1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ALSA driver for RME Hammerfall DSP MADI audio interface(s) 4 * 5 * Copyright (c) 2003 Winfried Ritsch (IEM) 6 * code based on hdsp.c Paul Davis 7 * Marcus Andersson 8 * Thomas Charbonnel 9 * Modified 2006-06-01 for AES32 support by Remy Bruno 10 * <remy.bruno@trinnov.com> 11 * 12 * Modified 2009-04-13 for proper metering by Florian Faber 13 * <faber@faberman.de> 14 * 15 * Modified 2009-04-14 for native float support by Florian Faber 16 * <faber@faberman.de> 17 * 18 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber 19 * <faber@faberman.de> 20 * 21 * Modified 2009-04-30 added hw serial number support by Florian Faber 22 * 23 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth 24 * 25 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth 26 * 27 * Modified 2019-05-23 fix AIO single speed ADAT capture and playback 28 * by Philippe.Bekaert@uhasselt.be 29 */ 30 31 /* ************* Register Documentation ******************************************************* 32 * 33 * Work in progress! Documentation is based on the code in this file. 34 * 35 * --------- HDSPM_controlRegister --------- 36 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 37 * :||||.||||:||||.||||:||||.||||:||||.||||: 38 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 39 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 40 * :||||.||||:||||.||||:||||.||||:||||.||||: 41 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 42 * : . : . : . : x . : HDSPM_AudioInterruptEnable \_ setting both bits 43 * : . : . : . : . x: HDSPM_Start / enables audio IO 44 * : . : . : . : x. : HDSPM_ClockModeMaster - 1: Master, 0: Slave 45 * : . : . : . : .210 : HDSPM_LatencyMask - 3 Bit value for latency 46 * : . : . : . : . : 0:64, 1:128, 2:256, 3:512, 47 * : . : . : . : . : 4:1024, 5:2048, 6:4096, 7:8192 48 * :x . : . : . x:xx . : HDSPM_FrequencyMask 49 * : . : . : . :10 . : HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=?? 50 * : . : . : . x: . : <MADI> HDSPM_DoubleSpeed 51 * :x . : . : . : . : <MADI> HDSPM_QuadSpeed 52 * : . 3 : . 10: 2 . : . : HDSPM_SyncRefMask : 53 * : . : . x: . : . : HDSPM_SyncRef0 54 * : . : . x : . : . : HDSPM_SyncRef1 55 * : . : . : x . : . : <AES32> HDSPM_SyncRef2 56 * : . x : . : . : . : <AES32> HDSPM_SyncRef3 57 * : . : . 10: . : . : <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn 58 * : . 3 : . 10: 2 . : . : <AES32> 0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn? 59 * : . x : . : . : . : <MADIe> HDSPe_FLOAT_FORMAT 60 * : . : . : x . : . : <MADI> HDSPM_InputSelect0 : 0=optical,1=coax 61 * : . : . :x . : . : <MADI> HDSPM_InputSelect1 62 * : . : .x : . : . : <MADI> HDSPM_clr_tms 63 * : . : . : . x : . : <MADI> HDSPM_TX_64ch 64 * : . : . : . x : . : <AES32> HDSPM_Emphasis 65 * : . : . : .x : . : <MADI> HDSPM_AutoInp 66 * : . : . x : . : . : <MADI> HDSPM_SMUX 67 * : . : .x : . : . : <MADI> HDSPM_clr_tms 68 * : . : x. : . : . : <MADI> HDSPM_taxi_reset 69 * : . x: . : . : . : <MADI> HDSPM_LineOut 70 * : . x: . : . : . : <AES32> ?????????????????? 71 * : . : x. : . : . : <AES32> HDSPM_WCK48 72 * : . : . : .x : . : <AES32> HDSPM_Dolby 73 * : . : x . : . : . : HDSPM_Midi0InterruptEnable 74 * : . :x . : . : . : HDSPM_Midi1InterruptEnable 75 * : . : x . : . : . : HDSPM_Midi2InterruptEnable 76 * : . x : . : . : . : <MADI> HDSPM_Midi3InterruptEnable 77 * : . x : . : . : . : <AES32> HDSPM_DS_DoubleWire 78 * : .x : . : . : . : <AES32> HDSPM_QS_DoubleWire 79 * : x. : . : . : . : <AES32> HDSPM_QS_QuadWire 80 * : . : . : . x : . : <AES32> HDSPM_Professional 81 * : x . : . : . : . : HDSPM_wclk_sel 82 * : . : . : . : . : 83 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 84 * :||||.||||:||||.||||:||||.||||:||||.||||: 85 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 86 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 87 * :||||.||||:||||.||||:||||.||||:||||.||||: 88 * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit 89 * 90 * 91 * 92 * AIO / RayDAT only 93 * 94 * ------------ HDSPM_WR_SETTINGS ---------- 95 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 96 * :1098.7654:3210.9876:5432.1098:7654.3210: 97 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 98 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 99 * :||||.||||:||||.||||:||||.||||:||||.||||: 100 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 101 * : . : . : . : . x: HDSPM_c0Master 1: Master, 0: Slave 102 * : . : . : . : . x : HDSPM_c0_SyncRef0 103 * : . : . : . : . x : HDSPM_c0_SyncRef1 104 * : . : . : . : .x : HDSPM_c0_SyncRef2 105 * : . : . : . : x. : HDSPM_c0_SyncRef3 106 * : . : . : . : 3.210 : HDSPM_c0_SyncRefMask: 107 * : . : . : . : . : RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4, 108 * : . : . : . : . : 9:TCO, 10:SyncIn 109 * : . : . : . : . : AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT, 110 * : . : . : . : . : 9:TCO, 10:SyncIn 111 * : . : . : . : . : 112 * : . : . : . : . : 113 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 114 * :1098.7654:3210.9876:5432.1098:7654.3210: 115 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 116 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 117 * :||||.||||:||||.||||:||||.||||:||||.||||: 118 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 119 * 120 */ 121 #include <linux/init.h> 122 #include <linux/delay.h> 123 #include <linux/interrupt.h> 124 #include <linux/module.h> 125 #include <linux/slab.h> 126 #include <linux/pci.h> 127 #include <linux/math64.h> 128 #include <linux/io.h> 129 #include <linux/nospec.h> 130 131 #include <sound/core.h> 132 #include <sound/control.h> 133 #include <sound/pcm.h> 134 #include <sound/pcm_params.h> 135 #include <sound/info.h> 136 #include <sound/asoundef.h> 137 #include <sound/rawmidi.h> 138 #include <sound/hwdep.h> 139 #include <sound/initval.h> 140 141 #include <sound/hdspm.h> 142 143 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 144 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 145 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ 146 147 module_param_array(index, int, NULL, 0444); 148 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface."); 149 150 module_param_array(id, charp, NULL, 0444); 151 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface."); 152 153 module_param_array(enable, bool, NULL, 0444); 154 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards."); 155 156 157 MODULE_AUTHOR 158 ( 159 "Winfried Ritsch <ritsch_AT_iem.at>, " 160 "Paul Davis <paul@linuxaudiosystems.com>, " 161 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, " 162 "Remy Bruno <remy.bruno@trinnov.com>, " 163 "Florian Faber <faberman@linuxproaudio.org>, " 164 "Adrian Knoth <adi@drcomp.erfurt.thur.de>" 165 ); 166 MODULE_DESCRIPTION("RME HDSPM"); 167 MODULE_LICENSE("GPL"); 168 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); 169 170 /* --- Write registers. --- 171 These are defined as byte-offsets from the iobase value. */ 172 173 #define HDSPM_WR_SETTINGS 0 174 #define HDSPM_outputBufferAddress 32 175 #define HDSPM_inputBufferAddress 36 176 #define HDSPM_controlRegister 64 177 #define HDSPM_interruptConfirmation 96 178 #define HDSPM_control2Reg 256 /* not in specs ???????? */ 179 #define HDSPM_freqReg 256 /* for setting arbitrary clock values (DDS feature) */ 180 #define HDSPM_midiDataOut0 352 /* just believe in old code */ 181 #define HDSPM_midiDataOut1 356 182 #define HDSPM_eeprom_wr 384 /* for AES32 */ 183 184 /* DMA enable for 64 channels, only Bit 0 is relevant */ 185 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */ 186 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */ 187 188 /* 16 page addresses for each of the 64 channels DMA buffer in and out 189 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */ 190 #define HDSPM_pageAddressBufferOut 8192 191 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4) 192 193 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */ 194 195 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */ 196 197 /* --- Read registers. --- 198 These are defined as byte-offsets from the iobase value */ 199 #define HDSPM_statusRegister 0 200 /*#define HDSPM_statusRegister2 96 */ 201 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at 202 * offset 192, for AES32 *and* MADI 203 * => need to check that offset 192 is working on MADI */ 204 #define HDSPM_statusRegister2 192 205 #define HDSPM_timecodeRegister 128 206 207 /* AIO, RayDAT */ 208 #define HDSPM_RD_STATUS_0 0 209 #define HDSPM_RD_STATUS_1 64 210 #define HDSPM_RD_STATUS_2 128 211 #define HDSPM_RD_STATUS_3 192 212 213 #define HDSPM_RD_TCO 256 214 #define HDSPM_RD_PLL_FREQ 512 215 #define HDSPM_WR_TCO 128 216 217 #define HDSPM_TCO1_TCO_lock 0x00000001 218 #define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002 219 #define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004 220 #define HDSPM_TCO1_LTC_Input_valid 0x00000008 221 #define HDSPM_TCO1_WCK_Input_valid 0x00000010 222 #define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020 223 #define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040 224 225 #define HDSPM_TCO1_set_TC 0x00000100 226 #define HDSPM_TCO1_set_drop_frame_flag 0x00000200 227 #define HDSPM_TCO1_LTC_Format_LSB 0x00000400 228 #define HDSPM_TCO1_LTC_Format_MSB 0x00000800 229 230 #define HDSPM_TCO2_TC_run 0x00010000 231 #define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000 232 #define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000 233 #define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000 234 #define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000 235 #define HDSPM_TCO2_set_jam_sync 0x00200000 236 #define HDSPM_TCO2_set_flywheel 0x00400000 237 238 #define HDSPM_TCO2_set_01_4 0x01000000 239 #define HDSPM_TCO2_set_pull_down 0x02000000 240 #define HDSPM_TCO2_set_pull_up 0x04000000 241 #define HDSPM_TCO2_set_freq 0x08000000 242 #define HDSPM_TCO2_set_term_75R 0x10000000 243 #define HDSPM_TCO2_set_input_LSB 0x20000000 244 #define HDSPM_TCO2_set_input_MSB 0x40000000 245 #define HDSPM_TCO2_set_freq_from_app 0x80000000 246 247 248 #define HDSPM_midiDataOut0 352 249 #define HDSPM_midiDataOut1 356 250 #define HDSPM_midiDataOut2 368 251 252 #define HDSPM_midiDataIn0 360 253 #define HDSPM_midiDataIn1 364 254 #define HDSPM_midiDataIn2 372 255 #define HDSPM_midiDataIn3 376 256 257 /* status is data bytes in MIDI-FIFO (0-128) */ 258 #define HDSPM_midiStatusOut0 384 259 #define HDSPM_midiStatusOut1 388 260 #define HDSPM_midiStatusOut2 400 261 262 #define HDSPM_midiStatusIn0 392 263 #define HDSPM_midiStatusIn1 396 264 #define HDSPM_midiStatusIn2 404 265 #define HDSPM_midiStatusIn3 408 266 267 268 /* the meters are regular i/o-mapped registers, but offset 269 considerably from the rest. the peak registers are reset 270 when read; the least-significant 4 bits are full-scale counters; 271 the actual peak value is in the most-significant 24 bits. 272 */ 273 274 #define HDSPM_MADI_INPUT_PEAK 4096 275 #define HDSPM_MADI_PLAYBACK_PEAK 4352 276 #define HDSPM_MADI_OUTPUT_PEAK 4608 277 278 #define HDSPM_MADI_INPUT_RMS_L 6144 279 #define HDSPM_MADI_PLAYBACK_RMS_L 6400 280 #define HDSPM_MADI_OUTPUT_RMS_L 6656 281 282 #define HDSPM_MADI_INPUT_RMS_H 7168 283 #define HDSPM_MADI_PLAYBACK_RMS_H 7424 284 #define HDSPM_MADI_OUTPUT_RMS_H 7680 285 286 /* --- Control Register bits --------- */ 287 #define HDSPM_Start (1<<0) /* start engine */ 288 289 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */ 290 #define HDSPM_Latency1 (1<<2) /* where n is defined */ 291 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */ 292 293 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */ 294 #define HDSPM_c0Master 0x1 /* Master clock bit in settings 295 register [RayDAT, AIO] */ 296 297 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */ 298 299 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ 300 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ 301 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 302 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */ 303 304 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */ 305 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, 306 56channelMODE=0 */ /* MADI ONLY*/ 307 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */ 308 309 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, 310 0=off, 1=on */ /* MADI ONLY */ 311 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */ 312 313 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax 314 * -- MADI ONLY 315 */ 316 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */ 317 318 #define HDSPM_SyncRef2 (1<<13) 319 #define HDSPM_SyncRef3 (1<<25) 320 321 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */ 322 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use 323 AES additional bits in 324 lower 5 Audiodatabits ??? */ 325 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */ 326 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */ 327 328 #define HDSPM_Midi0InterruptEnable 0x0400000 329 #define HDSPM_Midi1InterruptEnable 0x0800000 330 #define HDSPM_Midi2InterruptEnable 0x0200000 331 #define HDSPM_Midi3InterruptEnable 0x4000000 332 333 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ 334 #define HDSPe_FLOAT_FORMAT 0x2000000 335 336 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */ 337 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */ 338 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */ 339 340 #define HDSPM_wclk_sel (1<<30) 341 342 /* additional control register bits for AIO*/ 343 #define HDSPM_c0_Wck48 0x20 /* also RayDAT */ 344 #define HDSPM_c0_Input0 0x1000 345 #define HDSPM_c0_Input1 0x2000 346 #define HDSPM_c0_Spdif_Opt 0x4000 347 #define HDSPM_c0_Pro 0x8000 348 #define HDSPM_c0_clr_tms 0x10000 349 #define HDSPM_c0_AEB1 0x20000 350 #define HDSPM_c0_AEB2 0x40000 351 #define HDSPM_c0_LineOut 0x80000 352 #define HDSPM_c0_AD_GAIN0 0x100000 353 #define HDSPM_c0_AD_GAIN1 0x200000 354 #define HDSPM_c0_DA_GAIN0 0x400000 355 #define HDSPM_c0_DA_GAIN1 0x800000 356 #define HDSPM_c0_PH_GAIN0 0x1000000 357 #define HDSPM_c0_PH_GAIN1 0x2000000 358 #define HDSPM_c0_Sym6db 0x4000000 359 360 361 /* --- bit helper defines */ 362 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) 363 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\ 364 HDSPM_DoubleSpeed|HDSPM_QuadSpeed) 365 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) 366 #define HDSPM_InputOptical 0 367 #define HDSPM_InputCoaxial (HDSPM_InputSelect0) 368 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\ 369 HDSPM_SyncRef2|HDSPM_SyncRef3) 370 371 #define HDSPM_c0_SyncRef0 0x2 372 #define HDSPM_c0_SyncRef1 0x4 373 #define HDSPM_c0_SyncRef2 0x8 374 #define HDSPM_c0_SyncRef3 0x10 375 #define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\ 376 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3) 377 378 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */ 379 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */ 380 #define HDSPM_SYNC_FROM_TCO 2 381 #define HDSPM_SYNC_FROM_SYNC_IN 3 382 383 #define HDSPM_Frequency32KHz HDSPM_Frequency0 384 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1 385 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0) 386 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) 387 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) 388 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\ 389 HDSPM_Frequency0) 390 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0) 391 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1) 392 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\ 393 HDSPM_Frequency0) 394 395 396 /* Synccheck Status */ 397 #define HDSPM_SYNC_CHECK_NO_LOCK 0 398 #define HDSPM_SYNC_CHECK_LOCK 1 399 #define HDSPM_SYNC_CHECK_SYNC 2 400 401 /* AutoSync References - used by "autosync_ref" control switch */ 402 #define HDSPM_AUTOSYNC_FROM_WORD 0 403 #define HDSPM_AUTOSYNC_FROM_MADI 1 404 #define HDSPM_AUTOSYNC_FROM_TCO 2 405 #define HDSPM_AUTOSYNC_FROM_SYNC_IN 3 406 #define HDSPM_AUTOSYNC_FROM_NONE 4 407 408 /* Possible sources of MADI input */ 409 #define HDSPM_OPTICAL 0 /* optical */ 410 #define HDSPM_COAXIAL 1 /* BNC */ 411 412 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask) 413 #define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1)) 414 415 #define hdspm_encode_in(x) (((x)&0x3)<<14) 416 #define hdspm_decode_in(x) (((x)>>14)&0x3) 417 418 /* --- control2 register bits --- */ 419 #define HDSPM_TMS (1<<0) 420 #define HDSPM_TCK (1<<1) 421 #define HDSPM_TDI (1<<2) 422 #define HDSPM_JTAG (1<<3) 423 #define HDSPM_PWDN (1<<4) 424 #define HDSPM_PROGRAM (1<<5) 425 #define HDSPM_CONFIG_MODE_0 (1<<6) 426 #define HDSPM_CONFIG_MODE_1 (1<<7) 427 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/ 428 #define HDSPM_BIGENDIAN_MODE (1<<9) 429 #define HDSPM_RD_MULTIPLE (1<<10) 430 431 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and 432 that do not conflict with specific bits for AES32 seem to be valid also 433 for the AES32 434 */ 435 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ 436 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */ 437 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 438 * (like inp0) 439 */ 440 441 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */ 442 #define HDSPM_madiSync (1<<18) /* MADI is in sync */ 443 444 #define HDSPM_tcoLockMadi 0x00000020 /* Optional TCO locked status for HDSPe MADI*/ 445 #define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/ 446 447 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */ 448 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */ 449 450 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 451 /* since 64byte accurate, last 6 bits are not used */ 452 453 454 455 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */ 456 457 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */ 458 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */ 459 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */ 460 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */ 461 462 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with 463 * Interrupt 464 */ 465 #define HDSPM_tco_detect 0x08000000 466 #define HDSPM_tcoLockAes 0x20000000 /* Optional TCO locked status for HDSPe AES */ 467 468 #define HDSPM_s2_tco_detect 0x00000040 469 #define HDSPM_s2_AEBO_D 0x00000080 470 #define HDSPM_s2_AEBI_D 0x00000100 471 472 473 #define HDSPM_midi0IRQPending 0x40000000 474 #define HDSPM_midi1IRQPending 0x80000000 475 #define HDSPM_midi2IRQPending 0x20000000 476 #define HDSPM_midi2IRQPendingAES 0x00000020 477 #define HDSPM_midi3IRQPending 0x00200000 478 479 /* --- status bit helpers */ 480 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\ 481 HDSPM_madiFreq2|HDSPM_madiFreq3) 482 #define HDSPM_madiFreq32 (HDSPM_madiFreq0) 483 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1) 484 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1) 485 #define HDSPM_madiFreq64 (HDSPM_madiFreq2) 486 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2) 487 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2) 488 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2) 489 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) 490 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) 491 492 /* Status2 Register bits */ /* MADI ONLY */ 493 494 #define HDSPM_version0 (1<<0) /* not really defined but I guess */ 495 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */ 496 #define HDSPM_version2 (1<<2) 497 498 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */ 499 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */ 500 501 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */ 502 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */ 503 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, 111=128 */ 504 #define HDSPM_wc_freq3 0x800 /* 1000=176.4, 1001=192 */ 505 506 #define HDSPM_SyncRef0 0x10000 /* Sync Reference */ 507 #define HDSPM_SyncRef1 0x20000 508 509 #define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */ 510 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */ 511 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */ 512 513 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync) 514 515 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\ 516 HDSPM_wc_freq3) 517 #define HDSPM_wcFreq32 (HDSPM_wc_freq0) 518 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1) 519 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1) 520 #define HDSPM_wcFreq64 (HDSPM_wc_freq2) 521 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2) 522 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2) 523 #define HDSPM_wcFreq128 (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2) 524 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3) 525 #define HDSPM_wcFreq192 (HDSPM_wc_freq0|HDSPM_wc_freq3) 526 527 #define HDSPM_status1_F_0 0x0400000 528 #define HDSPM_status1_F_1 0x0800000 529 #define HDSPM_status1_F_2 0x1000000 530 #define HDSPM_status1_F_3 0x2000000 531 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3) 532 533 534 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 535 HDSPM_SelSyncRef2) 536 #define HDSPM_SelSyncRef_WORD 0 537 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) 538 #define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1) 539 #define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1) 540 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 541 HDSPM_SelSyncRef2) 542 543 /* 544 For AES32, bits for status, status2 and timecode are different 545 */ 546 /* status */ 547 #define HDSPM_AES32_wcLock 0x0200000 548 #define HDSPM_AES32_wcSync 0x0100000 549 #define HDSPM_AES32_wcFreq_bit 22 550 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function 551 HDSPM_bit2freq */ 552 #define HDSPM_AES32_syncref_bit 16 553 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */ 554 555 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0 556 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1 557 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2 558 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3 559 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4 560 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5 561 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6 562 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7 563 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8 564 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9 565 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10 566 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11 567 568 /* status2 */ 569 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */ 570 #define HDSPM_LockAES 0x80 571 #define HDSPM_LockAES1 0x80 572 #define HDSPM_LockAES2 0x40 573 #define HDSPM_LockAES3 0x20 574 #define HDSPM_LockAES4 0x10 575 #define HDSPM_LockAES5 0x8 576 #define HDSPM_LockAES6 0x4 577 #define HDSPM_LockAES7 0x2 578 #define HDSPM_LockAES8 0x1 579 /* 580 Timecode 581 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on 582 AES i+1 583 bits 3210 584 0001 32kHz 585 0010 44.1kHz 586 0011 48kHz 587 0100 64kHz 588 0101 88.2kHz 589 0110 96kHz 590 0111 128kHz 591 1000 176.4kHz 592 1001 192kHz 593 NB: Timecode register doesn't seem to work on AES32 card revision 230 594 */ 595 596 /* Mixer Values */ 597 #define UNITY_GAIN 32768 /* = 65536/2 */ 598 #define MINUS_INFINITY_GAIN 0 599 600 /* Number of channels for different Speed Modes */ 601 #define MADI_SS_CHANNELS 64 602 #define MADI_DS_CHANNELS 32 603 #define MADI_QS_CHANNELS 16 604 605 #define RAYDAT_SS_CHANNELS 36 606 #define RAYDAT_DS_CHANNELS 20 607 #define RAYDAT_QS_CHANNELS 12 608 609 #define AIO_IN_SS_CHANNELS 14 610 #define AIO_IN_DS_CHANNELS 10 611 #define AIO_IN_QS_CHANNELS 8 612 #define AIO_OUT_SS_CHANNELS 16 613 #define AIO_OUT_DS_CHANNELS 12 614 #define AIO_OUT_QS_CHANNELS 10 615 616 #define AES32_CHANNELS 16 617 618 /* the size of a substream (1 mono data stream) */ 619 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024) 620 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES) 621 622 /* the size of the area we need to allocate for DMA transfers. the 623 size is the same regardless of the number of channels, and 624 also the latency to use. 625 for one direction !!! 