354 
1355 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1356 {
1357 	int n;
1358 
1359 	spin_lock_irq(&s->lock);
1360 
1361 	if (32 == frames) {
1362 		/* Special case for new RME cards like RayDAT/AIO which
1363 		 * support period sizes of 32 samples. Since latency is
1364 		 * encoded in the three bits of HDSP_LatencyMask, we can only
1365 		 * have values from 0 .. 7. While 0 still means 64 samples and
1366 		 * 6 represents 4096 samples on all cards, 7 represents 8192
1367 		 * on older cards and 32 samples on new cards.
1368 		 *
1369 		 * In other words, period size in samples is calculated by
1370 		 * 2^(n+6) with n ranging from 0 .. 7.
1371 		 */
1372 		n = 7;
1373 	} else {
1374 		frames >>= 7;
1375 		n = 0;
1376 		while (frames) {
1377 			n++;
1378 			frames >>= 1;
1379 		}
1380 	}
1381 
1382 	s->control_register &= ~HDSPM_LatencyMask;
1383 	s->control_register |= hdspm_encode_latency(n);
1384 
1385 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1386 
1387 	hdspm_compute_period_size(s);
1388 
1389 	spin_unlock_irq(&s->lock);
1390 
1391 	return 0;
1392 }
1393 
1394 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1395 {
1396 	u64 freq_const;
1397 
1398 	if (period == 0)
1399 		return 0;
1400 
1401 	switch (hdspm->io_type) {
1402 	case MADI:
1403 	case AES32:
1404 		freq_const = 110069313433624ULL;
1405 		break;
1406 	case RayDAT:
1407 	case AIO:
1408 		freq_const = 104857600000000ULL;
1409 		break;
1410 	case MADIface:
1411 		freq_const = 131072000000000ULL;
1412 		break;
1413 	default:
1414 		snd_BUG();
1415 		return 0;
1416 	}
1417 
1418 	return div_u64(freq_const, period);
1419 }
1420 
1421 
1422 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1423 {
1424 	u64 n;
1425 
1426 	if (rate >= 112000)
1427 		rate /= 4;
1428 	else if (rate >= 56000)
1429 		rate /= 2;
1430 
1431 	switch (hdspm->io_type) {
1432 	case MADIface:
1433 		n = 131072000000000ULL;  /* 125 MHz */
1434 		break;
1435 	case MADI:
1436 	case AES32:
1437 		n = 110069313433624ULL;  /* 105 MHz */
1438 		break;
1439 	case RayDAT:
1440 	case AIO:
1441 		n = 104857600000000ULL;  /* 100 MHz */
1442 		break;
1443 	default:
1444 		snd_BUG();
1445 		return;
1446 	}
1447 
1448 	n = div_u64(n, rate);
1449 	/* n should be less than 2^32 for being written to FREQ register */
1450 	snd_BUG_ON(n >> 32);
1451 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1452 }
1453 
1454 /* dummy set rate lets see what happens */
1455 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1456 {
1457 	int current_rate;
1458 	int rate_bits;
1459 	int not_set = 0;
1460 	int current_speed, target_speed;
1461 
1462 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1463 	   it (e.g. during module initialization).
1464 	 */
1465 
1466 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1467 
1468 		/* SLAVE --- */
1469 		if (called_internally) {
1470 
1471 			/* request from ctl or card initialization
1472 			   just make a warning an remember setting
1473 			   for future master mode switching */
1474 
1475 			snd_printk(KERN_WARNING "HDSPM: "
1476 				   "Warning: device is not running "
1477 				   "as a clock master.\n");
1478 			not_set = 1;
1479 		} else {
1480 
1481 			/* hw_param request while in AutoSync mode */
1482 			int external_freq =
1483 			    hdspm_external_sample_rate(hdspm);
1484 
1485 			if (hdspm_autosync_ref(hdspm) ==
1486 			    HDSPM_AUTOSYNC_FROM_NONE) {
1487 
1488 				snd_printk(KERN_WARNING "HDSPM: "
1489 					   "Detected no Externel Sync \n");
1490 				not_set = 1;
1491 
1492 			} else if (rate != external_freq) {
1493 
1494 				snd_printk(KERN_WARNING "HDSPM: "
1495 					   "Warning: No AutoSync source for "
1496 					   "requested rate\n");
1497 				not_set = 1;
1498 			}
1499 		}
1500 	}
1501 
1502 	current_rate = hdspm->system_sample_rate;
1503 
1504 	/* Changing between Singe, Double and Quad speed is not
1505 	   allowed if any substreams are open. This is because such a change
1506 	   causes a shift in the location of the DMA buffers and a reduction
1507 	   in the number of available buffers.
1508 
1509 	   Note that a similar but essentially insoluble problem exists for
1510 	   externally-driven rate changes. All we can do is to flag rate
1511 	   changes in the read/write routines.
1512 	 */
1513 
1514 	if (current_rate <= 48000)
1515 		current_speed = HDSPM_SPEED_SINGLE;
1516 	else if (current_rate <= 96000)
1517 		current_speed = HDSPM_SPEED_DOUBLE;
1518 	else
1519 		current_speed = HDSPM_SPEED_QUAD;
1520 
1521 	if (rate <= 48000)
1522 		target_speed = HDSPM_SPEED_SINGLE;
1523 	else if (rate <= 96000)
1524 		target_speed = HDSPM_SPEED_DOUBLE;
1525 	else
1526 		target_speed = HDSPM_SPEED_QUAD;
1527 
1528 	switch (rate) {
1529 	case 32000:
1530 		rate_bits = HDSPM_Frequency32KHz;
1531 		break;
1532 	case 44100:
1533 		rate_bits = HDSPM_Frequency44_1KHz;
1534 		break;
1535 	case 48000:
1536 		rate_bits = HDSPM_Frequency48KHz;
1537 		break;
1538 	case 64000:
1539 		rate_bits = HDSPM_Frequency64KHz;
1540 		break;
1541 	case 88200:
1542 		rate_bits = HDSPM_Frequency88_2KHz;
1543 		break;
1544 	case 96000:
1545 		rate_bits = HDSPM_Frequency96KHz;
1546 		break;
1547 	case 128000:
1548 		rate_bits = HDSPM_Frequency128KHz;
1549 		break;
1550 	case 176400:
1551 		rate_bits = HDSPM_Frequency176_4KHz;
1552 		break;
1553 	case 192000:
1554 		rate_bits = HDSPM_Frequency192KHz;
1555 		break;
1556 	default:
1557 		return -EINVAL;
1558 	}
1559 
1560 	if (current_speed != target_speed
1561 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1562 		snd_printk
1563 		    (KERN_ERR "HDSPM: "
1564 		     "cannot change from %s speed to %s speed mode "
1565 		     "(capture PID = %d, playback PID = %d)\n",
1566 		     hdspm_speed_names[current_speed],
1567 		     hdspm_speed_names[target_speed],
1568 		     hdspm->capture_pid, hdspm->playback_pid);
1569 		return -EBUSY;
1570 	}
1571 
1572 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1573 	hdspm->control_register |= rate_bits;
1574 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1575 
1576 	/* For AES32, need to set DDS value in FREQ register
1577 	   For MADI, also apparently */
1578 	hdspm_set_dds_value(hdspm, rate);
1579 
1580 	if (AES32 == hdspm->io_type && rate != current_rate)
1581 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1582 
1583 	hdspm->system_sample_rate = rate;
1584 
1585 	if (rate <= 48000) {
1586 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1587 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1588 		hdspm->max_channels_in = hdspm->ss_in_channels;
1589 		hdspm->max_channels_out = hdspm->ss_out_channels;
1590 		hdspm->port_names_in = hdspm->port_names_in_ss;
1591 		hdspm->port_names_out = hdspm->port_names_out_ss;
1592 	} else if (rate <= 96000) {
1593 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1594 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1595 		hdspm->max_channels_in = hdspm->ds_in_channels;
1596 		hdspm->max_channels_out = hdspm->ds_out_channels;
1597 		hdspm->port_names_in = hdspm->port_names_in_ds;
1598 		hdspm->port_names_out = hdspm->port_names_out_ds;
1599 	} else {
1600 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1601 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1602 		hdspm->max_channels_in = hdspm->qs_in_channels;
1603 		hdspm->max_channels_out = hdspm->qs_out_channels;
1604 		hdspm->port_names_in = hdspm->port_names_in_qs;
1605 		hdspm->port_names_out = hdspm->port_names_out_qs;
1606 	}
1607 
1608 	if (not_set != 0)
1609 		return -1;
1610 
1611 	return 0;
1612 }
1613 
1614 /* mainly for init to 0 on load */
1615 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1616 {
1617 	int i, j;
1618 	unsigned int gain;
1619 
1620 	if (sgain > UNITY_GAIN)
1621 		gain = UNITY_GAIN;
1622 	else if (sgain < 0)
1623 		gain = 0;
1624 	else
1625 		gain = sgain;
1626 
1627 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1628 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1629 			hdspm_write_in_gain(hdspm, i, j, gain);
1630 			hdspm_write_pb_gain(hdspm, i, j, gain);
1631 		}
1632 }
1633 
1634 /*----------------------------------------------------------------------------
1635    MIDI
1636   ----------------------------------------------------------------------------*/
1637 
1638 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1639 						      int id)
1640 {
1641 	/* the hardware already does the relevant bit-mask with 0xff */
1642 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1643 }
1644 
1645 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1646 					      int val)
1647 {
1648 	/* the hardware already does the relevant bit-mask with 0xff */
1649 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1650 }
1651 
1652 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1653 {
1654 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1655 }
1656 
1657 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1658 {
1659 	int fifo_bytes_used;
1660 
1661 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1662 
1663 	if (fifo_bytes_used < 128)
1664 		return  128 - fifo_bytes_used;
1665 	else
1666 		return 0;
1667 }
1668 
1669 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1670 {
1671 	while (snd_hdspm_midi_input_available (hdspm, id))
1672 		snd_hdspm_midi_read_byte (hdspm, id);
1673 }
1674 
1675 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1676 {
1677 	unsigned long flags;
1678 	int n_pending;
1679 	int to_write;
1680 	int i;
1681 	unsigned char buf[128];
1682 
1683 	/* Output is not interrupt driven */
1684 
1685 	spin_lock_irqsave (&hmidi->lock, flags);
1686 	if (hmidi->output &&
1687 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1688 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1689 							    hmidi->id);
1690 		if (n_pending > 0) {
1691 			if (n_pending > (int)sizeof (buf))
1692 				n_pending = sizeof (buf);
1693 
1694 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1695 							 n_pending);
1696 			if (to_write > 0) {
1697 				for (i = 0; i < to_write; ++i)
1698 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1699 								   hmidi->id,
1700 								   buf[i]);
1701 			}
1702 		}
1703 	}
1704 	spin_unlock_irqrestore (&hmidi->lock, flags);
1705 	return 0;
1706 }
1707 
1708 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1709 {
1710 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1711 				 * input FIFO size
1712 				 */
1713 	unsigned long flags;
1714 	int n_pending;
1715 	int i;
1716 
1717 	spin_lock_irqsave (&hmidi->lock, flags);
1718 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1719 	if (n_pending > 0) {
1720 		if (hmidi->input) {
1721 			if (n_pending > (int)sizeof (buf))
1722 				n_pending = sizeof (buf);
1723 			for (i = 0; i < n_pending; ++i)
1724 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1725 								   hmidi->id);
1726 			if (n_pending)
1727 				snd_rawmidi_receive (hmidi->input, buf,
1728 						     n_pending);
1729 		} else {
1730 			/* flush the MIDI input FIFO */
1731 			while (n_pending--)
1732 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1733 							  hmidi->id);
1734 		}
1735 	}
1736 	hmidi->pending = 0;
1737 	spin_unlock_irqrestore(&hmidi->lock, flags);
1738 
1739 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1740 	hmidi->hdspm->control_register |= hmidi->ie;
1741 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1742 		    hmidi->hdspm->control_register);
1743 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1744 
1745 	return snd_hdspm_midi_output_write (hmidi);
1746 }
1747 
1748 static void
1749 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1750 {
1751 	struct hdspm *hdspm;
1752 	struct hdspm_midi *hmidi;
1753 	unsigned long flags;
1754 
1755 	hmidi = substream->rmidi->private_data;
1756 	hdspm = hmidi->hdspm;
1757 
1758 	spin_lock_irqsave (&hdspm->lock, flags);
1759 	if (up) {
1760 		if (!(hdspm->control_register & hmidi->ie)) {
1761 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1762 			hdspm->control_register |= hmidi->ie;
1763 		}
1764 	} else {
1765 		hdspm->control_register &= ~hmidi->ie;
1766 	}
1767 
1768 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1769 	spin_unlock_irqrestore (&hdspm->lock, flags);
1770 }
1771 
1772 static void snd_hdspm_midi_output_timer(unsigned long data)
1773 {
1774 	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1775 	unsigned long flags;
1776 
1777 	snd_hdspm_midi_output_write(hmidi);
1778 	spin_lock_irqsave (&hmidi->lock, flags);
1779 
1780 	/* this does not bump hmidi->istimer, because the
1781 	   kernel automatically removed the timer when it
1782 	   expired, and we are now adding it back, thus
1783 	   leaving istimer wherever it was set before.
1784 	*/
1785 
1786 	if (hmidi->istimer) {
1787 		hmidi->timer.expires = 1 + jiffies;
1788 		add_timer(&hmidi->timer);
1789 	}
1790 
1791 	spin_unlock_irqrestore (&hmidi->lock, flags);
1792 }
1793 
1794 static void
1795 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1796 {
1797 	struct hdspm_midi *hmidi;
1798 	unsigned long flags;
1799 
1800 	hmidi = substream->rmidi->private_data;
1801 	spin_lock_irqsave (&hmidi->lock, flags);
1802 	if (up) {
1803 		if (!hmidi->istimer) {
1804 			init_timer(&hmidi->timer);
1805 			hmidi->timer.function = snd_hdspm_midi_output_timer;
1806 			hmidi->timer.data = (unsigned long) hmidi;
1807 			hmidi->timer.expires = 1 + jiffies;
1808 			add_timer(&hmidi->timer);
1809 			hmidi->istimer++;
1810 		}
1811 	} else {
1812 		if (hmidi->istimer && --hmidi->istimer <= 0)
1813 			del_timer (&hmidi->timer);
1814 	}
1815 	spin_unlock_irqrestore (&hmidi->lock, flags);
1816 	if (up)
1817 		snd_hdspm_midi_output_write(hmidi);
1818 }
1819 
1820 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1821 {
1822 	struct hdspm_midi *hmidi;
1823 
1824 	hmidi = substream->rmidi->private_data;
1825 	spin_lock_irq (&hmidi->lock);
1826 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1827 	hmidi->input = substream;
1828 	spin_unlock_irq (&hmidi->lock);
1829 
1830 	return 0;
1831 }
1832 
1833 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
1834 {
1835 	struct hdspm_midi *hmidi;
1836 
1837 	hmidi = substream->rmidi->private_data;
1838 	spin_lock_irq (&hmidi->lock);
1839 	hmidi->output = substream;
1840 	spin_unlock_irq (&hmidi->lock);
1841 
1842 	return 0;
1843 }
1844 
1845 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
1846 {
1847 	struct hdspm_midi *hmidi;
1848 
1849 	snd_hdspm_midi_input_trigger (substream, 0);
1850 
1851 	hmidi = substream->rmidi->private_data;
1852 	spin_lock_irq (&hmidi->lock);
1853 	hmidi->input = NULL;
1854 	spin_unlock_irq (&hmidi->lock);
1855 
1856 	return 0;
1857 }
1858 
1859 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
1860 {
1861 	struct hdspm_midi *hmidi;
1862 
1863 	snd_hdspm_midi_output_trigger (substream, 0);
1864 
1865 	hmidi = substream->rmidi->private_data;
1866 	spin_lock_irq (&hmidi->lock);
1867 	hmidi->output = NULL;
1868 	spin_unlock_irq (&hmidi->lock);
1869 
1870 	return 0;
1871 }
1872 
1873 static struct snd_rawmidi_ops snd_hdspm_midi_output =
1874 {
1875 	.open =		snd_hdspm_midi_output_open,
1876 	.close =	snd_hdspm_midi_output_close,
1877 	.trigger =	snd_hdspm_midi_output_trigger,
1878 };
1879 
1880 static struct snd_rawmidi_ops snd_hdspm_midi_input =
1881 {
1882 	.open =		snd_hdspm_midi_input_open,
1883 	.close =	snd_hdspm_midi_input_close,
1884 	.trigger =	snd_hdspm_midi_input_trigger,
1885 };
1886 
1887 static int snd_hdspm_create_midi(struct snd_card *card,
1888 				 struct hdspm *hdspm, int id)
1889 {
1890 	int err;
1891 	char buf[32];
1892 
1893 	hdspm->midi[id].id = id;
1894 	hdspm->midi[id].hdspm = hdspm;
1895 	spin_lock_init (&hdspm->midi[id].lock);
1896 
1897 	if (0 == id) {
1898 		if (MADIface == hdspm->io_type) {
1899 			/* MIDI-over-MADI on HDSPe MADIface */
1900 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
1901 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
1902 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
1903 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
1904 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
1905 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
1906 		} else {
1907 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
1908 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
1909 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
1910 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
1911 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
1912 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
1913 		}
1914 	} else if (1 == id) {
1915 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
1916 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
1917 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
1918 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
1919 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
1920 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
1921 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
1922 		/* MIDI-over-MADI on HDSPe MADI */
1923 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1924 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1925 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
1926 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
1927 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1928 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
1929 	} else if (2 == id) {
1930 		/* TCO MTC, read only */
1931 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1932 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1933 		hdspm->midi[2].dataOut = -1;
1934 		hdspm->midi[2].statusOut = -1;
1935 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1936 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
1937 	} else if (3 == id) {
1938 		/* TCO MTC on HDSPe MADI */
1939 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
1940 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
1941 		hdspm->midi[3].dataOut = -1;
1942 		hdspm->midi[3].statusOut = -1;
1943 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
1944 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
1945 	}
1946 
1947 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
1948 					(MADIface == hdspm->io_type)))) {
1949 		if ((id == 0) && (MADIface == hdspm->io_type)) {
1950 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1951 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
1952 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1953 		} else {
1954 			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
1955 		}
1956 		err = snd_rawmidi_new(card, buf, id, 1, 1,
1957 				&hdspm->midi[id].rmidi);
1958 		if (err < 0)
1959 			return err;
1960 
1961 		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
1962 				card->id, id+1);
1963 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1964 
1965 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1966 				SNDRV_RAWMIDI_STREAM_OUTPUT,
1967 				&snd_hdspm_midi_output);
1968 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1969 				SNDRV_RAWMIDI_STREAM_INPUT,
1970 				&snd_hdspm_midi_input);
1971 
1972 		hdspm->midi[id].rmidi->info_flags |=
1973 			SNDRV_RAWMIDI_INFO_OUTPUT |
1974 			SNDRV_RAWMIDI_INFO_INPUT |
1975 			SNDRV_RAWMIDI_INFO_DUPLEX;
1976 	} else {
1977 		/* TCO MTC, read only */
1978 		sprintf(buf, "%s MTC %d", card->shortname, id+1);
1979 		err = snd_rawmidi_new(card, buf, id, 1, 1,
1980 				&hdspm->midi[id].rmidi);
1981 		if (err < 0)
1982 			return err;
1983 
1984 		sprintf(hdspm->midi[id].rmidi->name,
1985 				"%s MTC %d", card->id, id+1);
1986 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1987 
1988 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1989 				SNDRV_RAWMIDI_STREAM_INPUT,
1990 				&snd_hdspm_midi_input);
1991 
1992 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 
1999 static void hdspm_midi_tasklet(unsigned long arg)
2000 {
2001 	struct hdspm *hdspm = (struct hdspm *)arg;
2002 	int i = 0;
2003 
2004 	while (i < hdspm->midiPorts) {
2005 		if (hdspm->midi[i].pending)
2006 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
2007 
2008 		i++;
2009 	}
2010 }
2011 
2012 
2013 /*-----------------------------------------------------------------------------
2014   Status Interface
2015   ----------------------------------------------------------------------------*/
2016 
2017 /* get the system sample rate which is set */
2018 
2019 
2020 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2021 {
2022 	unsigned int period, rate;
2023 
2024 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2025 	rate = hdspm_calc_dds_value(hdspm, period);
2026 
2027 	return rate;
2028 }
2029 
2030 /**
2031  * Calculate the real sample rate from the
2032  * current DDS value.
