1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ALSA driver for RME Hammerfall DSP MADI audio interface(s) 4 * 5 * Copyright (c) 2003 Winfried Ritsch (IEM) 6 * code based on hdsp.c Paul Davis 7 * Marcus Andersson 8 * Thomas Charbonnel 9 * Modified 2006-06-01 for AES32 support by Remy Bruno 10 * <remy.bruno@trinnov.com> 11 * 12 * Modified 2009-04-13 for proper metering by Florian Faber 13 * <faber@faberman.de> 14 * 15 * Modified 2009-04-14 for native float support by Florian Faber 16 * <faber@faberman.de> 17 * 18 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber 19 * <faber@faberman.de> 20 * 21 * Modified 2009-04-30 added hw serial number support by Florian Faber 22 * 23 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth 24 * 25 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth 26 * 27 * Modified 2019-05-23 fix AIO single speed ADAT capture and playback 28 * by Philippe.Bekaert@uhasselt.be 29 */ 30 31 /* ************* Register Documentation ******************************************************* 32 * 33 * Work in progress! Documentation is based on the code in this file. 34 * 35 * --------- HDSPM_controlRegister --------- 36 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 37 * :||||.||||:||||.||||:||||.||||:||||.||||: 38 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 39 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 40 * :||||.||||:||||.||||:||||.||||:||||.||||: 41 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 42 * : . : . : . : x . : HDSPM_AudioInterruptEnable \_ setting both bits 43 * : . : . : . : . x: HDSPM_Start / enables audio IO 44 * : . : . : . : x. : HDSPM_ClockModeMaster - 1: Master, 0: Slave 45 * : . : . : . : .210 : HDSPM_LatencyMask - 3 Bit value for latency 46 * : . : . : . : . : 0:64, 1:128, 2:256, 3:512, 47 * : . : . : . : . : 4:1024, 5:2048, 6:4096, 7:8192 48 * :x . : . : . x:xx . : HDSPM_FrequencyMask 49 * : . : . : . :10 . : HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=?? 50 * : . : . : . x: . : <MADI> HDSPM_DoubleSpeed 51 * :x . : . : . : . : <MADI> HDSPM_QuadSpeed 52 * : . 3 : . 10: 2 . : . : HDSPM_SyncRefMask : 53 * : . : . x: . : . : HDSPM_SyncRef0 54 * : . : . x : . : . : HDSPM_SyncRef1 55 * : . : . : x . : . : <AES32> HDSPM_SyncRef2 56 * : . x : . : . : . : <AES32> HDSPM_SyncRef3 57 * : . : . 10: . : . : <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn 58 * : . 3 : . 10: 2 . : . : <AES32> 0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn? 59 * : . x : . : . : . : <MADIe> HDSPe_FLOAT_FORMAT 60 * : . : . : x . : . : <MADI> HDSPM_InputSelect0 : 0=optical,1=coax 61 * : . : . :x . : . : <MADI> HDSPM_InputSelect1 62 * : . : .x : . : . : <MADI> HDSPM_clr_tms 63 * : . : . : . x : . : <MADI> HDSPM_TX_64ch 64 * : . : . : . x : . : <AES32> HDSPM_Emphasis 65 * : . : . : .x : . : <MADI> HDSPM_AutoInp 66 * : . : . x : . : . : <MADI> HDSPM_SMUX 67 * : . : .x : . : . : <MADI> HDSPM_clr_tms 68 * : . : x. : . : . : <MADI> HDSPM_taxi_reset 69 * : . x: . : . : . : <MADI> HDSPM_LineOut 70 * : . x: . : . : . : <AES32> ?????????????????? 71 * : . : x. : . : . : <AES32> HDSPM_WCK48 72 * : . : . : .x : . : <AES32> HDSPM_Dolby 73 * : . : x . : . : . : HDSPM_Midi0InterruptEnable 74 * : . :x . : . : . : HDSPM_Midi1InterruptEnable 75 * : . : x . : . : . : HDSPM_Midi2InterruptEnable 76 * : . x : . : . : . : <MADI> HDSPM_Midi3InterruptEnable 77 * : . x : . : . : . : <AES32> HDSPM_DS_DoubleWire 78 * : .x : . : . : . : <AES32> HDSPM_QS_DoubleWire 79 * : x. : . : . : . : <AES32> HDSPM_QS_QuadWire 80 * : . : . : . x : . : <AES32> HDSPM_Professional 81 * : x . : . : . : . : HDSPM_wclk_sel 82 * : . : . : . : . : 83 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 84 * :||||.||||:||||.||||:||||.||||:||||.||||: 85 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 86 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 87 * :||||.||||:||||.||||:||||.||||:||||.||||: 88 * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit 89 * 90 * 91 * 92 * AIO / RayDAT only 93 * 94 * ------------ HDSPM_WR_SETTINGS ---------- 95 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 96 * :1098.7654:3210.9876:5432.1098:7654.3210: 97 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 98 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 99 * :||||.||||:||||.||||:||||.||||:||||.||||: 100 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 101 * : . : . : . : . x: HDSPM_c0Master 1: Master, 0: Slave 102 * : . : . : . : . x : HDSPM_c0_SyncRef0 103 * : . : . : . : . x : HDSPM_c0_SyncRef1 104 * : . : . : . : .x : HDSPM_c0_SyncRef2 105 * : . : . : . : x. : HDSPM_c0_SyncRef3 106 * : . : . : . : 3.210 : HDSPM_c0_SyncRefMask: 107 * : . : . : . : . : RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4, 108 * : . : . : . : . : 9:TCO, 10:SyncIn 109 * : . : . : . : . : AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT, 110 * : . : . : . : . : 9:TCO, 10:SyncIn 111 * : . : . : . : . : 112 * : . : . : . : . : 113 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 114 * :1098.7654:3210.9876:5432.1098:7654.3210: 115 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 116 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 117 * :||||.||||:||||.||||:||||.||||:||||.||||: 118 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 119 * 120 */ 121 #include <linux/init.h> 122 #include <linux/delay.h> 123 #include <linux/interrupt.h> 124 #include <linux/module.h> 125 #include <linux/slab.h> 126 #include <linux/pci.h> 127 #include <linux/math64.h> 128 #include <linux/io.h> 129 #include <linux/nospec.h> 130 131 #include <sound/core.h> 132 #include <sound/control.h> 133 #include <sound/pcm.h> 134 #include <sound/pcm_params.h> 135 #include <sound/info.h> 136 #include <sound/asoundef.h> 137 #include <sound/rawmidi.h> 138 #include <sound/hwdep.h> 139 #include <sound/initval.h> 140 141 #include <sound/hdspm.h> 142 143 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 144 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 145 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ 146 147 module_param_array(index, int, NULL, 0444); 148 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface."); 149 150 module_param_array(id, charp, NULL, 0444); 151 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface."); 152 153 module_param_array(enable, bool, NULL, 0444); 154 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards."); 155 156 157 MODULE_AUTHOR 158 ( 159 "Winfried Ritsch <ritsch_AT_iem.at>, " 160 "Paul Davis <paul@linuxaudiosystems.com>, " 161 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, " 162 "Remy Bruno <remy.bruno@trinnov.com>, " 163 "Florian Faber <faberman@linuxproaudio.org>, " 164 "Adrian Knoth <adi@drcomp.erfurt.thur.de>" 165 ); 166 MODULE_DESCRIPTION("RME HDSPM"); 167 MODULE_LICENSE("GPL"); 168 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); 169 170 /* --- Write registers. --- 171 These are defined as byte-offsets from the iobase value. */ 172 173 #define HDSPM_WR_SETTINGS 0 174 #define HDSPM_outputBufferAddress 32 175 #define HDSPM_inputBufferAddress 36 176 #define HDSPM_controlRegister 64 177 #define HDSPM_interruptConfirmation 96 178 #define HDSPM_control2Reg 256 /* not in specs ???????? */ 179 #define HDSPM_freqReg 256 /* for setting arbitrary clock values (DDS feature) */ 180 #define HDSPM_midiDataOut0 352 /* just believe in old code */ 181 #define HDSPM_midiDataOut1 356 182 #define HDSPM_eeprom_wr 384 /* for AES32 */ 183 184 /* DMA enable for 64 channels, only Bit 0 is relevant */ 185 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */ 186 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */ 187 188 /* 16 page addresses for each of the 64 channels DMA buffer in and out 189 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */ 190 #define HDSPM_pageAddressBufferOut 8192 191 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4) 192 193 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */ 194 195 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */ 196 197 /* --- Read registers. --- 198 These are defined as byte-offsets from the iobase value */ 199 #define HDSPM_statusRegister 0 200 /*#define HDSPM_statusRegister2 96 */ 201 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at 202 * offset 192, for AES32 *and* MADI 203 * => need to check that offset 192 is working on MADI */ 204 #define HDSPM_statusRegister2 192 205 #define HDSPM_timecodeRegister 128 206 207 /* AIO, RayDAT */ 208 #define HDSPM_RD_STATUS_0 0 209 #define HDSPM_RD_STATUS_1 64 210 #define HDSPM_RD_STATUS_2 128 211 #define HDSPM_RD_STATUS_3 192 212 213 #define HDSPM_RD_TCO 256 214 #define HDSPM_RD_PLL_FREQ 512 215 #define HDSPM_WR_TCO 128 216 217 #define HDSPM_TCO1_TCO_lock 0x00000001 218 #define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002 219 #define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004 220 #define HDSPM_TCO1_LTC_Input_valid 0x00000008 221 #define HDSPM_TCO1_WCK_Input_valid 0x00000010 222 #define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020 223 #define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040 224 225 #define HDSPM_TCO1_set_TC 0x00000100 226 #define HDSPM_TCO1_set_drop_frame_flag 0x00000200 227 #define HDSPM_TCO1_LTC_Format_LSB 0x00000400 228 #define HDSPM_TCO1_LTC_Format_MSB 0x00000800 229 230 #define HDSPM_TCO2_TC_run 0x00010000 231 #define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000 232 #define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000 233 #define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000 234 #define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000 235 #define HDSPM_TCO2_set_jam_sync 0x00200000 236 #define HDSPM_TCO2_set_flywheel 0x00400000 237 238 #define HDSPM_TCO2_set_01_4 0x01000000 239 #define HDSPM_TCO2_set_pull_down 0x02000000 240 #define HDSPM_TCO2_set_pull_up 0x04000000 241 #define HDSPM_TCO2_set_freq 0x08000000 242 #define HDSPM_TCO2_set_term_75R 0x10000000 243 #define HDSPM_TCO2_set_input_LSB 0x20000000 244 #define HDSPM_TCO2_set_input_MSB 0x40000000 245 #define HDSPM_TCO2_set_freq_from_app 0x80000000 246 247 248 #define HDSPM_midiDataOut0 352 249 #define HDSPM_midiDataOut1 356 250 #define HDSPM_midiDataOut2 368 251 252 #define HDSPM_midiDataIn0 360 253 #define HDSPM_midiDataIn1 364 254 #define HDSPM_midiDataIn2 372 255 #define HDSPM_midiDataIn3 376 256 257 /* status is data bytes in MIDI-FIFO (0-128) */ 258 #define HDSPM_midiStatusOut0 384 259 #define HDSPM_midiStatusOut1 388 260 #define HDSPM_midiStatusOut2 400 261 262 #define HDSPM_midiStatusIn0 392 263 #define HDSPM_midiStatusIn1 396 264 #define HDSPM_midiStatusIn2 404 265 #define HDSPM_midiStatusIn3 408 266 267 268 /* the meters are regular i/o-mapped registers, but offset 269 considerably from the rest. the peak registers are reset 270 when read; the least-significant 4 bits are full-scale counters; 271 the actual peak value is in the most-significant 24 bits. 272 */ 273 274 #define HDSPM_MADI_INPUT_PEAK 4096 275 #define HDSPM_MADI_PLAYBACK_PEAK 4352 276 #define HDSPM_MADI_OUTPUT_PEAK 4608 277 278 #define HDSPM_MADI_INPUT_RMS_L 6144 279 #define HDSPM_MADI_PLAYBACK_RMS_L 6400 280 #define HDSPM_MADI_OUTPUT_RMS_L 6656 281 282 #define HDSPM_MADI_INPUT_RMS_H 7168 283 #define HDSPM_MADI_PLAYBACK_RMS_H 7424 284 #define HDSPM_MADI_OUTPUT_RMS_H 7680 285 286 /* --- Control Register bits --------- */ 287 #define HDSPM_Start (1<<0) /* start engine */ 288 289 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */ 290 #define HDSPM_Latency1 (1<<2) /* where n is defined */ 291 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */ 292 293 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */ 294 #define HDSPM_c0Master 0x1 /* Master clock bit in settings 295 register [RayDAT, AIO] */ 296 297 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */ 298 299 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ 300 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ 301 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 302 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */ 303 304 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */ 305 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, 306 56channelMODE=0 */ /* MADI ONLY*/ 307 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */ 308 309 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, 310 0=off, 1=on */ /* MADI ONLY */ 311 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */ 312 313 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax 314 * -- MADI ONLY 315 */ 316 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */ 317 318 #define HDSPM_SyncRef2 (1<<13) 319 #define HDSPM_SyncRef3 (1<<25) 320 321 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */ 322 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use 323 AES additional bits in 324 lower 5 Audiodatabits ??? */ 325 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */ 326 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */ 327 328 #define HDSPM_Midi0InterruptEnable 0x0400000 329 #define HDSPM_Midi1InterruptEnable 0x0800000 330 #define HDSPM_Midi2InterruptEnable 0x0200000 331 #define HDSPM_Midi3InterruptEnable 0x4000000 332 333 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ 334 #define HDSPe_FLOAT_FORMAT 0x2000000 335 336 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */ 337 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */ 338 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */ 339 340 #define HDSPM_wclk_sel (1<<30) 341 342 /* additional control register bits for AIO*/ 343 #define HDSPM_c0_Wck48 0x20 /* also RayDAT */ 344 #define HDSPM_c0_Input0 0x1000 345 #define HDSPM_c0_Input1 0x2000 346 #define HDSPM_c0_Spdif_Opt 0x4000 347 #define HDSPM_c0_Pro 0x8000 348 #define HDSPM_c0_clr_tms 0x10000 349 #define HDSPM_c0_AEB1 0x20000 350 #define HDSPM_c0_AEB2 0x40000 351 #define HDSPM_c0_LineOut 0x80000 352 #define HDSPM_c0_AD_GAIN0 0x100000 353 #define HDSPM_c0_AD_GAIN1 0x200000 354 #define HDSPM_c0_DA_GAIN0 0x400000 355 #define HDSPM_c0_DA_GAIN1 0x800000 356 #define HDSPM_c0_PH_GAIN0 0x1000000 357 #define HDSPM_c0_PH_GAIN1 0x2000000 358 #define HDSPM_c0_Sym6db 0x4000000 359 360 361 /* --- bit helper defines */ 362 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) 363 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\ 364 HDSPM_DoubleSpeed|HDSPM_QuadSpeed) 365 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) 366 #define HDSPM_InputOptical 0 367 #define HDSPM_InputCoaxial (HDSPM_InputSelect0) 368 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\ 369 HDSPM_SyncRef2|HDSPM_SyncRef3) 370 371 #define HDSPM_c0_SyncRef0 0x2 372 #define HDSPM_c0_SyncRef1 0x4 373 #define HDSPM_c0_SyncRef2 0x8 374 #define HDSPM_c0_SyncRef3 0x10 375 #define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\ 376 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3) 377 378 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */ 379 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */ 380 #define HDSPM_SYNC_FROM_TCO 2 381 #define HDSPM_SYNC_FROM_SYNC_IN 3 382 383 #define HDSPM_Frequency32KHz HDSPM_Frequency0 384 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1 385 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0) 386 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) 387 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) 388 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\ 389 HDSPM_Frequency0) 390 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0) 391 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1) 392 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\ 393 HDSPM_Frequency0) 394 395 396 /* Synccheck Status */ 397 #define HDSPM_SYNC_CHECK_NO_LOCK 0 398 #define HDSPM_SYNC_CHECK_LOCK 1 399 #define HDSPM_SYNC_CHECK_SYNC 2 400 401 /* AutoSync References - used by "autosync_ref" control switch */ 402 #define HDSPM_AUTOSYNC_FROM_WORD 0 403 #define HDSPM_AUTOSYNC_FROM_MADI 1 404 #define HDSPM_AUTOSYNC_FROM_TCO 2 405 #define HDSPM_AUTOSYNC_FROM_SYNC_IN 3 406 #define HDSPM_AUTOSYNC_FROM_NONE 4 407 408 /* Possible sources of MADI input */ 409 #define HDSPM_OPTICAL 0 /* optical */ 410 #define HDSPM_COAXIAL 1 /* BNC */ 411 412 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask) 413 #define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1)) 414 415 #define hdspm_encode_in(x) (((x)&0x3)<<14) 416 #define hdspm_decode_in(x) (((x)>>14)&0x3) 417 418 /* --- control2 register bits --- */ 419 #define HDSPM_TMS (1<<0) 420 #define HDSPM_TCK (1<<1) 421 #define HDSPM_TDI (1<<2) 422 #define HDSPM_JTAG (1<<3) 423 #define HDSPM_PWDN (1<<4) 424 #define HDSPM_PROGRAM (1<<5) 425 #define HDSPM_CONFIG_MODE_0 (1<<6) 426 #define HDSPM_CONFIG_MODE_1 (1<<7) 427 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/ 428 #define HDSPM_BIGENDIAN_MODE (1<<9) 429 #define HDSPM_RD_MULTIPLE (1<<10) 430 431 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and 432 that do not conflict with specific bits for AES32 seem to be valid also 433 for the AES32 434 */ 435 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ 436 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */ 437 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 438 * (like inp0) 439 */ 440 441 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */ 442 #define HDSPM_madiSync (1<<18) /* MADI is in sync */ 443 444 #define HDSPM_tcoLockMadi 0x00000020 /* Optional TCO locked status for HDSPe MADI*/ 445 #define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/ 446 447 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */ 448 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */ 449 450 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 451 /* since 64byte accurate, last 6 bits are not used */ 452 453 454 455 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */ 456 457 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */ 458 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */ 459 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */ 460 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */ 461 462 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with 463 * Interrupt 464 */ 465 #define HDSPM_tco_detect 0x08000000 466 #define HDSPM_tcoLockAes 0x20000000 /* Optional TCO locked status for HDSPe AES */ 467 468 #define HDSPM_s2_tco_detect 0x00000040 469 #define HDSPM_s2_AEBO_D 0x00000080 470 #define HDSPM_s2_AEBI_D 0x00000100 471 472 473 #define HDSPM_midi0IRQPending 0x40000000 474 #define HDSPM_midi1IRQPending 0x80000000 475 #define HDSPM_midi2IRQPending 0x20000000 476 #define HDSPM_midi2IRQPendingAES 0x00000020 477 #define HDSPM_midi3IRQPending 0x00200000 478 479 /* --- status bit helpers */ 480 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\ 481 HDSPM_madiFreq2|HDSPM_madiFreq3) 482 #define HDSPM_madiFreq32 (HDSPM_madiFreq0) 483 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1) 484 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1) 485 #define HDSPM_madiFreq64 (HDSPM_madiFreq2) 486 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2) 487 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2) 488 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2) 489 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) 490 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) 491 492 /* Status2 Register bits */ /* MADI ONLY */ 493 494 #define HDSPM_version0 (1<<0) /* not really defined but I guess */ 495 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */ 496 #define HDSPM_version2 (1<<2) 497 498 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */ 499 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */ 500 501 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */ 502 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */ 503 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, 111=128 */ 504 #define HDSPM_wc_freq3 0x800 /* 1000=176.4, 1001=192 */ 505 506 #define HDSPM_SyncRef0 0x10000 /* Sync Reference */ 507 #define HDSPM_SyncRef1 0x20000 508 509 #define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */ 510 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */ 511 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */ 512 513 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync) 514 515 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\ 516 HDSPM_wc_freq3) 517 #define HDSPM_wcFreq32 (HDSPM_wc_freq0) 518 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1) 519 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1) 520 #define HDSPM_wcFreq64 (HDSPM_wc_freq2) 521 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2) 522 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2) 523 #define HDSPM_wcFreq128 (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2) 524 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3) 525 #define HDSPM_wcFreq192 (HDSPM_wc_freq0|HDSPM_wc_freq3) 526 527 #define HDSPM_status1_F_0 0x0400000 528 #define HDSPM_status1_F_1 0x0800000 529 #define HDSPM_status1_F_2 0x1000000 530 #define HDSPM_status1_F_3 0x2000000 531 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3) 532 533 534 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 535 HDSPM_SelSyncRef2) 536 #define HDSPM_SelSyncRef_WORD 0 537 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) 538 #define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1) 539 #define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1) 540 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 541 HDSPM_SelSyncRef2) 542 543 /* 544 For AES32, bits for status, status2 and timecode are different 545 */ 546 /* status */ 547 #define HDSPM_AES32_wcLock 0x0200000 548 #define HDSPM_AES32_wcSync 0x0100000 549 #define HDSPM_AES32_wcFreq_bit 22 550 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function 551 HDSPM_bit2freq */ 552 #define HDSPM_AES32_syncref_bit 16 553 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */ 554 555 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0 556 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1 557 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2 558 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3 559 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4 560 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5 561 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6 562 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7 563 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8 564 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9 565 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10 566 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11 567 568 /* status2 */ 569 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */ 570 #define HDSPM_LockAES 0x80 571 #define HDSPM_LockAES1 0x80 572 #define HDSPM_LockAES2 0x40 573 #define HDSPM_LockAES3 0x20 574 #define HDSPM_LockAES4 0x10 575 #define HDSPM_LockAES5 0x8 576 #define HDSPM_LockAES6 0x4 577 #define HDSPM_LockAES7 0x2 578 #define HDSPM_LockAES8 0x1 579 /* 580 Timecode 581 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on 582 AES i+1 583 bits 3210 584 0001 32kHz 585 0010 44.1kHz 586 0011 48kHz 587 0100 64kHz 588 0101 88.2kHz 589 0110 96kHz 590 0111 128kHz 591 1000 176.4kHz 592 1001 192kHz 593 NB: Timecode register doesn't seem to work on AES32 card revision 230 594 */ 595 596 /* Mixer Values */ 597 #define UNITY_GAIN 32768 /* = 65536/2 */ 598 #define MINUS_INFINITY_GAIN 0 599 600 /* Number of channels for different Speed Modes */ 601 #define MADI_SS_CHANNELS 64 602 #define MADI_DS_CHANNELS 32 603 #define MADI_QS_CHANNELS 16 604 605 #define RAYDAT_SS_CHANNELS 36 606 #define RAYDAT_DS_CHANNELS 20 607 #define RAYDAT_QS_CHANNELS 12 608 609 #define AIO_IN_SS_CHANNELS 14 610 #define AIO_IN_DS_CHANNELS 10 611 #define AIO_IN_QS_CHANNELS 8 612 #define AIO_OUT_SS_CHANNELS 16 613 #define AIO_OUT_DS_CHANNELS 12 614 #define AIO_OUT_QS_CHANNELS 10 615 616 #define AES32_CHANNELS 16 617 618 /* the size of a substream (1 mono data stream) */ 619 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024) 620 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES) 621 622 /* the size of the area we need to allocate for DMA transfers. the 623 size is the same regardless of the number of channels, and 624 also the latency to use. 625 for one direction !!! 