626 */ 627 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) 628 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) 629 630 #define HDSPM_RAYDAT_REV 211 631 #define HDSPM_AIO_REV 212 632 #define HDSPM_MADIFACE_REV 213 633 634 /* speed factor modes */ 635 #define HDSPM_SPEED_SINGLE 0 636 #define HDSPM_SPEED_DOUBLE 1 637 #define HDSPM_SPEED_QUAD 2 638 639 /* names for speed modes */ 640 static const char * const hdspm_speed_names[] = { "single", "double", "quad" }; 641 642 static const char *const texts_autosync_aes_tco[] = { "Word Clock", 643 "AES1", "AES2", "AES3", "AES4", 644 "AES5", "AES6", "AES7", "AES8", 645 "TCO", "Sync In" 646 }; 647 static const char *const texts_autosync_aes[] = { "Word Clock", 648 "AES1", "AES2", "AES3", "AES4", 649 "AES5", "AES6", "AES7", "AES8", 650 "Sync In" 651 }; 652 static const char *const texts_autosync_madi_tco[] = { "Word Clock", 653 "MADI", "TCO", "Sync In" }; 654 static const char *const texts_autosync_madi[] = { "Word Clock", 655 "MADI", "Sync In" }; 656 657 static const char *const texts_autosync_raydat_tco[] = { 658 "Word Clock", 659 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 660 "AES", "SPDIF", "TCO", "Sync In" 661 }; 662 static const char *const texts_autosync_raydat[] = { 663 "Word Clock", 664 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 665 "AES", "SPDIF", "Sync In" 666 }; 667 static const char *const texts_autosync_aio_tco[] = { 668 "Word Clock", 669 "ADAT", "AES", "SPDIF", "TCO", "Sync In" 670 }; 671 static const char *const texts_autosync_aio[] = { "Word Clock", 672 "ADAT", "AES", "SPDIF", "Sync In" }; 673 674 static const char *const texts_freq[] = { 675 "No Lock", 676 "32 kHz", 677 "44.1 kHz", 678 "48 kHz", 679 "64 kHz", 680 "88.2 kHz", 681 "96 kHz", 682 "128 kHz", 683 "176.4 kHz", 684 "192 kHz" 685 }; 686 687 static const char * const texts_ports_madi[] = { 688 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6", 689 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12", 690 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18", 691 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24", 692 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30", 693 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36", 694 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42", 695 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48", 696 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54", 697 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60", 698 "MADI.61", "MADI.62", "MADI.63", "MADI.64", 699 }; 700 701 702 static const char * const texts_ports_raydat_ss[] = { 703 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6", 704 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 705 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2", 706 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8", 707 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6", 708 "ADAT4.7", "ADAT4.8", 709 "AES.L", "AES.R", 710 "SPDIF.L", "SPDIF.R" 711 }; 712 713 static const char * const texts_ports_raydat_ds[] = { 714 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", 715 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 716 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4", 717 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", 718 "AES.L", "AES.R", 719 "SPDIF.L", "SPDIF.R" 720 }; 721 722 static const char * const texts_ports_raydat_qs[] = { 723 "ADAT1.1", "ADAT1.2", 724 "ADAT2.1", "ADAT2.2", 725 "ADAT3.1", "ADAT3.2", 726 "ADAT4.1", "ADAT4.2", 727 "AES.L", "AES.R", 728 "SPDIF.L", "SPDIF.R" 729 }; 730 731 732 static const char * const texts_ports_aio_in_ss[] = { 733 "Analogue.L", "Analogue.R", 734 "AES.L", "AES.R", 735 "SPDIF.L", "SPDIF.R", 736 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 737 "ADAT.7", "ADAT.8", 738 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 739 }; 740 741 static const char * const texts_ports_aio_out_ss[] = { 742 "Analogue.L", "Analogue.R", 743 "AES.L", "AES.R", 744 "SPDIF.L", "SPDIF.R", 745 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 746 "ADAT.7", "ADAT.8", 747 "Phone.L", "Phone.R", 748 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 749 }; 750 751 static const char * const texts_ports_aio_in_ds[] = { 752 "Analogue.L", "Analogue.R", 753 "AES.L", "AES.R", 754 "SPDIF.L", "SPDIF.R", 755 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 756 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 757 }; 758 759 static const char * const texts_ports_aio_out_ds[] = { 760 "Analogue.L", "Analogue.R", 761 "AES.L", "AES.R", 762 "SPDIF.L", "SPDIF.R", 763 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 764 "Phone.L", "Phone.R", 765 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 766 }; 767 768 static const char * const texts_ports_aio_in_qs[] = { 769 "Analogue.L", "Analogue.R", 770 "AES.L", "AES.R", 771 "SPDIF.L", "SPDIF.R", 772 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 773 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 774 }; 775 776 static const char * const texts_ports_aio_out_qs[] = { 777 "Analogue.L", "Analogue.R", 778 "AES.L", "AES.R", 779 "SPDIF.L", "SPDIF.R", 780 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 781 "Phone.L", "Phone.R", 782 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 783 }; 784 785 static const char * const texts_ports_aes32[] = { 786 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7", 787 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14", 788 "AES.15", "AES.16" 789 }; 790 791 /* These tables map the ALSA channels 1..N to the channels that we 792 need to use in order to find the relevant channel buffer. RME 793 refers to this kind of mapping as between "the ADAT channel and 794 the DMA channel." We index it using the logical audio channel, 795 and the value is the DMA channel (i.e. channel buffer number) 796 where the data for that channel can be read/written from/to. 797 */ 798 799 static const char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = { 800 0, 1, 2, 3, 4, 5, 6, 7, 801 8, 9, 10, 11, 12, 13, 14, 15, 802 16, 17, 18, 19, 20, 21, 22, 23, 803 24, 25, 26, 27, 28, 29, 30, 31, 804 32, 33, 34, 35, 36, 37, 38, 39, 805 40, 41, 42, 43, 44, 45, 46, 47, 806 48, 49, 50, 51, 52, 53, 54, 55, 807 56, 57, 58, 59, 60, 61, 62, 63 808 }; 809 810 static const char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = { 811 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */ 812 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */ 813 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */ 814 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */ 815 0, 1, /* AES */ 816 2, 3, /* SPDIF */ 817 -1, -1, -1, -1, 818 -1, -1, -1, -1, -1, -1, -1, -1, 819 -1, -1, -1, -1, -1, -1, -1, -1, 820 -1, -1, -1, -1, -1, -1, -1, -1, 821 }; 822 823 static const char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = { 824 4, 5, 6, 7, /* ADAT 1 */ 825 8, 9, 10, 11, /* ADAT 2 */ 826 12, 13, 14, 15, /* ADAT 3 */ 827 16, 17, 18, 19, /* ADAT 4 */ 828 0, 1, /* AES */ 829 2, 3, /* SPDIF */ 830 -1, -1, -1, -1, 831 -1, -1, -1, -1, -1, -1, -1, -1, 832 -1, -1, -1, -1, -1, -1, -1, -1, 833 -1, -1, -1, -1, -1, -1, -1, -1, 834 -1, -1, -1, -1, -1, -1, -1, -1, 835 -1, -1, -1, -1, -1, -1, -1, -1, 836 }; 837 838 static const char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = { 839 4, 5, /* ADAT 1 */ 840 6, 7, /* ADAT 2 */ 841 8, 9, /* ADAT 3 */ 842 10, 11, /* ADAT 4 */ 843 0, 1, /* AES */ 844 2, 3, /* SPDIF */ 845 -1, -1, -1, -1, 846 -1, -1, -1, -1, -1, -1, -1, -1, 847 -1, -1, -1, -1, -1, -1, -1, -1, 848 -1, -1, -1, -1, -1, -1, -1, -1, 849 -1, -1, -1, -1, -1, -1, -1, -1, 850 -1, -1, -1, -1, -1, -1, -1, -1, 851 -1, -1, -1, -1, -1, -1, -1, -1, 852 }; 853 854 static const char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = { 855 0, 1, /* line in */ 856 8, 9, /* aes in, */ 857 10, 11, /* spdif in */ 858 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */ 859 2, 3, 4, 5, /* AEB */ 860 -1, -1, -1, -1, -1, -1, 861 -1, -1, -1, -1, -1, -1, -1, -1, 862 -1, -1, -1, -1, -1, -1, -1, -1, 863 -1, -1, -1, -1, -1, -1, -1, -1, 864 -1, -1, -1, -1, -1, -1, -1, -1, 865 -1, -1, -1, -1, -1, -1, -1, -1, 866 }; 867 868 static const char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = { 869 0, 1, /* line out */ 870 8, 9, /* aes out */ 871 10, 11, /* spdif out */ 872 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */ 873 6, 7, /* phone out */ 874 2, 3, 4, 5, /* AEB */ 875 -1, -1, -1, -1, 876 -1, -1, -1, -1, -1, -1, -1, -1, 877 -1, -1, -1, -1, -1, -1, -1, -1, 878 -1, -1, -1, -1, -1, -1, -1, -1, 879 -1, -1, -1, -1, -1, -1, -1, -1, 880 -1, -1, -1, -1, -1, -1, -1, -1, 881 }; 882 883 static const char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = { 884 0, 1, /* line in */ 885 8, 9, /* aes in */ 886 10, 11, /* spdif in */ 887 12, 14, 16, 18, /* adat in */ 888 2, 3, 4, 5, /* AEB */ 889 -1, -1, 890 -1, -1, -1, -1, -1, -1, -1, -1, 891 -1, -1, -1, -1, -1, -1, -1, -1, 892 -1, -1, -1, -1, -1, -1, -1, -1, 893 -1, -1, -1, -1, -1, -1, -1, -1, 894 -1, -1, -1, -1, -1, -1, -1, -1, 895 -1, -1, -1, -1, -1, -1, -1, -1 896 }; 897 898 static const char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = { 899 0, 1, /* line out */ 900 8, 9, /* aes out */ 901 10, 11, /* spdif out */ 902 12, 14, 16, 18, /* adat out */ 903 6, 7, /* phone out */ 904 2, 3, 4, 5, /* AEB */ 905 -1, -1, -1, -1, -1, -1, -1, -1, 906 -1, -1, -1, -1, -1, -1, -1, -1, 907 -1, -1, -1, -1, -1, -1, -1, -1, 908 -1, -1, -1, -1, -1, -1, -1, -1, 909 -1, -1, -1, -1, -1, -1, -1, -1, 910 -1, -1, -1, -1, -1, -1, -1, -1 911 }; 912 913 static const char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = { 914 0, 1, /* line in */ 915 8, 9, /* aes in */ 916 10, 11, /* spdif in */ 917 12, 16, /* adat in */ 918 2, 3, 4, 5, /* AEB */ 919 -1, -1, -1, -1, 920 -1, -1, -1, -1, -1, -1, -1, -1, 921 -1, -1, -1, -1, -1, -1, -1, -1, 922 -1, -1, -1, -1, -1, -1, -1, -1, 923 -1, -1, -1, -1, -1, -1, -1, -1, 924 -1, -1, -1, -1, -1, -1, -1, -1, 925 -1, -1, -1, -1, -1, -1, -1, -1 926 }; 927 928 static const char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = { 929 0, 1, /* line out */ 930 8, 9, /* aes out */ 931 10, 11, /* spdif out */ 932 12, 16, /* adat out */ 933 6, 7, /* phone out */ 934 2, 3, 4, 5, /* AEB */ 935 -1, -1, 936 -1, -1, -1, -1, -1, -1, -1, -1, 937 -1, -1, -1, -1, -1, -1, -1, -1, 938 -1, -1, -1, -1, -1, -1, -1, -1, 939 -1, -1, -1, -1, -1, -1, -1, -1, 940 -1, -1, -1, -1, -1, -1, -1, -1, 941 -1, -1, -1, -1, -1, -1, -1, -1 942 }; 943 944 static const char channel_map_aes32[HDSPM_MAX_CHANNELS] = { 945 0, 1, 2, 3, 4, 5, 6, 7, 946 8, 9, 10, 11, 12, 13, 14, 15, 947 -1, -1, -1, -1, -1, -1, -1, -1, 948 -1, -1, -1, -1, -1, -1, -1, -1, 949 -1, -1, -1, -1, -1, -1, -1, -1, 950 -1, -1, -1, -1, -1, -1, -1, -1, 951 -1, -1, -1, -1, -1, -1, -1, -1, 952 -1, -1, -1, -1, -1, -1, -1, -1 953 }; 954 955 struct hdspm_midi { 956 struct hdspm *hdspm; 957 int id; 958 struct snd_rawmidi *rmidi; 959 struct snd_rawmidi_substream *input; 960 struct snd_rawmidi_substream *output; 961 char istimer; /* timer in use */ 962 struct timer_list timer; 963 spinlock_t lock; 964 int pending; 965 int dataIn; 966 int statusIn; 967 int dataOut; 968 int statusOut; 969 int ie; 970 int irq; 971 }; 972 973 struct hdspm_tco { 974 int input; /* 0: LTC, 1:Video, 2: WC*/ 975 int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */ 976 int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */ 977 int samplerate; /* 0=44.1, 1=48, 2= freq from app */ 978 int pull; /* 0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/ 979 int term; /* 0 = off, 1 = on */ 980 }; 981 982 struct hdspm { 983 spinlock_t lock; 984 /* only one playback and/or capture stream */ 985 struct snd_pcm_substream *capture_substream; 986 struct snd_pcm_substream *playback_substream; 987 988 char *card_name; /* for procinfo */ 989 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/ 990 991 uint8_t io_type; 992 993 int monitor_outs; /* set up monitoring outs init flag */ 994 995 u32 control_register; /* cached value */ 996 u32 control2_register; /* cached value */ 997 u32 settings_register; /* cached value for AIO / RayDat (sync reference, master/slave) */ 998 999 struct hdspm_midi midi[4]; 1000 struct work_struct midi_work; 1001 1002 size_t period_bytes; 1003 unsigned char ss_in_channels; 1004 unsigned char ds_in_channels; 1005 unsigned char qs_in_channels; 1006 unsigned char ss_out_channels; 1007 unsigned char ds_out_channels; 1008 unsigned char qs_out_channels; 1009 1010 unsigned char max_channels_in; 1011 unsigned char max_channels_out; 1012 1013 const signed char *channel_map_in; 1014 const signed char *channel_map_out; 1015 1016 const signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs; 1017 const signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs; 1018 1019 const char * const *port_names_in; 1020 const char * const *port_names_out; 1021 1022 const char * const *port_names_in_ss; 1023 const char * const *port_names_in_ds; 1024 const char * const *port_names_in_qs; 1025 const char * const *port_names_out_ss; 1026 const char * const *port_names_out_ds; 1027 const char * const *port_names_out_qs; 1028 1029 unsigned char *playback_buffer; /* suitably aligned address */ 1030 unsigned char *capture_buffer; /* suitably aligned address */ 1031 1032 pid_t capture_pid; /* process id which uses capture */ 1033 pid_t playback_pid; /* process id which uses capture */ 1034 int running; /* running status */ 1035 1036 int last_external_sample_rate; /* samplerate mystic ... */ 1037 int last_internal_sample_rate; 1038 int system_sample_rate; 1039 1040 int dev; /* Hardware vars... */ 1041 int irq; 1042 unsigned long port; 1043 void __iomem *iobase; 1044 1045 int irq_count; /* for debug */ 1046 int midiPorts; 1047 1048 struct snd_card *card; /* one card */ 1049 struct snd_pcm *pcm; /* has one pcm */ 1050 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */ 1051 struct pci_dev *pci; /* and an pci info */ 1052 1053 /* Mixer vars */ 1054 /* fast alsa mixer */ 1055 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; 1056 /* but input to much, so not used */ 1057 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; 1058 /* full mixer accessible over mixer ioctl or hwdep-device */ 1059 struct hdspm_mixer *mixer; 1060 1061 struct hdspm_tco *tco; /* NULL if no TCO detected */ 1062 1063 const char *const *texts_autosync; 1064 int texts_autosync_items; 1065 1066 cycles_t last_interrupt; 1067 1068 unsigned int serial; 1069 1070 struct hdspm_peak_rms peak_rms; 1071 }; 1072 1073 1074 static const struct pci_device_id snd_hdspm_ids[] = { 1075 { 1076 .vendor = PCI_VENDOR_ID_XILINX, 1077 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI, 1078 .subvendor = PCI_ANY_ID, 1079 .subdevice = PCI_ANY_ID, 1080 .class = 0, 1081 .class_mask = 0, 1082 .driver_data = 0}, 1083 {0,} 1084 }; 1085 1086 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids); 1087 1088 /* prototypes */ 1089 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 1090 struct hdspm *hdspm); 1091 static int snd_hdspm_create_pcm(struct snd_card *card, 1092 struct hdspm *hdspm); 1093 1094 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm); 1095 static inline int hdspm_get_pll_freq(struct hdspm *hdspm); 1096 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm); 1097 static int hdspm_autosync_ref(struct hdspm *hdspm); 1098 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out); 1099 static int snd_hdspm_set_defaults(struct hdspm *hdspm); 1100 static int hdspm_system_clock_mode(struct hdspm *hdspm); 1101 static void hdspm_set_channel_dma_addr(struct hdspm *hdspm, 1102 struct snd_pcm_substream *substream, 1103 unsigned int reg, int channels); 1104 1105 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx); 1106 static int hdspm_wc_sync_check(struct hdspm *hdspm); 1107 static int hdspm_tco_sync_check(struct hdspm *hdspm); 1108 static int hdspm_sync_in_sync_check(struct hdspm *hdspm); 1109 1110 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index); 1111 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm); 1112 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm); 1113 1114 1115 1116 static inline int HDSPM_bit2freq(int n) 1117 { 1118 static const int bit2freq_tab[] = { 1119 0, 32000, 44100, 48000, 64000, 88200, 1120 96000, 128000, 176400, 192000 }; 1121 if (n < 1 || n > 9) 1122 return 0; 1123 return bit2freq_tab[n]; 1124 } 1125 1126 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm) 1127 { 1128 return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type)); 1129 } 1130 1131 1132 /* Write/read to/from HDSPM with Adresses in Bytes 1133 not words but only 32Bit writes are allowed */ 1134 1135 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg, 1136 unsigned int val) 1137 { 1138 writel(val, hdspm->iobase + reg); 1139 } 1140 1141 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg) 1142 { 1143 return readl(hdspm->iobase + reg); 1144 } 1145 1146 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader 1147 mixer is write only on hardware so we have to cache him for read 1148 each fader is a u32, but uses only the first 16 bit */ 1149 1150 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan, 1151 unsigned int in) 1152 { 1153 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1154 return 0; 1155 1156 return hdspm->mixer->ch[chan].in[in]; 1157 } 1158 1159 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan, 1160 unsigned int pb) 1161 { 1162 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1163 return 0; 1164 return hdspm->mixer->ch[chan].pb[pb]; 1165 } 1166 1167 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan, 1168 unsigned int in, unsigned short data) 1169 { 1170 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1171 return -1; 1172 1173 hdspm_write(hdspm, 1174 HDSPM_MADI_mixerBase + 1175 ((in + 128 * chan) * sizeof(u32)), 1176 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF)); 1177 return 0; 1178 } 1179 1180 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan, 1181 unsigned int pb, unsigned short data) 1182 { 1183 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1184 return -1; 1185 1186 hdspm_write(hdspm, 1187 HDSPM_MADI_mixerBase + 1188 ((64 + pb + 128 * chan) * sizeof(u32)), 1189 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF)); 1190 return 0; 1191 } 1192 1193 1194 /* enable DMA for specific channels, now available for DSP-MADI */ 1195 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v) 1196 { 1197 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v); 1198 } 1199 1200 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v) 1201 { 1202 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v); 1203 } 1204 1205 /* check if same process is writing and reading */ 1206 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm) 1207 { 1208 unsigned long flags; 1209 int ret = 1; 1210 1211 spin_lock_irqsave(&hdspm->lock, flags); 1212 if ((hdspm->playback_pid != hdspm->capture_pid) && 1213 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) { 1214 ret = 0; 1215 } 1216 spin_unlock_irqrestore(&hdspm->lock, flags); 1217 return ret; 1218 } 1219 1220 /* round arbitrary sample rates to commonly known rates */ 1221 static int hdspm_round_frequency(int rate) 1222 { 1223 if (rate < 38050) 1224 return 32000; 1225 if (rate < 46008) 1226 return 44100; 1227 else 1228 return 48000; 1229 } 1230 1231 /* QS and DS rates normally can not be detected 1232 * automatically by the card. Only exception is MADI 1233 * in 96k frame mode. 1234 * 1235 * So if we read SS values (32 .. 48k), check for 1236 * user-provided DS/QS bits in the control register 1237 * and multiply the base frequency accordingly. 1238 */ 1239 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate) 1240 { 1241 if (rate <= 48000) { 1242 if (hdspm->control_register & HDSPM_QuadSpeed) 1243 return rate * 4; 1244 else if (hdspm->control_register & 1245 HDSPM_DoubleSpeed) 1246 return rate * 2; 1247 } 1248 return rate; 1249 } 1250 1251 /* check for external sample rate, returns the sample rate in Hz*/ 1252 static int hdspm_external_sample_rate(struct hdspm *hdspm) 1253 { 1254 unsigned int status, status2; 1255 int syncref, rate = 0, rate_bits; 1256 1257 switch (hdspm->io_type) { 1258 case AES32: 1259 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1260 status = hdspm_read(hdspm, HDSPM_statusRegister); 1261 1262 syncref = hdspm_autosync_ref(hdspm); 1263 switch (syncref) { 1264 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 1265 /* Check WC sync and get sample rate */ 1266 if (hdspm_wc_sync_check(hdspm)) 1267 return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm)); 1268 break; 1269 1270 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 1271 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 1272 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 1273 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 1274 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 1275 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 1276 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 1277 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 1278 /* Check AES sync and get sample rate */ 1279 if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)) 1280 return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm, 1281 syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)); 1282 break; 1283 1284 1285 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 1286 /* Check TCO sync and get sample rate */ 1287 if (hdspm_tco_sync_check(hdspm)) 1288 return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm)); 1289 break; 1290 default: 1291 return 0; 1292 } /* end switch(syncref) */ 1293 break; 1294 1295 case MADIface: 1296 status = hdspm_read(hdspm, HDSPM_statusRegister); 1297 1298 if (!(status & HDSPM_madiLock)) { 1299 rate = 0; /* no lock */ 1300 } else { 1301 switch (status & (HDSPM_status1_freqMask)) { 1302 case HDSPM_status1_F_0*1: 1303 rate = 32000; break; 1304 case HDSPM_status1_F_0*2: 1305 rate = 44100; break; 1306 case HDSPM_status1_F_0*3: 1307 rate = 48000; break; 1308 case HDSPM_status1_F_0*4: 1309 rate = 64000; break; 1310 case HDSPM_status1_F_0*5: 1311 rate = 88200; break; 1312 case HDSPM_status1_F_0*6: 1313 rate = 96000; break; 1314 case HDSPM_status1_F_0*7: 1315 rate = 128000; break; 1316 case HDSPM_status1_F_0*8: 1317 rate = 176400; break; 1318 case HDSPM_status1_F_0*9: 1319 rate = 192000; break; 1320 default: 1321 rate = 0; break; 1322 } 1323 } 1324 1325 break; 1326 1327 case MADI: 1328 case AIO: 1329 case RayDAT: 1330 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1331 status = hdspm_read(hdspm, HDSPM_statusRegister); 1332 rate = 0; 1333 1334 /* if wordclock has synced freq and wordclock is valid */ 1335 if ((status2 & HDSPM_wcLock) != 0 && 1336 (status2 & HDSPM_SelSyncRef0) == 0) { 1337 1338 rate_bits = status2 & HDSPM_wcFreqMask; 1339 1340 1341 switch (rate_bits) { 1342 case HDSPM_wcFreq32: 1343 rate = 32000; 1344 break; 1345 case HDSPM_wcFreq44_1: 1346 rate = 44100; 1347 break; 1348 case HDSPM_wcFreq48: 1349 rate = 48000; 1350 break; 1351 case HDSPM_wcFreq64: 1352 rate = 64000; 1353 break; 1354 case HDSPM_wcFreq88_2: 1355 rate = 88200; 1356 break; 1357 case HDSPM_wcFreq96: 1358 rate = 96000; 1359 break; 1360 case HDSPM_wcFreq128: 1361 rate = 128000; 1362 break; 1363 case HDSPM_wcFreq176_4: 1364 rate = 176400; 1365 break; 1366 case HDSPM_wcFreq192: 1367 rate = 192000; 1368 break; 1369 default: 1370 rate = 0; 1371 break; 1372 } 1373 } 1374 1375 /* if rate detected and Syncref is Word than have it, 1376 * word has priority to MADI 1377 */ 1378 if (rate != 0 && 1379 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) 1380 return hdspm_rate_multiplier(hdspm, rate); 1381 1382 /* maybe a madi input (which is taken if sel sync is madi) */ 1383 if (status & HDSPM_madiLock) { 1384 rate_bits = status & HDSPM_madiFreqMask; 1385 1386 switch (rate_bits) { 1387 case HDSPM_madiFreq32: 1388 rate = 32000; 1389 break; 1390 case HDSPM_madiFreq44_1: 1391 rate = 44100; 1392 break; 1393 case HDSPM_madiFreq48: 1394 rate = 48000; 1395 break; 1396 case HDSPM_madiFreq64: 1397 rate = 64000; 1398 break; 1399 case HDSPM_madiFreq88_2: 1400 rate = 88200; 1401 break; 1402 case HDSPM_madiFreq96: 1403 rate = 96000; 1404 break; 1405 case HDSPM_madiFreq128: 1406 rate = 128000; 1407 break; 1408 case HDSPM_madiFreq176_4: 1409 rate = 176400; 1410 break; 1411 case HDSPM_madiFreq192: 1412 rate = 192000; 1413 break; 1414 default: 1415 rate = 0; 1416 break; 1417 } 1418 1419 } /* endif HDSPM_madiLock */ 1420 1421 /* check sample rate from TCO or SYNC_IN */ 1422 { 1423 bool is_valid_input = 0; 1424 bool has_sync = 0; 1425 1426 syncref = hdspm_autosync_ref(hdspm); 1427 if (HDSPM_AUTOSYNC_FROM_TCO == syncref) { 1428 is_valid_input = 1; 1429 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1430 hdspm_tco_sync_check(hdspm)); 1431 } else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) { 1432 is_valid_input = 1; 1433 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1434 hdspm_sync_in_sync_check(hdspm)); 1435 } 1436 1437 if (is_valid_input && has_sync) { 1438 rate = hdspm_round_frequency( 1439 hdspm_get_pll_freq(hdspm)); 1440 } 1441 } 1442 1443 rate = hdspm_rate_multiplier(hdspm, rate); 1444 1445 break; 1446 } 1447 1448 return rate; 1449 } 1450 1451 /* return latency in samples per period */ 1452 static int hdspm_get_latency(struct hdspm *hdspm) 1453 { 1454 int n; 1455 1456 n = hdspm_decode_latency(hdspm->control_register); 1457 1458 /* Special case for new RME cards with 32 samples period size. 1459 * The three latency bits in the control register 1460 * (HDSP_LatencyMask) encode latency values of 64 samples as 1461 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7 1462 * denotes 8192 samples, but on new cards like RayDAT or AIO, 1463 * it corresponds to 32 samples. 1464 */ 1465 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type)) 1466 n = -1; 1467 1468 return 1 << (n + 6); 1469 } 1470 1471 /* Latency function */ 1472 static inline void hdspm_compute_period_size(struct hdspm *hdspm) 1473 { 1474 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm); 1475 } 1476 1477 1478 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm) 1479 { 1480 int position; 1481 1482 position = hdspm_read(hdspm, HDSPM_statusRegister); 1483 1484 switch (hdspm->io_type) { 1485 case RayDAT: 1486 case AIO: 1487 position &= HDSPM_BufferPositionMask; 1488 position /= 4; /* Bytes per sample */ 1489 break; 1490 default: 1491 position = (position & HDSPM_BufferID) ? 1492 (hdspm->period_bytes / 4) : 0; 1493 } 1494 1495 return position; 1496 } 1497 1498 1499 static inline void hdspm_start_audio(struct hdspm * s) 1500 { 1501 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start); 1502 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1503 } 1504 1505 static inline void hdspm_stop_audio(struct hdspm * s) 1506 { 1507 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable); 1508 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1509 } 1510 1511 /* should I silence all or only opened ones ? doit all for first even is 4MB*/ 1512 static void hdspm_silence_playback(struct hdspm *hdspm) 1513 { 1514 int i; 1515 int n = hdspm->period_bytes; 1516 void *buf = hdspm->playback_buffer; 1517 1518 if (!buf) 1519 return; 1520 1521 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 1522 memset(buf, 0, n); 1523 buf += HDSPM_CHANNEL_BUFFER_BYTES; 1524 } 1525 } 1526 1527 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames) 1528 { 1529 int n; 1530 1531 spin_lock_irq(&s->lock); 1532 1533 if (32 == frames) { 1534 /* Special case for new RME cards like RayDAT/AIO which 1535 * support period sizes of 32 samples. Since latency is 1536 * encoded in the three bits of HDSP_LatencyMask, we can only 1537 * have values from 0 .. 7. While 0 still means 64 samples and 1538 * 6 represents 4096 samples on all cards, 7 represents 8192 1539 * on older cards and 32 samples on new cards. 1540 * 1541 * In other words, period size in samples is calculated by 1542 * 2^(n+6) with n ranging from 0 .. 7. 