2033  **/
2034 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2035 {
2036 	unsigned int rate;
2037 
2038 	rate = hdspm_get_pll_freq(hdspm);
2039 
2040 	if (rate > 207000) {
2041 		/* Unreasonable high sample rate as seen on PCI MADI cards. */
2042 		if (0 == hdspm_system_clock_mode(hdspm)) {
2043 			/* master mode, return internal sample rate */
2044 			rate = hdspm->system_sample_rate;
2045 		} else {
2046 			/* slave mode, return external sample rate */
2047 			rate = hdspm_external_sample_rate(hdspm);
2048 		}
2049 	}
2050 
2051 	return rate;
2052 }
2053 
2054 
2055 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2056 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2057 	.name = xname, \
2058 	.index = xindex, \
2059 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2060 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2061 	.info = snd_hdspm_info_system_sample_rate, \
2062 	.put = snd_hdspm_put_system_sample_rate, \
2063 	.get = snd_hdspm_get_system_sample_rate \
2064 }
2065 
2066 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2067 					     struct snd_ctl_elem_info *uinfo)
2068 {
2069 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2070 	uinfo->count = 1;
2071 	uinfo->value.integer.min = 27000;
2072 	uinfo->value.integer.max = 207000;
2073 	uinfo->value.integer.step = 1;
2074 	return 0;
2075 }
2076 
2077 
2078 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2079 					    struct snd_ctl_elem_value *
2080 					    ucontrol)
2081 {
2082 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2083 
2084 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2085 	return 0;
2086 }
2087 
2088 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2089 					    struct snd_ctl_elem_value *
2090 					    ucontrol)
2091 {
2092 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2093 
2094 	hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]);
2095 	return 0;
2096 }
2097 
2098 
2099 /**
2100  * Returns the WordClock sample rate class for the given card.
2101  **/
2102 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2103 {
2104 	int status;
2105 
2106 	switch (hdspm->io_type) {
2107 	case RayDAT:
2108 	case AIO:
2109 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2110 		return (status >> 16) & 0xF;
2111 		break;
2112 	default:
2113 		break;
2114 	}
2115 
2116 
2117 	return 0;
2118 }
2119 
2120 
2121 /**
2122  * Returns the TCO sample rate class for the given card.
2123  **/
2124 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2125 {
2126 	int status;
2127 
2128 	if (hdspm->tco) {
2129 		switch (hdspm->io_type) {
2130 		case RayDAT:
2131 		case AIO:
2132 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2133 			return (status >> 20) & 0xF;
2134 			break;
2135 		default:
2136 			break;
2137 		}
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 
2144 /**
2145  * Returns the SYNC_IN sample rate class for the given card.
2146  **/
2147 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2148 {
2149 	int status;
2150 
2151 	if (hdspm->tco) {
2152 		switch (hdspm->io_type) {
2153 		case RayDAT:
2154 		case AIO:
2155 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2156 			return (status >> 12) & 0xF;
2157 			break;
2158 		default:
2159 			break;
2160 		}
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 
2167 /**
2168  * Returns the sample rate class for input source <idx> for
2169  * 'new style' cards like the AIO and RayDAT.
2170  **/
2171 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2172 {
2173 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2174 
2175 	return (status >> (idx*4)) & 0xF;
2176 }
2177 
2178 #define ENUMERATED_CTL_INFO(info, texts) \
2179 { \
2180 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; \
2181 	uinfo->count = 1; \
2182 	uinfo->value.enumerated.items = ARRAY_SIZE(texts); \
2183 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) \
2184 		uinfo->value.enumerated.item =	uinfo->value.enumerated.items - 1; \
2185 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); \
2186 }
2187 
2188 
2189 
2190 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2191 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2192 	.name = xname, \
2193 	.private_value = xindex, \
2194 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2195 	.info = snd_hdspm_info_autosync_sample_rate, \
2196 	.get = snd_hdspm_get_autosync_sample_rate \
2197 }
2198 
2199 
2200 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2201 					       struct snd_ctl_elem_info *uinfo)
2202 {
2203 	ENUMERATED_CTL_INFO(uinfo, texts_freq);
2204 	return 0;
2205 }
2206 
2207 
2208 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2209 					      struct snd_ctl_elem_value *
2210 					      ucontrol)
2211 {
2212 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2213 
2214 	switch (hdspm->io_type) {
2215 	case RayDAT:
2216 		switch (kcontrol->private_value) {
2217 		case 0:
2218 			ucontrol->value.enumerated.item[0] =
2219 				hdspm_get_wc_sample_rate(hdspm);
2220 			break;
2221 		case 7:
2222 			ucontrol->value.enumerated.item[0] =
2223 				hdspm_get_tco_sample_rate(hdspm);
2224 			break;
2225 		case 8:
2226 			ucontrol->value.enumerated.item[0] =
2227 				hdspm_get_sync_in_sample_rate(hdspm);
2228 			break;
2229 		default:
2230 			ucontrol->value.enumerated.item[0] =
2231 				hdspm_get_s1_sample_rate(hdspm,
2232 						kcontrol->private_value-1);
2233 		}
2234 		break;
2235 
2236 	case AIO:
2237 		switch (kcontrol->private_value) {
2238 		case 0: /* WC */
2239 			ucontrol->value.enumerated.item[0] =
2240 				hdspm_get_wc_sample_rate(hdspm);
2241 			break;
2242 		case 4: /* TCO */
2243 			ucontrol->value.enumerated.item[0] =
2244 				hdspm_get_tco_sample_rate(hdspm);
2245 			break;
2246 		case 5: /* SYNC_IN */
2247 			ucontrol->value.enumerated.item[0] =
2248 				hdspm_get_sync_in_sample_rate(hdspm);
2249 			break;
2250 		default:
2251 			ucontrol->value.enumerated.item[0] =
2252 				hdspm_get_s1_sample_rate(hdspm,
2253 						ucontrol->id.index-1);
2254 		}
2255 		break;
2256 
2257 	case AES32:
2258 
2259 		switch (kcontrol->private_value) {
2260 		case 0: /* WC */
2261 			ucontrol->value.enumerated.item[0] =
2262 				hdspm_get_wc_sample_rate(hdspm);
2263 			break;
2264 		case 9: /* TCO */
2265 			ucontrol->value.enumerated.item[0] =
2266 				hdspm_get_tco_sample_rate(hdspm);
2267 			break;
2268 		case 10: /* SYNC_IN */
2269 			ucontrol->value.enumerated.item[0] =
2270 				hdspm_get_sync_in_sample_rate(hdspm);
2271 			break;
2272 		default: /* AES1 to AES8 */
2273 			ucontrol->value.enumerated.item[0] =
2274 				hdspm_get_s1_sample_rate(hdspm,
2275 						kcontrol->private_value-1);
2276 			break;
2277 		}
2278 		break;
2279 
2280 	case MADI:
2281 	case MADIface:
2282 		{
2283 			int rate = hdspm_external_sample_rate(hdspm);
2284 			int i, selected_rate = 0;
2285 			for (i = 1; i < 10; i++)
2286 				if (HDSPM_bit2freq(i) == rate) {
2287 					selected_rate = i;
2288 					break;
2289 				}
2290 			ucontrol->value.enumerated.item[0] = selected_rate;
2291 		}
2292 		break;
2293 
2294 	default:
2295 		break;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 
2302 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2303 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2304 	.name = xname, \
2305 	.index = xindex, \
2306 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2307 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2308 	.info = snd_hdspm_info_system_clock_mode, \
2309 	.get = snd_hdspm_get_system_clock_mode, \
2310 	.put = snd_hdspm_put_system_clock_mode, \
2311 }
2312 
2313 
2314 /**
2315  * Returns the system clock mode for the given card.
2316  * @returns 0 - master, 1 - slave
2317  **/
2318 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2319 {
2320 	switch (hdspm->io_type) {
2321 	case AIO:
2322 	case RayDAT:
2323 		if (hdspm->settings_register & HDSPM_c0Master)
2324 			return 0;
2325 		break;
2326 
2327 	default:
2328 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2329 			return 0;
2330 	}
2331 
2332 	return 1;
2333 }
2334 
2335 
2336 /**
2337  * Sets the system clock mode.
2338  * @param mode 0 - master, 1 - slave
2339  **/
2340 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2341 {
2342 	switch (hdspm->io_type) {
2343 	case AIO:
2344 	case RayDAT:
2345 		if (0 == mode)
2346 			hdspm->settings_register |= HDSPM_c0Master;
2347 		else
2348 			hdspm->settings_register &= ~HDSPM_c0Master;
2349 
2350 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2351 		break;
2352 
2353 	default:
2354 		if (0 == mode)
2355 			hdspm->control_register |= HDSPM_ClockModeMaster;
2356 		else
2357 			hdspm->control_register &= ~HDSPM_ClockModeMaster;
2358 
2359 		hdspm_write(hdspm, HDSPM_controlRegister,
2360 				hdspm->control_register);
2361 	}
2362 }
2363 
2364 
2365 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2366 					    struct snd_ctl_elem_info *uinfo)
2367 {
2368 	static char *texts[] = { "Master", "AutoSync" };
2369 	ENUMERATED_CTL_INFO(uinfo, texts);
2370 	return 0;
2371 }
2372 
2373 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2374 					   struct snd_ctl_elem_value *ucontrol)
2375 {
2376 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2377 
2378 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2379 	return 0;
2380 }
2381 
2382 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2383 					   struct snd_ctl_elem_value *ucontrol)
2384 {
2385 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2386 	int val;
2387 
2388 	if (!snd_hdspm_use_is_exclusive(hdspm))
2389 		return -EBUSY;
2390 
2391 	val = ucontrol->value.enumerated.item[0];
2392 	if (val < 0)
2393 		val = 0;
2394 	else if (val > 1)
2395 		val = 1;
2396 
2397 	hdspm_set_system_clock_mode(hdspm, val);
2398 
2399 	return 0;
2400 }
2401 
2402 
2403 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2404 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2405 	.name = xname, \
2406 	.index = xindex, \
2407 	.info = snd_hdspm_info_clock_source, \
2408 	.get = snd_hdspm_get_clock_source, \
2409 	.put = snd_hdspm_put_clock_source \
2410 }
2411 
2412 
2413 static int hdspm_clock_source(struct hdspm * hdspm)
2414 {
2415 	switch (hdspm->system_sample_rate) {
2416 	case 32000: return 0;
2417 	case 44100: return 1;
2418 	case 48000: return 2;
2419 	case 64000: return 3;
2420 	case 88200: return 4;
2421 	case 96000: return 5;
2422 	case 128000: return 6;
2423 	case 176400: return 7;
2424 	case 192000: return 8;
2425 	}
2426 
2427 	return -1;
2428 }
2429 
2430 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2431 {
2432 	int rate;
2433 	switch (mode) {
2434 	case 0:
2435 		rate = 32000; break;
2436 	case 1:
2437 		rate = 44100; break;
2438 	case 2:
2439 		rate = 48000; break;
2440 	case 3:
2441 		rate = 64000; break;
2442 	case 4:
2443 		rate = 88200; break;
2444 	case 5:
2445 		rate = 96000; break;
2446 	case 6:
2447 		rate = 128000; break;
2448 	case 7:
2449 		rate = 176400; break;
2450 	case 8:
2451 		rate = 192000; break;
2452 	default:
2453 		rate = 48000;
2454 	}
2455 	hdspm_set_rate(hdspm, rate, 1);
2456 	return 0;
2457 }
2458 
2459 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2460 				       struct snd_ctl_elem_info *uinfo)
2461 {
2462 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2463 	uinfo->count = 1;
2464 	uinfo->value.enumerated.items = 9;
2465 
2466 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2467 		uinfo->value.enumerated.item =
2468 		    uinfo->value.enumerated.items - 1;
2469 
2470 	strcpy(uinfo->value.enumerated.name,
2471 	       texts_freq[uinfo->value.enumerated.item+1]);
2472 
2473 	return 0;
2474 }
2475 
2476 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2477 				      struct snd_ctl_elem_value *ucontrol)
2478 {
2479 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2480 
2481 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2482 	return 0;
2483 }
2484 
2485 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2486 				      struct snd_ctl_elem_value *ucontrol)
2487 {
2488 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2489 	int change;
2490 	int val;
2491 
2492 	if (!snd_hdspm_use_is_exclusive(hdspm))
2493 		return -EBUSY;
2494 	val = ucontrol->value.enumerated.item[0];
2495 	if (val < 0)
2496 		val = 0;
2497 	if (val > 9)
2498 		val = 9;
2499 	spin_lock_irq(&hdspm->lock);
2500 	if (val != hdspm_clock_source(hdspm))
2501 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2502 	else
2503 		change = 0;
2504 	spin_unlock_irq(&hdspm->lock);
2505 	return change;
2506 }
2507 
2508 
2509 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2510 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2511 	.name = xname, \
2512 	.index = xindex, \
2513 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2514 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2515 	.info = snd_hdspm_info_pref_sync_ref, \
2516 	.get = snd_hdspm_get_pref_sync_ref, \
2517 	.put = snd_hdspm_put_pref_sync_ref \
2518 }
2519 
2520 
2521 /**
2522  * Returns the current preferred sync reference setting.
2523  * The semantics of the return value are depending on the
2524  * card, please see the comments for clarification.
2525  **/
2526 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2527 {
2528 	switch (hdspm->io_type) {
2529 	case AES32:
2530 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2531 		case 0: return 0;  /* WC */
2532 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2533 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2534 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2535 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2536 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2537 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2538 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2539 						    return 7; /* AES 7 */
2540 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2541 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2542 		}
2543 		break;
2544 
2545 	case MADI:
2546 	case MADIface:
2547 		if (hdspm->tco) {
2548 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2549 			case 0: return 0;  /* WC */
2550 			case HDSPM_SyncRef0: return 1;  /* MADI */
2551 			case HDSPM_SyncRef1: return 2;  /* TCO */
2552 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2553 					     return 3;  /* SYNC_IN */
2554 			}
2555 		} else {
2556 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2557 			case 0: return 0;  /* WC */
2558 			case HDSPM_SyncRef0: return 1;  /* MADI */
2559 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2560 					     return 2;  /* SYNC_IN */
2561 			}
2562 		}
2563 		break;
2564 
2565 	case RayDAT:
2566 		if (hdspm->tco) {
2567 			switch ((hdspm->settings_register &
2568 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2569 			case 0: return 0;  /* WC */
2570 			case 3: return 1;  /* ADAT 1 */
2571 			case 4: return 2;  /* ADAT 2 */
2572 			case 5: return 3;  /* ADAT 3 */
2573 			case 6: return 4;  /* ADAT 4 */
2574 			case 1: return 5;  /* AES */
2575 			case 2: return 6;  /* SPDIF */
2576 			case 9: return 7;  /* TCO */
2577 			case 10: return 8; /* SYNC_IN */
2578 			}
2579 		} else {
2580 			switch ((hdspm->settings_register &
2581 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2582 			case 0: return 0;  /* WC */
2583 			case 3: return 1;  /* ADAT 1 */
2584 			case 4: return 2;  /* ADAT 2 */
2585 			case 5: return 3;  /* ADAT 3 */
2586 			case 6: return 4;  /* ADAT 4 */
2587 			case 1: return 5;  /* AES */
2588 			case 2: return 6;  /* SPDIF */
2589 			case 10: return 7; /* SYNC_IN */
2590 			}
2591 		}
2592 
2593 		break;
2594 
2595 	case AIO:
2596 		if (hdspm->tco) {
2597 			switch ((hdspm->settings_register &
2598 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2599 			case 0: return 0;  /* WC */
2600 			case 3: return 1;  /* ADAT */
2601 			case 1: return 2;  /* AES */
2602 			case 2: return 3;  /* SPDIF */
2603 			case 9: return 4;  /* TCO */
2604 			case 10: return 5; /* SYNC_IN */
2605 			}
2606 		} else {
2607 			switch ((hdspm->settings_register &
2608 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2609 			case 0: return 0;  /* WC */
2610 			case 3: return 1;  /* ADAT */
2611 			case 1: return 2;  /* AES */
2612 			case 2: return 3;  /* SPDIF */
2613 			case 10: return 4; /* SYNC_IN */
2614 			}
2615 		}
2616 
2617 		break;
2618 	}
2619 
2620 	return -1;
2621 }
2622 
2623 
2624 /**
2625  * Set the preferred sync reference to <pref>. The semantics
2626  * of <pref> are depending on the card type, see the comments
2627  * for clarification.
