1 /* 2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s) 3 * 4 * Copyright (c) 2003 Winfried Ritsch (IEM) 5 * code based on hdsp.c Paul Davis 6 * Marcus Andersson 7 * Thomas Charbonnel 8 * Modified 2006-06-01 for AES32 support by Remy Bruno 9 * <remy.bruno@trinnov.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 24 * 25 */ 26 #include <linux/init.h> 27 #include <linux/delay.h> 28 #include <linux/interrupt.h> 29 #include <linux/moduleparam.h> 30 #include <linux/slab.h> 31 #include <linux/pci.h> 32 #include <asm/io.h> 33 34 #include <sound/core.h> 35 #include <sound/control.h> 36 #include <sound/pcm.h> 37 #include <sound/info.h> 38 #include <sound/asoundef.h> 39 #include <sound/rawmidi.h> 40 #include <sound/hwdep.h> 41 #include <sound/initval.h> 42 43 #include <sound/hdspm.h> 44 45 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 46 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 47 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ 48 49 /* Disable precise pointer at start */ 50 static int precise_ptr[SNDRV_CARDS]; 51 52 /* Send all playback to line outs */ 53 static int line_outs_monitor[SNDRV_CARDS]; 54 55 /* Enable Analog Outs on Channel 63/64 by default */ 56 static int enable_monitor[SNDRV_CARDS]; 57 58 module_param_array(index, int, NULL, 0444); 59 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface."); 60 61 module_param_array(id, charp, NULL, 0444); 62 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface."); 63 64 module_param_array(enable, bool, NULL, 0444); 65 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards."); 66 67 module_param_array(precise_ptr, bool, NULL, 0444); 68 MODULE_PARM_DESC(precise_ptr, "Enable or disable precise pointer."); 69 70 module_param_array(line_outs_monitor, bool, NULL, 0444); 71 MODULE_PARM_DESC(line_outs_monitor, 72 "Send playback streams to analog outs by default."); 73 74 module_param_array(enable_monitor, bool, NULL, 0444); 75 MODULE_PARM_DESC(enable_monitor, 76 "Enable Analog Out on Channel 63/64 by default."); 77 78 MODULE_AUTHOR 79 ("Winfried Ritsch <ritsch_AT_iem.at>, " 80 "Paul Davis <paul@linuxaudiosystems.com>, " 81 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, " 82 "Remy Bruno <remy.bruno@trinnov.com>"); 83 MODULE_DESCRIPTION("RME HDSPM"); 84 MODULE_LICENSE("GPL"); 85 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); 86 87 /* --- Write registers. --- 88 These are defined as byte-offsets from the iobase value. */ 89 90 #define HDSPM_controlRegister 64 91 #define HDSPM_interruptConfirmation 96 92 #define HDSPM_control2Reg 256 /* not in specs ???????? */ 93 #define HDSPM_freqReg 256 /* for AES32 */ 94 #define HDSPM_midiDataOut0 352 /* just believe in old code */ 95 #define HDSPM_midiDataOut1 356 96 #define HDSPM_eeprom_wr 384 /* for AES32 */ 97 98 /* DMA enable for 64 channels, only Bit 0 is relevant */ 99 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */ 100 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */ 101 102 /* 16 page addresses for each of the 64 channels DMA buffer in and out 103 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */ 104 #define HDSPM_pageAddressBufferOut 8192 105 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4) 106 107 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */ 108 109 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */ 110 111 /* --- Read registers. --- 112 These are defined as byte-offsets from the iobase value */ 113 #define HDSPM_statusRegister 0 114 /*#define HDSPM_statusRegister2 96 */ 115 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at 116 * offset 192, for AES32 *and* MADI 117 * => need to check that offset 192 is working on MADI */ 118 #define HDSPM_statusRegister2 192 119 #define HDSPM_timecodeRegister 128 120 121 #define HDSPM_midiDataIn0 360 122 #define HDSPM_midiDataIn1 364 123 124 /* status is data bytes in MIDI-FIFO (0-128) */ 125 #define HDSPM_midiStatusOut0 384 126 #define HDSPM_midiStatusOut1 388 127 #define HDSPM_midiStatusIn0 392 128 #define HDSPM_midiStatusIn1 396 129 130 131 /* the meters are regular i/o-mapped registers, but offset 132 considerably from the rest. the peak registers are reset 133 when read; the least-significant 4 bits are full-scale counters; 134 the actual peak value is in the most-significant 24 bits. 135 */ 136 #define HDSPM_MADI_peakrmsbase 4096 /* 4096-8191 2x64x32Bit Meters */ 137 138 /* --- Control Register bits --------- */ 139 #define HDSPM_Start (1<<0) /* start engine */ 140 141 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */ 142 #define HDSPM_Latency1 (1<<2) /* where n is defined */ 143 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */ 144 145 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Slave/Autosync */ 146 147 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */ 148 149 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ 150 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ 151 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 152 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */ 153 154 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */ 155 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, 156 56channelMODE=0 */ /* MADI ONLY*/ 157 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */ 158 159 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, 160 0=off, 1=on */ /* MADI ONLY */ 161 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */ 162 163 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax 164 * -- MADI ONLY 165 */ 166 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */ 167 168 #define HDSPM_SyncRef0 (1<<16) /* 0=WOrd, 1=MADI */ 169 #define HDSPM_SyncRef1 (1<<17) /* for AES32: SyncRefN codes the AES # */ 170 #define HDSPM_SyncRef2 (1<<13) 171 #define HDSPM_SyncRef3 (1<<25) 172 173 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */ 174 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use 175 AES additional bits in 176 lower 5 Audiodatabits ??? */ 177 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */ 178 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */ 179 180 #define HDSPM_Midi0InterruptEnable (1<<22) 181 #define HDSPM_Midi1InterruptEnable (1<<23) 182 183 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ 184 185 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */ 186 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */ 187 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */ 188 189 #define HDSPM_wclk_sel (1<<30) 190 191 /* --- bit helper defines */ 192 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) 193 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\ 194 HDSPM_DoubleSpeed|HDSPM_QuadSpeed) 195 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) 196 #define HDSPM_InputOptical 0 197 #define HDSPM_InputCoaxial (HDSPM_InputSelect0) 198 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\ 199 HDSPM_SyncRef2|HDSPM_SyncRef3) 200 #define HDSPM_SyncRef_Word 0 201 #define HDSPM_SyncRef_MADI (HDSPM_SyncRef0) 202 203 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */ 204 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */ 205 206 #define HDSPM_Frequency32KHz HDSPM_Frequency0 207 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1 208 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0) 209 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) 210 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) 211 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\ 212 HDSPM_Frequency0) 213 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0) 214 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1) 215 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\ 216 HDSPM_Frequency0) 217 218 /* --- for internal discrimination */ 219 #define HDSPM_CLOCK_SOURCE_AUTOSYNC 0 /* Sample Clock Sources */ 220 #define HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ 1 221 #define HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ 2 222 #define HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ 3 223 #define HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ 4 224 #define HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ 5 225 #define HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ 6 226 #define HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ 7 227 #define HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ 8 228 #define HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ 9 229 230 /* Synccheck Status */ 231 #define HDSPM_SYNC_CHECK_NO_LOCK 0 232 #define HDSPM_SYNC_CHECK_LOCK 1 233 #define HDSPM_SYNC_CHECK_SYNC 2 234 235 /* AutoSync References - used by "autosync_ref" control switch */ 236 #define HDSPM_AUTOSYNC_FROM_WORD 0 237 #define HDSPM_AUTOSYNC_FROM_MADI 1 238 #define HDSPM_AUTOSYNC_FROM_NONE 2 239 240 /* Possible sources of MADI input */ 241 #define HDSPM_OPTICAL 0 /* optical */ 242 #define HDSPM_COAXIAL 1 /* BNC */ 243 244 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask) 245 #define hdspm_decode_latency(x) (((x) & HDSPM_LatencyMask)>>1) 246 247 #define hdspm_encode_in(x) (((x)&0x3)<<14) 248 #define hdspm_decode_in(x) (((x)>>14)&0x3) 249 250 /* --- control2 register bits --- */ 251 #define HDSPM_TMS (1<<0) 252 #define HDSPM_TCK (1<<1) 253 #define HDSPM_TDI (1<<2) 254 #define HDSPM_JTAG (1<<3) 255 #define HDSPM_PWDN (1<<4) 256 #define HDSPM_PROGRAM (1<<5) 257 #define HDSPM_CONFIG_MODE_0 (1<<6) 258 #define HDSPM_CONFIG_MODE_1 (1<<7) 259 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/ 260 #define HDSPM_BIGENDIAN_MODE (1<<9) 261 #define HDSPM_RD_MULTIPLE (1<<10) 262 263 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and 264 that do not conflict with specific bits for AES32 seem to be valid also 265 for the AES32 266 */ 267 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ 268 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */ 269 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 270 * (like inp0) 271 */ 272 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */ 273 274 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 275 /* since 64byte accurate last 6 bits 276 are not used */ 277 278 #define HDSPM_madiSync (1<<18) /* MADI is in sync */ 279 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */ 280 281 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */ 282 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */ 283 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */ 284 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */ 285 286 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with 287 * Interrupt 288 */ 289 #define HDSPM_midi0IRQPending (1<<30) /* MIDI IRQ is pending */ 290 #define HDSPM_midi1IRQPending (1<<31) /* and aktiv */ 291 292 /* --- status bit helpers */ 293 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\ 294 HDSPM_madiFreq2|HDSPM_madiFreq3) 295 #define HDSPM_madiFreq32 (HDSPM_madiFreq0) 296 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1) 297 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1) 298 #define HDSPM_madiFreq64 (HDSPM_madiFreq2) 299 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2) 300 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2) 301 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2) 302 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) 303 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) 304 305 /* Status2 Register bits */ /* MADI ONLY */ 306 307 #define HDSPM_version0 (1<<0) /* not realy defined but I guess */ 308 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */ 309 #define HDSPM_version2 (1<<2) 310 311 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */ 312 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */ 313 314 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */ 315 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */ 316 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, */ 317 /* missing Bit for 111=128, 1000=176.4, 1001=192 */ 318 319 #define HDSPM_SelSyncRef0 (1<<8) /* Sync Source in slave mode */ 320 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */ 321 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */ 322 323 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync) 324 325 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2) 326 #define HDSPM_wcFreq32 (HDSPM_wc_freq0) 327 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1) 328 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1) 329 #define HDSPM_wcFreq64 (HDSPM_wc_freq2) 330 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2) 331 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2) 332 333 334 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 335 HDSPM_SelSyncRef2) 336 #define HDSPM_SelSyncRef_WORD 0 337 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) 338 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 339 HDSPM_SelSyncRef2) 340 341 /* 342 For AES32, bits for status, status2 and timecode are different 343 */ 344 /* status */ 345 #define HDSPM_AES32_wcLock 0x0200000 346 #define HDSPM_AES32_wcFreq_bit 22 347 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function 348 HDSPM_bit2freq */ 349 #define HDSPM_AES32_syncref_bit 16 350 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */ 351 352 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0 353 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1 354 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2 355 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3 356 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4 357 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5 358 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6 359 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7 360 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8 361 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 9 362 363 /* status2 */ 364 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */ 365 #define HDSPM_LockAES 0x80 366 #define HDSPM_LockAES1 0x80 367 #define HDSPM_LockAES2 0x40 368 #define HDSPM_LockAES3 0x20 369 #define HDSPM_LockAES4 0x10 370 #define HDSPM_LockAES5 0x8 371 #define HDSPM_LockAES6 0x4 372 #define HDSPM_LockAES7 0x2 373 #define HDSPM_LockAES8 0x1 374 /* 375 Timecode 376 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on 377 AES i+1 378 bits 3210 379 0001 32kHz 380 0010 44.1kHz 381 0011 48kHz 382 0100 64kHz 383 0101 88.2kHz 384 0110 96kHz 385 0111 128kHz 386 1000 176.4kHz 387 1001 192kHz 388 NB: Timecode register doesn't seem to work on AES32 card revision 230 389 */ 390 391 /* Mixer Values */ 392 #define UNITY_GAIN 32768 /* = 65536/2 */ 393 #define MINUS_INFINITY_GAIN 0 394 395 /* Number of channels for different Speed Modes */ 396 #define MADI_SS_CHANNELS 64 397 #define MADI_DS_CHANNELS 32 398 #define MADI_QS_CHANNELS 16 399 400 /* the size of a substream (1 mono data stream) */ 401 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024) 402 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES) 403 404 /* the size of the area we need to allocate for DMA transfers. the 405 size is the same regardless of the number of channels, and 406 also the latency to use. 407 for one direction !!! 