1543 */ 1544 n = 7; 1545 } else { 1546 frames >>= 7; 1547 n = 0; 1548 while (frames) { 1549 n++; 1550 frames >>= 1; 1551 } 1552 } 1553 1554 s->control_register &= ~HDSPM_LatencyMask; 1555 s->control_register |= hdspm_encode_latency(n); 1556 1557 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1558 1559 hdspm_compute_period_size(s); 1560 1561 spin_unlock_irq(&s->lock); 1562 1563 return 0; 1564 } 1565 1566 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period) 1567 { 1568 u64 freq_const; 1569 1570 if (period == 0) 1571 return 0; 1572 1573 switch (hdspm->io_type) { 1574 case MADI: 1575 case AES32: 1576 freq_const = 110069313433624ULL; 1577 break; 1578 case RayDAT: 1579 case AIO: 1580 freq_const = 104857600000000ULL; 1581 break; 1582 case MADIface: 1583 freq_const = 131072000000000ULL; 1584 break; 1585 default: 1586 snd_BUG(); 1587 return 0; 1588 } 1589 1590 return div_u64(freq_const, period); 1591 } 1592 1593 1594 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate) 1595 { 1596 u64 n; 1597 1598 if (snd_BUG_ON(rate <= 0)) 1599 return; 1600 1601 if (rate >= 112000) 1602 rate /= 4; 1603 else if (rate >= 56000) 1604 rate /= 2; 1605 1606 switch (hdspm->io_type) { 1607 case MADIface: 1608 n = 131072000000000ULL; /* 125 MHz */ 1609 break; 1610 case MADI: 1611 case AES32: 1612 n = 110069313433624ULL; /* 105 MHz */ 1613 break; 1614 case RayDAT: 1615 case AIO: 1616 n = 104857600000000ULL; /* 100 MHz */ 1617 break; 1618 default: 1619 snd_BUG(); 1620 return; 1621 } 1622 1623 n = div_u64(n, rate); 1624 /* n should be less than 2^32 for being written to FREQ register */ 1625 snd_BUG_ON(n >> 32); 1626 hdspm_write(hdspm, HDSPM_freqReg, (u32)n); 1627 } 1628 1629 /* dummy set rate lets see what happens */ 1630 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) 1631 { 1632 int current_rate; 1633 int rate_bits; 1634 int not_set = 0; 1635 int current_speed, target_speed; 1636 1637 /* ASSUMPTION: hdspm->lock is either set, or there is no need for 1638 it (e.g. during module initialization). 1639 */ 1640 1641 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { 1642 1643 /* SLAVE --- */ 1644 if (called_internally) { 1645 1646 /* request from ctl or card initialization 1647 just make a warning an remember setting 1648 for future master mode switching */ 1649 1650 dev_warn(hdspm->card->dev, 1651 "Warning: device is not running as a clock master.\n"); 1652 not_set = 1; 1653 } else { 1654 1655 /* hw_param request while in AutoSync mode */ 1656 int external_freq = 1657 hdspm_external_sample_rate(hdspm); 1658 1659 if (hdspm_autosync_ref(hdspm) == 1660 HDSPM_AUTOSYNC_FROM_NONE) { 1661 1662 dev_warn(hdspm->card->dev, 1663 "Detected no External Sync\n"); 1664 not_set = 1; 1665 1666 } else if (rate != external_freq) { 1667 1668 dev_warn(hdspm->card->dev, 1669 "Warning: No AutoSync source for requested rate\n"); 1670 not_set = 1; 1671 } 1672 } 1673 } 1674 1675 current_rate = hdspm->system_sample_rate; 1676 1677 /* Changing between Singe, Double and Quad speed is not 1678 allowed if any substreams are open. This is because such a change 1679 causes a shift in the location of the DMA buffers and a reduction 1680 in the number of available buffers. 1681 1682 Note that a similar but essentially insoluble problem exists for 1683 externally-driven rate changes. All we can do is to flag rate 1684 changes in the read/write routines. 1685 */ 1686 1687 if (current_rate <= 48000) 1688 current_speed = HDSPM_SPEED_SINGLE; 1689 else if (current_rate <= 96000) 1690 current_speed = HDSPM_SPEED_DOUBLE; 1691 else 1692 current_speed = HDSPM_SPEED_QUAD; 1693 1694 if (rate <= 48000) 1695 target_speed = HDSPM_SPEED_SINGLE; 1696 else if (rate <= 96000) 1697 target_speed = HDSPM_SPEED_DOUBLE; 1698 else 1699 target_speed = HDSPM_SPEED_QUAD; 1700 1701 switch (rate) { 1702 case 32000: 1703 rate_bits = HDSPM_Frequency32KHz; 1704 break; 1705 case 44100: 1706 rate_bits = HDSPM_Frequency44_1KHz; 1707 break; 1708 case 48000: 1709 rate_bits = HDSPM_Frequency48KHz; 1710 break; 1711 case 64000: 1712 rate_bits = HDSPM_Frequency64KHz; 1713 break; 1714 case 88200: 1715 rate_bits = HDSPM_Frequency88_2KHz; 1716 break; 1717 case 96000: 1718 rate_bits = HDSPM_Frequency96KHz; 1719 break; 1720 case 128000: 1721 rate_bits = HDSPM_Frequency128KHz; 1722 break; 1723 case 176400: 1724 rate_bits = HDSPM_Frequency176_4KHz; 1725 break; 1726 case 192000: 1727 rate_bits = HDSPM_Frequency192KHz; 1728 break; 1729 default: 1730 return -EINVAL; 1731 } 1732 1733 if (current_speed != target_speed 1734 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) { 1735 dev_err(hdspm->card->dev, 1736 "cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n", 1737 hdspm_speed_names[current_speed], 1738 hdspm_speed_names[target_speed], 1739 hdspm->capture_pid, hdspm->playback_pid); 1740 return -EBUSY; 1741 } 1742 1743 hdspm->control_register &= ~HDSPM_FrequencyMask; 1744 hdspm->control_register |= rate_bits; 1745 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1746 1747 /* For AES32, need to set DDS value in FREQ register 1748 For MADI, also apparently */ 1749 hdspm_set_dds_value(hdspm, rate); 1750 1751 if (AES32 == hdspm->io_type && rate != current_rate) 1752 hdspm_write(hdspm, HDSPM_eeprom_wr, 0); 1753 1754 hdspm->system_sample_rate = rate; 1755 1756 if (rate <= 48000) { 1757 hdspm->channel_map_in = hdspm->channel_map_in_ss; 1758 hdspm->channel_map_out = hdspm->channel_map_out_ss; 1759 hdspm->max_channels_in = hdspm->ss_in_channels; 1760 hdspm->max_channels_out = hdspm->ss_out_channels; 1761 hdspm->port_names_in = hdspm->port_names_in_ss; 1762 hdspm->port_names_out = hdspm->port_names_out_ss; 1763 } else if (rate <= 96000) { 1764 hdspm->channel_map_in = hdspm->channel_map_in_ds; 1765 hdspm->channel_map_out = hdspm->channel_map_out_ds; 1766 hdspm->max_channels_in = hdspm->ds_in_channels; 1767 hdspm->max_channels_out = hdspm->ds_out_channels; 1768 hdspm->port_names_in = hdspm->port_names_in_ds; 1769 hdspm->port_names_out = hdspm->port_names_out_ds; 1770 } else { 1771 hdspm->channel_map_in = hdspm->channel_map_in_qs; 1772 hdspm->channel_map_out = hdspm->channel_map_out_qs; 1773 hdspm->max_channels_in = hdspm->qs_in_channels; 1774 hdspm->max_channels_out = hdspm->qs_out_channels; 1775 hdspm->port_names_in = hdspm->port_names_in_qs; 1776 hdspm->port_names_out = hdspm->port_names_out_qs; 1777 } 1778 1779 if (not_set != 0) 1780 return -1; 1781 1782 return 0; 1783 } 1784 1785 /* mainly for init to 0 on load */ 1786 static void all_in_all_mixer(struct hdspm * hdspm, int sgain) 1787 { 1788 int i, j; 1789 unsigned int gain; 1790 1791 if (sgain > UNITY_GAIN) 1792 gain = UNITY_GAIN; 1793 else if (sgain < 0) 1794 gain = 0; 1795 else 1796 gain = sgain; 1797 1798 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) 1799 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) { 1800 hdspm_write_in_gain(hdspm, i, j, gain); 1801 hdspm_write_pb_gain(hdspm, i, j, gain); 1802 } 1803 } 1804 1805 /*---------------------------------------------------------------------------- 1806 MIDI 1807 ----------------------------------------------------------------------------*/ 1808 1809 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, 1810 int id) 1811 { 1812 /* the hardware already does the relevant bit-mask with 0xff */ 1813 return hdspm_read(hdspm, hdspm->midi[id].dataIn); 1814 } 1815 1816 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, 1817 int val) 1818 { 1819 /* the hardware already does the relevant bit-mask with 0xff */ 1820 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val); 1821 } 1822 1823 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id) 1824 { 1825 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF; 1826 } 1827 1828 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id) 1829 { 1830 int fifo_bytes_used; 1831 1832 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF; 1833 1834 if (fifo_bytes_used < 128) 1835 return 128 - fifo_bytes_used; 1836 else 1837 return 0; 1838 } 1839 1840 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id) 1841 { 1842 while (snd_hdspm_midi_input_available (hdspm, id)) 1843 snd_hdspm_midi_read_byte (hdspm, id); 1844 } 1845 1846 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi) 1847 { 1848 unsigned long flags; 1849 int n_pending; 1850 int to_write; 1851 int i; 1852 unsigned char buf[128]; 1853 1854 /* Output is not interrupt driven */ 1855 1856 spin_lock_irqsave (&hmidi->lock, flags); 1857 if (hmidi->output && 1858 !snd_rawmidi_transmit_empty (hmidi->output)) { 1859 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, 1860 hmidi->id); 1861 if (n_pending > 0) { 1862 if (n_pending > (int)sizeof (buf)) 1863 n_pending = sizeof (buf); 1864 1865 to_write = snd_rawmidi_transmit (hmidi->output, buf, 1866 n_pending); 1867 if (to_write > 0) { 1868 for (i = 0; i < to_write; ++i) 1869 snd_hdspm_midi_write_byte (hmidi->hdspm, 1870 hmidi->id, 1871 buf[i]); 1872 } 1873 } 1874 } 1875 spin_unlock_irqrestore (&hmidi->lock, flags); 1876 return 0; 1877 } 1878 1879 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi) 1880 { 1881 unsigned char buf[128]; /* this buffer is designed to match the MIDI 1882 * input FIFO size 1883 */ 1884 unsigned long flags; 1885 int n_pending; 1886 int i; 1887 1888 spin_lock_irqsave (&hmidi->lock, flags); 1889 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id); 1890 if (n_pending > 0) { 1891 if (hmidi->input) { 1892 if (n_pending > (int)sizeof (buf)) 1893 n_pending = sizeof (buf); 1894 for (i = 0; i < n_pending; ++i) 1895 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, 1896 hmidi->id); 1897 if (n_pending) 1898 snd_rawmidi_receive (hmidi->input, buf, 1899 n_pending); 1900 } else { 1901 /* flush the MIDI input FIFO */ 1902 while (n_pending--) 1903 snd_hdspm_midi_read_byte (hmidi->hdspm, 1904 hmidi->id); 1905 } 1906 } 1907 hmidi->pending = 0; 1908 spin_unlock_irqrestore(&hmidi->lock, flags); 1909 1910 spin_lock_irqsave(&hmidi->hdspm->lock, flags); 1911 hmidi->hdspm->control_register |= hmidi->ie; 1912 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, 1913 hmidi->hdspm->control_register); 1914 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags); 1915 1916 return snd_hdspm_midi_output_write (hmidi); 1917 } 1918 1919 static void 1920 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1921 { 1922 struct hdspm *hdspm; 1923 struct hdspm_midi *hmidi; 1924 unsigned long flags; 1925 1926 hmidi = substream->rmidi->private_data; 1927 hdspm = hmidi->hdspm; 1928 1929 spin_lock_irqsave (&hdspm->lock, flags); 1930 if (up) { 1931 if (!(hdspm->control_register & hmidi->ie)) { 1932 snd_hdspm_flush_midi_input (hdspm, hmidi->id); 1933 hdspm->control_register |= hmidi->ie; 1934 } 1935 } else { 1936 hdspm->control_register &= ~hmidi->ie; 1937 } 1938 1939 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1940 spin_unlock_irqrestore (&hdspm->lock, flags); 1941 } 1942 1943 static void snd_hdspm_midi_output_timer(struct timer_list *t) 1944 { 1945 struct hdspm_midi *hmidi = from_timer(hmidi, t, timer); 1946 unsigned long flags; 1947 1948 snd_hdspm_midi_output_write(hmidi); 1949 spin_lock_irqsave (&hmidi->lock, flags); 1950 1951 /* this does not bump hmidi->istimer, because the 1952 kernel automatically removed the timer when it 1953 expired, and we are now adding it back, thus 1954 leaving istimer wherever it was set before. 1955 */ 1956 1957 if (hmidi->istimer) 1958 mod_timer(&hmidi->timer, 1 + jiffies); 1959 1960 spin_unlock_irqrestore (&hmidi->lock, flags); 1961 } 1962 1963 static void 1964 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1965 { 1966 struct hdspm_midi *hmidi; 1967 unsigned long flags; 1968 1969 hmidi = substream->rmidi->private_data; 1970 spin_lock_irqsave (&hmidi->lock, flags); 1971 if (up) { 1972 if (!hmidi->istimer) { 1973 timer_setup(&hmidi->timer, 1974 snd_hdspm_midi_output_timer, 0); 1975 mod_timer(&hmidi->timer, 1 + jiffies); 1976 hmidi->istimer++; 1977 } 1978 } else { 1979 if (hmidi->istimer && --hmidi->istimer <= 0) 1980 del_timer (&hmidi->timer); 1981 } 1982 spin_unlock_irqrestore (&hmidi->lock, flags); 1983 if (up) 1984 snd_hdspm_midi_output_write(hmidi); 1985 } 1986 1987 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream) 1988 { 1989 struct hdspm_midi *hmidi; 1990 1991 hmidi = substream->rmidi->private_data; 1992 spin_lock_irq (&hmidi->lock); 1993 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id); 1994 hmidi->input = substream; 1995 spin_unlock_irq (&hmidi->lock); 1996 1997 return 0; 1998 } 1999 2000 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream) 2001 { 2002 struct hdspm_midi *hmidi; 2003 2004 hmidi = substream->rmidi->private_data; 2005 spin_lock_irq (&hmidi->lock); 2006 hmidi->output = substream; 2007 spin_unlock_irq (&hmidi->lock); 2008 2009 return 0; 2010 } 2011 2012 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream) 2013 { 2014 struct hdspm_midi *hmidi; 2015 2016 snd_hdspm_midi_input_trigger (substream, 0); 2017 2018 hmidi = substream->rmidi->private_data; 2019 spin_lock_irq (&hmidi->lock); 2020 hmidi->input = NULL; 2021 spin_unlock_irq (&hmidi->lock); 2022 2023 return 0; 2024 } 2025 2026 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream) 2027 { 2028 struct hdspm_midi *hmidi; 2029 2030 snd_hdspm_midi_output_trigger (substream, 0); 2031 2032 hmidi = substream->rmidi->private_data; 2033 spin_lock_irq (&hmidi->lock); 2034 hmidi->output = NULL; 2035 spin_unlock_irq (&hmidi->lock); 2036 2037 return 0; 2038 } 2039 2040 static const struct snd_rawmidi_ops snd_hdspm_midi_output = 2041 { 2042 .open = snd_hdspm_midi_output_open, 2043 .close = snd_hdspm_midi_output_close, 2044 .trigger = snd_hdspm_midi_output_trigger, 2045 }; 2046 2047 static const struct snd_rawmidi_ops snd_hdspm_midi_input = 2048 { 2049 .open = snd_hdspm_midi_input_open, 2050 .close = snd_hdspm_midi_input_close, 2051 .trigger = snd_hdspm_midi_input_trigger, 2052 }; 2053 2054 static int snd_hdspm_create_midi(struct snd_card *card, 2055 struct hdspm *hdspm, int id) 2056 { 2057 int err; 2058 char buf[64]; 2059 2060 hdspm->midi[id].id = id; 2061 hdspm->midi[id].hdspm = hdspm; 2062 spin_lock_init (&hdspm->midi[id].lock); 2063 2064 if (0 == id) { 2065 if (MADIface == hdspm->io_type) { 2066 /* MIDI-over-MADI on HDSPe MADIface */ 2067 hdspm->midi[0].dataIn = HDSPM_midiDataIn2; 2068 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2; 2069 hdspm->midi[0].dataOut = HDSPM_midiDataOut2; 2070 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2; 2071 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable; 2072 hdspm->midi[0].irq = HDSPM_midi2IRQPending; 2073 } else { 2074 hdspm->midi[0].dataIn = HDSPM_midiDataIn0; 2075 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0; 2076 hdspm->midi[0].dataOut = HDSPM_midiDataOut0; 2077 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0; 2078 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable; 2079 hdspm->midi[0].irq = HDSPM_midi0IRQPending; 2080 } 2081 } else if (1 == id) { 2082 hdspm->midi[1].dataIn = HDSPM_midiDataIn1; 2083 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1; 2084 hdspm->midi[1].dataOut = HDSPM_midiDataOut1; 2085 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1; 2086 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable; 2087 hdspm->midi[1].irq = HDSPM_midi1IRQPending; 2088 } else if ((2 == id) && (MADI == hdspm->io_type)) { 2089 /* MIDI-over-MADI on HDSPe MADI */ 2090 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2091 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2092 hdspm->midi[2].dataOut = HDSPM_midiDataOut2; 2093 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2; 2094 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2095 hdspm->midi[2].irq = HDSPM_midi2IRQPending; 2096 } else if (2 == id) { 2097 /* TCO MTC, read only */ 2098 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2099 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2100 hdspm->midi[2].dataOut = -1; 2101 hdspm->midi[2].statusOut = -1; 2102 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2103 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES; 2104 } else if (3 == id) { 2105 /* TCO MTC on HDSPe MADI */ 2106 hdspm->midi[3].dataIn = HDSPM_midiDataIn3; 2107 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3; 2108 hdspm->midi[3].dataOut = -1; 2109 hdspm->midi[3].statusOut = -1; 2110 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable; 2111 hdspm->midi[3].irq = HDSPM_midi3IRQPending; 2112 } 2113 2114 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) || 2115 (MADIface == hdspm->io_type)))) { 2116 if ((id == 0) && (MADIface == hdspm->io_type)) { 2117 snprintf(buf, sizeof(buf), "%s MIDIoverMADI", 2118 card->shortname); 2119 } else if ((id == 2) && (MADI == hdspm->io_type)) { 2120 snprintf(buf, sizeof(buf), "%s MIDIoverMADI", 2121 card->shortname); 2122 } else { 2123 snprintf(buf, sizeof(buf), "%s MIDI %d", 2124 card->shortname, id+1); 2125 } 2126 err = snd_rawmidi_new(card, buf, id, 1, 1, 2127 &hdspm->midi[id].rmidi); 2128 if (err < 0) 2129 return err; 2130 2131 snprintf(hdspm->midi[id].rmidi->name, 2132 sizeof(hdspm->midi[id].rmidi->name), 2133 "%s MIDI %d", card->id, id+1); 2134 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2135 2136 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2137 SNDRV_RAWMIDI_STREAM_OUTPUT, 2138 &snd_hdspm_midi_output); 2139 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2140 SNDRV_RAWMIDI_STREAM_INPUT, 2141 &snd_hdspm_midi_input); 2142 2143 hdspm->midi[id].rmidi->info_flags |= 2144 SNDRV_RAWMIDI_INFO_OUTPUT | 2145 SNDRV_RAWMIDI_INFO_INPUT | 2146 SNDRV_RAWMIDI_INFO_DUPLEX; 2147 } else { 2148 /* TCO MTC, read only */ 2149 snprintf(buf, sizeof(buf), "%s MTC %d", 2150 card->shortname, id+1); 2151 err = snd_rawmidi_new(card, buf, id, 1, 1, 2152 &hdspm->midi[id].rmidi); 2153 if (err < 0) 2154 return err; 2155 2156 snprintf(hdspm->midi[id].rmidi->name, 2157 sizeof(hdspm->midi[id].rmidi->name), 2158 "%s MTC %d", card->id, id+1); 2159 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2160 2161 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2162 SNDRV_RAWMIDI_STREAM_INPUT, 2163 &snd_hdspm_midi_input); 2164 2165 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; 2166 } 2167 2168 return 0; 2169 } 2170 2171 2172 static void hdspm_midi_work(struct work_struct *work) 2173 { 2174 struct hdspm *hdspm = container_of(work, struct hdspm, midi_work); 2175 int i = 0; 2176 2177 while (i < hdspm->midiPorts) { 2178 if (hdspm->midi[i].pending) 2179 snd_hdspm_midi_input_read(&hdspm->midi[i]); 2180 2181 i++; 2182 } 2183 } 2184 2185 2186 /*----------------------------------------------------------------------------- 2187 Status Interface 2188 ----------------------------------------------------------------------------*/ 2189 2190 /* get the system sample rate which is set */ 2191 2192 2193 static inline int hdspm_get_pll_freq(struct hdspm *hdspm) 2194 { 2195 unsigned int period, rate; 2196 2197 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 2198 rate = hdspm_calc_dds_value(hdspm, period); 2199 2200 return rate; 2201 } 2202 2203 /* 2204 * Calculate the real sample rate from the 2205 * current DDS value. 2206 */ 2207 static int hdspm_get_system_sample_rate(struct hdspm *hdspm) 2208 { 2209 unsigned int rate; 2210 2211 rate = hdspm_get_pll_freq(hdspm); 2212 2213 if (rate > 207000) { 2214 /* Unreasonable high sample rate as seen on PCI MADI cards. */ 2215 if (0 == hdspm_system_clock_mode(hdspm)) { 2216 /* master mode, return internal sample rate */ 2217 rate = hdspm->system_sample_rate; 2218 } else { 2219 /* slave mode, return external sample rate */ 2220 rate = hdspm_external_sample_rate(hdspm); 2221 if (!rate) 2222 rate = hdspm->system_sample_rate; 2223 } 2224 } 2225 2226 return rate; 2227 } 2228 2229 2230 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \ 2231 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2232 .name = xname, \ 2233 .index = xindex, \ 2234 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2235 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2236 .info = snd_hdspm_info_system_sample_rate, \ 2237 .put = snd_hdspm_put_system_sample_rate, \ 2238 .get = snd_hdspm_get_system_sample_rate \ 2239 } 2240 2241 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol, 2242 struct snd_ctl_elem_info *uinfo) 2243 { 2244 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2245 uinfo->count = 1; 2246 uinfo->value.integer.min = 27000; 2247 uinfo->value.integer.max = 207000; 2248 uinfo->value.integer.step = 1; 2249 return 0; 2250 } 2251 2252 2253 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol, 2254 struct snd_ctl_elem_value * 2255 ucontrol) 2256 { 2257 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2258 2259 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm); 2260 return 0; 2261 } 2262 2263 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol, 2264 struct snd_ctl_elem_value * 2265 ucontrol) 2266 { 2267 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2268 int rate = ucontrol->value.integer.value[0]; 2269 2270 if (rate < 27000 || rate > 207000) 2271 return -EINVAL; 2272 hdspm_set_dds_value(hdspm, ucontrol->value.integer.value[0]); 2273 return 0; 2274 } 2275 2276 2277 /* 2278 * Returns the WordClock sample rate class for the given card. 2279 */ 2280 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm) 2281 { 2282 int status; 2283 2284 switch (hdspm->io_type) { 2285 case RayDAT: 2286 case AIO: 2287 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2288 return (status >> 16) & 0xF; 2289 case AES32: 2290 status = hdspm_read(hdspm, HDSPM_statusRegister); 2291 return (status >> HDSPM_AES32_wcFreq_bit) & 0xF; 2292 default: 2293 break; 2294 } 2295 2296 2297 return 0; 2298 } 2299 2300 2301 /* 2302 * Returns the TCO sample rate class for the given card. 2303 */ 2304 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm) 2305 { 2306 int status; 2307 2308 if (hdspm->tco) { 2309 switch (hdspm->io_type) { 2310 case RayDAT: 2311 case AIO: 2312 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2313 return (status >> 20) & 0xF; 2314 case AES32: 2315 status = hdspm_read(hdspm, HDSPM_statusRegister); 2316 return (status >> 1) & 0xF; 2317 default: 2318 break; 2319 } 2320 } 2321 2322 return 0; 2323 } 2324 2325 2326 /* 2327 * Returns the SYNC_IN sample rate class for the given card. 2328 */ 2329 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm) 2330 { 2331 int status; 2332 2333 if (hdspm->tco) { 2334 switch (hdspm->io_type) { 2335 case RayDAT: 2336 case AIO: 2337 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2338 return (status >> 12) & 0xF; 2339 default: 2340 break; 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 2348 * Returns the AES sample rate class for the given card. 2349 */ 2350 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index) 2351 { 2352 int timecode; 2353 2354 switch (hdspm->io_type) { 2355 case AES32: 2356 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 2357 return (timecode >> (4*index)) & 0xF; 2358 default: 2359 break; 2360 } 2361 return 0; 2362 } 2363 2364 /* 2365 * Returns the sample rate class for input source <idx> for 2366 * 'new style' cards like the AIO and RayDAT. 2367 */ 2368 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx) 2369 { 2370 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2371 2372 return (status >> (idx*4)) & 0xF; 2373 } 2374 2375 #define ENUMERATED_CTL_INFO(info, texts) \ 2376 snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts) 2377 2378 2379 /* Helper function to query the external sample rate and return the 2380 * corresponding enum to be returned to userspace. 2381 */ 2382 static int hdspm_external_rate_to_enum(struct hdspm *hdspm) 2383 { 2384 int rate = hdspm_external_sample_rate(hdspm); 2385 int i, selected_rate = 0; 2386 for (i = 1; i < 10; i++) 2387 if (HDSPM_bit2freq(i) == rate) { 2388 selected_rate = i; 2389 break; 2390 } 2391 return selected_rate; 2392 } 2393 2394 2395 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 2396 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2397 .name = xname, \ 2398 .private_value = xindex, \ 2399 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2400 .info = snd_hdspm_info_autosync_sample_rate, \ 2401 .get = snd_hdspm_get_autosync_sample_rate \ 2402 } 2403 2404 2405 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2406 struct snd_ctl_elem_info *uinfo) 2407 { 2408 ENUMERATED_CTL_INFO(uinfo, texts_freq); 2409 return 0; 2410 } 2411 2412 2413 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2414 struct snd_ctl_elem_value * 2415 ucontrol) 2416 { 2417 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2418 2419 switch (hdspm->io_type) { 2420 case RayDAT: 2421 switch (kcontrol->private_value) { 2422 case 0: 2423 ucontrol->value.enumerated.item[0] = 2424 hdspm_get_wc_sample_rate(hdspm); 2425 break; 2426 case 7: 2427 ucontrol->value.enumerated.item[0] = 2428 hdspm_get_tco_sample_rate(hdspm); 2429 break; 2430 case 8: 2431 ucontrol->value.enumerated.item[0] = 2432 hdspm_get_sync_in_sample_rate(hdspm); 2433 break; 2434 default: 2435 ucontrol->value.enumerated.item[0] = 2436 hdspm_get_s1_sample_rate(hdspm, 2437 kcontrol->private_value-1); 2438 } 2439 break; 2440 2441 case AIO: 2442 switch (kcontrol->private_value) { 2443 case 0: /* WC */ 2444 ucontrol->value.enumerated.item[0] = 2445 hdspm_get_wc_sample_rate(hdspm); 2446 break; 2447 case 4: /* TCO */ 2448 ucontrol->value.enumerated.item[0] = 2449 hdspm_get_tco_sample_rate(hdspm); 2450 break; 2451 case 5: /* SYNC_IN */ 2452 ucontrol->value.enumerated.item[0] = 2453 hdspm_get_sync_in_sample_rate(hdspm); 2454 break; 2455 default: 2456 ucontrol->value.enumerated.item[0] = 2457 hdspm_get_s1_sample_rate(hdspm, 2458 kcontrol->private_value-1); 2459 } 2460 break; 2461 2462 case AES32: 2463 2464 switch (kcontrol->private_value) { 2465 case 0: /* WC */ 2466 ucontrol->value.enumerated.item[0] = 2467 hdspm_get_wc_sample_rate(hdspm); 2468 break; 2469 case 9: /* TCO */ 2470 ucontrol->value.enumerated.item[0] = 2471 hdspm_get_tco_sample_rate(hdspm); 2472 break; 2473 case 10: /* SYNC_IN */ 2474 ucontrol->value.enumerated.item[0] = 2475 hdspm_get_sync_in_sample_rate(hdspm); 2476 break; 2477 case 11: /* External Rate */ 2478 ucontrol->value.enumerated.item[0] = 2479 hdspm_external_rate_to_enum(hdspm); 2480 break; 2481 default: /* AES1 to AES8 */ 2482 ucontrol->value.enumerated.item[0] = 2483 hdspm_get_aes_sample_rate(hdspm, 2484 kcontrol->private_value - 2485 HDSPM_AES32_AUTOSYNC_FROM_AES1); 2486 break; 2487 } 2488 break; 2489 2490 case MADI: 2491 case MADIface: 2492 ucontrol->value.enumerated.item[0] = 2493 hdspm_external_rate_to_enum(hdspm); 2494 break; 2495 default: 2496 break; 2497 } 2498 2499 return 0; 2500 } 2501 2502 2503 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \ 2504 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2505 .name = xname, \ 2506 .index = xindex, \ 2507 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2508 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2509 .info = snd_hdspm_info_system_clock_mode, \ 2510 .get = snd_hdspm_get_system_clock_mode, \ 2511 .put = snd_hdspm_put_system_clock_mode, \ 2512 } 2513 2514 2515 /* 2516 * Returns the system clock mode for the given card. 2517 * @returns 0 - master, 1 - slave 2518 */ 2519 static int hdspm_system_clock_mode(struct hdspm *hdspm) 2520 { 2521 switch (hdspm->io_type) { 2522 case AIO: 2523 case RayDAT: 2524 if (hdspm->settings_register & HDSPM_c0Master) 2525 return 0; 2526 break; 2527 2528 default: 2529 if (hdspm->control_register & HDSPM_ClockModeMaster) 2530 return 0; 2531 } 2532 2533 return 1; 2534 } 2535 2536 2537 /* 2538 * Sets the system clock mode. 2539 * @param mode 0 - master, 1 - slave 2540 */ 2541 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode) 2542 { 2543 hdspm_set_toggle_setting(hdspm, 2544 (hdspm_is_raydat_or_aio(hdspm)) ? 