626 */ 627 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) 628 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) 629 630 #define HDSPM_RAYDAT_REV 211 631 #define HDSPM_AIO_REV 212 632 #define HDSPM_MADIFACE_REV 213 633 634 /* speed factor modes */ 635 #define HDSPM_SPEED_SINGLE 0 636 #define HDSPM_SPEED_DOUBLE 1 637 #define HDSPM_SPEED_QUAD 2 638 639 /* names for speed modes */ 640 static const char * const hdspm_speed_names[] = { "single", "double", "quad" }; 641 642 static const char *const texts_autosync_aes_tco[] = { "Word Clock", 643 "AES1", "AES2", "AES3", "AES4", 644 "AES5", "AES6", "AES7", "AES8", 645 "TCO", "Sync In" 646 }; 647 static const char *const texts_autosync_aes[] = { "Word Clock", 648 "AES1", "AES2", "AES3", "AES4", 649 "AES5", "AES6", "AES7", "AES8", 650 "Sync In" 651 }; 652 static const char *const texts_autosync_madi_tco[] = { "Word Clock", 653 "MADI", "TCO", "Sync In" }; 654 static const char *const texts_autosync_madi[] = { "Word Clock", 655 "MADI", "Sync In" }; 656 657 static const char *const texts_autosync_raydat_tco[] = { 658 "Word Clock", 659 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 660 "AES", "SPDIF", "TCO", "Sync In" 661 }; 662 static const char *const texts_autosync_raydat[] = { 663 "Word Clock", 664 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 665 "AES", "SPDIF", "Sync In" 666 }; 667 static const char *const texts_autosync_aio_tco[] = { 668 "Word Clock", 669 "ADAT", "AES", "SPDIF", "TCO", "Sync In" 670 }; 671 static const char *const texts_autosync_aio[] = { "Word Clock", 672 "ADAT", "AES", "SPDIF", "Sync In" }; 673 674 static const char *const texts_freq[] = { 675 "No Lock", 676 "32 kHz", 677 "44.1 kHz", 678 "48 kHz", 679 "64 kHz", 680 "88.2 kHz", 681 "96 kHz", 682 "128 kHz", 683 "176.4 kHz", 684 "192 kHz" 685 }; 686 687 static const char * const texts_ports_madi[] = { 688 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6", 689 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12", 690 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18", 691 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24", 692 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30", 693 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36", 694 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42", 695 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48", 696 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54", 697 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60", 698 "MADI.61", "MADI.62", "MADI.63", "MADI.64", 699 }; 700 701 702 static const char * const texts_ports_raydat_ss[] = { 703 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6", 704 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 705 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2", 706 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8", 707 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6", 708 "ADAT4.7", "ADAT4.8", 709 "AES.L", "AES.R", 710 "SPDIF.L", "SPDIF.R" 711 }; 712 713 static const char * const texts_ports_raydat_ds[] = { 714 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", 715 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 716 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4", 717 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", 718 "AES.L", "AES.R", 719 "SPDIF.L", "SPDIF.R" 720 }; 721 722 static const char * const texts_ports_raydat_qs[] = { 723 "ADAT1.1", "ADAT1.2", 724 "ADAT2.1", "ADAT2.2", 725 "ADAT3.1", "ADAT3.2", 726 "ADAT4.1", "ADAT4.2", 727 "AES.L", "AES.R", 728 "SPDIF.L", "SPDIF.R" 729 }; 730 731 732 static const char * const texts_ports_aio_in_ss[] = { 733 "Analogue.L", "Analogue.R", 734 "AES.L", "AES.R", 735 "SPDIF.L", "SPDIF.R", 736 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 737 "ADAT.7", "ADAT.8", 738 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 739 }; 740 741 static const char * const texts_ports_aio_out_ss[] = { 742 "Analogue.L", "Analogue.R", 743 "AES.L", "AES.R", 744 "SPDIF.L", "SPDIF.R", 745 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 746 "ADAT.7", "ADAT.8", 747 "Phone.L", "Phone.R", 748 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 749 }; 750 751 static const char * const texts_ports_aio_in_ds[] = { 752 "Analogue.L", "Analogue.R", 753 "AES.L", "AES.R", 754 "SPDIF.L", "SPDIF.R", 755 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 756 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 757 }; 758 759 static const char * const texts_ports_aio_out_ds[] = { 760 "Analogue.L", "Analogue.R", 761 "AES.L", "AES.R", 762 "SPDIF.L", "SPDIF.R", 763 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 764 "Phone.L", "Phone.R", 765 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 766 }; 767 768 static const char * const texts_ports_aio_in_qs[] = { 769 "Analogue.L", "Analogue.R", 770 "AES.L", "AES.R", 771 "SPDIF.L", "SPDIF.R", 772 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 773 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 774 }; 775 776 static const char * const texts_ports_aio_out_qs[] = { 777 "Analogue.L", "Analogue.R", 778 "AES.L", "AES.R", 779 "SPDIF.L", "SPDIF.R", 780 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 781 "Phone.L", "Phone.R", 782 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 783 }; 784 785 static const char * const texts_ports_aes32[] = { 786 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7", 787 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14", 788 "AES.15", "AES.16" 789 }; 790 791 /* These tables map the ALSA channels 1..N to the channels that we 792 need to use in order to find the relevant channel buffer. RME 793 refers to this kind of mapping as between "the ADAT channel and 794 the DMA channel." We index it using the logical audio channel, 795 and the value is the DMA channel (i.e. channel buffer number) 796 where the data for that channel can be read/written from/to. 797 */ 798 799 static const char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = { 800 0, 1, 2, 3, 4, 5, 6, 7, 801 8, 9, 10, 11, 12, 13, 14, 15, 802 16, 17, 18, 19, 20, 21, 22, 23, 803 24, 25, 26, 27, 28, 29, 30, 31, 804 32, 33, 34, 35, 36, 37, 38, 39, 805 40, 41, 42, 43, 44, 45, 46, 47, 806 48, 49, 50, 51, 52, 53, 54, 55, 807 56, 57, 58, 59, 60, 61, 62, 63 808 }; 809 810 static const char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = { 811 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */ 812 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */ 813 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */ 814 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */ 815 0, 1, /* AES */ 816 2, 3, /* SPDIF */ 817 -1, -1, -1, -1, 818 -1, -1, -1, -1, -1, -1, -1, -1, 819 -1, -1, -1, -1, -1, -1, -1, -1, 820 -1, -1, -1, -1, -1, -1, -1, -1, 821 }; 822 823 static const char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = { 824 4, 5, 6, 7, /* ADAT 1 */ 825 8, 9, 10, 11, /* ADAT 2 */ 826 12, 13, 14, 15, /* ADAT 3 */ 827 16, 17, 18, 19, /* ADAT 4 */ 828 0, 1, /* AES */ 829 2, 3, /* SPDIF */ 830 -1, -1, -1, -1, 831 -1, -1, -1, -1, -1, -1, -1, -1, 832 -1, -1, -1, -1, -1, -1, -1, -1, 833 -1, -1, -1, -1, -1, -1, -1, -1, 834 -1, -1, -1, -1, -1, -1, -1, -1, 835 -1, -1, -1, -1, -1, -1, -1, -1, 836 }; 837 838 static const char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = { 839 4, 5, /* ADAT 1 */ 840 6, 7, /* ADAT 2 */ 841 8, 9, /* ADAT 3 */ 842 10, 11, /* ADAT 4 */ 843 0, 1, /* AES */ 844 2, 3, /* SPDIF */ 845 -1, -1, -1, -1, 846 -1, -1, -1, -1, -1, -1, -1, -1, 847 -1, -1, -1, -1, -1, -1, -1, -1, 848 -1, -1, -1, -1, -1, -1, -1, -1, 849 -1, -1, -1, -1, -1, -1, -1, -1, 850 -1, -1, -1, -1, -1, -1, -1, -1, 851 -1, -1, -1, -1, -1, -1, -1, -1, 852 }; 853 854 static const char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = { 855 0, 1, /* line in */ 856 8, 9, /* aes in, */ 857 10, 11, /* spdif in */ 858 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */ 859 2, 3, 4, 5, /* AEB */ 860 -1, -1, -1, -1, -1, -1, 861 -1, -1, -1, -1, -1, -1, -1, -1, 862 -1, -1, -1, -1, -1, -1, -1, -1, 863 -1, -1, -1, -1, -1, -1, -1, -1, 864 -1, -1, -1, -1, -1, -1, -1, -1, 865 -1, -1, -1, -1, -1, -1, -1, -1, 866 }; 867 868 static const char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = { 869 0, 1, /* line out */ 870 8, 9, /* aes out */ 871 10, 11, /* spdif out */ 872 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */ 873 6, 7, /* phone out */ 874 2, 3, 4, 5, /* AEB */ 875 -1, -1, -1, -1, 876 -1, -1, -1, -1, -1, -1, -1, -1, 877 -1, -1, -1, -1, -1, -1, -1, -1, 878 -1, -1, -1, -1, -1, -1, -1, -1, 879 -1, -1, -1, -1, -1, -1, -1, -1, 880 -1, -1, -1, -1, -1, -1, -1, -1, 881 }; 882 883 static const char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = { 884 0, 1, /* line in */ 885 8, 9, /* aes in */ 886 10, 11, /* spdif in */ 887 12, 14, 16, 18, /* adat in */ 888 2, 3, 4, 5, /* AEB */ 889 -1, -1, 890 -1, -1, -1, -1, -1, -1, -1, -1, 891 -1, -1, -1, -1, -1, -1, -1, -1, 892 -1, -1, -1, -1, -1, -1, -1, -1, 893 -1, -1, -1, -1, -1, -1, -1, -1, 894 -1, -1, -1, -1, -1, -1, -1, -1, 895 -1, -1, -1, -1, -1, -1, -1, -1 896 }; 897 898 static const char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = { 899 0, 1, /* line out */ 900 8, 9, /* aes out */ 901 10, 11, /* spdif out */ 902 12, 14, 16, 18, /* adat out */ 903 6, 7, /* phone out */ 904 2, 3, 4, 5, /* AEB */ 905 -1, -1, -1, -1, -1, -1, -1, -1, 906 -1, -1, -1, -1, -1, -1, -1, -1, 907 -1, -1, -1, -1, -1, -1, -1, -1, 908 -1, -1, -1, -1, -1, -1, -1, -1, 909 -1, -1, -1, -1, -1, -1, -1, -1, 910 -1, -1, -1, -1, -1, -1, -1, -1 911 }; 912 913 static const char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = { 914 0, 1, /* line in */ 915 8, 9, /* aes in */ 916 10, 11, /* spdif in */ 917 12, 16, /* adat in */ 918 2, 3, 4, 5, /* AEB */ 919 -1, -1, -1, -1, 920 -1, -1, -1, -1, -1, -1, -1, -1, 921 -1, -1, -1, -1, -1, -1, -1, -1, 922 -1, -1, -1, -1, -1, -1, -1, -1, 923 -1, -1, -1, -1, -1, -1, -1, -1, 924 -1, -1, -1, -1, -1, -1, -1, -1, 925 -1, -1, -1, -1, -1, -1, -1, -1 926 }; 927 928 static const char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = { 929 0, 1, /* line out */ 930 8, 9, /* aes out */ 931 10, 11, /* spdif out */ 932 12, 16, /* adat out */ 933 6, 7, /* phone out */ 934 2, 3, 4, 5, /* AEB */ 935 -1, -1, 936 -1, -1, -1, -1, -1, -1, -1, -1, 937 -1, -1, -1, -1, -1, -1, -1, -1, 938 -1, -1, -1, -1, -1, -1, -1, -1, 939 -1, -1, -1, -1, -1, -1, -1, -1, 940 -1, -1, -1, -1, -1, -1, -1, -1, 941 -1, -1, -1, -1, -1, -1, -1, -1 942 }; 943 944 static const char channel_map_aes32[HDSPM_MAX_CHANNELS] = { 945 0, 1, 2, 3, 4, 5, 6, 7, 946 8, 9, 10, 11, 12, 13, 14, 15, 947 -1, -1, -1, -1, -1, -1, -1, -1, 948 -1, -1, -1, -1, -1, -1, -1, -1, 949 -1, -1, -1, -1, -1, -1, -1, -1, 950 -1, -1, -1, -1, -1, -1, -1, -1, 951 -1, -1, -1, -1, -1, -1, -1, -1, 952 -1, -1, -1, -1, -1, -1, -1, -1 953 }; 954 955 struct hdspm_midi { 956 struct hdspm *hdspm; 957 int id; 958 struct snd_rawmidi *rmidi; 959 struct snd_rawmidi_substream *input; 960 struct snd_rawmidi_substream *output; 961 char istimer; /* timer in use */ 962 struct timer_list timer; 963 spinlock_t lock; 964 int pending; 965 int dataIn; 966 int statusIn; 967 int dataOut; 968 int statusOut; 969 int ie; 970 int irq; 971 }; 972 973 struct hdspm_tco { 974 int input; /* 0: LTC, 1:Video, 2: WC*/ 975 int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */ 976 int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */ 977 int samplerate; /* 0=44.1, 1=48, 2= freq from app */ 978 int pull; /* 0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/ 979 int term; /* 0 = off, 1 = on */ 980 }; 981 982 struct hdspm { 983 spinlock_t lock; 984 /* only one playback and/or capture stream */ 985 struct snd_pcm_substream *capture_substream; 986 struct snd_pcm_substream *playback_substream; 987 988 char *card_name; /* for procinfo */ 989 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/ 990 991 uint8_t io_type; 992 993 int monitor_outs; /* set up monitoring outs init flag */ 994 995 u32 control_register; /* cached value */ 996 u32 control2_register; /* cached value */ 997 u32 settings_register; /* cached value for AIO / RayDat (sync reference, master/slave) */ 998 999 struct hdspm_midi midi[4]; 1000 struct work_struct midi_work; 1001 1002 size_t period_bytes; 1003 unsigned char ss_in_channels; 1004 unsigned char ds_in_channels; 1005 unsigned char qs_in_channels; 1006 unsigned char ss_out_channels; 1007 unsigned char ds_out_channels; 1008 unsigned char qs_out_channels; 1009 1010 unsigned char max_channels_in; 1011 unsigned char max_channels_out; 1012 1013 const signed char *channel_map_in; 1014 const signed char *channel_map_out; 1015 1016 const signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs; 1017 const signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs; 1018 1019 const char * const *port_names_in; 1020 const char * const *port_names_out; 1021 1022 const char * const *port_names_in_ss; 1023 const char * const *port_names_in_ds; 1024 const char * const *port_names_in_qs; 1025 const char * const *port_names_out_ss; 1026 const char * const *port_names_out_ds; 1027 const char * const *port_names_out_qs; 1028 1029 unsigned char *playback_buffer; /* suitably aligned address */ 1030 unsigned char *capture_buffer; /* suitably aligned address */ 1031 1032 pid_t capture_pid; /* process id which uses capture */ 1033 pid_t playback_pid; /* process id which uses capture */ 1034 int running; /* running status */ 1035 1036 int last_external_sample_rate; /* samplerate mystic ... */ 1037 int last_internal_sample_rate; 1038 int system_sample_rate; 1039 1040 int dev; /* Hardware vars... */ 1041 int irq; 1042 unsigned long port; 1043 void __iomem *iobase; 1044 1045 int irq_count; /* for debug */ 1046 int midiPorts; 1047 1048 struct snd_card *card; /* one card */ 1049 struct snd_pcm *pcm; /* has one pcm */ 1050 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */ 1051 struct pci_dev *pci; /* and an pci info */ 1052 1053 /* Mixer vars */ 1054 /* fast alsa mixer */ 1055 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; 1056 /* but input to much, so not used */ 1057 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; 1058 /* full mixer accessible over mixer ioctl or hwdep-device */ 1059 struct hdspm_mixer *mixer; 1060 1061 struct hdspm_tco *tco; /* NULL if no TCO detected */ 1062 1063 const char *const *texts_autosync; 1064 int texts_autosync_items; 1065 1066 cycles_t last_interrupt; 1067 1068 unsigned int serial; 1069 1070 struct hdspm_peak_rms peak_rms; 1071 }; 1072 1073 1074 static const struct pci_device_id snd_hdspm_ids[] = { 1075 { 1076 .vendor = PCI_VENDOR_ID_XILINX, 1077 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI, 1078 .subvendor = PCI_ANY_ID, 1079 .subdevice = PCI_ANY_ID, 1080 .class = 0, 1081 .class_mask = 0, 1082 .driver_data = 0}, 1083 {0,} 1084 }; 1085 1086 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids); 1087 1088 /* prototypes */ 1089 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 1090 struct hdspm *hdspm); 1091 static int snd_hdspm_create_pcm(struct snd_card *card, 1092 struct hdspm *hdspm); 1093 1094 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm); 1095 static inline int hdspm_get_pll_freq(struct hdspm *hdspm); 1096 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm); 1097 static int hdspm_autosync_ref(struct hdspm *hdspm); 1098 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out); 1099 static int snd_hdspm_set_defaults(struct hdspm *hdspm); 1100 static int hdspm_system_clock_mode(struct hdspm *hdspm); 1101 static void hdspm_set_channel_dma_addr(struct hdspm *hdspm, 1102 struct snd_pcm_substream *substream, 1103 unsigned int reg, int channels); 1104 1105 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx); 1106 static int hdspm_wc_sync_check(struct hdspm *hdspm); 1107 static int hdspm_tco_sync_check(struct hdspm *hdspm); 1108 static int hdspm_sync_in_sync_check(struct hdspm *hdspm); 1109 1110 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index); 1111 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm); 1112 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm); 1113 1114 1115 1116 static inline int HDSPM_bit2freq(int n) 1117 { 1118 static const int bit2freq_tab[] = { 1119 0, 32000, 44100, 48000, 64000, 88200, 1120 96000, 128000, 176400, 192000 }; 1121 if (n < 1 || n > 9) 1122 return 0; 1123 return bit2freq_tab[n]; 1124 } 1125 1126 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm) 1127 { 1128 return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type)); 1129 } 1130 1131 1132 /* Write/read to/from HDSPM with Adresses in Bytes 1133 not words but only 32Bit writes are allowed */ 1134 1135 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg, 1136 unsigned int val) 1137 { 1138 writel(val, hdspm->iobase + reg); 1139 } 1140 1141 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg) 1142 { 1143 return readl(hdspm->iobase + reg); 1144 } 1145 1146 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader 1147 mixer is write only on hardware so we have to cache him for read 1148 each fader is a u32, but uses only the first 16 bit */ 1149 1150 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan, 1151 unsigned int in) 1152 { 1153 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1154 return 0; 1155 1156 return hdspm->mixer->ch[chan].in[in]; 1157 } 1158 1159 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan, 1160 unsigned int pb) 1161 { 1162 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1163 return 0; 1164 return hdspm->mixer->ch[chan].pb[pb]; 1165 } 1166 1167 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan, 1168 unsigned int in, unsigned short data) 1169 { 1170 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1171 return -1; 1172 1173 hdspm_write(hdspm, 1174 HDSPM_MADI_mixerBase + 1175 ((in + 128 * chan) * sizeof(u32)), 1176 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF)); 1177 return 0; 1178 } 1179 1180 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan, 1181 unsigned int pb, unsigned short data) 1182 { 1183 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1184 return -1; 1185 1186 hdspm_write(hdspm, 1187 HDSPM_MADI_mixerBase + 1188 ((64 + pb + 128 * chan) * sizeof(u32)), 1189 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF)); 1190 return 0; 1191 } 1192 1193 1194 /* enable DMA for specific channels, now available for DSP-MADI */ 1195 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v) 1196 { 1197 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v); 1198 } 1199 1200 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v) 1201 { 1202 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v); 1203 } 1204 1205 /* check if same process is writing and reading */ 1206 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm) 1207 { 1208 unsigned long flags; 1209 int ret = 1; 1210 1211 spin_lock_irqsave(&hdspm->lock, flags); 1212 if ((hdspm->playback_pid != hdspm->capture_pid) && 1213 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) { 1214 ret = 0; 1215 } 1216 spin_unlock_irqrestore(&hdspm->lock, flags); 1217 return ret; 1218 } 1219 1220 /* round arbitrary sample rates to commonly known rates */ 1221 static int hdspm_round_frequency(int rate) 1222 { 1223 if (rate < 38050) 1224 return 32000; 1225 if (rate < 46008) 1226 return 44100; 1227 else 1228 return 48000; 1229 } 1230 1231 /* QS and DS rates normally can not be detected 1232 * automatically by the card. Only exception is MADI 1233 * in 96k frame mode. 1234 * 1235 * So if we read SS values (32 .. 48k), check for 1236 * user-provided DS/QS bits in the control register 1237 * and multiply the base frequency accordingly. 1238 */ 1239 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate) 1240 { 1241 if (rate <= 48000) { 1242 if (hdspm->control_register & HDSPM_QuadSpeed) 1243 return rate * 4; 1244 else if (hdspm->control_register & 1245 HDSPM_DoubleSpeed) 1246 return rate * 2; 1247 } 1248 return rate; 1249 } 1250 1251 /* check for external sample rate, returns the sample rate in Hz*/ 1252 static int hdspm_external_sample_rate(struct hdspm *hdspm) 1253 { 1254 unsigned int status, status2; 1255 int syncref, rate = 0, rate_bits; 1256 1257 switch (hdspm->io_type) { 1258 case AES32: 1259 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1260 status = hdspm_read(hdspm, HDSPM_statusRegister); 1261 1262 syncref = hdspm_autosync_ref(hdspm); 1263 switch (syncref) { 1264 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 1265 /* Check WC sync and get sample rate */ 1266 if (hdspm_wc_sync_check(hdspm)) 1267 return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm)); 1268 break; 1269 1270 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 1271 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 1272 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 1273 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 1274 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 1275 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 1276 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 1277 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 1278 /* Check AES sync and get sample rate */ 1279 if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)) 1280 return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm, 1281 syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)); 1282 break; 1283 1284 1285 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 1286 /* Check TCO sync and get sample rate */ 1287 if (hdspm_tco_sync_check(hdspm)) 1288 return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm)); 1289 break; 1290 default: 1291 return 0; 1292 } /* end switch(syncref) */ 1293 break; 1294 1295 case MADIface: 1296 status = hdspm_read(hdspm, HDSPM_statusRegister); 1297 1298 if (!(status & HDSPM_madiLock)) { 1299 rate = 0; /* no lock */ 1300 } else { 1301 switch (status & (HDSPM_status1_freqMask)) { 1302 case HDSPM_status1_F_0*1: 1303 rate = 32000; break; 1304 case HDSPM_status1_F_0*2: 1305 rate = 44100; break; 1306 case HDSPM_status1_F_0*3: 1307 rate = 48000; break; 1308 case HDSPM_status1_F_0*4: 1309 rate = 64000; break; 1310 case HDSPM_status1_F_0*5: 1311 rate = 88200; break; 1312 case HDSPM_status1_F_0*6: 1313 rate = 96000; break; 1314 case HDSPM_status1_F_0*7: 1315 rate = 128000; break; 1316 case HDSPM_status1_F_0*8: 1317 rate = 176400; break; 1318 case HDSPM_status1_F_0*9: 1319 rate = 192000; break; 1320 default: 1321 rate = 0; break; 1322 } 1323 } 1324 1325 break; 1326 1327 case MADI: 1328 case AIO: 1329 case RayDAT: 1330 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1331 status = hdspm_read(hdspm, HDSPM_statusRegister); 1332 rate = 0; 1333 1334 /* if wordclock has synced freq and wordclock is valid */ 1335 if ((status2 & HDSPM_wcLock) != 0 && 1336 (status2 & HDSPM_SelSyncRef0) == 0) { 1337 1338 rate_bits = status2 & HDSPM_wcFreqMask; 1339 1340 1341 switch (rate_bits) { 1342 case HDSPM_wcFreq32: 1343 rate = 32000; 1344 break; 1345 case HDSPM_wcFreq44_1: 1346 rate = 44100; 1347 break; 1348 case HDSPM_wcFreq48: 1349 rate = 48000; 1350 break; 1351 case HDSPM_wcFreq64: 1352 rate = 64000; 1353 break; 1354 case HDSPM_wcFreq88_2: 1355 rate = 88200; 1356 break; 1357 case HDSPM_wcFreq96: 1358 rate = 96000; 1359 break; 1360 case HDSPM_wcFreq128: 1361 rate = 128000; 1362 break; 1363 case HDSPM_wcFreq176_4: 1364 rate = 176400; 1365 break; 1366 case HDSPM_wcFreq192: 1367 rate = 192000; 1368 break; 1369 default: 1370 rate = 0; 1371 break; 1372 } 1373 } 1374 1375 /* if rate detected and Syncref is Word than have it, 1376 * word has priority to MADI 1377 */ 1378 if (rate != 0 && 1379 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) 1380 return hdspm_rate_multiplier(hdspm, rate); 1381 1382 /* maybe a madi input (which is taken if sel sync is madi) */ 1383 if (status & HDSPM_madiLock) { 1384 rate_bits = status & HDSPM_madiFreqMask; 1385 1386 switch (rate_bits) { 1387 case HDSPM_madiFreq32: 1388 rate = 32000; 1389 break; 1390 case HDSPM_madiFreq44_1: 1391 rate = 44100; 1392 break; 1393 case HDSPM_madiFreq48: 1394 rate = 48000; 1395 break; 1396 case HDSPM_madiFreq64: 1397 rate = 64000; 1398 break; 1399 case HDSPM_madiFreq88_2: 1400 rate = 88200; 1401 break; 1402 case HDSPM_madiFreq96: 1403 rate = 96000; 1404 break; 1405 case HDSPM_madiFreq128: 1406 rate = 128000; 1407 break; 1408 case HDSPM_madiFreq176_4: 1409 rate = 176400; 1410 break; 1411 case HDSPM_madiFreq192: 1412 rate = 192000; 1413 break; 1414 default: 1415 rate = 0; 1416 break; 1417 } 1418 1419 } /* endif HDSPM_madiLock */ 1420 1421 /* check sample rate from TCO or SYNC_IN */ 1422 { 1423 bool is_valid_input = 0; 1424 bool has_sync = 0; 1425 1426 syncref = hdspm_autosync_ref(hdspm); 1427 if (HDSPM_AUTOSYNC_FROM_TCO == syncref) { 1428 is_valid_input = 1; 1429 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1430 hdspm_tco_sync_check(hdspm)); 1431 } else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) { 1432 is_valid_input = 1; 1433 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1434 hdspm_sync_in_sync_check(hdspm)); 1435 } 1436 1437 if (is_valid_input && has_sync) { 1438 rate = hdspm_round_frequency( 1439 hdspm_get_pll_freq(hdspm)); 1440 } 1441 } 1442 1443 rate = hdspm_rate_multiplier(hdspm, rate); 1444 1445 break; 1446 } 1447 1448 return rate; 1449 } 1450 1451 /* return latency in samples per period */ 1452 static int hdspm_get_latency(struct hdspm *hdspm) 1453 { 1454 int n; 1455 1456 n = hdspm_decode_latency(hdspm->control_register); 1457 1458 /* Special case for new RME cards with 32 samples period size. 1459 * The three latency bits in the control register 1460 * (HDSP_LatencyMask) encode latency values of 64 samples as 1461 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7 1462 * denotes 8192 samples, but on new cards like RayDAT or AIO, 1463 * it corresponds to 32 samples. 1464 */ 1465 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type)) 1466 n = -1; 1467 1468 return 1 << (n + 6); 1469 } 1470 1471 /* Latency function */ 1472 static inline void hdspm_compute_period_size(struct hdspm *hdspm) 1473 { 1474 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm); 1475 } 1476 1477 1478 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm) 1479 { 1480 int position; 1481 1482 position = hdspm_read(hdspm, HDSPM_statusRegister); 1483 1484 switch (hdspm->io_type) { 1485 case RayDAT: 1486 case AIO: 1487 position &= HDSPM_BufferPositionMask; 1488 position /= 4; /* Bytes per sample */ 1489 break; 1490 default: 1491 position = (position & HDSPM_BufferID) ? 1492 (hdspm->period_bytes / 4) : 0; 1493 } 1494 1495 return position; 1496 } 1497 1498 1499 static inline void hdspm_start_audio(struct hdspm * s) 1500 { 1501 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start); 1502 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1503 } 1504 1505 static inline void hdspm_stop_audio(struct hdspm * s) 1506 { 1507 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable); 1508 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1509 } 1510 1511 /* should I silence all or only opened ones ? doit all for first even is 4MB*/ 1512 static void hdspm_silence_playback(struct hdspm *hdspm) 1513 { 1514 int i; 1515 int n = hdspm->period_bytes; 1516 void *buf = hdspm->playback_buffer; 1517 1518 if (!buf) 1519 return; 1520 1521 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 1522 memset(buf, 0, n); 1523 buf += HDSPM_CHANNEL_BUFFER_BYTES; 1524 } 1525 } 1526 1527 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames) 1528 { 1529 int n; 1530 1531 spin_lock_irq(&s->lock); 1532 1533 if (32 == frames) { 1534 /* Special case for new RME cards like RayDAT/AIO which 1535 * support period sizes of 32 samples. Since latency is 1536 * encoded in the three bits of HDSP_LatencyMask, we can only 1537 * have values from 0 .. 7. While 0 still means 64 samples and 1538 * 6 represents 4096 samples on all cards, 7 represents 8192 1539 * on older cards and 32 samples on new cards. 1540 * 1541 * In other words, period size in samples is calculated by 1542 * 2^(n+6) with n ranging from 0 .. 7. 