2628  **/
2629 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2630 {
2631 	int p = 0;
2632 
2633 	switch (hdspm->io_type) {
2634 	case AES32:
2635 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2636 		switch (pref) {
2637 		case 0: /* WC  */
2638 			break;
2639 		case 1: /* AES 1 */
2640 			hdspm->control_register |= HDSPM_SyncRef0;
2641 			break;
2642 		case 2: /* AES 2 */
2643 			hdspm->control_register |= HDSPM_SyncRef1;
2644 			break;
2645 		case 3: /* AES 3 */
2646 			hdspm->control_register |=
2647 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2648 			break;
2649 		case 4: /* AES 4 */
2650 			hdspm->control_register |= HDSPM_SyncRef2;
2651 			break;
2652 		case 5: /* AES 5 */
2653 			hdspm->control_register |=
2654 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2655 			break;
2656 		case 6: /* AES 6 */
2657 			hdspm->control_register |=
2658 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2659 			break;
2660 		case 7: /* AES 7 */
2661 			hdspm->control_register |=
2662 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2663 			break;
2664 		case 8: /* AES 8 */
2665 			hdspm->control_register |= HDSPM_SyncRef3;
2666 			break;
2667 		case 9: /* TCO */
2668 			hdspm->control_register |=
2669 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2670 			break;
2671 		default:
2672 			return -1;
2673 		}
2674 
2675 		break;
2676 
2677 	case MADI:
2678 	case MADIface:
2679 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2680 		if (hdspm->tco) {
2681 			switch (pref) {
2682 			case 0: /* WC */
2683 				break;
2684 			case 1: /* MADI */
2685 				hdspm->control_register |= HDSPM_SyncRef0;
2686 				break;
2687 			case 2: /* TCO */
2688 				hdspm->control_register |= HDSPM_SyncRef1;
2689 				break;
2690 			case 3: /* SYNC_IN */
2691 				hdspm->control_register |=
2692 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2693 				break;
2694 			default:
2695 				return -1;
2696 			}
2697 		} else {
2698 			switch (pref) {
2699 			case 0: /* WC */
2700 				break;
2701 			case 1: /* MADI */
2702 				hdspm->control_register |= HDSPM_SyncRef0;
2703 				break;
2704 			case 2: /* SYNC_IN */
2705 				hdspm->control_register |=
2706 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2707 				break;
2708 			default:
2709 				return -1;
2710 			}
2711 		}
2712 
2713 		break;
2714 
2715 	case RayDAT:
2716 		if (hdspm->tco) {
2717 			switch (pref) {
2718 			case 0: p = 0; break;  /* WC */
2719 			case 1: p = 3; break;  /* ADAT 1 */
2720 			case 2: p = 4; break;  /* ADAT 2 */
2721 			case 3: p = 5; break;  /* ADAT 3 */
2722 			case 4: p = 6; break;  /* ADAT 4 */
2723 			case 5: p = 1; break;  /* AES */
2724 			case 6: p = 2; break;  /* SPDIF */
2725 			case 7: p = 9; break;  /* TCO */
2726 			case 8: p = 10; break; /* SYNC_IN */
2727 			default: return -1;
2728 			}
2729 		} else {
2730 			switch (pref) {
2731 			case 0: p = 0; break;  /* WC */
2732 			case 1: p = 3; break;  /* ADAT 1 */
2733 			case 2: p = 4; break;  /* ADAT 2 */
2734 			case 3: p = 5; break;  /* ADAT 3 */
2735 			case 4: p = 6; break;  /* ADAT 4 */
2736 			case 5: p = 1; break;  /* AES */
2737 			case 6: p = 2; break;  /* SPDIF */
2738 			case 7: p = 10; break; /* SYNC_IN */
2739 			default: return -1;
2740 			}
2741 		}
2742 		break;
2743 
2744 	case AIO:
2745 		if (hdspm->tco) {
2746 			switch (pref) {
2747 			case 0: p = 0; break;  /* WC */
2748 			case 1: p = 3; break;  /* ADAT */
2749 			case 2: p = 1; break;  /* AES */
2750 			case 3: p = 2; break;  /* SPDIF */
2751 			case 4: p = 9; break;  /* TCO */
2752 			case 5: p = 10; break; /* SYNC_IN */
2753 			default: return -1;
2754 			}
2755 		} else {
2756 			switch (pref) {
2757 			case 0: p = 0; break;  /* WC */
2758 			case 1: p = 3; break;  /* ADAT */
2759 			case 2: p = 1; break;  /* AES */
2760 			case 3: p = 2; break;  /* SPDIF */
2761 			case 4: p = 10; break; /* SYNC_IN */
2762 			default: return -1;
2763 			}
2764 		}
2765 		break;
2766 	}
2767 
2768 	switch (hdspm->io_type) {
2769 	case RayDAT:
2770 	case AIO:
2771 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2772 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2773 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2774 		break;
2775 
2776 	case MADI:
2777 	case MADIface:
2778 	case AES32:
2779 		hdspm_write(hdspm, HDSPM_controlRegister,
2780 				hdspm->control_register);
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 
2787 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2788 					struct snd_ctl_elem_info *uinfo)
2789 {
2790 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2791 
2792 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2793 	uinfo->count = 1;
2794 	uinfo->value.enumerated.items = hdspm->texts_autosync_items;
2795 
2796 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2797 		uinfo->value.enumerated.item =
2798 			uinfo->value.enumerated.items - 1;
2799 
2800 	strcpy(uinfo->value.enumerated.name,
2801 			hdspm->texts_autosync[uinfo->value.enumerated.item]);
2802 
2803 	return 0;
2804 }
2805 
2806 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2807 				       struct snd_ctl_elem_value *ucontrol)
2808 {
2809 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2810 	int psf = hdspm_pref_sync_ref(hdspm);
2811 
2812 	if (psf >= 0) {
2813 		ucontrol->value.enumerated.item[0] = psf;
2814 		return 0;
2815 	}
2816 
2817 	return -1;
2818 }
2819 
2820 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2821 				       struct snd_ctl_elem_value *ucontrol)
2822 {
2823 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2824 	int val, change = 0;
2825 
2826 	if (!snd_hdspm_use_is_exclusive(hdspm))
2827 		return -EBUSY;
2828 
2829 	val = ucontrol->value.enumerated.item[0];
2830 
2831 	if (val < 0)
2832 		val = 0;
2833 	else if (val >= hdspm->texts_autosync_items)
2834 		val = hdspm->texts_autosync_items-1;
2835 
2836 	spin_lock_irq(&hdspm->lock);
2837 	if (val != hdspm_pref_sync_ref(hdspm))
2838 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
2839 
2840 	spin_unlock_irq(&hdspm->lock);
2841 	return change;
2842 }
2843 
2844 
2845 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
2846 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2847 	.name = xname, \
2848 	.index = xindex, \
2849 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2850 	.info = snd_hdspm_info_autosync_ref, \
2851 	.get = snd_hdspm_get_autosync_ref, \
2852 }
2853 
2854 static int hdspm_autosync_ref(struct hdspm *hdspm)
2855 {
2856 	if (AES32 == hdspm->io_type) {
2857 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
2858 		unsigned int syncref =
2859 			(status >> HDSPM_AES32_syncref_bit) & 0xF;
2860 		if (syncref == 0)
2861 			return HDSPM_AES32_AUTOSYNC_FROM_WORD;
2862 		if (syncref <= 8)
2863 			return syncref;
2864 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
2865 	} else if (MADI == hdspm->io_type) {
2866 		/* This looks at the autosync selected sync reference */
2867 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2868 
2869 		switch (status2 & HDSPM_SelSyncRefMask) {
2870 		case HDSPM_SelSyncRef_WORD:
2871 			return HDSPM_AUTOSYNC_FROM_WORD;
2872 		case HDSPM_SelSyncRef_MADI:
2873 			return HDSPM_AUTOSYNC_FROM_MADI;
2874 		case HDSPM_SelSyncRef_TCO:
2875 			return HDSPM_AUTOSYNC_FROM_TCO;
2876 		case HDSPM_SelSyncRef_SyncIn:
2877 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
2878 		case HDSPM_SelSyncRef_NVALID:
2879 			return HDSPM_AUTOSYNC_FROM_NONE;
2880 		default:
2881 			return 0;
2882 		}
2883 
2884 	}
2885 	return 0;
2886 }
2887 
2888 
2889 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
2890 				       struct snd_ctl_elem_info *uinfo)
2891 {
2892 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2893 
2894 	if (AES32 == hdspm->io_type) {
2895 		static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
2896 			"AES4",	"AES5", "AES6", "AES7", "AES8", "None"};
2897 
2898 		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2899 		uinfo->count = 1;
2900 		uinfo->value.enumerated.items = 10;
2901 		if (uinfo->value.enumerated.item >=
2902 		    uinfo->value.enumerated.items)
2903 			uinfo->value.enumerated.item =
2904 				uinfo->value.enumerated.items - 1;
2905 		strcpy(uinfo->value.enumerated.name,
2906 				texts[uinfo->value.enumerated.item]);
2907 	} else if (MADI == hdspm->io_type) {
2908 		static char *texts[] = {"Word Clock", "MADI", "TCO",
2909 			"Sync In", "None" };
2910 
2911 		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2912 		uinfo->count = 1;
2913 		uinfo->value.enumerated.items = 5;
2914 		if (uinfo->value.enumerated.item >=
2915 				uinfo->value.enumerated.items)
2916 			uinfo->value.enumerated.item =
2917 				uinfo->value.enumerated.items - 1;
2918 		strcpy(uinfo->value.enumerated.name,
2919 				texts[uinfo->value.enumerated.item]);
2920 	}
2921 	return 0;
2922 }
2923 
2924 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
2925 				      struct snd_ctl_elem_value *ucontrol)
2926 {
2927 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2928 
2929 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
2930 	return 0;
2931 }
2932 
2933 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
2934 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2935 	.name = xname, \
2936 	.private_value = xindex, \
2937 	.info = snd_hdspm_info_toggle_setting, \
2938 	.get = snd_hdspm_get_toggle_setting, \
2939 	.put = snd_hdspm_put_toggle_setting \
2940 }
2941 
2942 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
2943 {
2944 	return (hdspm->control_register & regmask) ? 1 : 0;
2945 }
2946 
2947 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
2948 {
2949 	if (out)
2950 		hdspm->control_register |= regmask;
2951 	else
2952 		hdspm->control_register &= ~regmask;
2953 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2954 
2955 	return 0;
2956 }
2957 
2958 #define snd_hdspm_info_toggle_setting		snd_ctl_boolean_mono_info
2959 
2960 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
2961 			       struct snd_ctl_elem_value *ucontrol)
2962 {
2963 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2964 	u32 regmask = kcontrol->private_value;
2965 
2966 	spin_lock_irq(&hdspm->lock);
2967 	ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
2968 	spin_unlock_irq(&hdspm->lock);
2969 	return 0;
2970 }
2971 
2972 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
2973 			       struct snd_ctl_elem_value *ucontrol)
2974 {
2975 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2976 	u32 regmask = kcontrol->private_value;
2977 	int change;
2978 	unsigned int val;
2979 
2980 	if (!snd_hdspm_use_is_exclusive(hdspm))
2981 		return -EBUSY;
2982 	val = ucontrol->value.integer.value[0] & 1;
2983 	spin_lock_irq(&hdspm->lock);
2984 	change = (int) val != hdspm_toggle_setting(hdspm, regmask);
2985 	hdspm_set_toggle_setting(hdspm, regmask, val);
2986 	spin_unlock_irq(&hdspm->lock);
2987 	return change;
2988 }
2989 
2990 #define HDSPM_INPUT_SELECT(xname, xindex) \
2991 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2992 	.name = xname, \
2993 	.index = xindex, \
2994 	.info = snd_hdspm_info_input_select, \
2995 	.get = snd_hdspm_get_input_select, \
2996 	.put = snd_hdspm_put_input_select \
2997 }
2998 
2999 static int hdspm_input_select(struct hdspm * hdspm)
3000 {
3001 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3002 }
3003 
3004 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3005 {
3006 	if (out)
3007 		hdspm->control_register |= HDSPM_InputSelect0;
3008 	else
3009 		hdspm->control_register &= ~HDSPM_InputSelect0;
3010 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3011 
3012 	return 0;
3013 }
3014 
3015 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3016 				       struct snd_ctl_elem_info *uinfo)
3017 {
3018 	static char *texts[] = { "optical", "coaxial" };
3019 	ENUMERATED_CTL_INFO(uinfo, texts);
3020 	return 0;
3021 }
3022 
3023 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3024 				      struct snd_ctl_elem_value *ucontrol)
3025 {
3026 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3027 
3028 	spin_lock_irq(&hdspm->lock);
3029 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3030 	spin_unlock_irq(&hdspm->lock);
3031 	return 0;
3032 }
3033 
3034 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3035 				      struct snd_ctl_elem_value *ucontrol)
3036 {
3037 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3038 	int change;
3039 	unsigned int val;
3040 
3041 	if (!snd_hdspm_use_is_exclusive(hdspm))
3042 		return -EBUSY;
3043 	val = ucontrol->value.integer.value[0] & 1;
3044 	spin_lock_irq(&hdspm->lock);
3045 	change = (int) val != hdspm_input_select(hdspm);
3046 	hdspm_set_input_select(hdspm, val);
3047 	spin_unlock_irq(&hdspm->lock);
3048 	return change;
3049 }
3050 
3051 
3052 #define HDSPM_DS_WIRE(xname, xindex) \
3053 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3054 	.name = xname, \
3055 	.index = xindex, \
3056 	.info = snd_hdspm_info_ds_wire, \
3057 	.get = snd_hdspm_get_ds_wire, \
3058 	.put = snd_hdspm_put_ds_wire \
3059 }
3060 
3061 static int hdspm_ds_wire(struct hdspm * hdspm)
3062 {
3063 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3064 }
3065 
3066 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3067 {
3068 	if (ds)
3069 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3070 	else
3071 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3072 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3073 
3074 	return 0;
3075 }
3076 
3077 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3078 				  struct snd_ctl_elem_info *uinfo)
3079 {
3080 	static char *texts[] = { "Single", "Double" };
3081 	ENUMERATED_CTL_INFO(uinfo, texts);
3082 	return 0;
3083 }
3084 
3085 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3086 				 struct snd_ctl_elem_value *ucontrol)
3087 {
3088 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3089 
3090 	spin_lock_irq(&hdspm->lock);
3091 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3092 	spin_unlock_irq(&hdspm->lock);
3093 	return 0;
3094 }
3095 
3096 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3097 				 struct snd_ctl_elem_value *ucontrol)
3098 {
3099 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3100 	int change;
3101 	unsigned int val;
3102 
3103 	if (!snd_hdspm_use_is_exclusive(hdspm))
3104 		return -EBUSY;
3105 	val = ucontrol->value.integer.value[0] & 1;
3106 	spin_lock_irq(&hdspm->lock);
3107 	change = (int) val != hdspm_ds_wire(hdspm);
3108 	hdspm_set_ds_wire(hdspm, val);
3109 	spin_unlock_irq(&hdspm->lock);
3110 	return change;
3111 }
3112 
3113 
3114 #define HDSPM_QS_WIRE(xname, xindex) \
3115 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3116 	.name = xname, \
3117 	.index = xindex, \
3118 	.info = snd_hdspm_info_qs_wire, \
3119 	.get = snd_hdspm_get_qs_wire, \
3120 	.put = snd_hdspm_put_qs_wire \
3121 }
3122 
3123 static int hdspm_qs_wire(struct hdspm * hdspm)
3124 {
3125 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3126 		return 1;
3127 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3128 		return 2;
3129 	return 0;
3130 }
3131 
3132 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3133 {
3134 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3135 	switch (mode) {
3136 	case 0:
3137 		break;
3138 	case 1:
3139 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3140 		break;
3141 	case 2:
3142 		hdspm->control_register |= HDSPM_QS_QuadWire;
3143 		break;
3144 	}
3145 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3146 
3147 	return 0;
3148 }
3149 
3150 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3151 				       struct snd_ctl_elem_info *uinfo)
3152 {
3153 	static char *texts[] = { "Single", "Double", "Quad" };
3154 	ENUMERATED_CTL_INFO(uinfo, texts);
3155 	return 0;
3156 }
3157 
3158 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3159 				      struct snd_ctl_elem_value *ucontrol)
3160 {
3161 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3162 
3163 	spin_lock_irq(&hdspm->lock);
3164 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3165 	spin_unlock_irq(&hdspm->lock);
3166 	return 0;
3167 }
3168 
3169 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3170 				      struct snd_ctl_elem_value *ucontrol)
3171 {
3172 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3173 	int change;
3174 	int val;
3175 
3176 	if (!snd_hdspm_use_is_exclusive(hdspm))
3177 		return -EBUSY;
3178 	val = ucontrol->value.integer.value[0];
3179 	if (val < 0)
3180 		val = 0;
3181 	if (val > 2)
3182 		val = 2;
3183 	spin_lock_irq(&hdspm->lock);
3184 	change = val != hdspm_qs_wire(hdspm);
3185 	hdspm_set_qs_wire(hdspm, val);
3186 	spin_unlock_irq(&hdspm->lock);
3187 	return change;
3188 }
3189 
3190 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3191 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3192 	.name = xname, \
3193 	.index = xindex, \
3194 	.info = snd_hdspm_info_madi_speedmode, \
3195 	.get = snd_hdspm_get_madi_speedmode, \
3196 	.put = snd_hdspm_put_madi_speedmode \
3197 }
3198 
3199 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3200 {
3201 	if (hdspm->control_register & HDSPM_QuadSpeed)
3202 		return 2;
3203 	if (hdspm->control_register & HDSPM_DoubleSpeed)
3204 		return 1;
3205 	return 0;
3206 }
3207 
3208 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3209 {
3210 	hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3211 	switch (mode) {
3212 	case 0:
3213 		break;
3214 	case 1:
3215 		hdspm->control_register |= HDSPM_DoubleSpeed;
3216 		break;
3217 	case 2:
3218 		hdspm->control_register |= HDSPM_QuadSpeed;
3219 		break;
3220 	}
3221 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3222 
3223 	return 0;
3224 }
3225 
3226 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3227 				       struct snd_ctl_elem_info *uinfo)
3228 {
3229 	static char *texts[] = { "Single", "Double", "Quad" };
3230 	ENUMERATED_CTL_INFO(uinfo, texts);
3231 	return 0;
3232 }
3233 
3234 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3235 				      struct snd_ctl_elem_value *ucontrol)
3236 {
3237 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3238 
3239 	spin_lock_irq(&hdspm->lock);
3240 	ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3241 	spin_unlock_irq(&hdspm->lock);
3242 	return 0;
3243 }
3244 
3245 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3246 				      struct snd_ctl_elem_value *ucontrol)
3247 {
3248 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3249 	int change;
3250 	int val;
3251 
3252 	if (!snd_hdspm_use_is_exclusive(hdspm))
3253 		return -EBUSY;
3254 	val = ucontrol->value.integer.value[0];
3255 	if (val < 0)
3256 		val = 0;
3257 	if (val > 2)
3258 		val = 2;
3259 	spin_lock_irq(&hdspm->lock);
3260 	change = val != hdspm_madi_speedmode(hdspm);
3261 	hdspm_set_madi_speedmode(hdspm, val);
3262 	spin_unlock_irq(&hdspm->lock);
3263 	return change;
3264 }
3265 
3266 #define HDSPM_MIXER(xname, xindex) \
3267 {	.iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3268 	.name = xname, \
3269 	.index = xindex, \
3270 	.device = 0, \
3271 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3272 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3273 	.info = snd_hdspm_info_mixer, \
3274 	.get = snd_hdspm_get_mixer, \
3275 	.put = snd_hdspm_put_mixer \
3276 }
3277 
3278 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3279 				struct snd_ctl_elem_info *uinfo)
3280 {
3281 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3282 	uinfo->count = 3;
3283 	uinfo->value.integer.min = 0;
3284 	uinfo->value.integer.max = 65535;
3285 	uinfo->value.integer.step = 1;
3286 	return 0;
3287 }
3288 
3289 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3290 			       struct snd_ctl_elem_value *ucontrol)
3291 {
3292 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3293 	int source;
3294 	int destination;
3295 
3296 	source = ucontrol->value.integer.value[0];
3297 	if (source < 0)
3298 		source = 0;
3299 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3300 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3301 
3302 	destination = ucontrol->value.integer.value[1];
3303 	if (destination < 0)
3304 		destination = 0;
3305 	else if (destination >= HDSPM_MAX_CHANNELS)
3306 		destination = HDSPM_MAX_CHANNELS - 1;
3307 
3308 	spin_lock_irq(&hdspm->lock);
3309 	if (source >= HDSPM_MAX_CHANNELS)
3310 		ucontrol->value.integer.value[2] =
3311 		    hdspm_read_pb_gain(hdspm, destination,
3312 				       source - HDSPM_MAX_CHANNELS);
3313 	else
3314 		ucontrol->value.integer.value[2] =
3315 		    hdspm_read_in_gain(hdspm, destination, source);
3316 
3317 	spin_unlock_irq(&hdspm->lock);
3318 
3319 	return 0;
3320 }
3321 
3322 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3323 			       struct snd_ctl_elem_value *ucontrol)
3324 {
3325 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3326 	int change;
3327 	int source;
3328 	int destination;
3329 	int gain;
3330 
3331 	if (!snd_hdspm_use_is_exclusive(hdspm))
3332 		return -EBUSY;
3333 
3334 	source = ucontrol->value.integer.value[0];
3335 	destination = ucontrol->value.integer.value[1];
3336 
3337 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3338 		return -1;
3339 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3340 		return -1;
3341 
3342 	gain = ucontrol->value.integer.value[2];
3343 
3344 	spin_lock_irq(&hdspm->lock);
3345 
3346 	if (source >= HDSPM_MAX_CHANNELS)
3347 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3348 						    source -
3349 						    HDSPM_MAX_CHANNELS);
3350 	else
3351 		change = gain != hdspm_read_in_gain(hdspm, destination,
3352 						    source);
3353 
3354 	if (change) {
3355 		if (source >= HDSPM_MAX_CHANNELS)
3356 			hdspm_write_pb_gain(hdspm, destination,
3357 					    source - HDSPM_MAX_CHANNELS,
3358 					    gain);
3359 		else
3360 			hdspm_write_in_gain(hdspm, destination, source,
3361 					    gain);
3362 	}
3363 	spin_unlock_irq(&hdspm->lock);
3364 
3365 	return change;
3366 }
3367 
3368 /* The simple mixer control(s) provide gain control for the
3369    basic 1:1 mappings of playback streams to output
3370    streams.
