1 /* 2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s) 3 * 4 * Copyright (c) 2003 Winfried Ritsch (IEM) 5 * code based on hdsp.c Paul Davis 6 * Marcus Andersson 7 * Thomas Charbonnel 8 * Modified 2006-06-01 for AES32 support by Remy Bruno 9 * <remy.bruno@trinnov.com> 10 * 11 * Modified 2009-04-13 for proper metering by Florian Faber 12 * <faber@faberman.de> 13 * 14 * Modified 2009-04-14 for native float support by Florian Faber 15 * <faber@faberman.de> 16 * 17 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber 18 * <faber@faberman.de> 19 * 20 * Modified 2009-04-30 added hw serial number support by Florian Faber 21 * 22 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth 23 * 24 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth 25 * 26 * This program is free software; you can redistribute it and/or modify 27 * it under the terms of the GNU General Public License as published by 28 * the Free Software Foundation; either version 2 of the License, or 29 * (at your option) any later version. 30 * 31 * This program is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 34 * GNU General Public License for more details. 35 * 36 * You should have received a copy of the GNU General Public License 37 * along with this program; if not, write to the Free Software 38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 39 * 40 */ 41 42 /* ************* Register Documentation ******************************************************* 43 * 44 * Work in progress! Documentation is based on the code in this file. 45 * 46 * --------- HDSPM_controlRegister --------- 47 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 48 * :||||.||||:||||.||||:||||.||||:||||.||||: 49 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 50 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 51 * :||||.||||:||||.||||:||||.||||:||||.||||: 52 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 53 * : . : . : . : x . : HDSPM_AudioInterruptEnable \_ setting both bits 54 * : . : . : . : . x: HDSPM_Start / enables audio IO 55 * : . : . : . : x. : HDSPM_ClockModeMaster - 1: Master, 0: Slave 56 * : . : . : . : .210 : HDSPM_LatencyMask - 3 Bit value for latency 57 * : . : . : . : . : 0:64, 1:128, 2:256, 3:512, 58 * : . : . : . : . : 4:1024, 5:2048, 6:4096, 7:8192 59 * :x . : . : . x:xx . : HDSPM_FrequencyMask 60 * : . : . : . :10 . : HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=?? 61 * : . : . : . x: . : <MADI> HDSPM_DoubleSpeed 62 * :x . : . : . : . : <MADI> HDSPM_QuadSpeed 63 * : . 3 : . 10: 2 . : . : HDSPM_SyncRefMask : 64 * : . : . x: . : . : HDSPM_SyncRef0 65 * : . : . x : . : . : HDSPM_SyncRef1 66 * : . : . : x . : . : <AES32> HDSPM_SyncRef2 67 * : . x : . : . : . : <AES32> HDSPM_SyncRef3 68 * : . : . 10: . : . : <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn 69 * : . 3 : . 10: 2 . : . : <AES32> 0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn? 70 * : . x : . : . : . : <MADIe> HDSPe_FLOAT_FORMAT 71 * : . : . : x . : . : <MADI> HDSPM_InputSelect0 : 0=optical,1=coax 72 * : . : . :x . : . : <MADI> HDSPM_InputSelect1 73 * : . : .x : . : . : <MADI> HDSPM_clr_tms 74 * : . : . : . x : . : <MADI> HDSPM_TX_64ch 75 * : . : . : . x : . : <AES32> HDSPM_Emphasis 76 * : . : . : .x : . : <MADI> HDSPM_AutoInp 77 * : . : . x : . : . : <MADI> HDSPM_SMUX 78 * : . : .x : . : . : <MADI> HDSPM_clr_tms 79 * : . : x. : . : . : <MADI> HDSPM_taxi_reset 80 * : . x: . : . : . : <MADI> HDSPM_LineOut 81 * : . x: . : . : . : <AES32> ?????????????????? 82 * : . : x. : . : . : <AES32> HDSPM_WCK48 83 * : . : . : .x : . : <AES32> HDSPM_Dolby 84 * : . : x . : . : . : HDSPM_Midi0InterruptEnable 85 * : . :x . : . : . : HDSPM_Midi1InterruptEnable 86 * : . : x . : . : . : HDSPM_Midi2InterruptEnable 87 * : . x : . : . : . : <MADI> HDSPM_Midi3InterruptEnable 88 * : . x : . : . : . : <AES32> HDSPM_DS_DoubleWire 89 * : .x : . : . : . : <AES32> HDSPM_QS_DoubleWire 90 * : x. : . : . : . : <AES32> HDSPM_QS_QuadWire 91 * : . : . : . x : . : <AES32> HDSPM_Professional 92 * : x . : . : . : . : HDSPM_wclk_sel 93 * : . : . : . : . : 94 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 95 * :||||.||||:||||.||||:||||.||||:||||.||||: 96 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 97 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 98 * :||||.||||:||||.||||:||||.||||:||||.||||: 99 * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit 100 * 101 * 102 * 103 * AIO / RayDAT only 104 * 105 * ------------ HDSPM_WR_SETTINGS ---------- 106 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 107 * :1098.7654:3210.9876:5432.1098:7654.3210: 108 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 109 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 110 * :||||.||||:||||.||||:||||.||||:||||.||||: 111 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 112 * : . : . : . : . x: HDSPM_c0Master 1: Master, 0: Slave 113 * : . : . : . : . x : HDSPM_c0_SyncRef0 114 * : . : . : . : . x : HDSPM_c0_SyncRef1 115 * : . : . : . : .x : HDSPM_c0_SyncRef2 116 * : . : . : . : x. : HDSPM_c0_SyncRef3 117 * : . : . : . : 3.210 : HDSPM_c0_SyncRefMask: 118 * : . : . : . : . : RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4, 119 * : . : . : . : . : 9:TCO, 10:SyncIn 120 * : . : . : . : . : AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT, 121 * : . : . : . : . : 9:TCO, 10:SyncIn 122 * : . : . : . : . : 123 * : . : . : . : . : 124 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 125 * :1098.7654:3210.9876:5432.1098:7654.3210: 126 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 127 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 128 * :||||.||||:||||.||||:||||.||||:||||.||||: 129 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 130 * 131 */ 132 #include <linux/init.h> 133 #include <linux/delay.h> 134 #include <linux/interrupt.h> 135 #include <linux/module.h> 136 #include <linux/slab.h> 137 #include <linux/pci.h> 138 #include <linux/math64.h> 139 #include <linux/io.h> 140 141 #include <sound/core.h> 142 #include <sound/control.h> 143 #include <sound/pcm.h> 144 #include <sound/pcm_params.h> 145 #include <sound/info.h> 146 #include <sound/asoundef.h> 147 #include <sound/rawmidi.h> 148 #include <sound/hwdep.h> 149 #include <sound/initval.h> 150 151 #include <sound/hdspm.h> 152 153 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 154 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 155 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ 156 157 module_param_array(index, int, NULL, 0444); 158 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface."); 159 160 module_param_array(id, charp, NULL, 0444); 161 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface."); 162 163 module_param_array(enable, bool, NULL, 0444); 164 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards."); 165 166 167 MODULE_AUTHOR 168 ( 169 "Winfried Ritsch <ritsch_AT_iem.at>, " 170 "Paul Davis <paul@linuxaudiosystems.com>, " 171 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, " 172 "Remy Bruno <remy.bruno@trinnov.com>, " 173 "Florian Faber <faberman@linuxproaudio.org>, " 174 "Adrian Knoth <adi@drcomp.erfurt.thur.de>" 175 ); 176 MODULE_DESCRIPTION("RME HDSPM"); 177 MODULE_LICENSE("GPL"); 178 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); 179 180 /* --- Write registers. --- 181 These are defined as byte-offsets from the iobase value. */ 182 183 #define HDSPM_WR_SETTINGS 0 184 #define HDSPM_outputBufferAddress 32 185 #define HDSPM_inputBufferAddress 36 186 #define HDSPM_controlRegister 64 187 #define HDSPM_interruptConfirmation 96 188 #define HDSPM_control2Reg 256 /* not in specs ???????? */ 189 #define HDSPM_freqReg 256 /* for setting arbitrary clock values (DDS feature) */ 190 #define HDSPM_midiDataOut0 352 /* just believe in old code */ 191 #define HDSPM_midiDataOut1 356 192 #define HDSPM_eeprom_wr 384 /* for AES32 */ 193 194 /* DMA enable for 64 channels, only Bit 0 is relevant */ 195 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */ 196 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */ 197 198 /* 16 page addresses for each of the 64 channels DMA buffer in and out 199 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */ 200 #define HDSPM_pageAddressBufferOut 8192 201 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4) 202 203 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */ 204 205 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */ 206 207 /* --- Read registers. --- 208 These are defined as byte-offsets from the iobase value */ 209 #define HDSPM_statusRegister 0 210 /*#define HDSPM_statusRegister2 96 */ 211 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at 212 * offset 192, for AES32 *and* MADI 213 * => need to check that offset 192 is working on MADI */ 214 #define HDSPM_statusRegister2 192 215 #define HDSPM_timecodeRegister 128 216 217 /* AIO, RayDAT */ 218 #define HDSPM_RD_STATUS_0 0 219 #define HDSPM_RD_STATUS_1 64 220 #define HDSPM_RD_STATUS_2 128 221 #define HDSPM_RD_STATUS_3 192 222 223 #define HDSPM_RD_TCO 256 224 #define HDSPM_RD_PLL_FREQ 512 225 #define HDSPM_WR_TCO 128 226 227 #define HDSPM_TCO1_TCO_lock 0x00000001 228 #define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002 229 #define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004 230 #define HDSPM_TCO1_LTC_Input_valid 0x00000008 231 #define HDSPM_TCO1_WCK_Input_valid 0x00000010 232 #define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020 233 #define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040 234 235 #define HDSPM_TCO1_set_TC 0x00000100 236 #define HDSPM_TCO1_set_drop_frame_flag 0x00000200 237 #define HDSPM_TCO1_LTC_Format_LSB 0x00000400 238 #define HDSPM_TCO1_LTC_Format_MSB 0x00000800 239 240 #define HDSPM_TCO2_TC_run 0x00010000 241 #define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000 242 #define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000 243 #define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000 244 #define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000 245 #define HDSPM_TCO2_set_jam_sync 0x00200000 246 #define HDSPM_TCO2_set_flywheel 0x00400000 247 248 #define HDSPM_TCO2_set_01_4 0x01000000 249 #define HDSPM_TCO2_set_pull_down 0x02000000 250 #define HDSPM_TCO2_set_pull_up 0x04000000 251 #define HDSPM_TCO2_set_freq 0x08000000 252 #define HDSPM_TCO2_set_term_75R 0x10000000 253 #define HDSPM_TCO2_set_input_LSB 0x20000000 254 #define HDSPM_TCO2_set_input_MSB 0x40000000 255 #define HDSPM_TCO2_set_freq_from_app 0x80000000 256 257 258 #define HDSPM_midiDataOut0 352 259 #define HDSPM_midiDataOut1 356 260 #define HDSPM_midiDataOut2 368 261 262 #define HDSPM_midiDataIn0 360 263 #define HDSPM_midiDataIn1 364 264 #define HDSPM_midiDataIn2 372 265 #define HDSPM_midiDataIn3 376 266 267 /* status is data bytes in MIDI-FIFO (0-128) */ 268 #define HDSPM_midiStatusOut0 384 269 #define HDSPM_midiStatusOut1 388 270 #define HDSPM_midiStatusOut2 400 271 272 #define HDSPM_midiStatusIn0 392 273 #define HDSPM_midiStatusIn1 396 274 #define HDSPM_midiStatusIn2 404 275 #define HDSPM_midiStatusIn3 408 276 277 278 /* the meters are regular i/o-mapped registers, but offset 279 considerably from the rest. the peak registers are reset 280 when read; the least-significant 4 bits are full-scale counters; 281 the actual peak value is in the most-significant 24 bits. 282 */ 283 284 #define HDSPM_MADI_INPUT_PEAK 4096 285 #define HDSPM_MADI_PLAYBACK_PEAK 4352 286 #define HDSPM_MADI_OUTPUT_PEAK 4608 287 288 #define HDSPM_MADI_INPUT_RMS_L 6144 289 #define HDSPM_MADI_PLAYBACK_RMS_L 6400 290 #define HDSPM_MADI_OUTPUT_RMS_L 6656 291 292 #define HDSPM_MADI_INPUT_RMS_H 7168 293 #define HDSPM_MADI_PLAYBACK_RMS_H 7424 294 #define HDSPM_MADI_OUTPUT_RMS_H 7680 295 296 /* --- Control Register bits --------- */ 297 #define HDSPM_Start (1<<0) /* start engine */ 298 299 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */ 300 #define HDSPM_Latency1 (1<<2) /* where n is defined */ 301 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */ 302 303 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */ 304 #define HDSPM_c0Master 0x1 /* Master clock bit in settings 305 register [RayDAT, AIO] */ 306 307 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */ 308 309 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ 310 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ 311 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 312 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */ 313 314 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */ 315 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, 316 56channelMODE=0 */ /* MADI ONLY*/ 317 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */ 318 319 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, 320 0=off, 1=on */ /* MADI ONLY */ 321 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */ 322 323 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax 324 * -- MADI ONLY 325 */ 326 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */ 327 328 #define HDSPM_SyncRef2 (1<<13) 329 #define HDSPM_SyncRef3 (1<<25) 330 331 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */ 332 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use 333 AES additional bits in 334 lower 5 Audiodatabits ??? */ 335 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */ 336 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */ 337 338 #define HDSPM_Midi0InterruptEnable 0x0400000 339 #define HDSPM_Midi1InterruptEnable 0x0800000 340 #define HDSPM_Midi2InterruptEnable 0x0200000 341 #define HDSPM_Midi3InterruptEnable 0x4000000 342 343 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ 344 #define HDSPe_FLOAT_FORMAT 0x2000000 345 346 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */ 347 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */ 348 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */ 349 350 #define HDSPM_wclk_sel (1<<30) 351 352 /* additional control register bits for AIO*/ 353 #define HDSPM_c0_Wck48 0x20 /* also RayDAT */ 354 #define HDSPM_c0_Input0 0x1000 355 #define HDSPM_c0_Input1 0x2000 356 #define HDSPM_c0_Spdif_Opt 0x4000 357 #define HDSPM_c0_Pro 0x8000 358 #define HDSPM_c0_clr_tms 0x10000 359 #define HDSPM_c0_AEB1 0x20000 360 #define HDSPM_c0_AEB2 0x40000 361 #define HDSPM_c0_LineOut 0x80000 362 #define HDSPM_c0_AD_GAIN0 0x100000 363 #define HDSPM_c0_AD_GAIN1 0x200000 364 #define HDSPM_c0_DA_GAIN0 0x400000 365 #define HDSPM_c0_DA_GAIN1 0x800000 366 #define HDSPM_c0_PH_GAIN0 0x1000000 367 #define HDSPM_c0_PH_GAIN1 0x2000000 368 #define HDSPM_c0_Sym6db 0x4000000 369 370 371 /* --- bit helper defines */ 372 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) 373 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\ 374 HDSPM_DoubleSpeed|HDSPM_QuadSpeed) 375 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) 376 #define HDSPM_InputOptical 0 377 #define HDSPM_InputCoaxial (HDSPM_InputSelect0) 378 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\ 379 HDSPM_SyncRef2|HDSPM_SyncRef3) 380 381 #define HDSPM_c0_SyncRef0 0x2 382 #define HDSPM_c0_SyncRef1 0x4 383 #define HDSPM_c0_SyncRef2 0x8 384 #define HDSPM_c0_SyncRef3 0x10 385 #define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\ 386 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3) 387 388 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */ 389 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */ 390 #define HDSPM_SYNC_FROM_TCO 2 391 #define HDSPM_SYNC_FROM_SYNC_IN 3 392 393 #define HDSPM_Frequency32KHz HDSPM_Frequency0 394 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1 395 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0) 396 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) 397 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) 398 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\ 399 HDSPM_Frequency0) 400 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0) 401 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1) 402 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\ 403 HDSPM_Frequency0) 404 405 406 /* Synccheck Status */ 407 #define HDSPM_SYNC_CHECK_NO_LOCK 0 408 #define HDSPM_SYNC_CHECK_LOCK 1 409 #define HDSPM_SYNC_CHECK_SYNC 2 410 411 /* AutoSync References - used by "autosync_ref" control switch */ 412 #define HDSPM_AUTOSYNC_FROM_WORD 0 413 #define HDSPM_AUTOSYNC_FROM_MADI 1 414 #define HDSPM_AUTOSYNC_FROM_TCO 2 415 #define HDSPM_AUTOSYNC_FROM_SYNC_IN 3 416 #define HDSPM_AUTOSYNC_FROM_NONE 4 417 418 /* Possible sources of MADI input */ 419 #define HDSPM_OPTICAL 0 /* optical */ 420 #define HDSPM_COAXIAL 1 /* BNC */ 421 422 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask) 423 #define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1)) 424 425 #define hdspm_encode_in(x) (((x)&0x3)<<14) 426 #define hdspm_decode_in(x) (((x)>>14)&0x3) 427 428 /* --- control2 register bits --- */ 429 #define HDSPM_TMS (1<<0) 430 #define HDSPM_TCK (1<<1) 431 #define HDSPM_TDI (1<<2) 432 #define HDSPM_JTAG (1<<3) 433 #define HDSPM_PWDN (1<<4) 434 #define HDSPM_PROGRAM (1<<5) 435 #define HDSPM_CONFIG_MODE_0 (1<<6) 436 #define HDSPM_CONFIG_MODE_1 (1<<7) 437 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/ 438 #define HDSPM_BIGENDIAN_MODE (1<<9) 439 #define HDSPM_RD_MULTIPLE (1<<10) 440 441 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and 442 that do not conflict with specific bits for AES32 seem to be valid also 443 for the AES32 444 */ 445 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ 446 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */ 447 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 448 * (like inp0) 449 */ 450 451 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */ 452 #define HDSPM_madiSync (1<<18) /* MADI is in sync */ 453 454 #define HDSPM_tcoLockMadi 0x00000020 /* Optional TCO locked status for HDSPe MADI*/ 455 #define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/ 456 457 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */ 458 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */ 459 460 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 461 /* since 64byte accurate, last 6 bits are not used */ 462 463 464 465 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */ 466 467 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */ 468 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */ 469 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */ 470 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */ 471 472 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with 473 * Interrupt 474 */ 475 #define HDSPM_tco_detect 0x08000000 476 #define HDSPM_tcoLockAes 0x20000000 /* Optional TCO locked status for HDSPe AES */ 477 478 #define HDSPM_s2_tco_detect 0x00000040 479 #define HDSPM_s2_AEBO_D 0x00000080 480 #define HDSPM_s2_AEBI_D 0x00000100 481 482 483 #define HDSPM_midi0IRQPending 0x40000000 484 #define HDSPM_midi1IRQPending 0x80000000 485 #define HDSPM_midi2IRQPending 0x20000000 486 #define HDSPM_midi2IRQPendingAES 0x00000020 487 #define HDSPM_midi3IRQPending 0x00200000 488 489 /* --- status bit helpers */ 490 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\ 491 HDSPM_madiFreq2|HDSPM_madiFreq3) 492 #define HDSPM_madiFreq32 (HDSPM_madiFreq0) 493 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1) 494 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1) 495 #define HDSPM_madiFreq64 (HDSPM_madiFreq2) 496 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2) 497 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2) 498 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2) 499 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) 500 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) 501 502 /* Status2 Register bits */ /* MADI ONLY */ 503 504 #define HDSPM_version0 (1<<0) /* not really defined but I guess */ 505 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */ 506 #define HDSPM_version2 (1<<2) 507 508 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */ 509 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */ 510 511 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */ 512 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */ 513 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, 111=128 */ 514 #define HDSPM_wc_freq3 0x800 /* 1000=176.4, 1001=192 */ 515 516 #define HDSPM_SyncRef0 0x10000 /* Sync Reference */ 517 #define HDSPM_SyncRef1 0x20000 518 519 #define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */ 520 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */ 521 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */ 522 523 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync) 524 525 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\ 526 HDSPM_wc_freq3) 527 #define HDSPM_wcFreq32 (HDSPM_wc_freq0) 528 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1) 529 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1) 530 #define HDSPM_wcFreq64 (HDSPM_wc_freq2) 531 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2) 532 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2) 533 #define HDSPM_wcFreq128 (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2) 534 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3) 535 #define HDSPM_wcFreq192 (HDSPM_wc_freq0|HDSPM_wc_freq3) 536 537 #define HDSPM_status1_F_0 0x0400000 538 #define HDSPM_status1_F_1 0x0800000 539 #define HDSPM_status1_F_2 0x1000000 540 #define HDSPM_status1_F_3 0x2000000 541 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3) 542 543 544 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 545 HDSPM_SelSyncRef2) 546 #define HDSPM_SelSyncRef_WORD 0 547 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) 548 #define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1) 549 #define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1) 550 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 551 HDSPM_SelSyncRef2) 552 553 /* 554 For AES32, bits for status, status2 and timecode are different 555 */ 556 /* status */ 557 #define HDSPM_AES32_wcLock 0x0200000 558 #define HDSPM_AES32_wcSync 0x0100000 559 #define HDSPM_AES32_wcFreq_bit 22 560 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function 561 HDSPM_bit2freq */ 562 #define HDSPM_AES32_syncref_bit 16 563 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */ 564 565 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0 566 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1 567 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2 568 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3 569 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4 570 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5 571 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6 572 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7 573 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8 574 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9 575 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10 576 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11 577 578 /* status2 */ 579 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */ 580 #define HDSPM_LockAES 0x80 581 #define HDSPM_LockAES1 0x80 582 #define HDSPM_LockAES2 0x40 583 #define HDSPM_LockAES3 0x20 584 #define HDSPM_LockAES4 0x10 585 #define HDSPM_LockAES5 0x8 586 #define HDSPM_LockAES6 0x4 587 #define HDSPM_LockAES7 0x2 588 #define HDSPM_LockAES8 0x1 589 /* 590 Timecode 591 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on 592 AES i+1 593 bits 3210 594 0001 32kHz 595 0010 44.1kHz 596 0011 48kHz 597 0100 64kHz 598 0101 88.2kHz 599 0110 96kHz 600 0111 128kHz 601 1000 176.4kHz 602 1001 192kHz 603 NB: Timecode register doesn't seem to work on AES32 card revision 230 604 */ 605 606 /* Mixer Values */ 607 #define UNITY_GAIN 32768 /* = 65536/2 */ 608 #define MINUS_INFINITY_GAIN 0 609 610 /* Number of channels for different Speed Modes */ 611 #define MADI_SS_CHANNELS 64 612 #define MADI_DS_CHANNELS 32 613 #define MADI_QS_CHANNELS 16 614 615 #define RAYDAT_SS_CHANNELS 36 616 #define RAYDAT_DS_CHANNELS 20 617 #define RAYDAT_QS_CHANNELS 12 618 619 #define AIO_IN_SS_CHANNELS 14 620 #define AIO_IN_DS_CHANNELS 10 621 #define AIO_IN_QS_CHANNELS 8 622 #define AIO_OUT_SS_CHANNELS 16 623 #define AIO_OUT_DS_CHANNELS 12 624 #define AIO_OUT_QS_CHANNELS 10 625 626 #define AES32_CHANNELS 16 627 628 /* the size of a substream (1 mono data stream) */ 629 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024) 630 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES) 631 632 /* the size of the area we need to allocate for DMA transfers. the 633 size is the same regardless of the number of channels, and 634 also the latency to use. 635 for one direction !!! 