1543 */ 1544 n = 7; 1545 } else { 1546 frames >>= 7; 1547 n = 0; 1548 while (frames) { 1549 n++; 1550 frames >>= 1; 1551 } 1552 } 1553 1554 s->control_register &= ~HDSPM_LatencyMask; 1555 s->control_register |= hdspm_encode_latency(n); 1556 1557 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1558 1559 hdspm_compute_period_size(s); 1560 1561 spin_unlock_irq(&s->lock); 1562 1563 return 0; 1564 } 1565 1566 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period) 1567 { 1568 u64 freq_const; 1569 1570 if (period == 0) 1571 return 0; 1572 1573 switch (hdspm->io_type) { 1574 case MADI: 1575 case AES32: 1576 freq_const = 110069313433624ULL; 1577 break; 1578 case RayDAT: 1579 case AIO: 1580 freq_const = 104857600000000ULL; 1581 break; 1582 case MADIface: 1583 freq_const = 131072000000000ULL; 1584 break; 1585 default: 1586 snd_BUG(); 1587 return 0; 1588 } 1589 1590 return div_u64(freq_const, period); 1591 } 1592 1593 1594 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate) 1595 { 1596 u64 n; 1597 1598 if (snd_BUG_ON(rate <= 0)) 1599 return; 1600 1601 if (rate >= 112000) 1602 rate /= 4; 1603 else if (rate >= 56000) 1604 rate /= 2; 1605 1606 switch (hdspm->io_type) { 1607 case MADIface: 1608 n = 131072000000000ULL; /* 125 MHz */ 1609 break; 1610 case MADI: 1611 case AES32: 1612 n = 110069313433624ULL; /* 105 MHz */ 1613 break; 1614 case RayDAT: 1615 case AIO: 1616 n = 104857600000000ULL; /* 100 MHz */ 1617 break; 1618 default: 1619 snd_BUG(); 1620 return; 1621 } 1622 1623 n = div_u64(n, rate); 1624 /* n should be less than 2^32 for being written to FREQ register */ 1625 snd_BUG_ON(n >> 32); 1626 hdspm_write(hdspm, HDSPM_freqReg, (u32)n); 1627 } 1628 1629 /* dummy set rate lets see what happens */ 1630 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) 1631 { 1632 int current_rate; 1633 int rate_bits; 1634 int not_set = 0; 1635 int current_speed, target_speed; 1636 1637 /* ASSUMPTION: hdspm->lock is either set, or there is no need for 1638 it (e.g. during module initialization). 1639 */ 1640 1641 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { 1642 1643 /* SLAVE --- */ 1644 if (called_internally) { 1645 1646 /* request from ctl or card initialization 1647 just make a warning an remember setting 1648 for future master mode switching */ 1649 1650 dev_warn(hdspm->card->dev, 1651 "Warning: device is not running as a clock master.\n"); 1652 not_set = 1; 1653 } else { 1654 1655 /* hw_param request while in AutoSync mode */ 1656 int external_freq = 1657 hdspm_external_sample_rate(hdspm); 1658 1659 if (hdspm_autosync_ref(hdspm) == 1660 HDSPM_AUTOSYNC_FROM_NONE) { 1661 1662 dev_warn(hdspm->card->dev, 1663 "Detected no External Sync\n"); 1664 not_set = 1; 1665 1666 } else if (rate != external_freq) { 1667 1668 dev_warn(hdspm->card->dev, 1669 "Warning: No AutoSync source for requested rate\n"); 1670 not_set = 1; 1671 } 1672 } 1673 } 1674 1675 current_rate = hdspm->system_sample_rate; 1676 1677 /* Changing between Singe, Double and Quad speed is not 1678 allowed if any substreams are open. This is because such a change 1679 causes a shift in the location of the DMA buffers and a reduction 1680 in the number of available buffers. 1681 1682 Note that a similar but essentially insoluble problem exists for 1683 externally-driven rate changes. All we can do is to flag rate 1684 changes in the read/write routines. 1685 */ 1686 1687 if (current_rate <= 48000) 1688 current_speed = HDSPM_SPEED_SINGLE; 1689 else if (current_rate <= 96000) 1690 current_speed = HDSPM_SPEED_DOUBLE; 1691 else 1692 current_speed = HDSPM_SPEED_QUAD; 1693 1694 if (rate <= 48000) 1695 target_speed = HDSPM_SPEED_SINGLE; 1696 else if (rate <= 96000) 1697 target_speed = HDSPM_SPEED_DOUBLE; 1698 else 1699 target_speed = HDSPM_SPEED_QUAD; 1700 1701 switch (rate) { 1702 case 32000: 1703 rate_bits = HDSPM_Frequency32KHz; 1704 break; 1705 case 44100: 1706 rate_bits = HDSPM_Frequency44_1KHz; 1707 break; 1708 case 48000: 1709 rate_bits = HDSPM_Frequency48KHz; 1710 break; 1711 case 64000: 1712 rate_bits = HDSPM_Frequency64KHz; 1713 break; 1714 case 88200: 1715 rate_bits = HDSPM_Frequency88_2KHz; 1716 break; 1717 case 96000: 1718 rate_bits = HDSPM_Frequency96KHz; 1719 break; 1720 case 128000: 1721 rate_bits = HDSPM_Frequency128KHz; 1722 break; 1723 case 176400: 1724 rate_bits = HDSPM_Frequency176_4KHz; 1725 break; 1726 case 192000: 1727 rate_bits = HDSPM_Frequency192KHz; 1728 break; 1729 default: 1730 return -EINVAL; 1731 } 1732 1733 if (current_speed != target_speed 1734 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) { 1735 dev_err(hdspm->card->dev, 1736 "cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n", 1737 hdspm_speed_names[current_speed], 1738 hdspm_speed_names[target_speed], 1739 hdspm->capture_pid, hdspm->playback_pid); 1740 return -EBUSY; 1741 } 1742 1743 hdspm->control_register &= ~HDSPM_FrequencyMask; 1744 hdspm->control_register |= rate_bits; 1745 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1746 1747 /* For AES32, need to set DDS value in FREQ register 1748 For MADI, also apparently */ 1749 hdspm_set_dds_value(hdspm, rate); 1750 1751 if (AES32 == hdspm->io_type && rate != current_rate) 1752 hdspm_write(hdspm, HDSPM_eeprom_wr, 0); 1753 1754 hdspm->system_sample_rate = rate; 1755 1756 if (rate <= 48000) { 1757 hdspm->channel_map_in = hdspm->channel_map_in_ss; 1758 hdspm->channel_map_out = hdspm->channel_map_out_ss; 1759 hdspm->max_channels_in = hdspm->ss_in_channels; 1760 hdspm->max_channels_out = hdspm->ss_out_channels; 1761 hdspm->port_names_in = hdspm->port_names_in_ss; 1762 hdspm->port_names_out = hdspm->port_names_out_ss; 1763 } else if (rate <= 96000) { 1764 hdspm->channel_map_in = hdspm->channel_map_in_ds; 1765 hdspm->channel_map_out = hdspm->channel_map_out_ds; 1766 hdspm->max_channels_in = hdspm->ds_in_channels; 1767 hdspm->max_channels_out = hdspm->ds_out_channels; 1768 hdspm->port_names_in = hdspm->port_names_in_ds; 1769 hdspm->port_names_out = hdspm->port_names_out_ds; 1770 } else { 1771 hdspm->channel_map_in = hdspm->channel_map_in_qs; 1772 hdspm->channel_map_out = hdspm->channel_map_out_qs; 1773 hdspm->max_channels_in = hdspm->qs_in_channels; 1774 hdspm->max_channels_out = hdspm->qs_out_channels; 1775 hdspm->port_names_in = hdspm->port_names_in_qs; 1776 hdspm->port_names_out = hdspm->port_names_out_qs; 1777 } 1778 1779 if (not_set != 0) 1780 return -1; 1781 1782 return 0; 1783 } 1784 1785 /* mainly for init to 0 on load */ 1786 static void all_in_all_mixer(struct hdspm * hdspm, int sgain) 1787 { 1788 int i, j; 1789 unsigned int gain; 1790 1791 if (sgain > UNITY_GAIN) 1792 gain = UNITY_GAIN; 1793 else if (sgain < 0) 1794 gain = 0; 1795 else 1796 gain = sgain; 1797 1798 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) 1799 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) { 1800 hdspm_write_in_gain(hdspm, i, j, gain); 1801 hdspm_write_pb_gain(hdspm, i, j, gain); 1802 } 1803 } 1804 1805 /*---------------------------------------------------------------------------- 1806 MIDI 1807 ----------------------------------------------------------------------------*/ 1808 1809 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, 1810 int id) 1811 { 1812 /* the hardware already does the relevant bit-mask with 0xff */ 1813 return hdspm_read(hdspm, hdspm->midi[id].dataIn); 1814 } 1815 1816 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, 1817 int val) 1818 { 1819 /* the hardware already does the relevant bit-mask with 0xff */ 1820 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val); 1821 } 1822 1823 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id) 1824 { 1825 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF; 1826 } 1827 1828 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id) 1829 { 1830 int fifo_bytes_used; 1831 1832 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF; 1833 1834 if (fifo_bytes_used < 128) 1835 return 128 - fifo_bytes_used; 1836 else 1837 return 0; 1838 } 1839 1840 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id) 1841 { 1842 while (snd_hdspm_midi_input_available (hdspm, id)) 1843 snd_hdspm_midi_read_byte (hdspm, id); 1844 } 1845 1846 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi) 1847 { 1848 unsigned long flags; 1849 int n_pending; 1850 int to_write; 1851 int i; 1852 unsigned char buf[128]; 1853 1854 /* Output is not interrupt driven */ 1855 1856 spin_lock_irqsave (&hmidi->lock, flags); 1857 if (hmidi->output && 1858 !snd_rawmidi_transmit_empty (hmidi->output)) { 1859 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, 1860 hmidi->id); 1861 if (n_pending > 0) { 1862 if (n_pending > (int)sizeof (buf)) 1863 n_pending = sizeof (buf); 1864 1865 to_write = snd_rawmidi_transmit (hmidi->output, buf, 1866 n_pending); 1867 if (to_write > 0) { 1868 for (i = 0; i < to_write; ++i) 1869 snd_hdspm_midi_write_byte (hmidi->hdspm, 1870 hmidi->id, 1871 buf[i]); 1872 } 1873 } 1874 } 1875 spin_unlock_irqrestore (&hmidi->lock, flags); 1876 return 0; 1877 } 1878 1879 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi) 1880 { 1881 unsigned char buf[128]; /* this buffer is designed to match the MIDI 1882 * input FIFO size 1883 */ 1884 unsigned long flags; 1885 int n_pending; 1886 int i; 1887 1888 spin_lock_irqsave (&hmidi->lock, flags); 1889 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id); 1890 if (n_pending > 0) { 1891 if (hmidi->input) { 1892 if (n_pending > (int)sizeof (buf)) 1893 n_pending = sizeof (buf); 1894 for (i = 0; i < n_pending; ++i) 1895 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, 1896 hmidi->id); 1897 if (n_pending) 1898 snd_rawmidi_receive (hmidi->input, buf, 1899 n_pending); 1900 } else { 1901 /* flush the MIDI input FIFO */ 1902 while (n_pending--) 1903 snd_hdspm_midi_read_byte (hmidi->hdspm, 1904 hmidi->id); 1905 } 1906 } 1907 hmidi->pending = 0; 1908 spin_unlock_irqrestore(&hmidi->lock, flags); 1909 1910 spin_lock_irqsave(&hmidi->hdspm->lock, flags); 1911 hmidi->hdspm->control_register |= hmidi->ie; 1912 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, 1913 hmidi->hdspm->control_register); 1914 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags); 1915 1916 return snd_hdspm_midi_output_write (hmidi); 1917 } 1918 1919 static void 1920 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1921 { 1922 struct hdspm *hdspm; 1923 struct hdspm_midi *hmidi; 1924 unsigned long flags; 1925 1926 hmidi = substream->rmidi->private_data; 1927 hdspm = hmidi->hdspm; 1928 1929 spin_lock_irqsave (&hdspm->lock, flags); 1930 if (up) { 1931 if (!(hdspm->control_register & hmidi->ie)) { 1932 snd_hdspm_flush_midi_input (hdspm, hmidi->id); 1933 hdspm->control_register |= hmidi->ie; 1934 } 1935 } else { 1936 hdspm->control_register &= ~hmidi->ie; 1937 } 1938 1939 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1940 spin_unlock_irqrestore (&hdspm->lock, flags); 1941 } 1942 1943 static void snd_hdspm_midi_output_timer(struct timer_list *t) 1944 { 1945 struct hdspm_midi *hmidi = from_timer(hmidi, t, timer); 1946 unsigned long flags; 1947 1948 snd_hdspm_midi_output_write(hmidi); 1949 spin_lock_irqsave (&hmidi->lock, flags); 1950 1951 /* this does not bump hmidi->istimer, because the 1952 kernel automatically removed the timer when it 1953 expired, and we are now adding it back, thus 1954 leaving istimer wherever it was set before. 1955 */ 1956 1957 if (hmidi->istimer) 1958 mod_timer(&hmidi->timer, 1 + jiffies); 1959 1960 spin_unlock_irqrestore (&hmidi->lock, flags); 1961 } 1962 1963 static void 1964 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1965 { 1966 struct hdspm_midi *hmidi; 1967 unsigned long flags; 1968 1969 hmidi = substream->rmidi->private_data; 1970 spin_lock_irqsave (&hmidi->lock, flags); 1971 if (up) { 1972 if (!hmidi->istimer) { 1973 timer_setup(&hmidi->timer, 1974 snd_hdspm_midi_output_timer, 0); 1975 mod_timer(&hmidi->timer, 1 + jiffies); 1976 hmidi->istimer++; 1977 } 1978 } else { 1979 if (hmidi->istimer && --hmidi->istimer <= 0) 1980 del_timer (&hmidi->timer); 1981 } 1982 spin_unlock_irqrestore (&hmidi->lock, flags); 1983 if (up) 1984 snd_hdspm_midi_output_write(hmidi); 1985 } 1986 1987 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream) 1988 { 1989 struct hdspm_midi *hmidi; 1990 1991 hmidi = substream->rmidi->private_data; 1992 spin_lock_irq (&hmidi->lock); 1993 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id); 1994 hmidi->input = substream; 1995 spin_unlock_irq (&hmidi->lock); 1996 1997 return 0; 1998 } 1999 2000 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream) 2001 { 2002 struct hdspm_midi *hmidi; 2003 2004 hmidi = substream->rmidi->private_data; 2005 spin_lock_irq (&hmidi->lock); 2006 hmidi->output = substream; 2007 spin_unlock_irq (&hmidi->lock); 2008 2009 return 0; 2010 } 2011 2012 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream) 2013 { 2014 struct hdspm_midi *hmidi; 2015 2016 snd_hdspm_midi_input_trigger (substream, 0); 2017 2018 hmidi = substream->rmidi->private_data; 2019 spin_lock_irq (&hmidi->lock); 2020 hmidi->input = NULL; 2021 spin_unlock_irq (&hmidi->lock); 2022 2023 return 0; 2024 } 2025 2026 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream) 2027 { 2028 struct hdspm_midi *hmidi; 2029 2030 snd_hdspm_midi_output_trigger (substream, 0); 2031 2032 hmidi = substream->rmidi->private_data; 2033 spin_lock_irq (&hmidi->lock); 2034 hmidi->output = NULL; 2035 spin_unlock_irq (&hmidi->lock); 2036 2037 return 0; 2038 } 2039 2040 static const struct snd_rawmidi_ops snd_hdspm_midi_output = 2041 { 2042 .open = snd_hdspm_midi_output_open, 2043 .close = snd_hdspm_midi_output_close, 2044 .trigger = snd_hdspm_midi_output_trigger, 2045 }; 2046 2047 static const struct snd_rawmidi_ops snd_hdspm_midi_input = 2048 { 2049 .open = snd_hdspm_midi_input_open, 2050 .close = snd_hdspm_midi_input_close, 2051 .trigger = snd_hdspm_midi_input_trigger, 2052 }; 2053 2054 static int snd_hdspm_create_midi(struct snd_card *card, 2055 struct hdspm *hdspm, int id) 2056 { 2057 int err; 2058 char buf[64]; 2059 2060 hdspm->midi[id].id = id; 2061 hdspm->midi[id].hdspm = hdspm; 2062 spin_lock_init (&hdspm->midi[id].lock); 2063 2064 if (0 == id) { 2065 if (MADIface == hdspm->io_type) { 2066 /* MIDI-over-MADI on HDSPe MADIface */ 2067 hdspm->midi[0].dataIn = HDSPM_midiDataIn2; 2068 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2; 2069 hdspm->midi[0].dataOut = HDSPM_midiDataOut2; 2070 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2; 2071 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable; 2072 hdspm->midi[0].irq = HDSPM_midi2IRQPending; 2073 } else { 2074 hdspm->midi[0].dataIn = HDSPM_midiDataIn0; 2075 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0; 2076 hdspm->midi[0].dataOut = HDSPM_midiDataOut0; 2077 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0; 2078 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable; 2079 hdspm->midi[0].irq = HDSPM_midi0IRQPending; 2080 } 2081 } else if (1 == id) { 2082 hdspm->midi[1].dataIn = HDSPM_midiDataIn1; 2083 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1; 2084 hdspm->midi[1].dataOut = HDSPM_midiDataOut1; 2085 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1; 2086 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable; 2087 hdspm->midi[1].irq = HDSPM_midi1IRQPending; 2088 } else if ((2 == id) && (MADI == hdspm->io_type)) { 2089 /* MIDI-over-MADI on HDSPe MADI */ 2090 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2091 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2092 hdspm->midi[2].dataOut = HDSPM_midiDataOut2; 2093 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2; 2094 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2095 hdspm->midi[2].irq = HDSPM_midi2IRQPending; 2096 } else if (2 == id) { 2097 /* TCO MTC, read only */ 2098 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2099 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2100 hdspm->midi[2].dataOut = -1; 2101 hdspm->midi[2].statusOut = -1; 2102 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2103 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES; 2104 } else if (3 == id) { 2105 /* TCO MTC on HDSPe MADI */ 2106 hdspm->midi[3].dataIn = HDSPM_midiDataIn3; 2107 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3; 2108 hdspm->midi[3].dataOut = -1; 2109 hdspm->midi[3].statusOut = -1; 2110 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable; 2111 hdspm->midi[3].irq = HDSPM_midi3IRQPending; 2112 } 2113 2114 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) || 2115 (MADIface == hdspm->io_type)))) { 2116 if ((id == 0) && (MADIface == hdspm->io_type)) { 2117 snprintf(buf, sizeof(buf), "%s MIDIoverMADI", 2118 card->shortname); 2119 } else if ((id == 2) && (MADI == hdspm->io_type)) { 2120 snprintf(buf, sizeof(buf), "%s MIDIoverMADI", 2121 card->shortname); 2122 } else { 2123 snprintf(buf, sizeof(buf), "%s MIDI %d", 2124 card->shortname, id+1); 2125 } 2126 err = snd_rawmidi_new(card, buf, id, 1, 1, 2127 &hdspm->midi[id].rmidi); 2128 if (err < 0) 2129 return err; 2130 2131 snprintf(hdspm->midi[id].rmidi->name, 2132 sizeof(hdspm->midi[id].rmidi->name), 2133 "%s MIDI %d", card->id, id+1); 2134 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2135 2136 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2137 SNDRV_RAWMIDI_STREAM_OUTPUT, 2138 &snd_hdspm_midi_output); 2139 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2140 SNDRV_RAWMIDI_STREAM_INPUT, 2141 &snd_hdspm_midi_input); 2142 2143 hdspm->midi[id].rmidi->info_flags |= 2144 SNDRV_RAWMIDI_INFO_OUTPUT | 2145 SNDRV_RAWMIDI_INFO_INPUT | 2146 SNDRV_RAWMIDI_INFO_DUPLEX; 2147 } else { 2148 /* TCO MTC, read only */ 2149 snprintf(buf, sizeof(buf), "%s MTC %d", 2150 card->shortname, id+1); 2151 err = snd_rawmidi_new(card, buf, id, 1, 1, 2152 &hdspm->midi[id].rmidi); 2153 if (err < 0) 2154 return err; 2155 2156 snprintf(hdspm->midi[id].rmidi->name, 2157 sizeof(hdspm->midi[id].rmidi->name), 2158 "%s MTC %d", card->id, id+1); 2159 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2160 2161 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2162 SNDRV_RAWMIDI_STREAM_INPUT, 2163 &snd_hdspm_midi_input); 2164 2165 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; 2166 } 2167 2168 return 0; 2169 } 2170 2171 2172 static void hdspm_midi_work(struct work_struct *work) 2173 { 2174 struct hdspm *hdspm = container_of(work, struct hdspm, midi_work); 2175 int i = 0; 2176 2177 while (i < hdspm->midiPorts) { 2178 if (hdspm->midi[i].pending) 2179 snd_hdspm_midi_input_read(&hdspm->midi[i]); 2180 2181 i++; 2182 } 2183 } 2184 2185 2186 /*----------------------------------------------------------------------------- 2187 Status Interface 2188 ----------------------------------------------------------------------------*/ 2189 2190 /* get the system sample rate which is set */ 2191 2192 2193 static inline int hdspm_get_pll_freq(struct hdspm *hdspm) 2194 { 2195 unsigned int period, rate; 2196 2197 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 2198 rate = hdspm_calc_dds_value(hdspm, period); 2199 2200 return rate; 2201 } 2202 2203 /* 2204 * Calculate the real sample rate from the 2205 * current DDS value. 2206 */ 2207 static int hdspm_get_system_sample_rate(struct hdspm *hdspm) 2208 { 2209 unsigned int rate; 2210 2211 rate = hdspm_get_pll_freq(hdspm); 2212 2213 if (rate > 207000) { 2214 /* Unreasonable high sample rate as seen on PCI MADI cards. */ 2215 if (0 == hdspm_system_clock_mode(hdspm)) { 2216 /* master mode, return internal sample rate */ 2217 rate = hdspm->system_sample_rate; 2218 } else { 2219 /* slave mode, return external sample rate */ 2220 rate = hdspm_external_sample_rate(hdspm); 2221 if (!rate) 2222 rate = hdspm->system_sample_rate; 2223 } 2224 } 2225 2226 return rate; 2227 } 2228 2229 2230 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \ 2231 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2232 .name = xname, \ 2233 .index = xindex, \ 2234 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2235 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2236 .info = snd_hdspm_info_system_sample_rate, \ 2237 .put = snd_hdspm_put_system_sample_rate, \ 2238 .get = snd_hdspm_get_system_sample_rate \ 2239 } 2240 2241 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol, 2242 struct snd_ctl_elem_info *uinfo) 2243 { 2244 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2245 uinfo->count = 1; 2246 uinfo->value.integer.min = 27000; 2247 uinfo->value.integer.max = 207000; 2248 uinfo->value.integer.step = 1; 2249 return 0; 2250 } 2251 2252 2253 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol, 2254 struct snd_ctl_elem_value * 2255 ucontrol) 2256 { 2257 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2258 2259 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm); 2260 return 0; 2261 } 2262 2263 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol, 2264 struct snd_ctl_elem_value * 2265 ucontrol) 2266 { 2267 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2268 int rate = ucontrol->value.integer.value[0]; 2269 2270 if (rate < 27000 || rate > 207000) 2271 return -EINVAL; 2272 hdspm_set_dds_value(hdspm, ucontrol->value.integer.value[0]); 2273 return 0; 2274 } 2275 2276 2277 /* 2278 * Returns the WordClock sample rate class for the given card. 2279 */ 2280 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm) 2281 { 2282 int status; 2283 2284 switch (hdspm->io_type) { 2285 case RayDAT: 2286 case AIO: 2287 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2288 return (status >> 16) & 0xF; 2289 break; 2290 case AES32: 2291 status = hdspm_read(hdspm, HDSPM_statusRegister); 2292 return (status >> HDSPM_AES32_wcFreq_bit) & 0xF; 2293 default: 2294 break; 2295 } 2296 2297 2298 return 0; 2299 } 2300 2301 2302 /* 2303 * Returns the TCO sample rate class for the given card. 2304 */ 2305 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm) 2306 { 2307 int status; 2308 2309 if (hdspm->tco) { 2310 switch (hdspm->io_type) { 2311 case RayDAT: 2312 case AIO: 2313 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2314 return (status >> 20) & 0xF; 2315 break; 2316 case AES32: 2317 status = hdspm_read(hdspm, HDSPM_statusRegister); 2318 return (status >> 1) & 0xF; 2319 default: 2320 break; 2321 } 2322 } 2323 2324 return 0; 2325 } 2326 2327 2328 /* 2329 * Returns the SYNC_IN sample rate class for the given card. 2330 */ 2331 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm) 2332 { 2333 int status; 2334 2335 if (hdspm->tco) { 2336 switch (hdspm->io_type) { 2337 case RayDAT: 2338 case AIO: 2339 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2340 return (status >> 12) & 0xF; 2341 break; 2342 default: 2343 break; 2344 } 2345 } 2346 2347 return 0; 2348 } 2349 2350 /* 2351 * Returns the AES sample rate class for the given card. 2352 */ 2353 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index) 2354 { 2355 int timecode; 2356 2357 switch (hdspm->io_type) { 2358 case AES32: 2359 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 2360 return (timecode >> (4*index)) & 0xF; 2361 break; 2362 default: 2363 break; 2364 } 2365 return 0; 2366 } 2367 2368 /* 2369 * Returns the sample rate class for input source <idx> for 2370 * 'new style' cards like the AIO and RayDAT. 2371 */ 2372 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx) 2373 { 2374 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2375 2376 return (status >> (idx*4)) & 0xF; 2377 } 2378 2379 #define ENUMERATED_CTL_INFO(info, texts) \ 2380 snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts) 2381 2382 2383 /* Helper function to query the external sample rate and return the 2384 * corresponding enum to be returned to userspace. 2385 */ 2386 static int hdspm_external_rate_to_enum(struct hdspm *hdspm) 2387 { 2388 int rate = hdspm_external_sample_rate(hdspm); 2389 int i, selected_rate = 0; 2390 for (i = 1; i < 10; i++) 2391 if (HDSPM_bit2freq(i) == rate) { 2392 selected_rate = i; 2393 break; 2394 } 2395 return selected_rate; 2396 } 2397 2398 2399 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 2400 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2401 .name = xname, \ 2402 .private_value = xindex, \ 2403 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2404 .info = snd_hdspm_info_autosync_sample_rate, \ 2405 .get = snd_hdspm_get_autosync_sample_rate \ 2406 } 2407 2408 2409 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2410 struct snd_ctl_elem_info *uinfo) 2411 { 2412 ENUMERATED_CTL_INFO(uinfo, texts_freq); 2413 return 0; 2414 } 2415 2416 2417 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2418 struct snd_ctl_elem_value * 2419 ucontrol) 2420 { 2421 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2422 2423 switch (hdspm->io_type) { 2424 case RayDAT: 2425 switch (kcontrol->private_value) { 2426 case 0: 2427 ucontrol->value.enumerated.item[0] = 2428 hdspm_get_wc_sample_rate(hdspm); 2429 break; 2430 case 7: 2431 ucontrol->value.enumerated.item[0] = 2432 hdspm_get_tco_sample_rate(hdspm); 2433 break; 2434 case 8: 2435 ucontrol->value.enumerated.item[0] = 2436 hdspm_get_sync_in_sample_rate(hdspm); 2437 break; 2438 default: 2439 ucontrol->value.enumerated.item[0] = 2440 hdspm_get_s1_sample_rate(hdspm, 2441 kcontrol->private_value-1); 2442 } 2443 break; 2444 2445 case AIO: 2446 switch (kcontrol->private_value) { 2447 case 0: /* WC */ 2448 ucontrol->value.enumerated.item[0] = 2449 hdspm_get_wc_sample_rate(hdspm); 2450 break; 2451 case 4: /* TCO */ 2452 ucontrol->value.enumerated.item[0] = 2453 hdspm_get_tco_sample_rate(hdspm); 2454 break; 2455 case 5: /* SYNC_IN */ 2456 ucontrol->value.enumerated.item[0] = 2457 hdspm_get_sync_in_sample_rate(hdspm); 2458 break; 2459 default: 2460 ucontrol->value.enumerated.item[0] = 2461 hdspm_get_s1_sample_rate(hdspm, 2462 kcontrol->private_value-1); 2463 } 2464 break; 2465 2466 case AES32: 2467 2468 switch (kcontrol->private_value) { 2469 case 0: /* WC */ 2470 ucontrol->value.enumerated.item[0] = 2471 hdspm_get_wc_sample_rate(hdspm); 2472 break; 2473 case 9: /* TCO */ 2474 ucontrol->value.enumerated.item[0] = 2475 hdspm_get_tco_sample_rate(hdspm); 2476 break; 2477 case 10: /* SYNC_IN */ 2478 ucontrol->value.enumerated.item[0] = 2479 hdspm_get_sync_in_sample_rate(hdspm); 2480 break; 2481 case 11: /* External Rate */ 2482 ucontrol->value.enumerated.item[0] = 2483 hdspm_external_rate_to_enum(hdspm); 2484 break; 2485 default: /* AES1 to AES8 */ 2486 ucontrol->value.enumerated.item[0] = 2487 hdspm_get_aes_sample_rate(hdspm, 2488 kcontrol->private_value - 2489 HDSPM_AES32_AUTOSYNC_FROM_AES1); 2490 break; 2491 } 2492 break; 2493 2494 case MADI: 2495 case MADIface: 2496 ucontrol->value.enumerated.item[0] = 2497 hdspm_external_rate_to_enum(hdspm); 2498 break; 2499 default: 2500 break; 2501 } 2502 2503 return 0; 2504 } 2505 2506 2507 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \ 2508 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2509 .name = xname, \ 2510 .index = xindex, \ 2511 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2512 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2513 .info = snd_hdspm_info_system_clock_mode, \ 2514 .get = snd_hdspm_get_system_clock_mode, \ 2515 .put = snd_hdspm_put_system_clock_mode, \ 2516 } 2517 2518 2519 /* 2520 * Returns the system clock mode for the given card. 2521 * @returns 0 - master, 1 - slave 2522 */ 2523 static int hdspm_system_clock_mode(struct hdspm *hdspm) 2524 { 2525 switch (hdspm->io_type) { 2526 case AIO: 2527 case RayDAT: 2528 if (hdspm->settings_register & HDSPM_c0Master) 2529 return 0; 2530 break; 2531 2532 default: 2533 if (hdspm->control_register & HDSPM_ClockModeMaster) 2534 return 0; 2535 } 2536 2537 return 1; 2538 } 2539 2540 2541 /* 2542 * Sets the system clock mode. 2543 * @param mode 0 - master, 1 - slave 2544 */ 2545 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode) 2546 { 2547 hdspm_set_toggle_setting(hdspm, 2548 (hdspm_is_raydat_or_aio(hdspm)) ? 