3371 */
3372 
3373 #define HDSPM_PLAYBACK_MIXER \
3374 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3375 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3376 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3377 	.info = snd_hdspm_info_playback_mixer, \
3378 	.get = snd_hdspm_get_playback_mixer, \
3379 	.put = snd_hdspm_put_playback_mixer \
3380 }
3381 
3382 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3383 					 struct snd_ctl_elem_info *uinfo)
3384 {
3385 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3386 	uinfo->count = 1;
3387 	uinfo->value.integer.min = 0;
3388 	uinfo->value.integer.max = 64;
3389 	uinfo->value.integer.step = 1;
3390 	return 0;
3391 }
3392 
3393 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3394 					struct snd_ctl_elem_value *ucontrol)
3395 {
3396 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3397 	int channel;
3398 
3399 	channel = ucontrol->id.index - 1;
3400 
3401 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3402 		return -EINVAL;
3403 
3404 	spin_lock_irq(&hdspm->lock);
3405 	ucontrol->value.integer.value[0] =
3406 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3407 	spin_unlock_irq(&hdspm->lock);
3408 
3409 	return 0;
3410 }
3411 
3412 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3413 					struct snd_ctl_elem_value *ucontrol)
3414 {
3415 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3416 	int change;
3417 	int channel;
3418 	int gain;
3419 
3420 	if (!snd_hdspm_use_is_exclusive(hdspm))
3421 		return -EBUSY;
3422 
3423 	channel = ucontrol->id.index - 1;
3424 
3425 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3426 		return -EINVAL;
3427 
3428 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3429 
3430 	spin_lock_irq(&hdspm->lock);
3431 	change =
3432 	    gain != hdspm_read_pb_gain(hdspm, channel,
3433 				       channel);
3434 	if (change)
3435 		hdspm_write_pb_gain(hdspm, channel, channel,
3436 				    gain);
3437 	spin_unlock_irq(&hdspm->lock);
3438 	return change;
3439 }
3440 
3441 #define HDSPM_SYNC_CHECK(xname, xindex) \
3442 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3443 	.name = xname, \
3444 	.private_value = xindex, \
3445 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3446 	.info = snd_hdspm_info_sync_check, \
3447 	.get = snd_hdspm_get_sync_check \
3448 }
3449 
3450 
3451 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3452 				     struct snd_ctl_elem_info *uinfo)
3453 {
3454 	static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3455 	ENUMERATED_CTL_INFO(uinfo, texts);
3456 	return 0;
3457 }
3458 
3459 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3460 {
3461 	int status, status2;
3462 
3463 	switch (hdspm->io_type) {
3464 	case AES32:
3465 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3466 		if (status & HDSPM_AES32_wcLock) {
3467 			if (status & HDSPM_AES32_wcSync)
3468 				return 2;
3469 			else
3470 				return 1;
3471 		}
3472 		return 0;
3473 		break;
3474 
3475 	case MADI:
3476 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3477 		if (status2 & HDSPM_wcLock) {
3478 			if (status2 & HDSPM_wcSync)
3479 				return 2;
3480 			else
3481 				return 1;
3482 		}
3483 		return 0;
3484 		break;
3485 
3486 	case RayDAT:
3487 	case AIO:
3488 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3489 
3490 		if (status & 0x2000000)
3491 			return 2;
3492 		else if (status & 0x1000000)
3493 			return 1;
3494 		return 0;
3495 
3496 		break;
3497 
3498 	case MADIface:
3499 		break;
3500 	}
3501 
3502 
3503 	return 3;
3504 }
3505 
3506 
3507 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3508 {
3509 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3510 	if (status & HDSPM_madiLock) {
3511 		if (status & HDSPM_madiSync)
3512 			return 2;
3513 		else
3514 			return 1;
3515 	}
3516 	return 0;
3517 }
3518 
3519 
3520 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3521 {
3522 	int status, lock, sync;
3523 
3524 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3525 
3526 	lock = (status & (0x1<<idx)) ? 1 : 0;
3527 	sync = (status & (0x100<<idx)) ? 1 : 0;
3528 
3529 	if (lock && sync)
3530 		return 2;
3531 	else if (lock)
3532 		return 1;
3533 	return 0;
3534 }
3535 
3536 
3537 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3538 {
3539 	int status, lock = 0, sync = 0;
3540 
3541 	switch (hdspm->io_type) {
3542 	case RayDAT:
3543 	case AIO:
3544 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3545 		lock = (status & 0x400) ? 1 : 0;
3546 		sync = (status & 0x800) ? 1 : 0;
3547 		break;
3548 
3549 	case MADI:
3550 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3551 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3552 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3553 		break;
3554 
3555 	case AES32:
3556 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3557 		lock = (status & 0x100000) ? 1 : 0;
3558 		sync = (status & 0x200000) ? 1 : 0;
3559 		break;
3560 
3561 	case MADIface:
3562 		break;
3563 	}
3564 
3565 	if (lock && sync)
3566 		return 2;
3567 	else if (lock)
3568 		return 1;
3569 
3570 	return 0;
3571 }
3572 
3573 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3574 {
3575 	int status2, lock, sync;
3576 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3577 
3578 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3579 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3580 
3581 	if (sync)
3582 		return 2;
3583 	else if (lock)
3584 		return 1;
3585 	return 0;
3586 }
3587 
3588 
3589 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3590 {
3591 	int status;
3592 
3593 	if (hdspm->tco) {
3594 		switch (hdspm->io_type) {
3595 		case MADI:
3596 		case AES32:
3597 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3598 			if (status & HDSPM_tcoLock) {
3599 				if (status & HDSPM_tcoSync)
3600 					return 2;
3601 				else
3602 					return 1;
3603 			}
3604 			return 0;
3605 
3606 			break;
3607 
3608 		case RayDAT:
3609 		case AIO:
3610 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3611 
3612 			if (status & 0x8000000)
3613 				return 2; /* Sync */
3614 			if (status & 0x4000000)
3615 				return 1; /* Lock */
3616 			return 0; /* No signal */
3617 			break;
3618 
3619 		default:
3620 			break;
3621 		}
3622 	}
3623 
3624 	return 3; /* N/A */
3625 }
3626 
3627 
3628 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
3629 				    struct snd_ctl_elem_value *ucontrol)
3630 {
3631 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3632 	int val = -1;
3633 
3634 	switch (hdspm->io_type) {
3635 	case RayDAT:
3636 		switch (kcontrol->private_value) {
3637 		case 0: /* WC */
3638 			val = hdspm_wc_sync_check(hdspm); break;
3639 		case 7: /* TCO */
3640 			val = hdspm_tco_sync_check(hdspm); break;
3641 		case 8: /* SYNC IN */
3642 			val = hdspm_sync_in_sync_check(hdspm); break;
3643 		default:
3644 			val = hdspm_s1_sync_check(hdspm,
3645 					kcontrol->private_value-1);
3646 		}
3647 		break;
3648 
3649 	case AIO:
3650 		switch (kcontrol->private_value) {
3651 		case 0: /* WC */
3652 			val = hdspm_wc_sync_check(hdspm); break;
3653 		case 4: /* TCO */
3654 			val = hdspm_tco_sync_check(hdspm); break;
3655 		case 5: /* SYNC IN */
3656 			val = hdspm_sync_in_sync_check(hdspm); break;
3657 		default:
3658 			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3659 		}
3660 		break;
3661 
3662 	case MADI:
3663 		switch (kcontrol->private_value) {
3664 		case 0: /* WC */
3665 			val = hdspm_wc_sync_check(hdspm); break;
3666 		case 1: /* MADI */
3667 			val = hdspm_madi_sync_check(hdspm); break;
3668 		case 2: /* TCO */
3669 			val = hdspm_tco_sync_check(hdspm); break;
3670 		case 3: /* SYNC_IN */
3671 			val = hdspm_sync_in_sync_check(hdspm); break;
3672 		}
3673 		break;
3674 
3675 	case MADIface:
3676 		val = hdspm_madi_sync_check(hdspm); /* MADI */
3677 		break;
3678 
3679 	case AES32:
3680 		switch (kcontrol->private_value) {
3681 		case 0: /* WC */
3682 			val = hdspm_wc_sync_check(hdspm); break;
3683 		case 9: /* TCO */
3684 			val = hdspm_tco_sync_check(hdspm); break;
3685 		case 10 /* SYNC IN */:
3686 			val = hdspm_sync_in_sync_check(hdspm); break;
3687 		default: /* AES1 to AES8 */
3688 			 val = hdspm_aes_sync_check(hdspm,
3689 					 kcontrol->private_value-1);
3690 		}
3691 		break;
3692 
3693 	}
3694 
3695 	if (-1 == val)
3696 		val = 3;
3697 
3698 	ucontrol->value.enumerated.item[0] = val;
3699 	return 0;
3700 }
3701 
3702 
3703 
3704 /**
3705  * TCO controls
3706  **/
3707 static void hdspm_tco_write(struct hdspm *hdspm)
3708 {
3709 	unsigned int tc[4] = { 0, 0, 0, 0};
3710 
3711 	switch (hdspm->tco->input) {
3712 	case 0:
3713 		tc[2] |= HDSPM_TCO2_set_input_MSB;
3714 		break;
3715 	case 1:
3716 		tc[2] |= HDSPM_TCO2_set_input_LSB;
3717 		break;
3718 	default:
3719 		break;
3720 	}
3721 
3722 	switch (hdspm->tco->framerate) {
3723 	case 1:
3724 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
3725 		break;
3726 	case 2:
3727 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
3728 		break;
3729 	case 3:
3730 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
3731 			HDSPM_TCO1_set_drop_frame_flag;
3732 		break;
3733 	case 4:
3734 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3735 			HDSPM_TCO1_LTC_Format_MSB;
3736 		break;
3737 	case 5:
3738 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3739 			HDSPM_TCO1_LTC_Format_MSB +
3740 			HDSPM_TCO1_set_drop_frame_flag;
3741 		break;
3742 	default:
3743 		break;
3744 	}
3745 
3746 	switch (hdspm->tco->wordclock) {
3747 	case 1:
3748 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
3749 		break;
3750 	case 2:
3751 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
3752 		break;
3753 	default:
3754 		break;
3755 	}
3756 
3757 	switch (hdspm->tco->samplerate) {
3758 	case 1:
3759 		tc[2] |= HDSPM_TCO2_set_freq;
3760 		break;
3761 	case 2:
3762 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
3763 		break;
3764 	default:
3765 		break;
3766 	}
3767 
3768 	switch (hdspm->tco->pull) {
3769 	case 1:
3770 		tc[2] |= HDSPM_TCO2_set_pull_up;
3771 		break;
3772 	case 2:
3773 		tc[2] |= HDSPM_TCO2_set_pull_down;
3774 		break;
3775 	case 3:
3776 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
3777 		break;
3778 	case 4:
3779 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
3780 		break;
3781 	default:
3782 		break;
3783 	}
3784 
3785 	if (1 == hdspm->tco->term) {
3786 		tc[2] |= HDSPM_TCO2_set_term_75R;
3787 	}
3788 
3789 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
3790 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
3791 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
3792 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
3793 }
3794 
3795 
3796 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
3797 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3798 	.name = xname, \
3799 	.index = xindex, \
3800 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3801 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3802 	.info = snd_hdspm_info_tco_sample_rate, \
3803 	.get = snd_hdspm_get_tco_sample_rate, \
3804 	.put = snd_hdspm_put_tco_sample_rate \
3805 }
3806 
3807 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
3808 					  struct snd_ctl_elem_info *uinfo)
3809 {
3810 	static char *texts[] = { "44.1 kHz", "48 kHz" };
3811 	ENUMERATED_CTL_INFO(uinfo, texts);
3812 	return 0;
3813 }
3814 
3815 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
3816 				      struct snd_ctl_elem_value *ucontrol)
3817 {
3818 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3819 
3820 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
3821 
3822 	return 0;
3823 }
3824 
3825 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
3826 					 struct snd_ctl_elem_value *ucontrol)
3827 {
3828 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3829 
3830 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
3831 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
3832 
3833 		hdspm_tco_write(hdspm);
3834 
3835 		return 1;
3836 	}
3837 
3838 	return 0;
3839 }
3840 
3841 
3842 #define HDSPM_TCO_PULL(xname, xindex) \
3843 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3844 	.name = xname, \
3845 	.index = xindex, \
3846 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3847 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3848 	.info = snd_hdspm_info_tco_pull, \
3849 	.get = snd_hdspm_get_tco_pull, \
3850 	.put = snd_hdspm_put_tco_pull \
3851 }
3852 
3853 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
3854 				   struct snd_ctl_elem_info *uinfo)
3855 {
3856 	static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
3857 	ENUMERATED_CTL_INFO(uinfo, texts);
3858 	return 0;
3859 }
3860 
3861 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
3862 				  struct snd_ctl_elem_value *ucontrol)
3863 {
3864 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3865 
3866 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
3867 
3868 	return 0;
3869 }
3870 
3871 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
3872 				  struct snd_ctl_elem_value *ucontrol)
3873 {
3874 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3875 
3876 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
3877 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
3878 
3879 		hdspm_tco_write(hdspm);
3880 
3881 		return 1;
3882 	}
3883 
3884 	return 0;
3885 }
3886 
3887 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
3888 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3889 	.name = xname, \
3890 	.index = xindex, \
3891 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3892 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3893 	.info = snd_hdspm_info_tco_wck_conversion, \
3894 	.get = snd_hdspm_get_tco_wck_conversion, \
3895 	.put = snd_hdspm_put_tco_wck_conversion \
3896 }
3897 
3898 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
3899 					     struct snd_ctl_elem_info *uinfo)
3900 {
3901 	static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
3902 	ENUMERATED_CTL_INFO(uinfo, texts);
3903 	return 0;
3904 }
3905 
3906 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
3907 					    struct snd_ctl_elem_value *ucontrol)
3908 {
3909 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3910 
3911 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
3912 
3913 	return 0;
3914 }
3915 
3916 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
3917 					    struct snd_ctl_elem_value *ucontrol)
3918 {
3919 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3920 
3921 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
3922 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
3923 
3924 		hdspm_tco_write(hdspm);
3925 
3926 		return 1;
3927 	}
3928 
3929 	return 0;
3930 }
3931 
3932 
3933 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
3934 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3935 	.name = xname, \
3936 	.index = xindex, \
3937 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3938 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3939 	.info = snd_hdspm_info_tco_frame_rate, \
3940 	.get = snd_hdspm_get_tco_frame_rate, \
3941 	.put = snd_hdspm_put_tco_frame_rate \
3942 }
3943 
3944 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
3945 					  struct snd_ctl_elem_info *uinfo)
3946 {
3947 	static char *texts[] = { "24 fps", "25 fps", "29.97fps",
3948 		"29.97 dfps", "30 fps", "30 dfps" };
3949 	ENUMERATED_CTL_INFO(uinfo, texts);
3950 	return 0;
3951 }
3952 
3953 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
3954 					struct snd_ctl_elem_value *ucontrol)
3955 {
3956 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3957 
3958 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
3959 
3960 	return 0;
3961 }
3962 
3963 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
3964 					struct snd_ctl_elem_value *ucontrol)
3965 {
3966 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3967 
3968 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
3969 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
3970 
3971 		hdspm_tco_write(hdspm);
3972 
3973 		return 1;
3974 	}
3975 
3976 	return 0;
3977 }
3978 
3979 
3980 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
3981 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3982 	.name = xname, \
3983 	.index = xindex, \
3984 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3985 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3986 	.info = snd_hdspm_info_tco_sync_source, \
3987 	.get = snd_hdspm_get_tco_sync_source, \
3988 	.put = snd_hdspm_put_tco_sync_source \
3989 }
3990 
3991 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
3992 					  struct snd_ctl_elem_info *uinfo)
3993 {
3994 	static char *texts[] = { "LTC", "Video", "WCK" };
3995 	ENUMERATED_CTL_INFO(uinfo, texts);
3996 	return 0;
3997 }
3998 
3999 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4000 					 struct snd_ctl_elem_value *ucontrol)
4001 {
4002 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4003 
4004 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4005 
4006 	return 0;
4007 }
4008 
4009 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4010 					 struct snd_ctl_elem_value *ucontrol)
4011 {
4012 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4013 
4014 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4015 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4016 
4017 		hdspm_tco_write(hdspm);
4018 
4019 		return 1;
4020 	}
4021 
4022 	return 0;
4023 }
4024 
4025 
4026 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4027 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4028 	.name = xname, \
4029 	.index = xindex, \
4030 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4031 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4032 	.info = snd_hdspm_info_tco_word_term, \
4033 	.get = snd_hdspm_get_tco_word_term, \
4034 	.put = snd_hdspm_put_tco_word_term \
4035 }
4036 
4037 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4038 					struct snd_ctl_elem_info *uinfo)
4039 {
4040 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4041 	uinfo->count = 1;
4042 	uinfo->value.integer.min = 0;
4043 	uinfo->value.integer.max = 1;
4044 
4045 	return 0;
4046 }
4047 
4048 
4049 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4050 				       struct snd_ctl_elem_value *ucontrol)
4051 {
4052 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4053 
4054 	ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4055 
4056 	return 0;
4057 }
4058 
4059 
4060 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4061 				       struct snd_ctl_elem_value *ucontrol)
4062 {
4063 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4064 
4065 	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4066 		hdspm->tco->term = ucontrol->value.enumerated.item[0];
4067 
4068 		hdspm_tco_write(hdspm);
4069 
4070 		return 1;
4071 	}
4072 
4073 	return 0;
4074 }
4075 
4076 
4077 
4078 
4079 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4080 	HDSPM_MIXER("Mixer", 0),
4081 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4082 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4083 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4084 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4085 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4086 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4087 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4088 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4089 	HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4090 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4091 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4092 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4093 	HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4094 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4095 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4096 	HDSPM_INPUT_SELECT("Input Select", 0),
4097 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4098 };
4099 
4100 
4101 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4102 	HDSPM_MIXER("Mixer", 0),
4103 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4104 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4105 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4106 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4107 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4108 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4109 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4110 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4111 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4112 };
4113 
4114 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4115 	HDSPM_MIXER("Mixer", 0),