636 */ 637 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) 638 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) 639 640 #define HDSPM_RAYDAT_REV 211 641 #define HDSPM_AIO_REV 212 642 #define HDSPM_MADIFACE_REV 213 643 644 /* speed factor modes */ 645 #define HDSPM_SPEED_SINGLE 0 646 #define HDSPM_SPEED_DOUBLE 1 647 #define HDSPM_SPEED_QUAD 2 648 649 /* names for speed modes */ 650 static char *hdspm_speed_names[] = { "single", "double", "quad" }; 651 652 static const char *const texts_autosync_aes_tco[] = { "Word Clock", 653 "AES1", "AES2", "AES3", "AES4", 654 "AES5", "AES6", "AES7", "AES8", 655 "TCO", "Sync In" 656 }; 657 static const char *const texts_autosync_aes[] = { "Word Clock", 658 "AES1", "AES2", "AES3", "AES4", 659 "AES5", "AES6", "AES7", "AES8", 660 "Sync In" 661 }; 662 static const char *const texts_autosync_madi_tco[] = { "Word Clock", 663 "MADI", "TCO", "Sync In" }; 664 static const char *const texts_autosync_madi[] = { "Word Clock", 665 "MADI", "Sync In" }; 666 667 static const char *const texts_autosync_raydat_tco[] = { 668 "Word Clock", 669 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 670 "AES", "SPDIF", "TCO", "Sync In" 671 }; 672 static const char *const texts_autosync_raydat[] = { 673 "Word Clock", 674 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 675 "AES", "SPDIF", "Sync In" 676 }; 677 static const char *const texts_autosync_aio_tco[] = { 678 "Word Clock", 679 "ADAT", "AES", "SPDIF", "TCO", "Sync In" 680 }; 681 static const char *const texts_autosync_aio[] = { "Word Clock", 682 "ADAT", "AES", "SPDIF", "Sync In" }; 683 684 static const char *const texts_freq[] = { 685 "No Lock", 686 "32 kHz", 687 "44.1 kHz", 688 "48 kHz", 689 "64 kHz", 690 "88.2 kHz", 691 "96 kHz", 692 "128 kHz", 693 "176.4 kHz", 694 "192 kHz" 695 }; 696 697 static char *texts_ports_madi[] = { 698 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6", 699 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12", 700 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18", 701 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24", 702 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30", 703 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36", 704 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42", 705 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48", 706 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54", 707 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60", 708 "MADI.61", "MADI.62", "MADI.63", "MADI.64", 709 }; 710 711 712 static char *texts_ports_raydat_ss[] = { 713 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6", 714 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 715 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2", 716 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8", 717 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6", 718 "ADAT4.7", "ADAT4.8", 719 "AES.L", "AES.R", 720 "SPDIF.L", "SPDIF.R" 721 }; 722 723 static char *texts_ports_raydat_ds[] = { 724 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", 725 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 726 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4", 727 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", 728 "AES.L", "AES.R", 729 "SPDIF.L", "SPDIF.R" 730 }; 731 732 static char *texts_ports_raydat_qs[] = { 733 "ADAT1.1", "ADAT1.2", 734 "ADAT2.1", "ADAT2.2", 735 "ADAT3.1", "ADAT3.2", 736 "ADAT4.1", "ADAT4.2", 737 "AES.L", "AES.R", 738 "SPDIF.L", "SPDIF.R" 739 }; 740 741 742 static char *texts_ports_aio_in_ss[] = { 743 "Analogue.L", "Analogue.R", 744 "AES.L", "AES.R", 745 "SPDIF.L", "SPDIF.R", 746 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 747 "ADAT.7", "ADAT.8", 748 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 749 }; 750 751 static char *texts_ports_aio_out_ss[] = { 752 "Analogue.L", "Analogue.R", 753 "AES.L", "AES.R", 754 "SPDIF.L", "SPDIF.R", 755 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 756 "ADAT.7", "ADAT.8", 757 "Phone.L", "Phone.R", 758 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 759 }; 760 761 static char *texts_ports_aio_in_ds[] = { 762 "Analogue.L", "Analogue.R", 763 "AES.L", "AES.R", 764 "SPDIF.L", "SPDIF.R", 765 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 766 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 767 }; 768 769 static char *texts_ports_aio_out_ds[] = { 770 "Analogue.L", "Analogue.R", 771 "AES.L", "AES.R", 772 "SPDIF.L", "SPDIF.R", 773 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 774 "Phone.L", "Phone.R", 775 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 776 }; 777 778 static char *texts_ports_aio_in_qs[] = { 779 "Analogue.L", "Analogue.R", 780 "AES.L", "AES.R", 781 "SPDIF.L", "SPDIF.R", 782 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 783 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 784 }; 785 786 static char *texts_ports_aio_out_qs[] = { 787 "Analogue.L", "Analogue.R", 788 "AES.L", "AES.R", 789 "SPDIF.L", "SPDIF.R", 790 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 791 "Phone.L", "Phone.R", 792 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 793 }; 794 795 static char *texts_ports_aes32[] = { 796 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7", 797 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14", 798 "AES.15", "AES.16" 799 }; 800 801 /* These tables map the ALSA channels 1..N to the channels that we 802 need to use in order to find the relevant channel buffer. RME 803 refers to this kind of mapping as between "the ADAT channel and 804 the DMA channel." We index it using the logical audio channel, 805 and the value is the DMA channel (i.e. channel buffer number) 806 where the data for that channel can be read/written from/to. 807 */ 808 809 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = { 810 0, 1, 2, 3, 4, 5, 6, 7, 811 8, 9, 10, 11, 12, 13, 14, 15, 812 16, 17, 18, 19, 20, 21, 22, 23, 813 24, 25, 26, 27, 28, 29, 30, 31, 814 32, 33, 34, 35, 36, 37, 38, 39, 815 40, 41, 42, 43, 44, 45, 46, 47, 816 48, 49, 50, 51, 52, 53, 54, 55, 817 56, 57, 58, 59, 60, 61, 62, 63 818 }; 819 820 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = { 821 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */ 822 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */ 823 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */ 824 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */ 825 0, 1, /* AES */ 826 2, 3, /* SPDIF */ 827 -1, -1, -1, -1, 828 -1, -1, -1, -1, -1, -1, -1, -1, 829 -1, -1, -1, -1, -1, -1, -1, -1, 830 -1, -1, -1, -1, -1, -1, -1, -1, 831 }; 832 833 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = { 834 4, 5, 6, 7, /* ADAT 1 */ 835 8, 9, 10, 11, /* ADAT 2 */ 836 12, 13, 14, 15, /* ADAT 3 */ 837 16, 17, 18, 19, /* ADAT 4 */ 838 0, 1, /* AES */ 839 2, 3, /* SPDIF */ 840 -1, -1, -1, -1, 841 -1, -1, -1, -1, -1, -1, -1, -1, 842 -1, -1, -1, -1, -1, -1, -1, -1, 843 -1, -1, -1, -1, -1, -1, -1, -1, 844 -1, -1, -1, -1, -1, -1, -1, -1, 845 -1, -1, -1, -1, -1, -1, -1, -1, 846 }; 847 848 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = { 849 4, 5, /* ADAT 1 */ 850 6, 7, /* ADAT 2 */ 851 8, 9, /* ADAT 3 */ 852 10, 11, /* ADAT 4 */ 853 0, 1, /* AES */ 854 2, 3, /* SPDIF */ 855 -1, -1, -1, -1, 856 -1, -1, -1, -1, -1, -1, -1, -1, 857 -1, -1, -1, -1, -1, -1, -1, -1, 858 -1, -1, -1, -1, -1, -1, -1, -1, 859 -1, -1, -1, -1, -1, -1, -1, -1, 860 -1, -1, -1, -1, -1, -1, -1, -1, 861 -1, -1, -1, -1, -1, -1, -1, -1, 862 }; 863 864 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = { 865 0, 1, /* line in */ 866 8, 9, /* aes in, */ 867 10, 11, /* spdif in */ 868 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */ 869 2, 3, 4, 5, /* AEB */ 870 -1, -1, -1, -1, -1, -1, 871 -1, -1, -1, -1, -1, -1, -1, -1, 872 -1, -1, -1, -1, -1, -1, -1, -1, 873 -1, -1, -1, -1, -1, -1, -1, -1, 874 -1, -1, -1, -1, -1, -1, -1, -1, 875 -1, -1, -1, -1, -1, -1, -1, -1, 876 }; 877 878 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = { 879 0, 1, /* line out */ 880 8, 9, /* aes out */ 881 10, 11, /* spdif out */ 882 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */ 883 6, 7, /* phone out */ 884 2, 3, 4, 5, /* AEB */ 885 -1, -1, -1, -1, 886 -1, -1, -1, -1, -1, -1, -1, -1, 887 -1, -1, -1, -1, -1, -1, -1, -1, 888 -1, -1, -1, -1, -1, -1, -1, -1, 889 -1, -1, -1, -1, -1, -1, -1, -1, 890 -1, -1, -1, -1, -1, -1, -1, -1, 891 }; 892 893 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = { 894 0, 1, /* line in */ 895 8, 9, /* aes in */ 896 10, 11, /* spdif in */ 897 12, 14, 16, 18, /* adat in */ 898 2, 3, 4, 5, /* AEB */ 899 -1, -1, 900 -1, -1, -1, -1, -1, -1, -1, -1, 901 -1, -1, -1, -1, -1, -1, -1, -1, 902 -1, -1, -1, -1, -1, -1, -1, -1, 903 -1, -1, -1, -1, -1, -1, -1, -1, 904 -1, -1, -1, -1, -1, -1, -1, -1, 905 -1, -1, -1, -1, -1, -1, -1, -1 906 }; 907 908 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = { 909 0, 1, /* line out */ 910 8, 9, /* aes out */ 911 10, 11, /* spdif out */ 912 12, 14, 16, 18, /* adat out */ 913 6, 7, /* phone out */ 914 2, 3, 4, 5, /* AEB */ 915 -1, -1, -1, -1, -1, -1, -1, -1, 916 -1, -1, -1, -1, -1, -1, -1, -1, 917 -1, -1, -1, -1, -1, -1, -1, -1, 918 -1, -1, -1, -1, -1, -1, -1, -1, 919 -1, -1, -1, -1, -1, -1, -1, -1, 920 -1, -1, -1, -1, -1, -1, -1, -1 921 }; 922 923 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = { 924 0, 1, /* line in */ 925 8, 9, /* aes in */ 926 10, 11, /* spdif in */ 927 12, 16, /* adat in */ 928 2, 3, 4, 5, /* AEB */ 929 -1, -1, -1, -1, 930 -1, -1, -1, -1, -1, -1, -1, -1, 931 -1, -1, -1, -1, -1, -1, -1, -1, 932 -1, -1, -1, -1, -1, -1, -1, -1, 933 -1, -1, -1, -1, -1, -1, -1, -1, 934 -1, -1, -1, -1, -1, -1, -1, -1, 935 -1, -1, -1, -1, -1, -1, -1, -1 936 }; 937 938 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = { 939 0, 1, /* line out */ 940 8, 9, /* aes out */ 941 10, 11, /* spdif out */ 942 12, 16, /* adat out */ 943 6, 7, /* phone out */ 944 2, 3, 4, 5, /* AEB */ 945 -1, -1, 946 -1, -1, -1, -1, -1, -1, -1, -1, 947 -1, -1, -1, -1, -1, -1, -1, -1, 948 -1, -1, -1, -1, -1, -1, -1, -1, 949 -1, -1, -1, -1, -1, -1, -1, -1, 950 -1, -1, -1, -1, -1, -1, -1, -1, 951 -1, -1, -1, -1, -1, -1, -1, -1 952 }; 953 954 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = { 955 0, 1, 2, 3, 4, 5, 6, 7, 956 8, 9, 10, 11, 12, 13, 14, 15, 957 -1, -1, -1, -1, -1, -1, -1, -1, 958 -1, -1, -1, -1, -1, -1, -1, -1, 959 -1, -1, -1, -1, -1, -1, -1, -1, 960 -1, -1, -1, -1, -1, -1, -1, -1, 961 -1, -1, -1, -1, -1, -1, -1, -1, 962 -1, -1, -1, -1, -1, -1, -1, -1 963 }; 964 965 struct hdspm_midi { 966 struct hdspm *hdspm; 967 int id; 968 struct snd_rawmidi *rmidi; 969 struct snd_rawmidi_substream *input; 970 struct snd_rawmidi_substream *output; 971 char istimer; /* timer in use */ 972 struct timer_list timer; 973 spinlock_t lock; 974 int pending; 975 int dataIn; 976 int statusIn; 977 int dataOut; 978 int statusOut; 979 int ie; 980 int irq; 981 }; 982 983 struct hdspm_tco { 984 int input; /* 0: LTC, 1:Video, 2: WC*/ 985 int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */ 986 int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */ 987 int samplerate; /* 0=44.1, 1=48, 2= freq from app */ 988 int pull; /* 0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/ 989 int term; /* 0 = off, 1 = on */ 990 }; 991 992 struct hdspm { 993 spinlock_t lock; 994 /* only one playback and/or capture stream */ 995 struct snd_pcm_substream *capture_substream; 996 struct snd_pcm_substream *playback_substream; 997 998 char *card_name; /* for procinfo */ 999 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/ 1000 1001 uint8_t io_type; 1002 1003 int monitor_outs; /* set up monitoring outs init flag */ 1004 1005 u32 control_register; /* cached value */ 1006 u32 control2_register; /* cached value */ 1007 u32 settings_register; /* cached value for AIO / RayDat (sync reference, master/slave) */ 1008 1009 struct hdspm_midi midi[4]; 1010 struct tasklet_struct midi_tasklet; 1011 1012 size_t period_bytes; 1013 unsigned char ss_in_channels; 1014 unsigned char ds_in_channels; 1015 unsigned char qs_in_channels; 1016 unsigned char ss_out_channels; 1017 unsigned char ds_out_channels; 1018 unsigned char qs_out_channels; 1019 1020 unsigned char max_channels_in; 1021 unsigned char max_channels_out; 1022 1023 signed char *channel_map_in; 1024 signed char *channel_map_out; 1025 1026 signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs; 1027 signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs; 1028 1029 char **port_names_in; 1030 char **port_names_out; 1031 1032 char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs; 1033 char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs; 1034 1035 unsigned char *playback_buffer; /* suitably aligned address */ 1036 unsigned char *capture_buffer; /* suitably aligned address */ 1037 1038 pid_t capture_pid; /* process id which uses capture */ 1039 pid_t playback_pid; /* process id which uses capture */ 1040 int running; /* running status */ 1041 1042 int last_external_sample_rate; /* samplerate mystic ... */ 1043 int last_internal_sample_rate; 1044 int system_sample_rate; 1045 1046 int dev; /* Hardware vars... */ 1047 int irq; 1048 unsigned long port; 1049 void __iomem *iobase; 1050 1051 int irq_count; /* for debug */ 1052 int midiPorts; 1053 1054 struct snd_card *card; /* one card */ 1055 struct snd_pcm *pcm; /* has one pcm */ 1056 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */ 1057 struct pci_dev *pci; /* and an pci info */ 1058 1059 /* Mixer vars */ 1060 /* fast alsa mixer */ 1061 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; 1062 /* but input to much, so not used */ 1063 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; 1064 /* full mixer accessible over mixer ioctl or hwdep-device */ 1065 struct hdspm_mixer *mixer; 1066 1067 struct hdspm_tco *tco; /* NULL if no TCO detected */ 1068 1069 const char *const *texts_autosync; 1070 int texts_autosync_items; 1071 1072 cycles_t last_interrupt; 1073 1074 unsigned int serial; 1075 1076 struct hdspm_peak_rms peak_rms; 1077 }; 1078 1079 1080 static const struct pci_device_id snd_hdspm_ids[] = { 1081 { 1082 .vendor = PCI_VENDOR_ID_XILINX, 1083 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI, 1084 .subvendor = PCI_ANY_ID, 1085 .subdevice = PCI_ANY_ID, 1086 .class = 0, 1087 .class_mask = 0, 1088 .driver_data = 0}, 1089 {0,} 1090 }; 1091 1092 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids); 1093 1094 /* prototypes */ 1095 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 1096 struct hdspm *hdspm); 1097 static int snd_hdspm_create_pcm(struct snd_card *card, 1098 struct hdspm *hdspm); 1099 1100 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm); 1101 static inline int hdspm_get_pll_freq(struct hdspm *hdspm); 1102 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm); 1103 static int hdspm_autosync_ref(struct hdspm *hdspm); 1104 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out); 1105 static int snd_hdspm_set_defaults(struct hdspm *hdspm); 1106 static int hdspm_system_clock_mode(struct hdspm *hdspm); 1107 static void hdspm_set_sgbuf(struct hdspm *hdspm, 1108 struct snd_pcm_substream *substream, 1109 unsigned int reg, int channels); 1110 1111 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx); 1112 static int hdspm_wc_sync_check(struct hdspm *hdspm); 1113 static int hdspm_tco_sync_check(struct hdspm *hdspm); 1114 static int hdspm_sync_in_sync_check(struct hdspm *hdspm); 1115 1116 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index); 1117 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm); 1118 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm); 1119 1120 1121 1122 static inline int HDSPM_bit2freq(int n) 1123 { 1124 static const int bit2freq_tab[] = { 1125 0, 32000, 44100, 48000, 64000, 88200, 1126 96000, 128000, 176400, 192000 }; 1127 if (n < 1 || n > 9) 1128 return 0; 1129 return bit2freq_tab[n]; 1130 } 1131 1132 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm) 1133 { 1134 return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type)); 1135 } 1136 1137 1138 /* Write/read to/from HDSPM with Adresses in Bytes 1139 not words but only 32Bit writes are allowed */ 1140 1141 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg, 1142 unsigned int val) 1143 { 1144 writel(val, hdspm->iobase + reg); 1145 } 1146 1147 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg) 1148 { 1149 return readl(hdspm->iobase + reg); 1150 } 1151 1152 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader 1153 mixer is write only on hardware so we have to cache him for read 1154 each fader is a u32, but uses only the first 16 bit */ 1155 1156 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan, 1157 unsigned int in) 1158 { 1159 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1160 return 0; 1161 1162 return hdspm->mixer->ch[chan].in[in]; 1163 } 1164 1165 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan, 1166 unsigned int pb) 1167 { 1168 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1169 return 0; 1170 return hdspm->mixer->ch[chan].pb[pb]; 1171 } 1172 1173 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan, 1174 unsigned int in, unsigned short data) 1175 { 1176 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1177 return -1; 1178 1179 hdspm_write(hdspm, 1180 HDSPM_MADI_mixerBase + 1181 ((in + 128 * chan) * sizeof(u32)), 1182 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF)); 1183 return 0; 1184 } 1185 1186 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan, 1187 unsigned int pb, unsigned short data) 1188 { 1189 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1190 return -1; 1191 1192 hdspm_write(hdspm, 1193 HDSPM_MADI_mixerBase + 1194 ((64 + pb + 128 * chan) * sizeof(u32)), 1195 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF)); 1196 return 0; 1197 } 1198 1199 1200 /* enable DMA for specific channels, now available for DSP-MADI */ 1201 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v) 1202 { 1203 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v); 1204 } 1205 1206 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v) 1207 { 1208 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v); 1209 } 1210 1211 /* check if same process is writing and reading */ 1212 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm) 1213 { 1214 unsigned long flags; 1215 int ret = 1; 1216 1217 spin_lock_irqsave(&hdspm->lock, flags); 1218 if ((hdspm->playback_pid != hdspm->capture_pid) && 1219 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) { 1220 ret = 0; 1221 } 1222 spin_unlock_irqrestore(&hdspm->lock, flags); 1223 return ret; 1224 } 1225 1226 /* round arbitary sample rates to commonly known rates */ 1227 static int hdspm_round_frequency(int rate) 1228 { 1229 if (rate < 38050) 1230 return 32000; 1231 if (rate < 46008) 1232 return 44100; 1233 else 1234 return 48000; 1235 } 1236 1237 /* QS and DS rates normally can not be detected 1238 * automatically by the card. Only exception is MADI 1239 * in 96k frame mode. 1240 * 1241 * So if we read SS values (32 .. 48k), check for 1242 * user-provided DS/QS bits in the control register 1243 * and multiply the base frequency accordingly. 1244 */ 1245 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate) 1246 { 1247 if (rate <= 48000) { 1248 if (hdspm->control_register & HDSPM_QuadSpeed) 1249 return rate * 4; 1250 else if (hdspm->control_register & 1251 HDSPM_DoubleSpeed) 1252 return rate * 2; 1253 } 1254 return rate; 1255 } 1256 1257 /* check for external sample rate, returns the sample rate in Hz*/ 1258 static int hdspm_external_sample_rate(struct hdspm *hdspm) 1259 { 1260 unsigned int status, status2; 1261 int syncref, rate = 0, rate_bits; 1262 1263 switch (hdspm->io_type) { 1264 case AES32: 1265 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1266 status = hdspm_read(hdspm, HDSPM_statusRegister); 1267 1268 syncref = hdspm_autosync_ref(hdspm); 1269 switch (syncref) { 1270 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 1271 /* Check WC sync and get sample rate */ 1272 if (hdspm_wc_sync_check(hdspm)) 1273 return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm)); 1274 break; 1275 1276 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 1277 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 1278 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 1279 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 1280 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 1281 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 1282 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 1283 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 1284 /* Check AES sync and get sample rate */ 1285 if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)) 1286 return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm, 1287 syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)); 1288 break; 1289 1290 1291 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 1292 /* Check TCO sync and get sample rate */ 1293 if (hdspm_tco_sync_check(hdspm)) 1294 return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm)); 1295 break; 1296 default: 1297 return 0; 1298 } /* end switch(syncref) */ 1299 break; 1300 1301 case MADIface: 1302 status = hdspm_read(hdspm, HDSPM_statusRegister); 1303 1304 if (!(status & HDSPM_madiLock)) { 1305 rate = 0; /* no lock */ 1306 } else { 1307 switch (status & (HDSPM_status1_freqMask)) { 1308 case HDSPM_status1_F_0*1: 1309 rate = 32000; break; 1310 case HDSPM_status1_F_0*2: 1311 rate = 44100; break; 1312 case HDSPM_status1_F_0*3: 1313 rate = 48000; break; 1314 case HDSPM_status1_F_0*4: 1315 rate = 64000; break; 1316 case HDSPM_status1_F_0*5: 1317 rate = 88200; break; 1318 case HDSPM_status1_F_0*6: 1319 rate = 96000; break; 1320 case HDSPM_status1_F_0*7: 1321 rate = 128000; break; 1322 case HDSPM_status1_F_0*8: 1323 rate = 176400; break; 1324 case HDSPM_status1_F_0*9: 1325 rate = 192000; break; 1326 default: 1327 rate = 0; break; 1328 } 1329 } 1330 1331 break; 1332 1333 case MADI: 1334 case AIO: 1335 case RayDAT: 1336 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1337 status = hdspm_read(hdspm, HDSPM_statusRegister); 1338 rate = 0; 1339 1340 /* if wordclock has synced freq and wordclock is valid */ 1341 if ((status2 & HDSPM_wcLock) != 0 && 1342 (status2 & HDSPM_SelSyncRef0) == 0) { 1343 1344 rate_bits = status2 & HDSPM_wcFreqMask; 1345 1346 1347 switch (rate_bits) { 1348 case HDSPM_wcFreq32: 1349 rate = 32000; 1350 break; 1351 case HDSPM_wcFreq44_1: 1352 rate = 44100; 1353 break; 1354 case HDSPM_wcFreq48: 1355 rate = 48000; 1356 break; 1357 case HDSPM_wcFreq64: 1358 rate = 64000; 1359 break; 1360 case HDSPM_wcFreq88_2: 1361 rate = 88200; 1362 break; 1363 case HDSPM_wcFreq96: 1364 rate = 96000; 1365 break; 1366 case HDSPM_wcFreq128: 1367 rate = 128000; 1368 break; 1369 case HDSPM_wcFreq176_4: 1370 rate = 176400; 1371 break; 1372 case HDSPM_wcFreq192: 1373 rate = 192000; 1374 break; 1375 default: 1376 rate = 0; 1377 break; 1378 } 1379 } 1380 1381 /* if rate detected and Syncref is Word than have it, 1382 * word has priority to MADI 1383 */ 1384 if (rate != 0 && 1385 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) 1386 return hdspm_rate_multiplier(hdspm, rate); 1387 1388 /* maybe a madi input (which is taken if sel sync is madi) */ 1389 if (status & HDSPM_madiLock) { 1390 rate_bits = status & HDSPM_madiFreqMask; 1391 1392 switch (rate_bits) { 1393 case HDSPM_madiFreq32: 1394 rate = 32000; 1395 break; 1396 case HDSPM_madiFreq44_1: 1397 rate = 44100; 1398 break; 1399 case HDSPM_madiFreq48: 1400 rate = 48000; 1401 break; 1402 case HDSPM_madiFreq64: 1403 rate = 64000; 1404 break; 1405 case HDSPM_madiFreq88_2: 1406 rate = 88200; 1407 break; 1408 case HDSPM_madiFreq96: 1409 rate = 96000; 1410 break; 1411 case HDSPM_madiFreq128: 1412 rate = 128000; 1413 break; 1414 case HDSPM_madiFreq176_4: 1415 rate = 176400; 1416 break; 1417 case HDSPM_madiFreq192: 1418 rate = 192000; 1419 break; 1420 default: 1421 rate = 0; 1422 break; 1423 } 1424 1425 } /* endif HDSPM_madiLock */ 1426 1427 /* check sample rate from TCO or SYNC_IN */ 1428 { 1429 bool is_valid_input = 0; 1430 bool has_sync = 0; 1431 1432 syncref = hdspm_autosync_ref(hdspm); 1433 if (HDSPM_AUTOSYNC_FROM_TCO == syncref) { 1434 is_valid_input = 1; 1435 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1436 hdspm_tco_sync_check(hdspm)); 1437 } else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) { 1438 is_valid_input = 1; 1439 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1440 hdspm_sync_in_sync_check(hdspm)); 1441 } 1442 1443 if (is_valid_input && has_sync) { 1444 rate = hdspm_round_frequency( 1445 hdspm_get_pll_freq(hdspm)); 1446 } 1447 } 1448 1449 rate = hdspm_rate_multiplier(hdspm, rate); 1450 1451 break; 1452 } 1453 1454 return rate; 1455 } 1456 1457 /* return latency in samples per period */ 1458 static int hdspm_get_latency(struct hdspm *hdspm) 1459 { 1460 int n; 1461 1462 n = hdspm_decode_latency(hdspm->control_register); 1463 1464 /* Special case for new RME cards with 32 samples period size. 1465 * The three latency bits in the control register 1466 * (HDSP_LatencyMask) encode latency values of 64 samples as 1467 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7 1468 * denotes 8192 samples, but on new cards like RayDAT or AIO, 1469 * it corresponds to 32 samples. 1470 */ 1471 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type)) 1472 n = -1; 1473 1474 return 1 << (n + 6); 1475 } 1476 1477 /* Latency function */ 1478 static inline void hdspm_compute_period_size(struct hdspm *hdspm) 1479 { 1480 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm); 1481 } 1482 1483 1484 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm) 1485 { 1486 int position; 1487 1488 position = hdspm_read(hdspm, HDSPM_statusRegister); 1489 1490 switch (hdspm->io_type) { 1491 case RayDAT: 1492 case AIO: 1493 position &= HDSPM_BufferPositionMask; 1494 position /= 4; /* Bytes per sample */ 1495 break; 1496 default: 1497 position = (position & HDSPM_BufferID) ? 1498 (hdspm->period_bytes / 4) : 0; 1499 } 1500 1501 return position; 1502 } 1503 1504 1505 static inline void hdspm_start_audio(struct hdspm * s) 1506 { 1507 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start); 1508 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1509 } 1510 1511 static inline void hdspm_stop_audio(struct hdspm * s) 1512 { 1513 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable); 1514 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1515 } 1516 1517 /* should I silence all or only opened ones ? doit all for first even is 4MB*/ 1518 static void hdspm_silence_playback(struct hdspm *hdspm) 1519 { 1520 int i; 1521 int n = hdspm->period_bytes; 1522 void *buf = hdspm->playback_buffer; 1523 1524 if (buf == NULL) 1525 return; 1526 1527 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 1528 memset(buf, 0, n); 1529 buf += HDSPM_CHANNEL_BUFFER_BYTES; 1530 } 1531 } 1532 1533 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames) 1534 { 1535 int n; 1536 1537 spin_lock_irq(&s->lock); 1538 1539 if (32 == frames) { 1540 /* Special case for new RME cards like RayDAT/AIO which 1541 * support period sizes of 32 samples. Since latency is 1542 * encoded in the three bits of HDSP_LatencyMask, we can only 1543 * have values from 0 .. 7. While 0 still means 64 samples and 1544 * 6 represents 4096 samples on all cards, 7 represents 8192 1545 * on older cards and 32 samples on new cards. 1546 * 1547 * In other words, period size in samples is calculated by 1548 * 2^(n+6) with n ranging from 0 .. 7. 