408 */ 409 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) 410 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) 411 412 /* revisions >= 230 indicate AES32 card */ 413 #define HDSPM_AESREVISION 230 414 415 /* speed factor modes */ 416 #define HDSPM_SPEED_SINGLE 0 417 #define HDSPM_SPEED_DOUBLE 1 418 #define HDSPM_SPEED_QUAD 2 419 /* names for speed modes */ 420 static char *hdspm_speed_names[] = { "single", "double", "quad" }; 421 422 struct hdspm_midi { 423 struct hdspm *hdspm; 424 int id; 425 struct snd_rawmidi *rmidi; 426 struct snd_rawmidi_substream *input; 427 struct snd_rawmidi_substream *output; 428 char istimer; /* timer in use */ 429 struct timer_list timer; 430 spinlock_t lock; 431 int pending; 432 }; 433 434 struct hdspm { 435 spinlock_t lock; 436 /* only one playback and/or capture stream */ 437 struct snd_pcm_substream *capture_substream; 438 struct snd_pcm_substream *playback_substream; 439 440 char *card_name; /* for procinfo */ 441 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/ 442 443 unsigned char is_aes32; /* indicates if card is AES32 */ 444 445 int precise_ptr; /* use precise pointers, to be tested */ 446 int monitor_outs; /* set up monitoring outs init flag */ 447 448 u32 control_register; /* cached value */ 449 u32 control2_register; /* cached value */ 450 451 struct hdspm_midi midi[2]; 452 struct tasklet_struct midi_tasklet; 453 454 size_t period_bytes; 455 unsigned char ss_channels; /* channels of card in single speed */ 456 unsigned char ds_channels; /* Double Speed */ 457 unsigned char qs_channels; /* Quad Speed */ 458 459 unsigned char *playback_buffer; /* suitably aligned address */ 460 unsigned char *capture_buffer; /* suitably aligned address */ 461 462 pid_t capture_pid; /* process id which uses capture */ 463 pid_t playback_pid; /* process id which uses capture */ 464 int running; /* running status */ 465 466 int last_external_sample_rate; /* samplerate mystic ... */ 467 int last_internal_sample_rate; 468 int system_sample_rate; 469 470 char *channel_map; /* channel map for DS and Quadspeed */ 471 472 int dev; /* Hardware vars... */ 473 int irq; 474 unsigned long port; 475 void __iomem *iobase; 476 477 int irq_count; /* for debug */ 478 479 struct snd_card *card; /* one card */ 480 struct snd_pcm *pcm; /* has one pcm */ 481 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */ 482 struct pci_dev *pci; /* and an pci info */ 483 484 /* Mixer vars */ 485 /* fast alsa mixer */ 486 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; 487 /* but input to much, so not used */ 488 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; 489 /* full mixer accessable over mixer ioctl or hwdep-device */ 490 struct hdspm_mixer *mixer; 491 492 }; 493 494 /* These tables map the ALSA channels 1..N to the channels that we 495 need to use in order to find the relevant channel buffer. RME 496 refer to this kind of mapping as between "the ADAT channel and 497 the DMA channel." We index it using the logical audio channel, 498 and the value is the DMA channel (i.e. channel buffer number) 499 where the data for that channel can be read/written from/to. 500 */ 501 502 static char channel_map_madi_ss[HDSPM_MAX_CHANNELS] = { 503 0, 1, 2, 3, 4, 5, 6, 7, 504 8, 9, 10, 11, 12, 13, 14, 15, 505 16, 17, 18, 19, 20, 21, 22, 23, 506 24, 25, 26, 27, 28, 29, 30, 31, 507 32, 33, 34, 35, 36, 37, 38, 39, 508 40, 41, 42, 43, 44, 45, 46, 47, 509 48, 49, 50, 51, 52, 53, 54, 55, 510 56, 57, 58, 59, 60, 61, 62, 63 511 }; 512 513 514 static struct pci_device_id snd_hdspm_ids[] __devinitdata = { 515 { 516 .vendor = PCI_VENDOR_ID_XILINX, 517 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI, 518 .subvendor = PCI_ANY_ID, 519 .subdevice = PCI_ANY_ID, 520 .class = 0, 521 .class_mask = 0, 522 .driver_data = 0}, 523 {0,} 524 }; 525 526 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids); 527 528 /* prototypes */ 529 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card, 530 struct hdspm * hdspm); 531 static int __devinit snd_hdspm_create_pcm(struct snd_card *card, 532 struct hdspm * hdspm); 533 534 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm); 535 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm); 536 static int hdspm_autosync_ref(struct hdspm * hdspm); 537 static int snd_hdspm_set_defaults(struct hdspm * hdspm); 538 static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf, 539 unsigned int reg, int channels); 540 541 static inline int HDSPM_bit2freq(int n) 542 { 543 static int bit2freq_tab[] = { 0, 32000, 44100, 48000, 64000, 88200, 544 96000, 128000, 176400, 192000 }; 545 if (n < 1 || n > 9) 546 return 0; 547 return bit2freq_tab[n]; 548 } 549 550 /* Write/read to/from HDSPM with Adresses in Bytes 551 not words but only 32Bit writes are allowed */ 552 553 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg, 554 unsigned int val) 555 { 556 writel(val, hdspm->iobase + reg); 557 } 558 559 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg) 560 { 561 return readl(hdspm->iobase + reg); 562 } 563 564 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader 565 mixer is write only on hardware so we have to cache him for read 566 each fader is a u32, but uses only the first 16 bit */ 567 568 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan, 569 unsigned int in) 570 { 571 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 572 return 0; 573 574 return hdspm->mixer->ch[chan].in[in]; 575 } 576 577 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan, 578 unsigned int pb) 579 { 580 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 581 return 0; 582 return hdspm->mixer->ch[chan].pb[pb]; 583 } 584 585 static inline int hdspm_write_in_gain(struct hdspm * hdspm, unsigned int chan, 586 unsigned int in, unsigned short data) 587 { 588 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 589 return -1; 590 591 hdspm_write(hdspm, 592 HDSPM_MADI_mixerBase + 593 ((in + 128 * chan) * sizeof(u32)), 594 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF)); 595 return 0; 596 } 597 598 static inline int hdspm_write_pb_gain(struct hdspm * hdspm, unsigned int chan, 599 unsigned int pb, unsigned short data) 600 { 601 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 602 return -1; 603 604 hdspm_write(hdspm, 605 HDSPM_MADI_mixerBase + 606 ((64 + pb + 128 * chan) * sizeof(u32)), 607 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF)); 608 return 0; 609 } 610 611 612 /* enable DMA for specific channels, now available for DSP-MADI */ 613 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v) 614 { 615 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v); 616 } 617 618 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v) 619 { 620 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v); 621 } 622 623 /* check if same process is writing and reading */ 624 static inline int snd_hdspm_use_is_exclusive(struct hdspm * hdspm) 625 { 626 unsigned long flags; 627 int ret = 1; 628 629 spin_lock_irqsave(&hdspm->lock, flags); 630 if ((hdspm->playback_pid != hdspm->capture_pid) && 631 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) { 632 ret = 0; 633 } 634 spin_unlock_irqrestore(&hdspm->lock, flags); 635 return ret; 636 } 637 638 /* check for external sample rate */ 639 static inline int hdspm_external_sample_rate(struct hdspm * hdspm) 640 { 641 if (hdspm->is_aes32) { 642 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 643 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 644 unsigned int timecode = 645 hdspm_read(hdspm, HDSPM_timecodeRegister); 646 647 int syncref = hdspm_autosync_ref(hdspm); 648 649 if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD && 650 status & HDSPM_AES32_wcLock) 651 return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) 652 & 0xF); 653 if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 && 654 syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 && 655 status2 & (HDSPM_LockAES >> 656 (syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))) 657 return HDSPM_bit2freq((timecode >> 658 (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF); 659 return 0; 660 } else { 661 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 662 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 663 unsigned int rate_bits; 664 int rate = 0; 665 666 /* if wordclock has synced freq and wordclock is valid */ 667 if ((status2 & HDSPM_wcLock) != 0 && 668 (status & HDSPM_SelSyncRef0) == 0) { 669 670 rate_bits = status2 & HDSPM_wcFreqMask; 671 672 switch (rate_bits) { 673 case HDSPM_wcFreq32: 674 rate = 32000; 675 break; 676 case HDSPM_wcFreq44_1: 677 rate = 44100; 678 break; 679 case HDSPM_wcFreq48: 680 rate = 48000; 681 break; 682 case HDSPM_wcFreq64: 683 rate = 64000; 684 break; 685 case HDSPM_wcFreq88_2: 686 rate = 88200; 687 break; 688 case HDSPM_wcFreq96: 689 rate = 96000; 690 break; 691 /* Quadspeed Bit missing ???? */ 692 default: 693 rate = 0; 694 break; 695 } 696 } 697 698 /* if rate detected and Syncref is Word than have it, 699 * word has priority to MADI 700 */ 701 if (rate != 0 && 702 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) 703 return rate; 704 705 /* maby a madi input (which is taken if sel sync is madi) */ 706 if (status & HDSPM_madiLock) { 707 rate_bits = status & HDSPM_madiFreqMask; 708 709 switch (rate_bits) { 710 case HDSPM_madiFreq32: 711 rate = 32000; 712 break; 713 case HDSPM_madiFreq44_1: 714 rate = 44100; 715 break; 716 case HDSPM_madiFreq48: 717 rate = 48000; 718 break; 719 case HDSPM_madiFreq64: 720 rate = 64000; 721 break; 722 case HDSPM_madiFreq88_2: 723 rate = 88200; 724 break; 725 case HDSPM_madiFreq96: 726 rate = 96000; 727 break; 728 case HDSPM_madiFreq128: 729 rate = 128000; 730 break; 731 case HDSPM_madiFreq176_4: 732 rate = 176400; 733 break; 734 case HDSPM_madiFreq192: 735 rate = 192000; 736 break; 737 default: 738 rate = 0; 739 break; 740 } 741 } 742 return rate; 743 } 744 } 745 746 /* Latency function */ 747 static inline void hdspm_compute_period_size(struct hdspm * hdspm) 748 { 749 hdspm->period_bytes = 750 1 << ((hdspm_decode_latency(hdspm->control_register) + 8)); 751 } 752 753 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm * hdspm) 754 { 755 int position; 756 757 position = hdspm_read(hdspm, HDSPM_statusRegister); 758 759 if (!hdspm->precise_ptr) 760 return (position & HDSPM_BufferID) ? 761 (hdspm->period_bytes / 4) : 0; 762 763 /* hwpointer comes in bytes and is 64Bytes accurate (by docu since 764 PCI Burst) 765 i have experimented that it is at most 64 Byte to much for playing 766 so substraction of 64 byte should be ok for ALSA, but use it only 767 for application where you know what you do since if you come to 768 near with record pointer it can be a disaster */ 769 770 position &= HDSPM_BufferPositionMask; 771 position = ((position - 64) % (2 * hdspm->period_bytes)) / 4; 772 773 return position; 774 } 775 776 777 static inline void hdspm_start_audio(struct hdspm * s) 778 { 779 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start); 780 hdspm_write(s, HDSPM_controlRegister, s->control_register); 781 } 782 783 static inline void hdspm_stop_audio(struct hdspm * s) 784 { 785 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable); 786 hdspm_write(s, HDSPM_controlRegister, s->control_register); 787 } 788 789 /* should I silence all or only opened ones ? doit all for first even is 4MB*/ 790 static inline void hdspm_silence_playback(struct hdspm * hdspm) 791 { 792 int i; 793 int n = hdspm->period_bytes; 794 void *buf = hdspm->playback_buffer; 795 796 if (buf == NULL) 797 return; 798 799 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 800 memset(buf, 0, n); 801 buf += HDSPM_CHANNEL_BUFFER_BYTES; 802 } 803 } 804 805 static int hdspm_set_interrupt_interval(struct hdspm * s, unsigned int frames) 806 { 807 int n; 808 809 spin_lock_irq(&s->lock); 810 811 frames >>= 7; 812 n = 0; 813 while (frames) { 814 n++; 815 frames >>= 1; 816 } 817 s->control_register &= ~HDSPM_LatencyMask; 818 s->control_register |= hdspm_encode_latency(n); 819 820 hdspm_write(s, HDSPM_controlRegister, s->control_register); 821 822 hdspm_compute_period_size(s); 823 824 spin_unlock_irq(&s->lock); 825 826 return 0; 827 } 828 829 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate) 830 { 831 u64 n; 832 u32 r; 833 834 if (rate >= 112000) 835 rate /= 4; 836 else if (rate >= 56000) 837 rate /= 2; 838 839 /* RME says n = 104857600000000, but in the windows MADI driver, I see: 840 // return 104857600000000 / rate; // 100 MHz 841 return 110100480000000 / rate; // 105 MHz 842 */ 843 /* n = 104857600000000ULL; */ /* = 2^20 * 10^8 */ 844 n = 110100480000000ULL; /* Value checked for AES32 and MADI */ 845 div64_32(&n, rate, &r); 846 /* n should be less than 2^32 for being written to FREQ register */ 847 snd_assert((n >> 32) == 0); 848 hdspm_write(hdspm, HDSPM_freqReg, (u32)n); 849 } 850 851 /* dummy set rate lets see what happens */ 852 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) 853 { 854 int current_rate; 855 int rate_bits; 856 int not_set = 0; 857 int current_speed, target_speed; 858 859 /* ASSUMPTION: hdspm->lock is either set, or there is no need for 860 it (e.g. during module initialization). 861 */ 862 863 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { 864 865 /* SLAVE --- */ 866 if (called_internally) { 867 868 /* request from ctl or card initialization 869 just make a warning an remember setting 870 for future master mode switching */ 871 872 snd_printk(KERN_WARNING "HDSPM: " 873 "Warning: device is not running " 874 "as a clock master.\n"); 875 not_set = 1; 876 } else { 877 878 /* hw_param request while in AutoSync mode */ 879 int external_freq = 880 hdspm_external_sample_rate(hdspm); 881 882 if (hdspm_autosync_ref(hdspm) == 883 HDSPM_AUTOSYNC_FROM_NONE) { 884 885 snd_printk(KERN_WARNING "HDSPM: " 886 "Detected no Externel Sync \n"); 887 not_set = 1; 888 889 } else if (rate != external_freq) { 890 891 snd_printk(KERN_WARNING "HDSPM: " 892 "Warning: No AutoSync source for " 893 "requested rate\n"); 894 not_set = 1; 895 } 896 } 897 } 898 899 current_rate = hdspm->system_sample_rate; 900 901 /* Changing between Singe, Double and Quad speed is not 902 allowed if any substreams are open. This is because such a change 903 causes a shift in the location of the DMA buffers and a reduction 904 in the number of available buffers. 905 906 Note that a similar but essentially insoluble problem exists for 907 externally-driven rate changes. All we can do is to flag rate 908 changes in the read/write routines. 909 */ 910 911 if (current_rate <= 48000) 912 current_speed = HDSPM_SPEED_SINGLE; 913 else if (current_rate <= 96000) 914 current_speed = HDSPM_SPEED_DOUBLE; 915 else 916 current_speed = HDSPM_SPEED_QUAD; 917 918 if (rate <= 48000) 919 target_speed = HDSPM_SPEED_SINGLE; 920 else if (rate <= 96000) 921 target_speed = HDSPM_SPEED_DOUBLE; 922 else 923 target_speed = HDSPM_SPEED_QUAD; 924 925 switch (rate) { 926 case 32000: 927 rate_bits = HDSPM_Frequency32KHz; 928 break; 929 case 44100: 930 rate_bits = HDSPM_Frequency44_1KHz; 931 break; 932 case 48000: 933 rate_bits = HDSPM_Frequency48KHz; 934 break; 935 case 64000: 936 rate_bits = HDSPM_Frequency64KHz; 937 break; 938 case 88200: 939 rate_bits = HDSPM_Frequency88_2KHz; 940 break; 941 case 96000: 942 rate_bits = HDSPM_Frequency96KHz; 943 break; 944 case 128000: 945 rate_bits = HDSPM_Frequency128KHz; 946 break; 947 case 176400: 948 rate_bits = HDSPM_Frequency176_4KHz; 949 break; 950 case 192000: 951 rate_bits = HDSPM_Frequency192KHz; 952 break; 953 default: 954 return -EINVAL; 955 } 956 957 if (current_speed != target_speed 958 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) { 959 snd_printk 960 (KERN_ERR "HDSPM: " 961 "cannot change from %s speed to %s speed mode " 962 "(capture PID = %d, playback PID = %d)\n", 963 hdspm_speed_names[current_speed], 964 hdspm_speed_names[target_speed], 965 hdspm->capture_pid, hdspm->playback_pid); 966 return -EBUSY; 967 } 968 969 hdspm->control_register &= ~HDSPM_FrequencyMask; 970 hdspm->control_register |= rate_bits; 971 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 972 973 /* For AES32, need to set DDS value in FREQ register 974 For MADI, also apparently */ 975 hdspm_set_dds_value(hdspm, rate); 976 977 if (hdspm->is_aes32 && rate != current_rate) 978 hdspm_write(hdspm, HDSPM_eeprom_wr, 0); 979 980 /* For AES32 and for MADI (at least rev 204), channel_map needs to 981 * always be channel_map_madi_ss, whatever the sample rate */ 982 hdspm->channel_map = channel_map_madi_ss; 983 984 hdspm->system_sample_rate = rate; 985 986 if (not_set != 0) 987 return -1; 988 989 return 0; 990 } 991 992 /* mainly for init to 0 on load */ 993 static void all_in_all_mixer(struct hdspm * hdspm, int sgain) 994 { 995 int i, j; 996 unsigned int gain; 997 998 if (sgain > UNITY_GAIN) 999 gain = UNITY_GAIN; 1000 else if (sgain < 0) 1001 gain = 0; 1002 else 1003 gain = sgain; 1004 1005 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) 1006 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) { 1007 hdspm_write_in_gain(hdspm, i, j, gain); 1008 hdspm_write_pb_gain(hdspm, i, j, gain); 1009 } 1010 } 1011 1012 /*---------------------------------------------------------------------------- 1013 MIDI 1014 ----------------------------------------------------------------------------*/ 1015 1016 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, 1017 int id) 1018 { 1019 /* the hardware already does the relevant bit-mask with 0xff */ 1020 if (id) 1021 return hdspm_read(hdspm, HDSPM_midiDataIn1); 1022 else 1023 return hdspm_read(hdspm, HDSPM_midiDataIn0); 1024 } 1025 1026 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, 1027 int val) 1028 { 1029 /* the hardware already does the relevant bit-mask with 0xff */ 1030 if (id) 1031 return hdspm_write(hdspm, HDSPM_midiDataOut1, val); 1032 else 1033 return hdspm_write(hdspm, HDSPM_midiDataOut0, val); 1034 } 1035 1036 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id) 1037 { 1038 if (id) 1039 return (hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xff); 1040 else 1041 return (hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xff); 1042 } 1043 1044 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id) 1045 { 1046 int fifo_bytes_used; 1047 1048 if (id) 1049 fifo_bytes_used = hdspm_read(hdspm, HDSPM_midiStatusOut1); 1050 else 1051 fifo_bytes_used = hdspm_read(hdspm, HDSPM_midiStatusOut0); 1052 fifo_bytes_used &= 0xff; 1053 1054 if (fifo_bytes_used < 128) 1055 return 128 - fifo_bytes_used; 1056 else 1057 return 0; 1058 } 1059 1060 static inline void snd_hdspm_flush_midi_input (struct hdspm *hdspm, int id) 1061 { 1062 while (snd_hdspm_midi_input_available (hdspm, id)) 1063 snd_hdspm_midi_read_byte (hdspm, id); 1064 } 1065 1066 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi) 1067 { 1068 unsigned long flags; 1069 int n_pending; 1070 int to_write; 1071 int i; 1072 unsigned char buf[128]; 1073 1074 /* Output is not interrupt driven */ 1075 1076 spin_lock_irqsave (&hmidi->lock, flags); 1077 if (hmidi->output && 1078 !snd_rawmidi_transmit_empty (hmidi->output)) { 1079 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, 1080 hmidi->id); 1081 if (n_pending > 0) { 1082 if (n_pending > (int)sizeof (buf)) 1083 n_pending = sizeof (buf); 1084 1085 to_write = snd_rawmidi_transmit (hmidi->output, buf, 1086 n_pending); 1087 if (to_write > 0) { 1088 for (i = 0; i < to_write; ++i) 1089 snd_hdspm_midi_write_byte (hmidi->hdspm, 1090 hmidi->id, 1091 buf[i]); 1092 } 1093 } 1094 } 1095 spin_unlock_irqrestore (&hmidi->lock, flags); 1096 return 0; 1097 } 1098 1099 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi) 1100 { 1101 unsigned char buf[128]; /* this buffer is designed to match the MIDI 1102 * input FIFO size 1103 */ 1104 unsigned long flags; 1105 int n_pending; 1106 int i; 1107 1108 spin_lock_irqsave (&hmidi->lock, flags); 1109 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id); 1110 if (n_pending > 0) { 1111 if (hmidi->input) { 1112 if (n_pending > (int)sizeof (buf)) 1113 n_pending = sizeof (buf); 1114 for (i = 0; i < n_pending; ++i) 1115 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, 1116 hmidi->id); 1117 if (n_pending) 1118 snd_rawmidi_receive (hmidi->input, buf, 1119 n_pending); 1120 } else { 1121 /* flush the MIDI input FIFO */ 1122 while (n_pending--) 1123 snd_hdspm_midi_read_byte (hmidi->hdspm, 1124 hmidi->id); 1125 } 1126 } 1127 hmidi->pending = 0; 1128 if (hmidi->id) 1129 hmidi->hdspm->control_register |= HDSPM_Midi1InterruptEnable; 1130 else 1131 hmidi->hdspm->control_register |= HDSPM_Midi0InterruptEnable; 1132 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, 1133 hmidi->hdspm->control_register); 1134 spin_unlock_irqrestore (&hmidi->lock, flags); 1135 return snd_hdspm_midi_output_write (hmidi); 1136 } 1137 1138 static void 1139 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1140 { 1141 struct hdspm *hdspm; 1142 struct hdspm_midi *hmidi; 1143 unsigned long flags; 1144 u32 ie; 1145 1146 hmidi = substream->rmidi->private_data; 1147 hdspm = hmidi->hdspm; 1148 ie = hmidi->id ? 