4116 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4117 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4118 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4119 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4120 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4121 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4122 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4123 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4124 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4125 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4126 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4127 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4128 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4129 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4130 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4131 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4132 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4133 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)
4134 
4135 		/*
4136 		   HDSPM_INPUT_SELECT("Input Select", 0),
4137 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4138 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4139 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4140 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4141 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4142 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4143 		   HDSPM_PHONES("Phones", 0);
4144 		   */
4145 };
4146 
4147 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4148 	HDSPM_MIXER("Mixer", 0),
4149 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4150 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4151 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4152 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4153 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4154 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4155 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4156 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4157 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4158 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4159 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4160 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4161 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4162 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4163 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4164 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4165 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4166 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4167 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4168 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4169 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4170 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
4171 };
4172 
4173 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4174 	HDSPM_MIXER("Mixer", 0),
4175 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4176 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4177 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4178 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4179 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4180 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4181 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4182 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4183 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4184 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4185 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4186 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4187 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4188 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4189 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4190 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4191 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4192 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4193 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4194 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4195 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4196 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4197 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4198 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4199 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4200 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4201 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4202 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4203 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4204 	HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4205 	HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4206 	HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4207 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4208 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4209 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4210 };
4211 
4212 
4213 
4214 /* Control elements for the optional TCO module */
4215 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4216 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4217 	HDSPM_TCO_PULL("TCO Pull", 0),
4218 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4219 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4220 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4221 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
4222 };
4223 
4224 
4225 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4226 
4227 
4228 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4229 {
4230 	int i;
4231 
4232 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4233 		if (hdspm->system_sample_rate > 48000) {
4234 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4235 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4236 				SNDRV_CTL_ELEM_ACCESS_READ |
4237 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4238 		} else {
4239 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4240 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4241 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4242 		}
4243 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4244 				SNDRV_CTL_EVENT_MASK_INFO,
4245 				&hdspm->playback_mixer_ctls[i]->id);
4246 	}
4247 
4248 	return 0;
4249 }
4250 
4251 
4252 static int snd_hdspm_create_controls(struct snd_card *card,
4253 					struct hdspm *hdspm)
4254 {
4255 	unsigned int idx, limit;
4256 	int err;
4257 	struct snd_kcontrol *kctl;
4258 	struct snd_kcontrol_new *list = NULL;
4259 
4260 	switch (hdspm->io_type) {
4261 	case MADI:
4262 		list = snd_hdspm_controls_madi;
4263 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4264 		break;
4265 	case MADIface:
4266 		list = snd_hdspm_controls_madiface;
4267 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4268 		break;
4269 	case AIO:
4270 		list = snd_hdspm_controls_aio;
4271 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4272 		break;
4273 	case RayDAT:
4274 		list = snd_hdspm_controls_raydat;
4275 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4276 		break;
4277 	case AES32:
4278 		list = snd_hdspm_controls_aes32;
4279 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4280 		break;
4281 	}
4282 
4283 	if (NULL != list) {
4284 		for (idx = 0; idx < limit; idx++) {
4285 			err = snd_ctl_add(card,
4286 					snd_ctl_new1(&list[idx], hdspm));
4287 			if (err < 0)
4288 				return err;
4289 		}
4290 	}
4291 
4292 
4293 	/* create simple 1:1 playback mixer controls */
4294 	snd_hdspm_playback_mixer.name = "Chn";
4295 	if (hdspm->system_sample_rate >= 128000) {
4296 		limit = hdspm->qs_out_channels;
4297 	} else if (hdspm->system_sample_rate >= 64000) {
4298 		limit = hdspm->ds_out_channels;
4299 	} else {
4300 		limit = hdspm->ss_out_channels;
4301 	}
4302 	for (idx = 0; idx < limit; ++idx) {
4303 		snd_hdspm_playback_mixer.index = idx + 1;
4304 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4305 		err = snd_ctl_add(card, kctl);
4306 		if (err < 0)
4307 			return err;
4308 		hdspm->playback_mixer_ctls[idx] = kctl;
4309 	}
4310 
4311 
4312 	if (hdspm->tco) {
4313 		/* add tco control elements */
4314 		list = snd_hdspm_controls_tco;
4315 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4316 		for (idx = 0; idx < limit; idx++) {
4317 			err = snd_ctl_add(card,
4318 					snd_ctl_new1(&list[idx], hdspm));
4319 			if (err < 0)
4320 				return err;
4321 		}
4322 	}
4323 
4324 	return 0;
4325 }
4326 
4327 /*------------------------------------------------------------
4328    /proc interface
4329  ------------------------------------------------------------*/
4330 
4331 static void
4332 snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
4333 			 struct snd_info_buffer *buffer)
4334 {
4335 	struct hdspm *hdspm = entry->private_data;
4336 	unsigned int status, status2, control, freq;
4337 
4338 	char *pref_sync_ref;
4339 	char *autosync_ref;
4340 	char *system_clock_mode;
4341 	char *insel;
4342 	int x, x2;
4343 
4344 	/* TCO stuff */
4345 	int a, ltc, frames, seconds, minutes, hours;
4346 	unsigned int period;
4347 	u64 freq_const = 0;
4348 	u32 rate;
4349 
4350 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4351 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4352 	control = hdspm->control_register;
4353 	freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
4354 
4355 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4356 			hdspm->card_name, hdspm->card->number + 1,
4357 			hdspm->firmware_rev,
4358 			(status2 & HDSPM_version0) |
4359 			(status2 & HDSPM_version1) | (status2 &
4360 				HDSPM_version2));
4361 
4362 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4363 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4364 			hdspm->serial);
4365 
4366 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4367 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4368 
4369 	snd_iprintf(buffer, "--- System ---\n");
4370 
4371 	snd_iprintf(buffer,
4372 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4373 		status & HDSPM_audioIRQPending,
4374 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4375 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4376 		hdspm->irq_count);
4377 	snd_iprintf(buffer,
4378 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4379 		"estimated= %ld (bytes)\n",
4380 		((status & HDSPM_BufferID) ? 1 : 0),
4381 		(status & HDSPM_BufferPositionMask),
4382 		(status & HDSPM_BufferPositionMask) %
4383 		(2 * (int)hdspm->period_bytes),
4384 		((status & HDSPM_BufferPositionMask) - 64) %
4385 		(2 * (int)hdspm->period_bytes),
4386 		(long) hdspm_hw_pointer(hdspm) * 4);
4387 
4388 	snd_iprintf(buffer,
4389 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4390 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4391 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4392 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4393 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4394 	snd_iprintf(buffer,
4395 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4396 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4397 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4398 	snd_iprintf(buffer,
4399 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4400 		"status2=0x%x\n",
4401 		hdspm->control_register, hdspm->control2_register,
4402 		status, status2);
4403 	if (status & HDSPM_tco_detect) {
4404 		snd_iprintf(buffer, "TCO module detected.\n");
4405 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4406 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4407 			snd_iprintf(buffer, "  LTC valid, ");
4408 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4409 						HDSPM_TCO1_LTC_Format_MSB)) {
4410 			case 0:
4411 				snd_iprintf(buffer, "24 fps, ");
4412 				break;
4413 			case HDSPM_TCO1_LTC_Format_LSB:
4414 				snd_iprintf(buffer, "25 fps, ");
4415 				break;
4416 			case HDSPM_TCO1_LTC_Format_MSB:
4417 				snd_iprintf(buffer, "29.97 fps, ");
4418 				break;
4419 			default:
4420 				snd_iprintf(buffer, "30 fps, ");
4421 				break;
4422 			}
4423 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4424 				snd_iprintf(buffer, "drop frame\n");
4425 			} else {
4426 				snd_iprintf(buffer, "full frame\n");
4427 			}
4428 		} else {
4429 			snd_iprintf(buffer, "  no LTC\n");
4430 		}
4431 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4432 			snd_iprintf(buffer, "  Video: NTSC\n");
4433 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4434 			snd_iprintf(buffer, "  Video: PAL\n");
4435 		} else {
4436 			snd_iprintf(buffer, "  No video\n");
4437 		}
4438 		if (a & HDSPM_TCO1_TCO_lock) {
4439 			snd_iprintf(buffer, "  Sync: lock\n");
4440 		} else {
4441 			snd_iprintf(buffer, "  Sync: no lock\n");
4442 		}
4443 
4444 		switch (hdspm->io_type) {
4445 		case MADI:
4446 		case AES32:
4447 			freq_const = 110069313433624ULL;
4448 			break;
4449 		case RayDAT:
4450 		case AIO:
4451 			freq_const = 104857600000000ULL;
4452 			break;
4453 		case MADIface:
4454 			break; /* no TCO possible */
4455 		}
4456 
4457 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4458 		snd_iprintf(buffer, "    period: %u\n", period);
4459 
4460 
4461 		/* rate = freq_const/period; */
4462 		rate = div_u64(freq_const, period);
4463 
4464 		if (control & HDSPM_QuadSpeed) {
4465 			rate *= 4;
4466 		} else if (control & HDSPM_DoubleSpeed) {
4467 			rate *= 2;
4468 		}
4469 
4470 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4471 				(unsigned int) rate);
4472 
4473 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4474 		frames = ltc & 0xF;
4475 		ltc >>= 4;
4476 		frames += (ltc & 0x3) * 10;
4477 		ltc >>= 4;
4478 		seconds = ltc & 0xF;
4479 		ltc >>= 4;
4480 		seconds += (ltc & 0x7) * 10;
4481 		ltc >>= 4;
4482 		minutes = ltc & 0xF;
4483 		ltc >>= 4;
4484 		minutes += (ltc & 0x7) * 10;
4485 		ltc >>= 4;
4486 		hours = ltc & 0xF;
4487 		ltc >>= 4;
4488 		hours += (ltc & 0x3) * 10;
4489 		snd_iprintf(buffer,
4490 			"  LTC In: %02d:%02d:%02d:%02d\n",
4491 			hours, minutes, seconds, frames);
4492 
4493 	} else {
4494 		snd_iprintf(buffer, "No TCO module detected.\n");
4495 	}
4496 
4497 	snd_iprintf(buffer, "--- Settings ---\n");
4498 
4499 	x = hdspm_get_latency(hdspm);
4500 
4501 	snd_iprintf(buffer,
4502 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4503 		x, (unsigned long) hdspm->period_bytes);
4504 
4505 	snd_iprintf(buffer, "Line out: %s\n",
4506 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4507 
4508 	switch (hdspm->control_register & HDSPM_InputMask) {
4509 	case HDSPM_InputOptical:
4510 		insel = "Optical";
4511 		break;
4512 	case HDSPM_InputCoaxial:
4513 		insel = "Coaxial";
4514 		break;
4515 	default:
4516 		insel = "Unknown";
4517 	}
4518 
4519 	snd_iprintf(buffer,
4520 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4521 		"Auto Input %s\n",
4522 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4523 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4524 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4525 
4526 
4527 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4528 		system_clock_mode = "AutoSync";
4529 	else
4530 		system_clock_mode = "Master";
4531 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4532 
4533 	switch (hdspm_pref_sync_ref(hdspm)) {
4534 	case HDSPM_SYNC_FROM_WORD:
4535 		pref_sync_ref = "Word Clock";
4536 		break;
4537 	case HDSPM_SYNC_FROM_MADI:
4538 		pref_sync_ref = "MADI Sync";
4539 		break;
4540 	case HDSPM_SYNC_FROM_TCO:
4541 		pref_sync_ref = "TCO";
4542 		break;
4543 	case HDSPM_SYNC_FROM_SYNC_IN:
4544 		pref_sync_ref = "Sync In";
4545 		break;
4546 	default:
4547 		pref_sync_ref = "XXXX Clock";
4548 		break;
4549 	}
4550 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4551 			pref_sync_ref);
4552 
4553 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4554 			hdspm->system_sample_rate);
4555 
4556 
4557 	snd_iprintf(buffer, "--- Status:\n");
4558 
4559 	x = status & HDSPM_madiSync;
4560 	x2 = status2 & HDSPM_wcSync;
4561 
4562 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4563 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4564 			"NoLock",
4565 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4566 			"NoLock");
4567 
4568 	switch (hdspm_autosync_ref(hdspm)) {
4569 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4570 		autosync_ref = "Sync In";
4571 		break;
4572 	case HDSPM_AUTOSYNC_FROM_TCO:
4573 		autosync_ref = "TCO";
4574 		break;
4575 	case HDSPM_AUTOSYNC_FROM_WORD:
4576 		autosync_ref = "Word Clock";
4577 		break;
4578 	case HDSPM_AUTOSYNC_FROM_MADI:
4579 		autosync_ref = "MADI Sync";
4580 		break;
4581 	case HDSPM_AUTOSYNC_FROM_NONE:
4582 		autosync_ref = "Input not valid";
4583 		break;
4584 	default:
4585 		autosync_ref = "---";
4586 		break;
4587 	}
4588 	snd_iprintf(buffer,
4589 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
4590 		autosync_ref, hdspm_external_sample_rate(hdspm),
4591 		(status & HDSPM_madiFreqMask) >> 22,
4592 		(status2 & HDSPM_wcFreqMask) >> 5);
4593 
4594 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
4595 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
4596 		(status & HDSPM_RX_64ch) ? "64 channels" :
4597 		"56 channels");
4598 
4599 	snd_iprintf(buffer, "\n");
4600 }
4601 
4602 static void
4603 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
4604 			  struct snd_info_buffer *buffer)
4605 {
4606 	struct hdspm *hdspm = entry->private_data;
4607 	unsigned int status;
4608 	unsigned int status2;
4609 	unsigned int timecode;
4610 	unsigned int wcLock, wcSync;
4611 	int pref_syncref;
4612 	char *autosync_ref;
4613 	int x;
4614 
4615 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4616 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4617 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
4618 
4619 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
4620 		    hdspm->card_name, hdspm->card->number + 1,
4621 		    hdspm->firmware_rev);
4622 
4623 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4624 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4625 
4626 	snd_iprintf(buffer, "--- System ---\n");
4627 
4628 	snd_iprintf(buffer,
4629 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4630 		    status & HDSPM_audioIRQPending,
4631 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
4632 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
4633 		    hdspm->irq_count);
4634 	snd_iprintf(buffer,
4635 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
4636 		    "estimated= %ld (bytes)\n",
4637 		    ((status & HDSPM_BufferID) ? 1 : 0),
4638 		    (status & HDSPM_BufferPositionMask),
4639 		    (status & HDSPM_BufferPositionMask) %
4640 		    (2 * (int)hdspm->period_bytes),
4641 		    ((status & HDSPM_BufferPositionMask) - 64) %
4642 		    (2 * (int)hdspm->period_bytes),
4643 		    (long) hdspm_hw_pointer(hdspm) * 4);
4644 
4645 	snd_iprintf(buffer,
4646 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4647 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4648 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4649 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4650 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4651 	snd_iprintf(buffer,
4652 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4653 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4654 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4655 	snd_iprintf(buffer,
4656 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4657 		    "status2=0x%x\n",
4658 		    hdspm->control_register, hdspm->control2_register,
4659 		    status, status2);
4660 
4661 	snd_iprintf(buffer, "--- Settings ---\n");
4662 
4663 	x = hdspm_get_latency(hdspm);
4664 
4665 	snd_iprintf(buffer,
4666 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4667 		    x, (unsigned long) hdspm->period_bytes);
4668 
4669 	snd_iprintf(buffer, "Line out: %s\n",
4670 		    (hdspm->
4671 		     control_register & HDSPM_LineOut) ? "on " : "off");
4672 
4673 	snd_iprintf(buffer,
4674 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
4675 		    (hdspm->
4676 		     control_register & HDSPM_clr_tms) ? "on" : "off",
4677 		    (hdspm->
4678 		     control_register & HDSPM_Emphasis) ? "on" : "off",
4679 		    (hdspm->
4680 		     control_register & HDSPM_Dolby) ? "on" : "off");
4681 
4682 
4683 	pref_syncref = hdspm_pref_sync_ref(hdspm);
4684 	if (pref_syncref == 0)
4685 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
4686 	else
4687 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
4688 				pref_syncref);
4689 
4690 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4691 		    hdspm->system_sample_rate);
4692 
4693 	snd_iprintf(buffer, "Double speed: %s\n",
4694 			hdspm->control_register & HDSPM_DS_DoubleWire?
4695 			"Double wire" : "Single wire");
4696 	snd_iprintf(buffer, "Quad speed: %s\n",
4697 			hdspm->control_register & HDSPM_QS_DoubleWire?
4698 			"Double wire" :
4699 			hdspm->control_register & HDSPM_QS_QuadWire?
4700 			"Quad wire" : "Single wire");
4701 
4702 	snd_iprintf(buffer, "--- Status:\n");
4703 
4704 	wcLock = status & HDSPM_AES32_wcLock;
4705 	wcSync = wcLock && (status & HDSPM_AES32_wcSync);
4706 
4707 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
4708 		    (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
4709 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
4710 
4711 	for (x = 0; x < 8; x++) {
4712 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
4713 			    x+1,
4714 			    (status2 & (HDSPM_LockAES >> x)) ?