1549 */ 1550 n = 7; 1551 } else { 1552 frames >>= 7; 1553 n = 0; 1554 while (frames) { 1555 n++; 1556 frames >>= 1; 1557 } 1558 } 1559 1560 s->control_register &= ~HDSPM_LatencyMask; 1561 s->control_register |= hdspm_encode_latency(n); 1562 1563 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1564 1565 hdspm_compute_period_size(s); 1566 1567 spin_unlock_irq(&s->lock); 1568 1569 return 0; 1570 } 1571 1572 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period) 1573 { 1574 u64 freq_const; 1575 1576 if (period == 0) 1577 return 0; 1578 1579 switch (hdspm->io_type) { 1580 case MADI: 1581 case AES32: 1582 freq_const = 110069313433624ULL; 1583 break; 1584 case RayDAT: 1585 case AIO: 1586 freq_const = 104857600000000ULL; 1587 break; 1588 case MADIface: 1589 freq_const = 131072000000000ULL; 1590 break; 1591 default: 1592 snd_BUG(); 1593 return 0; 1594 } 1595 1596 return div_u64(freq_const, period); 1597 } 1598 1599 1600 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate) 1601 { 1602 u64 n; 1603 1604 if (rate >= 112000) 1605 rate /= 4; 1606 else if (rate >= 56000) 1607 rate /= 2; 1608 1609 switch (hdspm->io_type) { 1610 case MADIface: 1611 n = 131072000000000ULL; /* 125 MHz */ 1612 break; 1613 case MADI: 1614 case AES32: 1615 n = 110069313433624ULL; /* 105 MHz */ 1616 break; 1617 case RayDAT: 1618 case AIO: 1619 n = 104857600000000ULL; /* 100 MHz */ 1620 break; 1621 default: 1622 snd_BUG(); 1623 return; 1624 } 1625 1626 n = div_u64(n, rate); 1627 /* n should be less than 2^32 for being written to FREQ register */ 1628 snd_BUG_ON(n >> 32); 1629 hdspm_write(hdspm, HDSPM_freqReg, (u32)n); 1630 } 1631 1632 /* dummy set rate lets see what happens */ 1633 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) 1634 { 1635 int current_rate; 1636 int rate_bits; 1637 int not_set = 0; 1638 int current_speed, target_speed; 1639 1640 /* ASSUMPTION: hdspm->lock is either set, or there is no need for 1641 it (e.g. during module initialization). 1642 */ 1643 1644 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { 1645 1646 /* SLAVE --- */ 1647 if (called_internally) { 1648 1649 /* request from ctl or card initialization 1650 just make a warning an remember setting 1651 for future master mode switching */ 1652 1653 dev_warn(hdspm->card->dev, 1654 "Warning: device is not running as a clock master.\n"); 1655 not_set = 1; 1656 } else { 1657 1658 /* hw_param request while in AutoSync mode */ 1659 int external_freq = 1660 hdspm_external_sample_rate(hdspm); 1661 1662 if (hdspm_autosync_ref(hdspm) == 1663 HDSPM_AUTOSYNC_FROM_NONE) { 1664 1665 dev_warn(hdspm->card->dev, 1666 "Detected no Externel Sync\n"); 1667 not_set = 1; 1668 1669 } else if (rate != external_freq) { 1670 1671 dev_warn(hdspm->card->dev, 1672 "Warning: No AutoSync source for requested rate\n"); 1673 not_set = 1; 1674 } 1675 } 1676 } 1677 1678 current_rate = hdspm->system_sample_rate; 1679 1680 /* Changing between Singe, Double and Quad speed is not 1681 allowed if any substreams are open. This is because such a change 1682 causes a shift in the location of the DMA buffers and a reduction 1683 in the number of available buffers. 1684 1685 Note that a similar but essentially insoluble problem exists for 1686 externally-driven rate changes. All we can do is to flag rate 1687 changes in the read/write routines. 1688 */ 1689 1690 if (current_rate <= 48000) 1691 current_speed = HDSPM_SPEED_SINGLE; 1692 else if (current_rate <= 96000) 1693 current_speed = HDSPM_SPEED_DOUBLE; 1694 else 1695 current_speed = HDSPM_SPEED_QUAD; 1696 1697 if (rate <= 48000) 1698 target_speed = HDSPM_SPEED_SINGLE; 1699 else if (rate <= 96000) 1700 target_speed = HDSPM_SPEED_DOUBLE; 1701 else 1702 target_speed = HDSPM_SPEED_QUAD; 1703 1704 switch (rate) { 1705 case 32000: 1706 rate_bits = HDSPM_Frequency32KHz; 1707 break; 1708 case 44100: 1709 rate_bits = HDSPM_Frequency44_1KHz; 1710 break; 1711 case 48000: 1712 rate_bits = HDSPM_Frequency48KHz; 1713 break; 1714 case 64000: 1715 rate_bits = HDSPM_Frequency64KHz; 1716 break; 1717 case 88200: 1718 rate_bits = HDSPM_Frequency88_2KHz; 1719 break; 1720 case 96000: 1721 rate_bits = HDSPM_Frequency96KHz; 1722 break; 1723 case 128000: 1724 rate_bits = HDSPM_Frequency128KHz; 1725 break; 1726 case 176400: 1727 rate_bits = HDSPM_Frequency176_4KHz; 1728 break; 1729 case 192000: 1730 rate_bits = HDSPM_Frequency192KHz; 1731 break; 1732 default: 1733 return -EINVAL; 1734 } 1735 1736 if (current_speed != target_speed 1737 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) { 1738 dev_err(hdspm->card->dev, 1739 "cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n", 1740 hdspm_speed_names[current_speed], 1741 hdspm_speed_names[target_speed], 1742 hdspm->capture_pid, hdspm->playback_pid); 1743 return -EBUSY; 1744 } 1745 1746 hdspm->control_register &= ~HDSPM_FrequencyMask; 1747 hdspm->control_register |= rate_bits; 1748 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1749 1750 /* For AES32, need to set DDS value in FREQ register 1751 For MADI, also apparently */ 1752 hdspm_set_dds_value(hdspm, rate); 1753 1754 if (AES32 == hdspm->io_type && rate != current_rate) 1755 hdspm_write(hdspm, HDSPM_eeprom_wr, 0); 1756 1757 hdspm->system_sample_rate = rate; 1758 1759 if (rate <= 48000) { 1760 hdspm->channel_map_in = hdspm->channel_map_in_ss; 1761 hdspm->channel_map_out = hdspm->channel_map_out_ss; 1762 hdspm->max_channels_in = hdspm->ss_in_channels; 1763 hdspm->max_channels_out = hdspm->ss_out_channels; 1764 hdspm->port_names_in = hdspm->port_names_in_ss; 1765 hdspm->port_names_out = hdspm->port_names_out_ss; 1766 } else if (rate <= 96000) { 1767 hdspm->channel_map_in = hdspm->channel_map_in_ds; 1768 hdspm->channel_map_out = hdspm->channel_map_out_ds; 1769 hdspm->max_channels_in = hdspm->ds_in_channels; 1770 hdspm->max_channels_out = hdspm->ds_out_channels; 1771 hdspm->port_names_in = hdspm->port_names_in_ds; 1772 hdspm->port_names_out = hdspm->port_names_out_ds; 1773 } else { 1774 hdspm->channel_map_in = hdspm->channel_map_in_qs; 1775 hdspm->channel_map_out = hdspm->channel_map_out_qs; 1776 hdspm->max_channels_in = hdspm->qs_in_channels; 1777 hdspm->max_channels_out = hdspm->qs_out_channels; 1778 hdspm->port_names_in = hdspm->port_names_in_qs; 1779 hdspm->port_names_out = hdspm->port_names_out_qs; 1780 } 1781 1782 if (not_set != 0) 1783 return -1; 1784 1785 return 0; 1786 } 1787 1788 /* mainly for init to 0 on load */ 1789 static void all_in_all_mixer(struct hdspm * hdspm, int sgain) 1790 { 1791 int i, j; 1792 unsigned int gain; 1793 1794 if (sgain > UNITY_GAIN) 1795 gain = UNITY_GAIN; 1796 else if (sgain < 0) 1797 gain = 0; 1798 else 1799 gain = sgain; 1800 1801 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) 1802 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) { 1803 hdspm_write_in_gain(hdspm, i, j, gain); 1804 hdspm_write_pb_gain(hdspm, i, j, gain); 1805 } 1806 } 1807 1808 /*---------------------------------------------------------------------------- 1809 MIDI 1810 ----------------------------------------------------------------------------*/ 1811 1812 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, 1813 int id) 1814 { 1815 /* the hardware already does the relevant bit-mask with 0xff */ 1816 return hdspm_read(hdspm, hdspm->midi[id].dataIn); 1817 } 1818 1819 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, 1820 int val) 1821 { 1822 /* the hardware already does the relevant bit-mask with 0xff */ 1823 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val); 1824 } 1825 1826 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id) 1827 { 1828 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF; 1829 } 1830 1831 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id) 1832 { 1833 int fifo_bytes_used; 1834 1835 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF; 1836 1837 if (fifo_bytes_used < 128) 1838 return 128 - fifo_bytes_used; 1839 else 1840 return 0; 1841 } 1842 1843 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id) 1844 { 1845 while (snd_hdspm_midi_input_available (hdspm, id)) 1846 snd_hdspm_midi_read_byte (hdspm, id); 1847 } 1848 1849 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi) 1850 { 1851 unsigned long flags; 1852 int n_pending; 1853 int to_write; 1854 int i; 1855 unsigned char buf[128]; 1856 1857 /* Output is not interrupt driven */ 1858 1859 spin_lock_irqsave (&hmidi->lock, flags); 1860 if (hmidi->output && 1861 !snd_rawmidi_transmit_empty (hmidi->output)) { 1862 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, 1863 hmidi->id); 1864 if (n_pending > 0) { 1865 if (n_pending > (int)sizeof (buf)) 1866 n_pending = sizeof (buf); 1867 1868 to_write = snd_rawmidi_transmit (hmidi->output, buf, 1869 n_pending); 1870 if (to_write > 0) { 1871 for (i = 0; i < to_write; ++i) 1872 snd_hdspm_midi_write_byte (hmidi->hdspm, 1873 hmidi->id, 1874 buf[i]); 1875 } 1876 } 1877 } 1878 spin_unlock_irqrestore (&hmidi->lock, flags); 1879 return 0; 1880 } 1881 1882 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi) 1883 { 1884 unsigned char buf[128]; /* this buffer is designed to match the MIDI 1885 * input FIFO size 1886 */ 1887 unsigned long flags; 1888 int n_pending; 1889 int i; 1890 1891 spin_lock_irqsave (&hmidi->lock, flags); 1892 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id); 1893 if (n_pending > 0) { 1894 if (hmidi->input) { 1895 if (n_pending > (int)sizeof (buf)) 1896 n_pending = sizeof (buf); 1897 for (i = 0; i < n_pending; ++i) 1898 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, 1899 hmidi->id); 1900 if (n_pending) 1901 snd_rawmidi_receive (hmidi->input, buf, 1902 n_pending); 1903 } else { 1904 /* flush the MIDI input FIFO */ 1905 while (n_pending--) 1906 snd_hdspm_midi_read_byte (hmidi->hdspm, 1907 hmidi->id); 1908 } 1909 } 1910 hmidi->pending = 0; 1911 spin_unlock_irqrestore(&hmidi->lock, flags); 1912 1913 spin_lock_irqsave(&hmidi->hdspm->lock, flags); 1914 hmidi->hdspm->control_register |= hmidi->ie; 1915 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, 1916 hmidi->hdspm->control_register); 1917 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags); 1918 1919 return snd_hdspm_midi_output_write (hmidi); 1920 } 1921 1922 static void 1923 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1924 { 1925 struct hdspm *hdspm; 1926 struct hdspm_midi *hmidi; 1927 unsigned long flags; 1928 1929 hmidi = substream->rmidi->private_data; 1930 hdspm = hmidi->hdspm; 1931 1932 spin_lock_irqsave (&hdspm->lock, flags); 1933 if (up) { 1934 if (!(hdspm->control_register & hmidi->ie)) { 1935 snd_hdspm_flush_midi_input (hdspm, hmidi->id); 1936 hdspm->control_register |= hmidi->ie; 1937 } 1938 } else { 1939 hdspm->control_register &= ~hmidi->ie; 1940 } 1941 1942 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1943 spin_unlock_irqrestore (&hdspm->lock, flags); 1944 } 1945 1946 static void snd_hdspm_midi_output_timer(unsigned long data) 1947 { 1948 struct hdspm_midi *hmidi = (struct hdspm_midi *) data; 1949 unsigned long flags; 1950 1951 snd_hdspm_midi_output_write(hmidi); 1952 spin_lock_irqsave (&hmidi->lock, flags); 1953 1954 /* this does not bump hmidi->istimer, because the 1955 kernel automatically removed the timer when it 1956 expired, and we are now adding it back, thus 1957 leaving istimer wherever it was set before. 1958 */ 1959 1960 if (hmidi->istimer) 1961 mod_timer(&hmidi->timer, 1 + jiffies); 1962 1963 spin_unlock_irqrestore (&hmidi->lock, flags); 1964 } 1965 1966 static void 1967 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1968 { 1969 struct hdspm_midi *hmidi; 1970 unsigned long flags; 1971 1972 hmidi = substream->rmidi->private_data; 1973 spin_lock_irqsave (&hmidi->lock, flags); 1974 if (up) { 1975 if (!hmidi->istimer) { 1976 setup_timer(&hmidi->timer, snd_hdspm_midi_output_timer, 1977 (unsigned long) hmidi); 1978 mod_timer(&hmidi->timer, 1 + jiffies); 1979 hmidi->istimer++; 1980 } 1981 } else { 1982 if (hmidi->istimer && --hmidi->istimer <= 0) 1983 del_timer (&hmidi->timer); 1984 } 1985 spin_unlock_irqrestore (&hmidi->lock, flags); 1986 if (up) 1987 snd_hdspm_midi_output_write(hmidi); 1988 } 1989 1990 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream) 1991 { 1992 struct hdspm_midi *hmidi; 1993 1994 hmidi = substream->rmidi->private_data; 1995 spin_lock_irq (&hmidi->lock); 1996 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id); 1997 hmidi->input = substream; 1998 spin_unlock_irq (&hmidi->lock); 1999 2000 return 0; 2001 } 2002 2003 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream) 2004 { 2005 struct hdspm_midi *hmidi; 2006 2007 hmidi = substream->rmidi->private_data; 2008 spin_lock_irq (&hmidi->lock); 2009 hmidi->output = substream; 2010 spin_unlock_irq (&hmidi->lock); 2011 2012 return 0; 2013 } 2014 2015 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream) 2016 { 2017 struct hdspm_midi *hmidi; 2018 2019 snd_hdspm_midi_input_trigger (substream, 0); 2020 2021 hmidi = substream->rmidi->private_data; 2022 spin_lock_irq (&hmidi->lock); 2023 hmidi->input = NULL; 2024 spin_unlock_irq (&hmidi->lock); 2025 2026 return 0; 2027 } 2028 2029 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream) 2030 { 2031 struct hdspm_midi *hmidi; 2032 2033 snd_hdspm_midi_output_trigger (substream, 0); 2034 2035 hmidi = substream->rmidi->private_data; 2036 spin_lock_irq (&hmidi->lock); 2037 hmidi->output = NULL; 2038 spin_unlock_irq (&hmidi->lock); 2039 2040 return 0; 2041 } 2042 2043 static struct snd_rawmidi_ops snd_hdspm_midi_output = 2044 { 2045 .open = snd_hdspm_midi_output_open, 2046 .close = snd_hdspm_midi_output_close, 2047 .trigger = snd_hdspm_midi_output_trigger, 2048 }; 2049 2050 static struct snd_rawmidi_ops snd_hdspm_midi_input = 2051 { 2052 .open = snd_hdspm_midi_input_open, 2053 .close = snd_hdspm_midi_input_close, 2054 .trigger = snd_hdspm_midi_input_trigger, 2055 }; 2056 2057 static int snd_hdspm_create_midi(struct snd_card *card, 2058 struct hdspm *hdspm, int id) 2059 { 2060 int err; 2061 char buf[32]; 2062 2063 hdspm->midi[id].id = id; 2064 hdspm->midi[id].hdspm = hdspm; 2065 spin_lock_init (&hdspm->midi[id].lock); 2066 2067 if (0 == id) { 2068 if (MADIface == hdspm->io_type) { 2069 /* MIDI-over-MADI on HDSPe MADIface */ 2070 hdspm->midi[0].dataIn = HDSPM_midiDataIn2; 2071 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2; 2072 hdspm->midi[0].dataOut = HDSPM_midiDataOut2; 2073 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2; 2074 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable; 2075 hdspm->midi[0].irq = HDSPM_midi2IRQPending; 2076 } else { 2077 hdspm->midi[0].dataIn = HDSPM_midiDataIn0; 2078 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0; 2079 hdspm->midi[0].dataOut = HDSPM_midiDataOut0; 2080 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0; 2081 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable; 2082 hdspm->midi[0].irq = HDSPM_midi0IRQPending; 2083 } 2084 } else if (1 == id) { 2085 hdspm->midi[1].dataIn = HDSPM_midiDataIn1; 2086 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1; 2087 hdspm->midi[1].dataOut = HDSPM_midiDataOut1; 2088 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1; 2089 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable; 2090 hdspm->midi[1].irq = HDSPM_midi1IRQPending; 2091 } else if ((2 == id) && (MADI == hdspm->io_type)) { 2092 /* MIDI-over-MADI on HDSPe MADI */ 2093 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2094 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2095 hdspm->midi[2].dataOut = HDSPM_midiDataOut2; 2096 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2; 2097 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2098 hdspm->midi[2].irq = HDSPM_midi2IRQPending; 2099 } else if (2 == id) { 2100 /* TCO MTC, read only */ 2101 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2102 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2103 hdspm->midi[2].dataOut = -1; 2104 hdspm->midi[2].statusOut = -1; 2105 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2106 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES; 2107 } else if (3 == id) { 2108 /* TCO MTC on HDSPe MADI */ 2109 hdspm->midi[3].dataIn = HDSPM_midiDataIn3; 2110 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3; 2111 hdspm->midi[3].dataOut = -1; 2112 hdspm->midi[3].statusOut = -1; 2113 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable; 2114 hdspm->midi[3].irq = HDSPM_midi3IRQPending; 2115 } 2116 2117 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) || 2118 (MADIface == hdspm->io_type)))) { 2119 if ((id == 0) && (MADIface == hdspm->io_type)) { 2120 sprintf(buf, "%s MIDIoverMADI", card->shortname); 2121 } else if ((id == 2) && (MADI == hdspm->io_type)) { 2122 sprintf(buf, "%s MIDIoverMADI", card->shortname); 2123 } else { 2124 sprintf(buf, "%s MIDI %d", card->shortname, id+1); 2125 } 2126 err = snd_rawmidi_new(card, buf, id, 1, 1, 2127 &hdspm->midi[id].rmidi); 2128 if (err < 0) 2129 return err; 2130 2131 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d", 2132 card->id, id+1); 2133 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2134 2135 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2136 SNDRV_RAWMIDI_STREAM_OUTPUT, 2137 &snd_hdspm_midi_output); 2138 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2139 SNDRV_RAWMIDI_STREAM_INPUT, 2140 &snd_hdspm_midi_input); 2141 2142 hdspm->midi[id].rmidi->info_flags |= 2143 SNDRV_RAWMIDI_INFO_OUTPUT | 2144 SNDRV_RAWMIDI_INFO_INPUT | 2145 SNDRV_RAWMIDI_INFO_DUPLEX; 2146 } else { 2147 /* TCO MTC, read only */ 2148 sprintf(buf, "%s MTC %d", card->shortname, id+1); 2149 err = snd_rawmidi_new(card, buf, id, 1, 1, 2150 &hdspm->midi[id].rmidi); 2151 if (err < 0) 2152 return err; 2153 2154 sprintf(hdspm->midi[id].rmidi->name, 2155 "%s MTC %d", card->id, id+1); 2156 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2157 2158 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2159 SNDRV_RAWMIDI_STREAM_INPUT, 2160 &snd_hdspm_midi_input); 2161 2162 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; 2163 } 2164 2165 return 0; 2166 } 2167 2168 2169 static void hdspm_midi_tasklet(unsigned long arg) 2170 { 2171 struct hdspm *hdspm = (struct hdspm *)arg; 2172 int i = 0; 2173 2174 while (i < hdspm->midiPorts) { 2175 if (hdspm->midi[i].pending) 2176 snd_hdspm_midi_input_read(&hdspm->midi[i]); 2177 2178 i++; 2179 } 2180 } 2181 2182 2183 /*----------------------------------------------------------------------------- 2184 Status Interface 2185 ----------------------------------------------------------------------------*/ 2186 2187 /* get the system sample rate which is set */ 2188 2189 2190 static inline int hdspm_get_pll_freq(struct hdspm *hdspm) 2191 { 2192 unsigned int period, rate; 2193 2194 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 2195 rate = hdspm_calc_dds_value(hdspm, period); 2196 2197 return rate; 2198 } 2199 2200 /* 2201 * Calculate the real sample rate from the 2202 * current DDS value. 2203 */ 2204 static int hdspm_get_system_sample_rate(struct hdspm *hdspm) 2205 { 2206 unsigned int rate; 2207 2208 rate = hdspm_get_pll_freq(hdspm); 2209 2210 if (rate > 207000) { 2211 /* Unreasonable high sample rate as seen on PCI MADI cards. */ 2212 if (0 == hdspm_system_clock_mode(hdspm)) { 2213 /* master mode, return internal sample rate */ 2214 rate = hdspm->system_sample_rate; 2215 } else { 2216 /* slave mode, return external sample rate */ 2217 rate = hdspm_external_sample_rate(hdspm); 2218 } 2219 } 2220 2221 return rate; 2222 } 2223 2224 2225 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \ 2226 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2227 .name = xname, \ 2228 .index = xindex, \ 2229 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2230 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2231 .info = snd_hdspm_info_system_sample_rate, \ 2232 .put = snd_hdspm_put_system_sample_rate, \ 2233 .get = snd_hdspm_get_system_sample_rate \ 2234 } 2235 2236 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol, 2237 struct snd_ctl_elem_info *uinfo) 2238 { 2239 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2240 uinfo->count = 1; 2241 uinfo->value.integer.min = 27000; 2242 uinfo->value.integer.max = 207000; 2243 uinfo->value.integer.step = 1; 2244 return 0; 2245 } 2246 2247 2248 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol, 2249 struct snd_ctl_elem_value * 2250 ucontrol) 2251 { 2252 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2253 2254 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm); 2255 return 0; 2256 } 2257 2258 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol, 2259 struct snd_ctl_elem_value * 2260 ucontrol) 2261 { 2262 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2263 2264 hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]); 2265 return 0; 2266 } 2267 2268 2269 /* 2270 * Returns the WordClock sample rate class for the given card. 2271 */ 2272 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm) 2273 { 2274 int status; 2275 2276 switch (hdspm->io_type) { 2277 case RayDAT: 2278 case AIO: 2279 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2280 return (status >> 16) & 0xF; 2281 break; 2282 case AES32: 2283 status = hdspm_read(hdspm, HDSPM_statusRegister); 2284 return (status >> HDSPM_AES32_wcFreq_bit) & 0xF; 2285 default: 2286 break; 2287 } 2288 2289 2290 return 0; 2291 } 2292 2293 2294 /* 2295 * Returns the TCO sample rate class for the given card. 2296 */ 2297 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm) 2298 { 2299 int status; 2300 2301 if (hdspm->tco) { 2302 switch (hdspm->io_type) { 2303 case RayDAT: 2304 case AIO: 2305 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2306 return (status >> 20) & 0xF; 2307 break; 2308 case AES32: 2309 status = hdspm_read(hdspm, HDSPM_statusRegister); 2310 return (status >> 1) & 0xF; 2311 default: 2312 break; 2313 } 2314 } 2315 2316 return 0; 2317 } 2318 2319 2320 /* 2321 * Returns the SYNC_IN sample rate class for the given card. 2322 */ 2323 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm) 2324 { 2325 int status; 2326 2327 if (hdspm->tco) { 2328 switch (hdspm->io_type) { 2329 case RayDAT: 2330 case AIO: 2331 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2332 return (status >> 12) & 0xF; 2333 break; 2334 default: 2335 break; 2336 } 2337 } 2338 2339 return 0; 2340 } 2341 2342 /* 2343 * Returns the AES sample rate class for the given card. 2344 */ 2345 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index) 2346 { 2347 int timecode; 2348 2349 switch (hdspm->io_type) { 2350 case AES32: 2351 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 2352 return (timecode >> (4*index)) & 0xF; 2353 break; 2354 default: 2355 break; 2356 } 2357 return 0; 2358 } 2359 2360 /* 2361 * Returns the sample rate class for input source <idx> for 2362 * 'new style' cards like the AIO and RayDAT. 2363 */ 2364 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx) 2365 { 2366 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2367 2368 return (status >> (idx*4)) & 0xF; 2369 } 2370 2371 #define ENUMERATED_CTL_INFO(info, texts) \ 2372 snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts) 2373 2374 2375 /* Helper function to query the external sample rate and return the 2376 * corresponding enum to be returned to userspace. 2377 */ 2378 static int hdspm_external_rate_to_enum(struct hdspm *hdspm) 2379 { 2380 int rate = hdspm_external_sample_rate(hdspm); 2381 int i, selected_rate = 0; 2382 for (i = 1; i < 10; i++) 2383 if (HDSPM_bit2freq(i) == rate) { 2384 selected_rate = i; 2385 break; 2386 } 2387 return selected_rate; 2388 } 2389 2390 2391 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 2392 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2393 .name = xname, \ 2394 .private_value = xindex, \ 2395 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2396 .info = snd_hdspm_info_autosync_sample_rate, \ 2397 .get = snd_hdspm_get_autosync_sample_rate \ 2398 } 2399 2400 2401 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2402 struct snd_ctl_elem_info *uinfo) 2403 { 2404 ENUMERATED_CTL_INFO(uinfo, texts_freq); 2405 return 0; 2406 } 2407 2408 2409 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2410 struct snd_ctl_elem_value * 2411 ucontrol) 2412 { 2413 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2414 2415 switch (hdspm->io_type) { 2416 case RayDAT: 2417 switch (kcontrol->private_value) { 2418 case 0: 2419 ucontrol->value.enumerated.item[0] = 2420 hdspm_get_wc_sample_rate(hdspm); 2421 break; 2422 case 7: 2423 ucontrol->value.enumerated.item[0] = 2424 hdspm_get_tco_sample_rate(hdspm); 2425 break; 2426 case 8: 2427 ucontrol->value.enumerated.item[0] = 2428 hdspm_get_sync_in_sample_rate(hdspm); 2429 break; 2430 default: 2431 ucontrol->value.enumerated.item[0] = 2432 hdspm_get_s1_sample_rate(hdspm, 2433 kcontrol->private_value-1); 2434 } 2435 break; 2436 2437 case AIO: 2438 switch (kcontrol->private_value) { 2439 case 0: /* WC */ 2440 ucontrol->value.enumerated.item[0] = 2441 hdspm_get_wc_sample_rate(hdspm); 2442 break; 2443 case 4: /* TCO */ 2444 ucontrol->value.enumerated.item[0] = 2445 hdspm_get_tco_sample_rate(hdspm); 2446 break; 2447 case 5: /* SYNC_IN */ 2448 ucontrol->value.enumerated.item[0] = 2449 hdspm_get_sync_in_sample_rate(hdspm); 2450 break; 2451 default: 2452 ucontrol->value.enumerated.item[0] = 2453 hdspm_get_s1_sample_rate(hdspm, 2454 kcontrol->private_value-1); 2455 } 2456 break; 2457 2458 case AES32: 2459 2460 switch (kcontrol->private_value) { 2461 case 0: /* WC */ 2462 ucontrol->value.enumerated.item[0] = 2463 hdspm_get_wc_sample_rate(hdspm); 2464 break; 2465 case 9: /* TCO */ 2466 ucontrol->value.enumerated.item[0] = 2467 hdspm_get_tco_sample_rate(hdspm); 2468 break; 2469 case 10: /* SYNC_IN */ 2470 ucontrol->value.enumerated.item[0] = 2471 hdspm_get_sync_in_sample_rate(hdspm); 2472 break; 2473 case 11: /* External Rate */ 2474 ucontrol->value.enumerated.item[0] = 2475 hdspm_external_rate_to_enum(hdspm); 2476 break; 2477 default: /* AES1 to AES8 */ 2478 ucontrol->value.enumerated.item[0] = 2479 hdspm_get_aes_sample_rate(hdspm, 2480 kcontrol->private_value - 2481 HDSPM_AES32_AUTOSYNC_FROM_AES1); 2482 break; 2483 } 2484 break; 2485 2486 case MADI: 2487 case MADIface: 2488 ucontrol->value.enumerated.item[0] = 2489 hdspm_external_rate_to_enum(hdspm); 2490 break; 2491 default: 2492 break; 2493 } 2494 2495 return 0; 2496 } 2497 2498 2499 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \ 2500 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2501 .name = xname, \ 2502 .index = xindex, \ 2503 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2504 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2505 .info = snd_hdspm_info_system_clock_mode, \ 2506 .get = snd_hdspm_get_system_clock_mode, \ 2507 .put = snd_hdspm_put_system_clock_mode, \ 2508 } 2509 2510 2511 /* 2512 * Returns the system clock mode for the given card. 2513 * @returns 0 - master, 1 - slave 2514 */ 2515 static int hdspm_system_clock_mode(struct hdspm *hdspm) 2516 { 2517 switch (hdspm->io_type) { 2518 case AIO: 2519 case RayDAT: 2520 if (hdspm->settings_register & HDSPM_c0Master) 2521 return 0; 2522 break; 2523 2524 default: 2525 if (hdspm->control_register & HDSPM_ClockModeMaster) 2526 return 0; 2527 } 2528 2529 return 1; 2530 } 2531 2532 2533 /* 2534 * Sets the system clock mode. 2535 * @param mode 0 - master, 1 - slave 2536 */ 2537 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode) 2538 { 2539 hdspm_set_toggle_setting(hdspm, 2540 (hdspm_is_raydat_or_aio(hdspm)) ? 