1149 HDSPM_Midi1InterruptEnable : HDSPM_Midi0InterruptEnable; 1150 spin_lock_irqsave (&hdspm->lock, flags); 1151 if (up) { 1152 if (!(hdspm->control_register & ie)) { 1153 snd_hdspm_flush_midi_input (hdspm, hmidi->id); 1154 hdspm->control_register |= ie; 1155 } 1156 } else { 1157 hdspm->control_register &= ~ie; 1158 } 1159 1160 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1161 spin_unlock_irqrestore (&hdspm->lock, flags); 1162 } 1163 1164 static void snd_hdspm_midi_output_timer(unsigned long data) 1165 { 1166 struct hdspm_midi *hmidi = (struct hdspm_midi *) data; 1167 unsigned long flags; 1168 1169 snd_hdspm_midi_output_write(hmidi); 1170 spin_lock_irqsave (&hmidi->lock, flags); 1171 1172 /* this does not bump hmidi->istimer, because the 1173 kernel automatically removed the timer when it 1174 expired, and we are now adding it back, thus 1175 leaving istimer wherever it was set before. 1176 */ 1177 1178 if (hmidi->istimer) { 1179 hmidi->timer.expires = 1 + jiffies; 1180 add_timer(&hmidi->timer); 1181 } 1182 1183 spin_unlock_irqrestore (&hmidi->lock, flags); 1184 } 1185 1186 static void 1187 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1188 { 1189 struct hdspm_midi *hmidi; 1190 unsigned long flags; 1191 1192 hmidi = substream->rmidi->private_data; 1193 spin_lock_irqsave (&hmidi->lock, flags); 1194 if (up) { 1195 if (!hmidi->istimer) { 1196 init_timer(&hmidi->timer); 1197 hmidi->timer.function = snd_hdspm_midi_output_timer; 1198 hmidi->timer.data = (unsigned long) hmidi; 1199 hmidi->timer.expires = 1 + jiffies; 1200 add_timer(&hmidi->timer); 1201 hmidi->istimer++; 1202 } 1203 } else { 1204 if (hmidi->istimer && --hmidi->istimer <= 0) 1205 del_timer (&hmidi->timer); 1206 } 1207 spin_unlock_irqrestore (&hmidi->lock, flags); 1208 if (up) 1209 snd_hdspm_midi_output_write(hmidi); 1210 } 1211 1212 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream) 1213 { 1214 struct hdspm_midi *hmidi; 1215 1216 hmidi = substream->rmidi->private_data; 1217 spin_lock_irq (&hmidi->lock); 1218 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id); 1219 hmidi->input = substream; 1220 spin_unlock_irq (&hmidi->lock); 1221 1222 return 0; 1223 } 1224 1225 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream) 1226 { 1227 struct hdspm_midi *hmidi; 1228 1229 hmidi = substream->rmidi->private_data; 1230 spin_lock_irq (&hmidi->lock); 1231 hmidi->output = substream; 1232 spin_unlock_irq (&hmidi->lock); 1233 1234 return 0; 1235 } 1236 1237 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream) 1238 { 1239 struct hdspm_midi *hmidi; 1240 1241 snd_hdspm_midi_input_trigger (substream, 0); 1242 1243 hmidi = substream->rmidi->private_data; 1244 spin_lock_irq (&hmidi->lock); 1245 hmidi->input = NULL; 1246 spin_unlock_irq (&hmidi->lock); 1247 1248 return 0; 1249 } 1250 1251 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream) 1252 { 1253 struct hdspm_midi *hmidi; 1254 1255 snd_hdspm_midi_output_trigger (substream, 0); 1256 1257 hmidi = substream->rmidi->private_data; 1258 spin_lock_irq (&hmidi->lock); 1259 hmidi->output = NULL; 1260 spin_unlock_irq (&hmidi->lock); 1261 1262 return 0; 1263 } 1264 1265 static struct snd_rawmidi_ops snd_hdspm_midi_output = 1266 { 1267 .open = snd_hdspm_midi_output_open, 1268 .close = snd_hdspm_midi_output_close, 1269 .trigger = snd_hdspm_midi_output_trigger, 1270 }; 1271 1272 static struct snd_rawmidi_ops snd_hdspm_midi_input = 1273 { 1274 .open = snd_hdspm_midi_input_open, 1275 .close = snd_hdspm_midi_input_close, 1276 .trigger = snd_hdspm_midi_input_trigger, 1277 }; 1278 1279 static int __devinit snd_hdspm_create_midi (struct snd_card *card, 1280 struct hdspm *hdspm, int id) 1281 { 1282 int err; 1283 char buf[32]; 1284 1285 hdspm->midi[id].id = id; 1286 hdspm->midi[id].hdspm = hdspm; 1287 spin_lock_init (&hdspm->midi[id].lock); 1288 1289 sprintf (buf, "%s MIDI %d", card->shortname, id+1); 1290 err = snd_rawmidi_new (card, buf, id, 1, 1, &hdspm->midi[id].rmidi); 1291 if (err < 0) 1292 return err; 1293 1294 sprintf (hdspm->midi[id].rmidi->name, "%s MIDI %d", card->id, id+1); 1295 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 1296 1297 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, 1298 &snd_hdspm_midi_output); 1299 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_INPUT, 1300 &snd_hdspm_midi_input); 1301 1302 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | 1303 SNDRV_RAWMIDI_INFO_INPUT | 1304 SNDRV_RAWMIDI_INFO_DUPLEX; 1305 1306 return 0; 1307 } 1308 1309 1310 static void hdspm_midi_tasklet(unsigned long arg) 1311 { 1312 struct hdspm *hdspm = (struct hdspm *)arg; 1313 1314 if (hdspm->midi[0].pending) 1315 snd_hdspm_midi_input_read (&hdspm->midi[0]); 1316 if (hdspm->midi[1].pending) 1317 snd_hdspm_midi_input_read (&hdspm->midi[1]); 1318 } 1319 1320 1321 /*----------------------------------------------------------------------------- 1322 Status Interface 1323 ----------------------------------------------------------------------------*/ 1324 1325 /* get the system sample rate which is set */ 1326 1327 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \ 1328 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1329 .name = xname, \ 1330 .index = xindex, \ 1331 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1332 .info = snd_hdspm_info_system_sample_rate, \ 1333 .get = snd_hdspm_get_system_sample_rate \ 1334 } 1335 1336 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol, 1337 struct snd_ctl_elem_info *uinfo) 1338 { 1339 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1340 uinfo->count = 1; 1341 return 0; 1342 } 1343 1344 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol, 1345 struct snd_ctl_elem_value * 1346 ucontrol) 1347 { 1348 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1349 1350 ucontrol->value.enumerated.item[0] = hdspm->system_sample_rate; 1351 return 0; 1352 } 1353 1354 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 1355 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1356 .name = xname, \ 1357 .index = xindex, \ 1358 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1359 .info = snd_hdspm_info_autosync_sample_rate, \ 1360 .get = snd_hdspm_get_autosync_sample_rate \ 1361 } 1362 1363 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, 1364 struct snd_ctl_elem_info *uinfo) 1365 { 1366 static char *texts[] = { "32000", "44100", "48000", 1367 "64000", "88200", "96000", 1368 "128000", "176400", "192000", 1369 "None" 1370 }; 1371 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1372 uinfo->count = 1; 1373 uinfo->value.enumerated.items = 10; 1374 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 1375 uinfo->value.enumerated.item = 1376 uinfo->value.enumerated.items - 1; 1377 strcpy(uinfo->value.enumerated.name, 1378 texts[uinfo->value.enumerated.item]); 1379 return 0; 1380 } 1381 1382 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, 1383 struct snd_ctl_elem_value * 1384 ucontrol) 1385 { 1386 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1387 1388 switch (hdspm_external_sample_rate(hdspm)) { 1389 case 32000: 1390 ucontrol->value.enumerated.item[0] = 0; 1391 break; 1392 case 44100: 1393 ucontrol->value.enumerated.item[0] = 1; 1394 break; 1395 case 48000: 1396 ucontrol->value.enumerated.item[0] = 2; 1397 break; 1398 case 64000: 1399 ucontrol->value.enumerated.item[0] = 3; 1400 break; 1401 case 88200: 1402 ucontrol->value.enumerated.item[0] = 4; 1403 break; 1404 case 96000: 1405 ucontrol->value.enumerated.item[0] = 5; 1406 break; 1407 case 128000: 1408 ucontrol->value.enumerated.item[0] = 6; 1409 break; 1410 case 176400: 1411 ucontrol->value.enumerated.item[0] = 7; 1412 break; 1413 case 192000: 1414 ucontrol->value.enumerated.item[0] = 8; 1415 break; 1416 1417 default: 1418 ucontrol->value.enumerated.item[0] = 9; 1419 } 1420 return 0; 1421 } 1422 1423 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \ 1424 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1425 .name = xname, \ 1426 .index = xindex, \ 1427 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1428 .info = snd_hdspm_info_system_clock_mode, \ 1429 .get = snd_hdspm_get_system_clock_mode, \ 1430 } 1431 1432 1433 1434 static int hdspm_system_clock_mode(struct hdspm * hdspm) 1435 { 1436 /* Always reflect the hardware info, rme is never wrong !!!! */ 1437 1438 if (hdspm->control_register & HDSPM_ClockModeMaster) 1439 return 0; 1440 return 1; 1441 } 1442 1443 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol, 1444 struct snd_ctl_elem_info *uinfo) 1445 { 1446 static char *texts[] = { "Master", "Slave" }; 1447 1448 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1449 uinfo->count = 1; 1450 uinfo->value.enumerated.items = 2; 1451 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 1452 uinfo->value.enumerated.item = 1453 uinfo->value.enumerated.items - 1; 1454 strcpy(uinfo->value.enumerated.name, 1455 texts[uinfo->value.enumerated.item]); 1456 return 0; 1457 } 1458 1459 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol, 1460 struct snd_ctl_elem_value *ucontrol) 1461 { 1462 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1463 1464 ucontrol->value.enumerated.item[0] = 1465 hdspm_system_clock_mode(hdspm); 1466 return 0; 1467 } 1468 1469 #define HDSPM_CLOCK_SOURCE(xname, xindex) \ 1470 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1471 .name = xname, \ 1472 .index = xindex, \ 1473 .info = snd_hdspm_info_clock_source, \ 1474 .get = snd_hdspm_get_clock_source, \ 1475 .put = snd_hdspm_put_clock_source \ 1476 } 1477 1478 static int hdspm_clock_source(struct hdspm * hdspm) 1479 { 1480 if (hdspm->control_register & HDSPM_ClockModeMaster) { 1481 switch (hdspm->system_sample_rate) { 1482 case 32000: 1483 return 1; 1484 case 44100: 1485 return 2; 1486 case 48000: 1487 return 3; 1488 case 64000: 1489 return 4; 1490 case 88200: 1491 return 5; 1492 case 96000: 1493 return 6; 1494 case 128000: 1495 return 7; 1496 case 176400: 1497 return 8; 1498 case 192000: 1499 return 9; 1500 default: 1501 return 3; 1502 } 1503 } else { 1504 return 0; 1505 } 1506 } 1507 1508 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode) 1509 { 1510 int rate; 1511 switch (mode) { 1512 1513 case HDSPM_CLOCK_SOURCE_AUTOSYNC: 1514 if (hdspm_external_sample_rate(hdspm) != 0) { 1515 hdspm->control_register &= ~HDSPM_ClockModeMaster; 1516 hdspm_write(hdspm, HDSPM_controlRegister, 1517 hdspm->control_register); 1518 return 0; 1519 } 1520 return -1; 1521 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ: 1522 rate = 32000; 1523 break; 1524 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ: 1525 rate = 44100; 1526 break; 1527 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ: 1528 rate = 48000; 1529 break; 1530 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ: 1531 rate = 64000; 1532 break; 1533 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ: 1534 rate = 88200; 1535 break; 1536 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ: 1537 rate = 96000; 1538 break; 1539 case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ: 1540 rate = 128000; 1541 break; 1542 case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ: 1543 rate = 176400; 1544 break; 1545 case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ: 1546 rate = 192000; 1547 break; 1548 1549 default: 1550 rate = 44100; 1551 } 1552 hdspm->control_register |= HDSPM_ClockModeMaster; 1553 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1554 hdspm_set_rate(hdspm, rate, 1); 1555 return 0; 1556 } 1557 1558 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol, 1559 struct snd_ctl_elem_info *uinfo) 1560 { 1561 static char *texts[] = { "AutoSync", 1562 "Internal 32.0 kHz", "Internal 44.1 kHz", 1563 "Internal 48.0 kHz", 1564 "Internal 64.0 kHz", "Internal 88.2 kHz", 1565 "Internal 96.0 kHz", 1566 "Internal 128.0 kHz", "Internal 176.4 kHz", 1567 "Internal 192.0 kHz" 1568 }; 1569 1570 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1571 uinfo->count = 1; 1572 uinfo->value.enumerated.items = 10; 1573 1574 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 1575 uinfo->value.enumerated.item = 1576 uinfo->value.enumerated.items - 1; 1577 1578 strcpy(uinfo->value.enumerated.name, 1579 texts[uinfo->value.enumerated.item]); 1580 1581 return 0; 1582 } 1583 1584 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol, 1585 struct snd_ctl_elem_value *ucontrol) 1586 { 1587 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1588 1589 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm); 1590 return 0; 1591 } 1592 1593 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol, 1594 struct snd_ctl_elem_value *ucontrol) 1595 { 1596 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1597 int change; 1598 int val; 1599 1600 if (!snd_hdspm_use_is_exclusive(hdspm)) 1601 return -EBUSY; 1602 val = ucontrol->value.enumerated.item[0]; 1603 if (val < 0) 1604 val = 0; 1605 if (val > 9) 1606 val = 9; 1607 spin_lock_irq(&hdspm->lock); 1608 if (val != hdspm_clock_source(hdspm)) 1609 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0; 1610 else 1611 change = 0; 1612 spin_unlock_irq(&hdspm->lock); 1613 return change; 1614 } 1615 1616 #define HDSPM_PREF_SYNC_REF(xname, xindex) \ 1617 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1618 .name = xname, \ 1619 .index = xindex, \ 1620 .info = snd_hdspm_info_pref_sync_ref, \ 1621 .get = snd_hdspm_get_pref_sync_ref, \ 1622 .put = snd_hdspm_put_pref_sync_ref \ 1623 } 1624 1625 static int hdspm_pref_sync_ref(struct hdspm * hdspm) 1626 { 1627 /* Notice that this looks at the requested sync source, 1628 not the one actually in use. 1629 */ 1630 if (hdspm->is_aes32) { 1631 switch (hdspm->control_register & HDSPM_SyncRefMask) { 1632 /* number gives AES index, except for 0 which 1633 corresponds to WordClock */ 1634 case 0: return 0; 1635 case HDSPM_SyncRef0: return 1; 1636 case HDSPM_SyncRef1: return 2; 1637 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; 1638 case HDSPM_SyncRef2: return 4; 1639 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; 1640 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; 1641 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: return 7; 1642 case HDSPM_SyncRef3: return 8; 1643 } 1644 } else { 1645 switch (hdspm->control_register & HDSPM_SyncRefMask) { 1646 case HDSPM_SyncRef_Word: 1647 return HDSPM_SYNC_FROM_WORD; 1648 case HDSPM_SyncRef_MADI: 1649 return HDSPM_SYNC_FROM_MADI; 1650 } 1651 } 1652 1653 return HDSPM_SYNC_FROM_WORD; 1654 } 1655 1656 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) 1657 { 1658 hdspm->control_register &= ~HDSPM_SyncRefMask; 1659 1660 if (hdspm->is_aes32) { 1661 switch (pref) { 1662 case 0: 1663 hdspm->control_register |= 0; 1664 break; 1665 case 1: 1666 hdspm->control_register |= HDSPM_SyncRef0; 1667 break; 1668 case 2: 1669 hdspm->control_register |= HDSPM_SyncRef1; 1670 break; 1671 case 3: 1672 hdspm->control_register |= HDSPM_SyncRef1+HDSPM_SyncRef0; 1673 break; 1674 case 4: 1675 hdspm->control_register |= HDSPM_SyncRef2; 1676 break; 1677 case 5: 1678 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef0; 1679 break; 1680 case 6: 1681 hdspm->control_register |= HDSPM_SyncRef2+HDSPM_SyncRef1; 1682 break; 1683 case 7: 1684 hdspm->control_register |= 1685 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0; 1686 break; 1687 case 8: 1688 hdspm->control_register |= HDSPM_SyncRef3; 1689 break; 1690 default: 1691 return -1; 1692 } 1693 } else { 1694 switch (pref) { 1695 case HDSPM_SYNC_FROM_MADI: 1696 hdspm->control_register |= HDSPM_SyncRef_MADI; 1697 break; 1698 case HDSPM_SYNC_FROM_WORD: 1699 hdspm->control_register |= HDSPM_SyncRef_Word; 1700 break; 1701 default: 1702 return -1; 1703 } 1704 } 1705 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1706 return 0; 1707 } 1708 1709 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, 1710 struct snd_ctl_elem_info *uinfo) 1711 { 1712 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1713 1714 if (hdspm->is_aes32) { 1715 static char *texts[] = { "Word", "AES1", "AES2", "AES3", 1716 "AES4", "AES5", "AES6", "AES7", "AES8" }; 1717 1718 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1719 uinfo->count = 1; 1720 1721 uinfo->value.enumerated.items = 9; 1722 1723 if (uinfo->value.enumerated.item >= 1724 uinfo->value.enumerated.items) 1725 uinfo->value.enumerated.item = 1726 uinfo->value.enumerated.items - 1; 1727 strcpy(uinfo->value.enumerated.name, 1728 texts[uinfo->value.enumerated.item]); 1729 } else { 1730 static char *texts[] = { "Word", "MADI" }; 1731 1732 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1733 uinfo->count = 1; 1734 1735 uinfo->value.enumerated.items = 2; 1736 1737 if (uinfo->value.enumerated.item >= 1738 uinfo->value.enumerated.items) 1739 uinfo->value.enumerated.item = 1740 uinfo->value.enumerated.items - 1; 1741 strcpy(uinfo->value.enumerated.name, 1742 texts[uinfo->value.enumerated.item]); 1743 } 1744 return 0; 1745 } 1746 1747 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol, 1748 struct snd_ctl_elem_value *ucontrol) 1749 { 1750 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1751 1752 ucontrol->value.enumerated.item[0] = hdspm_pref_sync_ref(hdspm); 1753 return 0; 1754 } 1755 1756 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, 1757 struct snd_ctl_elem_value *ucontrol) 1758 { 1759 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1760 int change, max; 1761 unsigned int val; 1762 1763 max = hdspm->is_aes32 ? 