4715 			    "Sync   " : "No Lock",
4716 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
4717 	}
4718 
4719 	switch (hdspm_autosync_ref(hdspm)) {
4720 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
4721 		autosync_ref = "None"; break;
4722 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
4723 		autosync_ref = "Word Clock"; break;
4724 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
4725 		autosync_ref = "AES1"; break;
4726 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
4727 		autosync_ref = "AES2"; break;
4728 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
4729 		autosync_ref = "AES3"; break;
4730 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
4731 		autosync_ref = "AES4"; break;
4732 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
4733 		autosync_ref = "AES5"; break;
4734 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
4735 		autosync_ref = "AES6"; break;
4736 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
4737 		autosync_ref = "AES7"; break;
4738 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
4739 		autosync_ref = "AES8"; break;
4740 	default:
4741 		autosync_ref = "---"; break;
4742 	}
4743 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
4744 
4745 	snd_iprintf(buffer, "\n");
4746 }
4747 
4748 static void
4749 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
4750 			 struct snd_info_buffer *buffer)
4751 {
4752 	struct hdspm *hdspm = entry->private_data;
4753 	unsigned int status1, status2, status3, control, i;
4754 	unsigned int lock, sync;
4755 
4756 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
4757 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
4758 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
4759 
4760 	control = hdspm->control_register;
4761 
4762 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
4763 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
4764 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
4765 
4766 
4767 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
4768 
4769 	snd_iprintf(buffer, "Clock mode      : %s\n",
4770 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
4771 	snd_iprintf(buffer, "System frequency: %d Hz\n",
4772 		hdspm_get_system_sample_rate(hdspm));
4773 
4774 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
4775 
4776 	lock = 0x1;
4777 	sync = 0x100;
4778 
4779 	for (i = 0; i < 8; i++) {
4780 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
4781 				i,
4782 				(status1 & lock) ? 1 : 0,
4783 				(status1 & sync) ? 1 : 0,
4784 				texts_freq[(status2 >> (i * 4)) & 0xF]);
4785 
4786 		lock = lock<<1;
4787 		sync = sync<<1;
4788 	}
4789 
4790 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
4791 			(status1 & 0x1000000) ? 1 : 0,
4792 			(status1 & 0x2000000) ? 1 : 0,
4793 			texts_freq[(status1 >> 16) & 0xF]);
4794 
4795 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
4796 			(status1 & 0x4000000) ? 1 : 0,
4797 			(status1 & 0x8000000) ? 1 : 0,
4798 			texts_freq[(status1 >> 20) & 0xF]);
4799 
4800 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
4801 			(status3 & 0x400) ? 1 : 0,
4802 			(status3 & 0x800) ? 1 : 0,
4803 			texts_freq[(status2 >> 12) & 0xF]);
4804 
4805 }
4806 
4807 #ifdef CONFIG_SND_DEBUG
4808 static void
4809 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
4810 			  struct snd_info_buffer *buffer)
4811 {
4812 	struct hdspm *hdspm = entry->private_data;
4813 
4814 	int j,i;
4815 
4816 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
4817 		snd_iprintf(buffer, "0x%08X: ", i);
4818 		for (j = 0; j < 16; j += 4)
4819 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
4820 		snd_iprintf(buffer, "\n");
4821 	}
4822 }
4823 #endif
4824 
4825 
4826 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
4827 			  struct snd_info_buffer *buffer)
4828 {
4829 	struct hdspm *hdspm = entry->private_data;
4830 	int i;
4831 
4832 	snd_iprintf(buffer, "# generated by hdspm\n");
4833 
4834 	for (i = 0; i < hdspm->max_channels_in; i++) {
4835 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
4836 	}
4837 }
4838 
4839 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
4840 			  struct snd_info_buffer *buffer)
4841 {
4842 	struct hdspm *hdspm = entry->private_data;
4843 	int i;
4844 
4845 	snd_iprintf(buffer, "# generated by hdspm\n");
4846 
4847 	for (i = 0; i < hdspm->max_channels_out; i++) {
4848 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
4849 	}
4850 }
4851 
4852 
4853 static void snd_hdspm_proc_init(struct hdspm *hdspm)
4854 {
4855 	struct snd_info_entry *entry;
4856 
4857 	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
4858 		switch (hdspm->io_type) {
4859 		case AES32:
4860 			snd_info_set_text_ops(entry, hdspm,
4861 					snd_hdspm_proc_read_aes32);
4862 			break;
4863 		case MADI:
4864 			snd_info_set_text_ops(entry, hdspm,
4865 					snd_hdspm_proc_read_madi);
4866 			break;
4867 		case MADIface:
4868 			/* snd_info_set_text_ops(entry, hdspm,
4869 			 snd_hdspm_proc_read_madiface); */
4870 			break;
4871 		case RayDAT:
4872 			snd_info_set_text_ops(entry, hdspm,
4873 					snd_hdspm_proc_read_raydat);
4874 			break;
4875 		case AIO:
4876 			break;
4877 		}
4878 	}
4879 
4880 	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
4881 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
4882 	}
4883 
4884 	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
4885 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
4886 	}
4887 
4888 #ifdef CONFIG_SND_DEBUG
4889 	/* debug file to read all hdspm registers */
4890 	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
4891 		snd_info_set_text_ops(entry, hdspm,
4892 				snd_hdspm_proc_read_debug);
4893 #endif
4894 }
4895 
4896 /*------------------------------------------------------------
4897    hdspm intitialize
4898  ------------------------------------------------------------*/
4899 
4900 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
4901 {
4902 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
4903 	   hold it (e.g. during module initialization).
4904 	   */
4905 
4906 	/* set defaults:       */
4907 
4908 	hdspm->settings_register = 0;
4909 
4910 	switch (hdspm->io_type) {
4911 	case MADI:
4912 	case MADIface:
4913 		hdspm->control_register =
4914 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
4915 		break;
4916 
4917 	case RayDAT:
4918 	case AIO:
4919 		hdspm->settings_register = 0x1 + 0x1000;
4920 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
4921 		 * line_out */
4922 		hdspm->control_register =
4923 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
4924 		break;
4925 
4926 	case AES32:
4927 		hdspm->control_register =
4928 			HDSPM_ClockModeMaster |	/* Master Cloack Mode on */
4929 			hdspm_encode_latency(7) | /* latency max=8192samples */
4930 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
4931 			HDSPM_LineOut |	/* Analog output in */
4932 			HDSPM_Professional;  /* Professional mode */
4933 		break;
4934 	}
4935 
4936 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
4937 
4938 	if (AES32 == hdspm->io_type) {
4939 		/* No control2 register for AES32 */
4940 #ifdef SNDRV_BIG_ENDIAN
4941 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
4942 #else
4943 		hdspm->control2_register = 0;
4944 #endif
4945 
4946 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
4947 	}
4948 	hdspm_compute_period_size(hdspm);
4949 
4950 	/* silence everything */
4951 
4952 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
4953 
4954 	if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
4955 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
4956 	}
4957 
4958 	/* set a default rate so that the channel map is set up. */
4959 	hdspm_set_rate(hdspm, 48000, 1);
4960 
4961 	return 0;
4962 }
4963 
4964 
4965 /*------------------------------------------------------------
4966    interrupt
4967  ------------------------------------------------------------*/
4968 
4969 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
4970 {
4971 	struct hdspm *hdspm = (struct hdspm *) dev_id;
4972 	unsigned int status;
4973 	int i, audio, midi, schedule = 0;
4974 	/* cycles_t now; */
4975 
4976 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4977 
4978 	audio = status & HDSPM_audioIRQPending;
4979 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
4980 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
4981 
4982 	/* now = get_cycles(); */
4983 	/**
4984 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
4985 	 *          6       4096   ~256053425     ~514672358
4986 	 *          5       2048   ~128024983     ~257373821
4987 	 *          4       1024    ~64023706     ~128718089
4988 	 *          3        512    ~32005945      ~64385999
4989 	 *          2        256    ~16003039      ~32260176
4990 	 *          1        128     ~7998738      ~16194507
4991 	 *          0         64     ~3998231       ~8191558
4992 	 **/
4993 	/*
4994 	   snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
4995 	   now-hdspm->last_interrupt, status & 0xFFC0);
4996 	   hdspm->last_interrupt = now;
4997 	*/
4998 
4999 	if (!audio && !midi)
5000 		return IRQ_NONE;
5001 
5002 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5003 	hdspm->irq_count++;
5004 
5005 
5006 	if (audio) {
5007 		if (hdspm->capture_substream)
5008 			snd_pcm_period_elapsed(hdspm->capture_substream);
5009 
5010 		if (hdspm->playback_substream)
5011 			snd_pcm_period_elapsed(hdspm->playback_substream);
5012 	}
5013 
5014 	if (midi) {
5015 		i = 0;
5016 		while (i < hdspm->midiPorts) {
5017 			if ((hdspm_read(hdspm,
5018 				hdspm->midi[i].statusIn) & 0xff) &&
5019 					(status & hdspm->midi[i].irq)) {
5020 				/* we disable interrupts for this input until
5021 				 * processing is done
5022 				 */
5023 				hdspm->control_register &= ~hdspm->midi[i].ie;
5024 				hdspm_write(hdspm, HDSPM_controlRegister,
5025 						hdspm->control_register);
5026 				hdspm->midi[i].pending = 1;
5027 				schedule = 1;
5028 			}
5029 
5030 			i++;
5031 		}
5032 
5033 		if (schedule)
5034 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5035 	}
5036 
5037 	return IRQ_HANDLED;
5038 }
5039 
5040 /*------------------------------------------------------------
5041    pcm interface
5042   ------------------------------------------------------------*/
5043 
5044 
5045 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5046 					      *substream)
5047 {
5048 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5049 	return hdspm_hw_pointer(hdspm);
5050 }
5051 
5052 
5053 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5054 {
5055 	struct snd_pcm_runtime *runtime = substream->runtime;
5056 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5057 	struct snd_pcm_substream *other;
5058 
5059 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5060 		other = hdspm->capture_substream;
5061 	else
5062 		other = hdspm->playback_substream;
5063 
5064 	if (hdspm->running)
5065 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5066 	else
5067 		runtime->status->hw_ptr = 0;
5068 	if (other) {
5069 		struct snd_pcm_substream *s;
5070 		struct snd_pcm_runtime *oruntime = other->runtime;
5071 		snd_pcm_group_for_each_entry(s, substream) {
5072 			if (s == other) {
5073 				oruntime->status->hw_ptr =
5074 					runtime->status->hw_ptr;
5075 				break;
5076 			}
5077 		}
5078 	}
5079 	return 0;
5080 }
5081 
5082 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5083 			       struct snd_pcm_hw_params *params)
5084 {
5085 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5086 	int err;
5087 	int i;
5088 	pid_t this_pid;
5089 	pid_t other_pid;
5090 
5091 	spin_lock_irq(&hdspm->lock);
5092 
5093 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5094 		this_pid = hdspm->playback_pid;
5095 		other_pid = hdspm->capture_pid;
5096 	} else {
5097 		this_pid = hdspm->capture_pid;
5098 		other_pid = hdspm->playback_pid;
5099 	}
5100 
5101 	if (other_pid > 0 && this_pid != other_pid) {
5102 
5103 		/* The other stream is open, and not by the same
5104 		   task as this one. Make sure that the parameters
5105 		   that matter are the same.
5106 		   */
5107 
5108 		if (params_rate(params) != hdspm->system_sample_rate) {
5109 			spin_unlock_irq(&hdspm->lock);
5110 			_snd_pcm_hw_param_setempty(params,
5111 					SNDRV_PCM_HW_PARAM_RATE);
5112 			return -EBUSY;
5113 		}
5114 
5115 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5116 			spin_unlock_irq(&hdspm->lock);
5117 			_snd_pcm_hw_param_setempty(params,
5118 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5119 			return -EBUSY;
5120 		}
5121 
5122 	}
5123 	/* We're fine. */
5124 	spin_unlock_irq(&hdspm->lock);
5125 
5126 	/* how to make sure that the rate matches an externally-set one ?   */
5127 
5128 	spin_lock_irq(&hdspm->lock);
5129 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5130 	if (err < 0) {
5131 		snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
5132 		spin_unlock_irq(&hdspm->lock);
5133 		_snd_pcm_hw_param_setempty(params,
5134 				SNDRV_PCM_HW_PARAM_RATE);
5135 		return err;
5136 	}
5137 	spin_unlock_irq(&hdspm->lock);
5138 
5139 	err = hdspm_set_interrupt_interval(hdspm,
5140 			params_period_size(params));
5141 	if (err < 0) {
5142 		snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
5143 		_snd_pcm_hw_param_setempty(params,
5144 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5145 		return err;
5146 	}
5147 
5148 	/* Memory allocation, takashi's method, dont know if we should
5149 	 * spinlock
5150 	 */
5151 	/* malloc all buffer even if not enabled to get sure */
5152 	/* Update for MADI rev 204: we need to allocate for all channels,
5153 	 * otherwise it doesn't work at 96kHz */
5154 
5155 	err =
5156 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5157 	if (err < 0) {
5158 		snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
5159 		return err;
5160 	}
5161 
5162 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5163 
5164 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5165 				params_channels(params));
5166 
5167 		for (i = 0; i < params_channels(params); ++i)
5168 			snd_hdspm_enable_out(hdspm, i, 1);
5169 
5170 		hdspm->playback_buffer =
5171 			(unsigned char *) substream->runtime->dma_area;
5172 		snd_printdd("Allocated sample buffer for playback at %p\n",
5173 				hdspm->playback_buffer);
5174 	} else {
5175 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5176 				params_channels(params));
5177 
5178 		for (i = 0; i < params_channels(params); ++i)
5179 			snd_hdspm_enable_in(hdspm, i, 1);
5180 
5181 		hdspm->capture_buffer =
5182 			(unsigned char *) substream->runtime->dma_area;
5183 		snd_printdd("Allocated sample buffer for capture at %p\n",
5184 				hdspm->capture_buffer);
5185 	}
5186 
5187 	/*
5188 	   snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5189 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5190 	   "playback" : "capture",
5191 	   snd_pcm_sgbuf_get_addr(substream, 0));
5192 	   */
5193 	/*
5194 	   snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5195 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5196 	   "playback" : "capture",
5197 	   params_rate(params), params_channels(params),
5198 	   params_buffer_size(params));
5199 	   */
5200 
5201 
5202 	/* Switch to native float format if requested */
5203 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5204 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5205 			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5206 
5207 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5208 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5209 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5210 			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5211 
5212 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5213 	}
5214 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5215 
5216 	return 0;
5217 }
5218 
5219 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5220 {
5221 	int i;
5222 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5223 
5224 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5225 
5226 		/* params_channels(params) should be enough,
5227 		   but to get sure in case of error */
5228 		for (i = 0; i < hdspm->max_channels_out; ++i)
5229 			snd_hdspm_enable_out(hdspm, i, 0);
5230 
5231 		hdspm->playback_buffer = NULL;
5232 	} else {
5233 		for (i = 0; i < hdspm->max_channels_in; ++i)
5234 			snd_hdspm_enable_in(hdspm, i, 0);
5235 
5236 		hdspm->capture_buffer = NULL;
5237 
5238 	}
5239 
5240 	snd_pcm_lib_free_pages(substream);
5241 
5242 	return 0;
5243 }
5244 
5245 
5246 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5247 		struct snd_pcm_channel_info *info)
5248 {
5249 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5250 
5251 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5252 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5253 			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5254 			return -EINVAL;
5255 		}
5256 
5257 		if (hdspm->channel_map_out[info->channel] < 0) {
5258 			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5259 			return -EINVAL;
5260 		}
5261 
5262 		info->offset = hdspm->channel_map_out[info->channel] *
5263 			HDSPM_CHANNEL_BUFFER_BYTES;
5264 	} else {
5265 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5266 			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5267 			return -EINVAL;
5268 		}
5269 
5270 		if (hdspm->channel_map_in[info->channel] < 0) {
5271 			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5272 			return -EINVAL;
5273 		}
5274 
5275 		info->offset = hdspm->channel_map_in[info->channel] *
5276 			HDSPM_CHANNEL_BUFFER_BYTES;
5277 	}
5278 
5279 	info->first = 0;
5280 	info->step = 32;
5281 	return 0;
5282 }
5283 
5284 
5285 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5286 		unsigned int cmd, void *arg)
5287 {
5288 	switch (cmd) {
5289 	case SNDRV_PCM_IOCTL1_RESET:
5290 		return snd_hdspm_reset(substream);
5291 
5292 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5293 		{
5294 			struct snd_pcm_channel_info *info = arg;
5295 			return snd_hdspm_channel_info(substream, info);
5296 		}
5297 	default:
5298 		break;
5299 	}
5300 
5301 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5302 }
5303 
5304 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5305 {
5306 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5307 	struct snd_pcm_substream *other;
5308 	int running;
5309 
5310 	spin_lock(&hdspm->lock);
5311 	running = hdspm->running;
5312 	switch (cmd) {
5313 	case SNDRV_PCM_TRIGGER_START:
5314 		running |= 1 << substream->stream;
5315 		break;
5316 	case SNDRV_PCM_TRIGGER_STOP:
5317 		running &= ~(1 << substream->stream);
5318 		break;
5319 	default:
5320 		snd_BUG();
5321 		spin_unlock(&hdspm->lock);
5322 		return -EINVAL;
5323 	}
5324 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5325 		other = hdspm->capture_substream;
5326 	else
5327 		other = hdspm->playback_substream;
5328 
5329 	if (other) {
5330 		struct snd_pcm_substream *s;
5331 		snd_pcm_group_for_each_entry(s, substream) {
5332 			if (s == other) {
5333 				snd_pcm_trigger_done(s, substream);
5334 				if (cmd == SNDRV_PCM_TRIGGER_START)