2541 HDSPM_c0Master : HDSPM_ClockModeMaster, 2542 (0 == mode)); 2543 } 2544 2545 2546 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol, 2547 struct snd_ctl_elem_info *uinfo) 2548 { 2549 static const char *const texts[] = { "Master", "AutoSync" }; 2550 ENUMERATED_CTL_INFO(uinfo, texts); 2551 return 0; 2552 } 2553 2554 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol, 2555 struct snd_ctl_elem_value *ucontrol) 2556 { 2557 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2558 2559 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm); 2560 return 0; 2561 } 2562 2563 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol, 2564 struct snd_ctl_elem_value *ucontrol) 2565 { 2566 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2567 int val; 2568 2569 if (!snd_hdspm_use_is_exclusive(hdspm)) 2570 return -EBUSY; 2571 2572 val = ucontrol->value.enumerated.item[0]; 2573 if (val < 0) 2574 val = 0; 2575 else if (val > 1) 2576 val = 1; 2577 2578 hdspm_set_system_clock_mode(hdspm, val); 2579 2580 return 0; 2581 } 2582 2583 2584 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \ 2585 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2586 .name = xname, \ 2587 .index = xindex, \ 2588 .info = snd_hdspm_info_clock_source, \ 2589 .get = snd_hdspm_get_clock_source, \ 2590 .put = snd_hdspm_put_clock_source \ 2591 } 2592 2593 2594 static int hdspm_clock_source(struct hdspm * hdspm) 2595 { 2596 switch (hdspm->system_sample_rate) { 2597 case 32000: return 0; 2598 case 44100: return 1; 2599 case 48000: return 2; 2600 case 64000: return 3; 2601 case 88200: return 4; 2602 case 96000: return 5; 2603 case 128000: return 6; 2604 case 176400: return 7; 2605 case 192000: return 8; 2606 } 2607 2608 return -1; 2609 } 2610 2611 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode) 2612 { 2613 int rate; 2614 switch (mode) { 2615 case 0: 2616 rate = 32000; break; 2617 case 1: 2618 rate = 44100; break; 2619 case 2: 2620 rate = 48000; break; 2621 case 3: 2622 rate = 64000; break; 2623 case 4: 2624 rate = 88200; break; 2625 case 5: 2626 rate = 96000; break; 2627 case 6: 2628 rate = 128000; break; 2629 case 7: 2630 rate = 176400; break; 2631 case 8: 2632 rate = 192000; break; 2633 default: 2634 rate = 48000; 2635 } 2636 hdspm_set_rate(hdspm, rate, 1); 2637 return 0; 2638 } 2639 2640 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol, 2641 struct snd_ctl_elem_info *uinfo) 2642 { 2643 return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1); 2644 } 2645 2646 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol, 2647 struct snd_ctl_elem_value *ucontrol) 2648 { 2649 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2650 2651 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm); 2652 return 0; 2653 } 2654 2655 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol, 2656 struct snd_ctl_elem_value *ucontrol) 2657 { 2658 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2659 int change; 2660 int val; 2661 2662 if (!snd_hdspm_use_is_exclusive(hdspm)) 2663 return -EBUSY; 2664 val = ucontrol->value.enumerated.item[0]; 2665 if (val < 0) 2666 val = 0; 2667 if (val > 9) 2668 val = 9; 2669 spin_lock_irq(&hdspm->lock); 2670 if (val != hdspm_clock_source(hdspm)) 2671 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0; 2672 else 2673 change = 0; 2674 spin_unlock_irq(&hdspm->lock); 2675 return change; 2676 } 2677 2678 2679 #define HDSPM_PREF_SYNC_REF(xname, xindex) \ 2680 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2681 .name = xname, \ 2682 .index = xindex, \ 2683 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2684 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2685 .info = snd_hdspm_info_pref_sync_ref, \ 2686 .get = snd_hdspm_get_pref_sync_ref, \ 2687 .put = snd_hdspm_put_pref_sync_ref \ 2688 } 2689 2690 2691 /* 2692 * Returns the current preferred sync reference setting. 2693 * The semantics of the return value are depending on the 2694 * card, please see the comments for clarification. 2695 */ 2696 static int hdspm_pref_sync_ref(struct hdspm * hdspm) 2697 { 2698 switch (hdspm->io_type) { 2699 case AES32: 2700 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2701 case 0: return 0; /* WC */ 2702 case HDSPM_SyncRef0: return 1; /* AES 1 */ 2703 case HDSPM_SyncRef1: return 2; /* AES 2 */ 2704 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */ 2705 case HDSPM_SyncRef2: return 4; /* AES 4 */ 2706 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */ 2707 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */ 2708 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: 2709 return 7; /* AES 7 */ 2710 case HDSPM_SyncRef3: return 8; /* AES 8 */ 2711 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */ 2712 } 2713 break; 2714 2715 case MADI: 2716 case MADIface: 2717 if (hdspm->tco) { 2718 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2719 case 0: return 0; /* WC */ 2720 case HDSPM_SyncRef0: return 1; /* MADI */ 2721 case HDSPM_SyncRef1: return 2; /* TCO */ 2722 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2723 return 3; /* SYNC_IN */ 2724 } 2725 } else { 2726 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2727 case 0: return 0; /* WC */ 2728 case HDSPM_SyncRef0: return 1; /* MADI */ 2729 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2730 return 2; /* SYNC_IN */ 2731 } 2732 } 2733 break; 2734 2735 case RayDAT: 2736 if (hdspm->tco) { 2737 switch ((hdspm->settings_register & 2738 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2739 case 0: return 0; /* WC */ 2740 case 3: return 1; /* ADAT 1 */ 2741 case 4: return 2; /* ADAT 2 */ 2742 case 5: return 3; /* ADAT 3 */ 2743 case 6: return 4; /* ADAT 4 */ 2744 case 1: return 5; /* AES */ 2745 case 2: return 6; /* SPDIF */ 2746 case 9: return 7; /* TCO */ 2747 case 10: return 8; /* SYNC_IN */ 2748 } 2749 } else { 2750 switch ((hdspm->settings_register & 2751 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2752 case 0: return 0; /* WC */ 2753 case 3: return 1; /* ADAT 1 */ 2754 case 4: return 2; /* ADAT 2 */ 2755 case 5: return 3; /* ADAT 3 */ 2756 case 6: return 4; /* ADAT 4 */ 2757 case 1: return 5; /* AES */ 2758 case 2: return 6; /* SPDIF */ 2759 case 10: return 7; /* SYNC_IN */ 2760 } 2761 } 2762 2763 break; 2764 2765 case AIO: 2766 if (hdspm->tco) { 2767 switch ((hdspm->settings_register & 2768 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2769 case 0: return 0; /* WC */ 2770 case 3: return 1; /* ADAT */ 2771 case 1: return 2; /* AES */ 2772 case 2: return 3; /* SPDIF */ 2773 case 9: return 4; /* TCO */ 2774 case 10: return 5; /* SYNC_IN */ 2775 } 2776 } else { 2777 switch ((hdspm->settings_register & 2778 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2779 case 0: return 0; /* WC */ 2780 case 3: return 1; /* ADAT */ 2781 case 1: return 2; /* AES */ 2782 case 2: return 3; /* SPDIF */ 2783 case 10: return 4; /* SYNC_IN */ 2784 } 2785 } 2786 2787 break; 2788 } 2789 2790 return -1; 2791 } 2792 2793 2794 /* 2795 * Set the preferred sync reference to <pref>. The semantics 2796 * of <pref> are depending on the card type, see the comments 2797 * for clarification. 2798 */ 2799 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) 2800 { 2801 int p = 0; 2802 2803 switch (hdspm->io_type) { 2804 case AES32: 2805 hdspm->control_register &= ~HDSPM_SyncRefMask; 2806 switch (pref) { 2807 case 0: /* WC */ 2808 break; 2809 case 1: /* AES 1 */ 2810 hdspm->control_register |= HDSPM_SyncRef0; 2811 break; 2812 case 2: /* AES 2 */ 2813 hdspm->control_register |= HDSPM_SyncRef1; 2814 break; 2815 case 3: /* AES 3 */ 2816 hdspm->control_register |= 2817 HDSPM_SyncRef1+HDSPM_SyncRef0; 2818 break; 2819 case 4: /* AES 4 */ 2820 hdspm->control_register |= HDSPM_SyncRef2; 2821 break; 2822 case 5: /* AES 5 */ 2823 hdspm->control_register |= 2824 HDSPM_SyncRef2+HDSPM_SyncRef0; 2825 break; 2826 case 6: /* AES 6 */ 2827 hdspm->control_register |= 2828 HDSPM_SyncRef2+HDSPM_SyncRef1; 2829 break; 2830 case 7: /* AES 7 */ 2831 hdspm->control_register |= 2832 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0; 2833 break; 2834 case 8: /* AES 8 */ 2835 hdspm->control_register |= HDSPM_SyncRef3; 2836 break; 2837 case 9: /* TCO */ 2838 hdspm->control_register |= 2839 HDSPM_SyncRef3+HDSPM_SyncRef0; 2840 break; 2841 default: 2842 return -1; 2843 } 2844 2845 break; 2846 2847 case MADI: 2848 case MADIface: 2849 hdspm->control_register &= ~HDSPM_SyncRefMask; 2850 if (hdspm->tco) { 2851 switch (pref) { 2852 case 0: /* WC */ 2853 break; 2854 case 1: /* MADI */ 2855 hdspm->control_register |= HDSPM_SyncRef0; 2856 break; 2857 case 2: /* TCO */ 2858 hdspm->control_register |= HDSPM_SyncRef1; 2859 break; 2860 case 3: /* SYNC_IN */ 2861 hdspm->control_register |= 2862 HDSPM_SyncRef0+HDSPM_SyncRef1; 2863 break; 2864 default: 2865 return -1; 2866 } 2867 } else { 2868 switch (pref) { 2869 case 0: /* WC */ 2870 break; 2871 case 1: /* MADI */ 2872 hdspm->control_register |= HDSPM_SyncRef0; 2873 break; 2874 case 2: /* SYNC_IN */ 2875 hdspm->control_register |= 2876 HDSPM_SyncRef0+HDSPM_SyncRef1; 2877 break; 2878 default: 2879 return -1; 2880 } 2881 } 2882 2883 break; 2884 2885 case RayDAT: 2886 if (hdspm->tco) { 2887 switch (pref) { 2888 case 0: p = 0; break; /* WC */ 2889 case 1: p = 3; break; /* ADAT 1 */ 2890 case 2: p = 4; break; /* ADAT 2 */ 2891 case 3: p = 5; break; /* ADAT 3 */ 2892 case 4: p = 6; break; /* ADAT 4 */ 2893 case 5: p = 1; break; /* AES */ 2894 case 6: p = 2; break; /* SPDIF */ 2895 case 7: p = 9; break; /* TCO */ 2896 case 8: p = 10; break; /* SYNC_IN */ 2897 default: return -1; 2898 } 2899 } else { 2900 switch (pref) { 2901 case 0: p = 0; break; /* WC */ 2902 case 1: p = 3; break; /* ADAT 1 */ 2903 case 2: p = 4; break; /* ADAT 2 */ 2904 case 3: p = 5; break; /* ADAT 3 */ 2905 case 4: p = 6; break; /* ADAT 4 */ 2906 case 5: p = 1; break; /* AES */ 2907 case 6: p = 2; break; /* SPDIF */ 2908 case 7: p = 10; break; /* SYNC_IN */ 2909 default: return -1; 2910 } 2911 } 2912 break; 2913 2914 case AIO: 2915 if (hdspm->tco) { 2916 switch (pref) { 2917 case 0: p = 0; break; /* WC */ 2918 case 1: p = 3; break; /* ADAT */ 2919 case 2: p = 1; break; /* AES */ 2920 case 3: p = 2; break; /* SPDIF */ 2921 case 4: p = 9; break; /* TCO */ 2922 case 5: p = 10; break; /* SYNC_IN */ 2923 default: return -1; 2924 } 2925 } else { 2926 switch (pref) { 2927 case 0: p = 0; break; /* WC */ 2928 case 1: p = 3; break; /* ADAT */ 2929 case 2: p = 1; break; /* AES */ 2930 case 3: p = 2; break; /* SPDIF */ 2931 case 4: p = 10; break; /* SYNC_IN */ 2932 default: return -1; 2933 } 2934 } 2935 break; 2936 } 2937 2938 switch (hdspm->io_type) { 2939 case RayDAT: 2940 case AIO: 2941 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask; 2942 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p; 2943 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 2944 break; 2945 2946 case MADI: 2947 case MADIface: 2948 case AES32: 2949 hdspm_write(hdspm, HDSPM_controlRegister, 2950 hdspm->control_register); 2951 } 2952 2953 return 0; 2954 } 2955 2956 2957 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, 2958 struct snd_ctl_elem_info *uinfo) 2959 { 2960 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2961 2962 snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync); 2963 2964 return 0; 2965 } 2966 2967 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol, 2968 struct snd_ctl_elem_value *ucontrol) 2969 { 2970 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2971 int psf = hdspm_pref_sync_ref(hdspm); 2972 2973 if (psf >= 0) { 2974 ucontrol->value.enumerated.item[0] = psf; 2975 return 0; 2976 } 2977 2978 return -1; 2979 } 2980 2981 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, 2982 struct snd_ctl_elem_value *ucontrol) 2983 { 2984 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2985 int val, change = 0; 2986 2987 if (!snd_hdspm_use_is_exclusive(hdspm)) 2988 return -EBUSY; 2989 2990 val = ucontrol->value.enumerated.item[0]; 2991 2992 if (val < 0) 2993 val = 0; 2994 else if (val >= hdspm->texts_autosync_items) 2995 val = hdspm->texts_autosync_items-1; 2996 2997 spin_lock_irq(&hdspm->lock); 2998 if (val != hdspm_pref_sync_ref(hdspm)) 2999 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0; 3000 3001 spin_unlock_irq(&hdspm->lock); 3002 return change; 3003 } 3004 3005 3006 #define HDSPM_AUTOSYNC_REF(xname, xindex) \ 3007 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3008 .name = xname, \ 3009 .index = xindex, \ 3010 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 3011 .info = snd_hdspm_info_autosync_ref, \ 3012 .get = snd_hdspm_get_autosync_ref, \ 3013 } 3014 3015 static int hdspm_autosync_ref(struct hdspm *hdspm) 3016 { 3017 /* This looks at the autosync selected sync reference */ 3018 if (AES32 == hdspm->io_type) { 3019 3020 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 3021 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF; 3022 if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) && 3023 (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) { 3024 return syncref; 3025 } 3026 return HDSPM_AES32_AUTOSYNC_FROM_NONE; 3027 3028 } else if (MADI == hdspm->io_type) { 3029 3030 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3031 switch (status2 & HDSPM_SelSyncRefMask) { 3032 case HDSPM_SelSyncRef_WORD: 3033 return HDSPM_AUTOSYNC_FROM_WORD; 3034 case HDSPM_SelSyncRef_MADI: 3035 return HDSPM_AUTOSYNC_FROM_MADI; 3036 case HDSPM_SelSyncRef_TCO: 3037 return HDSPM_AUTOSYNC_FROM_TCO; 3038 case HDSPM_SelSyncRef_SyncIn: 3039 return HDSPM_AUTOSYNC_FROM_SYNC_IN; 3040 case HDSPM_SelSyncRef_NVALID: 3041 return HDSPM_AUTOSYNC_FROM_NONE; 3042 default: 3043 return HDSPM_AUTOSYNC_FROM_NONE; 3044 } 3045 3046 } 3047 return 0; 3048 } 3049 3050 3051 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, 3052 struct snd_ctl_elem_info *uinfo) 3053 { 3054 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3055 3056 if (AES32 == hdspm->io_type) { 3057 static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3", 3058 "AES4", "AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"}; 3059 3060 ENUMERATED_CTL_INFO(uinfo, texts); 3061 } else if (MADI == hdspm->io_type) { 3062 static const char *const texts[] = {"Word Clock", "MADI", "TCO", 3063 "Sync In", "None" }; 3064 3065 ENUMERATED_CTL_INFO(uinfo, texts); 3066 } 3067 return 0; 3068 } 3069 3070 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol, 3071 struct snd_ctl_elem_value *ucontrol) 3072 { 3073 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3074 3075 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm); 3076 return 0; 3077 } 3078 3079 3080 3081 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \ 3082 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3083 .name = xname, \ 3084 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3085 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3086 .info = snd_hdspm_info_tco_video_input_format, \ 3087 .get = snd_hdspm_get_tco_video_input_format, \ 3088 } 3089 3090 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol, 3091 struct snd_ctl_elem_info *uinfo) 3092 { 3093 static const char *const texts[] = {"No video", "NTSC", "PAL"}; 3094 ENUMERATED_CTL_INFO(uinfo, texts); 3095 return 0; 3096 } 3097 3098 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol, 3099 struct snd_ctl_elem_value *ucontrol) 3100 { 3101 u32 status; 3102 int ret = 0; 3103 3104 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3105 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3106 switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC | 3107 HDSPM_TCO1_Video_Input_Format_PAL)) { 3108 case HDSPM_TCO1_Video_Input_Format_NTSC: 3109 /* ntsc */ 3110 ret = 1; 3111 break; 3112 case HDSPM_TCO1_Video_Input_Format_PAL: 3113 /* pal */ 3114 ret = 2; 3115 break; 3116 default: 3117 /* no video */ 3118 ret = 0; 3119 break; 3120 } 3121 ucontrol->value.enumerated.item[0] = ret; 3122 return 0; 3123 } 3124 3125 3126 3127 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \ 3128 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3129 .name = xname, \ 3130 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3131 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3132 .info = snd_hdspm_info_tco_ltc_frames, \ 3133 .get = snd_hdspm_get_tco_ltc_frames, \ 3134 } 3135 3136 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3137 struct snd_ctl_elem_info *uinfo) 3138 { 3139 static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps", 3140 "30 fps"}; 3141 ENUMERATED_CTL_INFO(uinfo, texts); 3142 return 0; 3143 } 3144 3145 static int hdspm_tco_ltc_frames(struct hdspm *hdspm) 3146 { 3147 u32 status; 3148 int ret = 0; 3149 3150 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3151 if (status & HDSPM_TCO1_LTC_Input_valid) { 3152 switch (status & (HDSPM_TCO1_LTC_Format_LSB | 3153 HDSPM_TCO1_LTC_Format_MSB)) { 3154 case 0: 3155 /* 24 fps */ 3156 ret = fps_24; 3157 break; 3158 case HDSPM_TCO1_LTC_Format_LSB: 3159 /* 25 fps */ 3160 ret = fps_25; 3161 break; 3162 case HDSPM_TCO1_LTC_Format_MSB: 3163 /* 29.97 fps */ 3164 ret = fps_2997; 3165 break; 3166 default: 3167 /* 30 fps */ 3168 ret = fps_30; 3169 break; 3170 } 3171 } 3172 3173 return ret; 3174 } 3175 3176 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3177 struct snd_ctl_elem_value *ucontrol) 3178 { 3179 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3180 3181 ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm); 3182 return 0; 3183 } 3184 3185 #define HDSPM_TOGGLE_SETTING(xname, xindex) \ 3186 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3187 .name = xname, \ 3188 .private_value = xindex, \ 3189 .info = snd_hdspm_info_toggle_setting, \ 3190 .get = snd_hdspm_get_toggle_setting, \ 3191 .put = snd_hdspm_put_toggle_setting \ 3192 } 3193 3194 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask) 3195 { 3196 u32 reg; 3197 3198 if (hdspm_is_raydat_or_aio(hdspm)) 3199 reg = hdspm->settings_register; 3200 else 3201 reg = hdspm->control_register; 3202 3203 return (reg & regmask) ? 1 : 0; 3204 } 3205 3206 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out) 3207 { 3208 u32 *reg; 3209 u32 target_reg; 3210 3211 if (hdspm_is_raydat_or_aio(hdspm)) { 3212 reg = &(hdspm->settings_register); 3213 target_reg = HDSPM_WR_SETTINGS; 3214 } else { 3215 reg = &(hdspm->control_register); 3216 target_reg = HDSPM_controlRegister; 3217 } 3218 3219 if (out) 3220 *reg |= regmask; 3221 else 3222 *reg &= ~regmask; 3223 3224 hdspm_write(hdspm, target_reg, *reg); 3225 3226 return 0; 3227 } 3228 3229 #define snd_hdspm_info_toggle_setting snd_ctl_boolean_mono_info 3230 3231 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol, 3232 struct snd_ctl_elem_value *ucontrol) 3233 { 3234 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3235 u32 regmask = kcontrol->private_value; 3236 3237 spin_lock_irq(&hdspm->lock); 3238 ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask); 3239 spin_unlock_irq(&hdspm->lock); 3240 return 0; 3241 } 3242 3243 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol, 3244 struct snd_ctl_elem_value *ucontrol) 3245 { 3246 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3247 u32 regmask = kcontrol->private_value; 3248 int change; 3249 unsigned int val; 3250 3251 if (!snd_hdspm_use_is_exclusive(hdspm)) 3252 return -EBUSY; 3253 val = ucontrol->value.integer.value[0] & 1; 3254 spin_lock_irq(&hdspm->lock); 3255 change = (int) val != hdspm_toggle_setting(hdspm, regmask); 3256 hdspm_set_toggle_setting(hdspm, regmask, val); 3257 spin_unlock_irq(&hdspm->lock); 3258 return change; 3259 } 3260 3261 #define HDSPM_INPUT_SELECT(xname, xindex) \ 3262 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3263 .name = xname, \ 3264 .index = xindex, \ 3265 .info = snd_hdspm_info_input_select, \ 3266 .get = snd_hdspm_get_input_select, \ 3267 .put = snd_hdspm_put_input_select \ 3268 } 3269 3270 static int hdspm_input_select(struct hdspm * hdspm) 3271 { 3272 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; 3273 } 3274 3275 static int hdspm_set_input_select(struct hdspm * hdspm, int out) 3276 { 3277 if (out) 3278 hdspm->control_register |= HDSPM_InputSelect0; 3279 else 3280 hdspm->control_register &= ~HDSPM_InputSelect0; 3281 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3282 3283 return 0; 3284 } 3285 3286 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, 3287 struct snd_ctl_elem_info *uinfo) 3288 { 3289 static const char *const texts[] = { "optical", "coaxial" }; 3290 ENUMERATED_CTL_INFO(uinfo, texts); 3291 return 0; 3292 } 3293 3294 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, 3295 struct snd_ctl_elem_value *ucontrol) 3296 { 3297 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3298 3299 spin_lock_irq(&hdspm->lock); 3300 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); 3301 spin_unlock_irq(&hdspm->lock); 3302 return 0; 3303 } 3304 3305 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, 3306 struct snd_ctl_elem_value *ucontrol) 3307 { 3308 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3309 int change; 3310 unsigned int val; 3311 3312 if (!snd_hdspm_use_is_exclusive(hdspm)) 3313 return -EBUSY; 3314 val = ucontrol->value.integer.value[0] & 1; 3315 spin_lock_irq(&hdspm->lock); 3316 change = (int) val != hdspm_input_select(hdspm); 3317 hdspm_set_input_select(hdspm, val); 3318 spin_unlock_irq(&hdspm->lock); 3319 return change; 3320 } 3321 3322 3323 #define HDSPM_DS_WIRE(xname, xindex) \ 3324 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3325 .name = xname, \ 3326 .index = xindex, \ 3327 .info = snd_hdspm_info_ds_wire, \ 3328 .get = snd_hdspm_get_ds_wire, \ 3329 .put = snd_hdspm_put_ds_wire \ 3330 } 3331 3332 static int hdspm_ds_wire(struct hdspm * hdspm) 3333 { 3334 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0; 3335 } 3336 3337 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds) 3338 { 3339 if (ds) 3340 hdspm->control_register |= HDSPM_DS_DoubleWire; 3341 else 3342 hdspm->control_register &= ~HDSPM_DS_DoubleWire; 3343 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3344 3345 return 0; 3346 } 3347 3348 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol, 3349 struct snd_ctl_elem_info *uinfo) 3350 { 3351 static const char *const texts[] = { "Single", "Double" }; 3352 ENUMERATED_CTL_INFO(uinfo, texts); 3353 return 0; 3354 } 3355 3356 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol, 3357 struct snd_ctl_elem_value *ucontrol) 3358 { 3359 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3360 3361 spin_lock_irq(&hdspm->lock); 3362 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm); 3363 spin_unlock_irq(&hdspm->lock); 3364 return 0; 3365 } 3366 3367 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol, 3368 struct snd_ctl_elem_value *ucontrol) 3369 { 3370 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3371 int change; 3372 unsigned int val; 3373 3374 if (!snd_hdspm_use_is_exclusive(hdspm)) 3375 return -EBUSY; 3376 val = ucontrol->value.integer.value[0] & 1; 3377 spin_lock_irq(&hdspm->lock); 3378 change = (int) val != hdspm_ds_wire(hdspm); 3379 hdspm_set_ds_wire(hdspm, val); 3380 spin_unlock_irq(&hdspm->lock); 3381 return change; 3382 } 3383 3384 3385 #define HDSPM_QS_WIRE(xname, xindex) \ 3386 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3387 .name = xname, \ 3388 .index = xindex, \ 3389 .info = snd_hdspm_info_qs_wire, \ 3390 .get = snd_hdspm_get_qs_wire, \ 3391 .put = snd_hdspm_put_qs_wire \ 3392 } 3393 3394 static int hdspm_qs_wire(struct hdspm * hdspm) 3395 { 3396 if (hdspm->control_register & HDSPM_QS_DoubleWire) 3397 return 1; 3398 if (hdspm->control_register & HDSPM_QS_QuadWire) 3399 return 2; 3400 return 0; 3401 } 3402 3403 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode) 3404 { 3405 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire); 3406 switch (mode) { 3407 case 0: 3408 break; 3409 case 1: 3410 hdspm->control_register |= HDSPM_QS_DoubleWire; 3411 break; 3412 case 2: 3413 hdspm->control_register |= HDSPM_QS_QuadWire; 3414 break; 3415 } 3416 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3417 3418 return 0; 3419 } 3420 3421 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol, 3422 struct snd_ctl_elem_info *uinfo) 3423 { 3424 static const char *const texts[] = { "Single", "Double", "Quad" }; 3425 ENUMERATED_CTL_INFO(uinfo, texts); 3426 return 0; 3427 } 3428 3429 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol, 3430 struct snd_ctl_elem_value *ucontrol) 3431 { 3432 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3433 3434 spin_lock_irq(&hdspm->lock); 3435 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm); 3436 spin_unlock_irq(&hdspm->lock); 3437 return 0; 3438 } 3439 3440 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol, 3441 struct snd_ctl_elem_value *ucontrol) 