2545 HDSPM_c0Master : HDSPM_ClockModeMaster, 2546 (0 == mode)); 2547 } 2548 2549 2550 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol, 2551 struct snd_ctl_elem_info *uinfo) 2552 { 2553 static const char *const texts[] = { "Master", "AutoSync" }; 2554 ENUMERATED_CTL_INFO(uinfo, texts); 2555 return 0; 2556 } 2557 2558 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol, 2559 struct snd_ctl_elem_value *ucontrol) 2560 { 2561 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2562 2563 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm); 2564 return 0; 2565 } 2566 2567 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol, 2568 struct snd_ctl_elem_value *ucontrol) 2569 { 2570 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2571 int val; 2572 2573 if (!snd_hdspm_use_is_exclusive(hdspm)) 2574 return -EBUSY; 2575 2576 val = ucontrol->value.enumerated.item[0]; 2577 if (val < 0) 2578 val = 0; 2579 else if (val > 1) 2580 val = 1; 2581 2582 hdspm_set_system_clock_mode(hdspm, val); 2583 2584 return 0; 2585 } 2586 2587 2588 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \ 2589 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2590 .name = xname, \ 2591 .index = xindex, \ 2592 .info = snd_hdspm_info_clock_source, \ 2593 .get = snd_hdspm_get_clock_source, \ 2594 .put = snd_hdspm_put_clock_source \ 2595 } 2596 2597 2598 static int hdspm_clock_source(struct hdspm * hdspm) 2599 { 2600 switch (hdspm->system_sample_rate) { 2601 case 32000: return 0; 2602 case 44100: return 1; 2603 case 48000: return 2; 2604 case 64000: return 3; 2605 case 88200: return 4; 2606 case 96000: return 5; 2607 case 128000: return 6; 2608 case 176400: return 7; 2609 case 192000: return 8; 2610 } 2611 2612 return -1; 2613 } 2614 2615 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode) 2616 { 2617 int rate; 2618 switch (mode) { 2619 case 0: 2620 rate = 32000; break; 2621 case 1: 2622 rate = 44100; break; 2623 case 2: 2624 rate = 48000; break; 2625 case 3: 2626 rate = 64000; break; 2627 case 4: 2628 rate = 88200; break; 2629 case 5: 2630 rate = 96000; break; 2631 case 6: 2632 rate = 128000; break; 2633 case 7: 2634 rate = 176400; break; 2635 case 8: 2636 rate = 192000; break; 2637 default: 2638 rate = 48000; 2639 } 2640 hdspm_set_rate(hdspm, rate, 1); 2641 return 0; 2642 } 2643 2644 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol, 2645 struct snd_ctl_elem_info *uinfo) 2646 { 2647 return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1); 2648 } 2649 2650 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol, 2651 struct snd_ctl_elem_value *ucontrol) 2652 { 2653 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2654 2655 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm); 2656 return 0; 2657 } 2658 2659 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol, 2660 struct snd_ctl_elem_value *ucontrol) 2661 { 2662 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2663 int change; 2664 int val; 2665 2666 if (!snd_hdspm_use_is_exclusive(hdspm)) 2667 return -EBUSY; 2668 val = ucontrol->value.enumerated.item[0]; 2669 if (val < 0) 2670 val = 0; 2671 if (val > 9) 2672 val = 9; 2673 spin_lock_irq(&hdspm->lock); 2674 if (val != hdspm_clock_source(hdspm)) 2675 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0; 2676 else 2677 change = 0; 2678 spin_unlock_irq(&hdspm->lock); 2679 return change; 2680 } 2681 2682 2683 #define HDSPM_PREF_SYNC_REF(xname, xindex) \ 2684 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2685 .name = xname, \ 2686 .index = xindex, \ 2687 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2688 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2689 .info = snd_hdspm_info_pref_sync_ref, \ 2690 .get = snd_hdspm_get_pref_sync_ref, \ 2691 .put = snd_hdspm_put_pref_sync_ref \ 2692 } 2693 2694 2695 /* 2696 * Returns the current preferred sync reference setting. 2697 * The semantics of the return value are depending on the 2698 * card, please see the comments for clarification. 2699 */ 2700 static int hdspm_pref_sync_ref(struct hdspm * hdspm) 2701 { 2702 switch (hdspm->io_type) { 2703 case AES32: 2704 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2705 case 0: return 0; /* WC */ 2706 case HDSPM_SyncRef0: return 1; /* AES 1 */ 2707 case HDSPM_SyncRef1: return 2; /* AES 2 */ 2708 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */ 2709 case HDSPM_SyncRef2: return 4; /* AES 4 */ 2710 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */ 2711 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */ 2712 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: 2713 return 7; /* AES 7 */ 2714 case HDSPM_SyncRef3: return 8; /* AES 8 */ 2715 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */ 2716 } 2717 break; 2718 2719 case MADI: 2720 case MADIface: 2721 if (hdspm->tco) { 2722 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2723 case 0: return 0; /* WC */ 2724 case HDSPM_SyncRef0: return 1; /* MADI */ 2725 case HDSPM_SyncRef1: return 2; /* TCO */ 2726 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2727 return 3; /* SYNC_IN */ 2728 } 2729 } else { 2730 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2731 case 0: return 0; /* WC */ 2732 case HDSPM_SyncRef0: return 1; /* MADI */ 2733 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2734 return 2; /* SYNC_IN */ 2735 } 2736 } 2737 break; 2738 2739 case RayDAT: 2740 if (hdspm->tco) { 2741 switch ((hdspm->settings_register & 2742 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2743 case 0: return 0; /* WC */ 2744 case 3: return 1; /* ADAT 1 */ 2745 case 4: return 2; /* ADAT 2 */ 2746 case 5: return 3; /* ADAT 3 */ 2747 case 6: return 4; /* ADAT 4 */ 2748 case 1: return 5; /* AES */ 2749 case 2: return 6; /* SPDIF */ 2750 case 9: return 7; /* TCO */ 2751 case 10: return 8; /* SYNC_IN */ 2752 } 2753 } else { 2754 switch ((hdspm->settings_register & 2755 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2756 case 0: return 0; /* WC */ 2757 case 3: return 1; /* ADAT 1 */ 2758 case 4: return 2; /* ADAT 2 */ 2759 case 5: return 3; /* ADAT 3 */ 2760 case 6: return 4; /* ADAT 4 */ 2761 case 1: return 5; /* AES */ 2762 case 2: return 6; /* SPDIF */ 2763 case 10: return 7; /* SYNC_IN */ 2764 } 2765 } 2766 2767 break; 2768 2769 case AIO: 2770 if (hdspm->tco) { 2771 switch ((hdspm->settings_register & 2772 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2773 case 0: return 0; /* WC */ 2774 case 3: return 1; /* ADAT */ 2775 case 1: return 2; /* AES */ 2776 case 2: return 3; /* SPDIF */ 2777 case 9: return 4; /* TCO */ 2778 case 10: return 5; /* SYNC_IN */ 2779 } 2780 } else { 2781 switch ((hdspm->settings_register & 2782 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2783 case 0: return 0; /* WC */ 2784 case 3: return 1; /* ADAT */ 2785 case 1: return 2; /* AES */ 2786 case 2: return 3; /* SPDIF */ 2787 case 10: return 4; /* SYNC_IN */ 2788 } 2789 } 2790 2791 break; 2792 } 2793 2794 return -1; 2795 } 2796 2797 2798 /* 2799 * Set the preferred sync reference to <pref>. The semantics 2800 * of <pref> are depending on the card type, see the comments 2801 * for clarification. 2802 */ 2803 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) 2804 { 2805 int p = 0; 2806 2807 switch (hdspm->io_type) { 2808 case AES32: 2809 hdspm->control_register &= ~HDSPM_SyncRefMask; 2810 switch (pref) { 2811 case 0: /* WC */ 2812 break; 2813 case 1: /* AES 1 */ 2814 hdspm->control_register |= HDSPM_SyncRef0; 2815 break; 2816 case 2: /* AES 2 */ 2817 hdspm->control_register |= HDSPM_SyncRef1; 2818 break; 2819 case 3: /* AES 3 */ 2820 hdspm->control_register |= 2821 HDSPM_SyncRef1+HDSPM_SyncRef0; 2822 break; 2823 case 4: /* AES 4 */ 2824 hdspm->control_register |= HDSPM_SyncRef2; 2825 break; 2826 case 5: /* AES 5 */ 2827 hdspm->control_register |= 2828 HDSPM_SyncRef2+HDSPM_SyncRef0; 2829 break; 2830 case 6: /* AES 6 */ 2831 hdspm->control_register |= 2832 HDSPM_SyncRef2+HDSPM_SyncRef1; 2833 break; 2834 case 7: /* AES 7 */ 2835 hdspm->control_register |= 2836 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0; 2837 break; 2838 case 8: /* AES 8 */ 2839 hdspm->control_register |= HDSPM_SyncRef3; 2840 break; 2841 case 9: /* TCO */ 2842 hdspm->control_register |= 2843 HDSPM_SyncRef3+HDSPM_SyncRef0; 2844 break; 2845 default: 2846 return -1; 2847 } 2848 2849 break; 2850 2851 case MADI: 2852 case MADIface: 2853 hdspm->control_register &= ~HDSPM_SyncRefMask; 2854 if (hdspm->tco) { 2855 switch (pref) { 2856 case 0: /* WC */ 2857 break; 2858 case 1: /* MADI */ 2859 hdspm->control_register |= HDSPM_SyncRef0; 2860 break; 2861 case 2: /* TCO */ 2862 hdspm->control_register |= HDSPM_SyncRef1; 2863 break; 2864 case 3: /* SYNC_IN */ 2865 hdspm->control_register |= 2866 HDSPM_SyncRef0+HDSPM_SyncRef1; 2867 break; 2868 default: 2869 return -1; 2870 } 2871 } else { 2872 switch (pref) { 2873 case 0: /* WC */ 2874 break; 2875 case 1: /* MADI */ 2876 hdspm->control_register |= HDSPM_SyncRef0; 2877 break; 2878 case 2: /* SYNC_IN */ 2879 hdspm->control_register |= 2880 HDSPM_SyncRef0+HDSPM_SyncRef1; 2881 break; 2882 default: 2883 return -1; 2884 } 2885 } 2886 2887 break; 2888 2889 case RayDAT: 2890 if (hdspm->tco) { 2891 switch (pref) { 2892 case 0: p = 0; break; /* WC */ 2893 case 1: p = 3; break; /* ADAT 1 */ 2894 case 2: p = 4; break; /* ADAT 2 */ 2895 case 3: p = 5; break; /* ADAT 3 */ 2896 case 4: p = 6; break; /* ADAT 4 */ 2897 case 5: p = 1; break; /* AES */ 2898 case 6: p = 2; break; /* SPDIF */ 2899 case 7: p = 9; break; /* TCO */ 2900 case 8: p = 10; break; /* SYNC_IN */ 2901 default: return -1; 2902 } 2903 } else { 2904 switch (pref) { 2905 case 0: p = 0; break; /* WC */ 2906 case 1: p = 3; break; /* ADAT 1 */ 2907 case 2: p = 4; break; /* ADAT 2 */ 2908 case 3: p = 5; break; /* ADAT 3 */ 2909 case 4: p = 6; break; /* ADAT 4 */ 2910 case 5: p = 1; break; /* AES */ 2911 case 6: p = 2; break; /* SPDIF */ 2912 case 7: p = 10; break; /* SYNC_IN */ 2913 default: return -1; 2914 } 2915 } 2916 break; 2917 2918 case AIO: 2919 if (hdspm->tco) { 2920 switch (pref) { 2921 case 0: p = 0; break; /* WC */ 2922 case 1: p = 3; break; /* ADAT */ 2923 case 2: p = 1; break; /* AES */ 2924 case 3: p = 2; break; /* SPDIF */ 2925 case 4: p = 9; break; /* TCO */ 2926 case 5: p = 10; break; /* SYNC_IN */ 2927 default: return -1; 2928 } 2929 } else { 2930 switch (pref) { 2931 case 0: p = 0; break; /* WC */ 2932 case 1: p = 3; break; /* ADAT */ 2933 case 2: p = 1; break; /* AES */ 2934 case 3: p = 2; break; /* SPDIF */ 2935 case 4: p = 10; break; /* SYNC_IN */ 2936 default: return -1; 2937 } 2938 } 2939 break; 2940 } 2941 2942 switch (hdspm->io_type) { 2943 case RayDAT: 2944 case AIO: 2945 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask; 2946 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p; 2947 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 2948 break; 2949 2950 case MADI: 2951 case MADIface: 2952 case AES32: 2953 hdspm_write(hdspm, HDSPM_controlRegister, 2954 hdspm->control_register); 2955 } 2956 2957 return 0; 2958 } 2959 2960 2961 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, 2962 struct snd_ctl_elem_info *uinfo) 2963 { 2964 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2965 2966 snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync); 2967 2968 return 0; 2969 } 2970 2971 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol, 2972 struct snd_ctl_elem_value *ucontrol) 2973 { 2974 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2975 int psf = hdspm_pref_sync_ref(hdspm); 2976 2977 if (psf >= 0) { 2978 ucontrol->value.enumerated.item[0] = psf; 2979 return 0; 2980 } 2981 2982 return -1; 2983 } 2984 2985 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, 2986 struct snd_ctl_elem_value *ucontrol) 2987 { 2988 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2989 int val, change = 0; 2990 2991 if (!snd_hdspm_use_is_exclusive(hdspm)) 2992 return -EBUSY; 2993 2994 val = ucontrol->value.enumerated.item[0]; 2995 2996 if (val < 0) 2997 val = 0; 2998 else if (val >= hdspm->texts_autosync_items) 2999 val = hdspm->texts_autosync_items-1; 3000 3001 spin_lock_irq(&hdspm->lock); 3002 if (val != hdspm_pref_sync_ref(hdspm)) 3003 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0; 3004 3005 spin_unlock_irq(&hdspm->lock); 3006 return change; 3007 } 3008 3009 3010 #define HDSPM_AUTOSYNC_REF(xname, xindex) \ 3011 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3012 .name = xname, \ 3013 .index = xindex, \ 3014 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 3015 .info = snd_hdspm_info_autosync_ref, \ 3016 .get = snd_hdspm_get_autosync_ref, \ 3017 } 3018 3019 static int hdspm_autosync_ref(struct hdspm *hdspm) 3020 { 3021 /* This looks at the autosync selected sync reference */ 3022 if (AES32 == hdspm->io_type) { 3023 3024 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 3025 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF; 3026 /* syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD is always true */ 3027 if (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN) { 3028 return syncref; 3029 } 3030 return HDSPM_AES32_AUTOSYNC_FROM_NONE; 3031 3032 } else if (MADI == hdspm->io_type) { 3033 3034 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3035 switch (status2 & HDSPM_SelSyncRefMask) { 3036 case HDSPM_SelSyncRef_WORD: 3037 return HDSPM_AUTOSYNC_FROM_WORD; 3038 case HDSPM_SelSyncRef_MADI: 3039 return HDSPM_AUTOSYNC_FROM_MADI; 3040 case HDSPM_SelSyncRef_TCO: 3041 return HDSPM_AUTOSYNC_FROM_TCO; 3042 case HDSPM_SelSyncRef_SyncIn: 3043 return HDSPM_AUTOSYNC_FROM_SYNC_IN; 3044 case HDSPM_SelSyncRef_NVALID: 3045 return HDSPM_AUTOSYNC_FROM_NONE; 3046 default: 3047 return HDSPM_AUTOSYNC_FROM_NONE; 3048 } 3049 3050 } 3051 return 0; 3052 } 3053 3054 3055 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, 3056 struct snd_ctl_elem_info *uinfo) 3057 { 3058 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3059 3060 if (AES32 == hdspm->io_type) { 3061 static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3", 3062 "AES4", "AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"}; 3063 3064 ENUMERATED_CTL_INFO(uinfo, texts); 3065 } else if (MADI == hdspm->io_type) { 3066 static const char *const texts[] = {"Word Clock", "MADI", "TCO", 3067 "Sync In", "None" }; 3068 3069 ENUMERATED_CTL_INFO(uinfo, texts); 3070 } 3071 return 0; 3072 } 3073 3074 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol, 3075 struct snd_ctl_elem_value *ucontrol) 3076 { 3077 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3078 3079 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm); 3080 return 0; 3081 } 3082 3083 3084 3085 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \ 3086 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3087 .name = xname, \ 3088 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3089 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3090 .info = snd_hdspm_info_tco_video_input_format, \ 3091 .get = snd_hdspm_get_tco_video_input_format, \ 3092 } 3093 3094 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol, 3095 struct snd_ctl_elem_info *uinfo) 3096 { 3097 static const char *const texts[] = {"No video", "NTSC", "PAL"}; 3098 ENUMERATED_CTL_INFO(uinfo, texts); 3099 return 0; 3100 } 3101 3102 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol, 3103 struct snd_ctl_elem_value *ucontrol) 3104 { 3105 u32 status; 3106 int ret = 0; 3107 3108 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3109 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3110 switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC | 3111 HDSPM_TCO1_Video_Input_Format_PAL)) { 3112 case HDSPM_TCO1_Video_Input_Format_NTSC: 3113 /* ntsc */ 3114 ret = 1; 3115 break; 3116 case HDSPM_TCO1_Video_Input_Format_PAL: 3117 /* pal */ 3118 ret = 2; 3119 break; 3120 default: 3121 /* no video */ 3122 ret = 0; 3123 break; 3124 } 3125 ucontrol->value.enumerated.item[0] = ret; 3126 return 0; 3127 } 3128 3129 3130 3131 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \ 3132 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3133 .name = xname, \ 3134 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3135 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3136 .info = snd_hdspm_info_tco_ltc_frames, \ 3137 .get = snd_hdspm_get_tco_ltc_frames, \ 3138 } 3139 3140 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3141 struct snd_ctl_elem_info *uinfo) 3142 { 3143 static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps", 3144 "30 fps"}; 3145 ENUMERATED_CTL_INFO(uinfo, texts); 3146 return 0; 3147 } 3148 3149 static int hdspm_tco_ltc_frames(struct hdspm *hdspm) 3150 { 3151 u32 status; 3152 int ret = 0; 3153 3154 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3155 if (status & HDSPM_TCO1_LTC_Input_valid) { 3156 switch (status & (HDSPM_TCO1_LTC_Format_LSB | 3157 HDSPM_TCO1_LTC_Format_MSB)) { 3158 case 0: 3159 /* 24 fps */ 3160 ret = fps_24; 3161 break; 3162 case HDSPM_TCO1_LTC_Format_LSB: 3163 /* 25 fps */ 3164 ret = fps_25; 3165 break; 3166 case HDSPM_TCO1_LTC_Format_MSB: 3167 /* 29.97 fps */ 3168 ret = fps_2997; 3169 break; 3170 default: 3171 /* 30 fps */ 3172 ret = fps_30; 3173 break; 3174 } 3175 } 3176 3177 return ret; 3178 } 3179 3180 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3181 struct snd_ctl_elem_value *ucontrol) 3182 { 3183 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3184 3185 ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm); 3186 return 0; 3187 } 3188 3189 #define HDSPM_TOGGLE_SETTING(xname, xindex) \ 3190 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3191 .name = xname, \ 3192 .private_value = xindex, \ 3193 .info = snd_hdspm_info_toggle_setting, \ 3194 .get = snd_hdspm_get_toggle_setting, \ 3195 .put = snd_hdspm_put_toggle_setting \ 3196 } 3197 3198 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask) 3199 { 3200 u32 reg; 3201 3202 if (hdspm_is_raydat_or_aio(hdspm)) 3203 reg = hdspm->settings_register; 3204 else 3205 reg = hdspm->control_register; 3206 3207 return (reg & regmask) ? 1 : 0; 3208 } 3209 3210 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out) 3211 { 3212 u32 *reg; 3213 u32 target_reg; 3214 3215 if (hdspm_is_raydat_or_aio(hdspm)) { 3216 reg = &(hdspm->settings_register); 3217 target_reg = HDSPM_WR_SETTINGS; 3218 } else { 3219 reg = &(hdspm->control_register); 3220 target_reg = HDSPM_controlRegister; 3221 } 3222 3223 if (out) 3224 *reg |= regmask; 3225 else 3226 *reg &= ~regmask; 3227 3228 hdspm_write(hdspm, target_reg, *reg); 3229 3230 return 0; 3231 } 3232 3233 #define snd_hdspm_info_toggle_setting snd_ctl_boolean_mono_info 3234 3235 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol, 3236 struct snd_ctl_elem_value *ucontrol) 3237 { 3238 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3239 u32 regmask = kcontrol->private_value; 3240 3241 spin_lock_irq(&hdspm->lock); 3242 ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask); 3243 spin_unlock_irq(&hdspm->lock); 3244 return 0; 3245 } 3246 3247 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol, 3248 struct snd_ctl_elem_value *ucontrol) 3249 { 3250 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3251 u32 regmask = kcontrol->private_value; 3252 int change; 3253 unsigned int val; 3254 3255 if (!snd_hdspm_use_is_exclusive(hdspm)) 3256 return -EBUSY; 3257 val = ucontrol->value.integer.value[0] & 1; 3258 spin_lock_irq(&hdspm->lock); 3259 change = (int) val != hdspm_toggle_setting(hdspm, regmask); 3260 hdspm_set_toggle_setting(hdspm, regmask, val); 3261 spin_unlock_irq(&hdspm->lock); 3262 return change; 3263 } 3264 3265 #define HDSPM_INPUT_SELECT(xname, xindex) \ 3266 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3267 .name = xname, \ 3268 .index = xindex, \ 3269 .info = snd_hdspm_info_input_select, \ 3270 .get = snd_hdspm_get_input_select, \ 3271 .put = snd_hdspm_put_input_select \ 3272 } 3273 3274 static int hdspm_input_select(struct hdspm * hdspm) 3275 { 3276 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; 3277 } 3278 3279 static int hdspm_set_input_select(struct hdspm * hdspm, int out) 3280 { 3281 if (out) 3282 hdspm->control_register |= HDSPM_InputSelect0; 3283 else 3284 hdspm->control_register &= ~HDSPM_InputSelect0; 3285 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3286 3287 return 0; 3288 } 3289 3290 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, 3291 struct snd_ctl_elem_info *uinfo) 3292 { 3293 static const char *const texts[] = { "optical", "coaxial" }; 3294 ENUMERATED_CTL_INFO(uinfo, texts); 3295 return 0; 3296 } 3297 3298 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, 3299 struct snd_ctl_elem_value *ucontrol) 3300 { 3301 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3302 3303 spin_lock_irq(&hdspm->lock); 3304 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); 3305 spin_unlock_irq(&hdspm->lock); 3306 return 0; 3307 } 3308 3309 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, 3310 struct snd_ctl_elem_value *ucontrol) 3311 { 3312 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3313 int change; 3314 unsigned int val; 3315 3316 if (!snd_hdspm_use_is_exclusive(hdspm)) 3317 return -EBUSY; 3318 val = ucontrol->value.integer.value[0] & 1; 3319 spin_lock_irq(&hdspm->lock); 3320 change = (int) val != hdspm_input_select(hdspm); 3321 hdspm_set_input_select(hdspm, val); 3322 spin_unlock_irq(&hdspm->lock); 3323 return change; 3324 } 3325 3326 3327 #define HDSPM_DS_WIRE(xname, xindex) \ 3328 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3329 .name = xname, \ 3330 .index = xindex, \ 3331 .info = snd_hdspm_info_ds_wire, \ 3332 .get = snd_hdspm_get_ds_wire, \ 3333 .put = snd_hdspm_put_ds_wire \ 3334 } 3335 3336 static int hdspm_ds_wire(struct hdspm * hdspm) 3337 { 3338 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0; 3339 } 3340 3341 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds) 3342 { 3343 if (ds) 3344 hdspm->control_register |= HDSPM_DS_DoubleWire; 3345 else 3346 hdspm->control_register &= ~HDSPM_DS_DoubleWire; 3347 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3348 3349 return 0; 3350 } 3351 3352 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol, 3353 struct snd_ctl_elem_info *uinfo) 3354 { 3355 static const char *const texts[] = { "Single", "Double" }; 3356 ENUMERATED_CTL_INFO(uinfo, texts); 3357 return 0; 3358 } 3359 3360 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol, 3361 struct snd_ctl_elem_value *ucontrol) 3362 { 3363 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3364 3365 spin_lock_irq(&hdspm->lock); 3366 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm); 3367 spin_unlock_irq(&hdspm->lock); 3368 return 0; 3369 } 3370 3371 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol, 3372 struct snd_ctl_elem_value *ucontrol) 3373 { 3374 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3375 int change; 3376 unsigned int val; 3377 3378 if (!snd_hdspm_use_is_exclusive(hdspm)) 3379 return -EBUSY; 3380 val = ucontrol->value.integer.value[0] & 1; 3381 spin_lock_irq(&hdspm->lock); 3382 change = (int) val != hdspm_ds_wire(hdspm); 3383 hdspm_set_ds_wire(hdspm, val); 3384 spin_unlock_irq(&hdspm->lock); 3385 return change; 3386 } 3387 3388 3389 #define HDSPM_QS_WIRE(xname, xindex) \ 3390 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3391 .name = xname, \ 3392 .index = xindex, \ 3393 .info = snd_hdspm_info_qs_wire, \ 3394 .get = snd_hdspm_get_qs_wire, \ 3395 .put = snd_hdspm_put_qs_wire \ 3396 } 3397 3398 static int hdspm_qs_wire(struct hdspm * hdspm) 3399 { 3400 if (hdspm->control_register & HDSPM_QS_DoubleWire) 3401 return 1; 3402 if (hdspm->control_register & HDSPM_QS_QuadWire) 3403 return 2; 3404 return 0; 3405 } 3406 3407 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode) 3408 { 3409 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire); 3410 switch (mode) { 3411 case 0: 3412 break; 3413 case 1: 3414 hdspm->control_register |= HDSPM_QS_DoubleWire; 3415 break; 3416 case 2: 3417 hdspm->control_register |= HDSPM_QS_QuadWire; 3418 break; 3419 } 3420 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3421 3422 return 0; 3423 } 3424 3425 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol, 3426 struct snd_ctl_elem_info *uinfo) 3427 { 3428 static const char *const texts[] = { "Single", "Double", "Quad" }; 3429 ENUMERATED_CTL_INFO(uinfo, texts); 3430 return 0; 3431 } 3432 3433 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol, 3434 struct snd_ctl_elem_value *ucontrol) 3435 { 3436 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3437 3438 