1 /* 2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s) 3 * 4 * Copyright (c) 2003 Winfried Ritsch (IEM) 5 * code based on hdsp.c Paul Davis 6 * Marcus Andersson 7 * Thomas Charbonnel 8 * Modified 2006-06-01 for AES32 support by Remy Bruno 9 * <remy.bruno@trinnov.com> 10 * 11 * Modified 2009-04-13 for proper metering by Florian Faber 12 * <faber@faberman.de> 13 * 14 * Modified 2009-04-14 for native float support by Florian Faber 15 * <faber@faberman.de> 16 * 17 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber 18 * <faber@faberman.de> 19 * 20 * Modified 2009-04-30 added hw serial number support by Florian Faber 21 * 22 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth 23 * 24 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth 25 * 26 * This program is free software; you can redistribute it and/or modify 27 * it under the terms of the GNU General Public License as published by 28 * the Free Software Foundation; either version 2 of the License, or 29 * (at your option) any later version. 30 * 31 * This program is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 34 * GNU General Public License for more details. 35 * 36 * You should have received a copy of the GNU General Public License 37 * along with this program; if not, write to the Free Software 38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 39 * 40 */ 41 42 /* ************* Register Documentation ******************************************************* 43 * 44 * Work in progress! Documentation is based on the code in this file. 45 * 46 * --------- HDSPM_controlRegister --------- 47 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 48 * :||||.||||:||||.||||:||||.||||:||||.||||: 49 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 50 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 51 * :||||.||||:||||.||||:||||.||||:||||.||||: 52 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 53 * : . : . : . : x . : HDSPM_AudioInterruptEnable \_ setting both bits 54 * : . : . : . : . x: HDSPM_Start / enables audio IO 55 * : . : . : . : x. : HDSPM_ClockModeMaster - 1: Master, 0: Slave 56 * : . : . : . : .210 : HDSPM_LatencyMask - 3 Bit value for latency 57 * : . : . : . : . : 0:64, 1:128, 2:256, 3:512, 58 * : . : . : . : . : 4:1024, 5:2048, 6:4096, 7:8192 59 * :x . : . : . x:xx . : HDSPM_FrequencyMask 60 * : . : . : . :10 . : HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=?? 61 * : . : . : . x: . : <MADI> HDSPM_DoubleSpeed 62 * :x . : . : . : . : <MADI> HDSPM_QuadSpeed 63 * : . 3 : . 10: 2 . : . : HDSPM_SyncRefMask : 64 * : . : . x: . : . : HDSPM_SyncRef0 65 * : . : . x : . : . : HDSPM_SyncRef1 66 * : . : . : x . : . : <AES32> HDSPM_SyncRef2 67 * : . x : . : . : . : <AES32> HDSPM_SyncRef3 68 * : . : . 10: . : . : <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn 69 * : . 3 : . 10: 2 . : . : <AES32> 0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn? 70 * : . x : . : . : . : <MADIe> HDSPe_FLOAT_FORMAT 71 * : . : . : x . : . : <MADI> HDSPM_InputSelect0 : 0=optical,1=coax 72 * : . : . :x . : . : <MADI> HDSPM_InputSelect1 73 * : . : .x : . : . : <MADI> HDSPM_clr_tms 74 * : . : . : . x : . : <MADI> HDSPM_TX_64ch 75 * : . : . : . x : . : <AES32> HDSPM_Emphasis 76 * : . : . : .x : . : <MADI> HDSPM_AutoInp 77 * : . : . x : . : . : <MADI> HDSPM_SMUX 78 * : . : .x : . : . : <MADI> HDSPM_clr_tms 79 * : . : x. : . : . : <MADI> HDSPM_taxi_reset 80 * : . x: . : . : . : <MADI> HDSPM_LineOut 81 * : . x: . : . : . : <AES32> ?????????????????? 82 * : . : x. : . : . : <AES32> HDSPM_WCK48 83 * : . : . : .x : . : <AES32> HDSPM_Dolby 84 * : . : x . : . : . : HDSPM_Midi0InterruptEnable 85 * : . :x . : . : . : HDSPM_Midi1InterruptEnable 86 * : . : x . : . : . : HDSPM_Midi2InterruptEnable 87 * : . x : . : . : . : <MADI> HDSPM_Midi3InterruptEnable 88 * : . x : . : . : . : <AES32> HDSPM_DS_DoubleWire 89 * : .x : . : . : . : <AES32> HDSPM_QS_DoubleWire 90 * : x. : . : . : . : <AES32> HDSPM_QS_QuadWire 91 * : . : . : . x : . : <AES32> HDSPM_Professional 92 * : x . : . : . : . : HDSPM_wclk_sel 93 * : . : . : . : . : 94 * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte 95 * :||||.||||:||||.||||:||||.||||:||||.||||: 96 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number 97 * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31 98 * :||||.||||:||||.||||:||||.||||:||||.||||: 99 * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit 100 * 101 * 102 * 103 * AIO / RayDAT only 104 * 105 * ------------ HDSPM_WR_SETTINGS ---------- 106 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 107 * :1098.7654:3210.9876:5432.1098:7654.3210: 108 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 109 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 110 * :||||.||||:||||.||||:||||.||||:||||.||||: 111 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 112 * : . : . : . : . x: HDSPM_c0Master 1: Master, 0: Slave 113 * : . : . : . : . x : HDSPM_c0_SyncRef0 114 * : . : . : . : . x : HDSPM_c0_SyncRef1 115 * : . : . : . : .x : HDSPM_c0_SyncRef2 116 * : . : . : . : x. : HDSPM_c0_SyncRef3 117 * : . : . : . : 3.210 : HDSPM_c0_SyncRefMask: 118 * : . : . : . : . : RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4, 119 * : . : . : . : . : 9:TCO, 10:SyncIn 120 * : . : . : . : . : AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT, 121 * : . : . : . : . : 9:TCO, 10:SyncIn 122 * : . : . : . : . : 123 * : . : . : . : . : 124 * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte 125 * :1098.7654:3210.9876:5432.1098:7654.3210: 126 * :||||.||||:||||.||||:||||.||||:||||.||||: bit number 127 * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31 128 * :||||.||||:||||.||||:||||.||||:||||.||||: 129 * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit 130 * 131 */ 132 #include <linux/init.h> 133 #include <linux/delay.h> 134 #include <linux/interrupt.h> 135 #include <linux/module.h> 136 #include <linux/slab.h> 137 #include <linux/pci.h> 138 #include <linux/math64.h> 139 #include <linux/io.h> 140 141 #include <sound/core.h> 142 #include <sound/control.h> 143 #include <sound/pcm.h> 144 #include <sound/pcm_params.h> 145 #include <sound/info.h> 146 #include <sound/asoundef.h> 147 #include <sound/rawmidi.h> 148 #include <sound/hwdep.h> 149 #include <sound/initval.h> 150 151 #include <sound/hdspm.h> 152 153 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 154 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 155 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ 156 157 module_param_array(index, int, NULL, 0444); 158 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface."); 159 160 module_param_array(id, charp, NULL, 0444); 161 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface."); 162 163 module_param_array(enable, bool, NULL, 0444); 164 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards."); 165 166 167 MODULE_AUTHOR 168 ( 169 "Winfried Ritsch <ritsch_AT_iem.at>, " 170 "Paul Davis <paul@linuxaudiosystems.com>, " 171 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, " 172 "Remy Bruno <remy.bruno@trinnov.com>, " 173 "Florian Faber <faberman@linuxproaudio.org>, " 174 "Adrian Knoth <adi@drcomp.erfurt.thur.de>" 175 ); 176 MODULE_DESCRIPTION("RME HDSPM"); 177 MODULE_LICENSE("GPL"); 178 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); 179 180 /* --- Write registers. --- 181 These are defined as byte-offsets from the iobase value. */ 182 183 #define HDSPM_WR_SETTINGS 0 184 #define HDSPM_outputBufferAddress 32 185 #define HDSPM_inputBufferAddress 36 186 #define HDSPM_controlRegister 64 187 #define HDSPM_interruptConfirmation 96 188 #define HDSPM_control2Reg 256 /* not in specs ???????? */ 189 #define HDSPM_freqReg 256 /* for setting arbitrary clock values (DDS feature) */ 190 #define HDSPM_midiDataOut0 352 /* just believe in old code */ 191 #define HDSPM_midiDataOut1 356 192 #define HDSPM_eeprom_wr 384 /* for AES32 */ 193 194 /* DMA enable for 64 channels, only Bit 0 is relevant */ 195 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */ 196 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */ 197 198 /* 16 page addresses for each of the 64 channels DMA buffer in and out 199 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */ 200 #define HDSPM_pageAddressBufferOut 8192 201 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4) 202 203 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */ 204 205 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */ 206 207 /* --- Read registers. --- 208 These are defined as byte-offsets from the iobase value */ 209 #define HDSPM_statusRegister 0 210 /*#define HDSPM_statusRegister2 96 */ 211 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at 212 * offset 192, for AES32 *and* MADI 213 * => need to check that offset 192 is working on MADI */ 214 #define HDSPM_statusRegister2 192 215 #define HDSPM_timecodeRegister 128 216 217 /* AIO, RayDAT */ 218 #define HDSPM_RD_STATUS_0 0 219 #define HDSPM_RD_STATUS_1 64 220 #define HDSPM_RD_STATUS_2 128 221 #define HDSPM_RD_STATUS_3 192 222 223 #define HDSPM_RD_TCO 256 224 #define HDSPM_RD_PLL_FREQ 512 225 #define HDSPM_WR_TCO 128 226 227 #define HDSPM_TCO1_TCO_lock 0x00000001 228 #define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002 229 #define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004 230 #define HDSPM_TCO1_LTC_Input_valid 