3442 { 3443 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3444 int change; 3445 int val; 3446 3447 if (!snd_hdspm_use_is_exclusive(hdspm)) 3448 return -EBUSY; 3449 val = ucontrol->value.integer.value[0]; 3450 if (val < 0) 3451 val = 0; 3452 if (val > 2) 3453 val = 2; 3454 spin_lock_irq(&hdspm->lock); 3455 change = val != hdspm_qs_wire(hdspm); 3456 hdspm_set_qs_wire(hdspm, val); 3457 spin_unlock_irq(&hdspm->lock); 3458 return change; 3459 } 3460 3461 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \ 3462 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3463 .name = xname, \ 3464 .private_value = xindex, \ 3465 .info = snd_hdspm_info_tristate, \ 3466 .get = snd_hdspm_get_tristate, \ 3467 .put = snd_hdspm_put_tristate \ 3468 } 3469 3470 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask) 3471 { 3472 u32 reg = hdspm->settings_register & (regmask * 3); 3473 return reg / regmask; 3474 } 3475 3476 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask) 3477 { 3478 hdspm->settings_register &= ~(regmask * 3); 3479 hdspm->settings_register |= (regmask * mode); 3480 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 3481 3482 return 0; 3483 } 3484 3485 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol, 3486 struct snd_ctl_elem_info *uinfo) 3487 { 3488 u32 regmask = kcontrol->private_value; 3489 3490 static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" }; 3491 static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" }; 3492 3493 switch (regmask) { 3494 case HDSPM_c0_Input0: 3495 ENUMERATED_CTL_INFO(uinfo, texts_spdif); 3496 break; 3497 default: 3498 ENUMERATED_CTL_INFO(uinfo, texts_levels); 3499 break; 3500 } 3501 return 0; 3502 } 3503 3504 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol, 3505 struct snd_ctl_elem_value *ucontrol) 3506 { 3507 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3508 u32 regmask = kcontrol->private_value; 3509 3510 spin_lock_irq(&hdspm->lock); 3511 ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask); 3512 spin_unlock_irq(&hdspm->lock); 3513 return 0; 3514 } 3515 3516 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol, 3517 struct snd_ctl_elem_value *ucontrol) 3518 { 3519 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3520 u32 regmask = kcontrol->private_value; 3521 int change; 3522 int val; 3523 3524 if (!snd_hdspm_use_is_exclusive(hdspm)) 3525 return -EBUSY; 3526 val = ucontrol->value.integer.value[0]; 3527 if (val < 0) 3528 val = 0; 3529 if (val > 2) 3530 val = 2; 3531 3532 spin_lock_irq(&hdspm->lock); 3533 change = val != hdspm_tristate(hdspm, regmask); 3534 hdspm_set_tristate(hdspm, val, regmask); 3535 spin_unlock_irq(&hdspm->lock); 3536 return change; 3537 } 3538 3539 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \ 3540 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3541 .name = xname, \ 3542 .index = xindex, \ 3543 .info = snd_hdspm_info_madi_speedmode, \ 3544 .get = snd_hdspm_get_madi_speedmode, \ 3545 .put = snd_hdspm_put_madi_speedmode \ 3546 } 3547 3548 static int hdspm_madi_speedmode(struct hdspm *hdspm) 3549 { 3550 if (hdspm->control_register & HDSPM_QuadSpeed) 3551 return 2; 3552 if (hdspm->control_register & HDSPM_DoubleSpeed) 3553 return 1; 3554 return 0; 3555 } 3556 3557 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode) 3558 { 3559 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed); 3560 switch (mode) { 3561 case 0: 3562 break; 3563 case 1: 3564 hdspm->control_register |= HDSPM_DoubleSpeed; 3565 break; 3566 case 2: 3567 hdspm->control_register |= HDSPM_QuadSpeed; 3568 break; 3569 } 3570 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3571 3572 return 0; 3573 } 3574 3575 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol, 3576 struct snd_ctl_elem_info *uinfo) 3577 { 3578 static const char *const texts[] = { "Single", "Double", "Quad" }; 3579 ENUMERATED_CTL_INFO(uinfo, texts); 3580 return 0; 3581 } 3582 3583 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol, 3584 struct snd_ctl_elem_value *ucontrol) 3585 { 3586 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3587 3588 spin_lock_irq(&hdspm->lock); 3589 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm); 3590 spin_unlock_irq(&hdspm->lock); 3591 return 0; 3592 } 3593 3594 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol, 3595 struct snd_ctl_elem_value *ucontrol) 3596 { 3597 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3598 int change; 3599 int val; 3600 3601 if (!snd_hdspm_use_is_exclusive(hdspm)) 3602 return -EBUSY; 3603 val = ucontrol->value.integer.value[0]; 3604 if (val < 0) 3605 val = 0; 3606 if (val > 2) 3607 val = 2; 3608 spin_lock_irq(&hdspm->lock); 3609 change = val != hdspm_madi_speedmode(hdspm); 3610 hdspm_set_madi_speedmode(hdspm, val); 3611 spin_unlock_irq(&hdspm->lock); 3612 return change; 3613 } 3614 3615 #define HDSPM_MIXER(xname, xindex) \ 3616 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 3617 .name = xname, \ 3618 .index = xindex, \ 3619 .device = 0, \ 3620 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 3621 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3622 .info = snd_hdspm_info_mixer, \ 3623 .get = snd_hdspm_get_mixer, \ 3624 .put = snd_hdspm_put_mixer \ 3625 } 3626 3627 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol, 3628 struct snd_ctl_elem_info *uinfo) 3629 { 3630 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3631 uinfo->count = 3; 3632 uinfo->value.integer.min = 0; 3633 uinfo->value.integer.max = 65535; 3634 uinfo->value.integer.step = 1; 3635 return 0; 3636 } 3637 3638 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol, 3639 struct snd_ctl_elem_value *ucontrol) 3640 { 3641 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3642 int source; 3643 int destination; 3644 3645 source = ucontrol->value.integer.value[0]; 3646 if (source < 0) 3647 source = 0; 3648 else if (source >= 2 * HDSPM_MAX_CHANNELS) 3649 source = 2 * HDSPM_MAX_CHANNELS - 1; 3650 3651 destination = ucontrol->value.integer.value[1]; 3652 if (destination < 0) 3653 destination = 0; 3654 else if (destination >= HDSPM_MAX_CHANNELS) 3655 destination = HDSPM_MAX_CHANNELS - 1; 3656 3657 spin_lock_irq(&hdspm->lock); 3658 if (source >= HDSPM_MAX_CHANNELS) 3659 ucontrol->value.integer.value[2] = 3660 hdspm_read_pb_gain(hdspm, destination, 3661 source - HDSPM_MAX_CHANNELS); 3662 else 3663 ucontrol->value.integer.value[2] = 3664 hdspm_read_in_gain(hdspm, destination, source); 3665 3666 spin_unlock_irq(&hdspm->lock); 3667 3668 return 0; 3669 } 3670 3671 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol, 3672 struct snd_ctl_elem_value *ucontrol) 3673 { 3674 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3675 int change; 3676 int source; 3677 int destination; 3678 int gain; 3679 3680 if (!snd_hdspm_use_is_exclusive(hdspm)) 3681 return -EBUSY; 3682 3683 source = ucontrol->value.integer.value[0]; 3684 destination = ucontrol->value.integer.value[1]; 3685 3686 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS) 3687 return -1; 3688 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS) 3689 return -1; 3690 3691 gain = ucontrol->value.integer.value[2]; 3692 3693 spin_lock_irq(&hdspm->lock); 3694 3695 if (source >= HDSPM_MAX_CHANNELS) 3696 change = gain != hdspm_read_pb_gain(hdspm, destination, 3697 source - 3698 HDSPM_MAX_CHANNELS); 3699 else 3700 change = gain != hdspm_read_in_gain(hdspm, destination, 3701 source); 3702 3703 if (change) { 3704 if (source >= HDSPM_MAX_CHANNELS) 3705 hdspm_write_pb_gain(hdspm, destination, 3706 source - HDSPM_MAX_CHANNELS, 3707 gain); 3708 else 3709 hdspm_write_in_gain(hdspm, destination, source, 3710 gain); 3711 } 3712 spin_unlock_irq(&hdspm->lock); 3713 3714 return change; 3715 } 3716 3717 /* The simple mixer control(s) provide gain control for the 3718 basic 1:1 mappings of playback streams to output 3719 streams. 3720 */ 3721 3722 #define HDSPM_PLAYBACK_MIXER \ 3723 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3724 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \ 3725 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3726 .info = snd_hdspm_info_playback_mixer, \ 3727 .get = snd_hdspm_get_playback_mixer, \ 3728 .put = snd_hdspm_put_playback_mixer \ 3729 } 3730 3731 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol, 3732 struct snd_ctl_elem_info *uinfo) 3733 { 3734 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3735 uinfo->count = 1; 3736 uinfo->value.integer.min = 0; 3737 uinfo->value.integer.max = 64; 3738 uinfo->value.integer.step = 1; 3739 return 0; 3740 } 3741 3742 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol, 3743 struct snd_ctl_elem_value *ucontrol) 3744 { 3745 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3746 int channel; 3747 3748 channel = ucontrol->id.index - 1; 3749 3750 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3751 return -EINVAL; 3752 3753 spin_lock_irq(&hdspm->lock); 3754 ucontrol->value.integer.value[0] = 3755 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN; 3756 spin_unlock_irq(&hdspm->lock); 3757 3758 return 0; 3759 } 3760 3761 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol, 3762 struct snd_ctl_elem_value *ucontrol) 3763 { 3764 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3765 int change; 3766 int channel; 3767 int gain; 3768 3769 if (!snd_hdspm_use_is_exclusive(hdspm)) 3770 return -EBUSY; 3771 3772 channel = ucontrol->id.index - 1; 3773 3774 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3775 return -EINVAL; 3776 3777 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64; 3778 3779 spin_lock_irq(&hdspm->lock); 3780 change = 3781 gain != hdspm_read_pb_gain(hdspm, channel, 3782 channel); 3783 if (change) 3784 hdspm_write_pb_gain(hdspm, channel, channel, 3785 gain); 3786 spin_unlock_irq(&hdspm->lock); 3787 return change; 3788 } 3789 3790 #define HDSPM_SYNC_CHECK(xname, xindex) \ 3791 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3792 .name = xname, \ 3793 .private_value = xindex, \ 3794 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3795 .info = snd_hdspm_info_sync_check, \ 3796 .get = snd_hdspm_get_sync_check \ 3797 } 3798 3799 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \ 3800 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3801 .name = xname, \ 3802 .private_value = xindex, \ 3803 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3804 .info = snd_hdspm_tco_info_lock_check, \ 3805 .get = snd_hdspm_get_sync_check \ 3806 } 3807 3808 3809 3810 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, 3811 struct snd_ctl_elem_info *uinfo) 3812 { 3813 static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" }; 3814 ENUMERATED_CTL_INFO(uinfo, texts); 3815 return 0; 3816 } 3817 3818 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol, 3819 struct snd_ctl_elem_info *uinfo) 3820 { 3821 static const char *const texts[] = { "No Lock", "Lock" }; 3822 ENUMERATED_CTL_INFO(uinfo, texts); 3823 return 0; 3824 } 3825 3826 static int hdspm_wc_sync_check(struct hdspm *hdspm) 3827 { 3828 int status, status2; 3829 3830 switch (hdspm->io_type) { 3831 case AES32: 3832 status = hdspm_read(hdspm, HDSPM_statusRegister); 3833 if (status & HDSPM_AES32_wcLock) { 3834 if (status & HDSPM_AES32_wcSync) 3835 return 2; 3836 else 3837 return 1; 3838 } 3839 return 0; 3840 break; 3841 3842 case MADI: 3843 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3844 if (status2 & HDSPM_wcLock) { 3845 if (status2 & HDSPM_wcSync) 3846 return 2; 3847 else 3848 return 1; 3849 } 3850 return 0; 3851 break; 3852 3853 case RayDAT: 3854 case AIO: 3855 status = hdspm_read(hdspm, HDSPM_statusRegister); 3856 3857 if (status & 0x2000000) 3858 return 2; 3859 else if (status & 0x1000000) 3860 return 1; 3861 return 0; 3862 3863 break; 3864 3865 case MADIface: 3866 break; 3867 } 3868 3869 3870 return 3; 3871 } 3872 3873 3874 static int hdspm_madi_sync_check(struct hdspm *hdspm) 3875 { 3876 int status = hdspm_read(hdspm, HDSPM_statusRegister); 3877 if (status & HDSPM_madiLock) { 3878 if (status & HDSPM_madiSync) 3879 return 2; 3880 else 3881 return 1; 3882 } 3883 return 0; 3884 } 3885 3886 3887 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx) 3888 { 3889 int status, lock, sync; 3890 3891 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3892 3893 lock = (status & (0x1<<idx)) ? 1 : 0; 3894 sync = (status & (0x100<<idx)) ? 1 : 0; 3895 3896 if (lock && sync) 3897 return 2; 3898 else if (lock) 3899 return 1; 3900 return 0; 3901 } 3902 3903 3904 static int hdspm_sync_in_sync_check(struct hdspm *hdspm) 3905 { 3906 int status, lock = 0, sync = 0; 3907 3908 switch (hdspm->io_type) { 3909 case RayDAT: 3910 case AIO: 3911 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3); 3912 lock = (status & 0x400) ? 1 : 0; 3913 sync = (status & 0x800) ? 1 : 0; 3914 break; 3915 3916 case MADI: 3917 status = hdspm_read(hdspm, HDSPM_statusRegister); 3918 lock = (status & HDSPM_syncInLock) ? 1 : 0; 3919 sync = (status & HDSPM_syncInSync) ? 1 : 0; 3920 break; 3921 3922 case AES32: 3923 status = hdspm_read(hdspm, HDSPM_statusRegister2); 3924 lock = (status & 0x100000) ? 1 : 0; 3925 sync = (status & 0x200000) ? 1 : 0; 3926 break; 3927 3928 case MADIface: 3929 break; 3930 } 3931 3932 if (lock && sync) 3933 return 2; 3934 else if (lock) 3935 return 1; 3936 3937 return 0; 3938 } 3939 3940 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx) 3941 { 3942 int status2, lock, sync; 3943 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3944 3945 lock = (status2 & (0x0080 >> idx)) ? 1 : 0; 3946 sync = (status2 & (0x8000 >> idx)) ? 1 : 0; 3947 3948 if (sync) 3949 return 2; 3950 else if (lock) 3951 return 1; 3952 return 0; 3953 } 3954 3955 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask) 3956 { 3957 u32 status; 3958 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3959 3960 return (status & mask) ? 1 : 0; 3961 } 3962 3963 3964 static int hdspm_tco_sync_check(struct hdspm *hdspm) 3965 { 3966 int status; 3967 3968 if (hdspm->tco) { 3969 switch (hdspm->io_type) { 3970 case MADI: 3971 status = hdspm_read(hdspm, HDSPM_statusRegister); 3972 if (status & HDSPM_tcoLockMadi) { 3973 if (status & HDSPM_tcoSync) 3974 return 2; 3975 else 3976 return 1; 3977 } 3978 return 0; 3979 case AES32: 3980 status = hdspm_read(hdspm, HDSPM_statusRegister); 3981 if (status & HDSPM_tcoLockAes) { 3982 if (status & HDSPM_tcoSync) 3983 return 2; 3984 else 3985 return 1; 3986 } 3987 return 0; 3988 case RayDAT: 3989 case AIO: 3990 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3991 3992 if (status & 0x8000000) 3993 return 2; /* Sync */ 3994 if (status & 0x4000000) 3995 return 1; /* Lock */ 3996 return 0; /* No signal */ 3997 3998 default: 3999 break; 4000 } 4001 } 4002 4003 return 3; /* N/A */ 4004 } 4005 4006 4007 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol, 4008 struct snd_ctl_elem_value *ucontrol) 4009 { 4010 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4011 int val = -1; 4012 4013 switch (hdspm->io_type) { 4014 case RayDAT: 4015 switch (kcontrol->private_value) { 4016 case 0: /* WC */ 4017 val = hdspm_wc_sync_check(hdspm); break; 4018 case 7: /* TCO */ 4019 val = hdspm_tco_sync_check(hdspm); break; 4020 case 8: /* SYNC IN */ 4021 val = hdspm_sync_in_sync_check(hdspm); break; 4022 default: 4023 val = hdspm_s1_sync_check(hdspm, 4024 kcontrol->private_value-1); 4025 } 4026 break; 4027 4028 case AIO: 4029 switch (kcontrol->private_value) { 4030 case 0: /* WC */ 4031 val = hdspm_wc_sync_check(hdspm); break; 4032 case 4: /* TCO */ 4033 val = hdspm_tco_sync_check(hdspm); break; 4034 case 5: /* SYNC IN */ 4035 val = hdspm_sync_in_sync_check(hdspm); break; 4036 default: 4037 val = hdspm_s1_sync_check(hdspm, 4038 kcontrol->private_value-1); 4039 } 4040 break; 4041 4042 case MADI: 4043 switch (kcontrol->private_value) { 4044 case 0: /* WC */ 4045 val = hdspm_wc_sync_check(hdspm); break; 4046 case 1: /* MADI */ 4047 val = hdspm_madi_sync_check(hdspm); break; 4048 case 2: /* TCO */ 4049 val = hdspm_tco_sync_check(hdspm); break; 4050 case 3: /* SYNC_IN */ 4051 val = hdspm_sync_in_sync_check(hdspm); break; 4052 } 4053 break; 4054 4055 case MADIface: 4056 val = hdspm_madi_sync_check(hdspm); /* MADI */ 4057 break; 4058 4059 case AES32: 4060 switch (kcontrol->private_value) { 4061 case 0: /* WC */ 4062 val = hdspm_wc_sync_check(hdspm); break; 4063 case 9: /* TCO */ 4064 val = hdspm_tco_sync_check(hdspm); break; 4065 case 10 /* SYNC IN */: 4066 val = hdspm_sync_in_sync_check(hdspm); break; 4067 default: /* AES1 to AES8 */ 4068 val = hdspm_aes_sync_check(hdspm, 4069 kcontrol->private_value-1); 4070 } 4071 break; 4072 4073 } 4074 4075 if (hdspm->tco) { 4076 switch (kcontrol->private_value) { 4077 case 11: 4078 /* Check TCO for lock state of its current input */ 4079 val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock); 4080 break; 4081 case 12: 4082 /* Check TCO for valid time code on LTC input. */ 4083 val = hdspm_tco_input_check(hdspm, 4084 HDSPM_TCO1_LTC_Input_valid); 4085 break; 4086 default: 4087 break; 4088 } 4089 } 4090 4091 if (-1 == val) 4092 val = 3; 4093 4094 ucontrol->value.enumerated.item[0] = val; 4095 return 0; 4096 } 4097 4098 4099 4100 /* 4101 * TCO controls 4102 */ 4103 static void hdspm_tco_write(struct hdspm *hdspm) 4104 { 4105 unsigned int tc[4] = { 0, 0, 0, 0}; 4106 4107 switch (hdspm->tco->input) { 4108 case 0: 4109 tc[2] |= HDSPM_TCO2_set_input_MSB; 4110 break; 4111 case 1: 4112 tc[2] |= HDSPM_TCO2_set_input_LSB; 4113 break; 4114 default: 4115 break; 4116 } 4117 4118 switch (hdspm->tco->framerate) { 4119 case 1: 4120 tc[1] |= HDSPM_TCO1_LTC_Format_LSB; 4121 break; 4122 case 2: 4123 tc[1] |= HDSPM_TCO1_LTC_Format_MSB; 4124 break; 4125 case 3: 4126 tc[1] |= HDSPM_TCO1_LTC_Format_MSB + 4127 HDSPM_TCO1_set_drop_frame_flag; 4128 break; 4129 case 4: 4130 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4131 HDSPM_TCO1_LTC_Format_MSB; 4132 break; 4133 case 5: 4134 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4135 HDSPM_TCO1_LTC_Format_MSB + 4136 HDSPM_TCO1_set_drop_frame_flag; 4137 break; 4138 default: 4139 break; 4140 } 4141 4142 switch (hdspm->tco->wordclock) { 4143 case 1: 4144 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB; 4145 break; 4146 case 2: 4147 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB; 4148 break; 4149 default: 4150 break; 4151 } 4152 4153 switch (hdspm->tco->samplerate) { 4154 case 1: 4155 tc[2] |= HDSPM_TCO2_set_freq; 4156 break; 4157 case 2: 4158 tc[2] |= HDSPM_TCO2_set_freq_from_app; 4159 break; 4160 default: 4161 break; 4162 } 4163 4164 switch (hdspm->tco->pull) { 4165 case 1: 4166 tc[2] |= HDSPM_TCO2_set_pull_up; 4167 break; 4168 case 2: 4169 tc[2] |= HDSPM_TCO2_set_pull_down; 4170 break; 4171 case 3: 4172 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4; 4173 break; 4174 case 4: 4175 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4; 4176 break; 4177 default: 4178 break; 4179 } 4180 4181 if (1 == hdspm->tco->term) { 4182 tc[2] |= HDSPM_TCO2_set_term_75R; 4183 } 4184 4185 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]); 4186 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]); 4187 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]); 4188 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]); 4189 } 4190 4191 4192 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \ 4193 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4194 .name = xname, \ 4195 .index = xindex, \ 4196 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4197 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4198 .info = snd_hdspm_info_tco_sample_rate, \ 4199 .get = snd_hdspm_get_tco_sample_rate, \ 4200 .put = snd_hdspm_put_tco_sample_rate \ 4201 } 4202 4203 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol, 4204 struct snd_ctl_elem_info *uinfo) 4205 { 4206 /* TODO freq from app could be supported here, see tco->samplerate */ 4207 static const char *const texts[] = { "44.1 kHz", "48 kHz" }; 4208 ENUMERATED_CTL_INFO(uinfo, texts); 4209 return 0; 4210 } 4211 4212 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol, 4213 struct snd_ctl_elem_value *ucontrol) 4214 { 4215 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4216 4217 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate; 4218 4219 return 0; 4220 } 4221 4222 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol, 4223 struct snd_ctl_elem_value *ucontrol) 4224 { 4225 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4226 4227 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) { 4228 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0]; 4229 4230 hdspm_tco_write(hdspm); 4231 4232 return 1; 4233 } 4234 4235 return 0; 4236 } 4237 4238 4239 #define HDSPM_TCO_PULL(xname, xindex) \ 4240 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4241 .name = xname, \ 4242 .index = xindex, \ 4243 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4244 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4245 .info = snd_hdspm_info_tco_pull, \ 4246 .get = snd_hdspm_get_tco_pull, \ 4247 .put = snd_hdspm_put_tco_pull \ 4248 } 4249 4250 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol, 4251 struct snd_ctl_elem_info *uinfo) 4252 { 4253 static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %", 4254 "+ 4 %", "- 4 %" }; 4255 ENUMERATED_CTL_INFO(uinfo, texts); 4256 return 0; 4257 } 4258 4259 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol, 4260 struct snd_ctl_elem_value *ucontrol) 4261 { 4262 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4263 4264 ucontrol->value.enumerated.item[0] = hdspm->tco->pull; 4265 4266 return 0; 4267 } 4268 4269 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol, 4270 struct snd_ctl_elem_value *ucontrol) 4271 { 4272 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4273 4274 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) { 4275 hdspm->tco->pull = ucontrol->value.enumerated.item[0]; 4276 4277 hdspm_tco_write(hdspm); 4278 4279 return 1; 4280 } 4281 4282 return 0; 4283 } 4284 4285 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \ 4286 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4287 .name = xname, \ 4288 .index = xindex, \ 4289 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4290 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4291 .info = snd_hdspm_info_tco_wck_conversion, \ 4292 .get = snd_hdspm_get_tco_wck_conversion, \ 4293 .put = snd_hdspm_put_tco_wck_conversion \ 4294 } 4295 4296 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4297 struct snd_ctl_elem_info *uinfo) 4298 { 4299 static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" }; 4300 ENUMERATED_CTL_INFO(uinfo, texts); 4301 return 0; 4302 } 4303 4304 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4305 struct snd_ctl_elem_value *ucontrol) 4306 { 4307 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4308 4309 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock; 4310 4311 return 0; 4312 } 4313 4314 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4315 struct snd_ctl_elem_value *ucontrol) 4316 { 4317 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4318 4319 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) { 4320 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0]; 4321 4322 hdspm_tco_write(hdspm); 4323 4324 return 1; 4325 } 4326 4327 return 0; 4328 } 4329 4330 4331 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \ 4332 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4333 .name = xname, \ 4334 .index = xindex, \ 4335 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4336 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4337 .info = snd_hdspm_info_tco_frame_rate, \ 4338 .get = snd_hdspm_get_tco_frame_rate, \ 4339 .put = snd_hdspm_put_tco_frame_rate \ 4340 } 4341 4342 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol, 4343 struct snd_ctl_elem_info *uinfo) 4344 { 4345 static const char *const texts[] = { "24 fps", "25 fps", "29.97fps", 4346 "29.97 dfps", "30 fps", "30 dfps" }; 4347 ENUMERATED_CTL_INFO(uinfo, texts); 4348 return 0; 4349 } 4350 4351 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol, 4352 struct snd_ctl_elem_value *ucontrol) 4353 { 4354 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4355 4356 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate; 4357 4358 return 0; 4359 } 4360 4361 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol, 4362 struct snd_ctl_elem_value *ucontrol) 4363 { 4364 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4365 4366 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) { 4367 hdspm->tco->framerate = ucontrol->value.enumerated.item[0]; 4368 4369 hdspm_tco_write(hdspm); 4370 4371 return 1; 4372 } 4373 4374 return 0; 4375 } 4376 4377 4378 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \ 4379 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4380 .name = xname, \ 4381 .index = xindex, \ 4382 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4383 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4384 .info = snd_hdspm_info_tco_sync_source, \ 4385 .get = snd_hdspm_get_tco_sync_source, \ 4386 .put = snd_hdspm_put_tco_sync_source \ 4387 } 4388 4389 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol, 4390 struct snd_ctl_elem_info *uinfo) 4391 { 4392 static const char *const texts[] = { "LTC", "Video", "WCK" }; 4393 ENUMERATED_CTL_INFO(uinfo, texts); 4394 return 0; 4395 } 4396 4397 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol, 4398 struct snd_ctl_elem_value *ucontrol) 4399 { 4400 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4401 4402 ucontrol->value.enumerated.item[0] = hdspm->tco->input; 4403 4404 return 0; 4405 } 4406 4407 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol, 4408 struct snd_ctl_elem_value *ucontrol) 4409 { 4410 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4411 4412 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) { 4413 hdspm->tco->input = ucontrol->value.enumerated.item[0]; 4414 4415 hdspm_tco_write(hdspm); 4416 4417 return 1; 4418 } 4419 4420 return 0; 4421 } 4422 4423 4424 #define HDSPM_TCO_WORD_TERM(xname, xindex) \ 4425 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4426 .name = xname, \ 4427 .index = xindex, \ 4428 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4429 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4430 .info = snd_hdspm_info_tco_word_term, \ 4431 .get = snd_hdspm_get_tco_word_term, \ 4432 .put = snd_hdspm_put_tco_word_term \ 4433 } 4434 4435 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol, 4436 struct snd_ctl_elem_info *uinfo) 4437 { 4438 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 4439 uinfo->count = 1; 4440 uinfo->value.integer.min = 0; 4441 uinfo->value.integer.max = 1; 4442 4443 return 0; 4444 } 4445 4446 4447 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol, 4448 struct snd_ctl_elem_value *ucontrol) 4449 { 4450 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4451 4452 ucontrol->value.enumerated.item[0] = hdspm->tco->term; 4453 4454 return 0; 4455 } 4456 4457 4458 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol, 4459 struct snd_ctl_elem_value *ucontrol) 4460 { 4461 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4462 4463 if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) { 4464 hdspm->tco->term = ucontrol->value.enumerated.item[0]; 4465 4466 hdspm_tco_write(hdspm); 4467 4468 return 1; 4469 } 4470 4471 return 0; 4472 } 4473 4474 4475 4476 4477 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = { 4478 HDSPM_MIXER("Mixer", 0), 4479 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4480 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4481 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4482 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4483 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4484 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4485 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4486 HDSPM_SYNC_CHECK("MADI SyncCheck", 1), 4487 HDSPM_SYNC_CHECK("TCO SyncCheck", 2), 4488 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3), 4489 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4490 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4491 HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX), 4492 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4493 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4494 HDSPM_INPUT_SELECT("Input Select", 0), 4495 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4496 }; 4497 4498 4499 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = { 4500 HDSPM_MIXER("Mixer", 0), 4501 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4502 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4503 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4504 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4505 HDSPM_SYNC_CHECK("MADI SyncCheck", 0), 4506 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4507 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4508 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4509 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4510 }; 4511 4512 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = { 4513 HDSPM_MIXER("Mixer", 0), 4514 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4515 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4516 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4517 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4518 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4519 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4520 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4521 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4522 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3), 4523 HDSPM_SYNC_CHECK("TCO SyncCheck", 4), 4524 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5), 4525 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4526 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4527 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4528 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3), 4529 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4), 4530 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5), 4531 HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0), 4532 HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt), 4533 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4534 HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1), 4535 HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db), 4536 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48), 4537 HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0), 4538 HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0), 4539 HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0) 4540 4541 /* 4542 HDSPM_INPUT_SELECT("Input Select", 0), 4543 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0), 4544 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0); 4545 HDSPM_SPDIF_IN("SPDIF In", 0); 4546 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0); 4547 HDSPM_INPUT_LEVEL("Input Level", 0); 4548 HDSPM_OUTPUT_LEVEL("Output Level", 0); 4549 HDSPM_PHONES("Phones", 0); 4550 */ 4551 }; 4552 4553 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = { 4554 HDSPM_MIXER("Mixer", 0), 4555 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4556 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0), 4557 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0), 4558 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4559 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4560 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4561 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4562 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3), 4563 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4), 4564 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5), 4565 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6), 4566 HDSPM_SYNC_CHECK("TCO SyncCheck", 7), 4567 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8), 4568 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4569 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4570 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4571 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3), 4572 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4), 4573 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5), 4574 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6), 4575 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7), 4576 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8), 4577 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4578 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48) 4579 }; 4580 4581 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = { 4582 HDSPM_MIXER("Mixer", 0), 4583 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4584 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4585 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4586 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4587 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4588 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11), 4589 HDSPM_SYNC_CHECK("WC Sync Check", 0), 4590 HDSPM_SYNC_CHECK("AES1 Sync Check", 1), 4591 HDSPM_SYNC_CHECK("AES2 Sync Check", 2), 4592 HDSPM_SYNC_CHECK("AES3 Sync Check", 3), 4593 HDSPM_SYNC_CHECK("AES4 Sync Check", 4), 4594 HDSPM_SYNC_CHECK("AES5 Sync Check", 5), 4595 HDSPM_SYNC_CHECK("AES6 Sync Check", 6), 4596 HDSPM_SYNC_CHECK("AES7 Sync Check", 7), 4597 HDSPM_SYNC_CHECK("AES8 Sync Check", 8), 4598 HDSPM_SYNC_CHECK("TCO Sync Check", 9), 4599 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10), 4600 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4601 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1), 4602 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2), 4603 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3), 4604 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4), 4605 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5), 4606 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6), 4607 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7), 4608 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8), 4609 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9), 4610 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10), 4611 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4612 HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis), 4613 HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby), 4614 HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional), 4615 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4616 HDSPM_DS_WIRE("Double Speed Wire Mode", 0), 4617 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0), 4618 }; 4619 4620 4621 4622 /* Control elements for the optional TCO module */ 4623 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = { 4624 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0), 4625 HDSPM_TCO_PULL("TCO Pull", 0), 4626 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0), 4627 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0), 4628 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0), 4629 HDSPM_TCO_WORD_TERM("TCO Word Term", 0), 4630 HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11), 4631 HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12), 4632 HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0), 4633 HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0) 4634 }; 4635 4636 4637 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; 4638 4639 4640 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm) 4641 { 4642 int i; 4643 4644 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) { 4645 if (hdspm->system_sample_rate > 48000) { 4646 hdspm->playback_mixer_ctls[i]->vd[0].access = 4647 SNDRV_CTL_ELEM_ACCESS_INACTIVE | 4648 SNDRV_CTL_ELEM_ACCESS_READ | 4649 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4650 } else { 4651 hdspm->playback_mixer_ctls[i]->vd[0].access = 4652 SNDRV_CTL_ELEM_ACCESS_READWRITE | 4653 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4654 } 4655 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE | 4656 SNDRV_CTL_EVENT_MASK_INFO, 4657 &hdspm->playback_mixer_ctls[i]->id); 4658 } 4659 4660 return 0; 4661 } 4662 4663 4664 static int snd_hdspm_create_controls(struct snd_card *card, 4665 struct hdspm *hdspm) 4666 { 4667 unsigned int idx, limit; 4668 int err; 4669 struct snd_kcontrol *kctl; 4670 struct snd_kcontrol_new *list = NULL; 4671 4672 switch (hdspm->io_type) { 4673 case MADI: 4674 list = snd_hdspm_controls_madi; 4675 limit = ARRAY_SIZE(snd_hdspm_controls_madi); 4676 break; 4677 case MADIface: 4678 list = snd_hdspm_controls_madiface; 4679 limit = ARRAY_SIZE(snd_hdspm_controls_madiface); 4680 break; 4681 case AIO: 4682 list = snd_hdspm_controls_aio; 4683 limit = ARRAY_SIZE(snd_hdspm_controls_aio); 4684 break; 4685 case RayDAT: 4686 list = snd_hdspm_controls_raydat; 4687 limit = ARRAY_SIZE(snd_hdspm_controls_raydat); 4688 break; 4689 case AES32: 4690 list = snd_hdspm_controls_aes32; 4691 limit = ARRAY_SIZE(snd_hdspm_controls_aes32); 4692 break; 4693 } 4694 4695 if (NULL != list) { 4696 for (idx = 0; idx < limit; idx++) { 4697 err = snd_ctl_add(card, 4698 snd_ctl_new1(&list[idx], hdspm)); 4699 if (err < 0) 4700 return err; 4701 } 4702 } 4703 4704 4705 /* create simple 1:1 playback mixer controls */ 4706 snd_hdspm_playback_mixer.name = "Chn"; 4707 if (hdspm->system_sample_rate >= 128000) { 4708 limit = hdspm->qs_out_channels; 4709 } else if (hdspm->system_sample_rate >= 64000) { 4710 limit = hdspm->ds_out_channels; 4711 } else { 4712 limit = hdspm->ss_out_channels; 4713 } 4714 for (idx = 0; idx < limit; ++idx) { 4715 snd_hdspm_playback_mixer.index = idx + 1; 4716 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm); 4717 err = snd_ctl_add(card, kctl); 4718 if (err < 0) 4719 return err; 4720 hdspm->playback_mixer_ctls[idx] = kctl; 4721 } 4722 4723 4724 if (hdspm->tco) { 4725 /* add tco control elements */ 4726 list = snd_hdspm_controls_tco; 4727 limit = ARRAY_SIZE(snd_hdspm_controls_tco); 4728 for (idx = 0; idx < limit; idx++) { 4729 err = snd_ctl_add(card, 4730 snd_ctl_new1(&list[idx], hdspm)); 4731 if (err < 0) 4732 return err; 4733 } 4734 } 4735 4736 return 0; 4737 } 4738 4739 /*------------------------------------------------------------ 4740 /proc interface 4741 ------------------------------------------------------------*/ 4742 4743 static void 4744 snd_hdspm_proc_read_tco(struct snd_info_entry *entry, 4745 struct snd_info_buffer *buffer) 4746 { 4747 struct hdspm *hdspm = entry->private_data; 4748 unsigned int status, control; 4749 int a, ltc, frames, seconds, minutes, hours; 4750 unsigned int period; 4751 u64 freq_const = 0; 4752 u32 rate; 4753 4754 snd_iprintf(buffer, "--- TCO ---\n"); 4755 4756 status = hdspm_read(hdspm, HDSPM_statusRegister); 4757 control = hdspm->control_register; 4758 4759 4760 if (status & HDSPM_tco_detect) { 4761 snd_iprintf(buffer, "TCO module detected.\n"); 4762 a = hdspm_read(hdspm, HDSPM_RD_TCO+4); 4763 if (a & HDSPM_TCO1_LTC_Input_valid) { 4764 snd_iprintf(buffer, " LTC valid, "); 4765 switch (a & (HDSPM_TCO1_LTC_Format_LSB | 4766 HDSPM_TCO1_LTC_Format_MSB)) { 4767 case 0: 4768 snd_iprintf(buffer, "24 fps, "); 4769 break; 4770 case HDSPM_TCO1_LTC_Format_LSB: 4771 snd_iprintf(buffer, "25 fps, "); 4772 break; 4773 case HDSPM_TCO1_LTC_Format_MSB: 4774 snd_iprintf(buffer, "29.97 fps, "); 4775 break; 4776 default: 4777 snd_iprintf(buffer, "30 fps, "); 4778 break; 4779 } 4780 if (a & HDSPM_TCO1_set_drop_frame_flag) { 4781 snd_iprintf(buffer, "drop frame\n"); 4782 } else { 4783 snd_iprintf(buffer, "full frame\n"); 4784 } 4785 } else { 4786 snd_iprintf(buffer, " no LTC\n"); 4787 } 4788 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) { 4789 snd_iprintf(buffer, " Video: NTSC\n"); 4790 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) { 4791 snd_iprintf(buffer, " Video: PAL\n"); 4792 } else { 4793 snd_iprintf(buffer, " No video\n"); 4794 } 4795 if (a & HDSPM_TCO1_TCO_lock) { 4796 snd_iprintf(buffer, " Sync: lock\n"); 4797 } else { 4798 snd_iprintf(buffer, " Sync: no lock\n"); 4799 } 4800 4801 switch (hdspm->io_type) { 4802 case MADI: 4803 case AES32: 4804 freq_const = 110069313433624ULL; 4805 break; 4806 case RayDAT: 4807 case AIO: 4808 freq_const = 104857600000000ULL; 4809 break; 4810 case MADIface: 4811 break; /* no TCO possible */ 4812 } 4813 4814 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 4815 snd_iprintf(buffer, " period: %u\n", period); 4816 4817 4818 /* rate = freq_const/period; */ 4819 rate = div_u64(freq_const, period); 4820 4821 if (control & HDSPM_QuadSpeed) { 4822 rate *= 4; 4823 } else if (control & HDSPM_DoubleSpeed) { 4824 rate *= 2; 4825 } 4826 4827 snd_iprintf(buffer, " Frequency: %u Hz\n", 4828 (unsigned int) rate); 4829 4830 ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 4831 frames = ltc & 0xF; 4832 ltc >>= 4; 4833 frames += (ltc & 0x3) * 10; 4834 ltc >>= 4; 4835 seconds = ltc & 0xF; 4836 ltc >>= 4; 4837 seconds += (ltc & 0x7) * 10; 4838 ltc >>= 4; 4839 minutes = ltc & 0xF; 4840 ltc >>= 4; 4841 minutes += (ltc & 0x7) * 10; 4842 ltc >>= 4; 4843 hours = ltc & 0xF; 4844 ltc >>= 4; 4845 hours += (ltc & 0x3) * 10; 4846 snd_iprintf(buffer, 4847 " LTC In: %02d:%02d:%02d:%02d\n", 4848 hours, minutes, seconds, frames); 4849 4850 } else { 4851 snd_iprintf(buffer, "No TCO module detected.\n"); 4852 } 4853 } 4854 4855 static void 4856 snd_hdspm_proc_read_madi(struct snd_info_entry *entry, 4857 struct snd_info_buffer *buffer) 4858 { 4859 struct hdspm *hdspm = entry->private_data; 4860 unsigned int status, status2; 4861 4862 char *pref_sync_ref; 4863 char *autosync_ref; 4864 char *system_clock_mode; 4865 int x, x2; 4866 4867 status = hdspm_read(hdspm, HDSPM_statusRegister); 4868 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 4869 4870 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n", 4871 hdspm->card_name, hdspm->card->number + 1, 4872 hdspm->firmware_rev, 4873 (status2 & HDSPM_version0) | 4874 (status2 & HDSPM_version1) | (status2 & 4875 HDSPM_version2)); 4876 4877 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n", 4878 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF, 4879 hdspm->serial); 4880 4881 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 4882 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 4883 4884 snd_iprintf(buffer, "--- System ---\n"); 4885 4886 snd_iprintf(buffer, 4887 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 4888 status & HDSPM_audioIRQPending, 4889 (status & HDSPM_midi0IRQPending) ? 1 : 0, 4890 (status & HDSPM_midi1IRQPending) ? 1 : 0, 4891 hdspm->irq_count); 4892 snd_iprintf(buffer, 4893 "HW pointer: id = %d, rawptr = %d (%d->%d) " 4894 "estimated= %ld (bytes)\n", 4895 ((status & HDSPM_BufferID) ? 1 : 0), 4896 (status & HDSPM_BufferPositionMask), 4897 (status & HDSPM_BufferPositionMask) % 4898 (2 * (int)hdspm->period_bytes), 4899 ((status & HDSPM_BufferPositionMask) - 64) % 4900 (2 * (int)hdspm->period_bytes), 4901 (long) hdspm_hw_pointer(hdspm) * 4); 4902 4903 snd_iprintf(buffer, 4904 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 4905 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 4906 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 4907 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 4908 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 4909 snd_iprintf(buffer, 4910 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 4911 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 4912 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 4913 snd_iprintf(buffer, 4914 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 4915 "status2=0x%x\n", 4916 hdspm->control_register, hdspm->control2_register, 4917 status, status2); 4918 4919 4920 snd_iprintf(buffer, "--- Settings ---\n"); 4921 4922 x = hdspm_get_latency(hdspm); 4923 4924 snd_iprintf(buffer, 4925 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 4926 x, (unsigned long) hdspm->period_bytes); 4927 4928 snd_iprintf(buffer, "Line out: %s\n", 4929 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off"); 4930 4931 snd_iprintf(buffer, 4932 "ClearTrackMarker = %s, Transmit in %s Channel Mode, " 4933 "Auto Input %s\n", 4934 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off", 4935 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56", 4936 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off"); 4937 4938 4939 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 4940 system_clock_mode = "AutoSync"; 4941 else 4942 system_clock_mode = "Master"; 4943 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode); 4944 4945 switch (hdspm_pref_sync_ref(hdspm)) { 4946 case HDSPM_SYNC_FROM_WORD: 4947 pref_sync_ref = "Word Clock"; 4948 break; 4949 case HDSPM_SYNC_FROM_MADI: 4950 pref_sync_ref = "MADI Sync"; 4951 break; 4952 case HDSPM_SYNC_FROM_TCO: 4953 pref_sync_ref = "TCO"; 4954 break; 4955 case HDSPM_SYNC_FROM_SYNC_IN: 4956 pref_sync_ref = "Sync In"; 4957 break; 4958 default: 4959 pref_sync_ref = "XXXX Clock"; 4960 break; 4961 } 4962 snd_iprintf(buffer, "Preferred Sync Reference: %s\n", 4963 pref_sync_ref); 4964 4965 snd_iprintf(buffer, "System Clock Frequency: %d\n", 4966 hdspm->system_sample_rate); 4967 4968 4969 snd_iprintf(buffer, "--- Status:\n"); 4970 4971 x = status & HDSPM_madiSync; 4972 x2 = status2 & HDSPM_wcSync; 4973 4974 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n", 4975 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") : 4976 "NoLock", 4977 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") : 4978 "NoLock"); 4979 4980 switch (hdspm_autosync_ref(hdspm)) { 4981 case HDSPM_AUTOSYNC_FROM_SYNC_IN: 4982 autosync_ref = "Sync In"; 4983 break; 4984 case HDSPM_AUTOSYNC_FROM_TCO: 4985 autosync_ref = "TCO"; 4986 break; 4987 case HDSPM_AUTOSYNC_FROM_WORD: 4988 autosync_ref = "Word Clock"; 4989 break; 4990 case HDSPM_AUTOSYNC_FROM_MADI: 4991 autosync_ref = "MADI Sync"; 4992 break; 4993 case HDSPM_AUTOSYNC_FROM_NONE: 4994 autosync_ref = "Input not valid"; 4995 break; 4996 default: 4997 autosync_ref = "---"; 4998 break; 4999 } 5000 snd_iprintf(buffer, 5001 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n", 5002 autosync_ref, hdspm_external_sample_rate(hdspm), 5003 (status & HDSPM_madiFreqMask) >> 22, 5004 (status2 & HDSPM_wcFreqMask) >> 5); 5005 5006 snd_iprintf(buffer, "Input: %s, Mode=%s\n", 5007 (status & HDSPM_AB_int) ? "Coax" : "Optical", 5008 (status & HDSPM_RX_64ch) ? "64 channels" : 5009 "56 channels"); 5010 5011 /* call readout function for TCO specific status */ 5012 snd_hdspm_proc_read_tco(entry, buffer); 5013 5014 snd_iprintf(buffer, "\n"); 5015 } 5016 5017 static void 5018 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry, 5019 struct snd_info_buffer *buffer) 5020 { 5021 struct hdspm *hdspm = entry->private_data; 5022 unsigned int status; 5023 unsigned int status2; 5024 unsigned int timecode; 5025 unsigned int wcLock, wcSync; 5026 int pref_syncref; 5027 char *autosync_ref; 5028 int x; 5029 5030 status = hdspm_read(hdspm, HDSPM_statusRegister); 5031 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 5032 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 5033 5034 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n", 5035 hdspm->card_name, hdspm->card->number + 1, 5036 hdspm->firmware_rev); 5037 5038 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 5039 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 5040 5041 snd_iprintf(buffer, "--- System ---\n"); 5042 5043 snd_iprintf(buffer, 5044 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 5045 status & HDSPM_audioIRQPending, 5046 (status & HDSPM_midi0IRQPending) ? 1 : 0, 5047 (status & HDSPM_midi1IRQPending) ? 1 : 0, 5048 hdspm->irq_count); 5049 snd_iprintf(buffer, 5050 "HW pointer: id = %d, rawptr = %d (%d->%d) " 5051 "estimated= %ld (bytes)\n", 5052 ((status & HDSPM_BufferID) ? 1 : 0), 5053 (status & HDSPM_BufferPositionMask), 5054 (status & HDSPM_BufferPositionMask) % 5055 (2 * (int)hdspm->period_bytes), 5056 ((status & HDSPM_BufferPositionMask) - 64) % 5057 (2 * (int)hdspm->period_bytes), 5058 (long) hdspm_hw_pointer(hdspm) * 4); 5059 5060 snd_iprintf(buffer, 5061 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 5062 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 5063 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 5064 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 5065 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 5066 snd_iprintf(buffer, 5067 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 5068 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 5069 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 5070 snd_iprintf(buffer, 5071 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 5072 "status2=0x%x\n", 5073 hdspm->control_register, hdspm->control2_register, 5074 status, status2); 5075 5076 snd_iprintf(buffer, "--- Settings ---\n"); 5077 5078 x = hdspm_get_latency(hdspm); 5079 5080 snd_iprintf(buffer, 5081 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 5082 x, (unsigned long) hdspm->period_bytes); 5083 5084 snd_iprintf(buffer, "Line out: %s\n", 5085 (hdspm-> 5086 control_register & HDSPM_LineOut) ? "on " : "off"); 5087 5088 snd_iprintf(buffer, 5089 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n", 5090 (hdspm-> 5091 control_register & HDSPM_clr_tms) ? "on" : "off", 5092 (hdspm-> 5093 control_register & HDSPM_Emphasis) ? "on" : "off", 5094 (hdspm-> 5095 control_register & HDSPM_Dolby) ? "on" : "off"); 5096 5097 5098 pref_syncref = hdspm_pref_sync_ref(hdspm); 5099 if (pref_syncref == 0) 5100 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n"); 5101 else 5102 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n", 5103 pref_syncref); 5104 5105 snd_iprintf(buffer, "System Clock Frequency: %d\n", 5106 hdspm->system_sample_rate); 5107 5108 snd_iprintf(buffer, "Double speed: %s\n", 5109 hdspm->control_register & HDSPM_DS_DoubleWire? 5110 "Double wire" : "Single wire"); 5111 snd_iprintf(buffer, "Quad speed: %s\n", 5112 hdspm->control_register & HDSPM_QS_DoubleWire? 5113 "Double wire" : 5114 hdspm->control_register & HDSPM_QS_QuadWire? 5115 "Quad wire" : "Single wire"); 5116 5117 snd_iprintf(buffer, "--- Status:\n"); 5118 5119 wcLock = status & HDSPM_AES32_wcLock; 5120 wcSync = wcLock && (status & HDSPM_AES32_wcSync); 5121 5122 snd_iprintf(buffer, "Word: %s Frequency: %d\n", 5123 (wcLock) ? (wcSync ? "Sync " : "Lock ") : "No Lock", 5124 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF)); 5125 5126 for (x = 0; x < 8; x++) { 5127 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n", 5128 x+1, 5129 (status2 & (HDSPM_LockAES >> x)) ? 5130 "Sync " : "No Lock", 5131 HDSPM_bit2freq((timecode >> (4*x)) & 0xF)); 5132 } 5133 5134 switch (hdspm_autosync_ref(hdspm)) { 5135 case HDSPM_AES32_AUTOSYNC_FROM_NONE: 5136 autosync_ref = "None"; break; 5137 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 5138 autosync_ref = "Word Clock"; break; 5139 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 5140 autosync_ref = "AES1"; break; 5141 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 5142 autosync_ref = "AES2"; break; 5143 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 5144 autosync_ref = "AES3"; break; 5145 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 5146 autosync_ref = "AES4"; break; 5147 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 5148 autosync_ref = "AES5"; break; 5149 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 5150 autosync_ref = "AES6"; break; 5151 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 5152 autosync_ref = "AES7"; break; 5153 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 5154 autosync_ref = "AES8"; break; 5155 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 5156 autosync_ref = "TCO"; break; 5157 case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN: 5158 autosync_ref = "Sync In"; break; 5159 default: 5160 autosync_ref = "---"; break; 5161 } 5162 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref); 5163 5164 /* call readout function for TCO specific status */ 5165 snd_hdspm_proc_read_tco(entry, buffer); 5166 5167 snd_iprintf(buffer, "\n"); 5168 } 5169 5170 static void 5171 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry, 5172 struct snd_info_buffer *buffer) 5173 { 5174 struct hdspm *hdspm = entry->private_data; 5175 unsigned int status1, status2, status3, i; 5176 unsigned int lock, sync; 5177 5178 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */ 5179 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */ 5180 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */ 5181 5182 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1); 5183 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2); 5184 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3); 5185 5186 5187 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n"); 5188 5189 snd_iprintf(buffer, "Clock mode : %s\n", 5190 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave"); 5191 snd_iprintf(buffer, "System frequency: %d Hz\n", 5192 hdspm_get_system_sample_rate(hdspm)); 5193 5194 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n"); 5195 5196 lock = 0x1; 5197 sync = 0x100; 5198 5199 for (i = 0; i < 8; i++) { 5200 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n", 5201 i, 5202 (status1 & lock) ? 