spin_lock_irq(&hdspm->lock); 3439 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm); 3440 spin_unlock_irq(&hdspm->lock); 3441 return 0; 3442 } 3443 3444 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol, 3445 struct snd_ctl_elem_value *ucontrol) 3446 { 3447 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3448 int change; 3449 int val; 3450 3451 if (!snd_hdspm_use_is_exclusive(hdspm)) 3452 return -EBUSY; 3453 val = ucontrol->value.integer.value[0]; 3454 if (val < 0) 3455 val = 0; 3456 if (val > 2) 3457 val = 2; 3458 spin_lock_irq(&hdspm->lock); 3459 change = val != hdspm_qs_wire(hdspm); 3460 hdspm_set_qs_wire(hdspm, val); 3461 spin_unlock_irq(&hdspm->lock); 3462 return change; 3463 } 3464 3465 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \ 3466 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3467 .name = xname, \ 3468 .private_value = xindex, \ 3469 .info = snd_hdspm_info_tristate, \ 3470 .get = snd_hdspm_get_tristate, \ 3471 .put = snd_hdspm_put_tristate \ 3472 } 3473 3474 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask) 3475 { 3476 u32 reg = hdspm->settings_register & (regmask * 3); 3477 return reg / regmask; 3478 } 3479 3480 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask) 3481 { 3482 hdspm->settings_register &= ~(regmask * 3); 3483 hdspm->settings_register |= (regmask * mode); 3484 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 3485 3486 return 0; 3487 } 3488 3489 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol, 3490 struct snd_ctl_elem_info *uinfo) 3491 { 3492 u32 regmask = kcontrol->private_value; 3493 3494 static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" }; 3495 static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" }; 3496 3497 switch (regmask) { 3498 case HDSPM_c0_Input0: 3499 ENUMERATED_CTL_INFO(uinfo, texts_spdif); 3500 break; 3501 default: 3502 ENUMERATED_CTL_INFO(uinfo, texts_levels); 3503 break; 3504 } 3505 return 0; 3506 } 3507 3508 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol, 3509 struct snd_ctl_elem_value *ucontrol) 3510 { 3511 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3512 u32 regmask = kcontrol->private_value; 3513 3514 spin_lock_irq(&hdspm->lock); 3515 ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask); 3516 spin_unlock_irq(&hdspm->lock); 3517 return 0; 3518 } 3519 3520 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol, 3521 struct snd_ctl_elem_value *ucontrol) 3522 { 3523 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3524 u32 regmask = kcontrol->private_value; 3525 int change; 3526 int val; 3527 3528 if (!snd_hdspm_use_is_exclusive(hdspm)) 3529 return -EBUSY; 3530 val = ucontrol->value.integer.value[0]; 3531 if (val < 0) 3532 val = 0; 3533 if (val > 2) 3534 val = 2; 3535 3536 spin_lock_irq(&hdspm->lock); 3537 change = val != hdspm_tristate(hdspm, regmask); 3538 hdspm_set_tristate(hdspm, val, regmask); 3539 spin_unlock_irq(&hdspm->lock); 3540 return change; 3541 } 3542 3543 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \ 3544 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3545 .name = xname, \ 3546 .index = xindex, \ 3547 .info = snd_hdspm_info_madi_speedmode, \ 3548 .get = snd_hdspm_get_madi_speedmode, \ 3549 .put = snd_hdspm_put_madi_speedmode \ 3550 } 3551 3552 static int hdspm_madi_speedmode(struct hdspm *hdspm) 3553 { 3554 if (hdspm->control_register & HDSPM_QuadSpeed) 3555 return 2; 3556 if (hdspm->control_register & HDSPM_DoubleSpeed) 3557 return 1; 3558 return 0; 3559 } 3560 3561 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode) 3562 { 3563 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed); 3564 switch (mode) { 3565 case 0: 3566 break; 3567 case 1: 3568 hdspm->control_register |= HDSPM_DoubleSpeed; 3569 break; 3570 case 2: 3571 hdspm->control_register |= HDSPM_QuadSpeed; 3572 break; 3573 } 3574 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3575 3576 return 0; 3577 } 3578 3579 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol, 3580 struct snd_ctl_elem_info *uinfo) 3581 { 3582 static const char *const texts[] = { "Single", "Double", "Quad" }; 3583 ENUMERATED_CTL_INFO(uinfo, texts); 3584 return 0; 3585 } 3586 3587 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol, 3588 struct snd_ctl_elem_value *ucontrol) 3589 { 3590 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3591 3592 spin_lock_irq(&hdspm->lock); 3593 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm); 3594 spin_unlock_irq(&hdspm->lock); 3595 return 0; 3596 } 3597 3598 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol, 3599 struct snd_ctl_elem_value *ucontrol) 3600 { 3601 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3602 int change; 3603 int val; 3604 3605 if (!snd_hdspm_use_is_exclusive(hdspm)) 3606 return -EBUSY; 3607 val = ucontrol->value.integer.value[0]; 3608 if (val < 0) 3609 val = 0; 3610 if (val > 2) 3611 val = 2; 3612 spin_lock_irq(&hdspm->lock); 3613 change = val != hdspm_madi_speedmode(hdspm); 3614 hdspm_set_madi_speedmode(hdspm, val); 3615 spin_unlock_irq(&hdspm->lock); 3616 return change; 3617 } 3618 3619 #define HDSPM_MIXER(xname, xindex) \ 3620 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 3621 .name = xname, \ 3622 .index = xindex, \ 3623 .device = 0, \ 3624 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 3625 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3626 .info = snd_hdspm_info_mixer, \ 3627 .get = snd_hdspm_get_mixer, \ 3628 .put = snd_hdspm_put_mixer \ 3629 } 3630 3631 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol, 3632 struct snd_ctl_elem_info *uinfo) 3633 { 3634 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3635 uinfo->count = 3; 3636 uinfo->value.integer.min = 0; 3637 uinfo->value.integer.max = 65535; 3638 uinfo->value.integer.step = 1; 3639 return 0; 3640 } 3641 3642 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol, 3643 struct snd_ctl_elem_value *ucontrol) 3644 { 3645 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3646 int source; 3647 int destination; 3648 3649 source = ucontrol->value.integer.value[0]; 3650 if (source < 0) 3651 source = 0; 3652 else if (source >= 2 * HDSPM_MAX_CHANNELS) 3653 source = 2 * HDSPM_MAX_CHANNELS - 1; 3654 3655 destination = ucontrol->value.integer.value[1]; 3656 if (destination < 0) 3657 destination = 0; 3658 else if (destination >= HDSPM_MAX_CHANNELS) 3659 destination = HDSPM_MAX_CHANNELS - 1; 3660 3661 spin_lock_irq(&hdspm->lock); 3662 if (source >= HDSPM_MAX_CHANNELS) 3663 ucontrol->value.integer.value[2] = 3664 hdspm_read_pb_gain(hdspm, destination, 3665 source - HDSPM_MAX_CHANNELS); 3666 else 3667 ucontrol->value.integer.value[2] = 3668 hdspm_read_in_gain(hdspm, destination, source); 3669 3670 spin_unlock_irq(&hdspm->lock); 3671 3672 return 0; 3673 } 3674 3675 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol, 3676 struct snd_ctl_elem_value *ucontrol) 3677 { 3678 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3679 int change; 3680 int source; 3681 int destination; 3682 int gain; 3683 3684 if (!snd_hdspm_use_is_exclusive(hdspm)) 3685 return -EBUSY; 3686 3687 source = ucontrol->value.integer.value[0]; 3688 destination = ucontrol->value.integer.value[1]; 3689 3690 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS) 3691 return -1; 3692 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS) 3693 return -1; 3694 3695 gain = ucontrol->value.integer.value[2]; 3696 3697 spin_lock_irq(&hdspm->lock); 3698 3699 if (source >= HDSPM_MAX_CHANNELS) 3700 change = gain != hdspm_read_pb_gain(hdspm, destination, 3701 source - 3702 HDSPM_MAX_CHANNELS); 3703 else 3704 change = gain != hdspm_read_in_gain(hdspm, destination, 3705 source); 3706 3707 if (change) { 3708 if (source >= HDSPM_MAX_CHANNELS) 3709 hdspm_write_pb_gain(hdspm, destination, 3710 source - HDSPM_MAX_CHANNELS, 3711 gain); 3712 else 3713 hdspm_write_in_gain(hdspm, destination, source, 3714 gain); 3715 } 3716 spin_unlock_irq(&hdspm->lock); 3717 3718 return change; 3719 } 3720 3721 /* The simple mixer control(s) provide gain control for the 3722 basic 1:1 mappings of playback streams to output 3723 streams. 3724 */ 3725 3726 #define HDSPM_PLAYBACK_MIXER \ 3727 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3728 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \ 3729 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3730 .info = snd_hdspm_info_playback_mixer, \ 3731 .get = snd_hdspm_get_playback_mixer, \ 3732 .put = snd_hdspm_put_playback_mixer \ 3733 } 3734 3735 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol, 3736 struct snd_ctl_elem_info *uinfo) 3737 { 3738 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3739 uinfo->count = 1; 3740 uinfo->value.integer.min = 0; 3741 uinfo->value.integer.max = 64; 3742 uinfo->value.integer.step = 1; 3743 return 0; 3744 } 3745 3746 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol, 3747 struct snd_ctl_elem_value *ucontrol) 3748 { 3749 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3750 int channel; 3751 3752 channel = ucontrol->id.index - 1; 3753 3754 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3755 return -EINVAL; 3756 3757 spin_lock_irq(&hdspm->lock); 3758 ucontrol->value.integer.value[0] = 3759 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN; 3760 spin_unlock_irq(&hdspm->lock); 3761 3762 return 0; 3763 } 3764 3765 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol, 3766 struct snd_ctl_elem_value *ucontrol) 3767 { 3768 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3769 int change; 3770 int channel; 3771 int gain; 3772 3773 if (!snd_hdspm_use_is_exclusive(hdspm)) 3774 return -EBUSY; 3775 3776 channel = ucontrol->id.index - 1; 3777 3778 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3779 return -EINVAL; 3780 3781 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64; 3782 3783 spin_lock_irq(&hdspm->lock); 3784 change = 3785 gain != hdspm_read_pb_gain(hdspm, channel, 3786 channel); 3787 if (change) 3788 hdspm_write_pb_gain(hdspm, channel, channel, 3789 gain); 3790 spin_unlock_irq(&hdspm->lock); 3791 return change; 3792 } 3793 3794 #define HDSPM_SYNC_CHECK(xname, xindex) \ 3795 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3796 .name = xname, \ 3797 .private_value = xindex, \ 3798 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3799 .info = snd_hdspm_info_sync_check, \ 3800 .get = snd_hdspm_get_sync_check \ 3801 } 3802 3803 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \ 3804 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3805 .name = xname, \ 3806 .private_value = xindex, \ 3807 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3808 .info = snd_hdspm_tco_info_lock_check, \ 3809 .get = snd_hdspm_get_sync_check \ 3810 } 3811 3812 3813 3814 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, 3815 struct snd_ctl_elem_info *uinfo) 3816 { 3817 static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" }; 3818 ENUMERATED_CTL_INFO(uinfo, texts); 3819 return 0; 3820 } 3821 3822 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol, 3823 struct snd_ctl_elem_info *uinfo) 3824 { 3825 static const char *const texts[] = { "No Lock", "Lock" }; 3826 ENUMERATED_CTL_INFO(uinfo, texts); 3827 return 0; 3828 } 3829 3830 static int hdspm_wc_sync_check(struct hdspm *hdspm) 3831 { 3832 int status, status2; 3833 3834 switch (hdspm->io_type) { 3835 case AES32: 3836 status = hdspm_read(hdspm, HDSPM_statusRegister); 3837 if (status & HDSPM_AES32_wcLock) { 3838 if (status & HDSPM_AES32_wcSync) 3839 return 2; 3840 else 3841 return 1; 3842 } 3843 return 0; 3844 3845 case MADI: 3846 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3847 if (status2 & HDSPM_wcLock) { 3848 if (status2 & HDSPM_wcSync) 3849 return 2; 3850 else 3851 return 1; 3852 } 3853 return 0; 3854 3855 case RayDAT: 3856 case AIO: 3857 status = hdspm_read(hdspm, HDSPM_statusRegister); 3858 3859 if (status & 0x2000000) 3860 return 2; 3861 else if (status & 0x1000000) 3862 return 1; 3863 return 0; 3864 3865 case MADIface: 3866 break; 3867 } 3868 3869 3870 return 3; 3871 } 3872 3873 3874 static int hdspm_madi_sync_check(struct hdspm *hdspm) 3875 { 3876 int status = hdspm_read(hdspm, HDSPM_statusRegister); 3877 if (status & HDSPM_madiLock) { 3878 if (status & HDSPM_madiSync) 3879 return 2; 3880 else 3881 return 1; 3882 } 3883 return 0; 3884 } 3885 3886 3887 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx) 3888 { 3889 int status, lock, sync; 3890 3891 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3892 3893 lock = (status & (0x1<<idx)) ? 1 : 0; 3894 sync = (status & (0x100<<idx)) ? 1 : 0; 3895 3896 if (lock && sync) 3897 return 2; 3898 else if (lock) 3899 return 1; 3900 return 0; 3901 } 3902 3903 3904 static int hdspm_sync_in_sync_check(struct hdspm *hdspm) 3905 { 3906 int status, lock = 0, sync = 0; 3907 3908 switch (hdspm->io_type) { 3909 case RayDAT: 3910 case AIO: 3911 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3); 3912 lock = (status & 0x400) ? 1 : 0; 3913 sync = (status & 0x800) ? 1 : 0; 3914 break; 3915 3916 case MADI: 3917 status = hdspm_read(hdspm, HDSPM_statusRegister); 3918 lock = (status & HDSPM_syncInLock) ? 1 : 0; 3919 sync = (status & HDSPM_syncInSync) ? 1 : 0; 3920 break; 3921 3922 case AES32: 3923 status = hdspm_read(hdspm, HDSPM_statusRegister2); 3924 lock = (status & 0x100000) ? 1 : 0; 3925 sync = (status & 0x200000) ? 1 : 0; 3926 break; 3927 3928 case MADIface: 3929 break; 3930 } 3931 3932 if (lock && sync) 3933 return 2; 3934 else if (lock) 3935 return 1; 3936 3937 return 0; 3938 } 3939 3940 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx) 3941 { 3942 int status2, lock, sync; 3943 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3944 3945 lock = (status2 & (0x0080 >> idx)) ? 1 : 0; 3946 sync = (status2 & (0x8000 >> idx)) ? 1 : 0; 3947 3948 if (sync) 3949 return 2; 3950 else if (lock) 3951 return 1; 3952 return 0; 3953 } 3954 3955 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask) 3956 { 3957 u32 status; 3958 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3959 3960 return (status & mask) ? 1 : 0; 3961 } 3962 3963 3964 static int hdspm_tco_sync_check(struct hdspm *hdspm) 3965 { 3966 int status; 3967 3968 if (hdspm->tco) { 3969 switch (hdspm->io_type) { 3970 case MADI: 3971 status = hdspm_read(hdspm, HDSPM_statusRegister); 3972 if (status & HDSPM_tcoLockMadi) { 3973 if (status & HDSPM_tcoSync) 3974 return 2; 3975 else 3976 return 1; 3977 } 3978 return 0; 3979 case AES32: 3980 status = hdspm_read(hdspm, HDSPM_statusRegister); 3981 if (status & HDSPM_tcoLockAes) { 3982 if (status & HDSPM_tcoSync) 3983 return 2; 3984 else 3985 return 1; 3986 } 3987 return 0; 3988 case RayDAT: 3989 case AIO: 3990 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3991 3992 if (status & 0x8000000) 3993 return 2; /* Sync */ 3994 if (status & 0x4000000) 3995 return 1; /* Lock */ 3996 return 0; /* No signal */ 3997 3998 default: 3999 break; 4000 } 4001 } 4002 4003 return 3; /* N/A */ 4004 } 4005 4006 4007 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol, 4008 struct snd_ctl_elem_value *ucontrol) 4009 { 4010 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4011 int val = -1; 4012 4013 switch (hdspm->io_type) { 4014 case RayDAT: 4015 switch (kcontrol->private_value) { 4016 case 0: /* WC */ 4017 val = hdspm_wc_sync_check(hdspm); break; 4018 case 7: /* TCO */ 4019 val = hdspm_tco_sync_check(hdspm); break; 4020 case 8: /* SYNC IN */ 4021 val = hdspm_sync_in_sync_check(hdspm); break; 4022 default: 4023 val = hdspm_s1_sync_check(hdspm, 4024 kcontrol->private_value-1); 4025 } 4026 break; 4027 4028 case AIO: 4029 switch (kcontrol->private_value) { 4030 case 0: /* WC */ 4031 val = hdspm_wc_sync_check(hdspm); break; 4032 case 4: /* TCO */ 4033 val = hdspm_tco_sync_check(hdspm); break; 4034 case 5: /* SYNC IN */ 4035 val = hdspm_sync_in_sync_check(hdspm); break; 4036 default: 4037 val = hdspm_s1_sync_check(hdspm, 4038 kcontrol->private_value-1); 4039 } 4040 break; 4041 4042 case MADI: 4043 switch (kcontrol->private_value) { 4044 case 0: /* WC */ 4045 val = hdspm_wc_sync_check(hdspm); break; 4046 case 1: /* MADI */ 4047 val = hdspm_madi_sync_check(hdspm); break; 4048 case 2: /* TCO */ 4049 val = hdspm_tco_sync_check(hdspm); break; 4050 case 3: /* SYNC_IN */ 4051 val = hdspm_sync_in_sync_check(hdspm); break; 4052 } 4053 break; 4054 4055 case MADIface: 4056 val = hdspm_madi_sync_check(hdspm); /* MADI */ 4057 break; 4058 4059 case AES32: 4060 switch (kcontrol->private_value) { 4061 case 0: /* WC */ 4062 val = hdspm_wc_sync_check(hdspm); break; 4063 case 9: /* TCO */ 4064 val = hdspm_tco_sync_check(hdspm); break; 4065 case 10 /* SYNC IN */: 4066 val = hdspm_sync_in_sync_check(hdspm); break; 4067 default: /* AES1 to AES8 */ 4068 val = hdspm_aes_sync_check(hdspm, 4069 kcontrol->private_value-1); 4070 } 4071 break; 4072 4073 } 4074 4075 if (hdspm->tco) { 4076 switch (kcontrol->private_value) { 4077 case 11: 4078 /* Check TCO for lock state of its current input */ 4079 val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock); 4080 break; 4081 case 12: 4082 /* Check TCO for valid time code on LTC input. */ 4083 val = hdspm_tco_input_check(hdspm, 4084 HDSPM_TCO1_LTC_Input_valid); 4085 break; 4086 default: 4087 break; 4088 } 4089 } 4090 4091 if (-1 == val) 4092 val = 3; 4093 4094 ucontrol->value.enumerated.item[0] = val; 4095 return 0; 4096 } 4097 4098 4099 4100 /* 4101 * TCO controls 4102 */ 4103 static void hdspm_tco_write(struct hdspm *hdspm) 4104 { 4105 unsigned int tc[4] = { 0, 0, 0, 0}; 4106 4107 switch (hdspm->tco->input) { 4108 case 0: 4109 tc[2] |= HDSPM_TCO2_set_input_MSB; 4110 break; 4111 case 1: 4112 tc[2] |= HDSPM_TCO2_set_input_LSB; 4113 break; 4114 default: 4115 break; 4116 } 4117 4118 switch (hdspm->tco->framerate) { 4119 case 1: 4120 tc[1] |= HDSPM_TCO1_LTC_Format_LSB; 4121 break; 4122 case 2: 4123 tc[1] |= HDSPM_TCO1_LTC_Format_MSB; 4124 break; 4125 case 3: 4126 tc[1] |= HDSPM_TCO1_LTC_Format_MSB + 4127 HDSPM_TCO1_set_drop_frame_flag; 4128 break; 4129 case 4: 4130 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4131 HDSPM_TCO1_LTC_Format_MSB; 4132 break; 4133 case 5: 4134 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4135 HDSPM_TCO1_LTC_Format_MSB + 4136 HDSPM_TCO1_set_drop_frame_flag; 4137 break; 4138 default: 4139 break; 4140 } 4141 4142 switch (hdspm->tco->wordclock) { 4143 case 1: 4144 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB; 4145 break; 4146 case 2: 4147 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB; 4148 break; 4149 default: 4150 break; 4151 } 4152 4153 switch (hdspm->tco->samplerate) { 4154 case 1: 4155 tc[2] |= HDSPM_TCO2_set_freq; 4156 break; 4157 case 2: 4158 tc[2] |= HDSPM_TCO2_set_freq_from_app; 4159 break; 4160 default: 4161 break; 4162 } 4163 4164 switch (hdspm->tco->pull) { 4165 case 1: 4166 tc[2] |= HDSPM_TCO2_set_pull_up; 4167 break; 4168 case 2: 4169 tc[2] |= HDSPM_TCO2_set_pull_down; 4170 break; 4171 case 3: 4172 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4; 4173 break; 4174 case 4: 4175 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4; 4176 break; 4177 default: 4178 break; 4179 } 4180 4181 if (1 == hdspm->tco->term) { 4182 tc[2] |= HDSPM_TCO2_set_term_75R; 4183 } 4184 4185 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]); 4186 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]); 4187 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]); 4188 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]); 4189 } 4190 4191 4192 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \ 4193 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4194 .name = xname, \ 4195 .index = xindex, \ 4196 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4197 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4198 .info = snd_hdspm_info_tco_sample_rate, \ 4199 .get = snd_hdspm_get_tco_sample_rate, \ 4200 .put = snd_hdspm_put_tco_sample_rate \ 4201 } 4202 4203 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol, 4204 struct snd_ctl_elem_info *uinfo) 4205 { 4206 /* TODO freq from app could be supported here, see tco->samplerate */ 4207 static const char *const texts[] = { "44.1 kHz", "48 kHz" }; 4208 ENUMERATED_CTL_INFO(uinfo, texts); 4209 return 0; 4210 } 4211 4212 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol, 4213 struct snd_ctl_elem_value *ucontrol) 4214 { 4215 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4216 4217 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate; 4218 4219 return 0; 4220 } 4221 4222 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol, 4223 struct snd_ctl_elem_value *ucontrol) 4224 { 4225 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4226 4227 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) { 4228 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0]; 4229 4230 hdspm_tco_write(hdspm); 4231 4232 return 1; 4233 } 4234 4235 return 0; 4236 } 4237 4238 4239 #define HDSPM_TCO_PULL(xname, xindex) \ 4240 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4241 .name = xname, \ 4242 .index = xindex, \ 4243 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4244 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4245 .info = snd_hdspm_info_tco_pull, \ 4246 .get = snd_hdspm_get_tco_pull, \ 4247 .put = snd_hdspm_put_tco_pull \ 4248 } 4249 4250 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol, 4251 struct snd_ctl_elem_info *uinfo) 4252 { 4253 static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %", 4254 "+ 4 %", "- 4 %" }; 4255 ENUMERATED_CTL_INFO(uinfo, texts); 4256 return 0; 4257 } 4258 4259 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol, 4260 struct snd_ctl_elem_value *ucontrol) 4261 { 4262 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4263 4264 ucontrol->value.enumerated.item[0] = hdspm->tco->pull; 4265 4266 return 0; 4267 } 4268 4269 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol, 4270 struct snd_ctl_elem_value *ucontrol) 4271 { 4272 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4273 4274 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) { 4275 hdspm->tco->pull = ucontrol->value.enumerated.item[0]; 4276 4277 hdspm_tco_write(hdspm); 4278 4279 return 1; 4280 } 4281 4282 return 0; 4283 } 4284 4285 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \ 4286 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4287 .name = xname, \ 4288 .index = xindex, \ 4289 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4290 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4291 .info = snd_hdspm_info_tco_wck_conversion, \ 4292 .get = snd_hdspm_get_tco_wck_conversion, \ 4293 .put = snd_hdspm_put_tco_wck_conversion \ 4294 } 4295 4296 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4297 struct snd_ctl_elem_info *uinfo) 4298 { 4299 static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" }; 4300 ENUMERATED_CTL_INFO(uinfo, texts); 4301 return 0; 4302 } 4303 4304 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4305 struct snd_ctl_elem_value *ucontrol) 4306 { 4307 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4308 4309 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock; 4310 4311 return 0; 4312 } 4313 4314 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4315 struct snd_ctl_elem_value *ucontrol) 4316 { 4317 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4318 4319 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) { 4320 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0]; 4321 4322 hdspm_tco_write(hdspm); 4323 4324 return 1; 4325 } 4326 4327 return 0; 4328 } 4329 4330 4331 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \ 4332 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4333 .name = xname, \ 4334 .index = xindex, \ 4335 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4336 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4337 .info = snd_hdspm_info_tco_frame_rate, \ 4338 .get = snd_hdspm_get_tco_frame_rate, \ 4339 .put = snd_hdspm_put_tco_frame_rate \ 4340 } 4341 4342 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol, 4343 struct snd_ctl_elem_info *uinfo) 4344 { 4345 static const char *const texts[] = { "24 fps", "25 fps", "29.97fps", 4346 "29.97 dfps", "30 fps", "30 dfps" }; 4347 ENUMERATED_CTL_INFO(uinfo, texts); 4348 return 0; 4349 } 4350 4351 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol, 4352 struct snd_ctl_elem_value *ucontrol) 4353 { 4354 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4355 4356 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate; 4357 4358 return 0; 4359 } 4360 4361 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol, 4362 struct snd_ctl_elem_value *ucontrol) 4363 { 4364 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4365 4366 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) { 4367 hdspm->tco->framerate = ucontrol->value.enumerated.item[0]; 4368 4369 hdspm_tco_write(hdspm); 4370 4371 return 1; 4372 } 4373 4374 return 0; 4375 } 4376 4377 4378 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \ 4379 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4380 .name = xname, \ 4381 .index = xindex, \ 4382 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4383 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4384 .info = snd_hdspm_info_tco_sync_source, \ 4385 .get = snd_hdspm_get_tco_sync_source, \ 4386 .put = snd_hdspm_put_tco_sync_source \ 4387 } 4388 4389 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol, 4390 struct snd_ctl_elem_info *uinfo) 4391 { 4392 static const char *const texts[] = { "LTC", "Video", "WCK" }; 4393 ENUMERATED_CTL_INFO(uinfo, texts); 4394 return 0; 4395 } 4396 4397 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol, 4398 struct snd_ctl_elem_value *ucontrol) 4399 { 4400 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4401 4402 ucontrol->value.enumerated.item[0] = hdspm->tco->input; 4403 4404 return 0; 4405 } 4406 4407 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol, 4408 struct snd_ctl_elem_value *ucontrol) 4409 { 4410 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4411 4412 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) { 4413 hdspm->tco->input = ucontrol->value.enumerated.item[0]; 4414 4415 hdspm_tco_write(hdspm); 4416 4417 return 1; 4418 } 