9 : 2; 1764 1765 if (!snd_hdspm_use_is_exclusive(hdspm)) 1766 return -EBUSY; 1767 1768 val = ucontrol->value.enumerated.item[0] % max; 1769 1770 spin_lock_irq(&hdspm->lock); 1771 change = (int) val != hdspm_pref_sync_ref(hdspm); 1772 hdspm_set_pref_sync_ref(hdspm, val); 1773 spin_unlock_irq(&hdspm->lock); 1774 return change; 1775 } 1776 1777 #define HDSPM_AUTOSYNC_REF(xname, xindex) \ 1778 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1779 .name = xname, \ 1780 .index = xindex, \ 1781 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1782 .info = snd_hdspm_info_autosync_ref, \ 1783 .get = snd_hdspm_get_autosync_ref, \ 1784 } 1785 1786 static int hdspm_autosync_ref(struct hdspm * hdspm) 1787 { 1788 if (hdspm->is_aes32) { 1789 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 1790 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 1791 0xF; 1792 if (syncref == 0) 1793 return HDSPM_AES32_AUTOSYNC_FROM_WORD; 1794 if (syncref <= 8) 1795 return syncref; 1796 return HDSPM_AES32_AUTOSYNC_FROM_NONE; 1797 } else { 1798 /* This looks at the autosync selected sync reference */ 1799 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1800 1801 switch (status2 & HDSPM_SelSyncRefMask) { 1802 case HDSPM_SelSyncRef_WORD: 1803 return HDSPM_AUTOSYNC_FROM_WORD; 1804 case HDSPM_SelSyncRef_MADI: 1805 return HDSPM_AUTOSYNC_FROM_MADI; 1806 case HDSPM_SelSyncRef_NVALID: 1807 return HDSPM_AUTOSYNC_FROM_NONE; 1808 default: 1809 return 0; 1810 } 1811 1812 return 0; 1813 } 1814 } 1815 1816 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, 1817 struct snd_ctl_elem_info *uinfo) 1818 { 1819 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1820 1821 if (hdspm->is_aes32) { 1822 static char *texts[] = { "WordClock", "AES1", "AES2", "AES3", 1823 "AES4", "AES5", "AES6", "AES7", "AES8", "None"}; 1824 1825 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1826 uinfo->count = 1; 1827 uinfo->value.enumerated.items = 10; 1828 if (uinfo->value.enumerated.item >= 1829 uinfo->value.enumerated.items) 1830 uinfo->value.enumerated.item = 1831 uinfo->value.enumerated.items - 1; 1832 strcpy(uinfo->value.enumerated.name, 1833 texts[uinfo->value.enumerated.item]); 1834 } else { 1835 static char *texts[] = { "WordClock", "MADI", "None" }; 1836 1837 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1838 uinfo->count = 1; 1839 uinfo->value.enumerated.items = 3; 1840 if (uinfo->value.enumerated.item >= 1841 uinfo->value.enumerated.items) 1842 uinfo->value.enumerated.item = 1843 uinfo->value.enumerated.items - 1; 1844 strcpy(uinfo->value.enumerated.name, 1845 texts[uinfo->value.enumerated.item]); 1846 } 1847 return 0; 1848 } 1849 1850 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol, 1851 struct snd_ctl_elem_value *ucontrol) 1852 { 1853 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1854 1855 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm); 1856 return 0; 1857 } 1858 1859 #define HDSPM_LINE_OUT(xname, xindex) \ 1860 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1861 .name = xname, \ 1862 .index = xindex, \ 1863 .info = snd_hdspm_info_line_out, \ 1864 .get = snd_hdspm_get_line_out, \ 1865 .put = snd_hdspm_put_line_out \ 1866 } 1867 1868 static int hdspm_line_out(struct hdspm * hdspm) 1869 { 1870 return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0; 1871 } 1872 1873 1874 static int hdspm_set_line_output(struct hdspm * hdspm, int out) 1875 { 1876 if (out) 1877 hdspm->control_register |= HDSPM_LineOut; 1878 else 1879 hdspm->control_register &= ~HDSPM_LineOut; 1880 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1881 1882 return 0; 1883 } 1884 1885 #define snd_hdspm_info_line_out snd_ctl_boolean_mono_info 1886 1887 static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol, 1888 struct snd_ctl_elem_value *ucontrol) 1889 { 1890 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1891 1892 spin_lock_irq(&hdspm->lock); 1893 ucontrol->value.integer.value[0] = hdspm_line_out(hdspm); 1894 spin_unlock_irq(&hdspm->lock); 1895 return 0; 1896 } 1897 1898 static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol, 1899 struct snd_ctl_elem_value *ucontrol) 1900 { 1901 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1902 int change; 1903 unsigned int val; 1904 1905 if (!snd_hdspm_use_is_exclusive(hdspm)) 1906 return -EBUSY; 1907 val = ucontrol->value.integer.value[0] & 1; 1908 spin_lock_irq(&hdspm->lock); 1909 change = (int) val != hdspm_line_out(hdspm); 1910 hdspm_set_line_output(hdspm, val); 1911 spin_unlock_irq(&hdspm->lock); 1912 return change; 1913 } 1914 1915 #define HDSPM_TX_64(xname, xindex) \ 1916 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1917 .name = xname, \ 1918 .index = xindex, \ 1919 .info = snd_hdspm_info_tx_64, \ 1920 .get = snd_hdspm_get_tx_64, \ 1921 .put = snd_hdspm_put_tx_64 \ 1922 } 1923 1924 static int hdspm_tx_64(struct hdspm * hdspm) 1925 { 1926 return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0; 1927 } 1928 1929 static int hdspm_set_tx_64(struct hdspm * hdspm, int out) 1930 { 1931 if (out) 1932 hdspm->control_register |= HDSPM_TX_64ch; 1933 else 1934 hdspm->control_register &= ~HDSPM_TX_64ch; 1935 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1936 1937 return 0; 1938 } 1939 1940 #define snd_hdspm_info_tx_64 snd_ctl_boolean_mono_info 1941 1942 static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol, 1943 struct snd_ctl_elem_value *ucontrol) 1944 { 1945 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1946 1947 spin_lock_irq(&hdspm->lock); 1948 ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm); 1949 spin_unlock_irq(&hdspm->lock); 1950 return 0; 1951 } 1952 1953 static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol, 1954 struct snd_ctl_elem_value *ucontrol) 1955 { 1956 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 1957 int change; 1958 unsigned int val; 1959 1960 if (!snd_hdspm_use_is_exclusive(hdspm)) 1961 return -EBUSY; 1962 val = ucontrol->value.integer.value[0] & 1; 1963 spin_lock_irq(&hdspm->lock); 1964 change = (int) val != hdspm_tx_64(hdspm); 1965 hdspm_set_tx_64(hdspm, val); 1966 spin_unlock_irq(&hdspm->lock); 1967 return change; 1968 } 1969 1970 #define HDSPM_C_TMS(xname, xindex) \ 1971 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1972 .name = xname, \ 1973 .index = xindex, \ 1974 .info = snd_hdspm_info_c_tms, \ 1975 .get = snd_hdspm_get_c_tms, \ 1976 .put = snd_hdspm_put_c_tms \ 1977 } 1978 1979 static int hdspm_c_tms(struct hdspm * hdspm) 1980 { 1981 return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0; 1982 } 1983 1984 static int hdspm_set_c_tms(struct hdspm * hdspm, int out) 1985 { 1986 if (out) 1987 hdspm->control_register |= HDSPM_clr_tms; 1988 else 1989 hdspm->control_register &= ~HDSPM_clr_tms; 1990 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1991 1992 return 0; 1993 } 1994 1995 #define snd_hdspm_info_c_tms snd_ctl_boolean_mono_info 1996 1997 static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol, 1998 struct snd_ctl_elem_value *ucontrol) 1999 { 2000 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2001 2002 spin_lock_irq(&hdspm->lock); 2003 ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm); 2004 spin_unlock_irq(&hdspm->lock); 2005 return 0; 2006 } 2007 2008 static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol, 2009 struct snd_ctl_elem_value *ucontrol) 2010 { 2011 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2012 int change; 2013 unsigned int val; 2014 2015 if (!snd_hdspm_use_is_exclusive(hdspm)) 2016 return -EBUSY; 2017 val = ucontrol->value.integer.value[0] & 1; 2018 spin_lock_irq(&hdspm->lock); 2019 change = (int) val != hdspm_c_tms(hdspm); 2020 hdspm_set_c_tms(hdspm, val); 2021 spin_unlock_irq(&hdspm->lock); 2022 return change; 2023 } 2024 2025 #define HDSPM_SAFE_MODE(xname, xindex) \ 2026 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2027 .name = xname, \ 2028 .index = xindex, \ 2029 .info = snd_hdspm_info_safe_mode, \ 2030 .get = snd_hdspm_get_safe_mode, \ 2031 .put = snd_hdspm_put_safe_mode \ 2032 } 2033 2034 static int hdspm_safe_mode(struct hdspm * hdspm) 2035 { 2036 return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0; 2037 } 2038 2039 static int hdspm_set_safe_mode(struct hdspm * hdspm, int out) 2040 { 2041 if (out) 2042 hdspm->control_register |= HDSPM_AutoInp; 2043 else 2044 hdspm->control_register &= ~HDSPM_AutoInp; 2045 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2046 2047 return 0; 2048 } 2049 2050 #define snd_hdspm_info_safe_mode snd_ctl_boolean_mono_info 2051 2052 static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol, 2053 struct snd_ctl_elem_value *ucontrol) 2054 { 2055 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2056 2057 spin_lock_irq(&hdspm->lock); 2058 ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm); 2059 spin_unlock_irq(&hdspm->lock); 2060 return 0; 2061 } 2062 2063 static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol, 2064 struct snd_ctl_elem_value *ucontrol) 2065 { 2066 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2067 int change; 2068 unsigned int val; 2069 2070 if (!snd_hdspm_use_is_exclusive(hdspm)) 2071 return -EBUSY; 2072 val = ucontrol->value.integer.value[0] & 1; 2073 spin_lock_irq(&hdspm->lock); 2074 change = (int) val != hdspm_safe_mode(hdspm); 2075 hdspm_set_safe_mode(hdspm, val); 2076 spin_unlock_irq(&hdspm->lock); 2077 return change; 2078 } 2079 2080 #define HDSPM_EMPHASIS(xname, xindex) \ 2081 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2082 .name = xname, \ 2083 .index = xindex, \ 2084 .info = snd_hdspm_info_emphasis, \ 2085 .get = snd_hdspm_get_emphasis, \ 2086 .put = snd_hdspm_put_emphasis \ 2087 } 2088 2089 static int hdspm_emphasis(struct hdspm * hdspm) 2090 { 2091 return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0; 2092 } 2093 2094 static int hdspm_set_emphasis(struct hdspm * hdspm, int emp) 2095 { 2096 if (emp) 2097 hdspm->control_register |= HDSPM_Emphasis; 2098 else 2099 hdspm->control_register &= ~HDSPM_Emphasis; 2100 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2101 2102 return 0; 2103 } 2104 2105 #define snd_hdspm_info_emphasis snd_ctl_boolean_mono_info 2106 2107 static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol, 2108 struct snd_ctl_elem_value *ucontrol) 2109 { 2110 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2111 2112 spin_lock_irq(&hdspm->lock); 2113 ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm); 2114 spin_unlock_irq(&hdspm->lock); 2115 return 0; 2116 } 2117 2118 static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol, 2119 struct snd_ctl_elem_value *ucontrol) 2120 { 2121 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2122 int change; 2123 unsigned int val; 2124 2125 if (!snd_hdspm_use_is_exclusive(hdspm)) 2126 return -EBUSY; 2127 val = ucontrol->value.integer.value[0] & 1; 2128 spin_lock_irq(&hdspm->lock); 2129 change = (int) val != hdspm_emphasis(hdspm); 2130 hdspm_set_emphasis(hdspm, val); 2131 spin_unlock_irq(&hdspm->lock); 2132 return change; 2133 } 2134 2135 #define HDSPM_DOLBY(xname, xindex) \ 2136 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2137 .name = xname, \ 2138 .index = xindex, \ 2139 .info = snd_hdspm_info_dolby, \ 2140 .get = snd_hdspm_get_dolby, \ 2141 .put = snd_hdspm_put_dolby \ 2142 } 2143 2144 static int hdspm_dolby(struct hdspm * hdspm) 2145 { 2146 return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0; 2147 } 2148 2149 static int hdspm_set_dolby(struct hdspm * hdspm, int dol) 2150 { 2151 if (dol) 2152 hdspm->control_register |= HDSPM_Dolby; 2153 else 2154 hdspm->control_register &= ~HDSPM_Dolby; 2155 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2156 2157 return 0; 2158 } 2159 2160 #define snd_hdspm_info_dolby snd_ctl_boolean_mono_info 2161 2162 static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol, 2163 struct snd_ctl_elem_value *ucontrol) 2164 { 2165 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2166 2167 spin_lock_irq(&hdspm->lock); 2168 ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm); 2169 spin_unlock_irq(&hdspm->lock); 2170 return 0; 2171 } 2172 2173 static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol, 2174 struct snd_ctl_elem_value *ucontrol) 2175 { 2176 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2177 int change; 2178 unsigned int val; 2179 2180 if (!snd_hdspm_use_is_exclusive(hdspm)) 2181 return -EBUSY; 2182 val = ucontrol->value.integer.value[0] & 1; 2183 spin_lock_irq(&hdspm->lock); 2184 change = (int) val != hdspm_dolby(hdspm); 2185 hdspm_set_dolby(hdspm, val); 2186 spin_unlock_irq(&hdspm->lock); 2187 return change; 2188 } 2189 2190 #define HDSPM_PROFESSIONAL(xname, xindex) \ 2191 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2192 .name = xname, \ 2193 .index = xindex, \ 2194 .info = snd_hdspm_info_professional, \ 2195 .get = snd_hdspm_get_professional, \ 2196 .put = snd_hdspm_put_professional \ 2197 } 2198 2199 static int hdspm_professional(struct hdspm * hdspm) 2200 { 2201 return (hdspm->control_register & HDSPM_Professional) ? 