0x00000008 231 #define HDSPM_TCO1_WCK_Input_valid 0x00000010 232 #define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020 233 #define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040 234 235 #define HDSPM_TCO1_set_TC 0x00000100 236 #define HDSPM_TCO1_set_drop_frame_flag 0x00000200 237 #define HDSPM_TCO1_LTC_Format_LSB 0x00000400 238 #define HDSPM_TCO1_LTC_Format_MSB 0x00000800 239 240 #define HDSPM_TCO2_TC_run 0x00010000 241 #define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000 242 #define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000 243 #define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000 244 #define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000 245 #define HDSPM_TCO2_set_jam_sync 0x00200000 246 #define HDSPM_TCO2_set_flywheel 0x00400000 247 248 #define HDSPM_TCO2_set_01_4 0x01000000 249 #define HDSPM_TCO2_set_pull_down 0x02000000 250 #define HDSPM_TCO2_set_pull_up 0x04000000 251 #define HDSPM_TCO2_set_freq 0x08000000 252 #define HDSPM_TCO2_set_term_75R 0x10000000 253 #define HDSPM_TCO2_set_input_LSB 0x20000000 254 #define HDSPM_TCO2_set_input_MSB 0x40000000 255 #define HDSPM_TCO2_set_freq_from_app 0x80000000 256 257 258 #define HDSPM_midiDataOut0 352 259 #define HDSPM_midiDataOut1 356 260 #define HDSPM_midiDataOut2 368 261 262 #define HDSPM_midiDataIn0 360 263 #define HDSPM_midiDataIn1 364 264 #define HDSPM_midiDataIn2 372 265 #define HDSPM_midiDataIn3 376 266 267 /* status is data bytes in MIDI-FIFO (0-128) */ 268 #define HDSPM_midiStatusOut0 384 269 #define HDSPM_midiStatusOut1 388 270 #define HDSPM_midiStatusOut2 400 271 272 #define HDSPM_midiStatusIn0 392 273 #define HDSPM_midiStatusIn1 396 274 #define HDSPM_midiStatusIn2 404 275 #define HDSPM_midiStatusIn3 408 276 277 278 /* the meters are regular i/o-mapped registers, but offset 279 considerably from the rest. the peak registers are reset 280 when read; the least-significant 4 bits are full-scale counters; 281 the actual peak value is in the most-significant 24 bits. 282 */ 283 284 #define HDSPM_MADI_INPUT_PEAK 4096 285 #define HDSPM_MADI_PLAYBACK_PEAK 4352 286 #define HDSPM_MADI_OUTPUT_PEAK 4608 287 288 #define HDSPM_MADI_INPUT_RMS_L 6144 289 #define HDSPM_MADI_PLAYBACK_RMS_L 6400 290 #define HDSPM_MADI_OUTPUT_RMS_L 6656 291 292 #define HDSPM_MADI_INPUT_RMS_H 7168 293 #define HDSPM_MADI_PLAYBACK_RMS_H 7424 294 #define HDSPM_MADI_OUTPUT_RMS_H 7680 295 296 /* --- Control Register bits --------- */ 297 #define HDSPM_Start (1<<0) /* start engine */ 298 299 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */ 300 #define HDSPM_Latency1 (1<<2) /* where n is defined */ 301 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */ 302 303 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */ 304 #define HDSPM_c0Master 0x1 /* Master clock bit in settings 305 register [RayDAT, AIO] */ 306 307 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */ 308 309 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ 310 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ 311 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 312 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */ 313 314 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */ 315 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, 316 56channelMODE=0 */ /* MADI ONLY*/ 317 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */ 318 319 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, 320 0=off, 1=on */ /* MADI ONLY */ 321 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */ 322 323 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax 324 * -- MADI ONLY 325 */ 326 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */ 327 328 #define HDSPM_SyncRef2 (1<<13) 329 #define HDSPM_SyncRef3 (1<<25) 330 331 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */ 332 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use 333 AES additional bits in 334 lower 5 Audiodatabits ??? */ 335 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */ 336 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */ 337 338 #define HDSPM_Midi0InterruptEnable 0x0400000 339 #define HDSPM_Midi1InterruptEnable 0x0800000 340 #define HDSPM_Midi2InterruptEnable 0x0200000 341 #define HDSPM_Midi3InterruptEnable 0x4000000 342 343 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ 344 #define HDSPe_FLOAT_FORMAT 0x2000000 345 346 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */ 347 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */ 348 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */ 349 350 #define HDSPM_wclk_sel (1<<30) 351 352 /* additional control register bits for AIO*/ 353 #define HDSPM_c0_Wck48 0x20 /* also RayDAT */ 354 #define HDSPM_c0_Input0 0x1000 355 #define HDSPM_c0_Input1 0x2000 356 #define HDSPM_c0_Spdif_Opt 0x4000 357 #define HDSPM_c0_Pro 0x8000 358 #define HDSPM_c0_clr_tms 0x10000 359 #define HDSPM_c0_AEB1 0x20000 360 #define HDSPM_c0_AEB2 0x40000 361 #define HDSPM_c0_LineOut 0x80000 362 #define HDSPM_c0_AD_GAIN0 0x100000 363 #define HDSPM_c0_AD_GAIN1 0x200000 364 #define HDSPM_c0_DA_GAIN0 0x400000 365 #define HDSPM_c0_DA_GAIN1 0x800000 366 #define HDSPM_c0_PH_GAIN0 0x1000000 367 #define HDSPM_c0_PH_GAIN1 0x2000000 368 #define HDSPM_c0_Sym6db 0x4000000 369 370 371 /* --- bit helper defines */ 372 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) 373 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\ 374 HDSPM_DoubleSpeed|HDSPM_QuadSpeed) 375 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) 376 #define HDSPM_InputOptical 0 377 #define HDSPM_InputCoaxial (HDSPM_InputSelect0) 378 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\ 379 HDSPM_SyncRef2|HDSPM_SyncRef3) 380 381 #define HDSPM_c0_SyncRef0 0x2 382 #define HDSPM_c0_SyncRef1 0x4 383 #define HDSPM_c0_SyncRef2 0x8 384 #define HDSPM_c0_SyncRef3 0x10 385 #define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\ 386 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3) 387 388 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */ 389 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */ 390 #define HDSPM_SYNC_FROM_TCO 2 391 #define HDSPM_SYNC_FROM_SYNC_IN 3 392 393 #define HDSPM_Frequency32KHz HDSPM_Frequency0 394 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1 395 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0) 396 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) 397 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) 398 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\ 399 HDSPM_Frequency0) 400 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0) 401 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1) 402 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\ 403 HDSPM_Frequency0) 404 405 406 /* Synccheck Status */ 407 #define HDSPM_SYNC_CHECK_NO_LOCK 0 408 #define HDSPM_SYNC_CHECK_LOCK 1 409 #define HDSPM_SYNC_CHECK_SYNC 2 410 411 /* AutoSync References - used by "autosync_ref" control switch */ 412 #define HDSPM_AUTOSYNC_FROM_WORD 0 413 #define HDSPM_AUTOSYNC_FROM_MADI 1 414 #define HDSPM_AUTOSYNC_FROM_TCO 2 415 #define HDSPM_AUTOSYNC_FROM_SYNC_IN 3 416 #define HDSPM_AUTOSYNC_FROM_NONE 4 417 418 /* Possible sources of MADI input */ 419 #define HDSPM_OPTICAL 0 /* optical */ 420 #define HDSPM_COAXIAL 1 /* BNC */ 421 422 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask) 423 #define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1)) 424 425 #define hdspm_encode_in(x) (((x)&0x3)<<14) 426 #define hdspm_decode_in(x) (((x)>>14)&0x3) 427 428 /* --- control2 register bits --- */ 429 #define HDSPM_TMS (1<<0) 430 #define HDSPM_TCK (1<<1) 431 #define HDSPM_TDI (1<<2) 432 #define HDSPM_JTAG (1<<3) 433 #define HDSPM_PWDN (1<<4) 434 #define HDSPM_PROGRAM (1<<5) 435 #define HDSPM_CONFIG_MODE_0 (1<<6) 436 #define HDSPM_CONFIG_MODE_1 (1<<7) 437 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/ 438 #define HDSPM_BIGENDIAN_MODE (1<<9) 439 #define HDSPM_RD_MULTIPLE (1<<10) 440 441 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and 442 that do not conflict with specific bits for AES32 seem to be valid also 443 for the AES32 444 */ 445 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ 446 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */ 447 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 448 * (like inp0) 449 */ 450 451 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */ 452 #define HDSPM_madiSync (1<<18) /* MADI is in sync */ 453 454 #define HDSPM_tcoLockMadi 0x00000020 /* Optional TCO locked status for HDSPe MADI*/ 455 #define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/ 456 457 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */ 458 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */ 459 460 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 461 /* since 64byte accurate, last 6 bits are not used */ 462 463 464 465 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */ 466 467 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */ 468 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */ 469 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */ 470 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */ 471 472 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with 473 * Interrupt 474 */ 475 #define HDSPM_tco_detect 0x08000000 476 #define HDSPM_tcoLockAes 0x20000000 /* Optional TCO