1 : 0, 5203 (status1 & sync) ? 1 : 0, 5204 texts_freq[(status2 >> (i * 4)) & 0xF]); 5205 5206 lock = lock<<1; 5207 sync = sync<<1; 5208 } 5209 5210 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n", 5211 (status1 & 0x1000000) ? 1 : 0, 5212 (status1 & 0x2000000) ? 1 : 0, 5213 texts_freq[(status1 >> 16) & 0xF]); 5214 5215 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n", 5216 (status1 & 0x4000000) ? 1 : 0, 5217 (status1 & 0x8000000) ? 1 : 0, 5218 texts_freq[(status1 >> 20) & 0xF]); 5219 5220 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n", 5221 (status3 & 0x400) ? 1 : 0, 5222 (status3 & 0x800) ? 1 : 0, 5223 texts_freq[(status2 >> 12) & 0xF]); 5224 5225 } 5226 5227 #ifdef CONFIG_SND_DEBUG 5228 static void 5229 snd_hdspm_proc_read_debug(struct snd_info_entry *entry, 5230 struct snd_info_buffer *buffer) 5231 { 5232 struct hdspm *hdspm = entry->private_data; 5233 5234 int j,i; 5235 5236 for (i = 0; i < 256 /* 1024*64 */; i += j) { 5237 snd_iprintf(buffer, "0x%08X: ", i); 5238 for (j = 0; j < 16; j += 4) 5239 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j)); 5240 snd_iprintf(buffer, "\n"); 5241 } 5242 } 5243 #endif 5244 5245 5246 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry, 5247 struct snd_info_buffer *buffer) 5248 { 5249 struct hdspm *hdspm = entry->private_data; 5250 int i; 5251 5252 snd_iprintf(buffer, "# generated by hdspm\n"); 5253 5254 for (i = 0; i < hdspm->max_channels_in; i++) { 5255 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]); 5256 } 5257 } 5258 5259 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry, 5260 struct snd_info_buffer *buffer) 5261 { 5262 struct hdspm *hdspm = entry->private_data; 5263 int i; 5264 5265 snd_iprintf(buffer, "# generated by hdspm\n"); 5266 5267 for (i = 0; i < hdspm->max_channels_out; i++) { 5268 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]); 5269 } 5270 } 5271 5272 5273 static void snd_hdspm_proc_init(struct hdspm *hdspm) 5274 { 5275 struct snd_info_entry *entry; 5276 5277 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) { 5278 switch (hdspm->io_type) { 5279 case AES32: 5280 snd_info_set_text_ops(entry, hdspm, 5281 snd_hdspm_proc_read_aes32); 5282 break; 5283 case MADI: 5284 snd_info_set_text_ops(entry, hdspm, 5285 snd_hdspm_proc_read_madi); 5286 break; 5287 case MADIface: 5288 /* snd_info_set_text_ops(entry, hdspm, 5289 snd_hdspm_proc_read_madiface); */ 5290 break; 5291 case RayDAT: 5292 snd_info_set_text_ops(entry, hdspm, 5293 snd_hdspm_proc_read_raydat); 5294 break; 5295 case AIO: 5296 break; 5297 } 5298 } 5299 5300 if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) { 5301 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in); 5302 } 5303 5304 if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) { 5305 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out); 5306 } 5307 5308 #ifdef CONFIG_SND_DEBUG 5309 /* debug file to read all hdspm registers */ 5310 if (!snd_card_proc_new(hdspm->card, "debug", &entry)) 5311 snd_info_set_text_ops(entry, hdspm, 5312 snd_hdspm_proc_read_debug); 5313 #endif 5314 } 5315 5316 /*------------------------------------------------------------ 5317 hdspm intitialize 5318 ------------------------------------------------------------*/ 5319 5320 static int snd_hdspm_set_defaults(struct hdspm * hdspm) 5321 { 5322 /* ASSUMPTION: hdspm->lock is either held, or there is no need to 5323 hold it (e.g. during module initialization). 5324 */ 5325 5326 /* set defaults: */ 5327 5328 hdspm->settings_register = 0; 5329 5330 switch (hdspm->io_type) { 5331 case MADI: 5332 case MADIface: 5333 hdspm->control_register = 5334 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5335 break; 5336 5337 case RayDAT: 5338 case AIO: 5339 hdspm->settings_register = 0x1 + 0x1000; 5340 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0, 5341 * line_out */ 5342 hdspm->control_register = 5343 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5344 break; 5345 5346 case AES32: 5347 hdspm->control_register = 5348 HDSPM_ClockModeMaster | /* Master Clock Mode on */ 5349 hdspm_encode_latency(7) | /* latency max=8192samples */ 5350 HDSPM_SyncRef0 | /* AES1 is syncclock */ 5351 HDSPM_LineOut | /* Analog output in */ 5352 HDSPM_Professional; /* Professional mode */ 5353 break; 5354 } 5355 5356 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5357 5358 if (AES32 == hdspm->io_type) { 5359 /* No control2 register for AES32 */ 5360 #ifdef SNDRV_BIG_ENDIAN 5361 hdspm->control2_register = HDSPM_BIGENDIAN_MODE; 5362 #else 5363 hdspm->control2_register = 0; 5364 #endif 5365 5366 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register); 5367 } 5368 hdspm_compute_period_size(hdspm); 5369 5370 /* silence everything */ 5371 5372 all_in_all_mixer(hdspm, 0 * UNITY_GAIN); 5373 5374 if (hdspm_is_raydat_or_aio(hdspm)) 5375 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 5376 5377 /* set a default rate so that the channel map is set up. */ 5378 hdspm_set_rate(hdspm, 48000, 1); 5379 5380 return 0; 5381 } 5382 5383 5384 /*------------------------------------------------------------ 5385 interrupt 5386 ------------------------------------------------------------*/ 5387 5388 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id) 5389 { 5390 struct hdspm *hdspm = (struct hdspm *) dev_id; 5391 unsigned int status; 5392 int i, audio, midi, schedule = 0; 5393 /* cycles_t now; */ 5394 5395 status = hdspm_read(hdspm, HDSPM_statusRegister); 5396 5397 audio = status & HDSPM_audioIRQPending; 5398 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending | 5399 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending); 5400 5401 /* now = get_cycles(); */ 5402 /* 5403 * LAT_2..LAT_0 period counter (win) counter (mac) 5404 * 6 4096 ~256053425 ~514672358 5405 * 5 2048 ~128024983 ~257373821 5406 * 4 1024 ~64023706 ~128718089 5407 * 3 512 ~32005945 ~64385999 5408 * 2 256 ~16003039 ~32260176 5409 * 1 128 ~7998738 ~16194507 5410 * 0 64 ~3998231 ~8191558 5411 */ 5412 /* 5413 dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n", 5414 now-hdspm->last_interrupt, status & 0xFFC0); 5415 hdspm->last_interrupt = now; 5416 */ 5417 5418 if (!audio && !midi) 5419 return IRQ_NONE; 5420 5421 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0); 5422 hdspm->irq_count++; 5423 5424 5425 if (audio) { 5426 if (hdspm->capture_substream) 5427 snd_pcm_period_elapsed(hdspm->capture_substream); 5428 5429 if (hdspm->playback_substream) 5430 snd_pcm_period_elapsed(hdspm->playback_substream); 5431 } 5432 5433 if (midi) { 5434 i = 0; 5435 while (i < hdspm->midiPorts) { 5436 if ((hdspm_read(hdspm, 5437 hdspm->midi[i].statusIn) & 0xff) && 5438 (status & hdspm->midi[i].irq)) { 5439 /* we disable interrupts for this input until 5440 * processing is done 5441 */ 5442 hdspm->control_register &= ~hdspm->midi[i].ie; 5443 hdspm_write(hdspm, HDSPM_controlRegister, 5444 hdspm->control_register); 5445 hdspm->midi[i].pending = 1; 5446 schedule = 1; 5447 } 5448 5449 i++; 5450 } 5451 5452 if (schedule) 5453 tasklet_hi_schedule(&hdspm->midi_tasklet); 5454 } 5455 5456 return IRQ_HANDLED; 5457 } 5458 5459 /*------------------------------------------------------------ 5460 pcm interface 5461 ------------------------------------------------------------*/ 5462 5463 5464 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream 5465 *substream) 5466 { 5467 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5468 return hdspm_hw_pointer(hdspm); 5469 } 5470 5471 5472 static int snd_hdspm_reset(struct snd_pcm_substream *substream) 5473 { 5474 struct snd_pcm_runtime *runtime = substream->runtime; 5475 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5476 struct snd_pcm_substream *other; 5477 5478 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5479 other = hdspm->capture_substream; 5480 else 5481 other = hdspm->playback_substream; 5482 5483 if (hdspm->running) 5484 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm); 5485 else 5486 runtime->status->hw_ptr = 0; 5487 if (other) { 5488 struct snd_pcm_substream *s; 5489 struct snd_pcm_runtime *oruntime = other->runtime; 5490 snd_pcm_group_for_each_entry(s, substream) { 5491 if (s == other) { 5492 oruntime->status->hw_ptr = 5493 runtime->status->hw_ptr; 5494 break; 5495 } 5496 } 5497 } 5498 return 0; 5499 } 5500 5501 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, 5502 struct snd_pcm_hw_params *params) 5503 { 5504 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5505 int err; 5506 int i; 5507 pid_t this_pid; 5508 pid_t other_pid; 5509 5510 spin_lock_irq(&hdspm->lock); 5511 5512 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5513 this_pid = hdspm->playback_pid; 5514 other_pid = hdspm->capture_pid; 5515 } else { 5516 this_pid = hdspm->capture_pid; 5517 other_pid = hdspm->playback_pid; 5518 } 5519 5520 if (other_pid > 0 && this_pid != other_pid) { 5521 5522 /* The other stream is open, and not by the same 5523 task as this one. Make sure that the parameters 5524 that matter are the same. 5525 */ 5526 5527 if (params_rate(params) != hdspm->system_sample_rate) { 5528 spin_unlock_irq(&hdspm->lock); 5529 _snd_pcm_hw_param_setempty(params, 5530 SNDRV_PCM_HW_PARAM_RATE); 5531 return -EBUSY; 5532 } 5533 5534 if (params_period_size(params) != hdspm->period_bytes / 4) { 5535 spin_unlock_irq(&hdspm->lock); 5536 _snd_pcm_hw_param_setempty(params, 5537 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5538 return -EBUSY; 5539 } 5540 5541 } 5542 /* We're fine. */ 5543 spin_unlock_irq(&hdspm->lock); 5544 5545 /* how to make sure that the rate matches an externally-set one ? */ 5546 5547 spin_lock_irq(&hdspm->lock); 5548 err = hdspm_set_rate(hdspm, params_rate(params), 0); 5549 if (err < 0) { 5550 dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err); 5551 spin_unlock_irq(&hdspm->lock); 5552 _snd_pcm_hw_param_setempty(params, 5553 SNDRV_PCM_HW_PARAM_RATE); 5554 return err; 5555 } 5556 spin_unlock_irq(&hdspm->lock); 5557 5558 err = hdspm_set_interrupt_interval(hdspm, 5559 params_period_size(params)); 5560 if (err < 0) { 5561 dev_info(hdspm->card->dev, 5562 "err on hdspm_set_interrupt_interval: %d\n", err); 5563 _snd_pcm_hw_param_setempty(params, 5564 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5565 return err; 5566 } 5567 5568 /* Memory allocation, takashi's method, dont know if we should 5569 * spinlock 5570 */ 5571 /* malloc all buffer even if not enabled to get sure */ 5572 /* Update for MADI rev 204: we need to allocate for all channels, 5573 * otherwise it doesn't work at 96kHz */ 5574 5575 err = 5576 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES); 5577 if (err < 0) { 5578 dev_info(hdspm->card->dev, 5579 "err on snd_pcm_lib_malloc_pages: %d\n", err); 5580 return err; 5581 } 5582 5583 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5584 5585 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut, 5586 params_channels(params)); 5587 5588 for (i = 0; i < params_channels(params); ++i) 5589 snd_hdspm_enable_out(hdspm, i, 1); 5590 5591 hdspm->playback_buffer = 5592 (unsigned char *) substream->runtime->dma_area; 5593 dev_dbg(hdspm->card->dev, 5594 "Allocated sample buffer for playback at %p\n", 5595 hdspm->playback_buffer); 5596 } else { 5597 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn, 5598 params_channels(params)); 5599 5600 for (i = 0; i < params_channels(params); ++i) 5601 snd_hdspm_enable_in(hdspm, i, 1); 5602 5603 hdspm->capture_buffer = 5604 (unsigned char *) substream->runtime->dma_area; 5605 dev_dbg(hdspm->card->dev, 5606 "Allocated sample buffer for capture at %p\n", 5607 hdspm->capture_buffer); 5608 } 5609 5610 /* 5611 dev_dbg(hdspm->card->dev, 5612 "Allocated sample buffer for %s at 0x%08X\n", 5613 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5614 "playback" : "capture", 5615 snd_pcm_sgbuf_get_addr(substream, 0)); 5616 */ 5617 /* 5618 dev_dbg(hdspm->card->dev, 5619 "set_hwparams: %s %d Hz, %d channels, bs = %d\n", 5620 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5621 "playback" : "capture", 5622 params_rate(params), params_channels(params), 5623 params_buffer_size(params)); 5624 */ 5625 5626 5627 /* For AES cards, the float format bit is the same as the 5628 * preferred sync reference. Since we don't want to break 5629 * sync settings, we have to skip the remaining part of this 5630 * function. 5631 */ 5632 if (hdspm->io_type == AES32) { 5633 return 0; 5634 } 5635 5636 5637 /* Switch to native float format if requested */ 5638 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) { 5639 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT)) 5640 dev_info(hdspm->card->dev, 5641 "Switching to native 32bit LE float format.\n"); 5642 5643 hdspm->control_register |= HDSPe_FLOAT_FORMAT; 5644 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) { 5645 if (hdspm->control_register & HDSPe_FLOAT_FORMAT) 5646 dev_info(hdspm->card->dev, 5647 "Switching to native 32bit LE integer format.\n"); 5648 5649 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT; 5650 } 5651 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5652 5653 return 0; 5654 } 5655 5656 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream) 5657 { 5658 int i; 5659 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5660 5661 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5662 5663 /* params_channels(params) should be enough, 5664 but to get sure in case of error */ 5665 for (i = 0; i < hdspm->max_channels_out; ++i) 5666 snd_hdspm_enable_out(hdspm, i, 0); 5667 5668 hdspm->playback_buffer = NULL; 5669 } else { 5670 for (i = 0; i < hdspm->max_channels_in; ++i) 5671 snd_hdspm_enable_in(hdspm, i, 0); 5672 5673 hdspm->capture_buffer = NULL; 5674 5675 } 5676 5677 snd_pcm_lib_free_pages(substream); 5678 5679 return 0; 5680 } 5681 5682 5683 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream, 5684 struct snd_pcm_channel_info *info) 5685 { 5686 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5687 5688 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5689 if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) { 5690 dev_info(hdspm->card->dev, 5691 "snd_hdspm_channel_info: output channel out of range (%d)\n", 5692 info->channel); 5693 return -EINVAL; 5694 } 5695 5696 if (hdspm->channel_map_out[info->channel] < 0) { 5697 dev_info(hdspm->card->dev, 5698 "snd_hdspm_channel_info: output channel %d mapped out\n", 5699 info->channel); 5700 return -EINVAL; 5701 } 5702 5703 info->offset = hdspm->channel_map_out[info->channel] * 5704 HDSPM_CHANNEL_BUFFER_BYTES; 5705 } else { 5706 if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) { 5707 dev_info(hdspm->card->dev, 5708 "snd_hdspm_channel_info: input channel out of range (%d)\n", 5709 info->channel); 5710 return -EINVAL; 5711 } 5712 5713 if (hdspm->channel_map_in[info->channel] < 0) { 5714 dev_info(hdspm->card->dev, 5715 "snd_hdspm_channel_info: input channel %d mapped out\n", 5716 info->channel); 5717 return -EINVAL; 5718 } 5719 5720 info->offset = hdspm->channel_map_in[info->channel] * 5721 HDSPM_CHANNEL_BUFFER_BYTES; 5722 } 5723 5724 info->first = 0; 5725 info->step = 32; 5726 return 0; 5727 } 5728 5729 5730 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream, 5731 unsigned int cmd, void *arg) 5732 { 5733 switch (cmd) { 5734 case SNDRV_PCM_IOCTL1_RESET: 5735 return snd_hdspm_reset(substream); 5736 5737 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 5738 { 5739 struct snd_pcm_channel_info *info = arg; 5740 return snd_hdspm_channel_info(substream, info); 5741 } 5742 default: 5743 break; 5744 } 5745 5746 return snd_pcm_lib_ioctl(substream, cmd, arg); 5747 } 5748 5749 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd) 5750 { 5751 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5752 struct snd_pcm_substream *other; 5753 int running; 5754 5755 spin_lock(&hdspm->lock); 5756 running = hdspm->running; 5757 switch (cmd) { 5758 case SNDRV_PCM_TRIGGER_START: 5759 running |= 1 << substream->stream; 5760 break; 5761 case SNDRV_PCM_TRIGGER_STOP: 5762 running &= ~(1 << substream->stream); 5763 break; 5764 default: 5765 snd_BUG(); 5766 spin_unlock(&hdspm->lock); 5767 return -EINVAL; 5768 } 5769 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5770 other = hdspm->capture_substream; 5771 else 5772 other = hdspm->playback_substream; 5773 5774 if (other) { 5775 struct snd_pcm_substream *s; 5776 snd_pcm_group_for_each_entry(s, substream) { 5777 if (s == other) { 5778 snd_pcm_trigger_done(s, substream); 5779 if (cmd == SNDRV_PCM_TRIGGER_START) 5780 running |= 1 << s->stream; 5781 else 5782 running &= ~(1 << s->stream); 5783 goto _ok; 5784 } 5785 } 5786 if (cmd == SNDRV_PCM_TRIGGER_START) { 5787 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) 5788 && substream->stream == 5789 SNDRV_PCM_STREAM_CAPTURE) 5790 hdspm_silence_playback(hdspm); 5791 } else { 5792 if (running && 5793 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5794 hdspm_silence_playback(hdspm); 5795 } 5796 } else { 5797 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 5798 hdspm_silence_playback(hdspm); 5799 } 5800 _ok: 5801 snd_pcm_trigger_done(substream, substream); 5802 if (!hdspm->running && running) 5803 hdspm_start_audio(hdspm); 5804 else if (hdspm->running && !running) 5805 hdspm_stop_audio(hdspm); 5806 hdspm->running = running; 5807 spin_unlock(&hdspm->lock); 5808 5809 return 0; 5810 } 5811 5812 static int snd_hdspm_prepare(struct snd_pcm_substream *substream) 5813 { 5814 return 0; 5815 } 5816 5817 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = { 5818 .info = (SNDRV_PCM_INFO_MMAP | 5819 SNDRV_PCM_INFO_MMAP_VALID | 5820 SNDRV_PCM_INFO_NONINTERLEAVED | 5821 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE), 5822 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5823 .rates = (SNDRV_PCM_RATE_32000 | 5824 SNDRV_PCM_RATE_44100 | 5825 SNDRV_PCM_RATE_48000 | 5826 SNDRV_PCM_RATE_64000 | 5827 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5828 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ), 5829 .rate_min = 32000, 5830 .rate_max = 192000, 5831 .channels_min = 1, 5832 .channels_max = HDSPM_MAX_CHANNELS, 5833 .buffer_bytes_max = 5834 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5835 .period_bytes_min = (32 * 4), 5836 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5837 .periods_min = 2, 5838 .periods_max = 512, 5839 .fifo_size = 0 5840 }; 5841 5842 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = { 5843 .info = (SNDRV_PCM_INFO_MMAP | 5844 SNDRV_PCM_INFO_MMAP_VALID | 5845 SNDRV_PCM_INFO_NONINTERLEAVED | 5846 SNDRV_PCM_INFO_SYNC_START), 5847 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5848 .rates = (SNDRV_PCM_RATE_32000 | 5849 SNDRV_PCM_RATE_44100 | 5850 SNDRV_PCM_RATE_48000 | 5851 SNDRV_PCM_RATE_64000 | 5852 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5853 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000), 5854 .rate_min = 32000, 5855 .rate_max = 192000, 5856 .channels_min = 1, 5857 .channels_max = HDSPM_MAX_CHANNELS, 5858 .buffer_bytes_max = 5859 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5860 .period_bytes_min = (32 * 4), 5861 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5862 .periods_min = 2, 5863 .periods_max = 512, 5864 .fifo_size = 0 5865 }; 5866 5867 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 5868 struct snd_pcm_hw_rule *rule) 5869 { 5870 struct hdspm *hdspm = rule->private; 5871 struct snd_interval *c = 5872 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5873 struct snd_interval *r = 5874 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5875 5876 if (r->min > 96000 && r->max <= 192000) { 5877 struct snd_interval t = { 5878 .min = hdspm->qs_in_channels, 5879 .max = hdspm->qs_in_channels, 5880 .integer = 1, 5881 }; 5882 return snd_interval_refine(c, &t); 5883 } else if (r->min > 48000 && r->max <= 96000) { 5884 struct snd_interval t = { 5885 .min = hdspm->ds_in_channels, 5886 .max = hdspm->ds_in_channels, 5887 .integer = 1, 5888 }; 5889 return snd_interval_refine(c, &t); 5890 } else if (r->max < 64000) { 5891 struct snd_interval t = { 5892 .min = hdspm->ss_in_channels, 5893 .max = hdspm->ss_in_channels, 5894 .integer = 1, 5895 }; 5896 return snd_interval_refine(c, &t); 5897 } 5898 5899 return 0; 5900 } 5901 5902 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 5903 struct snd_pcm_hw_rule * rule) 5904 { 5905 struct hdspm *hdspm = rule->private; 5906 struct snd_interval *c = 5907 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5908 struct snd_interval *r = 5909 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5910 5911 if (r->min > 96000 && r->max <= 192000) { 5912 struct snd_interval t = { 5913 .min = hdspm->qs_out_channels, 5914 .max = hdspm->qs_out_channels, 5915 .integer = 1, 5916 }; 5917 return snd_interval_refine(c, &t); 5918 } else if (r->min > 48000 && r->max <= 96000) { 5919 struct snd_interval t = { 5920 .min = hdspm->ds_out_channels, 5921 .max = hdspm->ds_out_channels, 5922 .integer = 1, 5923 }; 5924 return snd_interval_refine(c, &t); 5925 } else if (r->max < 64000) { 5926 struct snd_interval t = { 5927 .min = hdspm->ss_out_channels, 5928 .max = hdspm->ss_out_channels, 5929 .integer = 1, 5930 }; 5931 return snd_interval_refine(c, &t); 5932 } else { 5933 } 5934 return 0; 5935 } 5936 5937 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 5938 struct snd_pcm_hw_rule * rule) 5939 { 5940 struct hdspm *hdspm = rule->private; 5941 struct snd_interval *c = 5942 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5943 struct snd_interval *r = 5944 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5945 5946 if (c->min >= hdspm->ss_in_channels) { 5947 struct snd_interval t = { 5948 .min = 32000, 5949 .max = 48000, 5950 .integer = 1, 5951 }; 5952 return snd_interval_refine(r, &t); 5953 } else if (c->max <= hdspm->qs_in_channels) { 5954 struct snd_interval t = { 5955 .min = 128000, 5956 .max = 192000, 5957 .integer = 1, 5958 }; 5959 return snd_interval_refine(r, &t); 5960 } else if (c->max <= hdspm->ds_in_channels) { 5961 struct snd_interval t = { 5962 .min = 64000, 5963 .max = 96000, 5964 .integer = 1, 5965 }; 5966 return snd_interval_refine(r, &t); 5967 } 5968 5969 return 0; 5970 } 5971 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 5972 struct snd_pcm_hw_rule *rule) 5973 { 5974 struct hdspm *hdspm = rule->private; 5975 struct snd_interval *c = 5976 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5977 struct snd_interval *r = 5978 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5979 5980 if (c->min >= hdspm->ss_out_channels) { 5981 struct snd_interval t = { 5982 .min = 32000, 5983 .max = 48000, 5984 .integer = 1, 5985 }; 5986 return snd_interval_refine(r, &t); 5987 } else if (c->max <= hdspm->qs_out_channels) { 5988 struct snd_interval t = { 5989 .min = 128000, 5990 .max = 192000, 5991 .integer = 1, 5992 }; 5993 return snd_interval_refine(r, &t); 5994 } else if (c->max <= hdspm->ds_out_channels) { 5995 struct snd_interval t = { 5996 .min = 64000, 5997 .max = 96000, 5998 .integer = 1, 5999 }; 6000 return snd_interval_refine(r, &t); 6001 } 6002 6003 return 0; 6004 } 6005 6006 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params, 6007 struct snd_pcm_hw_rule *rule) 6008 { 6009 unsigned int list[3]; 6010 struct hdspm *hdspm = rule->private; 6011 struct snd_interval *c = hw_param_interval(params, 6012 SNDRV_PCM_HW_PARAM_CHANNELS); 6013 6014 list[0] = hdspm->qs_in_channels; 6015 list[1] = hdspm->ds_in_channels; 6016 list[2] = hdspm->ss_in_channels; 6017 return snd_interval_list(c, 3, list, 0); 6018 } 6019 6020 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params, 6021 struct snd_pcm_hw_rule *rule) 6022 { 6023 unsigned int list[3]; 6024 struct hdspm *hdspm = rule->private; 6025 struct snd_interval *c = hw_param_interval(params, 6026 SNDRV_PCM_HW_PARAM_CHANNELS); 6027 6028 list[0] = hdspm->qs_out_channels; 6029 list[1] = hdspm->ds_out_channels; 6030 list[2] = hdspm->ss_out_channels; 6031 return snd_interval_list(c, 3, list, 0); 6032 } 6033 6034 6035 static unsigned int hdspm_aes32_sample_rates[] = { 6036 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 6037 }; 6038 6039 static struct snd_pcm_hw_constraint_list 6040 hdspm_hw_constraints_aes32_sample_rates = { 6041 .count = ARRAY_SIZE(hdspm_aes32_sample_rates), 6042 .list = hdspm_aes32_sample_rates, 6043 .mask = 0 6044 }; 6045 6046 static int snd_hdspm_open(struct snd_pcm_substream *substream) 6047 { 6048 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6049 struct snd_pcm_runtime *runtime = substream->runtime; 6050 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6051 6052 spin_lock_irq(&hdspm->lock); 6053 snd_pcm_set_sync(substream); 6054 runtime->hw = (playback) ? snd_hdspm_playback_subinfo : 6055 snd_hdspm_capture_subinfo; 6056 6057 if (playback) { 6058 if (hdspm->capture_substream == NULL) 6059 hdspm_stop_audio(hdspm); 6060 6061 hdspm->playback_pid = current->pid; 6062 hdspm->playback_substream = substream; 6063 } else { 6064 if (hdspm->playback_substream == NULL) 6065 hdspm_stop_audio(hdspm); 6066 6067 hdspm->capture_pid = current->pid; 6068 hdspm->capture_substream = substream; 6069 } 6070 6071 spin_unlock_irq(&hdspm->lock); 6072 6073 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 6074 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 6075 6076 switch (hdspm->io_type) { 6077 case AIO: 6078 case RayDAT: 6079 snd_pcm_hw_constraint_minmax(runtime, 6080 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6081 32, 4096); 6082 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */ 6083 snd_pcm_hw_constraint_single(runtime, 6084 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 6085 16384); 6086 break; 6087 6088 default: 6089 snd_pcm_hw_constraint_minmax(runtime, 6090 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6091 64, 8192); 6092 snd_pcm_hw_constraint_single(runtime, 6093 SNDRV_PCM_HW_PARAM_PERIODS, 2); 6094 break; 6095 } 6096 6097 if (AES32 == hdspm->io_type) { 6098 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 6099 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6100 &hdspm_hw_constraints_aes32_sample_rates); 6101 } else { 6102 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6103 (playback ? 