2549 HDSPM_c0Master : HDSPM_ClockModeMaster, 2550 (0 == mode)); 2551 } 2552 2553 2554 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol, 2555 struct snd_ctl_elem_info *uinfo) 2556 { 2557 static const char *const texts[] = { "Master", "AutoSync" }; 2558 ENUMERATED_CTL_INFO(uinfo, texts); 2559 return 0; 2560 } 2561 2562 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol, 2563 struct snd_ctl_elem_value *ucontrol) 2564 { 2565 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2566 2567 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm); 2568 return 0; 2569 } 2570 2571 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol, 2572 struct snd_ctl_elem_value *ucontrol) 2573 { 2574 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2575 int val; 2576 2577 if (!snd_hdspm_use_is_exclusive(hdspm)) 2578 return -EBUSY; 2579 2580 val = ucontrol->value.enumerated.item[0]; 2581 if (val < 0) 2582 val = 0; 2583 else if (val > 1) 2584 val = 1; 2585 2586 hdspm_set_system_clock_mode(hdspm, val); 2587 2588 return 0; 2589 } 2590 2591 2592 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \ 2593 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2594 .name = xname, \ 2595 .index = xindex, \ 2596 .info = snd_hdspm_info_clock_source, \ 2597 .get = snd_hdspm_get_clock_source, \ 2598 .put = snd_hdspm_put_clock_source \ 2599 } 2600 2601 2602 static int hdspm_clock_source(struct hdspm * hdspm) 2603 { 2604 switch (hdspm->system_sample_rate) { 2605 case 32000: return 0; 2606 case 44100: return 1; 2607 case 48000: return 2; 2608 case 64000: return 3; 2609 case 88200: return 4; 2610 case 96000: return 5; 2611 case 128000: return 6; 2612 case 176400: return 7; 2613 case 192000: return 8; 2614 } 2615 2616 return -1; 2617 } 2618 2619 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode) 2620 { 2621 int rate; 2622 switch (mode) { 2623 case 0: 2624 rate = 32000; break; 2625 case 1: 2626 rate = 44100; break; 2627 case 2: 2628 rate = 48000; break; 2629 case 3: 2630 rate = 64000; break; 2631 case 4: 2632 rate = 88200; break; 2633 case 5: 2634 rate = 96000; break; 2635 case 6: 2636 rate = 128000; break; 2637 case 7: 2638 rate = 176400; break; 2639 case 8: 2640 rate = 192000; break; 2641 default: 2642 rate = 48000; 2643 } 2644 hdspm_set_rate(hdspm, rate, 1); 2645 return 0; 2646 } 2647 2648 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol, 2649 struct snd_ctl_elem_info *uinfo) 2650 { 2651 return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1); 2652 } 2653 2654 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol, 2655 struct snd_ctl_elem_value *ucontrol) 2656 { 2657 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2658 2659 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm); 2660 return 0; 2661 } 2662 2663 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol, 2664 struct snd_ctl_elem_value *ucontrol) 2665 { 2666 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2667 int change; 2668 int val; 2669 2670 if (!snd_hdspm_use_is_exclusive(hdspm)) 2671 return -EBUSY; 2672 val = ucontrol->value.enumerated.item[0]; 2673 if (val < 0) 2674 val = 0; 2675 if (val > 9) 2676 val = 9; 2677 spin_lock_irq(&hdspm->lock); 2678 if (val != hdspm_clock_source(hdspm)) 2679 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0; 2680 else 2681 change = 0; 2682 spin_unlock_irq(&hdspm->lock); 2683 return change; 2684 } 2685 2686 2687 #define HDSPM_PREF_SYNC_REF(xname, xindex) \ 2688 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2689 .name = xname, \ 2690 .index = xindex, \ 2691 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2692 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2693 .info = snd_hdspm_info_pref_sync_ref, \ 2694 .get = snd_hdspm_get_pref_sync_ref, \ 2695 .put = snd_hdspm_put_pref_sync_ref \ 2696 } 2697 2698 2699 /* 2700 * Returns the current preferred sync reference setting. 2701 * The semantics of the return value are depending on the 2702 * card, please see the comments for clarification. 2703 */ 2704 static int hdspm_pref_sync_ref(struct hdspm * hdspm) 2705 { 2706 switch (hdspm->io_type) { 2707 case AES32: 2708 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2709 case 0: return 0; /* WC */ 2710 case HDSPM_SyncRef0: return 1; /* AES 1 */ 2711 case HDSPM_SyncRef1: return 2; /* AES 2 */ 2712 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */ 2713 case HDSPM_SyncRef2: return 4; /* AES 4 */ 2714 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */ 2715 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */ 2716 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: 2717 return 7; /* AES 7 */ 2718 case HDSPM_SyncRef3: return 8; /* AES 8 */ 2719 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */ 2720 } 2721 break; 2722 2723 case MADI: 2724 case MADIface: 2725 if (hdspm->tco) { 2726 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2727 case 0: return 0; /* WC */ 2728 case HDSPM_SyncRef0: return 1; /* MADI */ 2729 case HDSPM_SyncRef1: return 2; /* TCO */ 2730 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2731 return 3; /* SYNC_IN */ 2732 } 2733 } else { 2734 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2735 case 0: return 0; /* WC */ 2736 case HDSPM_SyncRef0: return 1; /* MADI */ 2737 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2738 return 2; /* SYNC_IN */ 2739 } 2740 } 2741 break; 2742 2743 case RayDAT: 2744 if (hdspm->tco) { 2745 switch ((hdspm->settings_register & 2746 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2747 case 0: return 0; /* WC */ 2748 case 3: return 1; /* ADAT 1 */ 2749 case 4: return 2; /* ADAT 2 */ 2750 case 5: return 3; /* ADAT 3 */ 2751 case 6: return 4; /* ADAT 4 */ 2752 case 1: return 5; /* AES */ 2753 case 2: return 6; /* SPDIF */ 2754 case 9: return 7; /* TCO */ 2755 case 10: return 8; /* SYNC_IN */ 2756 } 2757 } else { 2758 switch ((hdspm->settings_register & 2759 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2760 case 0: return 0; /* WC */ 2761 case 3: return 1; /* ADAT 1 */ 2762 case 4: return 2; /* ADAT 2 */ 2763 case 5: return 3; /* ADAT 3 */ 2764 case 6: return 4; /* ADAT 4 */ 2765 case 1: return 5; /* AES */ 2766 case 2: return 6; /* SPDIF */ 2767 case 10: return 7; /* SYNC_IN */ 2768 } 2769 } 2770 2771 break; 2772 2773 case AIO: 2774 if (hdspm->tco) { 2775 switch ((hdspm->settings_register & 2776 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2777 case 0: return 0; /* WC */ 2778 case 3: return 1; /* ADAT */ 2779 case 1: return 2; /* AES */ 2780 case 2: return 3; /* SPDIF */ 2781 case 9: return 4; /* TCO */ 2782 case 10: return 5; /* SYNC_IN */ 2783 } 2784 } else { 2785 switch ((hdspm->settings_register & 2786 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2787 case 0: return 0; /* WC */ 2788 case 3: return 1; /* ADAT */ 2789 case 1: return 2; /* AES */ 2790 case 2: return 3; /* SPDIF */ 2791 case 10: return 4; /* SYNC_IN */ 2792 } 2793 } 2794 2795 break; 2796 } 2797 2798 return -1; 2799 } 2800 2801 2802 /* 2803 * Set the preferred sync reference to <pref>. The semantics 2804 * of <pref> are depending on the card type, see the comments 2805 * for clarification. 2806 */ 2807 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) 2808 { 2809 int p = 0; 2810 2811 switch (hdspm->io_type) { 2812 case AES32: 2813 hdspm->control_register &= ~HDSPM_SyncRefMask; 2814 switch (pref) { 2815 case 0: /* WC */ 2816 break; 2817 case 1: /* AES 1 */ 2818 hdspm->control_register |= HDSPM_SyncRef0; 2819 break; 2820 case 2: /* AES 2 */ 2821 hdspm->control_register |= HDSPM_SyncRef1; 2822 break; 2823 case 3: /* AES 3 */ 2824 hdspm->control_register |= 2825 HDSPM_SyncRef1+HDSPM_SyncRef0; 2826 break; 2827 case 4: /* AES 4 */ 2828 hdspm->control_register |= HDSPM_SyncRef2; 2829 break; 2830 case 5: /* AES 5 */ 2831 hdspm->control_register |= 2832 HDSPM_SyncRef2+HDSPM_SyncRef0; 2833 break; 2834 case 6: /* AES 6 */ 2835 hdspm->control_register |= 2836 HDSPM_SyncRef2+HDSPM_SyncRef1; 2837 break; 2838 case 7: /* AES 7 */ 2839 hdspm->control_register |= 2840 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0; 2841 break; 2842 case 8: /* AES 8 */ 2843 hdspm->control_register |= HDSPM_SyncRef3; 2844 break; 2845 case 9: /* TCO */ 2846 hdspm->control_register |= 2847 HDSPM_SyncRef3+HDSPM_SyncRef0; 2848 break; 2849 default: 2850 return -1; 2851 } 2852 2853 break; 2854 2855 case MADI: 2856 case MADIface: 2857 hdspm->control_register &= ~HDSPM_SyncRefMask; 2858 if (hdspm->tco) { 2859 switch (pref) { 2860 case 0: /* WC */ 2861 break; 2862 case 1: /* MADI */ 2863 hdspm->control_register |= HDSPM_SyncRef0; 2864 break; 2865 case 2: /* TCO */ 2866 hdspm->control_register |= HDSPM_SyncRef1; 2867 break; 2868 case 3: /* SYNC_IN */ 2869 hdspm->control_register |= 2870 HDSPM_SyncRef0+HDSPM_SyncRef1; 2871 break; 2872 default: 2873 return -1; 2874 } 2875 } else { 2876 switch (pref) { 2877 case 0: /* WC */ 2878 break; 2879 case 1: /* MADI */ 2880 hdspm->control_register |= HDSPM_SyncRef0; 2881 break; 2882 case 2: /* SYNC_IN */ 2883 hdspm->control_register |= 2884 HDSPM_SyncRef0+HDSPM_SyncRef1; 2885 break; 2886 default: 2887 return -1; 2888 } 2889 } 2890 2891 break; 2892 2893 case RayDAT: 2894 if (hdspm->tco) { 2895 switch (pref) { 2896 case 0: p = 0; break; /* WC */ 2897 case 1: p = 3; break; /* ADAT 1 */ 2898 case 2: p = 4; break; /* ADAT 2 */ 2899 case 3: p = 5; break; /* ADAT 3 */ 2900 case 4: p = 6; break; /* ADAT 4 */ 2901 case 5: p = 1; break; /* AES */ 2902 case 6: p = 2; break; /* SPDIF */ 2903 case 7: p = 9; break; /* TCO */ 2904 case 8: p = 10; break; /* SYNC_IN */ 2905 default: return -1; 2906 } 2907 } else { 2908 switch (pref) { 2909 case 0: p = 0; break; /* WC */ 2910 case 1: p = 3; break; /* ADAT 1 */ 2911 case 2: p = 4; break; /* ADAT 2 */ 2912 case 3: p = 5; break; /* ADAT 3 */ 2913 case 4: p = 6; break; /* ADAT 4 */ 2914 case 5: p = 1; break; /* AES */ 2915 case 6: p = 2; break; /* SPDIF */ 2916 case 7: p = 10; break; /* SYNC_IN */ 2917 default: return -1; 2918 } 2919 } 2920 break; 2921 2922 case AIO: 2923 if (hdspm->tco) { 2924 switch (pref) { 2925 case 0: p = 0; break; /* WC */ 2926 case 1: p = 3; break; /* ADAT */ 2927 case 2: p = 1; break; /* AES */ 2928 case 3: p = 2; break; /* SPDIF */ 2929 case 4: p = 9; break; /* TCO */ 2930 case 5: p = 10; break; /* SYNC_IN */ 2931 default: return -1; 2932 } 2933 } else { 2934 switch (pref) { 2935 case 0: p = 0; break; /* WC */ 2936 case 1: p = 3; break; /* ADAT */ 2937 case 2: p = 1; break; /* AES */ 2938 case 3: p = 2; break; /* SPDIF */ 2939 case 4: p = 10; break; /* SYNC_IN */ 2940 default: return -1; 2941 } 2942 } 2943 break; 2944 } 2945 2946 switch (hdspm->io_type) { 2947 case RayDAT: 2948 case AIO: 2949 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask; 2950 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p; 2951 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 2952 break; 2953 2954 case MADI: 2955 case MADIface: 2956 case AES32: 2957 hdspm_write(hdspm, HDSPM_controlRegister, 2958 hdspm->control_register); 2959 } 2960 2961 return 0; 2962 } 2963 2964 2965 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, 2966 struct snd_ctl_elem_info *uinfo) 2967 { 2968 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2969 2970 snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync); 2971 2972 return 0; 2973 } 2974 2975 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol, 2976 struct snd_ctl_elem_value *ucontrol) 2977 { 2978 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2979 int psf = hdspm_pref_sync_ref(hdspm); 2980 2981 if (psf >= 0) { 2982 ucontrol->value.enumerated.item[0] = psf; 2983 return 0; 2984 } 2985 2986 return -1; 2987 } 2988 2989 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, 2990 struct snd_ctl_elem_value *ucontrol) 2991 { 2992 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2993 int val, change = 0; 2994 2995 if (!snd_hdspm_use_is_exclusive(hdspm)) 2996 return -EBUSY; 2997 2998 val = ucontrol->value.enumerated.item[0]; 2999 3000 if (val < 0) 3001 val = 0; 3002 else if (val >= hdspm->texts_autosync_items) 3003 val = hdspm->texts_autosync_items-1; 3004 3005 spin_lock_irq(&hdspm->lock); 3006 if (val != hdspm_pref_sync_ref(hdspm)) 3007 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0; 3008 3009 spin_unlock_irq(&hdspm->lock); 3010 return change; 3011 } 3012 3013 3014 #define HDSPM_AUTOSYNC_REF(xname, xindex) \ 3015 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3016 .name = xname, \ 3017 .index = xindex, \ 3018 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 3019 .info = snd_hdspm_info_autosync_ref, \ 3020 .get = snd_hdspm_get_autosync_ref, \ 3021 } 3022 3023 static int hdspm_autosync_ref(struct hdspm *hdspm) 3024 { 3025 /* This looks at the autosync selected sync reference */ 3026 if (AES32 == hdspm->io_type) { 3027 3028 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 3029 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF; 3030 /* syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD is always true */ 3031 if (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN) { 3032 return syncref; 3033 } 3034 return HDSPM_AES32_AUTOSYNC_FROM_NONE; 3035 3036 } else if (MADI == hdspm->io_type) { 3037 3038 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3039 switch (status2 & HDSPM_SelSyncRefMask) { 3040 case HDSPM_SelSyncRef_WORD: 3041 return HDSPM_AUTOSYNC_FROM_WORD; 3042 case HDSPM_SelSyncRef_MADI: 3043 return HDSPM_AUTOSYNC_FROM_MADI; 3044 case HDSPM_SelSyncRef_TCO: 3045 return HDSPM_AUTOSYNC_FROM_TCO; 3046 case HDSPM_SelSyncRef_SyncIn: 3047 return HDSPM_AUTOSYNC_FROM_SYNC_IN; 3048 case HDSPM_SelSyncRef_NVALID: 3049 return HDSPM_AUTOSYNC_FROM_NONE; 3050 default: 3051 return HDSPM_AUTOSYNC_FROM_NONE; 3052 } 3053 3054 } 3055 return 0; 3056 } 3057 3058 3059 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, 3060 struct snd_ctl_elem_info *uinfo) 3061 { 3062 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3063 3064 if (AES32 == hdspm->io_type) { 3065 static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3", 3066 "AES4", "AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"}; 3067 3068 ENUMERATED_CTL_INFO(uinfo, texts); 3069 } else if (MADI == hdspm->io_type) { 3070 static const char *const texts[] = {"Word Clock", "MADI", "TCO", 3071 "Sync In", "None" }; 3072 3073 ENUMERATED_CTL_INFO(uinfo, texts); 3074 } 3075 return 0; 3076 } 3077 3078 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol, 3079 struct snd_ctl_elem_value *ucontrol) 3080 { 3081 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3082 3083 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm); 3084 return 0; 3085 } 3086 3087 3088 3089 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \ 3090 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3091 .name = xname, \ 3092 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3093 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3094 .info = snd_hdspm_info_tco_video_input_format, \ 3095 .get = snd_hdspm_get_tco_video_input_format, \ 3096 } 3097 3098 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol, 3099 struct snd_ctl_elem_info *uinfo) 3100 { 3101 static const char *const texts[] = {"No video", "NTSC", "PAL"}; 3102 ENUMERATED_CTL_INFO(uinfo, texts); 3103 return 0; 3104 } 3105 3106 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol, 3107 struct snd_ctl_elem_value *ucontrol) 3108 { 3109 u32 status; 3110 int ret = 0; 3111 3112 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3113 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3114 switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC | 3115 HDSPM_TCO1_Video_Input_Format_PAL)) { 3116 case HDSPM_TCO1_Video_Input_Format_NTSC: 3117 /* ntsc */ 3118 ret = 1; 3119 break; 3120 case HDSPM_TCO1_Video_Input_Format_PAL: 3121 /* pal */ 3122 ret = 2; 3123 break; 3124 default: 3125 /* no video */ 3126 ret = 0; 3127 break; 3128 } 3129 ucontrol->value.enumerated.item[0] = ret; 3130 return 0; 3131 } 3132 3133 3134 3135 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \ 3136 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3137 .name = xname, \ 3138 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3139 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3140 .info = snd_hdspm_info_tco_ltc_frames, \ 3141 .get = snd_hdspm_get_tco_ltc_frames, \ 3142 } 3143 3144 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3145 struct snd_ctl_elem_info *uinfo) 3146 { 3147 static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps", 3148 "30 fps"}; 3149 ENUMERATED_CTL_INFO(uinfo, texts); 3150 return 0; 3151 } 3152 3153 static int hdspm_tco_ltc_frames(struct hdspm *hdspm) 3154 { 3155 u32 status; 3156 int ret = 0; 3157 3158 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3159 if (status & HDSPM_TCO1_LTC_Input_valid) { 3160 switch (status & (HDSPM_TCO1_LTC_Format_LSB | 3161 HDSPM_TCO1_LTC_Format_MSB)) { 3162 case 0: 3163 /* 24 fps */ 3164 ret = fps_24; 3165 break; 3166 case HDSPM_TCO1_LTC_Format_LSB: 3167 /* 25 fps */ 3168 ret = fps_25; 3169 break; 3170 case HDSPM_TCO1_LTC_Format_MSB: 3171 /* 29.97 fps */ 3172 ret = fps_2997; 3173 break; 3174 default: 3175 /* 30 fps */ 3176 ret = fps_30; 3177 break; 3178 } 3179 } 3180 3181 return ret; 3182 } 3183 3184 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3185 struct snd_ctl_elem_value *ucontrol) 3186 { 3187 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3188 3189 ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm); 3190 return 0; 3191 } 3192 3193 #define HDSPM_TOGGLE_SETTING(xname, xindex) \ 3194 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3195 .name = xname, \ 3196 .private_value = xindex, \ 3197 .info = snd_hdspm_info_toggle_setting, \ 3198 .get = snd_hdspm_get_toggle_setting, \ 3199 .put = snd_hdspm_put_toggle_setting \ 3200 } 3201 3202 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask) 3203 { 3204 u32 reg; 3205 3206 if (hdspm_is_raydat_or_aio(hdspm)) 3207 reg = hdspm->settings_register; 3208 else 3209 reg = hdspm->control_register; 3210 3211 return (reg & regmask) ? 1 : 0; 3212 } 3213 3214 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out) 3215 { 3216 u32 *reg; 3217 u32 target_reg; 3218 3219 if (hdspm_is_raydat_or_aio(hdspm)) { 3220 reg = &(hdspm->settings_register); 3221 target_reg = HDSPM_WR_SETTINGS; 3222 } else { 3223 reg = &(hdspm->control_register); 3224 target_reg = HDSPM_controlRegister; 3225 } 3226 3227 if (out) 3228 *reg |= regmask; 3229 else 3230 *reg &= ~regmask; 3231 3232 hdspm_write(hdspm, target_reg, *reg); 3233 3234 return 0; 3235 } 3236 3237 #define snd_hdspm_info_toggle_setting snd_ctl_boolean_mono_info 3238 3239 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol, 3240 struct snd_ctl_elem_value *ucontrol) 3241 { 3242 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3243 u32 regmask = kcontrol->private_value; 3244 3245 spin_lock_irq(&hdspm->lock); 3246 ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask); 3247 spin_unlock_irq(&hdspm->lock); 3248 return 0; 3249 } 3250 3251 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol, 3252 struct snd_ctl_elem_value *ucontrol) 3253 { 3254 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3255 u32 regmask = kcontrol->private_value; 3256 int change; 3257 unsigned int val; 3258 3259 if (!snd_hdspm_use_is_exclusive(hdspm)) 3260 return -EBUSY; 3261 val = ucontrol->value.integer.value[0] & 1; 3262 spin_lock_irq(&hdspm->lock); 3263 change = (int) val != hdspm_toggle_setting(hdspm, regmask); 3264 hdspm_set_toggle_setting(hdspm, regmask, val); 3265 spin_unlock_irq(&hdspm->lock); 3266 return change; 3267 } 3268 3269 #define HDSPM_INPUT_SELECT(xname, xindex) \ 3270 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3271 .name = xname, \ 3272 .index = xindex, \ 3273 .info = snd_hdspm_info_input_select, \ 3274 .get = snd_hdspm_get_input_select, \ 3275 .put = snd_hdspm_put_input_select \ 3276 } 3277 3278 static int hdspm_input_select(struct hdspm * hdspm) 3279 { 3280 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; 3281 } 3282 3283 static int hdspm_set_input_select(struct hdspm * hdspm, int out) 3284 { 3285 if (out) 3286 hdspm->control_register |= HDSPM_InputSelect0; 3287 else 3288 hdspm->control_register &= ~HDSPM_InputSelect0; 3289 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3290 3291 return 0; 3292 } 3293 3294 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, 3295 struct snd_ctl_elem_info *uinfo) 3296 { 3297 static const char *const texts[] = { "optical", "coaxial" }; 3298 ENUMERATED_CTL_INFO(uinfo, texts); 3299 return 0; 3300 } 3301 3302 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, 3303 struct snd_ctl_elem_value *ucontrol) 3304 { 3305 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3306 3307 spin_lock_irq(&hdspm->lock); 3308 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); 3309 spin_unlock_irq(&hdspm->lock); 3310 return 0; 3311 } 3312 3313 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, 3314 struct snd_ctl_elem_value *ucontrol) 3315 { 3316 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3317 int change; 3318 unsigned int val; 3319 3320 if (!snd_hdspm_use_is_exclusive(hdspm)) 3321 return -EBUSY; 3322 val = ucontrol->value.integer.value[0] & 1; 3323 spin_lock_irq(&hdspm->lock); 3324 change = (int) val != hdspm_input_select(hdspm); 3325 hdspm_set_input_select(hdspm, val); 3326 spin_unlock_irq(&hdspm->lock); 3327 return change; 3328 } 3329 3330 3331 #define HDSPM_DS_WIRE(xname, xindex) \ 3332 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3333 .name = xname, \ 3334 .index = xindex, \ 3335 .info = snd_hdspm_info_ds_wire, \ 3336 .get = snd_hdspm_get_ds_wire, \ 3337 .put = snd_hdspm_put_ds_wire \ 3338 } 3339 3340 static int hdspm_ds_wire(struct hdspm * hdspm) 3341 { 3342 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0; 3343 } 3344 3345 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds) 3346 { 3347 if (ds) 3348 hdspm->control_register |= HDSPM_DS_DoubleWire; 3349 else 3350 hdspm->control_register &= ~HDSPM_DS_DoubleWire; 3351 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3352 3353 return 0; 3354 } 3355 3356 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol, 3357 struct snd_ctl_elem_info *uinfo) 3358 { 3359 static const char *const texts[] = { "Single", "Double" }; 3360 ENUMERATED_CTL_INFO(uinfo, texts); 3361 return 0; 3362 } 3363 3364 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol, 3365 struct snd_ctl_elem_value *ucontrol) 3366 { 3367 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3368 3369 spin_lock_irq(&hdspm->lock); 3370 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm); 3371 spin_unlock_irq(&hdspm->lock); 3372 return 0; 3373 } 3374 3375 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol, 3376 struct snd_ctl_elem_value *ucontrol) 3377 { 3378 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3379 int change; 3380 unsigned int val; 3381 3382 if (!snd_hdspm_use_is_exclusive(hdspm)) 3383 return -EBUSY; 3384 val = ucontrol->value.integer.value[0] & 1; 3385 spin_lock_irq(&hdspm->lock); 3386 change = (int) val != hdspm_ds_wire(hdspm); 3387 hdspm_set_ds_wire(hdspm, val); 3388 spin_unlock_irq(&hdspm->lock); 3389 return change; 3390 } 3391 3392 3393 #define HDSPM_QS_WIRE(xname, xindex) \ 3394 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3395 .name = xname, \ 3396 .index = xindex, \ 3397 .info = snd_hdspm_info_qs_wire, \ 3398 .get = snd_hdspm_get_qs_wire, \ 3399 .put = snd_hdspm_put_qs_wire \ 3400 } 3401 3402 static int hdspm_qs_wire(struct hdspm * hdspm) 3403 { 3404 if (hdspm->control_register & HDSPM_QS_DoubleWire) 3405 return 1; 3406 if (hdspm->control_register & HDSPM_QS_QuadWire) 3407 return 2; 3408 return 0; 3409 } 3410 3411 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode) 3412 { 3413 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire); 3414 switch (mode) { 3415 case 0: 3416 break; 3417 case 1: 3418 hdspm->control_register |= HDSPM_QS_DoubleWire; 3419 break; 3420 case 2: 3421 hdspm->control_register |= HDSPM_QS_QuadWire; 3422 break; 3423 } 3424 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3425 3426 return 0; 3427 } 3428 3429 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol, 3430 struct snd_ctl_elem_info *uinfo) 3431 { 3432 static const char *const texts[] = { "Single", "Double", "Quad" }; 3433 ENUMERATED_CTL_INFO(uinfo, texts); 3434 return 0; 3435 } 3436 3437 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol, 3438 struct snd_ctl_elem_value *ucontrol) 3439 { 3440 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3441 3442 