locked status for HDSPe AES */ 477 478 #define HDSPM_s2_tco_detect 0x00000040 479 #define HDSPM_s2_AEBO_D 0x00000080 480 #define HDSPM_s2_AEBI_D 0x00000100 481 482 483 #define HDSPM_midi0IRQPending 0x40000000 484 #define HDSPM_midi1IRQPending 0x80000000 485 #define HDSPM_midi2IRQPending 0x20000000 486 #define HDSPM_midi2IRQPendingAES 0x00000020 487 #define HDSPM_midi3IRQPending 0x00200000 488 489 /* --- status bit helpers */ 490 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\ 491 HDSPM_madiFreq2|HDSPM_madiFreq3) 492 #define HDSPM_madiFreq32 (HDSPM_madiFreq0) 493 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1) 494 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1) 495 #define HDSPM_madiFreq64 (HDSPM_madiFreq2) 496 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2) 497 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2) 498 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2) 499 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) 500 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) 501 502 /* Status2 Register bits */ /* MADI ONLY */ 503 504 #define HDSPM_version0 (1<<0) /* not really defined but I guess */ 505 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */ 506 #define HDSPM_version2 (1<<2) 507 508 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */ 509 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */ 510 511 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */ 512 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */ 513 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, 111=128 */ 514 #define HDSPM_wc_freq3 0x800 /* 1000=176.4, 1001=192 */ 515 516 #define HDSPM_SyncRef0 0x10000 /* Sync Reference */ 517 #define HDSPM_SyncRef1 0x20000 518 519 #define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */ 520 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */ 521 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */ 522 523 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync) 524 525 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\ 526 HDSPM_wc_freq3) 527 #define HDSPM_wcFreq32 (HDSPM_wc_freq0) 528 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1) 529 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1) 530 #define HDSPM_wcFreq64 (HDSPM_wc_freq2) 531 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2) 532 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2) 533 #define HDSPM_wcFreq128 (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2) 534 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3) 535 #define HDSPM_wcFreq192 (HDSPM_wc_freq0|HDSPM_wc_freq3) 536 537 #define HDSPM_status1_F_0 0x0400000 538 #define HDSPM_status1_F_1 0x0800000 539 #define HDSPM_status1_F_2 0x1000000 540 #define HDSPM_status1_F_3 0x2000000 541 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3) 542 543 544 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 545 HDSPM_SelSyncRef2) 546 #define HDSPM_SelSyncRef_WORD 0 547 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) 548 #define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1) 549 #define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1) 550 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 551 HDSPM_SelSyncRef2) 552 553 /* 554 For AES32, bits for status, status2 and timecode are different 555 */ 556 /* status */ 557 #define HDSPM_AES32_wcLock 0x0200000 558 #define HDSPM_AES32_wcSync 0x0100000 559 #define HDSPM_AES32_wcFreq_bit 22 560 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function 561 HDSPM_bit2freq */ 562 #define HDSPM_AES32_syncref_bit 16 563 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */ 564 565 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0 566 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1 567 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2 568 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3 569 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4 570 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5 571 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6 572 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7 573 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8 574 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9 575 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10 576 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11 577 578 /* status2 */ 579 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */ 580 #define HDSPM_LockAES 0x80 581 #define HDSPM_LockAES1 0x80 582 #define HDSPM_LockAES2 0x40 583 #define HDSPM_LockAES3 0x20 584 #define HDSPM_LockAES4 0x10 585 #define HDSPM_LockAES5 0x8 586 #define HDSPM_LockAES6 0x4 587 #define HDSPM_LockAES7 0x2 588 #define HDSPM_LockAES8 0x1 589 /* 590 Timecode 591 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on 592 AES i+1 593 bits 3210 594 0001 32kHz 595 0010 44.1kHz 596 0011 48kHz 597 0100 64kHz 598 0101 88.2kHz 599 0110 96kHz 600 0111 128kHz 601 1000 176.4kHz 602 1001 192kHz 603 NB: Timecode register doesn't seem to work on AES32 card revision 230 604 */ 605 606 /* Mixer Values */ 607 #define UNITY_GAIN 32768 /* = 65536/2 */ 608 #define MINUS_INFINITY_GAIN 0 609 610 /* Number of channels for different Speed Modes */ 611 #define MADI_SS_CHANNELS 64 612 #define MADI_DS_CHANNELS 32 613 #define MADI_QS_CHANNELS 16 614 615 #define RAYDAT_SS_CHANNELS 36 616 #define RAYDAT_DS_CHANNELS 20 617 #define RAYDAT_QS_CHANNELS 12 618 619 #define AIO_IN_SS_CHANNELS 14 620 #define AIO_IN_DS_CHANNELS 10 621 #define AIO_IN_QS_CHANNELS 8 622 #define AIO_OUT_SS_CHANNELS 16 623 #define AIO_OUT_DS_CHANNELS 12 624 #define AIO_OUT_QS_CHANNELS 10 625 626 #define AES32_CHANNELS 16 627 628 /* the size of a substream (1 mono data stream) */ 629 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024) 630 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES) 631 632 /* the size of the area we need to allocate for DMA transfers. the 633 size is the same regardless of the number of channels, and 634 also the latency to use. 635 for one direction !!! 636 */ 637 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) 638 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) 639 640 #define HDSPM_RAYDAT_REV 211 641 #define HDSPM_AIO_REV 212 642 #define HDSPM_MADIFACE_REV 213 643 644 /* speed factor modes */ 645 #define HDSPM_SPEED_SINGLE 0 646 #define HDSPM_SPEED_DOUBLE 1 647 #define HDSPM_SPEED_QUAD 2 648 649 /* names for speed modes */ 650 static char *hdspm_speed_names[] = { "single", "double", "quad" }; 651 652 static const char *const texts_autosync_aes_tco[] = { "Word Clock", 653 "AES1", "AES2", "AES3", "AES4", 654 "AES5", "AES6", "AES7", "AES8", 655 "TCO", "Sync In" 656 }; 657 static const char *const texts_autosync_aes[] = { "Word Clock", 658 "AES1", "AES2", "AES3", "AES4", 659 "AES5", "AES6", "AES7", "AES8", 660 "Sync In" 661 }; 662 static const char *const texts_autosync_madi_tco[] = { "Word Clock", 663 "MADI", "TCO", "Sync In" }; 664 static const char *const texts_autosync_madi[] = { "Word Clock", 665 "MADI", "Sync In" }; 666 667 static const char *const texts_autosync_raydat_tco[] = { 668 "Word Clock", 669 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 670 "AES", "SPDIF", "TCO", "Sync In" 671 }; 672 static const char *const texts_autosync_raydat[] = { 673 "Word Clock", 674 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 675 "AES", "SPDIF", "Sync In" 676 }; 677 static const char *const texts_autosync_aio_tco[] = { 678 "Word Clock", 679 "ADAT", "AES", "SPDIF", "TCO", "Sync In" 680 }; 681 static const char *const texts_autosync_aio[] = { "Word Clock", 682 "ADAT", "AES", "SPDIF", "Sync In" }; 683 684 static const char *const texts_freq[] = { 685 "No Lock", 686 "32 kHz", 687 "44.1 kHz", 688 "48 kHz", 689 "64 kHz", 690 "88.2 kHz", 691 "96 kHz", 692 "128 kHz", 693 "176.4 kHz", 694 "192 kHz" 695 }; 696 697 static char *texts_ports_madi[] = { 698 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6", 699 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12", 700 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18", 701 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24", 702 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30", 703 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36", 704 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42", 705 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48", 706 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54", 707 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60", 708 "MADI.61", "MADI.62", "MADI.63", "MADI.64", 709 }; 710 711 712 static char *texts_ports_raydat_ss[] = { 713 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6", 714 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 715 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2", 716 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8", 717 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6", 718 "ADAT4.7", "ADAT4.8", 719 "AES.L", "AES.R", 720 "SPDIF.L", "SPDIF.R" 721 }; 722 723 static char *texts_ports_raydat_ds[] = { 724 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", 725 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 726 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4", 727 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", 728 "AES.L", "AES.R", 729 "SPDIF.L", "SPDIF.R" 730 }; 731 732 static char *texts_ports_raydat_qs[] = { 733 "ADAT1.1", "ADAT1.2", 734 "ADAT2.1", "ADAT2.2", 735 "ADAT3.1", "ADAT3.2", 736 "ADAT4.1", "ADAT4.2", 737 "AES.L", "AES.R", 738 "SPDIF.L", "SPDIF.R" 739 }; 740 741 742 static char *texts_ports_aio_in_ss[] = { 743 "Analogue.L", "Analogue.R", 744 "AES.L", "AES.R", 745 "SPDIF.L", "SPDIF.R", 746 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 747 "ADAT.7", "ADAT.8", 748 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 749 }; 750 751 static char *texts_ports_aio_out_ss[] = { 752 "Analogue.L", "Analogue.R", 753 "AES.L", "AES.R", 754 "SPDIF.L", "SPDIF.R", 755 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 756 "ADAT.7", "ADAT.8", 757 "Phone.L", "Phone.R", 758 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 759 }; 760 761 static char *texts_ports_aio_in_ds[] = { 762 "Analogue.L", "Analogue.R", 763 "AES.L", "AES.R", 764 "SPDIF.L", "SPDIF.R", 765 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 766 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 767 }; 768 769 static char *texts_ports_aio_out_ds[] = { 770 "Analogue.L", "Analogue.R", 771 "AES.L", "AES.R", 772 "SPDIF.L", "SPDIF.R", 773 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 774 "Phone.L", "Phone.R", 775 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 776 }; 777 778 static char *texts_ports_aio_in_qs[] = { 779 "Analogue.L", "Analogue.R", 780 "AES.L", "AES.R", 781 "SPDIF.L", "SPDIF.R", 782 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 783 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 784 }; 785 786 static char *texts_ports_aio_out_qs[] = { 787 "Analogue.L", "Analogue.R", 788 "AES.L", "AES.R", 789 "SPDIF.L", "SPDIF.R", 790 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 791 "Phone.L", "Phone.R", 792 "AEB.1", "AEB.2", "AEB.3", "AEB.4" 793 }; 794 795 static char *texts_ports_aes32[] = { 796 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7", 797 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14", 798 "AES.15", "AES.16" 799 }; 800 801 /* These tables map the ALSA channels 1..N to the channels that we 802 need to use in order to find the relevant channel buffer. RME 803 refers to this kind of mapping as between "the ADAT channel and 804 the DMA channel." We index it using the logical audio channel, 805 and the value is the DMA channel (i.e. channel buffer number) 806 where the data for that channel can be read/written from/to. 807 */ 808 809 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = { 810 0, 1, 2, 3, 4, 5, 6, 7, 811 8, 9, 10, 11, 12, 13, 14, 15, 812 16, 17, 18, 19, 20, 21, 22, 23, 813 24, 25, 26, 27, 28, 29, 30, 31, 814 32, 33, 34, 35, 36, 37, 38, 39, 815 40, 41, 42, 43, 44, 45, 46, 47, 816 48, 49, 50, 51, 52, 53, 54, 55, 817 56, 57, 58, 59, 60, 61, 62, 63 818 }; 819 820 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = { 821 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */ 822 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */ 823 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */ 824 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */ 825 0, 1, /* AES */ 826 2, 3, /* SPDIF */ 827 -1, -1, -1, -1, 828 -1, -1, -1, -1, -1, -1, -1, -1, 829 -1, -1, -1, -1, -1, -1, -1, -1, 830 -1, -1, -1, -1, -1, -1, -1, -1, 831 }; 832 833 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = { 834 4, 5, 6, 7, /* ADAT 1 */ 835 8, 9, 10, 11, /* ADAT 2 */ 836 12, 13, 14, 15, /* ADAT 3 */ 837 16, 17, 18, 19, /* ADAT 4 */ 838 0, 1, /* AES */ 839 2, 3, /* SPDIF */ 840 -1, -1, -1, -1, 841 -1, -1, -1, -1, -1, -1, -1, -1, 842 -1, -1, -1, -1, -1, -1, -1, -1, 843 -1, -1, -1, -1, -1, -1, -1, -1, 844 -1, -1, -1, -1, -1, -1, -1, -1, 845 -1, -1, -1, -1, -1, -1, -1, -1, 846 }; 847 848 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = { 849 4, 5, /* ADAT 1 */ 850 6, 7, /* ADAT 2 */ 851 8, 9, /* ADAT 3 */ 852 10, 11, /* ADAT 4 */ 853 0, 1, /* AES */ 854 2, 3, /* SPDIF */ 855 -1, -1, -1, -1, 856 -1, -1, -1, -1, -1, -1, -1, -1, 857 -1, -1, -1, -1, -1, -1, -1, -1, 858 -1, -1, -1, -1, -1, -1, -1, -1, 859 -1, -1, -1, -1, -1, -1, -1, -1, 860 -1, -1, -1, -1, -1, -1, -1, -1, 861 -1, -1, -1, -1, -1, -1, -1, -1, 862 }; 863 864 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = { 865 0, 1, /* line in */ 866 8, 9, /* aes in, */ 867 10, 11, /* spdif in */ 868 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */ 869 2, 3, 4, 5, /* AEB */ 870 -1, -1, -1, -1, -1, -1, 871 -1, -1, -1, -1, -1, -1, -1, -1, 872 -1, -1, -1, -1, -1, -1, -1, -1, 873 -1, -1, -1, -1, -1, -1, -1, -1, 874 -1, -1, -1, -1, -1, -1, -1, -1, 875 -1, -1, -1, -1, -1, -1, -1, -1, 876 }; 877 878 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = { 879 0, 1, /* line out */ 880 8, 9, /* aes out */ 881 10, 11, /* spdif out */ 882 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */ 883 6, 7, /* phone out */ 884 2, 3, 4, 5, /* AEB */ 885 -1, -1, -1, -1, 886 -1, -1, -1, -1, -1, -1, -1, -1, 887 -1, -1, -1, -1, -1, -1, -1, -1, 888 -1, -1, -1, -1, -1, -1, -1, -1, 889 -1, -1, -1, -1, -1, -1, -1, -1, 890 -1, -1, -1, -1, -1, -1, -1, -1, 891 }; 892 893 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = { 894 0, 1, /* line in */ 895 8, 9, /* aes in */ 896 10, 11, /* spdif in */ 897 12, 14, 16, 18, /* adat in */ 898 2, 3, 4, 5, /* AEB */ 899 -1, -1, 900 -1, -1, -1, -1, -1, -1, -1, -1, 901 -1, -1, -1, -1, -1, -1, -1, -1, 902 -1, -1, -1, -1, -1, -1, -1, -1, 903 -1, -1, -1, -1, -1, -1, -1, -1, 904 -1, -1, -1, -1, -1, -1, -1, -1, 905 -1, -1, -1, -1, -1, -1, -1, -1 906 }; 907 908 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = { 909 0, 1, /* line out */ 910 8, 9, /* aes out */ 911 10, 11, /* spdif out */ 912 12, 14, 16, 18, /* adat out */ 913 6, 7, /* phone out */ 914 2, 3, 4, 5, /* AEB */ 915 -1, -1, -1, -1, -1, -1, -1, -1, 916 -1, -1, -1, -1, -1, -1, -1, -1, 917 -1, -1, -1, -1, -1, -1, -1, -1, 918 -1, -1, -1, -1, -1, -1, -1, -1, 919 -1, -1, -1, -1, -1, -1, -1, -1, 920 -1, -1, -1, -1, -1, -1, -1, -1 921 }; 922 923 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = { 924 0, 1, /* line in */ 925 8, 9, /* aes in */ 926 10, 11, /* spdif in */ 927 12, 16, /* adat in */ 928 2, 3, 4, 5, /* AEB */ 929 -1, -1, -1, -1, 930 -1, -1, -1, -1, -1, -1, -1, -1, 931 -1, -1, -1, -1, -1, -1, -1, -1, 932 -1, -1, -1, -1, -1, -1, -1, -1, 933 -1, -1, -1, -1, -1, -1, -1, -1, 934 -1, -1, -1, -1, -1, -1, -1, -1, 935 -1, -1, -1, -1, -1, -1, -1, -1 936 }; 937 938 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = { 939 0, 1, /* line out */ 940 8, 9, /* aes out */ 941 10, 11, /* spdif out */ 942 12, 16, /* adat out */ 943 6, 7, /* phone out */ 944 2, 3, 4, 5, /* AEB */ 945 -1, -1, 946 -1, -1, -1, -1, -1, -1, -1, -1, 947 -1, -1, -1, -1, -1, -1, -1, -1, 948 -1, -1, -1, -1, -1, -1, -1, -1, 949 -1, -1, -1, -1, -1, -1, -1, -1, 950 -1, -1, -1, -1, -1, -1, -1, -1, 951 -1, -1, -1, -1, -1, -1, -1, -1 952 }; 953 954 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = { 955 0, 1, 2, 3, 4, 5, 6, 7, 956 8, 9, 10, 11, 12, 13, 14, 15, 957 -1, -1, -1, -1, -1, -1, -1, -1, 958 -1, -1, -1, -1, -1, -1, -1, -1, 959 -1, -1, -1, -1, -1, -1, -1, -1, 960 -1, -1, -1, -1, -1, -1, -1, -1, 961 -1, -1, -1, -1, -1, -1, -1, -1, 962 -1, -1, -1, -1, -1, -1, -1, -1 963 }; 964 965 struct hdspm_midi { 966 struct hdspm *hdspm; 967 int id; 968 struct snd_rawmidi *rmidi; 969 struct snd_rawmidi_substream *input; 970 struct snd_rawmidi_substream *output; 971 char istimer; /* timer in use */ 972 struct timer_list timer; 973 spinlock_t lock; 974 int pending; 975 int dataIn; 976 int statusIn; 977 int dataOut; 978 int statusOut; 979 int ie; 980 int irq; 981 }; 982 983 struct hdspm_tco { 984 int input; /* 0: LTC, 1:Video, 2: WC*/ 985 int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */ 986 int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */ 987 int samplerate; /* 0=44.1, 1=48, 2= freq from app */ 988 int pull; /* 0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/ 989 int term; /* 0 = off, 1 = on */ 990 }; 991 992 struct hdspm { 993 spinlock_t lock; 994 /* only one playback and/or capture stream */ 995 struct snd_pcm_substream *capture_substream; 996 struct snd_pcm_substream *playback_substream; 997 998 char *card_name; /* for procinfo */ 999 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/ 1000 1001 uint8_t io_type; 1002 1003 int monitor_outs; /* set up monitoring outs init flag */ 1004 1005 u32 control_register; /* cached value */ 1006 u32 control2_register; /* cached value */ 1007 u32 settings_register; /* cached value for AIO / RayDat (sync reference, master/slave) */ 1008 1009 struct hdspm_midi midi[4]; 1010 struct tasklet_struct midi_tasklet; 1011 1012 size_t period_bytes; 1013 unsigned char ss_in_channels; 1014 unsigned char ds_in_channels; 1015 unsigned char qs_in_channels; 1016 unsigned char ss_out_channels; 1017 unsigned char ds_out_channels; 1018 unsigned char qs_out_channels; 1019 1020 unsigned char max_channels_in; 1021 unsigned char max_channels_out; 1022 1023 signed char *channel_map_in; 1024 signed char *channel_map_out; 1025 1026 signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs; 1027 signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs; 1028 1029 char **port_names_in; 1030 char **port_names_out; 1031 1032 char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs; 1033 char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs; 