1 : 0; 2202 } 2203 2204 static int hdspm_set_professional(struct hdspm * hdspm, int dol) 2205 { 2206 if (dol) 2207 hdspm->control_register |= HDSPM_Professional; 2208 else 2209 hdspm->control_register &= ~HDSPM_Professional; 2210 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2211 2212 return 0; 2213 } 2214 2215 #define snd_hdspm_info_professional snd_ctl_boolean_mono_info 2216 2217 static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol, 2218 struct snd_ctl_elem_value *ucontrol) 2219 { 2220 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2221 2222 spin_lock_irq(&hdspm->lock); 2223 ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm); 2224 spin_unlock_irq(&hdspm->lock); 2225 return 0; 2226 } 2227 2228 static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol, 2229 struct snd_ctl_elem_value *ucontrol) 2230 { 2231 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2232 int change; 2233 unsigned int val; 2234 2235 if (!snd_hdspm_use_is_exclusive(hdspm)) 2236 return -EBUSY; 2237 val = ucontrol->value.integer.value[0] & 1; 2238 spin_lock_irq(&hdspm->lock); 2239 change = (int) val != hdspm_professional(hdspm); 2240 hdspm_set_professional(hdspm, val); 2241 spin_unlock_irq(&hdspm->lock); 2242 return change; 2243 } 2244 2245 #define HDSPM_INPUT_SELECT(xname, xindex) \ 2246 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2247 .name = xname, \ 2248 .index = xindex, \ 2249 .info = snd_hdspm_info_input_select, \ 2250 .get = snd_hdspm_get_input_select, \ 2251 .put = snd_hdspm_put_input_select \ 2252 } 2253 2254 static int hdspm_input_select(struct hdspm * hdspm) 2255 { 2256 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; 2257 } 2258 2259 static int hdspm_set_input_select(struct hdspm * hdspm, int out) 2260 { 2261 if (out) 2262 hdspm->control_register |= HDSPM_InputSelect0; 2263 else 2264 hdspm->control_register &= ~HDSPM_InputSelect0; 2265 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2266 2267 return 0; 2268 } 2269 2270 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, 2271 struct snd_ctl_elem_info *uinfo) 2272 { 2273 static char *texts[] = { "optical", "coaxial" }; 2274 2275 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2276 uinfo->count = 1; 2277 uinfo->value.enumerated.items = 2; 2278 2279 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2280 uinfo->value.enumerated.item = 2281 uinfo->value.enumerated.items - 1; 2282 strcpy(uinfo->value.enumerated.name, 2283 texts[uinfo->value.enumerated.item]); 2284 2285 return 0; 2286 } 2287 2288 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, 2289 struct snd_ctl_elem_value *ucontrol) 2290 { 2291 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2292 2293 spin_lock_irq(&hdspm->lock); 2294 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); 2295 spin_unlock_irq(&hdspm->lock); 2296 return 0; 2297 } 2298 2299 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, 2300 struct snd_ctl_elem_value *ucontrol) 2301 { 2302 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2303 int change; 2304 unsigned int val; 2305 2306 if (!snd_hdspm_use_is_exclusive(hdspm)) 2307 return -EBUSY; 2308 val = ucontrol->value.integer.value[0] & 1; 2309 spin_lock_irq(&hdspm->lock); 2310 change = (int) val != hdspm_input_select(hdspm); 2311 hdspm_set_input_select(hdspm, val); 2312 spin_unlock_irq(&hdspm->lock); 2313 return change; 2314 } 2315 2316 #define HDSPM_DS_WIRE(xname, xindex) \ 2317 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2318 .name = xname, \ 2319 .index = xindex, \ 2320 .info = snd_hdspm_info_ds_wire, \ 2321 .get = snd_hdspm_get_ds_wire, \ 2322 .put = snd_hdspm_put_ds_wire \ 2323 } 2324 2325 static int hdspm_ds_wire(struct hdspm * hdspm) 2326 { 2327 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0; 2328 } 2329 2330 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds) 2331 { 2332 if (ds) 2333 hdspm->control_register |= HDSPM_DS_DoubleWire; 2334 else 2335 hdspm->control_register &= ~HDSPM_DS_DoubleWire; 2336 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2337 2338 return 0; 2339 } 2340 2341 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol, 2342 struct snd_ctl_elem_info *uinfo) 2343 { 2344 static char *texts[] = { "Single", "Double" }; 2345 2346 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2347 uinfo->count = 1; 2348 uinfo->value.enumerated.items = 2; 2349 2350 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2351 uinfo->value.enumerated.item = 2352 uinfo->value.enumerated.items - 1; 2353 strcpy(uinfo->value.enumerated.name, 2354 texts[uinfo->value.enumerated.item]); 2355 2356 return 0; 2357 } 2358 2359 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol, 2360 struct snd_ctl_elem_value *ucontrol) 2361 { 2362 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2363 2364 spin_lock_irq(&hdspm->lock); 2365 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm); 2366 spin_unlock_irq(&hdspm->lock); 2367 return 0; 2368 } 2369 2370 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol, 2371 struct snd_ctl_elem_value *ucontrol) 2372 { 2373 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2374 int change; 2375 unsigned int val; 2376 2377 if (!snd_hdspm_use_is_exclusive(hdspm)) 2378 return -EBUSY; 2379 val = ucontrol->value.integer.value[0] & 1; 2380 spin_lock_irq(&hdspm->lock); 2381 change = (int) val != hdspm_ds_wire(hdspm); 2382 hdspm_set_ds_wire(hdspm, val); 2383 spin_unlock_irq(&hdspm->lock); 2384 return change; 2385 } 2386 2387 #define HDSPM_QS_WIRE(xname, xindex) \ 2388 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2389 .name = xname, \ 2390 .index = xindex, \ 2391 .info = snd_hdspm_info_qs_wire, \ 2392 .get = snd_hdspm_get_qs_wire, \ 2393 .put = snd_hdspm_put_qs_wire \ 2394 } 2395 2396 static int hdspm_qs_wire(struct hdspm * hdspm) 2397 { 2398 if (hdspm->control_register & HDSPM_QS_DoubleWire) 2399 return 1; 2400 if (hdspm->control_register & HDSPM_QS_QuadWire) 2401 return 2; 2402 return 0; 2403 } 2404 2405 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode) 2406 { 2407 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire); 2408 switch (mode) { 2409 case 0: 2410 break; 2411 case 1: 2412 hdspm->control_register |= HDSPM_QS_DoubleWire; 2413 break; 2414 case 2: 2415 hdspm->control_register |= HDSPM_QS_QuadWire; 2416 break; 2417 } 2418 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2419 2420 return 0; 2421 } 2422 2423 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol, 2424 struct snd_ctl_elem_info *uinfo) 2425 { 2426 static char *texts[] = { "Single", "Double", "Quad" }; 2427 2428 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2429 uinfo->count = 1; 2430 uinfo->value.enumerated.items = 3; 2431 2432 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2433 uinfo->value.enumerated.item = 2434 uinfo->value.enumerated.items - 1; 2435 strcpy(uinfo->value.enumerated.name, 2436 texts[uinfo->value.enumerated.item]); 2437 2438 return 0; 2439 } 2440 2441 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol, 2442 struct snd_ctl_elem_value *ucontrol) 2443 { 2444 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2445 2446 spin_lock_irq(&hdspm->lock); 2447 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm); 2448 spin_unlock_irq(&hdspm->lock); 2449 return 0; 2450 } 2451 2452 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol, 2453 struct snd_ctl_elem_value *ucontrol) 2454 { 2455 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2456 int change; 2457 int val; 2458 2459 if (!snd_hdspm_use_is_exclusive(hdspm)) 2460 return -EBUSY; 2461 val = ucontrol->value.integer.value[0]; 2462 if (val < 0) 2463 val = 0; 2464 if (val > 2) 2465 val = 2; 2466 spin_lock_irq(&hdspm->lock); 2467 change = val != hdspm_qs_wire(hdspm); 2468 hdspm_set_qs_wire(hdspm, val); 2469 spin_unlock_irq(&hdspm->lock); 2470 return change; 2471 } 2472 2473 /* Simple Mixer 2474 deprecated since to much faders ??? 2475 MIXER interface says output (source, destination, value) 2476 where source > MAX_channels are playback channels 2477 on MADICARD 2478 - playback mixer matrix: [channelout+64] [output] [value] 2479 - input(thru) mixer matrix: [channelin] [output] [value] 2480 (better do 2 kontrols for seperation ?) 2481 */ 2482 2483 #define HDSPM_MIXER(xname, xindex) \ 2484 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 2485 .name = xname, \ 2486 .index = xindex, \ 2487 .device = 0, \ 2488 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 2489 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2490 .info = snd_hdspm_info_mixer, \ 2491 .get = snd_hdspm_get_mixer, \ 2492 .put = snd_hdspm_put_mixer \ 2493 } 2494 2495 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol, 2496 struct snd_ctl_elem_info *uinfo) 2497 { 2498 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2499 uinfo->count = 3; 2500 uinfo->value.integer.min = 0; 2501 uinfo->value.integer.max = 65535; 2502 uinfo->value.integer.step = 1; 2503 return 0; 2504 } 2505 2506 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol, 2507 struct snd_ctl_elem_value *ucontrol) 2508 { 2509 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2510 int source; 2511 int destination; 2512 2513 source = ucontrol->value.integer.value[0]; 2514 if (source < 0) 2515 source = 0; 2516 else if (source >= 2 * HDSPM_MAX_CHANNELS) 2517 source = 2 * HDSPM_MAX_CHANNELS - 1; 2518 2519 destination = ucontrol->value.integer.value[1]; 2520 if (destination < 0) 2521 destination = 0; 2522 else if (destination >= HDSPM_MAX_CHANNELS) 2523 destination = HDSPM_MAX_CHANNELS - 1; 2524 2525 spin_lock_irq(&hdspm->lock); 2526 if (source >= HDSPM_MAX_CHANNELS) 2527 ucontrol->value.integer.value[2] = 2528 hdspm_read_pb_gain(hdspm, destination, 2529 source - HDSPM_MAX_CHANNELS); 2530 else 2531 ucontrol->value.integer.value[2] = 2532 hdspm_read_in_gain(hdspm, destination, source); 2533 2534 spin_unlock_irq(&hdspm->lock); 2535 2536 return 0; 2537 } 2538 2539 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol, 2540 struct snd_ctl_elem_value *ucontrol) 2541 { 2542 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2543 int change; 2544 int source; 2545 int destination; 2546 int gain; 2547 2548 if (!snd_hdspm_use_is_exclusive(hdspm)) 2549 return -EBUSY; 2550 2551 source = ucontrol->value.integer.value[0]; 2552 destination = ucontrol->value.integer.value[1]; 2553 2554 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS) 2555 return -1; 2556 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS) 2557 return -1; 2558 2559 gain = ucontrol->value.integer.value[2]; 2560 2561 spin_lock_irq(&hdspm->lock); 2562 2563 if (source >= HDSPM_MAX_CHANNELS) 2564 change = gain != hdspm_read_pb_gain(hdspm, destination, 2565 source - 2566 HDSPM_MAX_CHANNELS); 2567 else 2568 change = gain != hdspm_read_in_gain(hdspm, destination, 2569 source); 2570 2571 if (change) { 2572 if (source >= HDSPM_MAX_CHANNELS) 2573 hdspm_write_pb_gain(hdspm, destination, 2574 source - HDSPM_MAX_CHANNELS, 2575 gain); 2576 else 2577 hdspm_write_in_gain(hdspm, destination, source, 2578 gain); 2579 } 2580 spin_unlock_irq(&hdspm->lock); 2581 2582 return change; 2583 } 2584 2585 /* The simple mixer control(s) provide gain control for the 2586 basic 1:1 mappings of playback streams to output 2587 streams. 2588 */ 2589 2590 #define HDSPM_PLAYBACK_MIXER \ 2591 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2592 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \ 2593 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2594 .info = snd_hdspm_info_playback_mixer, \ 2595 .get = snd_hdspm_get_playback_mixer, \ 2596 .put = snd_hdspm_put_playback_mixer \ 2597 } 2598 2599 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol, 2600 struct snd_ctl_elem_info *uinfo) 2601 { 2602 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2603 uinfo->count = 1; 2604 uinfo->value.integer.min = 0; 2605 uinfo->value.integer.max = 65536; 2606 uinfo->value.integer.step = 1; 2607 return 0; 2608 } 2609 2610 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol, 2611 struct snd_ctl_elem_value *ucontrol) 2612 { 2613 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2614 int channel; 2615 int mapped_channel; 2616 2617 channel = ucontrol->id.index - 1; 2618 2619 snd_assert(channel >= 0 2620 || channel < HDSPM_MAX_CHANNELS, return -EINVAL); 2621 2622 mapped_channel = hdspm->channel_map[channel]; 2623 if (mapped_channel < 0) 2624 return -EINVAL; 2625 2626 spin_lock_irq(&hdspm->lock); 2627 ucontrol->value.integer.value[0] = 2628 hdspm_read_pb_gain(hdspm, mapped_channel, mapped_channel); 2629 spin_unlock_irq(&hdspm->lock); 2630 2631 /* 2632 snd_printdd("get pb mixer index %d, channel %d, mapped_channel %d, " 2633 "value %d\n", 2634 ucontrol->id.index, channel, mapped_channel, 2635 ucontrol->value.integer.value[0]); 2636 */ 2637 return 0; 2638 } 2639 2640 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol, 2641 struct snd_ctl_elem_value *ucontrol) 2642 { 2643 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2644 int change; 2645 int channel; 2646 int mapped_channel; 2647 int gain; 2648 2649 if (!snd_hdspm_use_is_exclusive(hdspm)) 2650 return -EBUSY; 2651 2652 channel = ucontrol->id.index - 1; 2653 2654 snd_assert(channel >= 0 2655 || channel < HDSPM_MAX_CHANNELS, return -EINVAL); 2656 2657 mapped_channel = hdspm->channel_map[channel]; 2658 if (mapped_channel < 0) 2659 return -EINVAL; 2660 2661 gain = ucontrol->value.integer.value[0]; 2662 2663 spin_lock_irq(&hdspm->lock); 2664 change = 2665 gain != hdspm_read_pb_gain(hdspm, mapped_channel, 2666 mapped_channel); 2667 if (change) 2668 hdspm_write_pb_gain(hdspm, mapped_channel, mapped_channel, 2669 gain); 2670 spin_unlock_irq(&hdspm->lock); 2671 return change; 2672 } 2673 2674 #define HDSPM_WC_SYNC_CHECK(xname, xindex) \ 2675 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2676 .name = xname, \ 2677 .index = xindex, \ 2678 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2679 .info = snd_hdspm_info_sync_check, \ 2680 .get = snd_hdspm_get_wc_sync_check \ 2681 } 2682 2683 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, 2684 struct snd_ctl_elem_info *uinfo) 2685 { 2686 static char *texts[] = { "No Lock", "Lock", "Sync" }; 2687 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2688 uinfo->count = 1; 2689 uinfo->value.enumerated.items = 3; 2690 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2691 uinfo->value.enumerated.item = 2692 uinfo->value.enumerated.items - 1; 2693 strcpy(uinfo->value.enumerated.name, 2694 texts[uinfo->value.enumerated.item]); 2695 return 0; 2696 } 2697 2698 static int hdspm_wc_sync_check(struct hdspm * hdspm) 2699 { 2700 if (hdspm->is_aes32) { 2701 int status = hdspm_read(hdspm, HDSPM_statusRegister); 2702 if (status & HDSPM_AES32_wcLock) { 2703 /* I don't know how to differenciate sync from lock. 2704 Doing as if sync for now */ 2705 return 2; 2706 } 2707 return 0; 2708 } else { 2709 int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 2710 if (status2 & HDSPM_wcLock) { 2711 if (status2 & HDSPM_wcSync) 2712 return 2; 2713 else 2714 return 1; 2715 } 2716 return 0; 2717 } 2718 } 2719 2720 static int snd_hdspm_get_wc_sync_check(struct snd_kcontrol *kcontrol, 2721 struct snd_ctl_elem_value *ucontrol) 2722 { 2723 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2724 2725 ucontrol->value.enumerated.item[0] = hdspm_wc_sync_check(hdspm); 2726 return 0; 2727 } 2728 2729 2730 #define HDSPM_MADI_SYNC_CHECK(xname, xindex) \ 2731 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2732 .name = xname, \ 2733 .index = xindex, \ 2734 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2735 .info = snd_hdspm_info_sync_check, \ 2736 .get = snd_hdspm_get_madisync_sync_check \ 2737 } 2738 2739 static int hdspm_madisync_sync_check(struct hdspm * hdspm) 2740 { 2741 int status = hdspm_read(hdspm, HDSPM_statusRegister); 2742 if (status & HDSPM_madiLock) { 2743 if (status & HDSPM_madiSync) 2744 return 2; 2745 else 2746 return 1; 2747 } 2748 return 0; 2749 } 2750 2751 static int snd_hdspm_get_madisync_sync_check(struct snd_kcontrol *kcontrol, 2752 struct snd_ctl_elem_value * 2753 ucontrol) 2754 { 2755 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2756 2757 ucontrol->value.enumerated.item[0] = 2758 hdspm_madisync_sync_check(hdspm); 2759 return 0; 2760 } 2761 2762 2763 #define HDSPM_AES_SYNC_CHECK(xname, xindex) \ 2764 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2765 .name = xname, \ 2766 .index = xindex, \ 2767 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2768 .info = snd_hdspm_info_sync_check, \ 2769 .get = snd_hdspm_get_aes_sync_check \ 2770 } 2771 2772 static int hdspm_aes_sync_check(struct hdspm * hdspm, int idx) 2773 { 2774 int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 2775 if (status2 & (HDSPM_LockAES >> idx)) { 2776 /* I don't know how to differenciate sync from lock. 2777 Doing as if sync for now */ 2778 return 2; 2779 } 2780 return 0; 2781 } 2782 2783 static int snd_hdspm_get_aes_sync_check(struct snd_kcontrol *kcontrol, 2784 struct snd_ctl_elem_value *ucontrol) 2785 { 2786 int offset; 2787 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2788 2789 offset = ucontrol->id.index - 1; 2790 if (offset < 0 || offset >= 8) 2791 return -EINVAL; 2792 2793 ucontrol->value.enumerated.item[0] = 2794 hdspm_aes_sync_check(hdspm, offset); 2795 return 0; 2796 } 2797 2798 2799 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = { 2800 2801 HDSPM_MIXER("Mixer", 0), 2802 /* 'Sample Clock Source' complies with the alsa control naming scheme */ 2803 HDSPM_CLOCK_SOURCE("Sample Clock Source", 0), 2804 2805 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 2806 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 2807 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 2808 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 2809 /* 'External Rate' complies with the alsa control naming scheme */ 2810 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 2811 HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0), 2812 HDSPM_MADI_SYNC_CHECK("MADI Sync Lock Status", 0), 2813 HDSPM_LINE_OUT("Line Out", 0), 2814 HDSPM_TX_64("TX 64 channels mode", 0), 2815 HDSPM_C_TMS("Clear Track Marker", 0), 2816 HDSPM_SAFE_MODE("Safe Mode", 0), 2817 HDSPM_INPUT_SELECT("Input Select", 0), 2818 }; 2819 2820 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = { 2821 2822 HDSPM_MIXER("Mixer", 0), 2823 /* 'Sample Clock Source' complies with the alsa control naming scheme */ 2824 HDSPM_CLOCK_SOURCE("Sample Clock Source", 0), 2825 2826 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 2827 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 2828 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 2829 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 2830 /* 'External Rate' complies with the alsa control naming scheme */ 2831 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 2832 HDSPM_WC_SYNC_CHECK("Word Clock Lock Status", 0), 2833 /* HDSPM_AES_SYNC_CHECK("AES Lock Status", 0),*/ /* created in snd_hdspm_create_controls() */ 2834 HDSPM_LINE_OUT("Line Out", 0), 2835 HDSPM_EMPHASIS("Emphasis", 0), 2836 HDSPM_DOLBY("Non Audio", 0), 2837 HDSPM_PROFESSIONAL("Professional", 0), 2838 HDSPM_C_TMS("Clear Track Marker", 0), 2839 HDSPM_DS_WIRE("Double Speed Wire Mode", 0), 2840 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0), 2841 }; 2842 2843 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; 2844 2845 2846 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm) 2847 { 2848 int i; 2849 2850 for (i = hdspm->ds_channels; i < hdspm->ss_channels; ++i) { 2851 if (hdspm->system_sample_rate > 48000) { 2852 hdspm->playback_mixer_ctls[i]->vd[0].access = 2853 SNDRV_CTL_ELEM_ACCESS_INACTIVE | 2854 SNDRV_CTL_ELEM_ACCESS_READ | 2855 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 2856 } else { 2857 hdspm->playback_mixer_ctls[i]->vd[0].access = 2858 SNDRV_CTL_ELEM_ACCESS_READWRITE | 2859 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 2860 } 2861 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE | 2862 SNDRV_CTL_EVENT_MASK_INFO, 2863 &hdspm->playback_mixer_ctls[i]->id); 2864 } 2865 2866 return 0; 2867 } 2868 2869 2870 static int snd_hdspm_create_controls(struct snd_card *card, struct hdspm * hdspm) 2871 { 2872 unsigned int idx, limit; 2873 int err; 2874 struct snd_kcontrol *kctl; 2875 2876 /* add control list first */ 2877 if (hdspm->is_aes32) { 2878 struct snd_kcontrol_new aes_sync_ctl = 2879 HDSPM_AES_SYNC_CHECK("AES Lock Status", 0); 2880 2881 for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_aes32); 2882 idx++) { 2883 err = snd_ctl_add(card, 2884 snd_ctl_new1(&snd_hdspm_controls_aes32[idx], 2885 hdspm)); 2886 if (err < 0) 2887 return err; 2888 } 2889 for (idx = 1; idx <= 8; idx++) { 2890 aes_sync_ctl.index = idx; 2891 err = snd_ctl_add(card, 2892 snd_ctl_new1(&aes_sync_ctl, hdspm)); 2893 if (err < 0) 2894 return err; 2895 } 2896 } else { 2897 for (idx = 0; idx < ARRAY_SIZE(snd_hdspm_controls_madi); 2898 idx++) { 2899 err = snd_ctl_add(card, 2900 snd_ctl_new1(&snd_hdspm_controls_madi[idx], 2901 hdspm)); 2902 if (err < 0) 2903 return err; 2904 } 2905 } 2906 2907 /* Channel playback mixer as default control 2908 Note: the whole matrix would be 128*HDSPM_MIXER_CHANNELS Faders, 2909 thats too * big for any alsamixer they are accesible via special 2910 IOCTL on hwdep and the mixer 2dimensional mixer control 2911 */ 2912 2913 snd_hdspm_playback_mixer.name = "Chn"; 2914 limit = HDSPM_MAX_CHANNELS; 2915 2916 /* The index values are one greater than the channel ID so that 2917 * alsamixer will display them correctly. We want to use the index 2918 * for fast lookup of the relevant channel, but if we use it at all, 2919 * most ALSA software does the wrong thing with it ... 