5335 					running |= 1 << s->stream;
5336 				else
5337 					running &= ~(1 << s->stream);
5338 				goto _ok;
5339 			}
5340 		}
5341 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5342 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5343 					&& substream->stream ==
5344 					SNDRV_PCM_STREAM_CAPTURE)
5345 				hdspm_silence_playback(hdspm);
5346 		} else {
5347 			if (running &&
5348 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5349 				hdspm_silence_playback(hdspm);
5350 		}
5351 	} else {
5352 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5353 			hdspm_silence_playback(hdspm);
5354 	}
5355 _ok:
5356 	snd_pcm_trigger_done(substream, substream);
5357 	if (!hdspm->running && running)
5358 		hdspm_start_audio(hdspm);
5359 	else if (hdspm->running && !running)
5360 		hdspm_stop_audio(hdspm);
5361 	hdspm->running = running;
5362 	spin_unlock(&hdspm->lock);
5363 
5364 	return 0;
5365 }
5366 
5367 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5368 {
5369 	return 0;
5370 }
5371 
5372 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5373 	.info = (SNDRV_PCM_INFO_MMAP |
5374 		 SNDRV_PCM_INFO_MMAP_VALID |
5375 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5376 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5377 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5378 	.rates = (SNDRV_PCM_RATE_32000 |
5379 		  SNDRV_PCM_RATE_44100 |
5380 		  SNDRV_PCM_RATE_48000 |
5381 		  SNDRV_PCM_RATE_64000 |
5382 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5383 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5384 	.rate_min = 32000,
5385 	.rate_max = 192000,
5386 	.channels_min = 1,
5387 	.channels_max = HDSPM_MAX_CHANNELS,
5388 	.buffer_bytes_max =
5389 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5390 	.period_bytes_min = (32 * 4),
5391 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5392 	.periods_min = 2,
5393 	.periods_max = 512,
5394 	.fifo_size = 0
5395 };
5396 
5397 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5398 	.info = (SNDRV_PCM_INFO_MMAP |
5399 		 SNDRV_PCM_INFO_MMAP_VALID |
5400 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5401 		 SNDRV_PCM_INFO_SYNC_START),
5402 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5403 	.rates = (SNDRV_PCM_RATE_32000 |
5404 		  SNDRV_PCM_RATE_44100 |
5405 		  SNDRV_PCM_RATE_48000 |
5406 		  SNDRV_PCM_RATE_64000 |
5407 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5408 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5409 	.rate_min = 32000,
5410 	.rate_max = 192000,
5411 	.channels_min = 1,
5412 	.channels_max = HDSPM_MAX_CHANNELS,
5413 	.buffer_bytes_max =
5414 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5415 	.period_bytes_min = (32 * 4),
5416 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5417 	.periods_min = 2,
5418 	.periods_max = 512,
5419 	.fifo_size = 0
5420 };
5421 
5422 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5423 					   struct snd_pcm_hw_rule *rule)
5424 {
5425 	struct hdspm *hdspm = rule->private;
5426 	struct snd_interval *c =
5427 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5428 	struct snd_interval *r =
5429 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5430 
5431 	if (r->min > 96000 && r->max <= 192000) {
5432 		struct snd_interval t = {
5433 			.min = hdspm->qs_in_channels,
5434 			.max = hdspm->qs_in_channels,
5435 			.integer = 1,
5436 		};
5437 		return snd_interval_refine(c, &t);
5438 	} else if (r->min > 48000 && r->max <= 96000) {
5439 		struct snd_interval t = {
5440 			.min = hdspm->ds_in_channels,
5441 			.max = hdspm->ds_in_channels,
5442 			.integer = 1,
5443 		};
5444 		return snd_interval_refine(c, &t);
5445 	} else if (r->max < 64000) {
5446 		struct snd_interval t = {
5447 			.min = hdspm->ss_in_channels,
5448 			.max = hdspm->ss_in_channels,
5449 			.integer = 1,
5450 		};
5451 		return snd_interval_refine(c, &t);
5452 	}
5453 
5454 	return 0;
5455 }
5456 
5457 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5458 					   struct snd_pcm_hw_rule * rule)
5459 {
5460 	struct hdspm *hdspm = rule->private;
5461 	struct snd_interval *c =
5462 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5463 	struct snd_interval *r =
5464 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5465 
5466 	if (r->min > 96000 && r->max <= 192000) {
5467 		struct snd_interval t = {
5468 			.min = hdspm->qs_out_channels,
5469 			.max = hdspm->qs_out_channels,
5470 			.integer = 1,
5471 		};
5472 		return snd_interval_refine(c, &t);
5473 	} else if (r->min > 48000 && r->max <= 96000) {
5474 		struct snd_interval t = {
5475 			.min = hdspm->ds_out_channels,
5476 			.max = hdspm->ds_out_channels,
5477 			.integer = 1,
5478 		};
5479 		return snd_interval_refine(c, &t);
5480 	} else if (r->max < 64000) {
5481 		struct snd_interval t = {
5482 			.min = hdspm->ss_out_channels,
5483 			.max = hdspm->ss_out_channels,
5484 			.integer = 1,
5485 		};
5486 		return snd_interval_refine(c, &t);
5487 	} else {
5488 	}
5489 	return 0;
5490 }
5491 
5492 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5493 					   struct snd_pcm_hw_rule * rule)
5494 {
5495 	struct hdspm *hdspm = rule->private;
5496 	struct snd_interval *c =
5497 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5498 	struct snd_interval *r =
5499 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5500 
5501 	if (c->min >= hdspm->ss_in_channels) {
5502 		struct snd_interval t = {
5503 			.min = 32000,
5504 			.max = 48000,
5505 			.integer = 1,
5506 		};
5507 		return snd_interval_refine(r, &t);
5508 	} else if (c->max <= hdspm->qs_in_channels) {
5509 		struct snd_interval t = {
5510 			.min = 128000,
5511 			.max = 192000,
5512 			.integer = 1,
5513 		};
5514 		return snd_interval_refine(r, &t);
5515 	} else if (c->max <= hdspm->ds_in_channels) {
5516 		struct snd_interval t = {
5517 			.min = 64000,
5518 			.max = 96000,
5519 			.integer = 1,
5520 		};
5521 		return snd_interval_refine(r, &t);
5522 	}
5523 
5524 	return 0;
5525 }
5526 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5527 					   struct snd_pcm_hw_rule *rule)
5528 {
5529 	struct hdspm *hdspm = rule->private;
5530 	struct snd_interval *c =
5531 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5532 	struct snd_interval *r =
5533 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5534 
5535 	if (c->min >= hdspm->ss_out_channels) {
5536 		struct snd_interval t = {
5537 			.min = 32000,
5538 			.max = 48000,
5539 			.integer = 1,
5540 		};
5541 		return snd_interval_refine(r, &t);
5542 	} else if (c->max <= hdspm->qs_out_channels) {
5543 		struct snd_interval t = {
5544 			.min = 128000,
5545 			.max = 192000,
5546 			.integer = 1,
5547 		};
5548 		return snd_interval_refine(r, &t);
5549 	} else if (c->max <= hdspm->ds_out_channels) {
5550 		struct snd_interval t = {
5551 			.min = 64000,
5552 			.max = 96000,
5553 			.integer = 1,
5554 		};
5555 		return snd_interval_refine(r, &t);
5556 	}
5557 
5558 	return 0;
5559 }
5560 
5561 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
5562 				      struct snd_pcm_hw_rule *rule)
5563 {
5564 	unsigned int list[3];
5565 	struct hdspm *hdspm = rule->private;
5566 	struct snd_interval *c = hw_param_interval(params,
5567 			SNDRV_PCM_HW_PARAM_CHANNELS);
5568 
5569 	list[0] = hdspm->qs_in_channels;
5570 	list[1] = hdspm->ds_in_channels;
5571 	list[2] = hdspm->ss_in_channels;
5572 	return snd_interval_list(c, 3, list, 0);
5573 }
5574 
5575 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
5576 				      struct snd_pcm_hw_rule *rule)
5577 {
5578 	unsigned int list[3];
5579 	struct hdspm *hdspm = rule->private;
5580 	struct snd_interval *c = hw_param_interval(params,
5581 			SNDRV_PCM_HW_PARAM_CHANNELS);
5582 
5583 	list[0] = hdspm->qs_out_channels;
5584 	list[1] = hdspm->ds_out_channels;
5585 	list[2] = hdspm->ss_out_channels;
5586 	return snd_interval_list(c, 3, list, 0);
5587 }
5588 
5589 
5590 static unsigned int hdspm_aes32_sample_rates[] = {
5591 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
5592 };
5593 
5594 static struct snd_pcm_hw_constraint_list
5595 hdspm_hw_constraints_aes32_sample_rates = {
5596 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
5597 	.list = hdspm_aes32_sample_rates,
5598 	.mask = 0
5599 };
5600 
5601 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
5602 {
5603 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5604 	struct snd_pcm_runtime *runtime = substream->runtime;
5605 
5606 	spin_lock_irq(&hdspm->lock);
5607 
5608 	snd_pcm_set_sync(substream);
5609 
5610 
5611 	runtime->hw = snd_hdspm_playback_subinfo;
5612 
5613 	if (hdspm->capture_substream == NULL)
5614 		hdspm_stop_audio(hdspm);
5615 
5616 	hdspm->playback_pid = current->pid;
5617 	hdspm->playback_substream = substream;
5618 
5619 	spin_unlock_irq(&hdspm->lock);
5620 
5621 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5622 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5623 
5624 	switch (hdspm->io_type) {
5625 	case AIO:
5626 	case RayDAT:
5627 		snd_pcm_hw_constraint_minmax(runtime,
5628 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5629 					     32, 4096);
5630 		/* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
5631 		snd_pcm_hw_constraint_minmax(runtime,
5632 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5633 					     16384, 16384);
5634 		break;
5635 
5636 	default:
5637 		snd_pcm_hw_constraint_minmax(runtime,
5638 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5639 					     64, 8192);
5640 		break;
5641 	}
5642 
5643 	if (AES32 == hdspm->io_type) {
5644 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
5645 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5646 				&hdspm_hw_constraints_aes32_sample_rates);
5647 	} else {
5648 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5649 				snd_hdspm_hw_rule_rate_out_channels, hdspm,
5650 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5651 	}
5652 
5653 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5654 			snd_hdspm_hw_rule_out_channels, hdspm,
5655 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5656 
5657 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5658 			snd_hdspm_hw_rule_out_channels_rate, hdspm,
5659 			SNDRV_PCM_HW_PARAM_RATE, -1);
5660 
5661 	return 0;
5662 }
5663 
5664 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
5665 {
5666 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5667 
5668 	spin_lock_irq(&hdspm->lock);
5669 
5670 	hdspm->playback_pid = -1;
5671 	hdspm->playback_substream = NULL;
5672 
5673 	spin_unlock_irq(&hdspm->lock);
5674 
5675 	return 0;
5676 }
5677 
5678 
5679 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
5680 {
5681 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5682 	struct snd_pcm_runtime *runtime = substream->runtime;
5683 
5684 	spin_lock_irq(&hdspm->lock);
5685 	snd_pcm_set_sync(substream);
5686 	runtime->hw = snd_hdspm_capture_subinfo;
5687 
5688 	if (hdspm->playback_substream == NULL)
5689 		hdspm_stop_audio(hdspm);
5690 
5691 	hdspm->capture_pid = current->pid;
5692 	hdspm->capture_substream = substream;
5693 
5694 	spin_unlock_irq(&hdspm->lock);
5695 
5696 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5697 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5698 
5699 	switch (hdspm->io_type) {
5700 	case AIO:
5701 	case RayDAT:
5702 		snd_pcm_hw_constraint_minmax(runtime,
5703 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5704 					     32, 4096);
5705 		snd_pcm_hw_constraint_minmax(runtime,
5706 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5707 					     16384, 16384);
5708 		break;
5709 
5710 	default:
5711 		snd_pcm_hw_constraint_minmax(runtime,
5712 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5713 					     64, 8192);
5714 		break;
5715 	}
5716 
5717 	if (AES32 == hdspm->io_type) {
5718 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
5719 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5720 				&hdspm_hw_constraints_aes32_sample_rates);
5721 	} else {
5722 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5723 				snd_hdspm_hw_rule_rate_in_channels, hdspm,
5724 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5725 	}
5726 
5727 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5728 			snd_hdspm_hw_rule_in_channels, hdspm,
5729 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5730 
5731 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5732 			snd_hdspm_hw_rule_in_channels_rate, hdspm,
5733 			SNDRV_PCM_HW_PARAM_RATE, -1);
5734 
5735 	return 0;
5736 }
5737 
5738 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
5739 {
5740 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5741 
5742 	spin_lock_irq(&hdspm->lock);
5743 
5744 	hdspm->capture_pid = -1;
5745 	hdspm->capture_substream = NULL;
5746 
5747 	spin_unlock_irq(&hdspm->lock);
5748 	return 0;
5749 }
5750 
5751 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
5752 {
5753 	/* we have nothing to initialize but the call is required */
5754 	return 0;
5755 }
5756 
5757 static inline int copy_u32_le(void __user *dest, void __iomem *src)
5758 {
5759 	u32 val = readl(src);
5760 	return copy_to_user(dest, &val, 4);
5761 }
5762 
5763 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
5764 		unsigned int cmd, unsigned long arg)
5765 {
5766 	void __user *argp = (void __user *)arg;
5767 	struct hdspm *hdspm = hw->private_data;
5768 	struct hdspm_mixer_ioctl mixer;
5769 	struct hdspm_config info;
5770 	struct hdspm_status status;
5771 	struct hdspm_version hdspm_version;
5772 	struct hdspm_peak_rms *levels;
5773 	struct hdspm_ltc ltc;
5774 	unsigned int statusregister;
5775 	long unsigned int s;
5776 	int i = 0;
5777 
5778 	switch (cmd) {
5779 
5780 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
5781 		levels = &hdspm->peak_rms;
5782 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
5783 			levels->input_peaks[i] =
5784 				readl(hdspm->iobase +
5785 						HDSPM_MADI_INPUT_PEAK + i*4);
5786 			levels->playback_peaks[i] =
5787 				readl(hdspm->iobase +
5788 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
5789 			levels->output_peaks[i] =
5790 				readl(hdspm->iobase +
5791 						HDSPM_MADI_OUTPUT_PEAK + i*4);
5792 
5793 			levels->input_rms[i] =
5794 				((uint64_t) readl(hdspm->iobase +
5795 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
5796 				(uint64_t) readl(hdspm->iobase +
5797 						HDSPM_MADI_INPUT_RMS_L + i*4);
5798 			levels->playback_rms[i] =
5799 				((uint64_t)readl(hdspm->iobase +
5800 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
5801 				(uint64_t)readl(hdspm->iobase +
5802 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
5803 			levels->output_rms[i] =
5804 				((uint64_t)readl(hdspm->iobase +
5805 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
5806 				(uint64_t)readl(hdspm->iobase +
5807 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
5808 		}
5809 
5810 		if (hdspm->system_sample_rate > 96000) {
5811 			levels->speed = qs;
5812 		} else if (hdspm->system_sample_rate > 48000) {
5813 			levels->speed = ds;
5814 		} else {
5815 			levels->speed = ss;
5816 		}
5817 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5818 
5819 		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
5820 		if (0 != s) {
5821 			/* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
5822 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
5823 			 */
5824 			return -EFAULT;
5825 		}
5826 		break;
5827 
5828 	case SNDRV_HDSPM_IOCTL_GET_LTC:
5829 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
5830 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
5831 		if (i & HDSPM_TCO1_LTC_Input_valid) {
5832 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
5833 				HDSPM_TCO1_LTC_Format_MSB)) {
5834 			case 0:
5835 				ltc.format = fps_24;
5836 				break;
5837 			case HDSPM_TCO1_LTC_Format_LSB:
5838 				ltc.format = fps_25;
5839 				break;
5840 			case HDSPM_TCO1_LTC_Format_MSB:
5841 				ltc.format = fps_2997;
5842 				break;
5843 			default:
5844 				ltc.format = 30;
5845 				break;
5846 			}
5847 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
5848 				ltc.frame = drop_frame;
5849 			} else {
5850 				ltc.frame = full_frame;
5851 			}
5852 		} else {
5853 			ltc.format = format_invalid;
5854 			ltc.frame = frame_invalid;
5855 		}
5856 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
5857 			ltc.input_format = ntsc;
5858 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
5859 			ltc.input_format = pal;
5860 		} else {
5861 			ltc.input_format = no_video;
5862 		}
5863 
5864 		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
5865 		if (0 != s) {
5866 			/*
5867 			 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
5868 			return -EFAULT;
5869 		}
5870 
5871 		break;
5872 
5873 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
5874 
5875 		memset(&info, 0, sizeof(info));
5876 		spin_lock_irq(&hdspm->lock);
5877 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
5878 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
5879 
5880 		info.system_sample_rate = hdspm->system_sample_rate;
5881 		info.autosync_sample_rate =
5882 			hdspm_external_sample_rate(hdspm);
5883 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
5884 		info.clock_source = hdspm_clock_source(hdspm);
5885 		info.autosync_ref = hdspm_autosync_ref(hdspm);
5886 		info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
5887 		info.passthru = 0;
5888 		spin_unlock_irq(&hdspm->lock);
5889 		if (copy_to_user(argp, &info, sizeof(info)))
5890 			return -EFAULT;
5891 		break;
5892 
5893 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
5894 		memset(&status, 0, sizeof(status));
5895 
5896 		status.card_type = hdspm->io_type;
5897 
5898 		status.autosync_source = hdspm_autosync_ref(hdspm);
5899 
5900 		status.card_clock = 110069313433624ULL;
5901 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
5902 
5903 		switch (hdspm->io_type) {
5904 		case MADI:
5905 		case MADIface:
5906 			status.card_specific.madi.sync_wc =
5907 				hdspm_wc_sync_check(hdspm);
5908 			status.card_specific.madi.sync_madi =
5909 				hdspm_madi_sync_check(hdspm);
5910 			status.card_specific.madi.sync_tco =
5911 				hdspm_tco_sync_check(hdspm);
5912 			status.card_specific.madi.sync_in =
5913 				hdspm_sync_in_sync_check(hdspm);
5914 
5915 			statusregister =
5916 				hdspm_read(hdspm, HDSPM_statusRegister);
5917 			status.card_specific.madi.madi_input =
5918 				(statusregister & HDSPM_AB_int) ? 1 : 0;
5919 			status.card_specific.madi.channel_format =
5920 				(statusregister & HDSPM_RX_64ch) ? 1 : 0;
5921 			/* TODO: Mac driver sets it when f_s>48kHz */
5922 			status.card_specific.madi.frame_format = 0;
5923 
5924 		default:
5925 			break;
5926 		}
5927 
5928 		if (copy_to_user(argp, &status, sizeof(status)))
5929 			return -EFAULT;
5930 
5931 
5932 		break;
5933 
5934 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
5935 		memset(&hdspm_version, 0, sizeof(hdspm_version));
5936 
5937 		hdspm_version.card_type = hdspm->io_type;
5938 		strncpy(hdspm_version.cardname, hdspm->card_name,
5939 				sizeof(hdspm_version.cardname));
5940 		hdspm_version.serial = hdspm->serial;