1034 1035 unsigned char *playback_buffer; /* suitably aligned address */ 1036 unsigned char *capture_buffer; /* suitably aligned address */ 1037 1038 pid_t capture_pid; /* process id which uses capture */ 1039 pid_t playback_pid; /* process id which uses capture */ 1040 int running; /* running status */ 1041 1042 int last_external_sample_rate; /* samplerate mystic ... */ 1043 int last_internal_sample_rate; 1044 int system_sample_rate; 1045 1046 int dev; /* Hardware vars... */ 1047 int irq; 1048 unsigned long port; 1049 void __iomem *iobase; 1050 1051 int irq_count; /* for debug */ 1052 int midiPorts; 1053 1054 struct snd_card *card; /* one card */ 1055 struct snd_pcm *pcm; /* has one pcm */ 1056 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */ 1057 struct pci_dev *pci; /* and an pci info */ 1058 1059 /* Mixer vars */ 1060 /* fast alsa mixer */ 1061 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; 1062 /* but input to much, so not used */ 1063 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; 1064 /* full mixer accessible over mixer ioctl or hwdep-device */ 1065 struct hdspm_mixer *mixer; 1066 1067 struct hdspm_tco *tco; /* NULL if no TCO detected */ 1068 1069 const char *const *texts_autosync; 1070 int texts_autosync_items; 1071 1072 cycles_t last_interrupt; 1073 1074 unsigned int serial; 1075 1076 struct hdspm_peak_rms peak_rms; 1077 }; 1078 1079 1080 static const struct pci_device_id snd_hdspm_ids[] = { 1081 { 1082 .vendor = PCI_VENDOR_ID_XILINX, 1083 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI, 1084 .subvendor = PCI_ANY_ID, 1085 .subdevice = PCI_ANY_ID, 1086 .class = 0, 1087 .class_mask = 0, 1088 .driver_data = 0}, 1089 {0,} 1090 }; 1091 1092 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids); 1093 1094 /* prototypes */ 1095 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 1096 struct hdspm *hdspm); 1097 static int snd_hdspm_create_pcm(struct snd_card *card, 1098 struct hdspm *hdspm); 1099 1100 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm); 1101 static inline int hdspm_get_pll_freq(struct hdspm *hdspm); 1102 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm); 1103 static int hdspm_autosync_ref(struct hdspm *hdspm); 1104 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out); 1105 static int snd_hdspm_set_defaults(struct hdspm *hdspm); 1106 static int hdspm_system_clock_mode(struct hdspm *hdspm); 1107 static void hdspm_set_sgbuf(struct hdspm *hdspm, 1108 struct snd_pcm_substream *substream, 1109 unsigned int reg, int channels); 1110 1111 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx); 1112 static int hdspm_wc_sync_check(struct hdspm *hdspm); 1113 static int hdspm_tco_sync_check(struct hdspm *hdspm); 1114 static int hdspm_sync_in_sync_check(struct hdspm *hdspm); 1115 1116 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index); 1117 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm); 1118 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm); 1119 1120 1121 1122 static inline int HDSPM_bit2freq(int n) 1123 { 1124 static const int bit2freq_tab[] = { 1125 0, 32000, 44100, 48000, 64000, 88200, 1126 96000, 128000, 176400, 192000 }; 1127 if (n < 1 || n > 9) 1128 return 0; 1129 return bit2freq_tab[n]; 1130 } 1131 1132 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm) 1133 { 1134 return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type)); 1135 } 1136 1137 1138 /* Write/read to/from HDSPM with Adresses in Bytes 1139 not words but only 32Bit writes are allowed */ 1140 1141 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg, 1142 unsigned int val) 1143 { 1144 writel(val, hdspm->iobase + reg); 1145 } 1146 1147 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg) 1148 { 1149 return readl(hdspm->iobase + reg); 1150 } 1151 1152 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader 1153 mixer is write only on hardware so we have to cache him for read 1154 each fader is a u32, but uses only the first 16 bit */ 1155 1156 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan, 1157 unsigned int in) 1158 { 1159 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1160 return 0; 1161 1162 return hdspm->mixer->ch[chan].in[in]; 1163 } 1164 1165 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan, 1166 unsigned int pb) 1167 { 1168 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1169 return 0; 1170 return hdspm->mixer->ch[chan].pb[pb]; 1171 } 1172 1173 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan, 1174 unsigned int in, unsigned short data) 1175 { 1176 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1177 return -1; 1178 1179 hdspm_write(hdspm, 1180 HDSPM_MADI_mixerBase + 1181 ((in + 128 * chan) * sizeof(u32)), 1182 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF)); 1183 return 0; 1184 } 1185 1186 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan, 1187 unsigned int pb, unsigned short data) 1188 { 1189 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1190 return -1; 1191 1192 hdspm_write(hdspm, 1193 HDSPM_MADI_mixerBase + 1194 ((64 + pb + 128 * chan) * sizeof(u32)), 1195 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF)); 1196 return 0; 1197 } 1198 1199 1200 /* enable DMA for specific channels, now available for DSP-MADI */ 1201 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v) 1202 { 1203 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v); 1204 } 1205 1206 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v) 1207 { 1208 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v); 1209 } 1210 1211 /* check if same process is writing and reading */ 1212 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm) 1213 { 1214 unsigned long flags; 1215 int ret = 1; 1216 1217 spin_lock_irqsave(&hdspm->lock, flags); 1218 if ((hdspm->playback_pid != hdspm->capture_pid) && 1219 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) { 1220 ret = 0; 1221 } 1222 spin_unlock_irqrestore(&hdspm->lock, flags); 1223 return ret; 1224 } 1225 1226 /* round arbitary sample rates to commonly known rates */ 1227 static int hdspm_round_frequency(int rate) 1228 { 1229 if (rate < 38050) 1230 return 32000; 1231 if (rate < 46008) 1232 return 44100; 1233 else 1234 return 48000; 1235 } 1236 1237 /* QS and DS rates normally can not be detected 1238 * automatically by the card. Only exception is MADI 1239 * in 96k frame mode. 1240 * 1241 * So if we read SS values (32 .. 48k), check for 1242 * user-provided DS/QS bits in the control register 1243 * and multiply the base frequency accordingly. 1244 */ 1245 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate) 1246 { 1247 if (rate <= 48000) { 1248 if (hdspm->control_register & HDSPM_QuadSpeed) 1249 return rate * 4; 1250 else if (hdspm->control_register & 1251 HDSPM_DoubleSpeed) 1252 return rate * 2; 1253 } 1254 return rate; 1255 } 1256 1257 /* check for external sample rate, returns the sample rate in Hz*/ 1258 static int hdspm_external_sample_rate(struct hdspm *hdspm) 1259 { 1260 unsigned int status, status2; 1261 int syncref, rate = 0, rate_bits; 1262 1263 switch (hdspm->io_type) { 1264 case AES32: 1265 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1266 status = hdspm_read(hdspm, HDSPM_statusRegister); 1267 1268 syncref = hdspm_autosync_ref(hdspm); 1269 switch (syncref) { 1270 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 1271 /* Check WC sync and get sample rate */ 1272 if (hdspm_wc_sync_check(hdspm)) 1273 return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm)); 1274 break; 1275 1276 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 1277 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 1278 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 1279 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 1280 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 1281 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 1282 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 1283 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 1284 /* Check AES sync and get sample rate */ 1285 if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)) 1286 return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm, 1287 syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)); 1288 break; 1289 1290 1291 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 1292 /* Check TCO sync and get sample rate */ 1293 if (hdspm_tco_sync_check(hdspm)) 1294 return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm)); 1295 break; 1296 default: 1297 return 0; 1298 } /* end switch(syncref) */ 1299 break; 1300 1301 case MADIface: 1302 status = hdspm_read(hdspm, HDSPM_statusRegister); 1303 1304 if (!