2920 */ 2921 2922 for (idx = 0; idx < limit; ++idx) { 2923 snd_hdspm_playback_mixer.index = idx + 1; 2924 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm); 2925 err = snd_ctl_add(card, kctl); 2926 if (err < 0) 2927 return err; 2928 hdspm->playback_mixer_ctls[idx] = kctl; 2929 } 2930 2931 return 0; 2932 } 2933 2934 /*------------------------------------------------------------ 2935 /proc interface 2936 ------------------------------------------------------------*/ 2937 2938 static void 2939 snd_hdspm_proc_read_madi(struct snd_info_entry * entry, 2940 struct snd_info_buffer *buffer) 2941 { 2942 struct hdspm *hdspm = entry->private_data; 2943 unsigned int status; 2944 unsigned int status2; 2945 char *pref_sync_ref; 2946 char *autosync_ref; 2947 char *system_clock_mode; 2948 char *clock_source; 2949 char *insel; 2950 char *syncref; 2951 int x, x2; 2952 2953 status = hdspm_read(hdspm, HDSPM_statusRegister); 2954 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 2955 2956 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n", 2957 hdspm->card_name, hdspm->card->number + 1, 2958 hdspm->firmware_rev, 2959 (status2 & HDSPM_version0) | 2960 (status2 & HDSPM_version1) | (status2 & 2961 HDSPM_version2)); 2962 2963 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 2964 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 2965 2966 snd_iprintf(buffer, "--- System ---\n"); 2967 2968 snd_iprintf(buffer, 2969 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 2970 status & HDSPM_audioIRQPending, 2971 (status & HDSPM_midi0IRQPending) ? 1 : 0, 2972 (status & HDSPM_midi1IRQPending) ? 1 : 0, 2973 hdspm->irq_count); 2974 snd_iprintf(buffer, 2975 "HW pointer: id = %d, rawptr = %d (%d->%d) " 2976 "estimated= %ld (bytes)\n", 2977 ((status & HDSPM_BufferID) ? 1 : 0), 2978 (status & HDSPM_BufferPositionMask), 2979 (status & HDSPM_BufferPositionMask) % 2980 (2 * (int)hdspm->period_bytes), 2981 ((status & HDSPM_BufferPositionMask) - 64) % 2982 (2 * (int)hdspm->period_bytes), 2983 (long) hdspm_hw_pointer(hdspm) * 4); 2984 2985 snd_iprintf(buffer, 2986 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 2987 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 2988 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 2989 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 2990 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 2991 snd_iprintf(buffer, 2992 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 2993 "status2=0x%x\n", 2994 hdspm->control_register, hdspm->control2_register, 2995 status, status2); 2996 2997 snd_iprintf(buffer, "--- Settings ---\n"); 2998 2999 x = 1 << (6 + hdspm_decode_latency(hdspm->control_register & 3000 HDSPM_LatencyMask)); 3001 3002 snd_iprintf(buffer, 3003 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 3004 x, (unsigned long) hdspm->period_bytes); 3005 3006 snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n", 3007 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off", 3008 (hdspm->precise_ptr) ? "on" : "off"); 3009 3010 switch (hdspm->control_register & HDSPM_InputMask) { 3011 case HDSPM_InputOptical: 3012 insel = "Optical"; 3013 break; 3014 case HDSPM_InputCoaxial: 3015 insel = "Coaxial"; 3016 break; 3017 default: 3018 insel = "Unkown"; 3019 } 3020 3021 switch (hdspm->control_register & HDSPM_SyncRefMask) { 3022 case HDSPM_SyncRef_Word: 3023 syncref = "WordClock"; 3024 break; 3025 case HDSPM_SyncRef_MADI: 3026 syncref = "MADI"; 3027 break; 3028 default: 3029 syncref = "Unkown"; 3030 } 3031 snd_iprintf(buffer, "Inputsel = %s, SyncRef = %s\n", insel, 3032 syncref); 3033 3034 snd_iprintf(buffer, 3035 "ClearTrackMarker = %s, Transmit in %s Channel Mode, " 3036 "Auto Input %s\n", 3037 (hdspm-> 3038 control_register & HDSPM_clr_tms) ? "on" : "off", 3039 (hdspm-> 3040 control_register & HDSPM_TX_64ch) ? "64" : "56", 3041 (hdspm-> 3042 control_register & HDSPM_AutoInp) ? "on" : "off"); 3043 3044 switch (hdspm_clock_source(hdspm)) { 3045 case HDSPM_CLOCK_SOURCE_AUTOSYNC: 3046 clock_source = "AutoSync"; 3047 break; 3048 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ: 3049 clock_source = "Internal 32 kHz"; 3050 break; 3051 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ: 3052 clock_source = "Internal 44.1 kHz"; 3053 break; 3054 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ: 3055 clock_source = "Internal 48 kHz"; 3056 break; 3057 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ: 3058 clock_source = "Internal 64 kHz"; 3059 break; 3060 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ: 3061 clock_source = "Internal 88.2 kHz"; 3062 break; 3063 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ: 3064 clock_source = "Internal 96 kHz"; 3065 break; 3066 default: 3067 clock_source = "Error"; 3068 } 3069 snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source); 3070 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 3071 system_clock_mode = "Slave"; 3072 else 3073 system_clock_mode = "Master"; 3074 snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode); 3075 3076 switch (hdspm_pref_sync_ref(hdspm)) { 3077 case HDSPM_SYNC_FROM_WORD: 3078 pref_sync_ref = "Word Clock"; 3079 break; 3080 case HDSPM_SYNC_FROM_MADI: 3081 pref_sync_ref = "MADI Sync"; 3082 break; 3083 default: 3084 pref_sync_ref = "XXXX Clock"; 3085 break; 3086 } 3087 snd_iprintf(buffer, "Preferred Sync Reference: %s\n", 3088 pref_sync_ref); 3089 3090 snd_iprintf(buffer, "System Clock Frequency: %d\n", 3091 hdspm->system_sample_rate); 3092 3093 3094 snd_iprintf(buffer, "--- Status:\n"); 3095 3096 x = status & HDSPM_madiSync; 3097 x2 = status2 & HDSPM_wcSync; 3098 3099 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n", 3100 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") : 3101 "NoLock", 3102 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") : 3103 "NoLock"); 3104 3105 switch (hdspm_autosync_ref(hdspm)) { 3106 case HDSPM_AUTOSYNC_FROM_WORD: 3107 autosync_ref = "Word Clock"; 3108 break; 3109 case HDSPM_AUTOSYNC_FROM_MADI: 3110 autosync_ref = "MADI Sync"; 3111 break; 3112 case HDSPM_AUTOSYNC_FROM_NONE: 3113 autosync_ref = "Input not valid"; 3114 break; 3115 default: 3116 autosync_ref = "---"; 3117 break; 3118 } 3119 snd_iprintf(buffer, 3120 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n", 3121 autosync_ref, hdspm_external_sample_rate(hdspm), 3122 (status & HDSPM_madiFreqMask) >> 22, 3123 (status2 & HDSPM_wcFreqMask) >> 5); 3124 3125 snd_iprintf(buffer, "Input: %s, Mode=%s\n", 3126 (status & HDSPM_AB_int) ? "Coax" : "Optical", 3127 (status & HDSPM_RX_64ch) ? "64 channels" : 3128 "56 channels"); 3129 3130 snd_iprintf(buffer, "\n"); 3131 } 3132 3133 static void 3134 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry, 3135 struct snd_info_buffer *buffer) 3136 { 3137 struct hdspm *hdspm = entry->private_data; 3138 unsigned int status; 3139 unsigned int status2; 3140 unsigned int timecode; 3141 int pref_syncref; 3142 char *autosync_ref; 3143 char *system_clock_mode; 3144 char *clock_source; 3145 int x; 3146 3147 status = hdspm_read(hdspm, HDSPM_statusRegister); 3148 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3149 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 3150 3151 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n", 3152 hdspm->card_name, hdspm->card->number + 1, 3153 hdspm->firmware_rev); 3154 3155 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 3156 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 3157 3158 snd_iprintf(buffer, "--- System ---\n"); 3159 3160 snd_iprintf(buffer, 3161 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 3162 status & HDSPM_audioIRQPending, 3163 (status & HDSPM_midi0IRQPending) ? 1 : 0, 3164 (status & HDSPM_midi1IRQPending) ? 1 : 0, 3165 hdspm->irq_count); 3166 snd_iprintf(buffer, 3167 "HW pointer: id = %d, rawptr = %d (%d->%d) " 3168 "estimated= %ld (bytes)\n", 3169 ((status & HDSPM_BufferID) ? 1 : 0), 3170 (status & HDSPM_BufferPositionMask), 3171 (status & HDSPM_BufferPositionMask) % 3172 (2 * (int)hdspm->period_bytes), 3173 ((status & HDSPM_BufferPositionMask) - 64) % 3174 (2 * (int)hdspm->period_bytes), 3175 (long) hdspm_hw_pointer(hdspm) * 4); 3176 3177 snd_iprintf(buffer, 3178 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 3179 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 3180 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 3181 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 3182 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 3183 snd_iprintf(buffer, 3184 "Register: ctrl1=0x%x, status1=0x%x, status2=0x%x, " 3185 "timecode=0x%x\n", 3186 hdspm->control_register, 3187 status, status2, timecode); 3188 3189 snd_iprintf(buffer, "--- Settings ---\n"); 3190 3191 x = 1 << (6 + hdspm_decode_latency(hdspm->control_register & 3192 HDSPM_LatencyMask)); 3193 3194 snd_iprintf(buffer, 3195 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 3196 x, (unsigned long) hdspm->period_bytes); 3197 3198 snd_iprintf(buffer, "Line out: %s, Precise Pointer: %s\n", 3199 (hdspm-> 3200 control_register & HDSPM_LineOut) ? "on " : "off", 3201 (hdspm->precise_ptr) ? "on" : "off"); 3202 3203 snd_iprintf(buffer, 3204 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n", 3205 (hdspm-> 3206 control_register & HDSPM_clr_tms) ? "on" : "off", 3207 (hdspm-> 3208 control_register & HDSPM_Emphasis) ? "on" : "off", 3209 (hdspm-> 3210 control_register & HDSPM_Dolby) ? "on" : "off"); 3211 3212 switch (hdspm_clock_source(hdspm)) { 3213 case HDSPM_CLOCK_SOURCE_AUTOSYNC: 3214 clock_source = "AutoSync"; 3215 break; 3216 case HDSPM_CLOCK_SOURCE_INTERNAL_32KHZ: 3217 clock_source = "Internal 32 kHz"; 3218 break; 3219 case HDSPM_CLOCK_SOURCE_INTERNAL_44_1KHZ: 3220 clock_source = "Internal 44.1 kHz"; 3221 break; 3222 case HDSPM_CLOCK_SOURCE_INTERNAL_48KHZ: 3223 clock_source = "Internal 48 kHz"; 3224 break; 3225 case HDSPM_CLOCK_SOURCE_INTERNAL_64KHZ: 3226 clock_source = "Internal 64 kHz"; 3227 break; 3228 case HDSPM_CLOCK_SOURCE_INTERNAL_88_2KHZ: 3229 clock_source = "Internal 88.2 kHz"; 3230 break; 3231 case HDSPM_CLOCK_SOURCE_INTERNAL_96KHZ: 3232 clock_source = "Internal 96 kHz"; 3233 break; 3234 case HDSPM_CLOCK_SOURCE_INTERNAL_128KHZ: 3235 clock_source = "Internal 128 kHz"; 3236 break; 3237 case HDSPM_CLOCK_SOURCE_INTERNAL_176_4KHZ: 3238 clock_source = "Internal 176.4 kHz"; 3239 break; 3240 case HDSPM_CLOCK_SOURCE_INTERNAL_192KHZ: 3241 clock_source = "Internal 192 kHz"; 3242 break; 3243 default: 3244 clock_source = "Error"; 3245 } 3246 snd_iprintf(buffer, "Sample Clock Source: %s\n", clock_source); 3247 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 3248 system_clock_mode = "Slave"; 3249 else 3250 system_clock_mode = "Master"; 3251 snd_iprintf(buffer, "System Clock Mode: %s\n", system_clock_mode); 3252 3253 pref_syncref = hdspm_pref_sync_ref(hdspm); 3254 if (pref_syncref == 0) 3255 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n"); 3256 else 3257 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n", 3258 pref_syncref); 3259 3260 snd_iprintf(buffer, "System Clock Frequency: %d\n", 3261 hdspm->system_sample_rate); 3262 3263 snd_iprintf(buffer, "Double speed: %s\n", 3264 hdspm->control_register & HDSPM_DS_DoubleWire? 3265 "Double wire" : "Single wire"); 3266 snd_iprintf(buffer, "Quad speed: %s\n", 3267 hdspm->control_register & HDSPM_QS_DoubleWire? 3268 "Double wire" : 3269 hdspm->control_register & HDSPM_QS_QuadWire? 3270 "Quad wire" : "Single wire"); 3271 3272 snd_iprintf(buffer, "--- Status:\n"); 3273 3274 snd_iprintf(buffer, "Word: %s Frequency: %d\n", 3275 (status & HDSPM_AES32_wcLock)? "Sync " : "No Lock", 3276 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF)); 3277 3278 for (x = 0; x < 8; x++) { 3279 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n", 3280 x+1, 3281 (status2 & (HDSPM_LockAES >> x)) ? 3282 "Sync ": "No Lock", 3283 HDSPM_bit2freq((timecode >> (4*x)) & 0xF)); 3284 } 3285 3286 switch (hdspm_autosync_ref(hdspm)) { 3287 case HDSPM_AES32_AUTOSYNC_FROM_NONE: autosync_ref="None"; break; 3288 case HDSPM_AES32_AUTOSYNC_FROM_WORD: autosync_ref="Word Clock"; break; 3289 case HDSPM_AES32_AUTOSYNC_FROM_AES1: autosync_ref="AES1"; break; 3290 case HDSPM_AES32_AUTOSYNC_FROM_AES2: autosync_ref="AES2"; break; 3291 case HDSPM_AES32_AUTOSYNC_FROM_AES3: autosync_ref="AES3"; break; 3292 case HDSPM_AES32_AUTOSYNC_FROM_AES4: autosync_ref="AES4"; break; 3293 case HDSPM_AES32_AUTOSYNC_FROM_AES5: autosync_ref="AES5"; break; 3294 case HDSPM_AES32_AUTOSYNC_FROM_AES6: autosync_ref="AES6"; break; 3295 case HDSPM_AES32_AUTOSYNC_FROM_AES7: autosync_ref="AES7"; break; 3296 case HDSPM_AES32_AUTOSYNC_FROM_AES8: autosync_ref="AES8"; break; 3297 default: autosync_ref = "---"; break; 3298 } 3299 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref); 3300 3301 snd_iprintf(buffer, "\n"); 3302 } 3303 3304 #ifdef CONFIG_SND_DEBUG 3305 static void 3306 snd_hdspm_proc_read_debug(struct snd_info_entry * entry, 3307 struct snd_info_buffer *buffer) 3308 { 3309 struct hdspm *hdspm = entry->private_data; 3310 3311 int j,i; 3312 3313 for (i = 0; i < 256 /* 1024*64 */; i += j) { 3314 snd_iprintf(buffer, "0x%08X: ", i); 3315 for (j = 0; j < 16; j += 4) 3316 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j)); 3317 snd_iprintf(buffer, "\n"); 3318 } 3319 } 3320 #endif 3321 3322 3323 3324 static void __devinit snd_hdspm_proc_init(struct hdspm * hdspm) 3325 { 3326 struct snd_info_entry *entry; 3327 3328 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) 3329 snd_info_set_text_ops(entry, hdspm, 3330 hdspm->is_aes32 ? 3331 snd_hdspm_proc_read_aes32 : 3332 snd_hdspm_proc_read_madi); 3333 #ifdef CONFIG_SND_DEBUG 3334 /* debug file to read all hdspm registers */ 3335 if (!snd_card_proc_new(hdspm->card, "debug", &entry)) 3336 snd_info_set_text_ops(entry, hdspm, 3337 snd_hdspm_proc_read_debug); 3338 #endif 3339 } 3340 3341 /*------------------------------------------------------------ 3342 hdspm intitialize 3343 ------------------------------------------------------------*/ 3344 3345 static int snd_hdspm_set_defaults(struct hdspm * hdspm) 3346 { 3347 unsigned int i; 3348 3349 /* ASSUMPTION: hdspm->lock is either held, or there is no need to 3350 hold it (e.g. during module initialization). 