4419 4420 return 0; 4421 } 4422 4423 4424 #define HDSPM_TCO_WORD_TERM(xname, xindex) \ 4425 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4426 .name = xname, \ 4427 .index = xindex, \ 4428 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4429 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4430 .info = snd_hdspm_info_tco_word_term, \ 4431 .get = snd_hdspm_get_tco_word_term, \ 4432 .put = snd_hdspm_put_tco_word_term \ 4433 } 4434 4435 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol, 4436 struct snd_ctl_elem_info *uinfo) 4437 { 4438 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 4439 uinfo->count = 1; 4440 uinfo->value.integer.min = 0; 4441 uinfo->value.integer.max = 1; 4442 4443 return 0; 4444 } 4445 4446 4447 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol, 4448 struct snd_ctl_elem_value *ucontrol) 4449 { 4450 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4451 4452 ucontrol->value.integer.value[0] = hdspm->tco->term; 4453 4454 return 0; 4455 } 4456 4457 4458 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol, 4459 struct snd_ctl_elem_value *ucontrol) 4460 { 4461 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4462 4463 if (hdspm->tco->term != ucontrol->value.integer.value[0]) { 4464 hdspm->tco->term = ucontrol->value.integer.value[0]; 4465 4466 hdspm_tco_write(hdspm); 4467 4468 return 1; 4469 } 4470 4471 return 0; 4472 } 4473 4474 4475 4476 4477 static const struct snd_kcontrol_new snd_hdspm_controls_madi[] = { 4478 HDSPM_MIXER("Mixer", 0), 4479 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4480 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4481 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4482 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4483 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4484 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4485 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4486 HDSPM_SYNC_CHECK("MADI SyncCheck", 1), 4487 HDSPM_SYNC_CHECK("TCO SyncCheck", 2), 4488 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3), 4489 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4490 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4491 HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX), 4492 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4493 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4494 HDSPM_INPUT_SELECT("Input Select", 0), 4495 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4496 }; 4497 4498 4499 static const struct snd_kcontrol_new snd_hdspm_controls_madiface[] = { 4500 HDSPM_MIXER("Mixer", 0), 4501 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4502 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4503 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4504 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4505 HDSPM_SYNC_CHECK("MADI SyncCheck", 0), 4506 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4507 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4508 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4509 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4510 }; 4511 4512 static const struct snd_kcontrol_new snd_hdspm_controls_aio[] = { 4513 HDSPM_MIXER("Mixer", 0), 4514 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4515 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4516 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4517 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4518 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4519 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4520 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4521 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4522 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3), 4523 HDSPM_SYNC_CHECK("TCO SyncCheck", 4), 4524 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5), 4525 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4526 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4527 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4528 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3), 4529 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4), 4530 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5), 4531 HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0), 4532 HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt), 4533 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4534 HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1), 4535 HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db), 4536 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48), 4537 HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0), 4538 HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0), 4539 HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0) 4540 4541 /* 4542 HDSPM_INPUT_SELECT("Input Select", 0), 4543 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0), 4544 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0); 4545 HDSPM_SPDIF_IN("SPDIF In", 0); 4546 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0); 4547 HDSPM_INPUT_LEVEL("Input Level", 0); 4548 HDSPM_OUTPUT_LEVEL("Output Level", 0); 4549 HDSPM_PHONES("Phones", 0); 4550 */ 4551 }; 4552 4553 static const struct snd_kcontrol_new snd_hdspm_controls_raydat[] = { 4554 HDSPM_MIXER("Mixer", 0), 4555 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4556 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0), 4557 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0), 4558 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4559 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4560 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4561 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4562 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3), 4563 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4), 4564 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5), 4565 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6), 4566 HDSPM_SYNC_CHECK("TCO SyncCheck", 7), 4567 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8), 4568 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4569 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4570 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4571 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3), 4572 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4), 4573 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5), 4574 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6), 4575 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7), 4576 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8), 4577 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4578 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48) 4579 }; 4580 4581 static const struct snd_kcontrol_new snd_hdspm_controls_aes32[] = { 4582 HDSPM_MIXER("Mixer", 0), 4583 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4584 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4585 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4586 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4587 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4588 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11), 4589 HDSPM_SYNC_CHECK("WC Sync Check", 0), 4590 HDSPM_SYNC_CHECK("AES1 Sync Check", 1), 4591 HDSPM_SYNC_CHECK("AES2 Sync Check", 2), 4592 HDSPM_SYNC_CHECK("AES3 Sync Check", 3), 4593 HDSPM_SYNC_CHECK("AES4 Sync Check", 4), 4594 HDSPM_SYNC_CHECK("AES5 Sync Check", 5), 4595 HDSPM_SYNC_CHECK("AES6 Sync Check", 6), 4596 HDSPM_SYNC_CHECK("AES7 Sync Check", 7), 4597 HDSPM_SYNC_CHECK("AES8 Sync Check", 8), 4598 HDSPM_SYNC_CHECK("TCO Sync Check", 9), 4599 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10), 4600 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4601 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1), 4602 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2), 4603 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3), 4604 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4), 4605 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5), 4606 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6), 4607 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7), 4608 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8), 4609 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9), 4610 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10), 4611 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4612 HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis), 4613 HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby), 4614 HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional), 4615 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4616 HDSPM_DS_WIRE("Double Speed Wire Mode", 0), 4617 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0), 4618 }; 4619 4620 4621 4622 /* Control elements for the optional TCO module */ 4623 static const struct snd_kcontrol_new snd_hdspm_controls_tco[] = { 4624 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0), 4625 HDSPM_TCO_PULL("TCO Pull", 0), 4626 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0), 4627 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0), 4628 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0), 4629 HDSPM_TCO_WORD_TERM("TCO Word Term", 0), 4630 HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11), 4631 HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12), 4632 HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0), 4633 HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0) 4634 }; 4635 4636 4637 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; 4638 4639 4640 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm) 4641 { 4642 int i; 4643 4644 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) { 4645 if (hdspm->system_sample_rate > 48000) { 4646 hdspm->playback_mixer_ctls[i]->vd[0].access = 4647 SNDRV_CTL_ELEM_ACCESS_INACTIVE | 4648 SNDRV_CTL_ELEM_ACCESS_READ | 4649 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4650 } else { 4651 hdspm->playback_mixer_ctls[i]->vd[0].access = 4652 SNDRV_CTL_ELEM_ACCESS_READWRITE | 4653 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4654 } 4655 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE | 4656 SNDRV_CTL_EVENT_MASK_INFO, 4657 &hdspm->playback_mixer_ctls[i]->id); 4658 } 4659 4660 return 0; 4661 } 4662 4663 4664 static int snd_hdspm_create_controls(struct snd_card *card, 4665 struct hdspm *hdspm) 4666 { 4667 unsigned int idx, limit; 4668 int err; 4669 struct snd_kcontrol *kctl; 4670 const struct snd_kcontrol_new *list = NULL; 4671 4672 switch (hdspm->io_type) { 4673 case MADI: 4674 list = snd_hdspm_controls_madi; 4675 limit = ARRAY_SIZE(snd_hdspm_controls_madi); 4676 break; 4677 case MADIface: 4678 list = snd_hdspm_controls_madiface; 4679 limit = ARRAY_SIZE(snd_hdspm_controls_madiface); 4680 break; 4681 case AIO: 4682 list = snd_hdspm_controls_aio; 4683 limit = ARRAY_SIZE(snd_hdspm_controls_aio); 4684 break; 4685 case RayDAT: 4686 list = snd_hdspm_controls_raydat; 4687 limit = ARRAY_SIZE(snd_hdspm_controls_raydat); 4688 break; 4689 case AES32: 4690 list = snd_hdspm_controls_aes32; 4691 limit = ARRAY_SIZE(snd_hdspm_controls_aes32); 4692 break; 4693 } 4694 4695 if (list) { 4696 for (idx = 0; idx < limit; idx++) { 4697 err = snd_ctl_add(card, 4698 snd_ctl_new1(&list[idx], hdspm)); 4699 if (err < 0) 4700 return err; 4701 } 4702 } 4703 4704 4705 /* create simple 1:1 playback mixer controls */ 4706 snd_hdspm_playback_mixer.name = "Chn"; 4707 if (hdspm->system_sample_rate >= 128000) { 4708 limit = hdspm->qs_out_channels; 4709 } else if (hdspm->system_sample_rate >= 64000) { 4710 limit = hdspm->ds_out_channels; 4711 } else { 4712 limit = hdspm->ss_out_channels; 4713 } 4714 for (idx = 0; idx < limit; ++idx) { 4715 snd_hdspm_playback_mixer.index = idx + 1; 4716 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm); 4717 err = snd_ctl_add(card, kctl); 4718 if (err < 0) 4719 return err; 4720 hdspm->playback_mixer_ctls[idx] = kctl; 4721 } 4722 4723 4724 if (hdspm->tco) { 4725 /* add tco control elements */ 4726 list = snd_hdspm_controls_tco; 4727 limit = ARRAY_SIZE(snd_hdspm_controls_tco); 4728 for (idx = 0; idx < limit; idx++) { 4729 err = snd_ctl_add(card, 4730 snd_ctl_new1(&list[idx], hdspm)); 4731 if (err < 0) 4732 return err; 4733 } 4734 } 4735 4736 return 0; 4737 } 4738 4739 /*------------------------------------------------------------ 4740 /proc interface 4741 ------------------------------------------------------------*/ 4742 4743 static void 4744 snd_hdspm_proc_read_tco(struct snd_info_entry *entry, 4745 struct snd_info_buffer *buffer) 4746 { 4747 struct hdspm *hdspm = entry->private_data; 4748 unsigned int status, control; 4749 int a, ltc, frames, seconds, minutes, hours; 4750 unsigned int period; 4751 u64 freq_const = 0; 4752 u32 rate; 4753 4754 snd_iprintf(buffer, "--- TCO ---\n"); 4755 4756 status = hdspm_read(hdspm, HDSPM_statusRegister); 4757 control = hdspm->control_register; 4758 4759 4760 if (status & HDSPM_tco_detect) { 4761 snd_iprintf(buffer, "TCO module detected.\n"); 4762 a = hdspm_read(hdspm, HDSPM_RD_TCO+4); 4763 if (a & HDSPM_TCO1_LTC_Input_valid) { 4764 snd_iprintf(buffer, " LTC valid, "); 4765 switch (a & (HDSPM_TCO1_LTC_Format_LSB | 4766 HDSPM_TCO1_LTC_Format_MSB)) { 4767 case 0: 4768 snd_iprintf(buffer, "24 fps, "); 4769 break; 4770 case HDSPM_TCO1_LTC_Format_LSB: 4771 snd_iprintf(buffer, "25 fps, "); 4772 break; 4773 case HDSPM_TCO1_LTC_Format_MSB: 4774 snd_iprintf(buffer, "29.97 fps, "); 4775 break; 4776 default: 4777 snd_iprintf(buffer, "30 fps, "); 4778 break; 4779 } 4780 if (a & HDSPM_TCO1_set_drop_frame_flag) { 4781 snd_iprintf(buffer, "drop frame\n"); 4782 } else { 4783 snd_iprintf(buffer, "full frame\n"); 4784 } 4785 } else { 4786 snd_iprintf(buffer, " no LTC\n"); 4787 } 4788 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) { 4789 snd_iprintf(buffer, " Video: NTSC\n"); 4790 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) { 4791 snd_iprintf(buffer, " Video: PAL\n"); 4792 } else { 4793 snd_iprintf(buffer, " No video\n"); 4794 } 4795 if (a & HDSPM_TCO1_TCO_lock) { 4796 snd_iprintf(buffer, " Sync: lock\n"); 4797 } else { 4798 snd_iprintf(buffer, " Sync: no lock\n"); 4799 } 4800 4801 switch (hdspm->io_type) { 4802 case MADI: 4803 case AES32: 4804 freq_const = 110069313433624ULL; 4805 break; 4806 case RayDAT: 4807 case AIO: 4808 freq_const = 104857600000000ULL; 4809 break; 4810 case MADIface: 4811 break; /* no TCO possible */ 4812 } 4813 4814 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 4815 snd_iprintf(buffer, " period: %u\n", period); 4816 4817 4818 /* rate = freq_const/period; */ 4819 rate = div_u64(freq_const, period); 4820 4821 if (control & HDSPM_QuadSpeed) { 4822 rate *= 4; 4823 } else if (control & HDSPM_DoubleSpeed) { 4824 rate *= 2; 4825 } 4826 4827 snd_iprintf(buffer, " Frequency: %u Hz\n", 4828 (unsigned int) rate); 4829 4830 ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 4831 frames = ltc & 0xF; 4832 ltc >>= 4; 4833 frames += (ltc & 0x3) * 10; 4834 ltc >>= 4; 4835 seconds = ltc & 0xF; 4836 ltc >>= 4; 4837 seconds += (ltc & 0x7) * 10; 4838 ltc >>= 4; 4839 minutes = ltc & 0xF; 4840 ltc >>= 4; 4841 minutes += (ltc & 0x7) * 10; 4842 ltc >>= 4; 4843 hours = ltc & 0xF; 4844 ltc >>= 4; 4845 hours += (ltc & 0x3) * 10; 4846 snd_iprintf(buffer, 4847 " LTC In: %02d:%02d:%02d:%02d\n", 4848 hours, minutes, seconds, frames); 4849 4850 } else { 4851 snd_iprintf(buffer, "No TCO module detected.\n"); 4852 } 4853 } 4854 4855 static void 4856 snd_hdspm_proc_read_madi(struct snd_info_entry *entry, 4857 struct snd_info_buffer *buffer) 4858 { 4859 struct hdspm *hdspm = entry->private_data; 4860 unsigned int status, status2; 4861 4862 char *pref_sync_ref; 4863 char *autosync_ref; 4864 char *system_clock_mode; 4865 int x, x2; 4866 4867 status = hdspm_read(hdspm, HDSPM_statusRegister); 4868 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 4869 4870 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n", 4871 hdspm->card_name, hdspm->card->number + 1, 4872 hdspm->firmware_rev, 4873 (status2 & HDSPM_version0) | 4874 (status2 & HDSPM_version1) | (status2 & 4875 HDSPM_version2)); 4876 4877 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n", 4878 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF, 4879 hdspm->serial); 4880 4881 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 4882 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 4883 4884 snd_iprintf(buffer, "--- System ---\n"); 4885 4886 snd_iprintf(buffer, 4887 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 4888 status & HDSPM_audioIRQPending, 4889 (status & HDSPM_midi0IRQPending) ? 1 : 0, 4890 (status & HDSPM_midi1IRQPending) ? 1 : 0, 4891 hdspm->irq_count); 4892 snd_iprintf(buffer, 4893 "HW pointer: id = %d, rawptr = %d (%d->%d) " 4894 "estimated= %ld (bytes)\n", 4895 ((status & HDSPM_BufferID) ? 1 : 0), 4896 (status & HDSPM_BufferPositionMask), 4897 (status & HDSPM_BufferPositionMask) % 4898 (2 * (int)hdspm->period_bytes), 4899 ((status & HDSPM_BufferPositionMask) - 64) % 4900 (2 * (int)hdspm->period_bytes), 4901 (long) hdspm_hw_pointer(hdspm) * 4); 4902 4903 snd_iprintf(buffer, 4904 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 4905 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 4906 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 4907 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 4908 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 4909 snd_iprintf(buffer, 4910 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 4911 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 4912 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 4913 snd_iprintf(buffer, 4914 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 4915 "status2=0x%x\n", 4916 hdspm->control_register, hdspm->control2_register, 4917 status, status2); 4918 4919 4920 snd_iprintf(buffer, "--- Settings ---\n"); 4921 4922 x = hdspm_get_latency(hdspm); 4923 4924 snd_iprintf(buffer, 4925 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 4926 x, (unsigned long) hdspm->period_bytes); 4927 4928 snd_iprintf(buffer, "Line out: %s\n", 4929 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off"); 4930 4931 snd_iprintf(buffer, 4932 "ClearTrackMarker = %s, Transmit in %s Channel Mode, " 4933 "Auto Input %s\n", 4934 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off", 4935 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56", 4936 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off"); 4937 4938 4939 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 4940 system_clock_mode = "AutoSync"; 4941 else 4942 system_clock_mode = "Master"; 4943 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode); 4944 4945 switch (hdspm_pref_sync_ref(hdspm)) { 4946 case HDSPM_SYNC_FROM_WORD: 4947 pref_sync_ref = "Word Clock"; 4948 break; 4949 case HDSPM_SYNC_FROM_MADI: 4950 pref_sync_ref = "MADI Sync"; 4951 break; 4952 case HDSPM_SYNC_FROM_TCO: 4953 pref_sync_ref = "TCO"; 4954 break; 4955 case HDSPM_SYNC_FROM_SYNC_IN: 4956 pref_sync_ref = "Sync In"; 4957 break; 4958 default: 4959 pref_sync_ref = "XXXX Clock"; 4960 break; 4961 } 4962 snd_iprintf(buffer, "Preferred Sync Reference: %s\n", 4963 pref_sync_ref); 4964 4965 snd_iprintf(buffer, "System Clock Frequency: %d\n", 4966 hdspm->system_sample_rate); 4967 4968 4969 snd_iprintf(buffer, "--- Status:\n"); 4970 4971 x = status & HDSPM_madiSync; 4972 x2 = status2 & HDSPM_wcSync; 4973 4974 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n", 4975 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") : 4976 "NoLock", 4977 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") : 4978 "NoLock"); 4979 4980 switch (hdspm_autosync_ref(hdspm)) { 4981 case HDSPM_AUTOSYNC_FROM_SYNC_IN: 4982 autosync_ref = "Sync In"; 4983 break; 4984 case HDSPM_AUTOSYNC_FROM_TCO: 4985 autosync_ref = "TCO"; 4986 break; 4987 case HDSPM_AUTOSYNC_FROM_WORD: 4988 autosync_ref = "Word Clock"; 4989 break; 4990 case HDSPM_AUTOSYNC_FROM_MADI: 4991 autosync_ref = "MADI Sync"; 4992 break; 4993 case HDSPM_AUTOSYNC_FROM_NONE: 4994 autosync_ref = "Input not valid"; 4995 break; 4996 default: 4997 autosync_ref = "---"; 4998 break; 4999 } 5000 snd_iprintf(buffer, 5001 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n", 5002 autosync_ref, hdspm_external_sample_rate(hdspm), 5003 (status & HDSPM_madiFreqMask) >> 22, 5004 (status2 & HDSPM_wcFreqMask) >> 5); 5005 5006 snd_iprintf(buffer, "Input: %s, Mode=%s\n", 5007 (status & HDSPM_AB_int) ? "Coax" : "Optical", 5008 (status & HDSPM_RX_64ch) ? "64 channels" : 5009 "56 channels"); 5010 5011 /* call readout function for TCO specific status */ 5012 snd_hdspm_proc_read_tco(entry, buffer); 5013 5014 snd_iprintf(buffer, "\n"); 5015 } 5016 5017 static void 5018 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry, 5019 struct snd_info_buffer *buffer) 5020 { 5021 struct hdspm *hdspm = entry->private_data; 5022 unsigned int status; 5023 unsigned int status2; 5024 unsigned int timecode; 5025 unsigned int wcLock, wcSync; 5026 int pref_syncref; 5027 char *autosync_ref; 5028 int x; 5029 5030 status = hdspm_read(hdspm, HDSPM_statusRegister); 5031 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 5032 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 5033 5034 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n", 5035 hdspm->card_name, hdspm->card->number + 1, 5036 hdspm->firmware_rev); 5037 5038 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 5039 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 5040 5041 snd_iprintf(buffer, "--- System ---\n"); 5042 5043 snd_iprintf(buffer, 5044 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 5045 status & HDSPM_audioIRQPending, 5046 (status & HDSPM_midi0IRQPending) ? 1 : 0, 5047 (status & HDSPM_midi1IRQPending) ? 1 : 0, 5048 hdspm->irq_count); 5049 snd_iprintf(buffer, 5050 "HW pointer: id = %d, rawptr = %d (%d->%d) " 5051 "estimated= %ld (bytes)\n", 5052 ((status & HDSPM_BufferID) ? 1 : 0), 5053 (status & HDSPM_BufferPositionMask), 5054 (status & HDSPM_BufferPositionMask) % 5055 (2 * (int)hdspm->period_bytes), 5056 ((status & HDSPM_BufferPositionMask) - 64) % 5057 (2 * (int)hdspm->period_bytes), 5058 (long) hdspm_hw_pointer(hdspm) * 4); 5059 5060 snd_iprintf(buffer, 5061 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 5062 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 5063 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 5064 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 5065 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 5066 snd_iprintf(buffer, 5067 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 5068 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 5069 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 5070 snd_iprintf(buffer, 5071 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 5072 "status2=0x%x\n", 5073 hdspm->control_register, hdspm->control2_register, 5074 status, status2); 5075 5076 snd_iprintf(buffer, "--- Settings ---\n"); 5077 5078 x = hdspm_get_latency(hdspm); 5079 5080 snd_iprintf(buffer, 5081 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 5082 x, (unsigned long) hdspm->period_bytes); 5083 5084 snd_iprintf(buffer, "Line out: %s\n", 5085 (hdspm-> 5086 control_register & HDSPM_LineOut) ? "on " : "off"); 5087 5088 snd_iprintf(buffer, 5089 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n", 5090 (hdspm-> 5091 control_register & HDSPM_clr_tms) ? "on" : "off", 5092 (hdspm-> 5093 control_register & HDSPM_Emphasis) ? "on" : "off", 5094 (hdspm-> 5095 control_register & HDSPM_Dolby) ? "on" : "off"); 5096 5097 5098 pref_syncref = hdspm_pref_sync_ref(hdspm); 5099 if (pref_syncref == 0) 5100 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n"); 5101 else 5102 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n", 5103 pref_syncref); 5104 5105 snd_iprintf(buffer, "System Clock Frequency: %d\n", 5106 hdspm->system_sample_rate); 5107 5108 snd_iprintf(buffer, "Double speed: %s\n", 5109 hdspm->control_register & HDSPM_DS_DoubleWire? 5110 "Double wire" : "Single wire"); 5111 snd_iprintf(buffer, "Quad speed: %s\n", 5112 hdspm->control_register & HDSPM_QS_DoubleWire? 5113 "Double wire" : 5114 hdspm->control_register & HDSPM_QS_QuadWire? 5115 "Quad wire" : "Single wire"); 5116 5117 snd_iprintf(buffer, "--- Status:\n"); 5118 5119 wcLock = status & HDSPM_AES32_wcLock; 5120 wcSync = wcLock && (status & HDSPM_AES32_wcSync); 5121 5122 snd_iprintf(buffer, "Word: %s Frequency: %d\n", 5123 (wcLock) ? (wcSync ? "Sync " : "Lock ") : "No Lock", 5124 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF)); 5125 5126 for (x = 0; x < 8; x++) { 5127 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n", 5128 x+1, 5129 (status2 & (HDSPM_LockAES >> x)) ? 5130 "Sync " : "No Lock", 5131 HDSPM_bit2freq((timecode >> (4*x)) & 0xF)); 5132 } 5133 5134 switch (hdspm_autosync_ref(hdspm)) { 5135 case HDSPM_AES32_AUTOSYNC_FROM_NONE: 5136 autosync_ref = "None"; break; 5137 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 5138 autosync_ref = "Word Clock"; break; 5139 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 5140 autosync_ref = "AES1"; break; 5141 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 5142 autosync_ref = "AES2"; break; 5143 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 5144 autosync_ref = "AES3"; break; 5145 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 5146 autosync_ref = "AES4"; break; 5147 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 5148 autosync_ref = "AES5"; break; 5149 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 5150 autosync_ref = "AES6"; break; 5151 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 5152 autosync_ref = "AES7"; break; 5153 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 5154 autosync_ref = "AES8"; break; 5155 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 5156 autosync_ref = "TCO"; break; 5157 case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN: 5158 autosync_ref = "Sync In"; break; 5159 default: 5160 autosync_ref = "---"; break; 5161 } 5162 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref); 5163 5164 /* call readout function for TCO specific status */ 5165 snd_hdspm_proc_read_tco(entry, buffer); 5166 5167 snd_iprintf(buffer, "\n"); 5168 } 5169 5170 static void 5171 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry, 5172 struct snd_info_buffer *buffer) 5173 { 5174 struct hdspm *hdspm = entry->private_data; 5175 unsigned int status1, status2, status3, i; 5176 unsigned int lock, sync; 5177 5178 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */ 5179 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */ 5180 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */ 5181 5182 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1); 5183 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2); 5184 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3); 5185 5186 5187 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n"); 5188 5189 snd_iprintf(buffer, "Clock mode : %s\n", 5190 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave"); 5191 snd_iprintf(buffer, "System frequency: %d Hz\n", 5192 hdspm_get_system_sample_rate(hdspm)); 5193 5194 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n"); 5195 5196 lock = 0x1; 5197 sync = 0x100; 5198 5199 for (i = 0; i < 8; i++) { 5200 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n", 5201 i, 5202 (status1 & lock) ? 