(status & HDSPM_madiLock)) { 1305 rate = 0; /* no lock */ 1306 } else { 1307 switch (status & (HDSPM_status1_freqMask)) { 1308 case HDSPM_status1_F_0*1: 1309 rate = 32000; break; 1310 case HDSPM_status1_F_0*2: 1311 rate = 44100; break; 1312 case HDSPM_status1_F_0*3: 1313 rate = 48000; break; 1314 case HDSPM_status1_F_0*4: 1315 rate = 64000; break; 1316 case HDSPM_status1_F_0*5: 1317 rate = 88200; break; 1318 case HDSPM_status1_F_0*6: 1319 rate = 96000; break; 1320 case HDSPM_status1_F_0*7: 1321 rate = 128000; break; 1322 case HDSPM_status1_F_0*8: 1323 rate = 176400; break; 1324 case HDSPM_status1_F_0*9: 1325 rate = 192000; break; 1326 default: 1327 rate = 0; break; 1328 } 1329 } 1330 1331 break; 1332 1333 case MADI: 1334 case AIO: 1335 case RayDAT: 1336 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1337 status = hdspm_read(hdspm, HDSPM_statusRegister); 1338 rate = 0; 1339 1340 /* if wordclock has synced freq and wordclock is valid */ 1341 if ((status2 & HDSPM_wcLock) != 0 && 1342 (status2 & HDSPM_SelSyncRef0) == 0) { 1343 1344 rate_bits = status2 & HDSPM_wcFreqMask; 1345 1346 1347 switch (rate_bits) { 1348 case HDSPM_wcFreq32: 1349 rate = 32000; 1350 break; 1351 case HDSPM_wcFreq44_1: 1352 rate = 44100; 1353 break; 1354 case HDSPM_wcFreq48: 1355 rate = 48000; 1356 break; 1357 case HDSPM_wcFreq64: 1358 rate = 64000; 1359 break; 1360 case HDSPM_wcFreq88_2: 1361 rate = 88200; 1362 break; 1363 case HDSPM_wcFreq96: 1364 rate = 96000; 1365 break; 1366 case HDSPM_wcFreq128: 1367 rate = 128000; 1368 break; 1369 case HDSPM_wcFreq176_4: 1370 rate = 176400; 1371 break; 1372 case HDSPM_wcFreq192: 1373 rate = 192000; 1374 break; 1375 default: 1376 rate = 0; 1377 break; 1378 } 1379 } 1380 1381 /* if rate detected and Syncref is Word than have it, 1382 * word has priority to MADI 1383 */ 1384 if (rate != 0 && 1385 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) 1386 return hdspm_rate_multiplier(hdspm, rate); 1387 1388 /* maybe a madi input (which is taken if sel sync is madi) */ 1389 if (status & HDSPM_madiLock) { 1390 rate_bits = status & HDSPM_madiFreqMask; 1391 1392 switch (rate_bits) { 1393 case HDSPM_madiFreq32: 1394 rate = 32000; 1395 break; 1396 case HDSPM_madiFreq44_1: 1397 rate = 44100; 1398 break; 1399 case HDSPM_madiFreq48: 1400 rate = 48000; 1401 break; 1402 case HDSPM_madiFreq64: 1403 rate = 64000; 1404 break; 1405 case HDSPM_madiFreq88_2: 1406 rate = 88200; 1407 break; 1408 case HDSPM_madiFreq96: 1409 rate = 96000; 1410 break; 1411 case HDSPM_madiFreq128: 1412 rate = 128000; 1413 break; 1414 case HDSPM_madiFreq176_4: 1415 rate = 176400; 1416 break; 1417 case HDSPM_madiFreq192: 1418 rate = 192000; 1419 break; 1420 default: 1421 rate = 0; 1422 break; 1423 } 1424 1425 } /* endif HDSPM_madiLock */ 1426 1427 /* check sample rate from TCO or SYNC_IN */ 1428 { 1429 bool is_valid_input = 0; 1430 bool has_sync = 0; 1431 1432 syncref = hdspm_autosync_ref(hdspm); 1433 if (HDSPM_AUTOSYNC_FROM_TCO == syncref) { 1434 is_valid_input = 1; 1435 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1436 hdspm_tco_sync_check(hdspm)); 1437 } else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) { 1438 is_valid_input = 1; 1439 has_sync = (HDSPM_SYNC_CHECK_SYNC == 1440 hdspm_sync_in_sync_check(hdspm)); 1441 } 1442 1443 if (is_valid_input && has_sync) { 1444 rate = hdspm_round_frequency( 1445 hdspm_get_pll_freq(hdspm)); 1446 } 1447 } 1448 1449 rate = hdspm_rate_multiplier(hdspm, rate); 1450 1451 break; 1452 } 1453 1454 return rate; 1455 } 1456 1457 /* return latency in samples per period */ 1458 static int hdspm_get_latency(struct hdspm *hdspm) 1459 { 1460 int n; 1461 1462 n = hdspm_decode_latency(hdspm->control_register); 1463 1464 /* Special case for new RME cards with 32 samples period size. 1465 * The three latency bits in the control register 1466 * (HDSP_LatencyMask) encode latency values of 64 samples as 1467 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7 1468 * denotes 8192 samples, but on new cards like RayDAT or AIO, 1469 * it corresponds to 32 samples. 1470 */ 1471 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type)) 1472 n = -1; 1473 1474 return 1 << (n + 6); 1475 } 1476 1477 /* Latency function */ 1478 static inline void hdspm_compute_period_size(struct hdspm *hdspm) 1479 { 1480 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm); 1481 } 1482 1483 1484 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm) 1485 { 1486 int position; 1487 1488 position = hdspm_read(hdspm, HDSPM_statusRegister); 1489 1490 switch (hdspm->io_type) { 1491 case RayDAT: 1492 case AIO: 1493 position &= HDSPM_BufferPositionMask; 1494 position /= 4; /* Bytes per sample */ 1495 break; 1496 default: 1497 position = (position & HDSPM_BufferID) ? 1498 (hdspm->period_bytes / 4) : 0; 1499 } 1500 1501 return position; 1502 } 1503 1504 1505 static inline void hdspm_start_audio(struct hdspm * s) 1506 { 1507 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start); 1508 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1509 } 1510 1511 static inline void hdspm_stop_audio(struct hdspm * s) 1512 { 1513 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable); 1514 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1515 } 1516 1517 /* should I silence all or only opened ones ? doit all for first even is 4MB*/ 1518 static void hdspm_silence_playback(struct hdspm *hdspm) 1519 { 1520 int i; 1521 int n = hdspm->period_bytes; 1522 void *buf = hdspm->playback_buffer; 1523 1524 if (buf == NULL) 1525 return; 1526 1527 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 1528 memset(buf, 0, n); 1529 buf += HDSPM_CHANNEL_BUFFER_BYTES; 1530 } 1531 } 1532 1533 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames) 1534 { 1535 int n; 1536 1537 spin_lock_irq(&s->lock); 1538 1539 if (32 == frames) { 1540 /* Special case for new RME cards like RayDAT/AIO which 1541 * support period sizes of 32 samples. Since latency is 1542 * encoded in the three bits of HDSP_LatencyMask, we can only 1543 * have values from 0 .. 7. While 0 still means 64 samples and 1544 * 6 represents 4096 samples on all cards, 7 represents 8192 1545 * on older cards and 32 samples on new cards. 1546 * 1547 * In other words, period size in samples is calculated by 1548 * 2^(n+6) with n ranging from 0 .. 7. 1549 */ 1550 n = 7; 1551 } else { 1552 frames >>= 7; 1553 n = 0; 1554 while (frames) { 1555 n++; 1556 frames >>= 1; 1557 } 1558 } 1559 1560 s->control_register &= ~HDSPM_LatencyMask; 1561 s->control_register |= hdspm_encode_latency(n); 1562 1563 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1564 1565 hdspm_compute_period_size(s); 1566 1567 spin_unlock_irq(&s->lock); 1568 1569 return 0; 1570 } 1571 1572 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period) 1573 { 1574 u64 freq_const; 1575 1576 if (period == 0) 1577 return 0; 1578 1579 switch (hdspm->io_type) { 1580 case MADI: 1581 case AES32: 1582 freq_const = 110069313433624ULL; 1583 break; 1584 case RayDAT: 1585 case AIO: 1586 freq_const = 104857600000000ULL; 1587 break; 1588 case MADIface: 1589 freq_const = 131072000000000ULL; 1590 break; 1591 default: 1592 snd_BUG(); 1593 return 0; 1594 } 1595 1596 return div_u64(freq_const, period); 1597 } 1598 1599 1600 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate) 1601 { 1602 u64 n; 1603 1604 if (snd_BUG_ON(rate <= 0)) 1605 return; 1606 1607 if (rate >= 112000) 1608 rate /= 4; 1609 else if (rate >= 56000) 1610 rate /= 2; 1611 1612 switch (hdspm->io_type) { 1613 case MADIface: 1614 n = 131072000000000ULL; /* 125 MHz */ 1615 break; 1616 case MADI: 1617 case AES32: 1618 n = 110069313433624ULL; /* 105 MHz */ 1619 break; 1620 case RayDAT: 1621 case AIO: 1622 n = 104857600000000ULL; /* 100 MHz */ 1623 break; 1624 default: 1625 snd_BUG(); 1626 return; 1627 } 1628 1629 n = div_u64(n, rate); 1630 /* n should be less than 2^32 for being written to FREQ register */ 1631 snd_BUG_ON(n >> 32); 1632 hdspm_write(hdspm, HDSPM_freqReg, (u32)n); 1633 } 1634 1635 /* dummy set rate lets see what happens */ 1636 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) 1637 { 1638 int current_rate; 1639 int rate_bits; 1640 int not_set = 0; 1641 int current_speed, target_speed; 1642 1643 /* ASSUMPTION: hdspm->lock is either set, or there is no need for 1644 it (e.g. during module initialization). 1645 */ 1646 1647 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { 1648 1649 /* SLAVE --- */ 1650 if (called_internally) { 1651 1652 /* request from ctl or card initialization 1653 just make a warning an remember setting 1654 for future master mode switching */ 1655 1656 dev_warn(hdspm->card->dev, 1657 "Warning: device is not running as a clock master.\n"); 1658 not_set = 1; 1659 } else { 1660 1661 /* hw_param request while in AutoSync mode */ 1662 int external_freq = 1663 hdspm_external_sample_rate(hdspm); 1664 1665 if (hdspm_autosync_ref(hdspm) == 1666 HDSPM_AUTOSYNC_FROM_NONE) { 1667 1668 dev_warn(hdspm->card->dev, 1669 "Detected no External Sync\n"); 1670 not_set = 1; 1671 1672 } else if (rate != external_freq) { 1673 1674 dev_warn(hdspm->card->dev, 1675 "Warning: No AutoSync source for requested rate\n"); 1676 not_set = 1; 1677 } 1678 } 1679 } 1680 1681 current_rate = hdspm->system_sample_rate; 1682 1683 /* Changing between Singe, Double and Quad speed is not 1684 allowed if any substreams are open. This is because such a change 1685 causes a shift in the location of the DMA buffers and a reduction 1686 in the number of available buffers. 1687 1688 Note that a similar but essentially insoluble problem exists for 1689 externally-driven rate changes. All we can do is to flag rate 1690 changes in the read/write routines. 