spin_lock_irq(&hdspm->lock); 3443 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm); 3444 spin_unlock_irq(&hdspm->lock); 3445 return 0; 3446 } 3447 3448 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol, 3449 struct snd_ctl_elem_value *ucontrol) 3450 { 3451 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3452 int change; 3453 int val; 3454 3455 if (!snd_hdspm_use_is_exclusive(hdspm)) 3456 return -EBUSY; 3457 val = ucontrol->value.integer.value[0]; 3458 if (val < 0) 3459 val = 0; 3460 if (val > 2) 3461 val = 2; 3462 spin_lock_irq(&hdspm->lock); 3463 change = val != hdspm_qs_wire(hdspm); 3464 hdspm_set_qs_wire(hdspm, val); 3465 spin_unlock_irq(&hdspm->lock); 3466 return change; 3467 } 3468 3469 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \ 3470 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3471 .name = xname, \ 3472 .private_value = xindex, \ 3473 .info = snd_hdspm_info_tristate, \ 3474 .get = snd_hdspm_get_tristate, \ 3475 .put = snd_hdspm_put_tristate \ 3476 } 3477 3478 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask) 3479 { 3480 u32 reg = hdspm->settings_register & (regmask * 3); 3481 return reg / regmask; 3482 } 3483 3484 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask) 3485 { 3486 hdspm->settings_register &= ~(regmask * 3); 3487 hdspm->settings_register |= (regmask * mode); 3488 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 3489 3490 return 0; 3491 } 3492 3493 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol, 3494 struct snd_ctl_elem_info *uinfo) 3495 { 3496 u32 regmask = kcontrol->private_value; 3497 3498 static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" }; 3499 static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" }; 3500 3501 switch (regmask) { 3502 case HDSPM_c0_Input0: 3503 ENUMERATED_CTL_INFO(uinfo, texts_spdif); 3504 break; 3505 default: 3506 ENUMERATED_CTL_INFO(uinfo, texts_levels); 3507 break; 3508 } 3509 return 0; 3510 } 3511 3512 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol, 3513 struct snd_ctl_elem_value *ucontrol) 3514 { 3515 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3516 u32 regmask = kcontrol->private_value; 3517 3518 spin_lock_irq(&hdspm->lock); 3519 ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask); 3520 spin_unlock_irq(&hdspm->lock); 3521 return 0; 3522 } 3523 3524 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol, 3525 struct snd_ctl_elem_value *ucontrol) 3526 { 3527 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3528 u32 regmask = kcontrol->private_value; 3529 int change; 3530 int val; 3531 3532 if (!snd_hdspm_use_is_exclusive(hdspm)) 3533 return -EBUSY; 3534 val = ucontrol->value.integer.value[0]; 3535 if (val < 0) 3536 val = 0; 3537 if (val > 2) 3538 val = 2; 3539 3540 spin_lock_irq(&hdspm->lock); 3541 change = val != hdspm_tristate(hdspm, regmask); 3542 hdspm_set_tristate(hdspm, val, regmask); 3543 spin_unlock_irq(&hdspm->lock); 3544 return change; 3545 } 3546 3547 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \ 3548 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3549 .name = xname, \ 3550 .index = xindex, \ 3551 .info = snd_hdspm_info_madi_speedmode, \ 3552 .get = snd_hdspm_get_madi_speedmode, \ 3553 .put = snd_hdspm_put_madi_speedmode \ 3554 } 3555 3556 static int hdspm_madi_speedmode(struct hdspm *hdspm) 3557 { 3558 if (hdspm->control_register & HDSPM_QuadSpeed) 3559 return 2; 3560 if (hdspm->control_register & HDSPM_DoubleSpeed) 3561 return 1; 3562 return 0; 3563 } 3564 3565 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode) 3566 { 3567 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed); 3568 switch (mode) { 3569 case 0: 3570 break; 3571 case 1: 3572 hdspm->control_register |= HDSPM_DoubleSpeed; 3573 break; 3574 case 2: 3575 hdspm->control_register |= HDSPM_QuadSpeed; 3576 break; 3577 } 3578 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3579 3580 return 0; 3581 } 3582 3583 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol, 3584 struct snd_ctl_elem_info *uinfo) 3585 { 3586 static const char *const texts[] = { "Single", "Double", "Quad" }; 3587 ENUMERATED_CTL_INFO(uinfo, texts); 3588 return 0; 3589 } 3590 3591 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol, 3592 struct snd_ctl_elem_value *ucontrol) 3593 { 3594 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3595 3596 spin_lock_irq(&hdspm->lock); 3597 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm); 3598 spin_unlock_irq(&hdspm->lock); 3599 return 0; 3600 } 3601 3602 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol, 3603 struct snd_ctl_elem_value *ucontrol) 3604 { 3605 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3606 int change; 3607 int val; 3608 3609 if (!snd_hdspm_use_is_exclusive(hdspm)) 3610 return -EBUSY; 3611 val = ucontrol->value.integer.value[0]; 3612 if (val < 0) 3613 val = 0; 3614 if (val > 2) 3615 val = 2; 3616 spin_lock_irq(&hdspm->lock); 3617 change = val != hdspm_madi_speedmode(hdspm); 3618 hdspm_set_madi_speedmode(hdspm, val); 3619 spin_unlock_irq(&hdspm->lock); 3620 return change; 3621 } 3622 3623 #define HDSPM_MIXER(xname, xindex) \ 3624 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 3625 .name = xname, \ 3626 .index = xindex, \ 3627 .device = 0, \ 3628 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 3629 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3630 .info = snd_hdspm_info_mixer, \ 3631 .get = snd_hdspm_get_mixer, \ 3632 .put = snd_hdspm_put_mixer \ 3633 } 3634 3635 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol, 3636 struct snd_ctl_elem_info *uinfo) 3637 { 3638 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3639 uinfo->count = 3; 3640 uinfo->value.integer.min = 0; 3641 uinfo->value.integer.max = 65535; 3642 uinfo->value.integer.step = 1; 3643 return 0; 3644 } 3645 3646 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol, 3647 struct snd_ctl_elem_value *ucontrol) 3648 { 3649 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3650 int source; 3651 int destination; 3652 3653 source = ucontrol->value.integer.value[0]; 3654 if (source < 0) 3655 source = 0; 3656 else if (source >= 2 * HDSPM_MAX_CHANNELS) 3657 source = 2 * HDSPM_MAX_CHANNELS - 1; 3658 3659 destination = ucontrol->value.integer.value[1]; 3660 if (destination < 0) 3661 destination = 0; 3662 else if (destination >= HDSPM_MAX_CHANNELS) 3663 destination = HDSPM_MAX_CHANNELS - 1; 3664 3665 spin_lock_irq(&hdspm->lock); 3666 if (source >= HDSPM_MAX_CHANNELS) 3667 ucontrol->value.integer.value[2] = 3668 hdspm_read_pb_gain(hdspm, destination, 3669 source - HDSPM_MAX_CHANNELS); 3670 else 3671 ucontrol->value.integer.value[2] = 3672 hdspm_read_in_gain(hdspm, destination, source); 3673 3674 spin_unlock_irq(&hdspm->lock); 3675 3676 return 0; 3677 } 3678 3679 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol, 3680 struct snd_ctl_elem_value *ucontrol) 3681 { 3682 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3683 int change; 3684 int source; 3685 int destination; 3686 int gain; 3687 3688 if (!snd_hdspm_use_is_exclusive(hdspm)) 3689 return -EBUSY; 3690 3691 source = ucontrol->value.integer.value[0]; 3692 destination = ucontrol->value.integer.value[1]; 3693 3694 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS) 3695 return -1; 3696 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS) 3697 return -1; 3698 3699 gain = ucontrol->value.integer.value[2]; 3700 3701 spin_lock_irq(&hdspm->lock); 3702 3703 if (source >= HDSPM_MAX_CHANNELS) 3704 change = gain != hdspm_read_pb_gain(hdspm, destination, 3705 source - 3706 HDSPM_MAX_CHANNELS); 3707 else 3708 change = gain != hdspm_read_in_gain(hdspm, destination, 3709 source); 3710 3711 if (change) { 3712 if (source >= HDSPM_MAX_CHANNELS) 3713 hdspm_write_pb_gain(hdspm, destination, 3714 source - HDSPM_MAX_CHANNELS, 3715 gain); 3716 else 3717 hdspm_write_in_gain(hdspm, destination, source, 3718 gain); 3719 } 3720 spin_unlock_irq(&hdspm->lock); 3721 3722 return change; 3723 } 3724 3725 /* The simple mixer control(s) provide gain control for the 3726 basic 1:1 mappings of playback streams to output 3727 streams. 3728 */ 3729 3730 #define HDSPM_PLAYBACK_MIXER \ 3731 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3732 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \ 3733 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3734 .info = snd_hdspm_info_playback_mixer, \ 3735 .get = snd_hdspm_get_playback_mixer, \ 3736 .put = snd_hdspm_put_playback_mixer \ 3737 } 3738 3739 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol, 3740 struct snd_ctl_elem_info *uinfo) 3741 { 3742 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3743 uinfo->count = 1; 3744 uinfo->value.integer.min = 0; 3745 uinfo->value.integer.max = 64; 3746 uinfo->value.integer.step = 1; 3747 return 0; 3748 } 3749 3750 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol, 3751 struct snd_ctl_elem_value *ucontrol) 3752 { 3753 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3754 int channel; 3755 3756 channel = ucontrol->id.index - 1; 3757 3758 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3759 return -EINVAL; 3760 3761 spin_lock_irq(&hdspm->lock); 3762 ucontrol->value.integer.value[0] = 3763 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN; 3764 spin_unlock_irq(&hdspm->lock); 3765 3766 return 0; 3767 } 3768 3769 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol, 3770 struct snd_ctl_elem_value *ucontrol) 3771 { 3772 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3773 int change; 3774 int channel; 3775 int gain; 3776 3777 if (!snd_hdspm_use_is_exclusive(hdspm)) 3778 return -EBUSY; 3779 3780 channel = ucontrol->id.index - 1; 3781 3782 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3783 return -EINVAL; 3784 3785 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64; 3786 3787 spin_lock_irq(&hdspm->lock); 3788 change = 3789 gain != hdspm_read_pb_gain(hdspm, channel, 3790 channel); 3791 if (change) 3792 hdspm_write_pb_gain(hdspm, channel, channel, 3793 gain); 3794 spin_unlock_irq(&hdspm->lock); 3795 return change; 3796 } 3797 3798 #define HDSPM_SYNC_CHECK(xname, xindex) \ 3799 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3800 .name = xname, \ 3801 .private_value = xindex, \ 3802 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3803 .info = snd_hdspm_info_sync_check, \ 3804 .get = snd_hdspm_get_sync_check \ 3805 } 3806 3807 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \ 3808 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3809 .name = xname, \ 3810 .private_value = xindex, \ 3811 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3812 .info = snd_hdspm_tco_info_lock_check, \ 3813 .get = snd_hdspm_get_sync_check \ 3814 } 3815 3816 3817 3818 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, 3819 struct snd_ctl_elem_info *uinfo) 3820 { 3821 static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" }; 3822 ENUMERATED_CTL_INFO(uinfo, texts); 3823 return 0; 3824 } 3825 3826 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol, 3827 struct snd_ctl_elem_info *uinfo) 3828 { 3829 static const char *const texts[] = { "No Lock", "Lock" }; 3830 ENUMERATED_CTL_INFO(uinfo, texts); 3831 return 0; 3832 } 3833 3834 static int hdspm_wc_sync_check(struct hdspm *hdspm) 3835 { 3836 int status, status2; 3837 3838 switch (hdspm->io_type) { 3839 case AES32: 3840 status = hdspm_read(hdspm, HDSPM_statusRegister); 3841 if (status & HDSPM_AES32_wcLock) { 3842 if (status & HDSPM_AES32_wcSync) 3843 return 2; 3844 else 3845 return 1; 3846 } 3847 return 0; 3848 break; 3849 3850 case MADI: 3851 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3852 if (status2 & HDSPM_wcLock) { 3853 if (status2 & HDSPM_wcSync) 3854 return 2; 3855 else 3856 return 1; 3857 } 3858 return 0; 3859 break; 3860 3861 case RayDAT: 3862 case AIO: 3863 status = hdspm_read(hdspm, HDSPM_statusRegister); 3864 3865 if (status & 0x2000000) 3866 return 2; 3867 else if (status & 0x1000000) 3868 return 1; 3869 return 0; 3870 3871 break; 3872 3873 case MADIface: 3874 break; 3875 } 3876 3877 3878 return 3; 3879 } 3880 3881 3882 static int hdspm_madi_sync_check(struct hdspm *hdspm) 3883 { 3884 int status = hdspm_read(hdspm, HDSPM_statusRegister); 3885 if (status & HDSPM_madiLock) { 3886 if (status & HDSPM_madiSync) 3887 return 2; 3888 else 3889 return 1; 3890 } 3891 return 0; 3892 } 3893 3894 3895 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx) 3896 { 3897 int status, lock, sync; 3898 3899 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3900 3901 lock = (status & (0x1<<idx)) ? 1 : 0; 3902 sync = (status & (0x100<<idx)) ? 1 : 0; 3903 3904 if (lock && sync) 3905 return 2; 3906 else if (lock) 3907 return 1; 3908 return 0; 3909 } 3910 3911 3912 static int hdspm_sync_in_sync_check(struct hdspm *hdspm) 3913 { 3914 int status, lock = 0, sync = 0; 3915 3916 switch (hdspm->io_type) { 3917 case RayDAT: 3918 case AIO: 3919 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3); 3920 lock = (status & 0x400) ? 1 : 0; 3921 sync = (status & 0x800) ? 1 : 0; 3922 break; 3923 3924 case MADI: 3925 status = hdspm_read(hdspm, HDSPM_statusRegister); 3926 lock = (status & HDSPM_syncInLock) ? 1 : 0; 3927 sync = (status & HDSPM_syncInSync) ? 1 : 0; 3928 break; 3929 3930 case AES32: 3931 status = hdspm_read(hdspm, HDSPM_statusRegister2); 3932 lock = (status & 0x100000) ? 1 : 0; 3933 sync = (status & 0x200000) ? 1 : 0; 3934 break; 3935 3936 case MADIface: 3937 break; 3938 } 3939 3940 if (lock && sync) 3941 return 2; 3942 else if (lock) 3943 return 1; 3944 3945 return 0; 3946 } 3947 3948 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx) 3949 { 3950 int status2, lock, sync; 3951 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3952 3953 lock = (status2 & (0x0080 >> idx)) ? 1 : 0; 3954 sync = (status2 & (0x8000 >> idx)) ? 1 : 0; 3955 3956 if (sync) 3957 return 2; 3958 else if (lock) 3959 return 1; 3960 return 0; 3961 } 3962 3963 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask) 3964 { 3965 u32 status; 3966 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3967 3968 return (status & mask) ? 1 : 0; 3969 } 3970 3971 3972 static int hdspm_tco_sync_check(struct hdspm *hdspm) 3973 { 3974 int status; 3975 3976 if (hdspm->tco) { 3977 switch (hdspm->io_type) { 3978 case MADI: 3979 status = hdspm_read(hdspm, HDSPM_statusRegister); 3980 if (status & HDSPM_tcoLockMadi) { 3981 if (status & HDSPM_tcoSync) 3982 return 2; 3983 else 3984 return 1; 3985 } 3986 return 0; 3987 case AES32: 3988 status = hdspm_read(hdspm, HDSPM_statusRegister); 3989 if (status & HDSPM_tcoLockAes) { 3990 if (status & HDSPM_tcoSync) 3991 return 2; 3992 else 3993 return 1; 3994 } 3995 return 0; 3996 case RayDAT: 3997 case AIO: 3998 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3999 4000 if (status & 0x8000000) 4001 return 2; /* Sync */ 4002 if (status & 0x4000000) 4003 return 1; /* Lock */ 4004 return 0; /* No signal */ 4005 4006 default: 4007 break; 4008 } 4009 } 4010 4011 return 3; /* N/A */ 4012 } 4013 4014 4015 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol, 4016 struct snd_ctl_elem_value *ucontrol) 4017 { 4018 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4019 int val = -1; 4020 4021 switch (hdspm->io_type) { 4022 case RayDAT: 4023 switch (kcontrol->private_value) { 4024 case 0: /* WC */ 4025 val = hdspm_wc_sync_check(hdspm); break; 4026 case 7: /* TCO */ 4027 val = hdspm_tco_sync_check(hdspm); break; 4028 case 8: /* SYNC IN */ 4029 val = hdspm_sync_in_sync_check(hdspm); break; 4030 default: 4031 val = hdspm_s1_sync_check(hdspm, 4032 kcontrol->private_value-1); 4033 } 4034 break; 4035 4036 case AIO: 4037 switch (kcontrol->private_value) { 4038 case 0: /* WC */ 4039 val = hdspm_wc_sync_check(hdspm); break; 4040 case 4: /* TCO */ 4041 val = hdspm_tco_sync_check(hdspm); break; 4042 case 5: /* SYNC IN */ 4043 val = hdspm_sync_in_sync_check(hdspm); break; 4044 default: 4045 val = hdspm_s1_sync_check(hdspm, 4046 kcontrol->private_value-1); 4047 } 4048 break; 4049 4050 case MADI: 4051 switch (kcontrol->private_value) { 4052 case 0: /* WC */ 4053 val = hdspm_wc_sync_check(hdspm); break; 4054 case 1: /* MADI */ 4055 val = hdspm_madi_sync_check(hdspm); break; 4056 case 2: /* TCO */ 4057 val = hdspm_tco_sync_check(hdspm); break; 4058 case 3: /* SYNC_IN */ 4059 val = hdspm_sync_in_sync_check(hdspm); break; 4060 } 4061 break; 4062 4063 case MADIface: 4064 val = hdspm_madi_sync_check(hdspm); /* MADI */ 4065 break; 4066 4067 case AES32: 4068 switch (kcontrol->private_value) { 4069 case 0: /* WC */ 4070 val = hdspm_wc_sync_check(hdspm); break; 4071 case 9: /* TCO */ 4072 val = hdspm_tco_sync_check(hdspm); break; 4073 case 10 /* SYNC IN */: 4074 val = hdspm_sync_in_sync_check(hdspm); break; 4075 default: /* AES1 to AES8 */ 4076 val = hdspm_aes_sync_check(hdspm, 4077 kcontrol->private_value-1); 4078 } 4079 break; 4080 4081 } 4082 4083 if (hdspm->tco) { 4084 switch (kcontrol->private_value) { 4085 case 11: 4086 /* Check TCO for lock state of its current input */ 4087 val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock); 4088 break; 4089 case 12: 4090 /* Check TCO for valid time code on LTC input. */ 4091 val = hdspm_tco_input_check(hdspm, 4092 HDSPM_TCO1_LTC_Input_valid); 4093 break; 4094 default: 4095 break; 4096 } 4097 } 4098 4099 if (-1 == val) 4100 val = 3; 4101 4102 ucontrol->value.enumerated.item[0] = val; 4103 return 0; 4104 } 4105 4106 4107 4108 /* 4109 * TCO controls 4110 */ 4111 static void hdspm_tco_write(struct hdspm *hdspm) 4112 { 4113 unsigned int tc[4] = { 0, 0, 0, 0}; 4114 4115 switch (hdspm->tco->input) { 4116 case 0: 4117 tc[2] |= HDSPM_TCO2_set_input_MSB; 4118 break; 4119 case 1: 4120 tc[2] |= HDSPM_TCO2_set_input_LSB; 4121 break; 4122 default: 4123 break; 4124 } 4125 4126 switch (hdspm->tco->framerate) { 4127 case 1: 4128 tc[1] |= HDSPM_TCO1_LTC_Format_LSB; 4129 break; 4130 case 2: 4131 tc[1] |= HDSPM_TCO1_LTC_Format_MSB; 4132 break; 4133 case 3: 4134 tc[1] |= HDSPM_TCO1_LTC_Format_MSB + 4135 HDSPM_TCO1_set_drop_frame_flag; 4136 break; 4137 case 4: 4138 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4139 HDSPM_TCO1_LTC_Format_MSB; 4140 break; 4141 case 5: 4142 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4143 HDSPM_TCO1_LTC_Format_MSB + 4144 HDSPM_TCO1_set_drop_frame_flag; 4145 break; 4146 default: 4147 break; 4148 } 4149 4150 switch (hdspm->tco->wordclock) { 4151 case 1: 4152 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB; 4153 break; 4154 case 2: 4155 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB; 4156 break; 4157 default: 4158 break; 4159 } 4160 4161 switch (hdspm->tco->samplerate) { 4162 case 1: 4163 tc[2] |= HDSPM_TCO2_set_freq; 4164 break; 4165 case 2: 4166 tc[2] |= HDSPM_TCO2_set_freq_from_app; 4167 break; 4168 default: 4169 break; 4170 } 4171 4172 switch (hdspm->tco->pull) { 4173 case 1: 4174 tc[2] |= HDSPM_TCO2_set_pull_up; 4175 break; 4176 case 2: 4177 tc[2] |= HDSPM_TCO2_set_pull_down; 4178 break; 4179 case 3: 4180 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4; 4181 break; 4182 case 4: 4183 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4; 4184 break; 4185 default: 4186 break; 4187 } 4188 4189 if (1 == hdspm->tco->term) { 4190 tc[2] |= HDSPM_TCO2_set_term_75R; 4191 } 4192 4193 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]); 4194 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]); 4195 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]); 4196 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]); 4197 } 4198 4199 4200 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \ 4201 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4202 .name = xname, \ 4203 .index = xindex, \ 4204 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4205 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4206 .info = snd_hdspm_info_tco_sample_rate, \ 4207 .get = snd_hdspm_get_tco_sample_rate, \ 4208 .put = snd_hdspm_put_tco_sample_rate \ 4209 } 4210 4211 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol, 4212 struct snd_ctl_elem_info *uinfo) 4213 { 4214 /* TODO freq from app could be supported here, see tco->samplerate */ 4215 static const char *const texts[] = { "44.1 kHz", "48 kHz" }; 4216 ENUMERATED_CTL_INFO(uinfo, texts); 4217 return 0; 4218 } 4219 4220 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol, 4221 struct snd_ctl_elem_value *ucontrol) 4222 { 4223 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4224 4225 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate; 4226 4227 return 0; 4228 } 4229 4230 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol, 4231 struct snd_ctl_elem_value *ucontrol) 4232 { 4233 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4234 4235 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) { 4236 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0]; 4237 4238 hdspm_tco_write(hdspm); 4239 4240 return 1; 4241 } 4242 4243 return 0; 4244 } 4245 4246 4247 #define HDSPM_TCO_PULL(xname, xindex) \ 4248 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4249 .name = xname, \ 4250 .index = xindex, \ 4251 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4252 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4253 .info = snd_hdspm_info_tco_pull, \ 4254 .get = snd_hdspm_get_tco_pull, \ 4255 .put = snd_hdspm_put_tco_pull \ 4256 } 4257 4258 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol, 4259 struct snd_ctl_elem_info *uinfo) 4260 { 4261 static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %", 4262 "+ 4 %", "- 4 %" }; 4263 ENUMERATED_CTL_INFO(uinfo, texts); 4264 return 0; 4265 } 4266 4267 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol, 4268 struct snd_ctl_elem_value *ucontrol) 4269 { 4270 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4271 4272 ucontrol->value.enumerated.item[0] = hdspm->tco->pull; 4273 4274 return 0; 4275 } 4276 4277 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol, 4278 struct snd_ctl_elem_value *ucontrol) 4279 { 4280 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4281 4282 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) { 4283 hdspm->tco->pull = ucontrol->value.enumerated.item[0]; 4284 4285 hdspm_tco_write(hdspm); 4286 4287 return 1; 4288 } 4289 4290 return 0; 4291 } 4292 4293 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \ 4294 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4295 .name = xname, \ 4296 .index = xindex, \ 4297 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4298 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4299 .info = snd_hdspm_info_tco_wck_conversion, \ 4300 .get = snd_hdspm_get_tco_wck_conversion, \ 4301 .put = snd_hdspm_put_tco_wck_conversion \ 4302 } 4303 4304 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4305 struct snd_ctl_elem_info *uinfo) 4306 { 4307 static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" }; 4308 ENUMERATED_CTL_INFO(uinfo, texts); 4309 return 0; 4310 } 4311 4312 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4313 struct snd_ctl_elem_value *ucontrol) 4314 { 4315 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4316 4317 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock; 4318 4319 return 0; 4320 } 4321 4322 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4323 struct snd_ctl_elem_value *ucontrol) 4324 { 4325 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4326 4327 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) { 4328 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0]; 4329 4330 hdspm_tco_write(hdspm); 4331 4332 return 1; 4333 } 4334 4335 return 0; 4336 } 4337 4338 4339 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \ 4340 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4341 .name = xname, \ 4342 .index = xindex, \ 4343 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4344 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4345 .info = snd_hdspm_info_tco_frame_rate, \ 4346 .get = snd_hdspm_get_tco_frame_rate, \ 4347 .put = snd_hdspm_put_tco_frame_rate \ 4348 } 4349 4350 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol, 4351 struct snd_ctl_elem_info *uinfo) 4352 { 4353 static const char *const texts[] = { "24 fps", "25 fps", "29.97fps", 4354 "29.97 dfps", "30 fps", "30 dfps" }; 4355 ENUMERATED_CTL_INFO(uinfo, texts); 4356 return 0; 4357 } 4358 4359 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol, 4360 struct snd_ctl_elem_value *ucontrol) 4361 { 4362 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4363 4364 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate; 4365 4366 return 0; 4367 } 4368 4369 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol, 4370 struct snd_ctl_elem_value *ucontrol) 4371 { 4372 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4373 4374 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) { 4375 hdspm->tco->framerate = ucontrol->value.enumerated.item[0]; 4376 4377 hdspm_tco_write(hdspm); 4378 4379 return 1; 4380 } 4381 4382 return 0; 4383 } 4384 4385 4386 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \ 4387 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4388 .name = xname, \ 4389 .index = xindex, \ 4390 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4391 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4392 .info = snd_hdspm_info_tco_sync_source, \ 4393 .get = snd_hdspm_get_tco_sync_source, \ 4394 .put = snd_hdspm_put_tco_sync_source \ 4395 } 4396 4397 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol, 4398 struct snd_ctl_elem_info *uinfo) 4399 { 4400 static const char *const texts[] = { "LTC", "Video", "WCK" }; 4401 ENUMERATED_CTL_INFO(uinfo, texts); 4402 return 0; 4403 } 4404 4405 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol, 4406 struct snd_ctl_elem_value *ucontrol) 4407 { 4408 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4409 4410 ucontrol->value.enumerated.item[0] = hdspm->tco->input; 4411 4412 return 0; 4413 } 4414 4415 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol, 4416 struct snd_ctl_elem_value *ucontrol) 4417 { 4418 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4419 4420 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) { 4421 hdspm->tco->input = ucontrol->value.enumerated.item[0]; 4422 4423 