1 : 0, 5203 (status1 & sync) ? 1 : 0, 5204 texts_freq[(status2 >> (i * 4)) & 0xF]); 5205 5206 lock = lock<<1; 5207 sync = sync<<1; 5208 } 5209 5210 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n", 5211 (status1 & 0x1000000) ? 1 : 0, 5212 (status1 & 0x2000000) ? 1 : 0, 5213 texts_freq[(status1 >> 16) & 0xF]); 5214 5215 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n", 5216 (status1 & 0x4000000) ? 1 : 0, 5217 (status1 & 0x8000000) ? 1 : 0, 5218 texts_freq[(status1 >> 20) & 0xF]); 5219 5220 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n", 5221 (status3 & 0x400) ? 1 : 0, 5222 (status3 & 0x800) ? 1 : 0, 5223 texts_freq[(status2 >> 12) & 0xF]); 5224 5225 } 5226 5227 #ifdef CONFIG_SND_DEBUG 5228 static void 5229 snd_hdspm_proc_read_debug(struct snd_info_entry *entry, 5230 struct snd_info_buffer *buffer) 5231 { 5232 struct hdspm *hdspm = entry->private_data; 5233 5234 int j,i; 5235 5236 for (i = 0; i < 256 /* 1024*64 */; i += j) { 5237 snd_iprintf(buffer, "0x%08X: ", i); 5238 for (j = 0; j < 16; j += 4) 5239 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j)); 5240 snd_iprintf(buffer, "\n"); 5241 } 5242 } 5243 #endif 5244 5245 5246 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry, 5247 struct snd_info_buffer *buffer) 5248 { 5249 struct hdspm *hdspm = entry->private_data; 5250 int i; 5251 5252 snd_iprintf(buffer, "# generated by hdspm\n"); 5253 5254 for (i = 0; i < hdspm->max_channels_in; i++) { 5255 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]); 5256 } 5257 } 5258 5259 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry, 5260 struct snd_info_buffer *buffer) 5261 { 5262 struct hdspm *hdspm = entry->private_data; 5263 int i; 5264 5265 snd_iprintf(buffer, "# generated by hdspm\n"); 5266 5267 for (i = 0; i < hdspm->max_channels_out; i++) { 5268 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]); 5269 } 5270 } 5271 5272 5273 static void snd_hdspm_proc_init(struct hdspm *hdspm) 5274 { 5275 void (*read)(struct snd_info_entry *, struct snd_info_buffer *) = NULL; 5276 5277 switch (hdspm->io_type) { 5278 case AES32: 5279 read = snd_hdspm_proc_read_aes32; 5280 break; 5281 case MADI: 5282 read = snd_hdspm_proc_read_madi; 5283 break; 5284 case MADIface: 5285 /* read = snd_hdspm_proc_read_madiface; */ 5286 break; 5287 case RayDAT: 5288 read = snd_hdspm_proc_read_raydat; 5289 break; 5290 case AIO: 5291 break; 5292 } 5293 5294 snd_card_ro_proc_new(hdspm->card, "hdspm", hdspm, read); 5295 snd_card_ro_proc_new(hdspm->card, "ports.in", hdspm, 5296 snd_hdspm_proc_ports_in); 5297 snd_card_ro_proc_new(hdspm->card, "ports.out", hdspm, 5298 snd_hdspm_proc_ports_out); 5299 5300 #ifdef CONFIG_SND_DEBUG 5301 /* debug file to read all hdspm registers */ 5302 snd_card_ro_proc_new(hdspm->card, "debug", hdspm, 5303 snd_hdspm_proc_read_debug); 5304 #endif 5305 } 5306 5307 /*------------------------------------------------------------ 5308 hdspm intitialize 5309 ------------------------------------------------------------*/ 5310 5311 static int snd_hdspm_set_defaults(struct hdspm * hdspm) 5312 { 5313 /* ASSUMPTION: hdspm->lock is either held, or there is no need to 5314 hold it (e.g. during module initialization). 5315 */ 5316 5317 /* set defaults: */ 5318 5319 hdspm->settings_register = 0; 5320 5321 switch (hdspm->io_type) { 5322 case MADI: 5323 case MADIface: 5324 hdspm->control_register = 5325 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5326 break; 5327 5328 case RayDAT: 5329 case AIO: 5330 hdspm->settings_register = 0x1 + 0x1000; 5331 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0, 5332 * line_out */ 5333 hdspm->control_register = 5334 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5335 break; 5336 5337 case AES32: 5338 hdspm->control_register = 5339 HDSPM_ClockModeMaster | /* Master Clock Mode on */ 5340 hdspm_encode_latency(7) | /* latency max=8192samples */ 5341 HDSPM_SyncRef0 | /* AES1 is syncclock */ 5342 HDSPM_LineOut | /* Analog output in */ 5343 HDSPM_Professional; /* Professional mode */ 5344 break; 5345 } 5346 5347 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5348 5349 if (AES32 == hdspm->io_type) { 5350 /* No control2 register for AES32 */ 5351 #ifdef SNDRV_BIG_ENDIAN 5352 hdspm->control2_register = HDSPM_BIGENDIAN_MODE; 5353 #else 5354 hdspm->control2_register = 0; 5355 #endif 5356 5357 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register); 5358 } 5359 hdspm_compute_period_size(hdspm); 5360 5361 /* silence everything */ 5362 5363 all_in_all_mixer(hdspm, 0 * UNITY_GAIN); 5364 5365 if (hdspm_is_raydat_or_aio(hdspm)) 5366 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 5367 5368 /* set a default rate so that the channel map is set up. */ 5369 hdspm_set_rate(hdspm, 48000, 1); 5370 5371 return 0; 5372 } 5373 5374 5375 /*------------------------------------------------------------ 5376 interrupt 5377 ------------------------------------------------------------*/ 5378 5379 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id) 5380 { 5381 struct hdspm *hdspm = (struct hdspm *) dev_id; 5382 unsigned int status; 5383 int i, audio, midi, schedule = 0; 5384 /* cycles_t now; */ 5385 5386 status = hdspm_read(hdspm, HDSPM_statusRegister); 5387 5388 audio = status & HDSPM_audioIRQPending; 5389 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending | 5390 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending); 5391 5392 /* now = get_cycles(); */ 5393 /* 5394 * LAT_2..LAT_0 period counter (win) counter (mac) 5395 * 6 4096 ~256053425 ~514672358 5396 * 5 2048 ~128024983 ~257373821 5397 * 4 1024 ~64023706 ~128718089 5398 * 3 512 ~32005945 ~64385999 5399 * 2 256 ~16003039 ~32260176 5400 * 1 128 ~7998738 ~16194507 5401 * 0 64 ~3998231 ~8191558 5402 */ 5403 /* 5404 dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n", 5405 now-hdspm->last_interrupt, status & 0xFFC0); 5406 hdspm->last_interrupt = now; 5407 */ 5408 5409 if (!audio && !midi) 5410 return IRQ_NONE; 5411 5412 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0); 5413 hdspm->irq_count++; 5414 5415 5416 if (audio) { 5417 if (hdspm->capture_substream) 5418 snd_pcm_period_elapsed(hdspm->capture_substream); 5419 5420 if (hdspm->playback_substream) 5421 snd_pcm_period_elapsed(hdspm->playback_substream); 5422 } 5423 5424 if (midi) { 5425 i = 0; 5426 while (i < hdspm->midiPorts) { 5427 if ((hdspm_read(hdspm, 5428 hdspm->midi[i].statusIn) & 0xff) && 5429 (status & hdspm->midi[i].irq)) { 5430 /* we disable interrupts for this input until 5431 * processing is done 5432 */ 5433 hdspm->control_register &= ~hdspm->midi[i].ie; 5434 hdspm_write(hdspm, HDSPM_controlRegister, 5435 hdspm->control_register); 5436 hdspm->midi[i].pending = 1; 5437 schedule = 1; 5438 } 5439 5440 i++; 5441 } 5442 5443 if (schedule) 5444 queue_work(system_highpri_wq, &hdspm->midi_work); 5445 } 5446 5447 return IRQ_HANDLED; 5448 } 5449 5450 /*------------------------------------------------------------ 5451 pcm interface 5452 ------------------------------------------------------------*/ 5453 5454 5455 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream 5456 *substream) 5457 { 5458 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5459 return hdspm_hw_pointer(hdspm); 5460 } 5461 5462 5463 static int snd_hdspm_reset(struct snd_pcm_substream *substream) 5464 { 5465 struct snd_pcm_runtime *runtime = substream->runtime; 5466 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5467 struct snd_pcm_substream *other; 5468 5469 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5470 other = hdspm->capture_substream; 5471 else 5472 other = hdspm->playback_substream; 5473 5474 if (hdspm->running) 5475 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm); 5476 else 5477 runtime->status->hw_ptr = 0; 5478 if (other) { 5479 struct snd_pcm_substream *s; 5480 struct snd_pcm_runtime *oruntime = other->runtime; 5481 snd_pcm_group_for_each_entry(s, substream) { 5482 if (s == other) { 5483 oruntime->status->hw_ptr = 5484 runtime->status->hw_ptr; 5485 break; 5486 } 5487 } 5488 } 5489 return 0; 5490 } 5491 5492 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, 5493 struct snd_pcm_hw_params *params) 5494 { 5495 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5496 int err; 5497 int i; 5498 pid_t this_pid; 5499 pid_t other_pid; 5500 5501 spin_lock_irq(&hdspm->lock); 5502 5503 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5504 this_pid = hdspm->playback_pid; 5505 other_pid = hdspm->capture_pid; 5506 } else { 5507 this_pid = hdspm->capture_pid; 5508 other_pid = hdspm->playback_pid; 5509 } 5510 5511 if (other_pid > 0 && this_pid != other_pid) { 5512 5513 /* The other stream is open, and not by the same 5514 task as this one. Make sure that the parameters 5515 that matter are the same. 5516 */ 5517 5518 if (params_rate(params) != hdspm->system_sample_rate) { 5519 spin_unlock_irq(&hdspm->lock); 5520 _snd_pcm_hw_param_setempty(params, 5521 SNDRV_PCM_HW_PARAM_RATE); 5522 return -EBUSY; 5523 } 5524 5525 if (params_period_size(params) != hdspm->period_bytes / 4) { 5526 spin_unlock_irq(&hdspm->lock); 5527 _snd_pcm_hw_param_setempty(params, 5528 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5529 return -EBUSY; 5530 } 5531 5532 } 5533 /* We're fine. */ 5534 spin_unlock_irq(&hdspm->lock); 5535 5536 /* how to make sure that the rate matches an externally-set one ? */ 5537 5538 spin_lock_irq(&hdspm->lock); 5539 err = hdspm_set_rate(hdspm, params_rate(params), 0); 5540 if (err < 0) { 5541 dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err); 5542 spin_unlock_irq(&hdspm->lock); 5543 _snd_pcm_hw_param_setempty(params, 5544 SNDRV_PCM_HW_PARAM_RATE); 5545 return err; 5546 } 5547 spin_unlock_irq(&hdspm->lock); 5548 5549 err = hdspm_set_interrupt_interval(hdspm, 5550 params_period_size(params)); 5551 if (err < 0) { 5552 dev_info(hdspm->card->dev, 5553 "err on hdspm_set_interrupt_interval: %d\n", err); 5554 _snd_pcm_hw_param_setempty(params, 5555 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5556 return err; 5557 } 5558 5559 /* Memory allocation, takashi's method, dont know if we should 5560 * spinlock 5561 */ 5562 /* malloc all buffer even if not enabled to get sure */ 5563 /* Update for MADI rev 204: we need to allocate for all channels, 5564 * otherwise it doesn't work at 96kHz */ 5565 5566 err = 5567 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES); 5568 if (err < 0) { 5569 dev_info(hdspm->card->dev, 5570 "err on snd_pcm_lib_malloc_pages: %d\n", err); 5571 return err; 5572 } 5573 5574 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5575 5576 for (i = 0; i < params_channels(params); ++i) { 5577 int c = hdspm->channel_map_out[i]; 5578 5579 if (c < 0) 5580 continue; /* just make sure */ 5581 hdspm_set_channel_dma_addr(hdspm, substream, 5582 HDSPM_pageAddressBufferOut, 5583 c); 5584 snd_hdspm_enable_out(hdspm, c, 1); 5585 } 5586 5587 hdspm->playback_buffer = 5588 (unsigned char *) substream->runtime->dma_area; 5589 dev_dbg(hdspm->card->dev, 5590 "Allocated sample buffer for playback at %p\n", 5591 hdspm->playback_buffer); 5592 } else { 5593 for (i = 0; i < params_channels(params); ++i) { 5594 int c = hdspm->channel_map_in[i]; 5595 5596 if (c < 0) 5597 continue; 5598 hdspm_set_channel_dma_addr(hdspm, substream, 5599 HDSPM_pageAddressBufferIn, 5600 c); 5601 snd_hdspm_enable_in(hdspm, c, 1); 5602 } 5603 5604 hdspm->capture_buffer = 5605 (unsigned char *) substream->runtime->dma_area; 5606 dev_dbg(hdspm->card->dev, 5607 "Allocated sample buffer for capture at %p\n", 5608 hdspm->capture_buffer); 5609 } 5610 5611 /* 5612 dev_dbg(hdspm->card->dev, 5613 "Allocated sample buffer for %s at 0x%08X\n", 5614 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5615 "playback" : "capture", 5616 snd_pcm_sgbuf_get_addr(substream, 0)); 5617 */ 5618 /* 5619 dev_dbg(hdspm->card->dev, 5620 "set_hwparams: %s %d Hz, %d channels, bs = %d\n", 5621 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5622 "playback" : "capture", 5623 params_rate(params), params_channels(params), 5624 params_buffer_size(params)); 5625 */ 5626 5627 5628 /* For AES cards, the float format bit is the same as the 5629 * preferred sync reference. Since we don't want to break 5630 * sync settings, we have to skip the remaining part of this 5631 * function. 5632 */ 5633 if (hdspm->io_type == AES32) { 5634 return 0; 5635 } 5636 5637 5638 /* Switch to native float format if requested */ 5639 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) { 5640 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT)) 5641 dev_info(hdspm->card->dev, 5642 "Switching to native 32bit LE float format.\n"); 5643 5644 hdspm->control_register |= HDSPe_FLOAT_FORMAT; 5645 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) { 5646 if (hdspm->control_register & HDSPe_FLOAT_FORMAT) 5647 dev_info(hdspm->card->dev, 5648 "Switching to native 32bit LE integer format.\n"); 5649 5650 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT; 5651 } 5652 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5653 5654 return 0; 5655 } 5656 5657 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream) 5658 { 5659 int i; 5660 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5661 5662 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5663 /* Just disable all channels. The saving when disabling a */ 5664 /* smaller set is not worth the trouble. */ 5665 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i) 5666 snd_hdspm_enable_out(hdspm, i, 0); 5667 5668 hdspm->playback_buffer = NULL; 5669 } else { 5670 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i) 5671 snd_hdspm_enable_in(hdspm, i, 0); 5672 5673 hdspm->capture_buffer = NULL; 5674 } 5675 5676 snd_pcm_lib_free_pages(substream); 5677 5678 return 0; 5679 } 5680 5681 5682 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream, 5683 struct snd_pcm_channel_info *info) 5684 { 5685 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5686 unsigned int channel = info->channel; 5687 5688 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5689 if (snd_BUG_ON(channel >= hdspm->max_channels_out)) { 5690 dev_info(hdspm->card->dev, 5691 "snd_hdspm_channel_info: output channel out of range (%d)\n", 5692 channel); 5693 return -EINVAL; 5694 } 5695 5696 channel = array_index_nospec(channel, hdspm->max_channels_out); 5697 if (hdspm->channel_map_out[channel] < 0) { 5698 dev_info(hdspm->card->dev, 5699 "snd_hdspm_channel_info: output channel %d mapped out\n", 5700 channel); 5701 return -EINVAL; 5702 } 5703 5704 info->offset = hdspm->channel_map_out[channel] * 5705 HDSPM_CHANNEL_BUFFER_BYTES; 5706 } else { 5707 if (snd_BUG_ON(channel >= hdspm->max_channels_in)) { 5708 dev_info(hdspm->card->dev, 5709 "snd_hdspm_channel_info: input channel out of range (%d)\n", 5710 channel); 5711 return -EINVAL; 5712 } 5713 5714 channel = array_index_nospec(channel, hdspm->max_channels_in); 5715 if (hdspm->channel_map_in[channel] < 0) { 5716 dev_info(hdspm->card->dev, 5717 "snd_hdspm_channel_info: input channel %d mapped out\n", 5718 channel); 5719 return -EINVAL; 5720 } 5721 5722 info->offset = hdspm->channel_map_in[channel] * 5723 HDSPM_CHANNEL_BUFFER_BYTES; 5724 } 5725 5726 info->first = 0; 5727 info->step = 32; 5728 return 0; 5729 } 5730 5731 5732 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream, 5733 unsigned int cmd, void *arg) 5734 { 5735 switch (cmd) { 5736 case SNDRV_PCM_IOCTL1_RESET: 5737 return snd_hdspm_reset(substream); 5738 5739 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 5740 { 5741 struct snd_pcm_channel_info *info = arg; 5742 return snd_hdspm_channel_info(substream, info); 5743 } 5744 default: 5745 break; 5746 } 5747 5748 return snd_pcm_lib_ioctl(substream, cmd, arg); 5749 } 5750 5751 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd) 5752 { 5753 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5754 struct snd_pcm_substream *other; 5755 int running; 5756 5757 spin_lock(&hdspm->lock); 5758 running = hdspm->running; 5759 switch (cmd) { 5760 case SNDRV_PCM_TRIGGER_START: 5761 running |= 1 << substream->stream; 5762 break; 5763 case SNDRV_PCM_TRIGGER_STOP: 5764 running &= ~(1 << substream->stream); 5765 break; 5766 default: 5767 snd_BUG(); 5768 spin_unlock(&hdspm->lock); 5769 return -EINVAL; 5770 } 5771 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5772 other = hdspm->capture_substream; 5773 else 5774 other = hdspm->playback_substream; 5775 5776 if (other) { 5777 struct snd_pcm_substream *s; 5778 snd_pcm_group_for_each_entry(s, substream) { 5779 if (s == other) { 5780 snd_pcm_trigger_done(s, substream); 5781 if (cmd == SNDRV_PCM_TRIGGER_START) 5782 running |= 1 << s->stream; 5783 else 5784 running &= ~(1 << s->stream); 5785 goto _ok; 5786 } 5787 } 5788 if (cmd == SNDRV_PCM_TRIGGER_START) { 5789 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) 5790 && substream->stream == 5791 SNDRV_PCM_STREAM_CAPTURE) 5792 hdspm_silence_playback(hdspm); 5793 } else { 5794 if (running && 5795 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5796 hdspm_silence_playback(hdspm); 5797 } 5798 } else { 5799 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 5800 hdspm_silence_playback(hdspm); 5801 } 5802 _ok: 5803 snd_pcm_trigger_done(substream, substream); 5804 if (!hdspm->running && running) 5805 hdspm_start_audio(hdspm); 5806 else if (hdspm->running && !running) 5807 hdspm_stop_audio(hdspm); 5808 hdspm->running = running; 5809 spin_unlock(&hdspm->lock); 5810 5811 return 0; 5812 } 5813 5814 static int snd_hdspm_prepare(struct snd_pcm_substream *substream) 5815 { 5816 return 0; 5817 } 5818 5819 static const struct snd_pcm_hardware snd_hdspm_playback_subinfo = { 5820 .info = (SNDRV_PCM_INFO_MMAP | 5821 SNDRV_PCM_INFO_MMAP_VALID | 5822 SNDRV_PCM_INFO_NONINTERLEAVED | 5823 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE), 5824 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5825 .rates = (SNDRV_PCM_RATE_32000 | 5826 SNDRV_PCM_RATE_44100 | 5827 SNDRV_PCM_RATE_48000 | 5828 SNDRV_PCM_RATE_64000 | 5829 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5830 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ), 5831 .rate_min = 32000, 5832 .rate_max = 192000, 5833 .channels_min = 1, 5834 .channels_max = HDSPM_MAX_CHANNELS, 5835 .buffer_bytes_max = 5836 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5837 .period_bytes_min = (32 * 4), 5838 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5839 .periods_min = 2, 5840 .periods_max = 512, 5841 .fifo_size = 0 5842 }; 5843 5844 static const struct snd_pcm_hardware snd_hdspm_capture_subinfo = { 5845 .info = (SNDRV_PCM_INFO_MMAP | 5846 SNDRV_PCM_INFO_MMAP_VALID | 5847 SNDRV_PCM_INFO_NONINTERLEAVED | 5848 SNDRV_PCM_INFO_SYNC_START), 5849 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5850 .rates = (SNDRV_PCM_RATE_32000 | 5851 SNDRV_PCM_RATE_44100 | 5852 SNDRV_PCM_RATE_48000 | 5853 SNDRV_PCM_RATE_64000 | 5854 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5855 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000), 5856 .rate_min = 32000, 5857 .rate_max = 192000, 5858 .channels_min = 1, 5859 .channels_max = HDSPM_MAX_CHANNELS, 5860 .buffer_bytes_max = 5861 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5862 .period_bytes_min = (32 * 4), 5863 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5864 .periods_min = 2, 5865 .periods_max = 512, 5866 .fifo_size = 0 5867 }; 5868 5869 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 5870 struct snd_pcm_hw_rule *rule) 5871 { 5872 struct hdspm *hdspm = rule->private; 5873 struct snd_interval *c = 5874 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5875 struct snd_interval *r = 5876 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5877 5878 if (r->min > 96000 && r->max <= 192000) { 5879 struct snd_interval t = { 5880 .min = hdspm->qs_in_channels, 5881 .max = hdspm->qs_in_channels, 5882 .integer = 1, 5883 }; 5884 return snd_interval_refine(c, &t); 5885 } else if (r->min > 48000 && r->max <= 96000) { 5886 struct snd_interval t = { 5887 .min = hdspm->ds_in_channels, 5888 .max = hdspm->ds_in_channels, 5889 .integer = 1, 5890 }; 5891 return snd_interval_refine(c, &t); 5892 } else if (r->max < 64000) { 5893 struct snd_interval t = { 5894 .min = hdspm->ss_in_channels, 5895 .max = hdspm->ss_in_channels, 5896 .integer = 1, 5897 }; 5898 return snd_interval_refine(c, &t); 5899 } 5900 5901 return 0; 5902 } 5903 5904 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 5905 struct snd_pcm_hw_rule * rule) 5906 { 5907 struct hdspm *hdspm = rule->private; 5908 struct snd_interval *c = 5909 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5910 struct snd_interval *r = 5911 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5912 5913 if (r->min > 96000 && r->max <= 192000) { 5914 struct snd_interval t = { 5915 .min = hdspm->qs_out_channels, 5916 .max = hdspm->qs_out_channels, 5917 .integer = 1, 5918 }; 5919 return snd_interval_refine(c, &t); 5920 } else if (r->min > 48000 && r->max <= 96000) { 5921 struct snd_interval t = { 5922 .min = hdspm->ds_out_channels, 5923 .max = hdspm->ds_out_channels, 5924 .integer = 1, 5925 }; 5926 return snd_interval_refine(c, &t); 5927 } else if (r->max < 64000) { 5928 struct snd_interval t = { 5929 .min = hdspm->ss_out_channels, 5930 .max = hdspm->ss_out_channels, 5931 .integer = 1, 5932 }; 5933 return snd_interval_refine(c, &t); 5934 } else { 5935 } 5936 return 0; 5937 } 5938 5939 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 5940 struct snd_pcm_hw_rule * rule) 5941 { 5942 struct hdspm *hdspm = rule->private; 5943 struct snd_interval *c = 5944 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5945 struct snd_interval *r = 5946 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5947 5948 if (c->min >= hdspm->ss_in_channels) { 5949 struct snd_interval t = { 5950 .min = 32000, 5951 .max = 48000, 5952 .integer = 1, 5953 }; 5954 return snd_interval_refine(r, &t); 5955 } else if (c->max <= hdspm->qs_in_channels) { 5956 struct snd_interval t = { 5957 .min = 128000, 5958 .max = 192000, 5959 .integer = 1, 5960 }; 5961 return snd_interval_refine(r, &t); 5962 } else if (c->max <= hdspm->ds_in_channels) { 5963 struct snd_interval t = { 5964 .min = 64000, 5965 .max = 96000, 5966 .integer = 1, 5967 }; 5968 return snd_interval_refine(r, &t); 5969 } 5970 5971 return 0; 5972 } 5973 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 5974 struct snd_pcm_hw_rule *rule) 5975 { 5976 struct hdspm *hdspm = rule->private; 5977 struct snd_interval *c = 5978 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5979 struct snd_interval *r = 5980 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5981 5982 if (c->min >= hdspm->ss_out_channels) { 5983 struct snd_interval t = { 5984 .min = 32000, 5985 .max = 48000, 5986 .integer = 1, 5987 }; 5988 return snd_interval_refine(r, &t); 5989 } else if (c->max <= hdspm->qs_out_channels) { 5990 struct snd_interval t = { 5991 .min = 128000, 5992 .max = 192000, 5993 .integer = 1, 5994 }; 5995 return snd_interval_refine(r, &t); 5996 } else if (c->max <= hdspm->ds_out_channels) { 5997 struct snd_interval t = { 5998 .min = 64000, 5999 .max = 96000, 6000 .integer = 1, 6001 }; 6002 return snd_interval_refine(r, &t); 6003 } 6004 6005 return 0; 6006 } 6007 6008 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params, 6009 struct snd_pcm_hw_rule *rule) 6010 { 6011 unsigned int list[3]; 6012 struct hdspm *hdspm = rule->private; 6013 struct snd_interval *c = hw_param_interval(params, 6014 SNDRV_PCM_HW_PARAM_CHANNELS); 6015 6016 list[0] = hdspm->qs_in_channels; 6017 list[1] = hdspm->ds_in_channels; 6018 list[2] = hdspm->ss_in_channels; 6019 return snd_interval_list(c, 3, list, 0); 6020 } 6021 6022 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params, 6023 struct snd_pcm_hw_rule *rule) 6024 { 6025 unsigned int list[3]; 6026 struct hdspm *hdspm = rule->private; 6027 struct snd_interval *c = hw_param_interval(params, 6028 SNDRV_PCM_HW_PARAM_CHANNELS); 6029 6030 list[0] = hdspm->qs_out_channels; 6031 list[1] = hdspm->ds_out_channels; 6032 list[2] = hdspm->ss_out_channels; 6033 return snd_interval_list(c, 3, list, 0); 6034 } 6035 6036 6037 static const unsigned int hdspm_aes32_sample_rates[] = { 6038 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 6039 }; 6040 6041 static const struct snd_pcm_hw_constraint_list 6042 hdspm_hw_constraints_aes32_sample_rates = { 6043 .count = ARRAY_SIZE(hdspm_aes32_sample_rates), 6044 .list = hdspm_aes32_sample_rates, 6045 .mask = 0 6046 }; 6047 6048 static int snd_hdspm_open(struct snd_pcm_substream *substream) 6049 { 6050 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6051 struct snd_pcm_runtime *runtime = substream->runtime; 6052 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6053 6054 spin_lock_irq(&hdspm->lock); 6055 snd_pcm_set_sync(substream); 6056 runtime->hw = (playback) ? snd_hdspm_playback_subinfo : 6057 snd_hdspm_capture_subinfo; 6058 6059 if (playback) { 6060 if (!hdspm->capture_substream) 6061 hdspm_stop_audio(hdspm); 6062 6063 hdspm->playback_pid = current->pid; 6064 hdspm->playback_substream = substream; 6065 } else { 6066 if (!hdspm->playback_substream) 6067 hdspm_stop_audio(hdspm); 6068 6069 hdspm->capture_pid = current->pid; 6070 hdspm->capture_substream = substream; 6071 } 6072 6073 spin_unlock_irq(&hdspm->lock); 6074 6075 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 6076 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 6077 6078 switch (hdspm->io_type) { 6079 case AIO: 6080 case RayDAT: 6081 snd_pcm_hw_constraint_minmax(runtime, 6082 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6083 32, 4096); 6084 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */ 6085 snd_pcm_hw_constraint_single(runtime, 6086 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 6087 16384); 6088 break; 6089 6090 default: 6091 snd_pcm_hw_constraint_minmax(runtime, 6092 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6093 64, 8192); 6094 snd_pcm_hw_constraint_single(runtime, 6095 SNDRV_PCM_HW_PARAM_PERIODS, 2); 6096 break; 6097 } 6098 6099 if (AES32 == hdspm->io_type) { 6100 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 6101 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6102 &hdspm_hw_constraints_aes32_sample_rates); 6103 } else { 6104 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6105 (playback ? 