6104 snd_hdspm_hw_rule_rate_out_channels : 6105 snd_hdspm_hw_rule_rate_in_channels), hdspm, 6106 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6107 } 6108 6109 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6110 (playback ? snd_hdspm_hw_rule_out_channels : 6111 snd_hdspm_hw_rule_in_channels), hdspm, 6112 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6113 6114 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6115 (playback ? snd_hdspm_hw_rule_out_channels_rate : 6116 snd_hdspm_hw_rule_in_channels_rate), hdspm, 6117 SNDRV_PCM_HW_PARAM_RATE, -1); 6118 6119 return 0; 6120 } 6121 6122 static int snd_hdspm_release(struct snd_pcm_substream *substream) 6123 { 6124 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6125 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6126 6127 spin_lock_irq(&hdspm->lock); 6128 6129 if (playback) { 6130 hdspm->playback_pid = -1; 6131 hdspm->playback_substream = NULL; 6132 } else { 6133 hdspm->capture_pid = -1; 6134 hdspm->capture_substream = NULL; 6135 } 6136 6137 spin_unlock_irq(&hdspm->lock); 6138 6139 return 0; 6140 } 6141 6142 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file) 6143 { 6144 /* we have nothing to initialize but the call is required */ 6145 return 0; 6146 } 6147 6148 static inline int copy_u32_le(void __user *dest, void __iomem *src) 6149 { 6150 u32 val = readl(src); 6151 return copy_to_user(dest, &val, 4); 6152 } 6153 6154 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, 6155 unsigned int cmd, unsigned long arg) 6156 { 6157 void __user *argp = (void __user *)arg; 6158 struct hdspm *hdspm = hw->private_data; 6159 struct hdspm_mixer_ioctl mixer; 6160 struct hdspm_config info; 6161 struct hdspm_status status; 6162 struct hdspm_version hdspm_version; 6163 struct hdspm_peak_rms *levels; 6164 struct hdspm_ltc ltc; 6165 unsigned int statusregister; 6166 long unsigned int s; 6167 int i = 0; 6168 6169 switch (cmd) { 6170 6171 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS: 6172 levels = &hdspm->peak_rms; 6173 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 6174 levels->input_peaks[i] = 6175 readl(hdspm->iobase + 6176 HDSPM_MADI_INPUT_PEAK + i*4); 6177 levels->playback_peaks[i] = 6178 readl(hdspm->iobase + 6179 HDSPM_MADI_PLAYBACK_PEAK + i*4); 6180 levels->output_peaks[i] = 6181 readl(hdspm->iobase + 6182 HDSPM_MADI_OUTPUT_PEAK + i*4); 6183 6184 levels->input_rms[i] = 6185 ((uint64_t) readl(hdspm->iobase + 6186 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) | 6187 (uint64_t) readl(hdspm->iobase + 6188 HDSPM_MADI_INPUT_RMS_L + i*4); 6189 levels->playback_rms[i] = 6190 ((uint64_t)readl(hdspm->iobase + 6191 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) | 6192 (uint64_t)readl(hdspm->iobase + 6193 HDSPM_MADI_PLAYBACK_RMS_L + i*4); 6194 levels->output_rms[i] = 6195 ((uint64_t)readl(hdspm->iobase + 6196 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) | 6197 (uint64_t)readl(hdspm->iobase + 6198 HDSPM_MADI_OUTPUT_RMS_L + i*4); 6199 } 6200 6201 if (hdspm->system_sample_rate > 96000) { 6202 levels->speed = qs; 6203 } else if (hdspm->system_sample_rate > 48000) { 6204 levels->speed = ds; 6205 } else { 6206 levels->speed = ss; 6207 } 6208 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 6209 6210 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms)); 6211 if (0 != s) { 6212 /* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu 6213 [Levels]\n", sizeof(struct hdspm_peak_rms), s); 6214 */ 6215 return -EFAULT; 6216 } 6217 break; 6218 6219 case SNDRV_HDSPM_IOCTL_GET_LTC: 6220 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 6221 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 6222 if (i & HDSPM_TCO1_LTC_Input_valid) { 6223 switch (i & (HDSPM_TCO1_LTC_Format_LSB | 6224 HDSPM_TCO1_LTC_Format_MSB)) { 6225 case 0: 6226 ltc.format = fps_24; 6227 break; 6228 case HDSPM_TCO1_LTC_Format_LSB: 6229 ltc.format = fps_25; 6230 break; 6231 case HDSPM_TCO1_LTC_Format_MSB: 6232 ltc.format = fps_2997; 6233 break; 6234 default: 6235 ltc.format = fps_30; 6236 break; 6237 } 6238 if (i & HDSPM_TCO1_set_drop_frame_flag) { 6239 ltc.frame = drop_frame; 6240 } else { 6241 ltc.frame = full_frame; 6242 } 6243 } else { 6244 ltc.format = format_invalid; 6245 ltc.frame = frame_invalid; 6246 } 6247 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) { 6248 ltc.input_format = ntsc; 6249 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) { 6250 ltc.input_format = pal; 6251 } else { 6252 ltc.input_format = no_video; 6253 } 6254 6255 s = copy_to_user(argp, <c, sizeof(struct hdspm_ltc)); 6256 if (0 != s) { 6257 /* 6258 dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */ 6259 return -EFAULT; 6260 } 6261 6262 break; 6263 6264 case SNDRV_HDSPM_IOCTL_GET_CONFIG: 6265 6266 memset(&info, 0, sizeof(info)); 6267 spin_lock_irq(&hdspm->lock); 6268 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm); 6269 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm); 6270 6271 info.system_sample_rate = hdspm->system_sample_rate; 6272 info.autosync_sample_rate = 6273 hdspm_external_sample_rate(hdspm); 6274 info.system_clock_mode = hdspm_system_clock_mode(hdspm); 6275 info.clock_source = hdspm_clock_source(hdspm); 6276 info.autosync_ref = hdspm_autosync_ref(hdspm); 6277 info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut); 6278 info.passthru = 0; 6279 spin_unlock_irq(&hdspm->lock); 6280 if (copy_to_user(argp, &info, sizeof(info))) 6281 return -EFAULT; 6282 break; 6283 6284 case SNDRV_HDSPM_IOCTL_GET_STATUS: 6285 memset(&status, 0, sizeof(status)); 6286 6287 status.card_type = hdspm->io_type; 6288 6289 status.autosync_source = hdspm_autosync_ref(hdspm); 6290 6291 status.card_clock = 110069313433624ULL; 6292 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 6293 6294 switch (hdspm->io_type) { 6295 case MADI: 6296 case MADIface: 6297 status.card_specific.madi.sync_wc = 6298 hdspm_wc_sync_check(hdspm); 6299 status.card_specific.madi.sync_madi = 6300 hdspm_madi_sync_check(hdspm); 6301 status.card_specific.madi.sync_tco = 6302 hdspm_tco_sync_check(hdspm); 6303 status.card_specific.madi.sync_in = 6304 hdspm_sync_in_sync_check(hdspm); 6305 6306 statusregister = 6307 hdspm_read(hdspm, HDSPM_statusRegister); 6308 status.card_specific.madi.madi_input = 6309 (statusregister & HDSPM_AB_int) ? 1 : 0; 6310 status.card_specific.madi.channel_format = 6311 (statusregister & HDSPM_RX_64ch) ? 1 : 0; 6312 /* TODO: Mac driver sets it when f_s>48kHz */ 6313 status.card_specific.madi.frame_format = 0; 6314 6315 default: 6316 break; 6317 } 6318 6319 if (copy_to_user(argp, &status, sizeof(status))) 6320 return -EFAULT; 6321 6322 6323 break; 6324 6325 case SNDRV_HDSPM_IOCTL_GET_VERSION: 6326 memset(&hdspm_version, 0, sizeof(hdspm_version)); 6327 6328 hdspm_version.card_type = hdspm->io_type; 6329 strlcpy(hdspm_version.cardname, hdspm->card_name, 6330 sizeof(hdspm_version.cardname)); 6331 hdspm_version.serial = hdspm->serial; 6332 hdspm_version.firmware_rev = hdspm->firmware_rev; 6333 hdspm_version.addons = 0; 6334 if (hdspm->tco) 6335 hdspm_version.addons |= HDSPM_ADDON_TCO; 6336 6337 if (copy_to_user(argp, &hdspm_version, 6338 sizeof(hdspm_version))) 6339 return -EFAULT; 6340 break; 6341 6342 case SNDRV_HDSPM_IOCTL_GET_MIXER: 6343 if (copy_from_user(&mixer, argp, sizeof(mixer))) 6344 return -EFAULT; 6345 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer, 6346 sizeof(struct hdspm_mixer))) 6347 return -EFAULT; 6348 break; 6349 6350 default: 6351 return -EINVAL; 6352 } 6353 return 0; 6354 } 6355 6356 static struct snd_pcm_ops snd_hdspm_ops = { 6357 .open = snd_hdspm_open, 6358 .close = snd_hdspm_release, 6359 .ioctl = snd_hdspm_ioctl, 6360 .hw_params = snd_hdspm_hw_params, 6361 .hw_free = snd_hdspm_hw_free, 6362 .prepare = snd_hdspm_prepare, 6363 .trigger = snd_hdspm_trigger, 6364 .pointer = snd_hdspm_hw_pointer, 6365 .page = snd_pcm_sgbuf_ops_page, 6366 }; 6367 6368 static int snd_hdspm_create_hwdep(struct snd_card *card, 6369 struct hdspm *hdspm) 6370 { 6371 struct snd_hwdep *hw; 6372 int err; 6373 6374 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw); 6375 if (err < 0) 6376 return err; 6377 6378 hdspm->hwdep = hw; 6379 hw->private_data = hdspm; 6380 strcpy(hw->name, "HDSPM hwdep interface"); 6381 6382 hw->ops.open = snd_hdspm_hwdep_dummy_op; 6383 hw->ops.ioctl = snd_hdspm_hwdep_ioctl; 6384 hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl; 6385 hw->ops.release = snd_hdspm_hwdep_dummy_op; 6386 6387 return 0; 6388 } 6389 6390 6391 /*------------------------------------------------------------ 6392 memory interface 6393 ------------------------------------------------------------*/ 6394 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm) 6395 { 6396 int err; 6397 struct snd_pcm *pcm; 6398 size_t wanted; 6399 6400 pcm = hdspm->pcm; 6401 6402 wanted = HDSPM_DMA_AREA_BYTES; 6403 6404 err = 6405 snd_pcm_lib_preallocate_pages_for_all(pcm, 6406 SNDRV_DMA_TYPE_DEV_SG, 6407 snd_dma_pci_data(hdspm->pci), 6408 wanted, 6409 wanted); 6410 if (err < 0) { 6411 dev_dbg(hdspm->card->dev, 6412 "Could not preallocate %zd Bytes\n", wanted); 6413 6414 return err; 6415 } else 6416 dev_dbg(hdspm->card->dev, 6417 " Preallocated %zd Bytes\n", wanted); 6418 6419 return 0; 6420 } 6421 6422 6423 static void hdspm_set_sgbuf(struct hdspm *hdspm, 6424 struct snd_pcm_substream *substream, 6425 unsigned int reg, int channels) 6426 { 6427 int i; 6428 6429 /* continuous memory segment */ 6430 for (i = 0; i < (channels * 16); i++) 6431 hdspm_write(hdspm, reg + 4 * i, 6432 snd_pcm_sgbuf_get_addr(substream, 4096 * i)); 6433 } 6434 6435 6436 /* ------------- ALSA Devices ---------------------------- */ 6437 static int snd_hdspm_create_pcm(struct snd_card *card, 6438 struct hdspm *hdspm) 6439 { 6440 struct snd_pcm *pcm; 6441 int err; 6442 6443 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm); 6444 if (err < 0) 6445 return err; 6446 6447 hdspm->pcm = pcm; 6448 pcm->private_data = hdspm; 6449 strcpy(pcm->name, hdspm->card_name); 6450 6451 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 6452 &snd_hdspm_ops); 6453 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 6454 &snd_hdspm_ops); 6455 6456 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 6457 6458 err = snd_hdspm_preallocate_memory(hdspm); 6459 if (err < 0) 6460 return err; 6461 6462 return 0; 6463 } 6464 6465 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm) 6466 { 6467 int i; 6468 6469 for (i = 0; i < hdspm->midiPorts; i++) 6470 snd_hdspm_flush_midi_input(hdspm, i); 6471 } 6472 6473 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 6474 struct hdspm *hdspm) 6475 { 6476 int err, i; 6477 6478 dev_dbg(card->dev, "Create card...\n"); 6479 err = snd_hdspm_create_pcm(card, hdspm); 6480 if (err < 0) 6481 return err; 6482 6483 i = 0; 6484 while (i < hdspm->midiPorts) { 6485 err = snd_hdspm_create_midi(card, hdspm, i); 6486 if (err < 0) { 6487 return err; 6488 } 6489 i++; 6490 } 6491 6492 err = snd_hdspm_create_controls(card, hdspm); 6493 if (err < 0) 6494 return err; 6495 6496 err = snd_hdspm_create_hwdep(card, hdspm); 6497 if (err < 0) 6498 return err; 6499 6500 dev_dbg(card->dev, "proc init...\n"); 6501 snd_hdspm_proc_init(hdspm); 6502 6503 hdspm->system_sample_rate = -1; 6504 hdspm->last_external_sample_rate = -1; 6505 hdspm->last_internal_sample_rate = -1; 6506 hdspm->playback_pid = -1; 6507 hdspm->capture_pid = -1; 6508 hdspm->capture_substream = NULL; 6509 hdspm->playback_substream = NULL; 6510 6511 dev_dbg(card->dev, "Set defaults...\n"); 6512 err = snd_hdspm_set_defaults(hdspm); 6513 if (err < 0) 6514 return err; 6515 6516 dev_dbg(card->dev, "Update mixer controls...\n"); 6517 hdspm_update_simple_mixer_controls(hdspm); 6518 6519 dev_dbg(card->dev, "Initializeing complete ???\n"); 6520 6521 err = snd_card_register(card); 6522 if (err < 0) { 6523 dev_err(card->dev, "error registering card\n"); 6524 return err; 6525 } 6526 6527 dev_dbg(card->dev, "... yes now\n"); 6528 6529 return 0; 6530 } 6531 6532 static int snd_hdspm_create(struct snd_card *card, 6533 struct hdspm *hdspm) 6534 { 6535 6536 struct pci_dev *pci = hdspm->pci; 6537 int err; 6538 unsigned long io_extent; 6539 6540 hdspm->irq = -1; 6541 hdspm->card = card; 6542 6543 spin_lock_init(&hdspm->lock); 6544 6545 pci_read_config_word(hdspm->pci, 6546 PCI_CLASS_REVISION, &hdspm->firmware_rev); 6547 6548 strcpy(card->mixername, "Xilinx FPGA"); 6549 strcpy(card->driver, "HDSPM"); 6550 6551 switch (hdspm->firmware_rev) { 6552 case HDSPM_RAYDAT_REV: 6553 hdspm->io_type = RayDAT; 6554 hdspm->card_name = "RME RayDAT"; 6555 hdspm->midiPorts = 2; 6556 break; 6557 case HDSPM_AIO_REV: 6558 hdspm->io_type = AIO; 6559 hdspm->card_name = "RME AIO"; 6560 hdspm->midiPorts = 1; 6561 break; 6562 case HDSPM_MADIFACE_REV: 6563 hdspm->io_type = MADIface; 6564 hdspm->card_name = "RME MADIface"; 6565 hdspm->midiPorts = 1; 6566 break; 6567 default: 6568 if ((hdspm->firmware_rev == 0xf0) || 6569 ((hdspm->firmware_rev >= 0xe6) && 6570 (hdspm->firmware_rev <= 0xea))) { 6571 hdspm->io_type = AES32; 6572 hdspm->card_name = "RME AES32"; 6573 hdspm->midiPorts = 2; 6574 } else if ((hdspm->firmware_rev == 0xd2) || 6575 ((hdspm->firmware_rev >= 0xc8) && 6576 (hdspm->firmware_rev <= 0xcf))) { 6577 hdspm->io_type = MADI; 6578 hdspm->card_name = "RME MADI"; 6579 hdspm->midiPorts = 3; 6580 } else { 6581 dev_err(card->dev, 6582 "unknown firmware revision %x\n", 6583 hdspm->firmware_rev); 6584 return -ENODEV; 6585 } 6586 } 6587 6588 err = pci_enable_device(pci); 6589 if (err < 0) 6590 return err; 6591 6592 pci_set_master(hdspm->pci); 6593 6594 err = pci_request_regions(pci, "hdspm"); 6595 if (err < 0) 6596 return err; 6597 6598 hdspm->port = pci_resource_start(pci, 0); 6599 io_extent = pci_resource_len(pci, 0); 6600 6601 dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n", 6602 hdspm->port, hdspm->port + io_extent - 1); 6603 6604 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent); 6605 if (!hdspm->iobase) { 6606 dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n", 6607 hdspm->port, hdspm->port + io_extent - 1); 6608 return -EBUSY; 6609 } 6610 dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n", 6611 (unsigned long)hdspm->iobase, hdspm->port, 6612 hdspm->port + io_extent - 1); 6613 6614 if (request_irq(pci->irq, snd_hdspm_interrupt, 6615 IRQF_SHARED, KBUILD_MODNAME, hdspm)) { 6616 dev_err(card->dev, "unable to use IRQ %d\n", pci->irq); 6617 return -EBUSY; 6618 } 6619 6620 dev_dbg(card->dev, "use IRQ %d\n", pci->irq); 6621 6622 hdspm->irq = pci->irq; 6623 6624 dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n", 6625 sizeof(struct hdspm_mixer)); 6626 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL); 6627 if (!hdspm->mixer) { 6628 dev_err(card->dev, 6629 "unable to kmalloc Mixer memory of %d Bytes\n", 6630 (int)sizeof(struct hdspm_mixer)); 6631 return -ENOMEM; 6632 } 6633 6634 hdspm->port_names_in = NULL; 6635 hdspm->port_names_out = NULL; 6636 6637 switch (hdspm->io_type) { 6638 case AES32: 6639 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS; 6640 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS; 6641 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS; 6642 6643 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6644 channel_map_aes32; 6645 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6646 channel_map_aes32; 6647 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6648 channel_map_aes32; 6649 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6650 texts_ports_aes32; 6651 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6652 texts_ports_aes32; 6653 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6654 texts_ports_aes32; 6655 6656 hdspm->max_channels_out = hdspm->max_channels_in = 6657 AES32_CHANNELS; 6658 hdspm->port_names_in = hdspm->port_names_out = 6659 texts_ports_aes32; 6660 hdspm->channel_map_in = hdspm->channel_map_out = 6661 channel_map_aes32; 6662 6663 break; 6664 6665 case MADI: 6666 case MADIface: 6667 hdspm->ss_in_channels = hdspm->ss_out_channels = 6668 MADI_SS_CHANNELS; 6669 hdspm->ds_in_channels = hdspm->ds_out_channels = 6670 MADI_DS_CHANNELS; 6671 hdspm->qs_in_channels = hdspm->qs_out_channels = 6672 MADI_QS_CHANNELS; 6673 6674 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6675 channel_map_unity_ss; 6676 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6677 channel_map_unity_ss; 6678 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6679 channel_map_unity_ss; 6680 6681 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6682 texts_ports_madi; 6683 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6684 texts_ports_madi; 6685 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6686 texts_ports_madi; 6687 break; 6688 6689 case AIO: 6690 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS; 6691 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS; 6692 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS; 6693 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS; 6694 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS; 6695 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS; 6696 6697 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) { 6698 dev_info(card->dev, "AEB input board found\n"); 6699 hdspm->ss_in_channels += 4; 6700 hdspm->ds_in_channels += 4; 6701 hdspm->qs_in_channels += 4; 6702 } 6703 6704 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) { 6705 dev_info(card->dev, "AEB output board found\n"); 6706 hdspm->ss_out_channels += 4; 6707 hdspm->ds_out_channels += 4; 6708 hdspm->qs_out_channels += 4; 6709 } 6710 6711 hdspm->channel_map_out_ss = channel_map_aio_out_ss; 6712 hdspm->channel_map_out_ds = channel_map_aio_out_ds; 6713 hdspm->channel_map_out_qs = channel_map_aio_out_qs; 6714 6715 hdspm->channel_map_in_ss = channel_map_aio_in_ss; 6716 hdspm->channel_map_in_ds = channel_map_aio_in_ds; 6717 hdspm->channel_map_in_qs = channel_map_aio_in_qs; 6718 6719 hdspm->port_names_in_ss = texts_ports_aio_in_ss; 6720 hdspm->port_names_out_ss = texts_ports_aio_out_ss; 6721 hdspm->port_names_in_ds = texts_ports_aio_in_ds; 6722 hdspm->port_names_out_ds = texts_ports_aio_out_ds; 6723 hdspm->port_names_in_qs = texts_ports_aio_in_qs; 6724 hdspm->port_names_out_qs = texts_ports_aio_out_qs; 6725 6726 break; 6727 6728 case RayDAT: 6729 hdspm->ss_in_channels = hdspm->ss_out_channels = 6730 RAYDAT_SS_CHANNELS; 6731 hdspm->ds_in_channels = hdspm->ds_out_channels = 6732 RAYDAT_DS_CHANNELS; 6733 hdspm->qs_in_channels = hdspm->qs_out_channels = 6734 RAYDAT_QS_CHANNELS; 6735 6736 hdspm->max_channels_in = RAYDAT_SS_CHANNELS; 6737 hdspm->max_channels_out = RAYDAT_SS_CHANNELS; 6738 6739 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6740 channel_map_raydat_ss; 6741 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6742 channel_map_raydat_ds; 6743 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6744 channel_map_raydat_qs; 6745 hdspm->channel_map_in = hdspm->channel_map_out = 6746 channel_map_raydat_ss; 6747 6748 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6749 texts_ports_raydat_ss; 6750 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6751 texts_ports_raydat_ds; 6752 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6753 texts_ports_raydat_qs; 6754 6755 6756 break; 6757 6758 } 6759 6760 /* TCO detection */ 6761 switch (hdspm->io_type) { 6762 case AIO: 6763 case RayDAT: 6764 if (hdspm_read(hdspm, HDSPM_statusRegister2) & 6765 HDSPM_s2_tco_detect) { 6766 hdspm->midiPorts++; 6767 hdspm->tco = kzalloc(sizeof(struct hdspm_tco), 6768 GFP_KERNEL); 6769 if (NULL != hdspm->tco) { 6770 hdspm_tco_write(hdspm); 6771 } 6772 dev_info(card->dev, "AIO/RayDAT TCO module found\n"); 6773 } else { 6774 hdspm->tco = NULL; 6775 } 6776 break; 6777 6778 case MADI: 6779 case AES32: 6780 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) { 6781 hdspm->midiPorts++; 6782 hdspm->tco = kzalloc(sizeof(struct hdspm_tco), 6783 GFP_KERNEL); 6784 if (NULL != hdspm->tco) { 6785 hdspm_tco_write(hdspm); 6786 } 6787 dev_info(card->dev, "MADI/AES TCO module found\n"); 6788 } else { 6789 hdspm->tco = NULL; 6790 } 6791 break; 6792 6793 default: 6794 hdspm->tco = NULL; 6795 } 6796 6797 /* texts */ 6798 switch (hdspm->io_type) { 6799 case AES32: 6800 if (hdspm->tco) { 6801 hdspm->texts_autosync = texts_autosync_aes_tco; 6802 hdspm->texts_autosync_items = 6803 ARRAY_SIZE(texts_autosync_aes_tco); 6804 } else { 6805 hdspm->texts_autosync = texts_autosync_aes; 6806 hdspm->texts_autosync_items = 6807 ARRAY_SIZE(texts_autosync_aes); 6808 } 6809 break; 6810 6811 case MADI: 6812 if (hdspm->tco) { 6813 hdspm->texts_autosync = texts_autosync_madi_tco; 6814 hdspm->texts_autosync_items = 4; 6815 } else { 6816 hdspm->texts_autosync = texts_autosync_madi; 6817 hdspm->texts_autosync_items = 3; 6818 } 6819 break; 6820 6821 case MADIface: 6822 6823 break; 6824 6825 case RayDAT: 6826 if (hdspm->tco) { 6827 hdspm->texts_autosync = texts_autosync_raydat_tco; 6828 hdspm->texts_autosync_items = 9; 6829 } else { 6830 hdspm->texts_autosync = texts_autosync_raydat; 6831 hdspm->texts_autosync_items = 8; 6832 } 6833 break; 6834 6835 case AIO: 6836 if (hdspm->tco) { 6837 hdspm->texts_autosync = texts_autosync_aio_tco; 6838 hdspm->texts_autosync_items = 6; 6839 } else { 6840 hdspm->texts_autosync = texts_autosync_aio; 6841 hdspm->texts_autosync_items = 5; 6842 } 6843 break; 6844 6845 } 6846 6847 tasklet_init(&hdspm->midi_tasklet, 6848 hdspm_midi_tasklet, (unsigned long) hdspm); 6849 6850 6851 if (hdspm->io_type != MADIface) { 6852 hdspm->serial = (hdspm_read(hdspm, 6853 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF; 6854 /* id contains either a user-provided value or the default 6855 * NULL. If it's the default, we're safe to 6856 * fill card->id with the serial number. 6857 * 6858 * If the serial number is 0xFFFFFF, then we're dealing with 6859 * an old PCI revision that comes without a sane number. In 6860 * this case, we don't set card->id to avoid collisions 6861 * when running with multiple cards. 6862 */ 6863 if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) { 6864 sprintf(card->id, "HDSPMx%06x", hdspm->serial); 6865 snd_card_set_id(card, card->id); 6866 } 6867 } 6868 6869 dev_dbg(card->dev, "create alsa devices.\n"); 6870 err = snd_hdspm_create_alsa_devices(card, hdspm); 6871 if (err < 0) 6872 return err; 6873 6874 snd_hdspm_initialize_midi_flush(hdspm); 6875 6876 return 0; 6877 } 6878 6879 6880 static int snd_hdspm_free(struct hdspm * hdspm) 6881 { 6882 6883 if (hdspm->port) { 6884 6885 /* stop th audio, and cancel all interrupts */ 6886 hdspm->control_register &= 6887 ~(HDSPM_Start | HDSPM_AudioInterruptEnable | 6888 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable | 6889 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable); 6890 hdspm_write(hdspm, HDSPM_controlRegister, 6891 hdspm->control_register); 6892 } 6893 6894 if (hdspm->irq >= 0) 6895 free_irq(hdspm->irq, (void *) hdspm); 6896 6897 kfree(hdspm->mixer); 6898 iounmap(hdspm->iobase); 6899 6900 if (hdspm->port) 6901 pci_release_regions(hdspm->pci); 6902 6903 pci_disable_device(hdspm->pci); 6904 return 0; 6905 } 6906 6907 6908 static void snd_hdspm_card_free(struct snd_card *card) 6909 { 6910 struct hdspm *hdspm = card->private_data; 6911 6912 if (hdspm) 6913 snd_hdspm_free(hdspm); 6914 } 6915 6916 6917 static int snd_hdspm_probe(struct pci_dev *pci, 6918 const struct pci_device_id *pci_id) 6919 { 6920 static int dev; 6921 struct hdspm *hdspm; 6922 struct snd_card *card; 6923 int err; 6924 6925 if (dev >= SNDRV_CARDS) 6926 return -ENODEV; 6927 if (!enable[dev]) { 6928 dev++; 6929 return -ENOENT; 6930 } 6931 6932 err = snd_card_new(&pci->dev, index[dev], id[dev], 6933 THIS_MODULE, sizeof(struct hdspm), &card); 6934 if (err < 0) 6935 return err; 6936 6937 hdspm = card->private_data; 6938 card->private_free = snd_hdspm_card_free; 6939 hdspm->dev = dev; 6940 hdspm->pci = pci; 6941 6942 err = snd_hdspm_create(card, hdspm); 6943 if (err < 0) { 6944 snd_card_free(card); 6945 return err; 6946 } 6947 6948 if (hdspm->io_type != MADIface) { 6949 sprintf(card->shortname, "%s_%x", 6950 hdspm->card_name, 6951 hdspm->serial); 6952 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d", 6953 hdspm->card_name, 6954 hdspm->serial, 6955 hdspm->port, hdspm->irq); 6956 } else { 6957 sprintf(card->shortname, "%s", hdspm->card_name); 6958 sprintf(card->longname, "%s at 0x%lx, irq %d", 6959 hdspm->card_name, hdspm->port, hdspm->irq); 6960 } 6961 6962 err = snd_card_register(card); 6963 if (err < 0) { 6964 snd_card_free(card); 6965 return err; 6966 } 6967 6968 pci_set_drvdata(pci, card); 6969 6970 dev++; 6971 return 0; 6972 } 6973 6974 static void snd_hdspm_remove(struct pci_dev *pci) 6975 { 6976 snd_card_free(pci_get_drvdata(pci)); 6977 } 6978 6979 static struct pci_driver hdspm_driver = { 6980 .name = KBUILD_MODNAME, 6981 .id_table = snd_hdspm_ids, 6982 .probe = snd_hdspm_probe, 6983 .remove = snd_hdspm_remove, 6984 }; 6985 6986 module_pci_driver(hdspm_driver); 6987