hdspm_tco_write(hdspm); 4424 4425 return 1; 4426 } 4427 4428 return 0; 4429 } 4430 4431 4432 #define HDSPM_TCO_WORD_TERM(xname, xindex) \ 4433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4434 .name = xname, \ 4435 .index = xindex, \ 4436 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4437 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4438 .info = snd_hdspm_info_tco_word_term, \ 4439 .get = snd_hdspm_get_tco_word_term, \ 4440 .put = snd_hdspm_put_tco_word_term \ 4441 } 4442 4443 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol, 4444 struct snd_ctl_elem_info *uinfo) 4445 { 4446 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 4447 uinfo->count = 1; 4448 uinfo->value.integer.min = 0; 4449 uinfo->value.integer.max = 1; 4450 4451 return 0; 4452 } 4453 4454 4455 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol, 4456 struct snd_ctl_elem_value *ucontrol) 4457 { 4458 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4459 4460 ucontrol->value.integer.value[0] = hdspm->tco->term; 4461 4462 return 0; 4463 } 4464 4465 4466 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol, 4467 struct snd_ctl_elem_value *ucontrol) 4468 { 4469 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4470 4471 if (hdspm->tco->term != ucontrol->value.integer.value[0]) { 4472 hdspm->tco->term = ucontrol->value.integer.value[0]; 4473 4474 hdspm_tco_write(hdspm); 4475 4476 return 1; 4477 } 4478 4479 return 0; 4480 } 4481 4482 4483 4484 4485 static const struct snd_kcontrol_new snd_hdspm_controls_madi[] = { 4486 HDSPM_MIXER("Mixer", 0), 4487 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4488 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4489 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4490 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4491 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4492 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4493 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4494 HDSPM_SYNC_CHECK("MADI SyncCheck", 1), 4495 HDSPM_SYNC_CHECK("TCO SyncCheck", 2), 4496 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3), 4497 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4498 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4499 HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX), 4500 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4501 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4502 HDSPM_INPUT_SELECT("Input Select", 0), 4503 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4504 }; 4505 4506 4507 static const struct snd_kcontrol_new snd_hdspm_controls_madiface[] = { 4508 HDSPM_MIXER("Mixer", 0), 4509 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4510 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4511 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4512 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4513 HDSPM_SYNC_CHECK("MADI SyncCheck", 0), 4514 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4515 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4516 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4517 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4518 }; 4519 4520 static const struct snd_kcontrol_new snd_hdspm_controls_aio[] = { 4521 HDSPM_MIXER("Mixer", 0), 4522 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4523 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4524 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4525 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4526 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4527 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4528 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4529 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4530 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3), 4531 HDSPM_SYNC_CHECK("TCO SyncCheck", 4), 4532 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5), 4533 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4534 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4535 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4536 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3), 4537 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4), 4538 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5), 4539 HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0), 4540 HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt), 4541 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4542 HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1), 4543 HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db), 4544 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48), 4545 HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0), 4546 HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0), 4547 HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0) 4548 4549 /* 4550 HDSPM_INPUT_SELECT("Input Select", 0), 4551 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0), 4552 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0); 4553 HDSPM_SPDIF_IN("SPDIF In", 0); 4554 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0); 4555 HDSPM_INPUT_LEVEL("Input Level", 0); 4556 HDSPM_OUTPUT_LEVEL("Output Level", 0); 4557 HDSPM_PHONES("Phones", 0); 4558 */ 4559 }; 4560 4561 static const struct snd_kcontrol_new snd_hdspm_controls_raydat[] = { 4562 HDSPM_MIXER("Mixer", 0), 4563 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4564 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0), 4565 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0), 4566 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4567 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4568 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4569 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4570 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3), 4571 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4), 4572 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5), 4573 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6), 4574 HDSPM_SYNC_CHECK("TCO SyncCheck", 7), 4575 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8), 4576 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4577 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4578 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4579 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3), 4580 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4), 4581 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5), 4582 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6), 4583 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7), 4584 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8), 4585 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4586 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48) 4587 }; 4588 4589 static const struct snd_kcontrol_new snd_hdspm_controls_aes32[] = { 4590 HDSPM_MIXER("Mixer", 0), 4591 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4592 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4593 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4594 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4595 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4596 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11), 4597 HDSPM_SYNC_CHECK("WC Sync Check", 0), 4598 HDSPM_SYNC_CHECK("AES1 Sync Check", 1), 4599 HDSPM_SYNC_CHECK("AES2 Sync Check", 2), 4600 HDSPM_SYNC_CHECK("AES3 Sync Check", 3), 4601 HDSPM_SYNC_CHECK("AES4 Sync Check", 4), 4602 HDSPM_SYNC_CHECK("AES5 Sync Check", 5), 4603 HDSPM_SYNC_CHECK("AES6 Sync Check", 6), 4604 HDSPM_SYNC_CHECK("AES7 Sync Check", 7), 4605 HDSPM_SYNC_CHECK("AES8 Sync Check", 8), 4606 HDSPM_SYNC_CHECK("TCO Sync Check", 9), 4607 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10), 4608 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4609 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1), 4610 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2), 4611 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3), 4612 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4), 4613 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5), 4614 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6), 4615 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7), 4616 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8), 4617 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9), 4618 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10), 4619 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4620 HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis), 4621 HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby), 4622 HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional), 4623 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4624 HDSPM_DS_WIRE("Double Speed Wire Mode", 0), 4625 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0), 4626 }; 4627 4628 4629 4630 /* Control elements for the optional TCO module */ 4631 static const struct snd_kcontrol_new snd_hdspm_controls_tco[] = { 4632 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0), 4633 HDSPM_TCO_PULL("TCO Pull", 0), 4634 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0), 4635 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0), 4636 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0), 4637 HDSPM_TCO_WORD_TERM("TCO Word Term", 0), 4638 HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11), 4639 HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12), 4640 HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0), 4641 HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0) 4642 }; 4643 4644 4645 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; 4646 4647 4648 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm) 4649 { 4650 int i; 4651 4652 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) { 4653 if (hdspm->system_sample_rate > 48000) { 4654 hdspm->playback_mixer_ctls[i]->vd[0].access = 4655 SNDRV_CTL_ELEM_ACCESS_INACTIVE | 4656 SNDRV_CTL_ELEM_ACCESS_READ | 4657 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4658 } else { 4659 hdspm->playback_mixer_ctls[i]->vd[0].access = 4660 SNDRV_CTL_ELEM_ACCESS_READWRITE | 4661 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4662 } 4663 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE | 4664 SNDRV_CTL_EVENT_MASK_INFO, 4665 &hdspm->playback_mixer_ctls[i]->id); 4666 } 4667 4668 return 0; 4669 } 4670 4671 4672 static int snd_hdspm_create_controls(struct snd_card *card, 4673 struct hdspm *hdspm) 4674 { 4675 unsigned int idx, limit; 4676 int err; 4677 struct snd_kcontrol *kctl; 4678 const struct snd_kcontrol_new *list = NULL; 4679 4680 switch (hdspm->io_type) { 4681 case MADI: 4682 list = snd_hdspm_controls_madi; 4683 limit = ARRAY_SIZE(snd_hdspm_controls_madi); 4684 break; 4685 case MADIface: 4686 list = snd_hdspm_controls_madiface; 4687 limit = ARRAY_SIZE(snd_hdspm_controls_madiface); 4688 break; 4689 case AIO: 4690 list = snd_hdspm_controls_aio; 4691 limit = ARRAY_SIZE(snd_hdspm_controls_aio); 4692 break; 4693 case RayDAT: 4694 list = snd_hdspm_controls_raydat; 4695 limit = ARRAY_SIZE(snd_hdspm_controls_raydat); 4696 break; 4697 case AES32: 4698 list = snd_hdspm_controls_aes32; 4699 limit = ARRAY_SIZE(snd_hdspm_controls_aes32); 4700 break; 4701 } 4702 4703 if (list) { 4704 for (idx = 0; idx < limit; idx++) { 4705 err = snd_ctl_add(card, 4706 snd_ctl_new1(&list[idx], hdspm)); 4707 if (err < 0) 4708 return err; 4709 } 4710 } 4711 4712 4713 /* create simple 1:1 playback mixer controls */ 4714 snd_hdspm_playback_mixer.name = "Chn"; 4715 if (hdspm->system_sample_rate >= 128000) { 4716 limit = hdspm->qs_out_channels; 4717 } else if (hdspm->system_sample_rate >= 64000) { 4718 limit = hdspm->ds_out_channels; 4719 } else { 4720 limit = hdspm->ss_out_channels; 4721 } 4722 for (idx = 0; idx < limit; ++idx) { 4723 snd_hdspm_playback_mixer.index = idx + 1; 4724 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm); 4725 err = snd_ctl_add(card, kctl); 4726 if (err < 0) 4727 return err; 4728 hdspm->playback_mixer_ctls[idx] = kctl; 4729 } 4730 4731 4732 if (hdspm->tco) { 4733 /* add tco control elements */ 4734 list = snd_hdspm_controls_tco; 4735 limit = ARRAY_SIZE(snd_hdspm_controls_tco); 4736 for (idx = 0; idx < limit; idx++) { 4737 err = snd_ctl_add(card, 4738 snd_ctl_new1(&list[idx], hdspm)); 4739 if (err < 0) 4740 return err; 4741 } 4742 } 4743 4744 return 0; 4745 } 4746 4747 /*------------------------------------------------------------ 4748 /proc interface 4749 ------------------------------------------------------------*/ 4750 4751 static void 4752 snd_hdspm_proc_read_tco(struct snd_info_entry *entry, 4753 struct snd_info_buffer *buffer) 4754 { 4755 struct hdspm *hdspm = entry->private_data; 4756 unsigned int status, control; 4757 int a, ltc, frames, seconds, minutes, hours; 4758 unsigned int period; 4759 u64 freq_const = 0; 4760 u32 rate; 4761 4762 snd_iprintf(buffer, "--- TCO ---\n"); 4763 4764 status = hdspm_read(hdspm, HDSPM_statusRegister); 4765 control = hdspm->control_register; 4766 4767 4768 if (status & HDSPM_tco_detect) { 4769 snd_iprintf(buffer, "TCO module detected.\n"); 4770 a = hdspm_read(hdspm, HDSPM_RD_TCO+4); 4771 if (a & HDSPM_TCO1_LTC_Input_valid) { 4772 snd_iprintf(buffer, " LTC valid, "); 4773 switch (a & (HDSPM_TCO1_LTC_Format_LSB | 4774 HDSPM_TCO1_LTC_Format_MSB)) { 4775 case 0: 4776 snd_iprintf(buffer, "24 fps, "); 4777 break; 4778 case HDSPM_TCO1_LTC_Format_LSB: 4779 snd_iprintf(buffer, "25 fps, "); 4780 break; 4781 case HDSPM_TCO1_LTC_Format_MSB: 4782 snd_iprintf(buffer, "29.97 fps, "); 4783 break; 4784 default: 4785 snd_iprintf(buffer, "30 fps, "); 4786 break; 4787 } 4788 if (a & HDSPM_TCO1_set_drop_frame_flag) { 4789 snd_iprintf(buffer, "drop frame\n"); 4790 } else { 4791 snd_iprintf(buffer, "full frame\n"); 4792 } 4793 } else { 4794 snd_iprintf(buffer, " no LTC\n"); 4795 } 4796 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) { 4797 snd_iprintf(buffer, " Video: NTSC\n"); 4798 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) { 4799 snd_iprintf(buffer, " Video: PAL\n"); 4800 } else { 4801 snd_iprintf(buffer, " No video\n"); 4802 } 4803 if (a & HDSPM_TCO1_TCO_lock) { 4804 snd_iprintf(buffer, " Sync: lock\n"); 4805 } else { 4806 snd_iprintf(buffer, " Sync: no lock\n"); 4807 } 4808 4809 switch (hdspm->io_type) { 4810 case MADI: 4811 case AES32: 4812 freq_const = 110069313433624ULL; 4813 break; 4814 case RayDAT: 4815 case AIO: 4816 freq_const = 104857600000000ULL; 4817 break; 4818 case MADIface: 4819 break; /* no TCO possible */ 4820 } 4821 4822 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 4823 snd_iprintf(buffer, " period: %u\n", period); 4824 4825 4826 /* rate = freq_const/period; */ 4827 rate = div_u64(freq_const, period); 4828 4829 if (control & HDSPM_QuadSpeed) { 4830 rate *= 4; 4831 } else if (control & HDSPM_DoubleSpeed) { 4832 rate *= 2; 4833 } 4834 4835 snd_iprintf(buffer, " Frequency: %u Hz\n", 4836 (unsigned int) rate); 4837 4838 ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 4839 frames = ltc & 0xF; 4840 ltc >>= 4; 4841 frames += (ltc & 0x3) * 10; 4842 ltc >>= 4; 4843 seconds = ltc & 0xF; 4844 ltc >>= 4; 4845 seconds += (ltc & 0x7) * 10; 4846 ltc >>= 4; 4847 minutes = ltc & 0xF; 4848 ltc >>= 4; 4849 minutes += (ltc & 0x7) * 10; 4850 ltc >>= 4; 4851 hours = ltc & 0xF; 4852 ltc >>= 4; 4853 hours += (ltc & 0x3) * 10; 4854 snd_iprintf(buffer, 4855 " LTC In: %02d:%02d:%02d:%02d\n", 4856 hours, minutes, seconds, frames); 4857 4858 } else { 4859 snd_iprintf(buffer, "No TCO module detected.\n"); 4860 } 4861 } 4862 4863 static void 4864 snd_hdspm_proc_read_madi(struct snd_info_entry *entry, 4865 struct snd_info_buffer *buffer) 4866 { 4867 struct hdspm *hdspm = entry->private_data; 4868 unsigned int status, status2; 4869 4870 char *pref_sync_ref; 4871 char *autosync_ref; 4872 char *system_clock_mode; 4873 int x, x2; 4874 4875 status = hdspm_read(hdspm, HDSPM_statusRegister); 4876 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 4877 4878 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n", 4879 hdspm->card_name, hdspm->card->number + 1, 4880 hdspm->firmware_rev, 4881 (status2 & HDSPM_version0) | 4882 (status2 & HDSPM_version1) | (status2 & 4883 HDSPM_version2)); 4884 4885 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n", 4886 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF, 4887 hdspm->serial); 4888 4889 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 4890 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 4891 4892 snd_iprintf(buffer, "--- System ---\n"); 4893 4894 snd_iprintf(buffer, 4895 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 4896 status & HDSPM_audioIRQPending, 4897 (status & HDSPM_midi0IRQPending) ? 1 : 0, 4898 (status & HDSPM_midi1IRQPending) ? 1 : 0, 4899 hdspm->irq_count); 4900 snd_iprintf(buffer, 4901 "HW pointer: id = %d, rawptr = %d (%d->%d) " 4902 "estimated= %ld (bytes)\n", 4903 ((status & HDSPM_BufferID) ? 1 : 0), 4904 (status & HDSPM_BufferPositionMask), 4905 (status & HDSPM_BufferPositionMask) % 4906 (2 * (int)hdspm->period_bytes), 4907 ((status & HDSPM_BufferPositionMask) - 64) % 4908 (2 * (int)hdspm->period_bytes), 4909 (long) hdspm_hw_pointer(hdspm) * 4); 4910 4911 snd_iprintf(buffer, 4912 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 4913 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 4914 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 4915 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 4916 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 4917 snd_iprintf(buffer, 4918 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 4919 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 4920 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 4921 snd_iprintf(buffer, 4922 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 4923 "status2=0x%x\n", 4924 hdspm->control_register, hdspm->control2_register, 4925 status, status2); 4926 4927 4928 snd_iprintf(buffer, "--- Settings ---\n"); 4929 4930 x = hdspm_get_latency(hdspm); 4931 4932 snd_iprintf(buffer, 4933 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 4934 x, (unsigned long) hdspm->period_bytes); 4935 4936 snd_iprintf(buffer, "Line out: %s\n", 4937 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off"); 4938 4939 snd_iprintf(buffer, 4940 "ClearTrackMarker = %s, Transmit in %s Channel Mode, " 4941 "Auto Input %s\n", 4942 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off", 4943 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56", 4944 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off"); 4945 4946 4947 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 4948 system_clock_mode = "AutoSync"; 4949 else 4950 system_clock_mode = "Master"; 4951 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode); 4952 4953 switch (hdspm_pref_sync_ref(hdspm)) { 4954 case HDSPM_SYNC_FROM_WORD: 4955 pref_sync_ref = "Word Clock"; 4956 break; 4957 case HDSPM_SYNC_FROM_MADI: 4958 pref_sync_ref = "MADI Sync"; 4959 break; 4960 case HDSPM_SYNC_FROM_TCO: 4961 pref_sync_ref = "TCO"; 4962 break; 4963 case HDSPM_SYNC_FROM_SYNC_IN: 4964 pref_sync_ref = "Sync In"; 4965 break; 4966 default: 4967 pref_sync_ref = "XXXX Clock"; 4968 break; 4969 } 4970 snd_iprintf(buffer, "Preferred Sync Reference: %s\n", 4971 pref_sync_ref); 4972 4973 snd_iprintf(buffer, "System Clock Frequency: %d\n", 4974 hdspm->system_sample_rate); 4975 4976 4977 snd_iprintf(buffer, "--- Status:\n"); 4978 4979 x = status & HDSPM_madiSync; 4980 x2 = status2 & HDSPM_wcSync; 4981 4982 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n", 4983 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") : 4984 "NoLock", 4985 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") : 4986 "NoLock"); 4987 4988 switch (hdspm_autosync_ref(hdspm)) { 4989 case HDSPM_AUTOSYNC_FROM_SYNC_IN: 4990 autosync_ref = "Sync In"; 4991 break; 4992 case HDSPM_AUTOSYNC_FROM_TCO: 4993 autosync_ref = "TCO"; 4994 break; 4995 case HDSPM_AUTOSYNC_FROM_WORD: 4996 autosync_ref = "Word Clock"; 4997 break; 4998 case HDSPM_AUTOSYNC_FROM_MADI: 4999 autosync_ref = "MADI Sync"; 5000 break; 5001 case HDSPM_AUTOSYNC_FROM_NONE: 5002 autosync_ref = "Input not valid"; 5003 break; 5004 default: 5005 autosync_ref = "---"; 5006 break; 5007 } 5008 snd_iprintf(buffer, 5009 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n", 5010 autosync_ref, hdspm_external_sample_rate(hdspm), 5011 (status & HDSPM_madiFreqMask) >> 22, 5012 (status2 & HDSPM_wcFreqMask) >> 5); 5013 5014 snd_iprintf(buffer, "Input: %s, Mode=%s\n", 5015 (status & HDSPM_AB_int) ? "Coax" : "Optical", 5016 (status & HDSPM_RX_64ch) ? "64 channels" : 5017 "56 channels"); 5018 5019 /* call readout function for TCO specific status */ 5020 snd_hdspm_proc_read_tco(entry, buffer); 5021 5022 snd_iprintf(buffer, "\n"); 5023 } 5024 5025 static void 5026 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry, 5027 struct snd_info_buffer *buffer) 5028 { 5029 struct hdspm *hdspm = entry->private_data; 5030 unsigned int status; 5031 unsigned int status2; 5032 unsigned int timecode; 5033 unsigned int wcLock, wcSync; 5034 int pref_syncref; 5035 char *autosync_ref; 5036 int x; 5037 5038 status = hdspm_read(hdspm, HDSPM_statusRegister); 5039 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 5040 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 5041 5042 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n", 5043 hdspm->card_name, hdspm->card->number + 1, 5044 hdspm->firmware_rev); 5045 5046 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 5047 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 5048 5049 snd_iprintf(buffer, "--- System ---\n"); 5050 5051 snd_iprintf(buffer, 5052 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 5053 status & HDSPM_audioIRQPending, 5054 (status & HDSPM_midi0IRQPending) ? 1 : 0, 5055 (status & HDSPM_midi1IRQPending) ? 1 : 0, 5056 hdspm->irq_count); 5057 snd_iprintf(buffer, 5058 "HW pointer: id = %d, rawptr = %d (%d->%d) " 5059 "estimated= %ld (bytes)\n", 5060 ((status & HDSPM_BufferID) ? 1 : 0), 5061 (status & HDSPM_BufferPositionMask), 5062 (status & HDSPM_BufferPositionMask) % 5063 (2 * (int)hdspm->period_bytes), 5064 ((status & HDSPM_BufferPositionMask) - 64) % 5065 (2 * (int)hdspm->period_bytes), 5066 (long) hdspm_hw_pointer(hdspm) * 4); 5067 5068 snd_iprintf(buffer, 5069 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 5070 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 5071 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 5072 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 5073 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 5074 snd_iprintf(buffer, 5075 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 5076 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 5077 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 5078 snd_iprintf(buffer, 5079 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 5080 "status2=0x%x\n", 5081 hdspm->control_register, hdspm->control2_register, 5082 status, status2); 5083 5084 snd_iprintf(buffer, "--- Settings ---\n"); 5085 5086 x = hdspm_get_latency(hdspm); 5087 5088 snd_iprintf(buffer, 5089 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 5090 x, (unsigned long) hdspm->period_bytes); 5091 5092 snd_iprintf(buffer, "Line out: %s\n", 5093 (hdspm-> 5094 control_register & HDSPM_LineOut) ? "on " : "off"); 5095 5096 snd_iprintf(buffer, 5097 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n", 5098 (hdspm-> 5099 control_register & HDSPM_clr_tms) ? "on" : "off", 5100 (hdspm-> 5101 control_register & HDSPM_Emphasis) ? "on" : "off", 5102 (hdspm-> 5103 control_register & HDSPM_Dolby) ? "on" : "off"); 5104 5105 5106 pref_syncref = hdspm_pref_sync_ref(hdspm); 5107 if (pref_syncref == 0) 5108 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n"); 5109 else 5110 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n", 5111 pref_syncref); 5112 5113 snd_iprintf(buffer, "System Clock Frequency: %d\n", 5114 hdspm->system_sample_rate); 5115 5116 snd_iprintf(buffer, "Double speed: %s\n", 5117 hdspm->control_register & HDSPM_DS_DoubleWire? 5118 "Double wire" : "Single wire"); 5119 snd_iprintf(buffer, "Quad speed: %s\n", 5120 hdspm->control_register & HDSPM_QS_DoubleWire? 5121 "Double wire" : 5122 hdspm->control_register & HDSPM_QS_QuadWire? 5123 "Quad wire" : "Single wire"); 5124 5125 snd_iprintf(buffer, "--- Status:\n"); 5126 5127 wcLock = status & HDSPM_AES32_wcLock; 5128 wcSync = wcLock && (status & HDSPM_AES32_wcSync); 5129 5130 snd_iprintf(buffer, "Word: %s Frequency: %d\n", 5131 (wcLock) ? (wcSync ? "Sync " : "Lock ") : "No Lock", 5132 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF)); 5133 5134 for (x = 0; x < 8; x++) { 5135 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n", 5136 x+1, 5137 (status2 & (HDSPM_LockAES >> x)) ? 5138 "Sync " : "No Lock", 5139 HDSPM_bit2freq((timecode >> (4*x)) & 0xF)); 5140 } 5141 5142 switch (hdspm_autosync_ref(hdspm)) { 5143 case HDSPM_AES32_AUTOSYNC_FROM_NONE: 5144 autosync_ref = "None"; break; 5145 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 5146 autosync_ref = "Word Clock"; break; 5147 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 5148 autosync_ref = "AES1"; break; 5149 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 5150 autosync_ref = "AES2"; break; 5151 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 5152 autosync_ref = "AES3"; break; 5153 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 5154 autosync_ref = "AES4"; break; 5155 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 5156 autosync_ref = "AES5"; break; 5157 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 5158 autosync_ref = "AES6"; break; 5159 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 5160 autosync_ref = "AES7"; break; 5161 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 5162 autosync_ref = "AES8"; break; 5163 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 5164 autosync_ref = "TCO"; break; 5165 case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN: 5166 autosync_ref = "Sync In"; break; 5167 default: 5168 autosync_ref = "---"; break; 5169 } 5170 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref); 5171 5172 /* call readout function for TCO specific status */ 5173 snd_hdspm_proc_read_tco(entry, buffer); 5174 5175 snd_iprintf(buffer, "\n"); 5176 } 5177 5178 static void 5179 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry, 5180 struct snd_info_buffer *buffer) 5181 { 5182 struct hdspm *hdspm = entry->private_data; 5183 unsigned int status1, status2, status3, i; 5184 unsigned int lock, sync; 5185 5186 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */ 5187 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */ 5188 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */ 5189 5190 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1); 5191 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2); 5192 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3); 5193 5194 5195 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n"); 5196 5197 snd_iprintf(buffer, "Clock mode : %s\n", 5198 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave"); 5199 snd_iprintf(buffer, "System frequency: %d Hz\n", 5200 hdspm_get_system_sample_rate(hdspm)); 5201 5202 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n"); 5203 5204 lock = 0x1; 5205 sync = 0x100; 5206 5207 for (i = 0; i < 8; i++) { 5208 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n", 5209 i, 5210 (status1 & lock) ? 