6106 snd_hdspm_hw_rule_rate_out_channels : 6107 snd_hdspm_hw_rule_rate_in_channels), hdspm, 6108 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6109 } 6110 6111 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6112 (playback ? snd_hdspm_hw_rule_out_channels : 6113 snd_hdspm_hw_rule_in_channels), hdspm, 6114 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6115 6116 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6117 (playback ? snd_hdspm_hw_rule_out_channels_rate : 6118 snd_hdspm_hw_rule_in_channels_rate), hdspm, 6119 SNDRV_PCM_HW_PARAM_RATE, -1); 6120 6121 return 0; 6122 } 6123 6124 static int snd_hdspm_release(struct snd_pcm_substream *substream) 6125 { 6126 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6127 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6128 6129 spin_lock_irq(&hdspm->lock); 6130 6131 if (playback) { 6132 hdspm->playback_pid = -1; 6133 hdspm->playback_substream = NULL; 6134 } else { 6135 hdspm->capture_pid = -1; 6136 hdspm->capture_substream = NULL; 6137 } 6138 6139 spin_unlock_irq(&hdspm->lock); 6140 6141 return 0; 6142 } 6143 6144 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file) 6145 { 6146 /* we have nothing to initialize but the call is required */ 6147 return 0; 6148 } 6149 6150 static inline int copy_u32_le(void __user *dest, void __iomem *src) 6151 { 6152 u32 val = readl(src); 6153 return copy_to_user(dest, &val, 4); 6154 } 6155 6156 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, 6157 unsigned int cmd, unsigned long arg) 6158 { 6159 void __user *argp = (void __user *)arg; 6160 struct hdspm *hdspm = hw->private_data; 6161 struct hdspm_mixer_ioctl mixer; 6162 struct hdspm_config info; 6163 struct hdspm_status status; 6164 struct hdspm_version hdspm_version; 6165 struct hdspm_peak_rms *levels; 6166 struct hdspm_ltc ltc; 6167 unsigned int statusregister; 6168 long unsigned int s; 6169 int i = 0; 6170 6171 switch (cmd) { 6172 6173 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS: 6174 levels = &hdspm->peak_rms; 6175 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 6176 levels->input_peaks[i] = 6177 readl(hdspm->iobase + 6178 HDSPM_MADI_INPUT_PEAK + i*4); 6179 levels->playback_peaks[i] = 6180 readl(hdspm->iobase + 6181 HDSPM_MADI_PLAYBACK_PEAK + i*4); 6182 levels->output_peaks[i] = 6183 readl(hdspm->iobase + 6184 HDSPM_MADI_OUTPUT_PEAK + i*4); 6185 6186 levels->input_rms[i] = 6187 ((uint64_t) readl(hdspm->iobase + 6188 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) | 6189 (uint64_t) readl(hdspm->iobase + 6190 HDSPM_MADI_INPUT_RMS_L + i*4); 6191 levels->playback_rms[i] = 6192 ((uint64_t)readl(hdspm->iobase + 6193 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) | 6194 (uint64_t)readl(hdspm->iobase + 6195 HDSPM_MADI_PLAYBACK_RMS_L + i*4); 6196 levels->output_rms[i] = 6197 ((uint64_t)readl(hdspm->iobase + 6198 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) | 6199 (uint64_t)readl(hdspm->iobase + 6200 HDSPM_MADI_OUTPUT_RMS_L + i*4); 6201 } 6202 6203 if (hdspm->system_sample_rate > 96000) { 6204 levels->speed = qs; 6205 } else if (hdspm->system_sample_rate > 48000) { 6206 levels->speed = ds; 6207 } else { 6208 levels->speed = ss; 6209 } 6210 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 6211 6212 s = copy_to_user(argp, levels, sizeof(*levels)); 6213 if (0 != s) { 6214 /* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu 6215 [Levels]\n", sizeof(struct hdspm_peak_rms), s); 6216 */ 6217 return -EFAULT; 6218 } 6219 break; 6220 6221 case SNDRV_HDSPM_IOCTL_GET_LTC: 6222 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 6223 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 6224 if (i & HDSPM_TCO1_LTC_Input_valid) { 6225 switch (i & (HDSPM_TCO1_LTC_Format_LSB | 6226 HDSPM_TCO1_LTC_Format_MSB)) { 6227 case 0: 6228 ltc.format = fps_24; 6229 break; 6230 case HDSPM_TCO1_LTC_Format_LSB: 6231 ltc.format = fps_25; 6232 break; 6233 case HDSPM_TCO1_LTC_Format_MSB: 6234 ltc.format = fps_2997; 6235 break; 6236 default: 6237 ltc.format = fps_30; 6238 break; 6239 } 6240 if (i & HDSPM_TCO1_set_drop_frame_flag) { 6241 ltc.frame = drop_frame; 6242 } else { 6243 ltc.frame = full_frame; 6244 } 6245 } else { 6246 ltc.format = format_invalid; 6247 ltc.frame = frame_invalid; 6248 } 6249 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) { 6250 ltc.input_format = ntsc; 6251 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) { 6252 ltc.input_format = pal; 6253 } else { 6254 ltc.input_format = no_video; 6255 } 6256 6257 s = copy_to_user(argp, <c, sizeof(ltc)); 6258 if (0 != s) { 6259 /* 6260 dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */ 6261 return -EFAULT; 6262 } 6263 6264 break; 6265 6266 case SNDRV_HDSPM_IOCTL_GET_CONFIG: 6267 6268 memset(&info, 0, sizeof(info)); 6269 spin_lock_irq(&hdspm->lock); 6270 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm); 6271 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm); 6272 6273 info.system_sample_rate = hdspm->system_sample_rate; 6274 info.autosync_sample_rate = 6275 hdspm_external_sample_rate(hdspm); 6276 info.system_clock_mode = hdspm_system_clock_mode(hdspm); 6277 info.clock_source = hdspm_clock_source(hdspm); 6278 info.autosync_ref = hdspm_autosync_ref(hdspm); 6279 info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut); 6280 info.passthru = 0; 6281 spin_unlock_irq(&hdspm->lock); 6282 if (copy_to_user(argp, &info, sizeof(info))) 6283 return -EFAULT; 6284 break; 6285 6286 case SNDRV_HDSPM_IOCTL_GET_STATUS: 6287 memset(&status, 0, sizeof(status)); 6288 6289 status.card_type = hdspm->io_type; 6290 6291 status.autosync_source = hdspm_autosync_ref(hdspm); 6292 6293 status.card_clock = 110069313433624ULL; 6294 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 6295 6296 switch (hdspm->io_type) { 6297 case MADI: 6298 case MADIface: 6299 status.card_specific.madi.sync_wc = 6300 hdspm_wc_sync_check(hdspm); 6301 status.card_specific.madi.sync_madi = 6302 hdspm_madi_sync_check(hdspm); 6303 status.card_specific.madi.sync_tco = 6304 hdspm_tco_sync_check(hdspm); 6305 status.card_specific.madi.sync_in = 6306 hdspm_sync_in_sync_check(hdspm); 6307 6308 statusregister = 6309 hdspm_read(hdspm, HDSPM_statusRegister); 6310 status.card_specific.madi.madi_input = 6311 (statusregister & HDSPM_AB_int) ? 1 : 0; 6312 status.card_specific.madi.channel_format = 6313 (statusregister & HDSPM_RX_64ch) ? 1 : 0; 6314 /* TODO: Mac driver sets it when f_s>48kHz */ 6315 status.card_specific.madi.frame_format = 0; 6316 break; 6317 6318 default: 6319 break; 6320 } 6321 6322 if (copy_to_user(argp, &status, sizeof(status))) 6323 return -EFAULT; 6324 6325 6326 break; 6327 6328 case SNDRV_HDSPM_IOCTL_GET_VERSION: 6329 memset(&hdspm_version, 0, sizeof(hdspm_version)); 6330 6331 hdspm_version.card_type = hdspm->io_type; 6332 strscpy(hdspm_version.cardname, hdspm->card_name, 6333 sizeof(hdspm_version.cardname)); 6334 hdspm_version.serial = hdspm->serial; 6335 hdspm_version.firmware_rev = hdspm->firmware_rev; 6336 hdspm_version.addons = 0; 6337 if (hdspm->tco) 6338 hdspm_version.addons |= HDSPM_ADDON_TCO; 6339 6340 if (copy_to_user(argp, &hdspm_version, 6341 sizeof(hdspm_version))) 6342 return -EFAULT; 6343 break; 6344 6345 case SNDRV_HDSPM_IOCTL_GET_MIXER: 6346 if (copy_from_user(&mixer, argp, sizeof(mixer))) 6347 return -EFAULT; 6348 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer, 6349 sizeof(*mixer.mixer))) 6350 return -EFAULT; 6351 break; 6352 6353 default: 6354 return -EINVAL; 6355 } 6356 return 0; 6357 } 6358 6359 static const struct snd_pcm_ops snd_hdspm_ops = { 6360 .open = snd_hdspm_open, 6361 .close = snd_hdspm_release, 6362 .ioctl = snd_hdspm_ioctl, 6363 .hw_params = snd_hdspm_hw_params, 6364 .hw_free = snd_hdspm_hw_free, 6365 .prepare = snd_hdspm_prepare, 6366 .trigger = snd_hdspm_trigger, 6367 .pointer = snd_hdspm_hw_pointer, 6368 }; 6369 6370 static int snd_hdspm_create_hwdep(struct snd_card *card, 6371 struct hdspm *hdspm) 6372 { 6373 struct snd_hwdep *hw; 6374 int err; 6375 6376 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw); 6377 if (err < 0) 6378 return err; 6379 6380 hdspm->hwdep = hw; 6381 hw->private_data = hdspm; 6382 strcpy(hw->name, "HDSPM hwdep interface"); 6383 6384 hw->ops.open = snd_hdspm_hwdep_dummy_op; 6385 hw->ops.ioctl = snd_hdspm_hwdep_ioctl; 6386 hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl; 6387 hw->ops.release = snd_hdspm_hwdep_dummy_op; 6388 6389 return 0; 6390 } 6391 6392 6393 /*------------------------------------------------------------ 6394 memory interface 6395 ------------------------------------------------------------*/ 6396 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm) 6397 { 6398 struct snd_pcm *pcm; 6399 size_t wanted; 6400 6401 pcm = hdspm->pcm; 6402 6403 wanted = HDSPM_DMA_AREA_BYTES; 6404 6405 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG, 6406 &hdspm->pci->dev, 6407 wanted, wanted); 6408 dev_dbg(hdspm->card->dev, " Preallocated %zd Bytes\n", wanted); 6409 return 0; 6410 } 6411 6412 /* Inform the card what DMA addresses to use for the indicated channel. */ 6413 /* Each channel got 16 4K pages allocated for DMA transfers. */ 6414 static void hdspm_set_channel_dma_addr(struct hdspm *hdspm, 6415 struct snd_pcm_substream *substream, 6416 unsigned int reg, int channel) 6417 { 6418 int i; 6419 6420 for (i = channel * 16; i < channel * 16 + 16; i++) 6421 hdspm_write(hdspm, reg + 4 * i, 6422 snd_pcm_sgbuf_get_addr(substream, 4096 * i)); 6423 } 6424 6425 6426 /* ------------- ALSA Devices ---------------------------- */ 6427 static int snd_hdspm_create_pcm(struct snd_card *card, 6428 struct hdspm *hdspm) 6429 { 6430 struct snd_pcm *pcm; 6431 int err; 6432 6433 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm); 6434 if (err < 0) 6435 return err; 6436 6437 hdspm->pcm = pcm; 6438 pcm->private_data = hdspm; 6439 strcpy(pcm->name, hdspm->card_name); 6440 6441 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 6442 &snd_hdspm_ops); 6443 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 6444 &snd_hdspm_ops); 6445 6446 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 6447 6448 err = snd_hdspm_preallocate_memory(hdspm); 6449 if (err < 0) 6450 return err; 6451 6452 return 0; 6453 } 6454 6455 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm) 6456 { 6457 int i; 6458 6459 for (i = 0; i < hdspm->midiPorts; i++) 6460 snd_hdspm_flush_midi_input(hdspm, i); 6461 } 6462 6463 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 6464 struct hdspm *hdspm) 6465 { 6466 int err, i; 6467 6468 dev_dbg(card->dev, "Create card...\n"); 6469 err = snd_hdspm_create_pcm(card, hdspm); 6470 if (err < 0) 6471 return err; 6472 6473 i = 0; 6474 while (i < hdspm->midiPorts) { 6475 err = snd_hdspm_create_midi(card, hdspm, i); 6476 if (err < 0) { 6477 return err; 6478 } 6479 i++; 6480 } 6481 6482 err = snd_hdspm_create_controls(card, hdspm); 6483 if (err < 0) 6484 return err; 6485 6486 err = snd_hdspm_create_hwdep(card, hdspm); 6487 if (err < 0) 6488 return err; 6489 6490 dev_dbg(card->dev, "proc init...\n"); 6491 snd_hdspm_proc_init(hdspm); 6492 6493 hdspm->system_sample_rate = -1; 6494 hdspm->last_external_sample_rate = -1; 6495 hdspm->last_internal_sample_rate = -1; 6496 hdspm->playback_pid = -1; 6497 hdspm->capture_pid = -1; 6498 hdspm->capture_substream = NULL; 6499 hdspm->playback_substream = NULL; 6500 6501 dev_dbg(card->dev, "Set defaults...\n"); 6502 err = snd_hdspm_set_defaults(hdspm); 6503 if (err < 0) 6504 return err; 6505 6506 dev_dbg(card->dev, "Update mixer controls...\n"); 6507 hdspm_update_simple_mixer_controls(hdspm); 6508 6509 dev_dbg(card->dev, "Initializing complete?\n"); 6510 6511 err = snd_card_register(card); 6512 if (err < 0) { 6513 dev_err(card->dev, "error registering card\n"); 6514 return err; 6515 } 6516 6517 dev_dbg(card->dev, "... yes now\n"); 6518 6519 return 0; 6520 } 6521 6522 static int snd_hdspm_create(struct snd_card *card, 6523 struct hdspm *hdspm) 6524 { 6525 6526 struct pci_dev *pci = hdspm->pci; 6527 int err; 6528 unsigned long io_extent; 6529 6530 hdspm->irq = -1; 6531 hdspm->card = card; 6532 6533 spin_lock_init(&hdspm->lock); 6534 INIT_WORK(&hdspm->midi_work, hdspm_midi_work); 6535 6536 pci_read_config_word(hdspm->pci, 6537 PCI_CLASS_REVISION, &hdspm->firmware_rev); 6538 6539 strcpy(card->mixername, "Xilinx FPGA"); 6540 strcpy(card->driver, "HDSPM"); 6541 6542 switch (hdspm->firmware_rev) { 6543 case HDSPM_RAYDAT_REV: 6544 hdspm->io_type = RayDAT; 6545 hdspm->card_name = "RME RayDAT"; 6546 hdspm->midiPorts = 2; 6547 break; 6548 case HDSPM_AIO_REV: 6549 hdspm->io_type = AIO; 6550 hdspm->card_name = "RME AIO"; 6551 hdspm->midiPorts = 1; 6552 break; 6553 case HDSPM_MADIFACE_REV: 6554 hdspm->io_type = MADIface; 6555 hdspm->card_name = "RME MADIface"; 6556 hdspm->midiPorts = 1; 6557 break; 6558 default: 6559 if ((hdspm->firmware_rev == 0xf0) || 6560 ((hdspm->firmware_rev >= 0xe6) && 6561 (hdspm->firmware_rev <= 0xea))) { 6562 hdspm->io_type = AES32; 6563 hdspm->card_name = "RME AES32"; 6564 hdspm->midiPorts = 2; 6565 } else if ((hdspm->firmware_rev == 0xd2) || 6566 ((hdspm->firmware_rev >= 0xc8) && 6567 (hdspm->firmware_rev <= 0xcf))) { 6568 hdspm->io_type = MADI; 6569 hdspm->card_name = "RME MADI"; 6570 hdspm->midiPorts = 3; 6571 } else { 6572 dev_err(card->dev, 6573 "unknown firmware revision %x\n", 6574 hdspm->firmware_rev); 6575 return -ENODEV; 6576 } 6577 } 6578 6579 err = pci_enable_device(pci); 6580 if (err < 0) 6581 return err; 6582 6583 pci_set_master(hdspm->pci); 6584 6585 err = pci_request_regions(pci, "hdspm"); 6586 if (err < 0) 6587 return err; 6588 6589 hdspm->port = pci_resource_start(pci, 0); 6590 io_extent = pci_resource_len(pci, 0); 6591 6592 dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n", 6593 hdspm->port, hdspm->port + io_extent - 1); 6594 6595 hdspm->iobase = ioremap(hdspm->port, io_extent); 6596 if (!hdspm->iobase) { 6597 dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n", 6598 hdspm->port, hdspm->port + io_extent - 1); 6599 return -EBUSY; 6600 } 6601 dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n", 6602 (unsigned long)hdspm->iobase, hdspm->port, 6603 hdspm->port + io_extent - 1); 6604 6605 if (request_irq(pci->irq, snd_hdspm_interrupt, 6606 IRQF_SHARED, KBUILD_MODNAME, hdspm)) { 6607 dev_err(card->dev, "unable to use IRQ %d\n", pci->irq); 6608 return -EBUSY; 6609 } 6610 6611 dev_dbg(card->dev, "use IRQ %d\n", pci->irq); 6612 6613 hdspm->irq = pci->irq; 6614 card->sync_irq = hdspm->irq; 6615 6616 dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n", 6617 sizeof(*hdspm->mixer)); 6618 hdspm->mixer = kzalloc(sizeof(*hdspm->mixer), GFP_KERNEL); 6619 if (!hdspm->mixer) 6620 return -ENOMEM; 6621 6622 hdspm->port_names_in = NULL; 6623 hdspm->port_names_out = NULL; 6624 6625 switch (hdspm->io_type) { 6626 case AES32: 6627 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS; 6628 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS; 6629 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS; 6630 6631 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6632 channel_map_aes32; 6633 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6634 channel_map_aes32; 6635 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6636 channel_map_aes32; 6637 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6638 texts_ports_aes32; 6639 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6640 texts_ports_aes32; 6641 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6642 texts_ports_aes32; 6643 6644 hdspm->max_channels_out = hdspm->max_channels_in = 6645 AES32_CHANNELS; 6646 hdspm->port_names_in = hdspm->port_names_out = 6647 texts_ports_aes32; 6648 hdspm->channel_map_in = hdspm->channel_map_out = 6649 channel_map_aes32; 6650 6651 break; 6652 6653 case MADI: 6654 case MADIface: 6655 hdspm->ss_in_channels = hdspm->ss_out_channels = 6656 MADI_SS_CHANNELS; 6657 hdspm->ds_in_channels = hdspm->ds_out_channels = 6658 MADI_DS_CHANNELS; 6659 hdspm->qs_in_channels = hdspm->qs_out_channels = 6660 MADI_QS_CHANNELS; 6661 6662 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6663 channel_map_unity_ss; 6664 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6665 channel_map_unity_ss; 6666 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6667 channel_map_unity_ss; 6668 6669 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6670 texts_ports_madi; 6671 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6672 texts_ports_madi; 6673 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6674 texts_ports_madi; 6675 break; 6676 6677 case AIO: 6678 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS; 6679 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS; 6680 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS; 6681 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS; 6682 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS; 6683 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS; 6684 6685 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) { 6686 dev_info(card->dev, "AEB input board found\n"); 6687 hdspm->ss_in_channels += 4; 6688 hdspm->ds_in_channels += 4; 6689 hdspm->qs_in_channels += 4; 6690 } 6691 6692 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) { 6693 dev_info(card->dev, "AEB output board found\n"); 6694 hdspm->ss_out_channels += 4; 6695 hdspm->ds_out_channels += 4; 6696 hdspm->qs_out_channels += 4; 6697 } 6698 6699 hdspm->channel_map_out_ss = channel_map_aio_out_ss; 6700 hdspm->channel_map_out_ds = channel_map_aio_out_ds; 6701 hdspm->channel_map_out_qs = channel_map_aio_out_qs; 6702 6703 hdspm->channel_map_in_ss = channel_map_aio_in_ss; 6704 hdspm->channel_map_in_ds = channel_map_aio_in_ds; 6705 hdspm->channel_map_in_qs = channel_map_aio_in_qs; 6706 6707 hdspm->port_names_in_ss = texts_ports_aio_in_ss; 6708 hdspm->port_names_out_ss = texts_ports_aio_out_ss; 6709 hdspm->port_names_in_ds = texts_ports_aio_in_ds; 6710 hdspm->port_names_out_ds = texts_ports_aio_out_ds; 6711 hdspm->port_names_in_qs = texts_ports_aio_in_qs; 6712 hdspm->port_names_out_qs = texts_ports_aio_out_qs; 6713 6714 break; 6715 6716 case RayDAT: 6717 hdspm->ss_in_channels = hdspm->ss_out_channels = 6718 RAYDAT_SS_CHANNELS; 6719 hdspm->ds_in_channels = hdspm->ds_out_channels = 6720 RAYDAT_DS_CHANNELS; 6721 hdspm->qs_in_channels = hdspm->qs_out_channels = 6722 RAYDAT_QS_CHANNELS; 6723 6724 hdspm->max_channels_in = RAYDAT_SS_CHANNELS; 6725 hdspm->max_channels_out = RAYDAT_SS_CHANNELS; 6726 6727 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6728 channel_map_raydat_ss; 6729 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6730 channel_map_raydat_ds; 6731 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6732 channel_map_raydat_qs; 6733 hdspm->channel_map_in = hdspm->channel_map_out = 6734 channel_map_raydat_ss; 6735 6736 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6737 texts_ports_raydat_ss; 6738 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6739 texts_ports_raydat_ds; 6740 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6741 texts_ports_raydat_qs; 6742 6743 6744 break; 6745 6746 } 6747 6748 /* TCO detection */ 6749 switch (hdspm->io_type) { 6750 case AIO: 6751 case RayDAT: 6752 if (hdspm_read(hdspm, HDSPM_statusRegister2) & 6753 HDSPM_s2_tco_detect) { 6754 hdspm->midiPorts++; 6755 hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL); 6756 if (hdspm->tco) 6757 hdspm_tco_write(hdspm); 6758 6759 dev_info(card->dev, "AIO/RayDAT TCO module found\n"); 6760 } else { 6761 hdspm->tco = NULL; 6762 } 6763 break; 6764 6765 case MADI: 6766 case AES32: 6767 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) { 6768 hdspm->midiPorts++; 6769 hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL); 6770 if (hdspm->tco) 6771 hdspm_tco_write(hdspm); 6772 6773 dev_info(card->dev, "MADI/AES TCO module found\n"); 6774 } else { 6775 hdspm->tco = NULL; 6776 } 6777 break; 6778 6779 default: 6780 hdspm->tco = NULL; 6781 } 6782 6783 /* texts */ 6784 switch (hdspm->io_type) { 6785 case AES32: 6786 if (hdspm->tco) { 6787 hdspm->texts_autosync = texts_autosync_aes_tco; 6788 hdspm->texts_autosync_items = 6789 ARRAY_SIZE(texts_autosync_aes_tco); 6790 } else { 6791 hdspm->texts_autosync = texts_autosync_aes; 6792 hdspm->texts_autosync_items = 6793 ARRAY_SIZE(texts_autosync_aes); 6794 } 6795 break; 6796 6797 case MADI: 6798 if (hdspm->tco) { 6799 hdspm->texts_autosync = texts_autosync_madi_tco; 6800 hdspm->texts_autosync_items = 4; 6801 } else { 6802 hdspm->texts_autosync = texts_autosync_madi; 6803 hdspm->texts_autosync_items = 3; 6804 } 6805 break; 6806 6807 case MADIface: 6808 6809 break; 6810 6811 case RayDAT: 6812 if (hdspm->tco) { 6813 hdspm->texts_autosync = texts_autosync_raydat_tco; 6814 hdspm->texts_autosync_items = 9; 6815 } else { 6816 hdspm->texts_autosync = texts_autosync_raydat; 6817 hdspm->texts_autosync_items = 8; 6818 } 6819 break; 6820 6821 case AIO: 6822 if (hdspm->tco) { 6823 hdspm->texts_autosync = texts_autosync_aio_tco; 6824 hdspm->texts_autosync_items = 6; 6825 } else { 6826 hdspm->texts_autosync = texts_autosync_aio; 6827 hdspm->texts_autosync_items = 5; 6828 } 6829 break; 6830 6831 } 6832 6833 if (hdspm->io_type != MADIface) { 6834 hdspm->serial = (hdspm_read(hdspm, 6835 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF; 6836 /* id contains either a user-provided value or the default 6837 * NULL. If it's the default, we're safe to 6838 * fill card->id with the serial number. 6839 * 6840 * If the serial number is 0xFFFFFF, then we're dealing with 6841 * an old PCI revision that comes without a sane number. In 6842 * this case, we don't set card->id to avoid collisions 6843 * when running with multiple cards. 6844 */ 6845 if (!id[hdspm->dev] && hdspm->serial != 0xFFFFFF) { 6846 snprintf(card->id, sizeof(card->id), 6847 "HDSPMx%06x", hdspm->serial); 6848 snd_card_set_id(card, card->id); 6849 } 6850 } 6851 6852 dev_dbg(card->dev, "create alsa devices.\n"); 6853 err = snd_hdspm_create_alsa_devices(card, hdspm); 6854 if (err < 0) 6855 return err; 6856 6857 snd_hdspm_initialize_midi_flush(hdspm); 6858 6859 return 0; 6860 } 6861 6862 6863 static int snd_hdspm_free(struct hdspm * hdspm) 6864 { 6865 6866 if (hdspm->port) { 6867 cancel_work_sync(&hdspm->midi_work); 6868 6869 /* stop th audio, and cancel all interrupts */ 6870 hdspm->control_register &= 6871 ~(HDSPM_Start | HDSPM_AudioInterruptEnable | 6872 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable | 6873 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable); 6874 hdspm_write(hdspm, HDSPM_controlRegister, 6875 hdspm->control_register); 6876 } 6877 6878 if (hdspm->irq >= 0) 6879 free_irq(hdspm->irq, (void *) hdspm); 6880 6881 kfree(hdspm->mixer); 6882 iounmap(hdspm->iobase); 6883 6884 if (hdspm->port) 6885 pci_release_regions(hdspm->pci); 6886 6887 pci_disable_device(hdspm->pci); 6888 return 0; 6889 } 6890 6891 6892 static void snd_hdspm_card_free(struct snd_card *card) 6893 { 6894 struct hdspm *hdspm = card->private_data; 6895 6896 if (hdspm) 6897 snd_hdspm_free(hdspm); 6898 } 6899 6900 6901 static int snd_hdspm_probe(struct pci_dev *pci, 6902 const struct pci_device_id *pci_id) 6903 { 6904 static int dev; 6905 struct hdspm *hdspm; 6906 struct snd_card *card; 6907 int err; 6908 6909 if (dev >= SNDRV_CARDS) 6910 return -ENODEV; 6911 if (!enable[dev]) { 6912 dev++; 6913 return -ENOENT; 6914 } 6915 6916 err = snd_card_new(&pci->dev, index[dev], id[dev], 6917 THIS_MODULE, sizeof(*hdspm), &card); 6918 if (err < 0) 6919 return err; 6920 6921 hdspm = card->private_data; 6922 card->private_free = snd_hdspm_card_free; 6923 hdspm->dev = dev; 6924 hdspm->pci = pci; 6925 6926 err = snd_hdspm_create(card, hdspm); 6927 if (err < 0) 6928 goto free_card; 6929 6930 if (hdspm->io_type != MADIface) { 6931 snprintf(card->shortname, sizeof(card->shortname), "%s_%x", 6932 hdspm->card_name, hdspm->serial); 6933 snprintf(card->longname, sizeof(card->longname), 6934 "%s S/N 0x%x at 0x%lx, irq %d", 6935 hdspm->card_name, hdspm->serial, 6936 hdspm->port, hdspm->irq); 6937 } else { 6938 snprintf(card->shortname, sizeof(card->shortname), "%s", 6939 hdspm->card_name); 6940 snprintf(card->longname, sizeof(card->longname), 6941 "%s at 0x%lx, irq %d", 6942 hdspm->card_name, hdspm->port, hdspm->irq); 6943 } 6944 6945 err = snd_card_register(card); 6946 if (err < 0) 6947 goto free_card; 6948 6949 pci_set_drvdata(pci, card); 6950 6951 dev++; 6952 return 0; 6953 6954 free_card: 6955 snd_card_free(card); 6956 return err; 6957 } 6958 6959 static void snd_hdspm_remove(struct pci_dev *pci) 6960 { 6961 snd_card_free(pci_get_drvdata(pci)); 6962 } 6963 6964 static struct pci_driver hdspm_driver = { 6965 .name = KBUILD_MODNAME, 6966 .id_table = snd_hdspm_ids, 6967 .probe = snd_hdspm_probe, 6968 .remove = snd_hdspm_remove, 6969 }; 6970 6971 module_pci_driver(hdspm_driver); 6972