5941 		hdspm_version.firmware_rev = hdspm->firmware_rev;
5942 		hdspm_version.addons = 0;
5943 		if (hdspm->tco)
5944 			hdspm_version.addons |= HDSPM_ADDON_TCO;
5945 
5946 		if (copy_to_user(argp, &hdspm_version,
5947 					sizeof(hdspm_version)))
5948 			return -EFAULT;
5949 		break;
5950 
5951 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
5952 		if (copy_from_user(&mixer, argp, sizeof(mixer)))
5953 			return -EFAULT;
5954 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
5955 					sizeof(struct hdspm_mixer)))
5956 			return -EFAULT;
5957 		break;
5958 
5959 	default:
5960 		return -EINVAL;
5961 	}
5962 	return 0;
5963 }
5964 
5965 static struct snd_pcm_ops snd_hdspm_playback_ops = {
5966 	.open = snd_hdspm_playback_open,
5967 	.close = snd_hdspm_playback_release,
5968 	.ioctl = snd_hdspm_ioctl,
5969 	.hw_params = snd_hdspm_hw_params,
5970 	.hw_free = snd_hdspm_hw_free,
5971 	.prepare = snd_hdspm_prepare,
5972 	.trigger = snd_hdspm_trigger,
5973 	.pointer = snd_hdspm_hw_pointer,
5974 	.page = snd_pcm_sgbuf_ops_page,
5975 };
5976 
5977 static struct snd_pcm_ops snd_hdspm_capture_ops = {
5978 	.open = snd_hdspm_capture_open,
5979 	.close = snd_hdspm_capture_release,
5980 	.ioctl = snd_hdspm_ioctl,
5981 	.hw_params = snd_hdspm_hw_params,
5982 	.hw_free = snd_hdspm_hw_free,
5983 	.prepare = snd_hdspm_prepare,
5984 	.trigger = snd_hdspm_trigger,
5985 	.pointer = snd_hdspm_hw_pointer,
5986 	.page = snd_pcm_sgbuf_ops_page,
5987 };
5988 
5989 static int snd_hdspm_create_hwdep(struct snd_card *card,
5990 				  struct hdspm *hdspm)
5991 {
5992 	struct snd_hwdep *hw;
5993 	int err;
5994 
5995 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
5996 	if (err < 0)
5997 		return err;
5998 
5999 	hdspm->hwdep = hw;
6000 	hw->private_data = hdspm;
6001 	strcpy(hw->name, "HDSPM hwdep interface");
6002 
6003 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6004 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6005 	hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6006 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6007 
6008 	return 0;
6009 }
6010 
6011 
6012 /*------------------------------------------------------------
6013    memory interface
6014  ------------------------------------------------------------*/
6015 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6016 {
6017 	int err;
6018 	struct snd_pcm *pcm;
6019 	size_t wanted;
6020 
6021 	pcm = hdspm->pcm;
6022 
6023 	wanted = HDSPM_DMA_AREA_BYTES;
6024 
6025 	err =
6026 	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6027 						   SNDRV_DMA_TYPE_DEV_SG,
6028 						   snd_dma_pci_data(hdspm->pci),
6029 						   wanted,
6030 						   wanted);
6031 	if (err < 0) {
6032 		snd_printdd("Could not preallocate %zd Bytes\n", wanted);
6033 
6034 		return err;
6035 	} else
6036 		snd_printdd(" Preallocated %zd Bytes\n", wanted);
6037 
6038 	return 0;
6039 }
6040 
6041 
6042 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6043 			    struct snd_pcm_substream *substream,
6044 			     unsigned int reg, int channels)
6045 {
6046 	int i;
6047 
6048 	/* continuous memory segment */
6049 	for (i = 0; i < (channels * 16); i++)
6050 		hdspm_write(hdspm, reg + 4 * i,
6051 				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6052 }
6053 
6054 
6055 /* ------------- ALSA Devices ---------------------------- */
6056 static int snd_hdspm_create_pcm(struct snd_card *card,
6057 				struct hdspm *hdspm)
6058 {
6059 	struct snd_pcm *pcm;
6060 	int err;
6061 
6062 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6063 	if (err < 0)
6064 		return err;
6065 
6066 	hdspm->pcm = pcm;
6067 	pcm->private_data = hdspm;
6068 	strcpy(pcm->name, hdspm->card_name);
6069 
6070 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6071 			&snd_hdspm_playback_ops);
6072 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6073 			&snd_hdspm_capture_ops);
6074 
6075 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6076 
6077 	err = snd_hdspm_preallocate_memory(hdspm);
6078 	if (err < 0)
6079 		return err;
6080 
6081 	return 0;
6082 }
6083 
6084 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6085 {
6086 	int i;
6087 
6088 	for (i = 0; i < hdspm->midiPorts; i++)
6089 		snd_hdspm_flush_midi_input(hdspm, i);
6090 }
6091 
6092 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6093 					 struct hdspm *hdspm)
6094 {
6095 	int err, i;
6096 
6097 	snd_printdd("Create card...\n");
6098 	err = snd_hdspm_create_pcm(card, hdspm);
6099 	if (err < 0)
6100 		return err;
6101 
6102 	i = 0;
6103 	while (i < hdspm->midiPorts) {
6104 		err = snd_hdspm_create_midi(card, hdspm, i);
6105 		if (err < 0) {
6106 			return err;
6107 		}
6108 		i++;
6109 	}
6110 
6111 	err = snd_hdspm_create_controls(card, hdspm);
6112 	if (err < 0)
6113 		return err;
6114 
6115 	err = snd_hdspm_create_hwdep(card, hdspm);
6116 	if (err < 0)
6117 		return err;
6118 
6119 	snd_printdd("proc init...\n");
6120 	snd_hdspm_proc_init(hdspm);
6121 
6122 	hdspm->system_sample_rate = -1;
6123 	hdspm->last_external_sample_rate = -1;
6124 	hdspm->last_internal_sample_rate = -1;
6125 	hdspm->playback_pid = -1;
6126 	hdspm->capture_pid = -1;
6127 	hdspm->capture_substream = NULL;
6128 	hdspm->playback_substream = NULL;
6129 
6130 	snd_printdd("Set defaults...\n");
6131 	err = snd_hdspm_set_defaults(hdspm);
6132 	if (err < 0)
6133 		return err;
6134 
6135 	snd_printdd("Update mixer controls...\n");
6136 	hdspm_update_simple_mixer_controls(hdspm);
6137 
6138 	snd_printdd("Initializeing complete ???\n");
6139 
6140 	err = snd_card_register(card);
6141 	if (err < 0) {
6142 		snd_printk(KERN_ERR "HDSPM: error registering card\n");
6143 		return err;
6144 	}
6145 
6146 	snd_printdd("... yes now\n");
6147 
6148 	return 0;
6149 }
6150 
6151 static int snd_hdspm_create(struct snd_card *card,
6152 			    struct hdspm *hdspm)
6153 {
6154 
6155 	struct pci_dev *pci = hdspm->pci;
6156 	int err;
6157 	unsigned long io_extent;
6158 
6159 	hdspm->irq = -1;
6160 	hdspm->card = card;
6161 
6162 	spin_lock_init(&hdspm->lock);
6163 
6164 	pci_read_config_word(hdspm->pci,
6165 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6166 
6167 	strcpy(card->mixername, "Xilinx FPGA");
6168 	strcpy(card->driver, "HDSPM");
6169 
6170 	switch (hdspm->firmware_rev) {
6171 	case HDSPM_RAYDAT_REV:
6172 		hdspm->io_type = RayDAT;
6173 		hdspm->card_name = "RME RayDAT";
6174 		hdspm->midiPorts = 2;
6175 		break;
6176 	case HDSPM_AIO_REV:
6177 		hdspm->io_type = AIO;
6178 		hdspm->card_name = "RME AIO";
6179 		hdspm->midiPorts = 1;
6180 		break;
6181 	case HDSPM_MADIFACE_REV:
6182 		hdspm->io_type = MADIface;
6183 		hdspm->card_name = "RME MADIface";
6184 		hdspm->midiPorts = 1;
6185 		break;
6186 	default:
6187 		if ((hdspm->firmware_rev == 0xf0) ||
6188 			((hdspm->firmware_rev >= 0xe6) &&
6189 					(hdspm->firmware_rev <= 0xea))) {
6190 			hdspm->io_type = AES32;
6191 			hdspm->card_name = "RME AES32";
6192 			hdspm->midiPorts = 2;
6193 		} else if ((hdspm->firmware_rev == 0xd2) ||
6194 			((hdspm->firmware_rev >= 0xc8)  &&
6195 				(hdspm->firmware_rev <= 0xcf))) {
6196 			hdspm->io_type = MADI;
6197 			hdspm->card_name = "RME MADI";
6198 			hdspm->midiPorts = 3;
6199 		} else {
6200 			snd_printk(KERN_ERR
6201 				"HDSPM: unknown firmware revision %x\n",
6202 				hdspm->firmware_rev);
6203 			return -ENODEV;
6204 		}
6205 	}
6206 
6207 	err = pci_enable_device(pci);
6208 	if (err < 0)
6209 		return err;
6210 
6211 	pci_set_master(hdspm->pci);
6212 
6213 	err = pci_request_regions(pci, "hdspm");
6214 	if (err < 0)
6215 		return err;
6216 
6217 	hdspm->port = pci_resource_start(pci, 0);
6218 	io_extent = pci_resource_len(pci, 0);
6219 
6220 	snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
6221 			hdspm->port, hdspm->port + io_extent - 1);
6222 
6223 	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6224 	if (!hdspm->iobase) {
6225 		snd_printk(KERN_ERR "HDSPM: "
6226 				"unable to remap region 0x%lx-0x%lx\n",
6227 				hdspm->port, hdspm->port + io_extent - 1);
6228 		return -EBUSY;
6229 	}
6230 	snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
6231 			(unsigned long)hdspm->iobase, hdspm->port,
6232 			hdspm->port + io_extent - 1);
6233 
6234 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6235 			IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6236 		snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6237 		return -EBUSY;
6238 	}
6239 
6240 	snd_printdd("use IRQ %d\n", pci->irq);
6241 
6242 	hdspm->irq = pci->irq;
6243 
6244 	snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
6245 			sizeof(struct hdspm_mixer));
6246 	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6247 	if (!hdspm->mixer) {
6248 		snd_printk(KERN_ERR "HDSPM: "
6249 				"unable to kmalloc Mixer memory of %d Bytes\n",
6250 				(int)sizeof(struct hdspm_mixer));
6251 		return -ENOMEM;
6252 	}
6253 
6254 	hdspm->port_names_in = NULL;
6255 	hdspm->port_names_out = NULL;
6256 
6257 	switch (hdspm->io_type) {
6258 	case AES32:
6259 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6260 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6261 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6262 
6263 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6264 			channel_map_aes32;
6265 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6266 			channel_map_aes32;
6267 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6268 			channel_map_aes32;
6269 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6270 			texts_ports_aes32;
6271 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6272 			texts_ports_aes32;
6273 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6274 			texts_ports_aes32;
6275 
6276 		hdspm->max_channels_out = hdspm->max_channels_in =
6277 			AES32_CHANNELS;
6278 		hdspm->port_names_in = hdspm->port_names_out =
6279 			texts_ports_aes32;
6280 		hdspm->channel_map_in = hdspm->channel_map_out =
6281 			channel_map_aes32;
6282 
6283 		break;
6284 
6285 	case MADI:
6286 	case MADIface:
6287 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6288 			MADI_SS_CHANNELS;
6289 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6290 			MADI_DS_CHANNELS;
6291 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6292 			MADI_QS_CHANNELS;
6293 
6294 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6295 			channel_map_unity_ss;
6296 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6297 			channel_map_unity_ss;
6298 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6299 			channel_map_unity_ss;
6300 
6301 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6302 			texts_ports_madi;
6303 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6304 			texts_ports_madi;
6305 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6306 			texts_ports_madi;
6307 		break;
6308 
6309 	case AIO:
6310 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6311 			snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
6312 		}
6313 
6314 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6315 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6316 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6317 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6318 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6319 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6320 
6321 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6322 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6323 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6324 
6325 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6326 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6327 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6328 
6329 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6330 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6331 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6332 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6333 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6334 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6335 
6336 		break;
6337 
6338 	case RayDAT:
6339 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6340 			RAYDAT_SS_CHANNELS;
6341 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6342 			RAYDAT_DS_CHANNELS;
6343 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6344 			RAYDAT_QS_CHANNELS;
6345 
6346 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6347 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6348 
6349 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6350 			channel_map_raydat_ss;
6351 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6352 			channel_map_raydat_ds;
6353 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6354 			channel_map_raydat_qs;
6355 		hdspm->channel_map_in = hdspm->channel_map_out =
6356 			channel_map_raydat_ss;
6357 
6358 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6359 			texts_ports_raydat_ss;
6360 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6361 			texts_ports_raydat_ds;
6362 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6363 			texts_ports_raydat_qs;
6364 
6365 
6366 		break;
6367 
6368 	}
6369 
6370 	/* TCO detection */
6371 	switch (hdspm->io_type) {
6372 	case AIO:
6373 	case RayDAT:
6374 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6375 				HDSPM_s2_tco_detect) {
6376 			hdspm->midiPorts++;
6377 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6378 					GFP_KERNEL);
6379 			if (NULL != hdspm->tco) {
6380 				hdspm_tco_write(hdspm);
6381 			}
6382 			snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6383 		} else {
6384 			hdspm->tco = NULL;
6385 		}
6386 		break;
6387 
6388 	case MADI:
6389 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6390 			hdspm->midiPorts++;
6391 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6392 					GFP_KERNEL);
6393 			if (NULL != hdspm->tco) {
6394 				hdspm_tco_write(hdspm);
6395 			}
6396 			snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
6397 		} else {
6398 			hdspm->tco = NULL;
6399 		}
6400 		break;
6401 
6402 	default:
6403 		hdspm->tco = NULL;
6404 	}
6405 
6406 	/* texts */
6407 	switch (hdspm->io_type) {
6408 	case AES32:
6409 		if (hdspm->tco) {
6410 			hdspm->texts_autosync = texts_autosync_aes_tco;
6411 			hdspm->texts_autosync_items = 10;
6412 		} else {
6413 			hdspm->texts_autosync = texts_autosync_aes;
6414 			hdspm->texts_autosync_items = 9;
6415 		}
6416 		break;
6417 
6418 	case MADI:
6419 		if (hdspm->tco) {
6420 			hdspm->texts_autosync = texts_autosync_madi_tco;
6421 			hdspm->texts_autosync_items = 4;
6422 		} else {
6423 			hdspm->texts_autosync = texts_autosync_madi;
6424 			hdspm->texts_autosync_items = 3;
6425 		}
6426 		break;
6427 
6428 	case MADIface:
6429 
6430 		break;
6431 
6432 	case RayDAT:
6433 		if (hdspm->tco) {
6434 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6435 			hdspm->texts_autosync_items = 9;
6436 		} else {
6437 			hdspm->texts_autosync = texts_autosync_raydat;
6438 			hdspm->texts_autosync_items = 8;
6439 		}
6440 		break;
6441 
6442 	case AIO:
6443 		if (hdspm->tco) {
6444 			hdspm->texts_autosync = texts_autosync_aio_tco;
6445 			hdspm->texts_autosync_items = 6;
6446 		} else {
6447 			hdspm->texts_autosync = texts_autosync_aio;
6448 			hdspm->texts_autosync_items = 5;
6449 		}
6450 		break;
6451 
6452 	}
6453 
6454 	tasklet_init(&hdspm->midi_tasklet,
6455 			hdspm_midi_tasklet, (unsigned long) hdspm);
6456 
6457 
6458 	if (hdspm->io_type != MADIface) {
6459 		hdspm->serial = (hdspm_read(hdspm,
6460 				HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6461 		/* id contains either a user-provided value or the default
6462 		 * NULL. If it's the default, we're safe to
6463 		 * fill card->id with the serial number.
6464 		 *
6465 		 * If the serial number is 0xFFFFFF, then we're dealing with
6466 		 * an old PCI revision that comes without a sane number. In
6467 		 * this case, we don't set card->id to avoid collisions
6468 		 * when running with multiple cards.
6469 		 */
6470 		if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6471 			sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6472 			snd_card_set_id(card, card->id);
6473 		}
6474 	}
6475 
6476 	snd_printdd("create alsa devices.\n");
6477 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6478 	if (err < 0)
6479 		return err;
6480 
6481 	snd_hdspm_initialize_midi_flush(hdspm);
6482 
6483 	return 0;
6484 }
6485 
6486 
6487 static int snd_hdspm_free(struct hdspm * hdspm)
6488 {
6489 
6490 	if (hdspm->port) {
6491 
6492 		/* stop th audio, and cancel all interrupts */
6493 		hdspm->control_register &=
6494 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6495 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6496 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6497 		hdspm_write(hdspm, HDSPM_controlRegister,
6498 			    hdspm->control_register);
6499 	}
6500 
6501 	if (hdspm->irq >= 0)
6502 		free_irq(hdspm->irq, (void *) hdspm);
6503 
6504 	kfree(hdspm->mixer);
6505 
6506 	if (hdspm->iobase)
6507 		iounmap(hdspm->iobase);
6508 
6509 	if (hdspm->port)
6510 		pci_release_regions(hdspm->pci);
6511 
6512 	pci_disable_device(hdspm->pci);
6513 	return 0;
6514 }
6515 
6516 
6517 static void snd_hdspm_card_free(struct snd_card *card)
6518 {
6519 	struct hdspm *hdspm = card->private_data;
6520 
6521 	if (hdspm)
6522 		snd_hdspm_free(hdspm);
6523 }
6524 
6525 
6526 static int snd_hdspm_probe(struct pci_dev *pci,
6527 			   const struct pci_device_id *pci_id)
6528 {
6529 	static int dev;
6530 	struct hdspm *hdspm;
6531 	struct snd_card *card;
6532 	int err;
6533 
6534 	if (dev >= SNDRV_CARDS)
6535 		return -ENODEV;
6536 	if (!enable[dev]) {
6537 		dev++;
6538 		return -ENOENT;
6539 	}
6540 
6541 	err = snd_card_create(index[dev], id[dev],
6542 			THIS_MODULE, sizeof(struct hdspm), &card);
6543 	if (err < 0)
6544 		return err;
6545 
6546 	hdspm = card->private_data;
6547 	card->private_free = snd_hdspm_card_free;
6548 	hdspm->dev = dev;
6549 	hdspm->pci = pci;
6550 
6551 	snd_card_set_dev(card, &pci->dev);
6552 
6553 	err = snd_hdspm_create(card, hdspm);
6554 	if (err < 0) {
6555 		snd_card_free(card);
6556 		return err;
6557 	}
6558 
6559 	if (hdspm->io_type != MADIface) {
6560 		sprintf(card->shortname, "%s_%x",
6561 			hdspm->card_name,
6562 			hdspm->serial);
6563 		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6564 			hdspm->card_name,
6565 			hdspm->serial,
6566 			hdspm->port, hdspm->irq);
6567 	} else {
6568 		sprintf(card->shortname, "%s", hdspm->card_name);
6569 		sprintf(card->longname, "%s at 0x%lx, irq %d",
6570 				hdspm->card_name, hdspm->port, hdspm->irq);
6571 	}
6572 
6573 	err = snd_card_register(card);
6574 	if (err < 0) {
6575 		snd_card_free(card);
6576 		return err;
6577 	}
6578 
6579 	pci_set_drvdata(pci, card);
6580 
6581 	dev++;
6582 	return 0;
6583 }
6584 
6585 static void snd_hdspm_remove(struct pci_dev *pci)
6586 {
6587 	snd_card_free(pci_get_drvdata(pci));
6588 	pci_set_drvdata(pci, NULL);
6589 }
6590 
6591 static struct pci_driver hdspm_driver = {
6592 	.name = KBUILD_MODNAME,
6593 	.id_table = snd_hdspm_ids,
6594 	.probe = snd_hdspm_probe,
6595 	.remove = snd_hdspm_remove,
6596 };
6597 
6598 module_pci_driver(hdspm_driver);
6599