1 : 0, 5211 (status1 & sync) ? 1 : 0, 5212 texts_freq[(status2 >> (i * 4)) & 0xF]); 5213 5214 lock = lock<<1; 5215 sync = sync<<1; 5216 } 5217 5218 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n", 5219 (status1 & 0x1000000) ? 1 : 0, 5220 (status1 & 0x2000000) ? 1 : 0, 5221 texts_freq[(status1 >> 16) & 0xF]); 5222 5223 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n", 5224 (status1 & 0x4000000) ? 1 : 0, 5225 (status1 & 0x8000000) ? 1 : 0, 5226 texts_freq[(status1 >> 20) & 0xF]); 5227 5228 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n", 5229 (status3 & 0x400) ? 1 : 0, 5230 (status3 & 0x800) ? 1 : 0, 5231 texts_freq[(status2 >> 12) & 0xF]); 5232 5233 } 5234 5235 #ifdef CONFIG_SND_DEBUG 5236 static void 5237 snd_hdspm_proc_read_debug(struct snd_info_entry *entry, 5238 struct snd_info_buffer *buffer) 5239 { 5240 struct hdspm *hdspm = entry->private_data; 5241 5242 int j,i; 5243 5244 for (i = 0; i < 256 /* 1024*64 */; i += j) { 5245 snd_iprintf(buffer, "0x%08X: ", i); 5246 for (j = 0; j < 16; j += 4) 5247 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j)); 5248 snd_iprintf(buffer, "\n"); 5249 } 5250 } 5251 #endif 5252 5253 5254 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry, 5255 struct snd_info_buffer *buffer) 5256 { 5257 struct hdspm *hdspm = entry->private_data; 5258 int i; 5259 5260 snd_iprintf(buffer, "# generated by hdspm\n"); 5261 5262 for (i = 0; i < hdspm->max_channels_in; i++) { 5263 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]); 5264 } 5265 } 5266 5267 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry, 5268 struct snd_info_buffer *buffer) 5269 { 5270 struct hdspm *hdspm = entry->private_data; 5271 int i; 5272 5273 snd_iprintf(buffer, "# generated by hdspm\n"); 5274 5275 for (i = 0; i < hdspm->max_channels_out; i++) { 5276 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]); 5277 } 5278 } 5279 5280 5281 static void snd_hdspm_proc_init(struct hdspm *hdspm) 5282 { 5283 void (*read)(struct snd_info_entry *, struct snd_info_buffer *) = NULL; 5284 5285 switch (hdspm->io_type) { 5286 case AES32: 5287 read = snd_hdspm_proc_read_aes32; 5288 break; 5289 case MADI: 5290 read = snd_hdspm_proc_read_madi; 5291 break; 5292 case MADIface: 5293 /* read = snd_hdspm_proc_read_madiface; */ 5294 break; 5295 case RayDAT: 5296 read = snd_hdspm_proc_read_raydat; 5297 break; 5298 case AIO: 5299 break; 5300 } 5301 5302 snd_card_ro_proc_new(hdspm->card, "hdspm", hdspm, read); 5303 snd_card_ro_proc_new(hdspm->card, "ports.in", hdspm, 5304 snd_hdspm_proc_ports_in); 5305 snd_card_ro_proc_new(hdspm->card, "ports.out", hdspm, 5306 snd_hdspm_proc_ports_out); 5307 5308 #ifdef CONFIG_SND_DEBUG 5309 /* debug file to read all hdspm registers */ 5310 snd_card_ro_proc_new(hdspm->card, "debug", hdspm, 5311 snd_hdspm_proc_read_debug); 5312 #endif 5313 } 5314 5315 /*------------------------------------------------------------ 5316 hdspm intitialize 5317 ------------------------------------------------------------*/ 5318 5319 static int snd_hdspm_set_defaults(struct hdspm * hdspm) 5320 { 5321 /* ASSUMPTION: hdspm->lock is either held, or there is no need to 5322 hold it (e.g. during module initialization). 5323 */ 5324 5325 /* set defaults: */ 5326 5327 hdspm->settings_register = 0; 5328 5329 switch (hdspm->io_type) { 5330 case MADI: 5331 case MADIface: 5332 hdspm->control_register = 5333 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5334 break; 5335 5336 case RayDAT: 5337 case AIO: 5338 hdspm->settings_register = 0x1 + 0x1000; 5339 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0, 5340 * line_out */ 5341 hdspm->control_register = 5342 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5343 break; 5344 5345 case AES32: 5346 hdspm->control_register = 5347 HDSPM_ClockModeMaster | /* Master Clock Mode on */ 5348 hdspm_encode_latency(7) | /* latency max=8192samples */ 5349 HDSPM_SyncRef0 | /* AES1 is syncclock */ 5350 HDSPM_LineOut | /* Analog output in */ 5351 HDSPM_Professional; /* Professional mode */ 5352 break; 5353 } 5354 5355 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5356 5357 if (AES32 == hdspm->io_type) { 5358 /* No control2 register for AES32 */ 5359 #ifdef SNDRV_BIG_ENDIAN 5360 hdspm->control2_register = HDSPM_BIGENDIAN_MODE; 5361 #else 5362 hdspm->control2_register = 0; 5363 #endif 5364 5365 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register); 5366 } 5367 hdspm_compute_period_size(hdspm); 5368 5369 /* silence everything */ 5370 5371 all_in_all_mixer(hdspm, 0 * UNITY_GAIN); 5372 5373 if (hdspm_is_raydat_or_aio(hdspm)) 5374 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 5375 5376 /* set a default rate so that the channel map is set up. */ 5377 hdspm_set_rate(hdspm, 48000, 1); 5378 5379 return 0; 5380 } 5381 5382 5383 /*------------------------------------------------------------ 5384 interrupt 5385 ------------------------------------------------------------*/ 5386 5387 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id) 5388 { 5389 struct hdspm *hdspm = (struct hdspm *) dev_id; 5390 unsigned int status; 5391 int i, audio, midi, schedule = 0; 5392 /* cycles_t now; */ 5393 5394 status = hdspm_read(hdspm, HDSPM_statusRegister); 5395 5396 audio = status & HDSPM_audioIRQPending; 5397 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending | 5398 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending); 5399 5400 /* now = get_cycles(); */ 5401 /* 5402 * LAT_2..LAT_0 period counter (win) counter (mac) 5403 * 6 4096 ~256053425 ~514672358 5404 * 5 2048 ~128024983 ~257373821 5405 * 4 1024 ~64023706 ~128718089 5406 * 3 512 ~32005945 ~64385999 5407 * 2 256 ~16003039 ~32260176 5408 * 1 128 ~7998738 ~16194507 5409 * 0 64 ~3998231 ~8191558 5410 */ 5411 /* 5412 dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n", 5413 now-hdspm->last_interrupt, status & 0xFFC0); 5414 hdspm->last_interrupt = now; 5415 */ 5416 5417 if (!audio && !midi) 5418 return IRQ_NONE; 5419 5420 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0); 5421 hdspm->irq_count++; 5422 5423 5424 if (audio) { 5425 if (hdspm->capture_substream) 5426 snd_pcm_period_elapsed(hdspm->capture_substream); 5427 5428 if (hdspm->playback_substream) 5429 snd_pcm_period_elapsed(hdspm->playback_substream); 5430 } 5431 5432 if (midi) { 5433 i = 0; 5434 while (i < hdspm->midiPorts) { 5435 if ((hdspm_read(hdspm, 5436 hdspm->midi[i].statusIn) & 0xff) && 5437 (status & hdspm->midi[i].irq)) { 5438 /* we disable interrupts for this input until 5439 * processing is done 5440 */ 5441 hdspm->control_register &= ~hdspm->midi[i].ie; 5442 hdspm_write(hdspm, HDSPM_controlRegister, 5443 hdspm->control_register); 5444 hdspm->midi[i].pending = 1; 5445 schedule = 1; 5446 } 5447 5448 i++; 5449 } 5450 5451 if (schedule) 5452 queue_work(system_highpri_wq, &hdspm->midi_work); 5453 } 5454 5455 return IRQ_HANDLED; 5456 } 5457 5458 /*------------------------------------------------------------ 5459 pcm interface 5460 ------------------------------------------------------------*/ 5461 5462 5463 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream 5464 *substream) 5465 { 5466 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5467 return hdspm_hw_pointer(hdspm); 5468 } 5469 5470 5471 static int snd_hdspm_reset(struct snd_pcm_substream *substream) 5472 { 5473 struct snd_pcm_runtime *runtime = substream->runtime; 5474 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5475 struct snd_pcm_substream *other; 5476 5477 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5478 other = hdspm->capture_substream; 5479 else 5480 other = hdspm->playback_substream; 5481 5482 if (hdspm->running) 5483 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm); 5484 else 5485 runtime->status->hw_ptr = 0; 5486 if (other) { 5487 struct snd_pcm_substream *s; 5488 struct snd_pcm_runtime *oruntime = other->runtime; 5489 snd_pcm_group_for_each_entry(s, substream) { 5490 if (s == other) { 5491 oruntime->status->hw_ptr = 5492 runtime->status->hw_ptr; 5493 break; 5494 } 5495 } 5496 } 5497 return 0; 5498 } 5499 5500 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, 5501 struct snd_pcm_hw_params *params) 5502 { 5503 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5504 int err; 5505 int i; 5506 pid_t this_pid; 5507 pid_t other_pid; 5508 5509 spin_lock_irq(&hdspm->lock); 5510 5511 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5512 this_pid = hdspm->playback_pid; 5513 other_pid = hdspm->capture_pid; 5514 } else { 5515 this_pid = hdspm->capture_pid; 5516 other_pid = hdspm->playback_pid; 5517 } 5518 5519 if (other_pid > 0 && this_pid != other_pid) { 5520 5521 /* The other stream is open, and not by the same 5522 task as this one. Make sure that the parameters 5523 that matter are the same. 5524 */ 5525 5526 if (params_rate(params) != hdspm->system_sample_rate) { 5527 spin_unlock_irq(&hdspm->lock); 5528 _snd_pcm_hw_param_setempty(params, 5529 SNDRV_PCM_HW_PARAM_RATE); 5530 return -EBUSY; 5531 } 5532 5533 if (params_period_size(params) != hdspm->period_bytes / 4) { 5534 spin_unlock_irq(&hdspm->lock); 5535 _snd_pcm_hw_param_setempty(params, 5536 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5537 return -EBUSY; 5538 } 5539 5540 } 5541 /* We're fine. */ 5542 spin_unlock_irq(&hdspm->lock); 5543 5544 /* how to make sure that the rate matches an externally-set one ? */ 5545 5546 spin_lock_irq(&hdspm->lock); 5547 err = hdspm_set_rate(hdspm, params_rate(params), 0); 5548 if (err < 0) { 5549 dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err); 5550 spin_unlock_irq(&hdspm->lock); 5551 _snd_pcm_hw_param_setempty(params, 5552 SNDRV_PCM_HW_PARAM_RATE); 5553 return err; 5554 } 5555 spin_unlock_irq(&hdspm->lock); 5556 5557 err = hdspm_set_interrupt_interval(hdspm, 5558 params_period_size(params)); 5559 if (err < 0) { 5560 dev_info(hdspm->card->dev, 5561 "err on hdspm_set_interrupt_interval: %d\n", err); 5562 _snd_pcm_hw_param_setempty(params, 5563 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5564 return err; 5565 } 5566 5567 /* Memory allocation, takashi's method, dont know if we should 5568 * spinlock 5569 */ 5570 /* malloc all buffer even if not enabled to get sure */ 5571 /* Update for MADI rev 204: we need to allocate for all channels, 5572 * otherwise it doesn't work at 96kHz */ 5573 5574 err = 5575 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES); 5576 if (err < 0) { 5577 dev_info(hdspm->card->dev, 5578 "err on snd_pcm_lib_malloc_pages: %d\n", err); 5579 return err; 5580 } 5581 5582 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5583 5584 for (i = 0; i < params_channels(params); ++i) { 5585 int c = hdspm->channel_map_out[i]; 5586 5587 if (c < 0) 5588 continue; /* just make sure */ 5589 hdspm_set_channel_dma_addr(hdspm, substream, 5590 HDSPM_pageAddressBufferOut, 5591 c); 5592 snd_hdspm_enable_out(hdspm, c, 1); 5593 } 5594 5595 hdspm->playback_buffer = 5596 (unsigned char *) substream->runtime->dma_area; 5597 dev_dbg(hdspm->card->dev, 5598 "Allocated sample buffer for playback at %p\n", 5599 hdspm->playback_buffer); 5600 } else { 5601 for (i = 0; i < params_channels(params); ++i) { 5602 int c = hdspm->channel_map_in[i]; 5603 5604 if (c < 0) 5605 continue; 5606 hdspm_set_channel_dma_addr(hdspm, substream, 5607 HDSPM_pageAddressBufferIn, 5608 c); 5609 snd_hdspm_enable_in(hdspm, c, 1); 5610 } 5611 5612 hdspm->capture_buffer = 5613 (unsigned char *) substream->runtime->dma_area; 5614 dev_dbg(hdspm->card->dev, 5615 "Allocated sample buffer for capture at %p\n", 5616 hdspm->capture_buffer); 5617 } 5618 5619 /* 5620 dev_dbg(hdspm->card->dev, 5621 "Allocated sample buffer for %s at 0x%08X\n", 5622 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5623 "playback" : "capture", 5624 snd_pcm_sgbuf_get_addr(substream, 0)); 5625 */ 5626 /* 5627 dev_dbg(hdspm->card->dev, 5628 "set_hwparams: %s %d Hz, %d channels, bs = %d\n", 5629 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5630 "playback" : "capture", 5631 params_rate(params), params_channels(params), 5632 params_buffer_size(params)); 5633 */ 5634 5635 5636 /* For AES cards, the float format bit is the same as the 5637 * preferred sync reference. Since we don't want to break 5638 * sync settings, we have to skip the remaining part of this 5639 * function. 5640 */ 5641 if (hdspm->io_type == AES32) { 5642 return 0; 5643 } 5644 5645 5646 /* Switch to native float format if requested */ 5647 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) { 5648 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT)) 5649 dev_info(hdspm->card->dev, 5650 "Switching to native 32bit LE float format.\n"); 5651 5652 hdspm->control_register |= HDSPe_FLOAT_FORMAT; 5653 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) { 5654 if (hdspm->control_register & HDSPe_FLOAT_FORMAT) 5655 dev_info(hdspm->card->dev, 5656 "Switching to native 32bit LE integer format.\n"); 5657 5658 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT; 5659 } 5660 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5661 5662 return 0; 5663 } 5664 5665 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream) 5666 { 5667 int i; 5668 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5669 5670 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5671 /* Just disable all channels. The saving when disabling a */ 5672 /* smaller set is not worth the trouble. */ 5673 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i) 5674 snd_hdspm_enable_out(hdspm, i, 0); 5675 5676 hdspm->playback_buffer = NULL; 5677 } else { 5678 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i) 5679 snd_hdspm_enable_in(hdspm, i, 0); 5680 5681 hdspm->capture_buffer = NULL; 5682 } 5683 5684 snd_pcm_lib_free_pages(substream); 5685 5686 return 0; 5687 } 5688 5689 5690 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream, 5691 struct snd_pcm_channel_info *info) 5692 { 5693 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5694 unsigned int channel = info->channel; 5695 5696 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5697 if (snd_BUG_ON(channel >= hdspm->max_channels_out)) { 5698 dev_info(hdspm->card->dev, 5699 "snd_hdspm_channel_info: output channel out of range (%d)\n", 5700 channel); 5701 return -EINVAL; 5702 } 5703 5704 channel = array_index_nospec(channel, hdspm->max_channels_out); 5705 if (hdspm->channel_map_out[channel] < 0) { 5706 dev_info(hdspm->card->dev, 5707 "snd_hdspm_channel_info: output channel %d mapped out\n", 5708 channel); 5709 return -EINVAL; 5710 } 5711 5712 info->offset = hdspm->channel_map_out[channel] * 5713 HDSPM_CHANNEL_BUFFER_BYTES; 5714 } else { 5715 if (snd_BUG_ON(channel >= hdspm->max_channels_in)) { 5716 dev_info(hdspm->card->dev, 5717 "snd_hdspm_channel_info: input channel out of range (%d)\n", 5718 channel); 5719 return -EINVAL; 5720 } 5721 5722 channel = array_index_nospec(channel, hdspm->max_channels_in); 5723 if (hdspm->channel_map_in[channel] < 0) { 5724 dev_info(hdspm->card->dev, 5725 "snd_hdspm_channel_info: input channel %d mapped out\n", 5726 channel); 5727 return -EINVAL; 5728 } 5729 5730 info->offset = hdspm->channel_map_in[channel] * 5731 HDSPM_CHANNEL_BUFFER_BYTES; 5732 } 5733 5734 info->first = 0; 5735 info->step = 32; 5736 return 0; 5737 } 5738 5739 5740 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream, 5741 unsigned int cmd, void *arg) 5742 { 5743 switch (cmd) { 5744 case SNDRV_PCM_IOCTL1_RESET: 5745 return snd_hdspm_reset(substream); 5746 5747 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 5748 { 5749 struct snd_pcm_channel_info *info = arg; 5750 return snd_hdspm_channel_info(substream, info); 5751 } 5752 default: 5753 break; 5754 } 5755 5756 return snd_pcm_lib_ioctl(substream, cmd, arg); 5757 } 5758 5759 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd) 5760 { 5761 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5762 struct snd_pcm_substream *other; 5763 int running; 5764 5765 spin_lock(&hdspm->lock); 5766 running = hdspm->running; 5767 switch (cmd) { 5768 case SNDRV_PCM_TRIGGER_START: 5769 running |= 1 << substream->stream; 5770 break; 5771 case SNDRV_PCM_TRIGGER_STOP: 5772 running &= ~(1 << substream->stream); 5773 break; 5774 default: 5775 snd_BUG(); 5776 spin_unlock(&hdspm->lock); 5777 return -EINVAL; 5778 } 5779 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5780 other = hdspm->capture_substream; 5781 else 5782 other = hdspm->playback_substream; 5783 5784 if (other) { 5785 struct snd_pcm_substream *s; 5786 snd_pcm_group_for_each_entry(s, substream) { 5787 if (s == other) { 5788 snd_pcm_trigger_done(s, substream); 5789 if (cmd == SNDRV_PCM_TRIGGER_START) 5790 running |= 1 << s->stream; 5791 else 5792 running &= ~(1 << s->stream); 5793 goto _ok; 5794 } 5795 } 5796 if (cmd == SNDRV_PCM_TRIGGER_START) { 5797 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) 5798 && substream->stream == 5799 SNDRV_PCM_STREAM_CAPTURE) 5800 hdspm_silence_playback(hdspm); 5801 } else { 5802 if (running && 5803 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5804 hdspm_silence_playback(hdspm); 5805 } 5806 } else { 5807 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 5808 hdspm_silence_playback(hdspm); 5809 } 5810 _ok: 5811 snd_pcm_trigger_done(substream, substream); 5812 if (!hdspm->running && running) 5813 hdspm_start_audio(hdspm); 5814 else if (hdspm->running && !running) 5815 hdspm_stop_audio(hdspm); 5816 hdspm->running = running; 5817 spin_unlock(&hdspm->lock); 5818 5819 return 0; 5820 } 5821 5822 static int snd_hdspm_prepare(struct snd_pcm_substream *substream) 5823 { 5824 return 0; 5825 } 5826 5827 static const struct snd_pcm_hardware snd_hdspm_playback_subinfo = { 5828 .info = (SNDRV_PCM_INFO_MMAP | 5829 SNDRV_PCM_INFO_MMAP_VALID | 5830 SNDRV_PCM_INFO_NONINTERLEAVED | 5831 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE), 5832 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5833 .rates = (SNDRV_PCM_RATE_32000 | 5834 SNDRV_PCM_RATE_44100 | 5835 SNDRV_PCM_RATE_48000 | 5836 SNDRV_PCM_RATE_64000 | 5837 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5838 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ), 5839 .rate_min = 32000, 5840 .rate_max = 192000, 5841 .channels_min = 1, 5842 .channels_max = HDSPM_MAX_CHANNELS, 5843 .buffer_bytes_max = 5844 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5845 .period_bytes_min = (32 * 4), 5846 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5847 .periods_min = 2, 5848 .periods_max = 512, 5849 .fifo_size = 0 5850 }; 5851 5852 static const struct snd_pcm_hardware snd_hdspm_capture_subinfo = { 5853 .info = (SNDRV_PCM_INFO_MMAP | 5854 SNDRV_PCM_INFO_MMAP_VALID | 5855 SNDRV_PCM_INFO_NONINTERLEAVED | 5856 SNDRV_PCM_INFO_SYNC_START), 5857 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5858 .rates = (SNDRV_PCM_RATE_32000 | 5859 SNDRV_PCM_RATE_44100 | 5860 SNDRV_PCM_RATE_48000 | 5861 SNDRV_PCM_RATE_64000 | 5862 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5863 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000), 5864 .rate_min = 32000, 5865 .rate_max = 192000, 5866 .channels_min = 1, 5867 .channels_max = HDSPM_MAX_CHANNELS, 5868 .buffer_bytes_max = 5869 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5870 .period_bytes_min = (32 * 4), 5871 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5872 .periods_min = 2, 5873 .periods_max = 512, 5874 .fifo_size = 0 5875 }; 5876 5877 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 5878 struct snd_pcm_hw_rule *rule) 5879 { 5880 struct hdspm *hdspm = rule->private; 5881 struct snd_interval *c = 5882 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5883 struct snd_interval *r = 5884 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5885 5886 if (r->min > 96000 && r->max <= 192000) { 5887 struct snd_interval t = { 5888 .min = hdspm->qs_in_channels, 5889 .max = hdspm->qs_in_channels, 5890 .integer = 1, 5891 }; 5892 return snd_interval_refine(c, &t); 5893 } else if (r->min > 48000 && r->max <= 96000) { 5894 struct snd_interval t = { 5895 .min = hdspm->ds_in_channels, 5896 .max = hdspm->ds_in_channels, 5897 .integer = 1, 5898 }; 5899 return snd_interval_refine(c, &t); 5900 } else if (r->max < 64000) { 5901 struct snd_interval t = { 5902 .min = hdspm->ss_in_channels, 5903 .max = hdspm->ss_in_channels, 5904 .integer = 1, 5905 }; 5906 return snd_interval_refine(c, &t); 5907 } 5908 5909 return 0; 5910 } 5911 5912 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 5913 struct snd_pcm_hw_rule * rule) 5914 { 5915 struct hdspm *hdspm = rule->private; 5916 struct snd_interval *c = 5917 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5918 struct snd_interval *r = 5919 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5920 5921 if (r->min > 96000 && r->max <= 192000) { 5922 struct snd_interval t = { 5923 .min = hdspm->qs_out_channels, 5924 .max = hdspm->qs_out_channels, 5925 .integer = 1, 5926 }; 5927 return snd_interval_refine(c, &t); 5928 } else if (r->min > 48000 && r->max <= 96000) { 5929 struct snd_interval t = { 5930 .min = hdspm->ds_out_channels, 5931 .max = hdspm->ds_out_channels, 5932 .integer = 1, 5933 }; 5934 return snd_interval_refine(c, &t); 5935 } else if (r->max < 64000) { 5936 struct snd_interval t = { 5937 .min = hdspm->ss_out_channels, 5938 .max = hdspm->ss_out_channels, 5939 .integer = 1, 5940 }; 5941 return snd_interval_refine(c, &t); 5942 } else { 5943 } 5944 return 0; 5945 } 5946 5947 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 5948 struct snd_pcm_hw_rule * rule) 5949 { 5950 struct hdspm *hdspm = rule->private; 5951 struct snd_interval *c = 5952 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5953 struct snd_interval *r = 5954 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5955 5956 if (c->min >= hdspm->ss_in_channels) { 5957 struct snd_interval t = { 5958 .min = 32000, 5959 .max = 48000, 5960 .integer = 1, 5961 }; 5962 return snd_interval_refine(r, &t); 5963 } else if (c->max <= hdspm->qs_in_channels) { 5964 struct snd_interval t = { 5965 .min = 128000, 5966 .max = 192000, 5967 .integer = 1, 5968 }; 5969 return snd_interval_refine(r, &t); 5970 } else if (c->max <= hdspm->ds_in_channels) { 5971 struct snd_interval t = { 5972 .min = 64000, 5973 .max = 96000, 5974 .integer = 1, 5975 }; 5976 return snd_interval_refine(r, &t); 5977 } 5978 5979 return 0; 5980 } 5981 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 5982 struct snd_pcm_hw_rule *rule) 5983 { 5984 struct hdspm *hdspm = rule->private; 5985 struct snd_interval *c = 5986 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5987 struct snd_interval *r = 5988 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5989 5990 if (c->min >= hdspm->ss_out_channels) { 5991 struct snd_interval t = { 5992 .min = 32000, 5993 .max = 48000, 5994 .integer = 1, 5995 }; 5996 return snd_interval_refine(r, &t); 5997 } else if (c->max <= hdspm->qs_out_channels) { 5998 struct snd_interval t = { 5999 .min = 128000, 6000 .max = 192000, 6001 .integer = 1, 6002 }; 6003 return snd_interval_refine(r, &t); 6004 } else if (c->max <= hdspm->ds_out_channels) { 6005 struct snd_interval t = { 6006 .min = 64000, 6007 .max = 96000, 6008 .integer = 1, 6009 }; 6010 return snd_interval_refine(r, &t); 6011 } 6012 6013 return 0; 6014 } 6015 6016 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params, 6017 struct snd_pcm_hw_rule *rule) 6018 { 6019 unsigned int list[3]; 6020 struct hdspm *hdspm = rule->private; 6021 struct snd_interval *c = hw_param_interval(params, 6022 SNDRV_PCM_HW_PARAM_CHANNELS); 6023 6024 list[0] = hdspm->qs_in_channels; 6025 list[1] = hdspm->ds_in_channels; 6026 list[2] = hdspm->ss_in_channels; 6027 return snd_interval_list(c, 3, list, 0); 6028 } 6029 6030 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params, 6031 struct snd_pcm_hw_rule *rule) 6032 { 6033 unsigned int list[3]; 6034 struct hdspm *hdspm = rule->private; 6035 struct snd_interval *c = hw_param_interval(params, 6036 SNDRV_PCM_HW_PARAM_CHANNELS); 6037 6038 list[0] = hdspm->qs_out_channels; 6039 list[1] = hdspm->ds_out_channels; 6040 list[2] = hdspm->ss_out_channels; 6041 return snd_interval_list(c, 3, list, 0); 6042 } 6043 6044 6045 static const unsigned int hdspm_aes32_sample_rates[] = { 6046 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 6047 }; 6048 6049 static const struct snd_pcm_hw_constraint_list 6050 hdspm_hw_constraints_aes32_sample_rates = { 6051 .count = ARRAY_SIZE(hdspm_aes32_sample_rates), 6052 .list = hdspm_aes32_sample_rates, 6053 .mask = 0 6054 }; 6055 6056 static int snd_hdspm_open(struct snd_pcm_substream *substream) 6057 { 6058 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6059 struct snd_pcm_runtime *runtime = substream->runtime; 6060 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6061 6062 spin_lock_irq(&hdspm->lock); 6063 snd_pcm_set_sync(substream); 6064 runtime->hw = (playback) ? snd_hdspm_playback_subinfo : 6065 snd_hdspm_capture_subinfo; 6066 6067 if (playback) { 6068 if (!hdspm->capture_substream) 6069 hdspm_stop_audio(hdspm); 6070 6071 hdspm->playback_pid = current->pid; 6072 hdspm->playback_substream = substream; 6073 } else { 6074 if (!hdspm->playback_substream) 6075 hdspm_stop_audio(hdspm); 6076 6077 hdspm->capture_pid = current->pid; 6078 hdspm->capture_substream = substream; 6079 } 6080 6081 spin_unlock_irq(&hdspm->lock); 6082 6083 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 6084 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 6085 6086 switch (hdspm->io_type) { 6087 case AIO: 6088 case RayDAT: 6089 snd_pcm_hw_constraint_minmax(runtime, 6090 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6091 32, 4096); 6092 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */ 6093 snd_pcm_hw_constraint_single(runtime, 6094 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 6095 16384); 6096 break; 6097 6098 default: 6099 snd_pcm_hw_constraint_minmax(runtime, 6100 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6101 64, 8192); 6102 snd_pcm_hw_constraint_single(runtime, 6103 SNDRV_PCM_HW_PARAM_PERIODS, 2); 6104 break; 6105 } 6106 6107 if (AES32 == hdspm->io_type) { 6108 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 6109 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6110 &hdspm_hw_constraints_aes32_sample_rates); 6111 } else { 6112 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6113 (playback ? 