3351 */ 3352 3353 /* set defaults: */ 3354 3355 if (hdspm->is_aes32) 3356 hdspm->control_register = 3357 HDSPM_ClockModeMaster | /* Master Cloack Mode on */ 3358 hdspm_encode_latency(7) | /* latency maximum = 3359 * 8192 samples 3360 */ 3361 HDSPM_SyncRef0 | /* AES1 is syncclock */ 3362 HDSPM_LineOut | /* Analog output in */ 3363 HDSPM_Professional; /* Professional mode */ 3364 else 3365 hdspm->control_register = 3366 HDSPM_ClockModeMaster | /* Master Cloack Mode on */ 3367 hdspm_encode_latency(7) | /* latency maximum = 3368 * 8192 samples 3369 */ 3370 HDSPM_InputCoaxial | /* Input Coax not Optical */ 3371 HDSPM_SyncRef_MADI | /* Madi is syncclock */ 3372 HDSPM_LineOut | /* Analog output in */ 3373 HDSPM_TX_64ch | /* transmit in 64ch mode */ 3374 HDSPM_AutoInp; /* AutoInput chossing (takeover) */ 3375 3376 /* ! HDSPM_Frequency0|HDSPM_Frequency1 = 44.1khz */ 3377 /* ! HDSPM_DoubleSpeed HDSPM_QuadSpeed = normal speed */ 3378 /* ! HDSPM_clr_tms = do not clear bits in track marks */ 3379 3380 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3381 3382 if (!hdspm->is_aes32) { 3383 /* No control2 register for AES32 */ 3384 #ifdef SNDRV_BIG_ENDIAN 3385 hdspm->control2_register = HDSPM_BIGENDIAN_MODE; 3386 #else 3387 hdspm->control2_register = 0; 3388 #endif 3389 3390 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register); 3391 } 3392 hdspm_compute_period_size(hdspm); 3393 3394 /* silence everything */ 3395 3396 all_in_all_mixer(hdspm, 0 * UNITY_GAIN); 3397 3398 if (line_outs_monitor[hdspm->dev]) { 3399 3400 snd_printk(KERN_INFO "HDSPM: " 3401 "sending all playback streams to line outs.\n"); 3402 3403 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) { 3404 if (hdspm_write_pb_gain(hdspm, i, i, UNITY_GAIN)) 3405 return -EIO; 3406 } 3407 } 3408 3409 /* set a default rate so that the channel map is set up. */ 3410 hdspm->channel_map = channel_map_madi_ss; 3411 hdspm_set_rate(hdspm, 44100, 1); 3412 3413 return 0; 3414 } 3415 3416 3417 /*------------------------------------------------------------ 3418 interrupt 3419 ------------------------------------------------------------*/ 3420 3421 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id) 3422 { 3423 struct hdspm *hdspm = (struct hdspm *) dev_id; 3424 unsigned int status; 3425 int audio; 3426 int midi0; 3427 int midi1; 3428 unsigned int midi0status; 3429 unsigned int midi1status; 3430 int schedule = 0; 3431 3432 status = hdspm_read(hdspm, HDSPM_statusRegister); 3433 3434 audio = status & HDSPM_audioIRQPending; 3435 midi0 = status & HDSPM_midi0IRQPending; 3436 midi1 = status & HDSPM_midi1IRQPending; 3437 3438 if (!audio && !midi0 && !midi1) 3439 return IRQ_NONE; 3440 3441 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0); 3442 hdspm->irq_count++; 3443 3444 midi0status = hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xff; 3445 midi1status = hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xff; 3446 3447 if (audio) { 3448 3449 if (hdspm->capture_substream) 3450 snd_pcm_period_elapsed(hdspm->capture_substream); 3451 3452 if (hdspm->playback_substream) 3453 snd_pcm_period_elapsed(hdspm->playback_substream); 3454 } 3455 3456 if (midi0 && midi0status) { 3457 /* we disable interrupts for this input until processing 3458 * is done 3459 */ 3460 hdspm->control_register &= ~HDSPM_Midi0InterruptEnable; 3461 hdspm_write(hdspm, HDSPM_controlRegister, 3462 hdspm->control_register); 3463 hdspm->midi[0].pending = 1; 3464 schedule = 1; 3465 } 3466 if (midi1 && midi1status) { 3467 /* we disable interrupts for this input until processing 3468 * is done 3469 */ 3470 hdspm->control_register &= ~HDSPM_Midi1InterruptEnable; 3471 hdspm_write(hdspm, HDSPM_controlRegister, 3472 hdspm->control_register); 3473 hdspm->midi[1].pending = 1; 3474 schedule = 1; 3475 } 3476 if (schedule) 3477 tasklet_hi_schedule(&hdspm->midi_tasklet); 3478 return IRQ_HANDLED; 3479 } 3480 3481 /*------------------------------------------------------------ 3482 pcm interface 3483 ------------------------------------------------------------*/ 3484 3485 3486 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream * 3487 substream) 3488 { 3489 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3490 return hdspm_hw_pointer(hdspm); 3491 } 3492 3493 static char *hdspm_channel_buffer_location(struct hdspm * hdspm, 3494 int stream, int channel) 3495 { 3496 int mapped_channel; 3497 3498 snd_assert(channel >= 0 3499 || channel < HDSPM_MAX_CHANNELS, return NULL); 3500 3501 mapped_channel = hdspm->channel_map[channel]; 3502 if (mapped_channel < 0) 3503 return NULL; 3504 3505 if (stream == SNDRV_PCM_STREAM_CAPTURE) 3506 return hdspm->capture_buffer + 3507 mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES; 3508 else 3509 return hdspm->playback_buffer + 3510 mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES; 3511 } 3512 3513 3514 /* dont know why need it ??? */ 3515 static int snd_hdspm_playback_copy(struct snd_pcm_substream *substream, 3516 int channel, snd_pcm_uframes_t pos, 3517 void __user *src, snd_pcm_uframes_t count) 3518 { 3519 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3520 char *channel_buf; 3521 3522 snd_assert(pos + count <= HDSPM_CHANNEL_BUFFER_BYTES / 4, 3523 return -EINVAL); 3524 3525 channel_buf = 3526 hdspm_channel_buffer_location(hdspm, substream->pstr->stream, 3527 channel); 3528 3529 snd_assert(channel_buf != NULL, return -EIO); 3530 3531 return copy_from_user(channel_buf + pos * 4, src, count * 4); 3532 } 3533 3534 static int snd_hdspm_capture_copy(struct snd_pcm_substream *substream, 3535 int channel, snd_pcm_uframes_t pos, 3536 void __user *dst, snd_pcm_uframes_t count) 3537 { 3538 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3539 char *channel_buf; 3540 3541 snd_assert(pos + count <= HDSPM_CHANNEL_BUFFER_BYTES / 4, 3542 return -EINVAL); 3543 3544 channel_buf = 3545 hdspm_channel_buffer_location(hdspm, substream->pstr->stream, 3546 channel); 3547 snd_assert(channel_buf != NULL, return -EIO); 3548 return copy_to_user(dst, channel_buf + pos * 4, count * 4); 3549 } 3550 3551 static int snd_hdspm_hw_silence(struct snd_pcm_substream *substream, 3552 int channel, snd_pcm_uframes_t pos, 3553 snd_pcm_uframes_t count) 3554 { 3555 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3556 char *channel_buf; 3557 3558 channel_buf = 3559 hdspm_channel_buffer_location(hdspm, substream->pstr->stream, 3560 channel); 3561 snd_assert(channel_buf != NULL, return -EIO); 3562 memset(channel_buf + pos * 4, 0, count * 4); 3563 return 0; 3564 } 3565 3566 static int snd_hdspm_reset(struct snd_pcm_substream *substream) 3567 { 3568 struct snd_pcm_runtime *runtime = substream->runtime; 3569 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3570 struct snd_pcm_substream *other; 3571 3572 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 3573 other = hdspm->capture_substream; 3574 else 3575 other = hdspm->playback_substream; 3576 3577 if (hdspm->running) 3578 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm); 3579 else 3580 runtime->status->hw_ptr = 0; 3581 if (other) { 3582 struct snd_pcm_substream *s; 3583 struct snd_pcm_runtime *oruntime = other->runtime; 3584 snd_pcm_group_for_each_entry(s, substream) { 3585 if (s == other) { 3586 oruntime->status->hw_ptr = 3587 runtime->status->hw_ptr; 3588 break; 3589 } 3590 } 3591 } 3592 return 0; 3593 } 3594 3595 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, 3596 struct snd_pcm_hw_params *params) 3597 { 3598 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3599 int err; 3600 int i; 3601 pid_t this_pid; 3602 pid_t other_pid; 3603 struct snd_sg_buf *sgbuf; 3604 3605 3606 spin_lock_irq(&hdspm->lock); 3607 3608 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 3609 this_pid = hdspm->playback_pid; 3610 other_pid = hdspm->capture_pid; 3611 } else { 3612 this_pid = hdspm->capture_pid; 3613 other_pid = hdspm->playback_pid; 3614 } 3615 3616 if (other_pid > 0 && this_pid != other_pid) { 3617 3618 /* The other stream is open, and not by the same 3619 task as this one. Make sure that the parameters 3620 that matter are the same. 3621 */ 3622 3623 if (params_rate(params) != hdspm->system_sample_rate) { 3624 spin_unlock_irq(&hdspm->lock); 3625 _snd_pcm_hw_param_setempty(params, 3626 SNDRV_PCM_HW_PARAM_RATE); 3627 return -EBUSY; 3628 } 3629 3630 if (params_period_size(params) != hdspm->period_bytes / 4) { 3631 spin_unlock_irq(&hdspm->lock); 3632 _snd_pcm_hw_param_setempty(params, 3633 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 3634 return -EBUSY; 3635 } 3636 3637 } 3638 /* We're fine. */ 3639 spin_unlock_irq(&hdspm->lock); 3640 3641 /* how to make sure that the rate matches an externally-set one ? */ 3642 3643 spin_lock_irq(&hdspm->lock); 3644 err = hdspm_set_rate(hdspm, params_rate(params), 0); 3645 if (err < 0) { 3646 spin_unlock_irq(&hdspm->lock); 3647 _snd_pcm_hw_param_setempty(params, 3648 SNDRV_PCM_HW_PARAM_RATE); 3649 return err; 3650 } 3651 spin_unlock_irq(&hdspm->lock); 3652 3653 err = hdspm_set_interrupt_interval(hdspm, 3654 params_period_size(params)); 3655 if (err < 0) { 3656 _snd_pcm_hw_param_setempty(params, 3657 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 3658 return err; 3659 } 3660 3661 /* Memory allocation, takashi's method, dont know if we should 3662 * spinlock 3663 */ 3664 /* malloc all buffer even if not enabled to get sure */ 3665 /* Update for MADI rev 204: we need to allocate for all channels, 3666 * otherwise it doesn't work at 96kHz */ 3667 err = 3668 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES); 3669 if (err < 0) 3670 return err; 3671 3672 sgbuf = snd_pcm_substream_sgbuf(substream); 3673 3674 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 3675 3676 hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferOut, 3677 params_channels(params)); 3678 3679 for (i = 0; i < params_channels(params); ++i) 3680 snd_hdspm_enable_out(hdspm, i, 1); 3681 3682 hdspm->playback_buffer = 3683 (unsigned char *) substream->runtime->dma_area; 3684 snd_printdd("Allocated sample buffer for playback at %p\n", 3685 hdspm->playback_buffer); 3686 } else { 3687 hdspm_set_sgbuf(hdspm, sgbuf, HDSPM_pageAddressBufferIn, 3688 params_channels(params)); 3689 3690 for (i = 0; i < params_channels(params); ++i) 3691 snd_hdspm_enable_in(hdspm, i, 1); 3692 3693 hdspm->capture_buffer = 3694 (unsigned char *) substream->runtime->dma_area; 3695 snd_printdd("Allocated sample buffer for capture at %p\n", 3696 hdspm->capture_buffer); 3697 } 3698 /* 3699 snd_printdd("Allocated sample buffer for %s at 0x%08X\n", 3700 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 3701 "playback" : "capture", 3702 snd_pcm_sgbuf_get_addr(sgbuf, 0)); 3703 */ 3704 /* 3705 snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n", 3706 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 3707 "playback" : "capture", 3708 params_rate(params), params_channels(params), 3709 params_buffer_size(params)); 3710 */ 3711 return 0; 3712 } 3713 3714 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream) 3715 { 3716 int i; 3717 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3718 3719 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 3720 3721 /* params_channels(params) should be enough, 3722 but to get sure in case of error */ 3723 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i) 3724 snd_hdspm_enable_out(hdspm, i, 0); 3725 3726 hdspm->playback_buffer = NULL; 3727 } else { 3728 for (i = 0; i < HDSPM_MAX_CHANNELS; ++i) 3729 snd_hdspm_enable_in(hdspm, i, 0); 3730 3731 hdspm->capture_buffer = NULL; 3732 3733 } 3734 3735 snd_pcm_lib_free_pages(substream); 3736 3737 return 0; 3738 } 3739 3740 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream, 3741 struct snd_pcm_channel_info * info) 3742 { 3743 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3744 int mapped_channel; 3745 3746 snd_assert(info->channel < HDSPM_MAX_CHANNELS, return -EINVAL); 3747 3748 mapped_channel = hdspm->channel_map[info->channel]; 3749 if (mapped_channel < 0) 3750 return -EINVAL; 3751 3752 info->offset = mapped_channel * HDSPM_CHANNEL_BUFFER_BYTES; 3753 info->first = 0; 3754 info->step = 32; 3755 return 0; 3756 } 3757 3758 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream, 3759 unsigned int cmd, void *arg) 3760 { 3761 switch (cmd) { 3762 case SNDRV_PCM_IOCTL1_RESET: 3763 return snd_hdspm_reset(substream); 3764 3765 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 3766 { 3767 struct snd_pcm_channel_info *info = arg; 3768 return snd_hdspm_channel_info(substream, info); 3769 } 3770 default: 3771 break; 3772 } 3773 3774 return snd_pcm_lib_ioctl(substream, cmd, arg); 3775 } 3776 3777 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd) 3778 { 3779 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3780 struct snd_pcm_substream *other; 3781 int running; 3782 3783 spin_lock(&hdspm->lock); 3784 running = hdspm->running; 3785 switch (cmd) { 3786 case SNDRV_PCM_TRIGGER_START: 3787 running |= 1 << substream->stream; 3788 break; 3789 case SNDRV_PCM_TRIGGER_STOP: 3790 running &= ~(1 << substream->stream); 3791 break; 3792 default: 3793 snd_BUG(); 3794 spin_unlock(&hdspm->lock); 3795 return -EINVAL; 3796 } 3797 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 3798 other = hdspm->capture_substream; 3799 else 3800 other = hdspm->playback_substream; 3801 3802 if (other) { 3803 struct snd_pcm_substream *s; 3804 snd_pcm_group_for_each_entry(s, substream) { 3805 if (s == other) { 3806 snd_pcm_trigger_done(s, substream); 3807 if (cmd == SNDRV_PCM_TRIGGER_START) 3808 running |= 1 << s->stream; 3809 else 3810 running &= ~(1 << s->stream); 3811 goto _ok; 3812 } 3813 } 3814 if (cmd == SNDRV_PCM_TRIGGER_START) { 3815 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) 3816 && substream->stream == 3817 SNDRV_PCM_STREAM_CAPTURE) 3818 hdspm_silence_playback(hdspm); 3819 } else { 3820 if (running && 3821 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 3822 hdspm_silence_playback(hdspm); 3823 } 3824 } else { 3825 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 3826 hdspm_silence_playback(hdspm); 3827 } 3828 _ok: 3829 snd_pcm_trigger_done(substream, substream); 3830 if (!hdspm->running && running) 3831 hdspm_start_audio(hdspm); 3832 else if (hdspm->running && !running) 3833 hdspm_stop_audio(hdspm); 3834 hdspm->running = running; 3835 spin_unlock(&hdspm->lock); 3836 3837 return 0; 3838 } 3839 3840 static int snd_hdspm_prepare(struct snd_pcm_substream *substream) 3841 { 3842 return 0; 3843 } 3844 3845 static unsigned int period_sizes[] = 3846 { 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; 3847 3848 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = { 3849 .info = (SNDRV_PCM_INFO_MMAP | 3850 SNDRV_PCM_INFO_MMAP_VALID | 3851 SNDRV_PCM_INFO_NONINTERLEAVED | 3852 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE), 3853 .formats = SNDRV_PCM_FMTBIT_S32_LE, 3854 .rates = (SNDRV_PCM_RATE_32000 | 3855 SNDRV_PCM_RATE_44100 | 3856 SNDRV_PCM_RATE_48000 | 3857 SNDRV_PCM_RATE_64000 | 3858 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 3859 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ), 3860 .rate_min = 32000, 3861 .rate_max = 192000, 3862 .channels_min = 1, 3863 .channels_max = HDSPM_MAX_CHANNELS, 3864 .buffer_bytes_max = 3865 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 3866 .period_bytes_min = (64 * 4), 3867 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 3868 .periods_min = 2, 3869 .periods_max = 2, 3870 .fifo_size = 0 3871 }; 3872 3873 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = { 3874 .info = (SNDRV_PCM_INFO_MMAP | 3875 SNDRV_PCM_INFO_MMAP_VALID | 3876 SNDRV_PCM_INFO_NONINTERLEAVED | 3877 SNDRV_PCM_INFO_SYNC_START), 3878 .formats = SNDRV_PCM_FMTBIT_S32_LE, 3879 .rates = (SNDRV_PCM_RATE_32000 | 3880 SNDRV_PCM_RATE_44100 | 3881 SNDRV_PCM_RATE_48000 | 3882 SNDRV_PCM_RATE_64000 | 3883 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 3884 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000), 3885 .rate_min = 32000, 3886 .rate_max = 192000, 3887 .channels_min = 1, 3888 .channels_max = HDSPM_MAX_CHANNELS, 3889 .buffer_bytes_max = 3890 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 3891 .period_bytes_min = (64 * 4), 3892 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 3893 .periods_min = 2, 3894 .periods_max = 2, 3895 .fifo_size = 0 3896 }; 3897 3898 static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes = { 3899 .count = ARRAY_SIZE(period_sizes), 3900 .list = period_sizes, 3901 .mask = 0 3902 }; 3903 3904 3905 static int snd_hdspm_hw_rule_channels_rate(struct snd_pcm_hw_params *params, 3906 struct snd_pcm_hw_rule * rule) 3907 { 3908 struct hdspm *hdspm = rule->private; 3909 struct snd_interval *c = 3910 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 3911 struct snd_interval *r = 3912 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 3913 3914 if (r->min > 48000 && r->max <= 96000) { 3915 struct snd_interval t = { 3916 .min = hdspm->ds_channels, 3917 .max = hdspm->ds_channels, 3918 .integer = 1, 3919 }; 3920 return snd_interval_refine(c, &t); 3921 } else if (r->max < 64000) { 3922 struct snd_interval t = { 3923 .min = hdspm->ss_channels, 3924 .max = hdspm->ss_channels, 3925 .integer = 1, 3926 }; 3927 return snd_interval_refine(c, &t); 3928 } 3929 return 0; 3930 } 3931 3932 static int snd_hdspm_hw_rule_rate_channels(struct snd_pcm_hw_params *params, 3933 struct snd_pcm_hw_rule * rule) 3934 { 3935 struct hdspm *hdspm = rule->private; 3936 struct snd_interval *c = 3937 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 3938 struct snd_interval *r = 3939 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 3940 3941 if (c->min >= hdspm->ss_channels) { 3942 struct snd_interval t = { 3943 .min = 32000, 3944 .max = 48000, 3945 .integer = 1, 3946 }; 3947 return snd_interval_refine(r, &t); 3948 } else if (c->max <= hdspm->ds_channels) { 3949 struct snd_interval t = { 3950 .min = 64000, 3951 .max = 96000, 3952 .integer = 1, 3953 }; 3954 3955 return snd_interval_refine(r, &t); 3956 } 3957 return 0; 3958 } 3959 3960 static int snd_hdspm_hw_rule_channels(struct snd_pcm_hw_params *params, 3961 struct snd_pcm_hw_rule *rule) 3962 { 3963 unsigned int list[3]; 3964 struct hdspm *hdspm = rule->private; 3965 struct snd_interval *c = hw_param_interval(params, 3966 SNDRV_PCM_HW_PARAM_CHANNELS); 3967 if (hdspm->is_aes32) { 3968 list[0] = hdspm->qs_channels; 3969 list[1] = hdspm->ds_channels; 3970 list[2] = hdspm->ss_channels; 3971 return snd_interval_list(c, 3, list, 0); 3972 } else { 3973 list[0] = hdspm->ds_channels; 3974 list[1] = hdspm->ss_channels; 3975 return snd_interval_list(c, 2, list, 0); 3976 } 3977 } 3978 3979 3980 static unsigned int hdspm_aes32_sample_rates[] = { 3981 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 3982 }; 3983 3984 static struct snd_pcm_hw_constraint_list 3985 hdspm_hw_constraints_aes32_sample_rates = { 3986 .count = ARRAY_SIZE(hdspm_aes32_sample_rates), 3987 .list = hdspm_aes32_sample_rates, 3988 .mask = 0 3989 }; 3990 3991 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream) 3992 { 3993 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 3994 struct snd_pcm_runtime *runtime = substream->runtime; 3995 3996 spin_lock_irq(&hdspm->lock); 3997 3998 snd_pcm_set_sync(substream); 3999 4000 runtime->hw = snd_hdspm_playback_subinfo; 4001 4002 if (hdspm->capture_substream == NULL) 4003 hdspm_stop_audio(hdspm); 4004 4005 hdspm->playback_pid = current->pid; 4006 hdspm->playback_substream = substream; 4007 4008 spin_unlock_irq(&hdspm->lock); 4009 4010 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 4011 4012 snd_pcm_hw_constraint_list(runtime, 0, 4013 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 4014 &hw_constraints_period_sizes); 4015 4016 if (hdspm->is_aes32) { 4017 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4018 &hdspm_hw_constraints_aes32_sample_rates); 4019 } else { 4020 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4021 snd_hdspm_hw_rule_channels, hdspm, 4022 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4023 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4024 snd_hdspm_hw_rule_channels_rate, hdspm, 4025 SNDRV_PCM_HW_PARAM_RATE, -1); 4026 4027 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4028 snd_hdspm_hw_rule_rate_channels, hdspm, 4029 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4030 } 4031 return 0; 4032 } 4033 4034 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream) 4035 { 4036 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 4037 4038 spin_lock_irq(&hdspm->lock); 4039 4040 hdspm->playback_pid = -1; 4041 hdspm->playback_substream = NULL; 4042 4043 spin_unlock_irq(&hdspm->lock); 4044 4045 return 0; 4046 } 4047 4048 4049 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream) 4050 { 4051 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 4052 struct snd_pcm_runtime *runtime = substream->runtime; 4053 4054 spin_lock_irq(&hdspm->lock); 4055 snd_pcm_set_sync(substream); 4056 runtime->hw = snd_hdspm_capture_subinfo; 4057 4058 if (hdspm->playback_substream == NULL) 4059 hdspm_stop_audio(hdspm); 4060 4061 hdspm->capture_pid = current->pid; 4062 hdspm->capture_substream = substream; 4063 4064 spin_unlock_irq(&hdspm->lock); 4065 4066 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 4067 snd_pcm_hw_constraint_list(runtime, 0, 4068 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 4069 &hw_constraints_period_sizes); 4070 if (hdspm->is_aes32) { 4071 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4072 &hdspm_hw_constraints_aes32_sample_rates); 4073 } else { 4074 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4075 snd_hdspm_hw_rule_channels, hdspm, 4076 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4077 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4078 snd_hdspm_hw_rule_channels_rate, hdspm, 4079 SNDRV_PCM_HW_PARAM_RATE, -1); 4080 4081 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4082 snd_hdspm_hw_rule_rate_channels, hdspm, 4083 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4084 } 4085 return 0; 4086 } 4087 4088 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream) 4089 { 4090 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 4091 4092 spin_lock_irq(&hdspm->lock); 4093 4094 hdspm->capture_pid = -1; 4095 hdspm->capture_substream = NULL; 4096 4097 spin_unlock_irq(&hdspm->lock); 4098 return 0; 4099 } 4100 4101 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep * hw, struct file *file) 4102 { 4103 /* we have nothing to initialize but the call is required */ 4104 return 0; 4105 } 4106 4107 4108 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep * hw, struct file *file, 4109 unsigned int cmd, unsigned long arg) 4110 { 4111 struct hdspm *hdspm = hw->private_data; 4112 struct hdspm_mixer_ioctl mixer; 4113 struct hdspm_config_info info; 4114 struct hdspm_version hdspm_version; 4115 struct hdspm_peak_rms_ioctl rms; 4116 4117 switch (cmd) { 4118 4119 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS: 4120 if (copy_from_user(&rms, (void __user *)arg, sizeof(rms))) 4121 return -EFAULT; 4122 /* maybe there is a chance to memorymap in future 4123 * so dont touch just copy 4124 */ 4125 if(copy_to_user_fromio((void __user *)rms.peak, 4126 hdspm->iobase+HDSPM_MADI_peakrmsbase, 4127 sizeof(struct hdspm_peak_rms)) != 0 ) 4128 return -EFAULT; 4129 4130 break; 4131 4132 4133 case SNDRV_HDSPM_IOCTL_GET_CONFIG_INFO: 4134 4135 spin_lock_irq(&hdspm->lock); 4136 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm); 4137 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm); 4138 4139 info.system_sample_rate = hdspm->system_sample_rate; 4140 info.autosync_sample_rate = 4141 hdspm_external_sample_rate(hdspm); 4142 info.system_clock_mode = hdspm_system_clock_mode(hdspm); 4143 info.clock_source = hdspm_clock_source(hdspm); 4144 info.autosync_ref = hdspm_autosync_ref(hdspm); 4145 info.line_out = hdspm_line_out(hdspm); 4146 info.passthru = 0; 4147 spin_unlock_irq(&hdspm->lock); 4148 if (copy_to_user((void __user *) arg, &info, sizeof(info))) 4149 return -EFAULT; 4150 break; 4151 4152 case SNDRV_HDSPM_IOCTL_GET_VERSION: 4153 hdspm_version.firmware_rev = hdspm->firmware_rev; 4154 if (copy_to_user((void __user *) arg, &hdspm_version, 4155 sizeof(hdspm_version))) 4156 return -EFAULT; 4157 break; 4158 4159 case SNDRV_HDSPM_IOCTL_GET_MIXER: 4160 if (copy_from_user(&mixer, (void __user *)arg, sizeof(mixer))) 4161 return -EFAULT; 4162 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer, 4163 sizeof(struct hdspm_mixer))) 4164 return -EFAULT; 4165 break; 4166 4167 default: 4168 return -EINVAL; 4169 } 4170 return 0; 4171 } 4172 4173 static struct snd_pcm_ops snd_hdspm_playback_ops = { 4174 .open = snd_hdspm_playback_open, 4175 .close = snd_hdspm_playback_release, 4176 .ioctl = snd_hdspm_ioctl, 4177 .hw_params = snd_hdspm_hw_params, 4178 .hw_free = snd_hdspm_hw_free, 4179 .prepare = snd_hdspm_prepare, 4180 .trigger = snd_hdspm_trigger, 4181 .pointer = snd_hdspm_hw_pointer, 4182 .copy = snd_hdspm_playback_copy, 4183 .silence = snd_hdspm_hw_silence, 4184 .page = snd_pcm_sgbuf_ops_page, 4185 }; 4186 4187 static struct snd_pcm_ops snd_hdspm_capture_ops = { 4188 .open = snd_hdspm_capture_open, 4189 .close = snd_hdspm_capture_release, 4190 .ioctl = snd_hdspm_ioctl, 4191 .hw_params = snd_hdspm_hw_params, 4192 .hw_free = snd_hdspm_hw_free, 4193 .prepare = snd_hdspm_prepare, 4194 .trigger = snd_hdspm_trigger, 4195 .pointer = snd_hdspm_hw_pointer, 4196 .copy = snd_hdspm_capture_copy, 4197 .page = snd_pcm_sgbuf_ops_page, 4198 }; 4199 4200 static int __devinit snd_hdspm_create_hwdep(struct snd_card *card, 4201 struct hdspm * hdspm) 4202 { 4203 struct snd_hwdep *hw; 4204 int err; 4205 4206 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw); 4207 if (err < 0) 4208 return err; 4209 4210 hdspm->hwdep = hw; 4211 hw->private_data = hdspm; 4212 strcpy(hw->name, "HDSPM hwdep interface"); 4213 4214 hw->ops.open = snd_hdspm_hwdep_dummy_op; 4215 hw->ops.ioctl = snd_hdspm_hwdep_ioctl; 4216 hw->ops.release = snd_hdspm_hwdep_dummy_op; 4217 4218 return 0; 4219 } 4220 4221 4222 /*------------------------------------------------------------ 4223 memory interface 4224 ------------------------------------------------------------*/ 4225 static int __devinit snd_hdspm_preallocate_memory(struct hdspm * hdspm) 4226 { 4227 int err; 4228 struct snd_pcm *pcm; 4229 size_t wanted; 4230 4231 pcm = hdspm->pcm; 4232 4233 wanted = HDSPM_DMA_AREA_BYTES; 4234 4235 err = 4236 snd_pcm_lib_preallocate_pages_for_all(pcm, 4237 SNDRV_DMA_TYPE_DEV_SG, 4238 snd_dma_pci_data(hdspm->pci), 4239 wanted, 4240 wanted); 4241 if (err < 0) { 4242 snd_printdd("Could not preallocate %zd Bytes\n", wanted); 4243 4244 return err; 4245 } else 4246 snd_printdd(" Preallocated %zd Bytes\n", wanted); 4247 4248 return 0; 4249 } 4250 4251 static void hdspm_set_sgbuf(struct hdspm * hdspm, struct snd_sg_buf *sgbuf, 4252 unsigned int reg, int channels) 4253 { 4254 int i; 4255 for (i = 0; i < (channels * 16); i++) 4256 hdspm_write(hdspm, reg + 4 * i, 4257 snd_pcm_sgbuf_get_addr(sgbuf, (size_t) 4096 * i)); 4258 } 4259 4260 /* ------------- ALSA Devices ---------------------------- */ 4261 static int __devinit snd_hdspm_create_pcm(struct snd_card *card, 4262 struct hdspm * hdspm) 4263 { 4264 struct snd_pcm *pcm; 4265 int err; 4266 4267 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm); 4268 if (err < 0) 4269 return err; 4270 4271 hdspm->pcm = pcm; 4272 pcm->private_data = hdspm; 4273 strcpy(pcm->name, hdspm->card_name); 4274 4275 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 4276 &snd_hdspm_playback_ops); 4277 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 4278 &snd_hdspm_capture_ops); 4279 4280 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 4281 4282 err = snd_hdspm_preallocate_memory(hdspm); 4283 if (err < 0) 4284 return err; 4285 4286 return 0; 4287 } 4288 4289 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm) 4290 { 4291 snd_hdspm_flush_midi_input(hdspm, 0); 4292 snd_hdspm_flush_midi_input(hdspm, 1); 4293 } 4294 4295 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card, 4296 struct hdspm * hdspm) 4297 { 4298 int err; 4299 4300 snd_printdd("Create card...\n"); 4301 err = snd_hdspm_create_pcm(card, hdspm); 4302 if (err < 0) 4303 return err; 4304 4305 err = snd_hdspm_create_midi(card, hdspm, 0); 4306 if (err < 0) 4307 return err; 4308 4309 err = snd_hdspm_create_midi(card, hdspm, 1); 4310 if (err < 0) 4311 return err; 4312 4313 err = snd_hdspm_create_controls(card, hdspm); 4314 if (err < 0) 4315 return err; 4316 4317 err = snd_hdspm_create_hwdep(card, hdspm); 4318 if (err < 0) 4319 return err; 4320 4321 snd_printdd("proc init...\n"); 4322 snd_hdspm_proc_init(hdspm); 4323 4324 hdspm->system_sample_rate = -1; 4325 hdspm->last_external_sample_rate = -1; 4326 hdspm->last_internal_sample_rate = -1; 4327 hdspm->playback_pid = -1; 4328 hdspm->capture_pid = -1; 4329 hdspm->capture_substream = NULL; 4330 hdspm->playback_substream = NULL; 4331 4332 snd_printdd("Set defaults...\n"); 4333 err = snd_hdspm_set_defaults(hdspm); 4334 if (err < 0) 4335 return err; 4336 4337 snd_printdd("Update mixer controls...\n"); 4338 hdspm_update_simple_mixer_controls(hdspm); 4339 4340 snd_printdd("Initializeing complete ???\n"); 4341 4342 err = snd_card_register(card); 4343 if (err < 0) { 4344 snd_printk(KERN_ERR "HDSPM: error registering card\n"); 4345 return err; 4346 } 4347 4348 snd_printdd("... yes now\n"); 4349 4350 return 0; 4351 } 4352 4353 static int __devinit snd_hdspm_create(struct snd_card *card, 4354 struct hdspm *hdspm, 4355 int precise_ptr, int enable_monitor) 4356 { 4357 struct pci_dev *pci = hdspm->pci; 4358 int err; 4359 unsigned long io_extent; 4360 4361 hdspm->irq = -1; 4362 4363 spin_lock_init(&hdspm->midi[0].lock); 4364 spin_lock_init(&hdspm->midi[1].lock); 4365 4366 hdspm->card = card; 4367 4368 spin_lock_init(&hdspm->lock); 4369 4370 tasklet_init(&hdspm->midi_tasklet, 4371 hdspm_midi_tasklet, (unsigned long) hdspm); 4372 4373 pci_read_config_word(hdspm->pci, 4374 PCI_CLASS_REVISION, &hdspm->firmware_rev); 4375 4376 hdspm->is_aes32 = (hdspm->firmware_rev >= HDSPM_AESREVISION); 4377 4378 strcpy(card->mixername, "Xilinx FPGA"); 4379 if (hdspm->is_aes32) { 4380 strcpy(card->driver, "HDSPAES32"); 4381 hdspm->card_name = "RME HDSPM AES32"; 4382 } else { 4383 strcpy(card->driver, "HDSPM"); 4384 hdspm->card_name = "RME HDSPM MADI"; 4385 } 4386 4387 err = pci_enable_device(pci); 4388 if (err < 0) 4389 return err; 4390 4391 pci_set_master(hdspm->pci); 4392 4393 err = pci_request_regions(pci, "hdspm"); 4394 if (err < 0) 4395 return err; 4396 4397 hdspm->port = pci_resource_start(pci, 0); 4398 io_extent = pci_resource_len(pci, 0); 4399 4400 snd_printdd("grabbed memory region 0x%lx-0x%lx\n", 4401 hdspm->port, hdspm->port + io_extent - 1); 4402 4403 4404 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent); 4405 if (!hdspm->iobase) { 4406 snd_printk(KERN_ERR "HDSPM: " 4407 "unable to remap region 0x%lx-0x%lx\n", 4408 hdspm->port, hdspm->port + io_extent - 1); 4409 return -EBUSY; 4410 } 4411 snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n", 4412 (unsigned long)hdspm->iobase, hdspm->port, 4413 hdspm->port + io_extent - 1); 4414 4415 if (request_irq(pci->irq, snd_hdspm_interrupt, 4416 IRQF_SHARED, "hdspm", hdspm)) { 4417 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq); 4418 return -EBUSY; 4419 } 4420 4421 snd_printdd("use IRQ %d\n", pci->irq); 4422 4423 hdspm->irq = pci->irq; 4424 hdspm->precise_ptr = precise_ptr; 4425 4426 hdspm->monitor_outs = enable_monitor; 4427 4428 snd_printdd("kmalloc Mixer memory of %zd Bytes\n", 4429 sizeof(struct hdspm_mixer)); 4430 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL); 4431 if (!hdspm->mixer) { 4432 snd_printk(KERN_ERR "HDSPM: " 4433 "unable to kmalloc Mixer memory of %d Bytes\n", 4434 (int)sizeof(struct hdspm_mixer)); 4435 return err; 4436 } 4437 4438 hdspm->ss_channels = MADI_SS_CHANNELS; 4439 hdspm->ds_channels = MADI_DS_CHANNELS; 4440 hdspm->qs_channels = MADI_QS_CHANNELS; 4441 4442 snd_printdd("create alsa devices.\n"); 4443 err = snd_hdspm_create_alsa_devices(card, hdspm); 4444 if (err < 0) 4445 return err; 4446 4447 snd_hdspm_initialize_midi_flush(hdspm); 4448 4449 return 0; 4450 } 4451 4452 static int snd_hdspm_free(struct hdspm * hdspm) 4453 { 4454 4455 if (hdspm->port) { 4456 4457 /* stop th audio, and cancel all interrupts */ 4458 hdspm->control_register &= 4459 ~(HDSPM_Start | HDSPM_AudioInterruptEnable | 4460 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable); 4461 hdspm_write(hdspm, HDSPM_controlRegister, 4462 hdspm->control_register); 4463 } 4464 4465 if (hdspm->irq >= 0) 4466 free_irq(hdspm->irq, (void *) hdspm); 4467 4468 kfree(hdspm->mixer); 4469 4470 if (hdspm->iobase) 4471 iounmap(hdspm->iobase); 4472 4473 if (hdspm->port) 4474 pci_release_regions(hdspm->pci); 4475 4476 pci_disable_device(hdspm->pci); 4477 return 0; 4478 } 4479 4480 static void snd_hdspm_card_free(struct snd_card *card) 4481 { 4482 struct hdspm *hdspm = card->private_data; 4483 4484 if (hdspm) 4485 snd_hdspm_free(hdspm); 4486 } 4487 4488 static int __devinit snd_hdspm_probe(struct pci_dev *pci, 4489 const struct pci_device_id *pci_id) 4490 { 4491 static int dev; 4492 struct hdspm *hdspm; 4493 struct snd_card *card; 4494 int err; 4495 4496 if (dev >= SNDRV_CARDS) 4497 return -ENODEV; 4498 if (!enable[dev]) { 4499 dev++; 4500 return -ENOENT; 4501 } 4502 4503 card = snd_card_new(index[dev], id[dev], 4504 THIS_MODULE, sizeof(struct hdspm)); 4505 if (!card) 4506 return -ENOMEM; 4507 4508 hdspm = card->private_data; 4509 card->private_free = snd_hdspm_card_free; 4510 hdspm->dev = dev; 4511 hdspm->pci = pci; 4512 4513 snd_card_set_dev(card, &pci->dev); 4514 4515 err = snd_hdspm_create(card, hdspm, precise_ptr[dev], 4516 enable_monitor[dev]); 4517 if (err < 0) { 4518 snd_card_free(card); 4519 return err; 4520 } 4521 4522 strcpy(card->shortname, "HDSPM MADI"); 4523 sprintf(card->longname, "%s at 0x%lx, irq %d", hdspm->card_name, 4524 hdspm->port, hdspm->irq); 4525 4526 err = snd_card_register(card); 4527 if (err < 0) { 4528 snd_card_free(card); 4529 return err; 4530 } 4531 4532 pci_set_drvdata(pci, card); 4533 4534 dev++; 4535 return 0; 4536 } 4537 4538 static void __devexit snd_hdspm_remove(struct pci_dev *pci) 4539 { 4540 snd_card_free(pci_get_drvdata(pci)); 4541 pci_set_drvdata(pci, NULL); 4542 } 4543 4544 static struct pci_driver driver = { 4545 .name = "RME Hammerfall DSP MADI", 4546 .id_table = snd_hdspm_ids, 4547 .probe = snd_hdspm_probe, 4548 .remove = __devexit_p(snd_hdspm_remove), 4549 }; 4550 4551 4552 static int __init alsa_card_hdspm_init(void) 4553 { 4554 return pci_register_driver(&driver); 4555 } 4556 4557 static void __exit alsa_card_hdspm_exit(void) 4558 { 4559 pci_unregister_driver(&driver); 4560 } 4561 4562 module_init(alsa_card_hdspm_init) 4563 module_exit(alsa_card_hdspm_exit) 4564