6114 snd_hdspm_hw_rule_rate_out_channels : 6115 snd_hdspm_hw_rule_rate_in_channels), hdspm, 6116 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6117 } 6118 6119 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6120 (playback ? snd_hdspm_hw_rule_out_channels : 6121 snd_hdspm_hw_rule_in_channels), hdspm, 6122 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6123 6124 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6125 (playback ? snd_hdspm_hw_rule_out_channels_rate : 6126 snd_hdspm_hw_rule_in_channels_rate), hdspm, 6127 SNDRV_PCM_HW_PARAM_RATE, -1); 6128 6129 return 0; 6130 } 6131 6132 static int snd_hdspm_release(struct snd_pcm_substream *substream) 6133 { 6134 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6135 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6136 6137 spin_lock_irq(&hdspm->lock); 6138 6139 if (playback) { 6140 hdspm->playback_pid = -1; 6141 hdspm->playback_substream = NULL; 6142 } else { 6143 hdspm->capture_pid = -1; 6144 hdspm->capture_substream = NULL; 6145 } 6146 6147 spin_unlock_irq(&hdspm->lock); 6148 6149 return 0; 6150 } 6151 6152 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file) 6153 { 6154 /* we have nothing to initialize but the call is required */ 6155 return 0; 6156 } 6157 6158 static inline int copy_u32_le(void __user *dest, void __iomem *src) 6159 { 6160 u32 val = readl(src); 6161 return copy_to_user(dest, &val, 4); 6162 } 6163 6164 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, 6165 unsigned int cmd, unsigned long arg) 6166 { 6167 void __user *argp = (void __user *)arg; 6168 struct hdspm *hdspm = hw->private_data; 6169 struct hdspm_mixer_ioctl mixer; 6170 struct hdspm_config info; 6171 struct hdspm_status status; 6172 struct hdspm_version hdspm_version; 6173 struct hdspm_peak_rms *levels; 6174 struct hdspm_ltc ltc; 6175 unsigned int statusregister; 6176 long unsigned int s; 6177 int i = 0; 6178 6179 switch (cmd) { 6180 6181 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS: 6182 levels = &hdspm->peak_rms; 6183 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 6184 levels->input_peaks[i] = 6185 readl(hdspm->iobase + 6186 HDSPM_MADI_INPUT_PEAK + i*4); 6187 levels->playback_peaks[i] = 6188 readl(hdspm->iobase + 6189 HDSPM_MADI_PLAYBACK_PEAK + i*4); 6190 levels->output_peaks[i] = 6191 readl(hdspm->iobase + 6192 HDSPM_MADI_OUTPUT_PEAK + i*4); 6193 6194 levels->input_rms[i] = 6195 ((uint64_t) readl(hdspm->iobase + 6196 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) | 6197 (uint64_t) readl(hdspm->iobase + 6198 HDSPM_MADI_INPUT_RMS_L + i*4); 6199 levels->playback_rms[i] = 6200 ((uint64_t)readl(hdspm->iobase + 6201 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) | 6202 (uint64_t)readl(hdspm->iobase + 6203 HDSPM_MADI_PLAYBACK_RMS_L + i*4); 6204 levels->output_rms[i] = 6205 ((uint64_t)readl(hdspm->iobase + 6206 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) | 6207 (uint64_t)readl(hdspm->iobase + 6208 HDSPM_MADI_OUTPUT_RMS_L + i*4); 6209 } 6210 6211 if (hdspm->system_sample_rate > 96000) { 6212 levels->speed = qs; 6213 } else if (hdspm->system_sample_rate > 48000) { 6214 levels->speed = ds; 6215 } else { 6216 levels->speed = ss; 6217 } 6218 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 6219 6220 s = copy_to_user(argp, levels, sizeof(*levels)); 6221 if (0 != s) { 6222 /* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu 6223 [Levels]\n", sizeof(struct hdspm_peak_rms), s); 6224 */ 6225 return -EFAULT; 6226 } 6227 break; 6228 6229 case SNDRV_HDSPM_IOCTL_GET_LTC: 6230 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 6231 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 6232 if (i & HDSPM_TCO1_LTC_Input_valid) { 6233 switch (i & (HDSPM_TCO1_LTC_Format_LSB | 6234 HDSPM_TCO1_LTC_Format_MSB)) { 6235 case 0: 6236 ltc.format = fps_24; 6237 break; 6238 case HDSPM_TCO1_LTC_Format_LSB: 6239 ltc.format = fps_25; 6240 break; 6241 case HDSPM_TCO1_LTC_Format_MSB: 6242 ltc.format = fps_2997; 6243 break; 6244 default: 6245 ltc.format = fps_30; 6246 break; 6247 } 6248 if (i & HDSPM_TCO1_set_drop_frame_flag) { 6249 ltc.frame = drop_frame; 6250 } else { 6251 ltc.frame = full_frame; 6252 } 6253 } else { 6254 ltc.format = format_invalid; 6255 ltc.frame = frame_invalid; 6256 } 6257 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) { 6258 ltc.input_format = ntsc; 6259 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) { 6260 ltc.input_format = pal; 6261 } else { 6262 ltc.input_format = no_video; 6263 } 6264 6265 s = copy_to_user(argp, <c, sizeof(ltc)); 6266 if (0 != s) { 6267 /* 6268 dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */ 6269 return -EFAULT; 6270 } 6271 6272 break; 6273 6274 case SNDRV_HDSPM_IOCTL_GET_CONFIG: 6275 6276 memset(&info, 0, sizeof(info)); 6277 spin_lock_irq(&hdspm->lock); 6278 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm); 6279 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm); 6280 6281 info.system_sample_rate = hdspm->system_sample_rate; 6282 info.autosync_sample_rate = 6283 hdspm_external_sample_rate(hdspm); 6284 info.system_clock_mode = hdspm_system_clock_mode(hdspm); 6285 info.clock_source = hdspm_clock_source(hdspm); 6286 info.autosync_ref = hdspm_autosync_ref(hdspm); 6287 info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut); 6288 info.passthru = 0; 6289 spin_unlock_irq(&hdspm->lock); 6290 if (copy_to_user(argp, &info, sizeof(info))) 6291 return -EFAULT; 6292 break; 6293 6294 case SNDRV_HDSPM_IOCTL_GET_STATUS: 6295 memset(&status, 0, sizeof(status)); 6296 6297 status.card_type = hdspm->io_type; 6298 6299 status.autosync_source = hdspm_autosync_ref(hdspm); 6300 6301 status.card_clock = 110069313433624ULL; 6302 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 6303 6304 switch (hdspm->io_type) { 6305 case MADI: 6306 case MADIface: 6307 status.card_specific.madi.sync_wc = 6308 hdspm_wc_sync_check(hdspm); 6309 status.card_specific.madi.sync_madi = 6310 hdspm_madi_sync_check(hdspm); 6311 status.card_specific.madi.sync_tco = 6312 hdspm_tco_sync_check(hdspm); 6313 status.card_specific.madi.sync_in = 6314 hdspm_sync_in_sync_check(hdspm); 6315 6316 statusregister = 6317 hdspm_read(hdspm, HDSPM_statusRegister); 6318 status.card_specific.madi.madi_input = 6319 (statusregister & HDSPM_AB_int) ? 1 : 0; 6320 status.card_specific.madi.channel_format = 6321 (statusregister & HDSPM_RX_64ch) ? 1 : 0; 6322 /* TODO: Mac driver sets it when f_s>48kHz */ 6323 status.card_specific.madi.frame_format = 0; 6324 6325 default: 6326 break; 6327 } 6328 6329 if (copy_to_user(argp, &status, sizeof(status))) 6330 return -EFAULT; 6331 6332 6333 break; 6334 6335 case SNDRV_HDSPM_IOCTL_GET_VERSION: 6336 memset(&hdspm_version, 0, sizeof(hdspm_version)); 6337 6338 hdspm_version.card_type = hdspm->io_type; 6339 strlcpy(hdspm_version.cardname, hdspm->card_name, 6340 sizeof(hdspm_version.cardname)); 6341 hdspm_version.serial = hdspm->serial; 6342 hdspm_version.firmware_rev = hdspm->firmware_rev; 6343 hdspm_version.addons = 0; 6344 if (hdspm->tco) 6345 hdspm_version.addons |= HDSPM_ADDON_TCO; 6346 6347 if (copy_to_user(argp, &hdspm_version, 6348 sizeof(hdspm_version))) 6349 return -EFAULT; 6350 break; 6351 6352 case SNDRV_HDSPM_IOCTL_GET_MIXER: 6353 if (copy_from_user(&mixer, argp, sizeof(mixer))) 6354 return -EFAULT; 6355 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer, 6356 sizeof(*mixer.mixer))) 6357 return -EFAULT; 6358 break; 6359 6360 default: 6361 return -EINVAL; 6362 } 6363 return 0; 6364 } 6365 6366 static const struct snd_pcm_ops snd_hdspm_ops = { 6367 .open = snd_hdspm_open, 6368 .close = snd_hdspm_release, 6369 .ioctl = snd_hdspm_ioctl, 6370 .hw_params = snd_hdspm_hw_params, 6371 .hw_free = snd_hdspm_hw_free, 6372 .prepare = snd_hdspm_prepare, 6373 .trigger = snd_hdspm_trigger, 6374 .pointer = snd_hdspm_hw_pointer, 6375 }; 6376 6377 static int snd_hdspm_create_hwdep(struct snd_card *card, 6378 struct hdspm *hdspm) 6379 { 6380 struct snd_hwdep *hw; 6381 int err; 6382 6383 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw); 6384 if (err < 0) 6385 return err; 6386 6387 hdspm->hwdep = hw; 6388 hw->private_data = hdspm; 6389 strcpy(hw->name, "HDSPM hwdep interface"); 6390 6391 hw->ops.open = snd_hdspm_hwdep_dummy_op; 6392 hw->ops.ioctl = snd_hdspm_hwdep_ioctl; 6393 hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl; 6394 hw->ops.release = snd_hdspm_hwdep_dummy_op; 6395 6396 return 0; 6397 } 6398 6399 6400 /*------------------------------------------------------------ 6401 memory interface 6402 ------------------------------------------------------------*/ 6403 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm) 6404 { 6405 struct snd_pcm *pcm; 6406 size_t wanted; 6407 6408 pcm = hdspm->pcm; 6409 6410 wanted = HDSPM_DMA_AREA_BYTES; 6411 6412 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG, 6413 &hdspm->pci->dev, 6414 wanted, wanted); 6415 dev_dbg(hdspm->card->dev, " Preallocated %zd Bytes\n", wanted); 6416 return 0; 6417 } 6418 6419 /* Inform the card what DMA addresses to use for the indicated channel. */ 6420 /* Each channel got 16 4K pages allocated for DMA transfers. */ 6421 static void hdspm_set_channel_dma_addr(struct hdspm *hdspm, 6422 struct snd_pcm_substream *substream, 6423 unsigned int reg, int channel) 6424 { 6425 int i; 6426 6427 for (i = channel * 16; i < channel * 16 + 16; i++) 6428 hdspm_write(hdspm, reg + 4 * i, 6429 snd_pcm_sgbuf_get_addr(substream, 4096 * i)); 6430 } 6431 6432 6433 /* ------------- ALSA Devices ---------------------------- */ 6434 static int snd_hdspm_create_pcm(struct snd_card *card, 6435 struct hdspm *hdspm) 6436 { 6437 struct snd_pcm *pcm; 6438 int err; 6439 6440 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm); 6441 if (err < 0) 6442 return err; 6443 6444 hdspm->pcm = pcm; 6445 pcm->private_data = hdspm; 6446 strcpy(pcm->name, hdspm->card_name); 6447 6448 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 6449 &snd_hdspm_ops); 6450 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 6451 &snd_hdspm_ops); 6452 6453 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 6454 6455 err = snd_hdspm_preallocate_memory(hdspm); 6456 if (err < 0) 6457 return err; 6458 6459 return 0; 6460 } 6461 6462 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm) 6463 { 6464 int i; 6465 6466 for (i = 0; i < hdspm->midiPorts; i++) 6467 snd_hdspm_flush_midi_input(hdspm, i); 6468 } 6469 6470 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 6471 struct hdspm *hdspm) 6472 { 6473 int err, i; 6474 6475 dev_dbg(card->dev, "Create card...\n"); 6476 err = snd_hdspm_create_pcm(card, hdspm); 6477 if (err < 0) 6478 return err; 6479 6480 i = 0; 6481 while (i < hdspm->midiPorts) { 6482 err = snd_hdspm_create_midi(card, hdspm, i); 6483 if (err < 0) { 6484 return err; 6485 } 6486 i++; 6487 } 6488 6489 err = snd_hdspm_create_controls(card, hdspm); 6490 if (err < 0) 6491 return err; 6492 6493 err = snd_hdspm_create_hwdep(card, hdspm); 6494 if (err < 0) 6495 return err; 6496 6497 dev_dbg(card->dev, "proc init...\n"); 6498 snd_hdspm_proc_init(hdspm); 6499 6500 hdspm->system_sample_rate = -1; 6501 hdspm->last_external_sample_rate = -1; 6502 hdspm->last_internal_sample_rate = -1; 6503 hdspm->playback_pid = -1; 6504 hdspm->capture_pid = -1; 6505 hdspm->capture_substream = NULL; 6506 hdspm->playback_substream = NULL; 6507 6508 dev_dbg(card->dev, "Set defaults...\n"); 6509 err = snd_hdspm_set_defaults(hdspm); 6510 if (err < 0) 6511 return err; 6512 6513 dev_dbg(card->dev, "Update mixer controls...\n"); 6514 hdspm_update_simple_mixer_controls(hdspm); 6515 6516 dev_dbg(card->dev, "Initializing complete?\n"); 6517 6518 err = snd_card_register(card); 6519 if (err < 0) { 6520 dev_err(card->dev, "error registering card\n"); 6521 return err; 6522 } 6523 6524 dev_dbg(card->dev, "... yes now\n"); 6525 6526 return 0; 6527 } 6528 6529 static int snd_hdspm_create(struct snd_card *card, 6530 struct hdspm *hdspm) 6531 { 6532 6533 struct pci_dev *pci = hdspm->pci; 6534 int err; 6535 unsigned long io_extent; 6536 6537 hdspm->irq = -1; 6538 hdspm->card = card; 6539 6540 spin_lock_init(&hdspm->lock); 6541 INIT_WORK(&hdspm->midi_work, hdspm_midi_work); 6542 6543 pci_read_config_word(hdspm->pci, 6544 PCI_CLASS_REVISION, &hdspm->firmware_rev); 6545 6546 strcpy(card->mixername, "Xilinx FPGA"); 6547 strcpy(card->driver, "HDSPM"); 6548 6549 switch (hdspm->firmware_rev) { 6550 case HDSPM_RAYDAT_REV: 6551 hdspm->io_type = RayDAT; 6552 hdspm->card_name = "RME RayDAT"; 6553 hdspm->midiPorts = 2; 6554 break; 6555 case HDSPM_AIO_REV: 6556 hdspm->io_type = AIO; 6557 hdspm->card_name = "RME AIO"; 6558 hdspm->midiPorts = 1; 6559 break; 6560 case HDSPM_MADIFACE_REV: 6561 hdspm->io_type = MADIface; 6562 hdspm->card_name = "RME MADIface"; 6563 hdspm->midiPorts = 1; 6564 break; 6565 default: 6566 if ((hdspm->firmware_rev == 0xf0) || 6567 ((hdspm->firmware_rev >= 0xe6) && 6568 (hdspm->firmware_rev <= 0xea))) { 6569 hdspm->io_type = AES32; 6570 hdspm->card_name = "RME AES32"; 6571 hdspm->midiPorts = 2; 6572 } else if ((hdspm->firmware_rev == 0xd2) || 6573 ((hdspm->firmware_rev >= 0xc8) && 6574 (hdspm->firmware_rev <= 0xcf))) { 6575 hdspm->io_type = MADI; 6576 hdspm->card_name = "RME MADI"; 6577 hdspm->midiPorts = 3; 6578 } else { 6579 dev_err(card->dev, 6580 "unknown firmware revision %x\n", 6581 hdspm->firmware_rev); 6582 return -ENODEV; 6583 } 6584 } 6585 6586 err = pci_enable_device(pci); 6587 if (err < 0) 6588 return err; 6589 6590 pci_set_master(hdspm->pci); 6591 6592 err = pci_request_regions(pci, "hdspm"); 6593 if (err < 0) 6594 return err; 6595 6596 hdspm->port = pci_resource_start(pci, 0); 6597 io_extent = pci_resource_len(pci, 0); 6598 6599 dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n", 6600 hdspm->port, hdspm->port + io_extent - 1); 6601 6602 hdspm->iobase = ioremap(hdspm->port, io_extent); 6603 if (!hdspm->iobase) { 6604 dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n", 6605 hdspm->port, hdspm->port + io_extent - 1); 6606 return -EBUSY; 6607 } 6608 dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n", 6609 (unsigned long)hdspm->iobase, hdspm->port, 6610 hdspm->port + io_extent - 1); 6611 6612 if (request_irq(pci->irq, snd_hdspm_interrupt, 6613 IRQF_SHARED, KBUILD_MODNAME, hdspm)) { 6614 dev_err(card->dev, "unable to use IRQ %d\n", pci->irq); 6615 return -EBUSY; 6616 } 6617 6618 dev_dbg(card->dev, "use IRQ %d\n", pci->irq); 6619 6620 hdspm->irq = pci->irq; 6621 card->sync_irq = hdspm->irq; 6622 6623 dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n", 6624 sizeof(*hdspm->mixer)); 6625 hdspm->mixer = kzalloc(sizeof(*hdspm->mixer), GFP_KERNEL); 6626 if (!hdspm->mixer) 6627 return -ENOMEM; 6628 6629 hdspm->port_names_in = NULL; 6630 hdspm->port_names_out = NULL; 6631 6632 switch (hdspm->io_type) { 6633 case AES32: 6634 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS; 6635 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS; 6636 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS; 6637 6638 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6639 channel_map_aes32; 6640 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6641 channel_map_aes32; 6642 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6643 channel_map_aes32; 6644 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6645 texts_ports_aes32; 6646 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6647 texts_ports_aes32; 6648 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6649 texts_ports_aes32; 6650 6651 hdspm->max_channels_out = hdspm->max_channels_in = 6652 AES32_CHANNELS; 6653 hdspm->port_names_in = hdspm->port_names_out = 6654 texts_ports_aes32; 6655 hdspm->channel_map_in = hdspm->channel_map_out = 6656 channel_map_aes32; 6657 6658 break; 6659 6660 case MADI: 6661 case MADIface: 6662 hdspm->ss_in_channels = hdspm->ss_out_channels = 6663 MADI_SS_CHANNELS; 6664 hdspm->ds_in_channels = hdspm->ds_out_channels = 6665 MADI_DS_CHANNELS; 6666 hdspm->qs_in_channels = hdspm->qs_out_channels = 6667 MADI_QS_CHANNELS; 6668 6669 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6670 channel_map_unity_ss; 6671 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6672 channel_map_unity_ss; 6673 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6674 channel_map_unity_ss; 6675 6676 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6677 texts_ports_madi; 6678 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6679 texts_ports_madi; 6680 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6681 texts_ports_madi; 6682 break; 6683 6684 case AIO: 6685 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS; 6686 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS; 6687 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS; 6688 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS; 6689 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS; 6690 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS; 6691 6692 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) { 6693 dev_info(card->dev, "AEB input board found\n"); 6694 hdspm->ss_in_channels += 4; 6695 hdspm->ds_in_channels += 4; 6696 hdspm->qs_in_channels += 4; 6697 } 6698 6699 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) { 6700 dev_info(card->dev, "AEB output board found\n"); 6701 hdspm->ss_out_channels += 4; 6702 hdspm->ds_out_channels += 4; 6703 hdspm->qs_out_channels += 4; 6704 } 6705 6706 hdspm->channel_map_out_ss = channel_map_aio_out_ss; 6707 hdspm->channel_map_out_ds = channel_map_aio_out_ds; 6708 hdspm->channel_map_out_qs = channel_map_aio_out_qs; 6709 6710 hdspm->channel_map_in_ss = channel_map_aio_in_ss; 6711 hdspm->channel_map_in_ds = channel_map_aio_in_ds; 6712 hdspm->channel_map_in_qs = channel_map_aio_in_qs; 6713 6714 hdspm->port_names_in_ss = texts_ports_aio_in_ss; 6715 hdspm->port_names_out_ss = texts_ports_aio_out_ss; 6716 hdspm->port_names_in_ds = texts_ports_aio_in_ds; 6717 hdspm->port_names_out_ds = texts_ports_aio_out_ds; 6718 hdspm->port_names_in_qs = texts_ports_aio_in_qs; 6719 hdspm->port_names_out_qs = texts_ports_aio_out_qs; 6720 6721 break; 6722 6723 case RayDAT: 6724 hdspm->ss_in_channels = hdspm->ss_out_channels = 6725 RAYDAT_SS_CHANNELS; 6726 hdspm->ds_in_channels = hdspm->ds_out_channels = 6727 RAYDAT_DS_CHANNELS; 6728 hdspm->qs_in_channels = hdspm->qs_out_channels = 6729 RAYDAT_QS_CHANNELS; 6730 6731 hdspm->max_channels_in = RAYDAT_SS_CHANNELS; 6732 hdspm->max_channels_out = RAYDAT_SS_CHANNELS; 6733 6734 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6735 channel_map_raydat_ss; 6736 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6737 channel_map_raydat_ds; 6738 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6739 channel_map_raydat_qs; 6740 hdspm->channel_map_in = hdspm->channel_map_out = 6741 channel_map_raydat_ss; 6742 6743 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6744 texts_ports_raydat_ss; 6745 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6746 texts_ports_raydat_ds; 6747 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6748 texts_ports_raydat_qs; 6749 6750 6751 break; 6752 6753 } 6754 6755 /* TCO detection */ 6756 switch (hdspm->io_type) { 6757 case AIO: 6758 case RayDAT: 6759 if (hdspm_read(hdspm, HDSPM_statusRegister2) & 6760 HDSPM_s2_tco_detect) { 6761 hdspm->midiPorts++; 6762 hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL); 6763 if (hdspm->tco) 6764 hdspm_tco_write(hdspm); 6765 6766 dev_info(card->dev, "AIO/RayDAT TCO module found\n"); 6767 } else { 6768 hdspm->tco = NULL; 6769 } 6770 break; 6771 6772 case MADI: 6773 case AES32: 6774 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) { 6775 hdspm->midiPorts++; 6776 hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL); 6777 if (hdspm->tco) 6778 hdspm_tco_write(hdspm); 6779 6780 dev_info(card->dev, "MADI/AES TCO module found\n"); 6781 } else { 6782 hdspm->tco = NULL; 6783 } 6784 break; 6785 6786 default: 6787 hdspm->tco = NULL; 6788 } 6789 6790 /* texts */ 6791 switch (hdspm->io_type) { 6792 case AES32: 6793 if (hdspm->tco) { 6794 hdspm->texts_autosync = texts_autosync_aes_tco; 6795 hdspm->texts_autosync_items = 6796 ARRAY_SIZE(texts_autosync_aes_tco); 6797 } else { 6798 hdspm->texts_autosync = texts_autosync_aes; 6799 hdspm->texts_autosync_items = 6800 ARRAY_SIZE(texts_autosync_aes); 6801 } 6802 break; 6803 6804 case MADI: 6805 if (hdspm->tco) { 6806 hdspm->texts_autosync = texts_autosync_madi_tco; 6807 hdspm->texts_autosync_items = 4; 6808 } else { 6809 hdspm->texts_autosync = texts_autosync_madi; 6810 hdspm->texts_autosync_items = 3; 6811 } 6812 break; 6813 6814 case MADIface: 6815 6816 break; 6817 6818 case RayDAT: 6819 if (hdspm->tco) { 6820 hdspm->texts_autosync = texts_autosync_raydat_tco; 6821 hdspm->texts_autosync_items = 9; 6822 } else { 6823 hdspm->texts_autosync = texts_autosync_raydat; 6824 hdspm->texts_autosync_items = 8; 6825 } 6826 break; 6827 6828 case AIO: 6829 if (hdspm->tco) { 6830 hdspm->texts_autosync = texts_autosync_aio_tco; 6831 hdspm->texts_autosync_items = 6; 6832 } else { 6833 hdspm->texts_autosync = texts_autosync_aio; 6834 hdspm->texts_autosync_items = 5; 6835 } 6836 break; 6837 6838 } 6839 6840 if (hdspm->io_type != MADIface) { 6841 hdspm->serial = (hdspm_read(hdspm, 6842 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF; 6843 /* id contains either a user-provided value or the default 6844 * NULL. If it's the default, we're safe to 6845 * fill card->id with the serial number. 6846 * 6847 * If the serial number is 0xFFFFFF, then we're dealing with 6848 * an old PCI revision that comes without a sane number. In 6849 * this case, we don't set card->id to avoid collisions 6850 * when running with multiple cards. 6851 */ 6852 if (!id[hdspm->dev] && hdspm->serial != 0xFFFFFF) { 6853 snprintf(card->id, sizeof(card->id), 6854 "HDSPMx%06x", hdspm->serial); 6855 snd_card_set_id(card, card->id); 6856 } 6857 } 6858 6859 dev_dbg(card->dev, "create alsa devices.\n"); 6860 err = snd_hdspm_create_alsa_devices(card, hdspm); 6861 if (err < 0) 6862 return err; 6863 6864 snd_hdspm_initialize_midi_flush(hdspm); 6865 6866 return 0; 6867 } 6868 6869 6870 static int snd_hdspm_free(struct hdspm * hdspm) 6871 { 6872 6873 if (hdspm->port) { 6874 cancel_work_sync(&hdspm->midi_work); 6875 6876 /* stop th audio, and cancel all interrupts */ 6877 hdspm->control_register &= 6878 ~(HDSPM_Start | HDSPM_AudioInterruptEnable | 6879 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable | 6880 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable); 6881 hdspm_write(hdspm, HDSPM_controlRegister, 6882 hdspm->control_register); 6883 } 6884 6885 if (hdspm->irq >= 0) 6886 free_irq(hdspm->irq, (void *) hdspm); 6887 6888 kfree(hdspm->mixer); 6889 iounmap(hdspm->iobase); 6890 6891 if (hdspm->port) 6892 pci_release_regions(hdspm->pci); 6893 6894 pci_disable_device(hdspm->pci); 6895 return 0; 6896 } 6897 6898 6899 static void snd_hdspm_card_free(struct snd_card *card) 6900 { 6901 struct hdspm *hdspm = card->private_data; 6902 6903 if (hdspm) 6904 snd_hdspm_free(hdspm); 6905 } 6906 6907 6908 static int snd_hdspm_probe(struct pci_dev *pci, 6909 const struct pci_device_id *pci_id) 6910 { 6911 static int dev; 6912 struct hdspm *hdspm; 6913 struct snd_card *card; 6914 int err; 6915 6916 if (dev >= SNDRV_CARDS) 6917 return -ENODEV; 6918 if (!enable[dev]) { 6919 dev++; 6920 return -ENOENT; 6921 } 6922 6923 err = snd_card_new(&pci->dev, index[dev], id[dev], 6924 THIS_MODULE, sizeof(*hdspm), &card); 6925 if (err < 0) 6926 return err; 6927 6928 hdspm = card->private_data; 6929 card->private_free = snd_hdspm_card_free; 6930 hdspm->dev = dev; 6931 hdspm->pci = pci; 6932 6933 err = snd_hdspm_create(card, hdspm); 6934 if (err < 0) 6935 goto free_card; 6936 6937 if (hdspm->io_type != MADIface) { 6938 snprintf(card->shortname, sizeof(card->shortname), "%s_%x", 6939 hdspm->card_name, hdspm->serial); 6940 snprintf(card->longname, sizeof(card->longname), 6941 "%s S/N 0x%x at 0x%lx, irq %d", 6942 hdspm->card_name, hdspm->serial, 6943 hdspm->port, hdspm->irq); 6944 } else { 6945 snprintf(card->shortname, sizeof(card->shortname), "%s", 6946 hdspm->card_name); 6947 snprintf(card->longname, sizeof(card->longname), 6948 "%s at 0x%lx, irq %d", 6949 hdspm->card_name, hdspm->port, hdspm->irq); 6950 } 6951 6952 err = snd_card_register(card); 6953 if (err < 0) 6954 goto free_card; 6955 6956 pci_set_drvdata(pci, card); 6957 6958 dev++; 6959 return 0; 6960 6961 free_card: 6962 snd_card_free(card); 6963 return err; 6964 } 6965 6966 static void snd_hdspm_remove(struct pci_dev *pci) 6967 { 6968 snd_card_free(pci_get_drvdata(pci)); 6969 } 6970 6971 static struct pci_driver hdspm_driver = { 6972 .name = KBUILD_MODNAME, 6973 .id_table = snd_hdspm_ids, 6974 .probe = snd_hdspm_probe, 6975 .remove = snd_hdspm_remove, 6976 }; 6977 6978 module_pci_driver(hdspm_driver); 6979