1691 */ 1692 1693 if (current_rate <= 48000) 1694 current_speed = HDSPM_SPEED_SINGLE; 1695 else if (current_rate <= 96000) 1696 current_speed = HDSPM_SPEED_DOUBLE; 1697 else 1698 current_speed = HDSPM_SPEED_QUAD; 1699 1700 if (rate <= 48000) 1701 target_speed = HDSPM_SPEED_SINGLE; 1702 else if (rate <= 96000) 1703 target_speed = HDSPM_SPEED_DOUBLE; 1704 else 1705 target_speed = HDSPM_SPEED_QUAD; 1706 1707 switch (rate) { 1708 case 32000: 1709 rate_bits = HDSPM_Frequency32KHz; 1710 break; 1711 case 44100: 1712 rate_bits = HDSPM_Frequency44_1KHz; 1713 break; 1714 case 48000: 1715 rate_bits = HDSPM_Frequency48KHz; 1716 break; 1717 case 64000: 1718 rate_bits = HDSPM_Frequency64KHz; 1719 break; 1720 case 88200: 1721 rate_bits = HDSPM_Frequency88_2KHz; 1722 break; 1723 case 96000: 1724 rate_bits = HDSPM_Frequency96KHz; 1725 break; 1726 case 128000: 1727 rate_bits = HDSPM_Frequency128KHz; 1728 break; 1729 case 176400: 1730 rate_bits = HDSPM_Frequency176_4KHz; 1731 break; 1732 case 192000: 1733 rate_bits = HDSPM_Frequency192KHz; 1734 break; 1735 default: 1736 return -EINVAL; 1737 } 1738 1739 if (current_speed != target_speed 1740 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) { 1741 dev_err(hdspm->card->dev, 1742 "cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n", 1743 hdspm_speed_names[current_speed], 1744 hdspm_speed_names[target_speed], 1745 hdspm->capture_pid, hdspm->playback_pid); 1746 return -EBUSY; 1747 } 1748 1749 hdspm->control_register &= ~HDSPM_FrequencyMask; 1750 hdspm->control_register |= rate_bits; 1751 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1752 1753 /* For AES32, need to set DDS value in FREQ register 1754 For MADI, also apparently */ 1755 hdspm_set_dds_value(hdspm, rate); 1756 1757 if (AES32 == hdspm->io_type && rate != current_rate) 1758 hdspm_write(hdspm, HDSPM_eeprom_wr, 0); 1759 1760 hdspm->system_sample_rate = rate; 1761 1762 if (rate <= 48000) { 1763 hdspm->channel_map_in = hdspm->channel_map_in_ss; 1764 hdspm->channel_map_out = hdspm->channel_map_out_ss; 1765 hdspm->max_channels_in = hdspm->ss_in_channels; 1766 hdspm->max_channels_out = hdspm->ss_out_channels; 1767 hdspm->port_names_in = hdspm->port_names_in_ss; 1768 hdspm->port_names_out = hdspm->port_names_out_ss; 1769 } else if (rate <= 96000) { 1770 hdspm->channel_map_in = hdspm->channel_map_in_ds; 1771 hdspm->channel_map_out = hdspm->channel_map_out_ds; 1772 hdspm->max_channels_in = hdspm->ds_in_channels; 1773 hdspm->max_channels_out = hdspm->ds_out_channels; 1774 hdspm->port_names_in = hdspm->port_names_in_ds; 1775 hdspm->port_names_out = hdspm->port_names_out_ds; 1776 } else { 1777 hdspm->channel_map_in = hdspm->channel_map_in_qs; 1778 hdspm->channel_map_out = hdspm->channel_map_out_qs; 1779 hdspm->max_channels_in = hdspm->qs_in_channels; 1780 hdspm->max_channels_out = hdspm->qs_out_channels; 1781 hdspm->port_names_in = hdspm->port_names_in_qs; 1782 hdspm->port_names_out = hdspm->port_names_out_qs; 1783 } 1784 1785 if (not_set != 0) 1786 return -1; 1787 1788 return 0; 1789 } 1790 1791 /* mainly for init to 0 on load */ 1792 static void all_in_all_mixer(struct hdspm * hdspm, int sgain) 1793 { 1794 int i, j; 1795 unsigned int gain; 1796 1797 if (sgain > UNITY_GAIN) 1798 gain = UNITY_GAIN; 1799 else if (sgain < 0) 1800 gain = 0; 1801 else 1802 gain = sgain; 1803 1804 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) 1805 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) { 1806 hdspm_write_in_gain(hdspm, i, j, gain); 1807 hdspm_write_pb_gain(hdspm, i, j, gain); 1808 } 1809 } 1810 1811 /*---------------------------------------------------------------------------- 1812 MIDI 1813 ----------------------------------------------------------------------------*/ 1814 1815 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, 1816 int id) 1817 { 1818 /* the hardware already does the relevant bit-mask with 0xff */ 1819 return hdspm_read(hdspm, hdspm->midi[id].dataIn); 1820 } 1821 1822 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, 1823 int val) 1824 { 1825 /* the hardware already does the relevant bit-mask with 0xff */ 1826 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val); 1827 } 1828 1829 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id) 1830 { 1831 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF; 1832 } 1833 1834 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id) 1835 { 1836 int fifo_bytes_used; 1837 1838 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF; 1839 1840 if (fifo_bytes_used < 128) 1841 return 128 - fifo_bytes_used; 1842 else 1843 return 0; 1844 } 1845 1846 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id) 1847 { 1848 while (snd_hdspm_midi_input_available (hdspm, id)) 1849 snd_hdspm_midi_read_byte (hdspm, id); 1850 } 1851 1852 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi) 1853 { 1854 unsigned long flags; 1855 int n_pending; 1856 int to_write; 1857 int i; 1858 unsigned char buf[128]; 1859 1860 /* Output is not interrupt driven */ 1861 1862 spin_lock_irqsave (&hmidi->lock, flags); 1863 if (hmidi->output && 1864 !snd_rawmidi_transmit_empty (hmidi->output)) { 1865 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, 1866 hmidi->id); 1867 if (n_pending > 0) { 1868 if (n_pending > (int)sizeof (buf)) 1869 n_pending = sizeof (buf); 1870 1871 to_write = snd_rawmidi_transmit (hmidi->output, buf, 1872 n_pending); 1873 if (to_write > 0) { 1874 for (i = 0; i < to_write; ++i) 1875 snd_hdspm_midi_write_byte (hmidi->hdspm, 1876 hmidi->id, 1877 buf[i]); 1878 } 1879 } 1880 } 1881 spin_unlock_irqrestore (&hmidi->lock, flags); 1882 return 0; 1883 } 1884 1885 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi) 1886 { 1887 unsigned char buf[128]; /* this buffer is designed to match the MIDI 1888 * input FIFO size 1889 */ 1890 unsigned long flags; 1891 int n_pending; 1892 int i; 1893 1894 spin_lock_irqsave (&hmidi->lock, flags); 1895 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id); 1896 if (n_pending > 0) { 1897 if (hmidi->input) { 1898 if (n_pending > (int)sizeof (buf)) 1899 n_pending = sizeof (buf); 1900 for (i = 0; i < n_pending; ++i) 1901 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, 1902 hmidi->id); 1903 if (n_pending) 1904 snd_rawmidi_receive (hmidi->input, buf, 1905 n_pending); 1906 } else { 1907 /* flush the MIDI input FIFO */ 1908 while (n_pending--) 1909 snd_hdspm_midi_read_byte (hmidi->hdspm, 1910 hmidi->id); 1911 } 1912 } 1913 hmidi->pending = 0; 1914 spin_unlock_irqrestore(&hmidi->lock, flags); 1915 1916 spin_lock_irqsave(&hmidi->hdspm->lock, flags); 1917 hmidi->hdspm->control_register |= hmidi->ie; 1918 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, 1919 hmidi->hdspm->control_register); 1920 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags); 1921 1922 return snd_hdspm_midi_output_write (hmidi); 1923 } 1924 1925 static void 1926 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1927 { 1928 struct hdspm *hdspm; 1929 struct hdspm_midi *hmidi; 1930 unsigned long flags; 1931 1932 hmidi = substream->rmidi->private_data; 1933 hdspm = hmidi->hdspm; 1934 1935 spin_lock_irqsave (&hdspm->lock, flags); 1936 if (up) { 1937 if (!(hdspm->control_register & hmidi->ie)) { 1938 snd_hdspm_flush_midi_input (hdspm, hmidi->id); 1939 hdspm->control_register |= hmidi->ie; 1940 } 1941 } else { 1942 hdspm->control_register &= ~hmidi->ie; 1943 } 1944 1945 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1946 spin_unlock_irqrestore (&hdspm->lock, flags); 1947 } 1948 1949 static void snd_hdspm_midi_output_timer(unsigned long data) 1950 { 1951 struct hdspm_midi *hmidi = (struct hdspm_midi *) data; 1952 unsigned long flags; 1953 1954 snd_hdspm_midi_output_write(hmidi); 1955 spin_lock_irqsave (&hmidi->lock, flags); 1956 1957 /* this does not bump hmidi->istimer, because the 1958 kernel automatically removed the timer when it 1959 expired, and we are now adding it back, thus 1960 leaving istimer wherever it was set before. 1961 */ 1962 1963 if (hmidi->istimer) 1964 mod_timer(&hmidi->timer, 1 + jiffies); 1965 1966 spin_unlock_irqrestore (&hmidi->lock, flags); 1967 } 1968 1969 static void 1970 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1971 { 1972 struct hdspm_midi *hmidi; 1973 unsigned long flags; 1974 1975 hmidi = substream->rmidi->private_data; 1976 spin_lock_irqsave (&hmidi->lock, flags); 1977 if (up) { 1978 if (!hmidi->istimer) { 1979 setup_timer(&hmidi->timer, snd_hdspm_midi_output_timer, 1980 (unsigned long) hmidi); 1981 mod_timer(&hmidi->timer, 1 + jiffies); 1982 hmidi->istimer++; 1983 } 1984 } else { 1985 if (hmidi->istimer && --hmidi->istimer <= 0) 1986 del_timer (&hmidi->timer); 1987 } 1988 spin_unlock_irqrestore (&hmidi->lock, flags); 1989 if (up) 1990 snd_hdspm_midi_output_write(hmidi); 1991 } 1992 1993 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream) 1994 { 1995 struct hdspm_midi *hmidi; 1996 1997 hmidi = substream->rmidi->private_data; 1998 spin_lock_irq (&hmidi->lock); 1999 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id); 2000 hmidi->input = substream; 2001 spin_unlock_irq (&hmidi->lock); 2002 2003 return 0; 2004 } 2005 2006 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream) 2007 { 2008 struct hdspm_midi *hmidi; 2009 2010 hmidi = substream->rmidi->private_data; 2011 spin_lock_irq (&hmidi->lock); 2012 hmidi->output = substream; 2013 spin_unlock_irq (&hmidi->lock); 2014 2015 return 0; 2016 } 2017 2018 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream) 2019 { 2020 struct hdspm_midi *hmidi; 2021 2022 snd_hdspm_midi_input_trigger (substream, 0); 2023 2024 hmidi = substream->rmidi->private_data; 2025 spin_lock_irq (&hmidi->lock); 2026 hmidi->input = NULL; 2027 spin_unlock_irq (&hmidi->lock); 2028 2029 return 0; 2030 } 2031 2032 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream) 2033 { 2034 struct hdspm_midi *hmidi; 2035 2036 snd_hdspm_midi_output_trigger (substream, 0); 2037 2038 hmidi = substream->rmidi->private_data; 2039 spin_lock_irq (&hmidi->lock); 2040 hmidi->output = NULL; 2041 spin_unlock_irq (&hmidi->lock); 2042 2043 return 0; 2044 } 2045 2046 static struct snd_rawmidi_ops snd_hdspm_midi_output = 2047 { 2048 .open = snd_hdspm_midi_output_open, 2049 .close = snd_hdspm_midi_output_close, 2050 .trigger = snd_hdspm_midi_output_trigger, 2051 }; 2052 2053 static struct snd_rawmidi_ops snd_hdspm_midi_input = 2054 { 2055 .open = snd_hdspm_midi_input_open, 2056 .close = snd_hdspm_midi_input_close, 2057 .trigger = snd_hdspm_midi_input_trigger, 2058 }; 2059 2060 static int snd_hdspm_create_midi(struct snd_card *card, 2061 struct hdspm *hdspm, int id) 2062 { 2063 int err; 2064 char buf[32]; 2065 2066 hdspm->midi[id].id = id; 2067 hdspm->midi[id].hdspm = hdspm; 2068 spin_lock_init (&hdspm->midi[id].lock); 2069 2070 if (0 == id) { 2071 if (MADIface == hdspm->io_type) { 2072 /* MIDI-over-MADI on HDSPe MADIface */ 2073 hdspm->midi[0].dataIn = HDSPM_midiDataIn2; 2074 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2; 2075 hdspm->midi[0].dataOut = HDSPM_midiDataOut2; 2076 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2; 2077 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable; 2078 hdspm->midi[0].irq = HDSPM_midi2IRQPending; 2079 } else { 2080 hdspm->midi[0].dataIn = HDSPM_midiDataIn0; 2081 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0; 2082 hdspm->midi[0].dataOut = HDSPM_midiDataOut0; 2083 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0; 2084 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable; 2085 hdspm->midi[0].irq = HDSPM_midi0IRQPending; 2086 } 2087 } else if (1 == id) { 2088 hdspm->midi[1].dataIn = HDSPM_midiDataIn1; 2089 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1; 2090 hdspm->midi[1].dataOut = HDSPM_midiDataOut1; 2091 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1; 2092 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable; 2093 hdspm->midi[1].irq = HDSPM_midi1IRQPending; 2094 } else if ((2 == id) && (MADI == hdspm->io_type)) { 2095 /* MIDI-over-MADI on HDSPe MADI */ 2096 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2097 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2098 hdspm->midi[2].dataOut = HDSPM_midiDataOut2; 2099 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2; 2100 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2101 hdspm->midi[2].irq = HDSPM_midi2IRQPending; 2102 } else if (2 == id) { 2103 /* TCO MTC, read only */ 2104 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 2105 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 2106 hdspm->midi[2].dataOut = -1; 2107 hdspm->midi[2].statusOut = -1; 2108 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 2109 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES; 2110 } else if (3 == id) { 2111 /* TCO MTC on HDSPe MADI */ 2112 hdspm->midi[3].dataIn = HDSPM_midiDataIn3; 2113 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3; 2114 hdspm->midi[3].dataOut = -1; 2115 hdspm->midi[3].statusOut = -1; 2116 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable; 2117 hdspm->midi[3].irq = HDSPM_midi3IRQPending; 2118 } 2119 2120 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) || 2121 (MADIface == hdspm->io_type)))) { 2122 if ((id == 0) && (MADIface == hdspm->io_type)) { 2123 sprintf(buf, "%s MIDIoverMADI", card->shortname); 2124 } else if ((id == 2) && (MADI == hdspm->io_type)) { 2125 sprintf(buf, "%s MIDIoverMADI", card->shortname); 2126 } else { 2127 sprintf(buf, "%s MIDI %d", card->shortname, id+1); 2128 } 2129 err = snd_rawmidi_new(card, buf, id, 1, 1, 2130 &hdspm->midi[id].rmidi); 2131 if (err < 0) 2132 return err; 2133 2134 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d", 2135 card->id, id+1); 2136 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2137 2138 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2139 SNDRV_RAWMIDI_STREAM_OUTPUT, 2140 &snd_hdspm_midi_output); 2141 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2142 SNDRV_RAWMIDI_STREAM_INPUT, 2143 &snd_hdspm_midi_input); 2144 2145 hdspm->midi[id].rmidi->info_flags |= 2146 SNDRV_RAWMIDI_INFO_OUTPUT | 2147 SNDRV_RAWMIDI_INFO_INPUT | 2148 SNDRV_RAWMIDI_INFO_DUPLEX; 2149 } else { 2150 /* TCO MTC, read only */ 2151 sprintf(buf, "%s MTC %d", card->shortname, id+1); 2152 err = snd_rawmidi_new(card, buf, id, 1, 1, 2153 &hdspm->midi[id].rmidi); 2154 if (err < 0) 2155 return err; 2156 2157 sprintf(hdspm->midi[id].rmidi->name, 2158 "%s MTC %d", card->id, id+1); 2159 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 2160 2161 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 2162 SNDRV_RAWMIDI_STREAM_INPUT, 2163 &snd_hdspm_midi_input); 2164 2165 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; 2166 } 2167 2168 return 0; 2169 } 2170 2171 2172 static void hdspm_midi_tasklet(unsigned long arg) 2173 { 2174 struct hdspm *hdspm = (struct hdspm *)arg; 2175 int i = 0; 2176 2177 while (i < hdspm->midiPorts) { 2178 if (hdspm->midi[i].pending) 2179 snd_hdspm_midi_input_read(&hdspm->midi[i]); 2180 2181 i++; 2182 } 2183 } 2184 2185 2186 /*----------------------------------------------------------------------------- 2187 Status Interface 2188 ----------------------------------------------------------------------------*/ 2189 2190 /* get the system sample rate which is set */ 2191 2192 2193 static inline int hdspm_get_pll_freq(struct hdspm *hdspm) 2194 { 2195 unsigned int period, rate; 2196 2197 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 2198 rate = hdspm_calc_dds_value(hdspm, period); 2199 2200 return rate; 2201 } 2202 2203 /* 2204 * Calculate the real sample rate from the 2205 * current DDS value. 2206 */ 2207 static int hdspm_get_system_sample_rate(struct hdspm *hdspm) 2208 { 2209 unsigned int rate; 2210 2211 rate = hdspm_get_pll_freq(hdspm); 2212 2213 if (rate > 207000) { 2214 /* Unreasonable high sample rate as seen on PCI MADI cards. */ 2215 if (0 == hdspm_system_clock_mode(hdspm)) { 2216 /* master mode, return internal sample rate */ 2217 rate = hdspm->system_sample_rate; 2218 } else { 2219 /* slave mode, return external sample rate */ 2220 rate = hdspm_external_sample_rate(hdspm); 2221 if (!rate) 2222 rate = hdspm->system_sample_rate; 2223 } 2224 } 2225 2226 return rate; 2227 } 2228 2229 2230 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \ 2231 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2232 .name = xname, \ 2233 .index = xindex, \ 2234 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2235 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2236 .info = snd_hdspm_info_system_sample_rate, \ 2237 .put = snd_hdspm_put_system_sample_rate, \ 2238 .get = snd_hdspm_get_system_sample_rate \ 2239 } 2240 2241 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol, 2242 struct snd_ctl_elem_info *uinfo) 2243 { 2244 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2245 uinfo->count = 1; 2246 uinfo->value.integer.min = 27000; 2247 uinfo->value.integer.max = 207000; 2248 uinfo->value.integer.step = 1; 2249 return 0; 2250 } 2251 2252 2253 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol, 2254 struct snd_ctl_elem_value * 2255 ucontrol) 2256 { 2257 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2258 2259 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm); 2260 return 0; 2261 } 2262 2263 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol, 2264 struct snd_ctl_elem_value * 2265 ucontrol) 2266 { 2267 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2268 int rate = ucontrol->value.integer.value[0]; 2269 2270 if (rate < 27000 || rate > 207000) 2271 return -EINVAL; 2272 hdspm_set_dds_value(hdspm, ucontrol->value.integer.value[0]); 2273 return 0; 2274 } 2275 2276 2277 /* 2278 * Returns the WordClock sample rate class for the given card. 2279 */ 2280 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm) 2281 { 2282 int status; 2283 2284 switch (hdspm->io_type) { 2285 case RayDAT: 2286 case AIO: 2287 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2288 return (status >> 16) & 0xF; 2289 break; 2290 case AES32: 2291 status = hdspm_read(hdspm, HDSPM_statusRegister); 2292 return (status >> HDSPM_AES32_wcFreq_bit) & 0xF; 2293 default: 2294 break; 2295 } 2296 2297 2298 return 0; 2299 } 2300 2301 2302 /* 2303 * Returns the TCO sample rate class for the given card. 2304 */ 2305 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm) 2306 { 2307 int status; 2308 2309 if (hdspm->tco) { 2310 switch (hdspm->io_type) { 2311 case RayDAT: 2312 case AIO: 2313 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2314 return (status >> 20) & 0xF; 2315 break; 2316 case AES32: 2317 status = hdspm_read(hdspm, HDSPM_statusRegister); 2318 return (status >> 1) & 0xF; 2319 default: 2320 break; 2321 } 2322 } 2323 2324 return 0; 2325 } 2326 2327 2328 /* 2329 * Returns the SYNC_IN sample rate class for the given card. 2330 */ 2331 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm) 2332 { 2333 int status; 2334 2335 if (hdspm->tco) { 2336 switch (hdspm->io_type) { 2337 case RayDAT: 2338 case AIO: 2339 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2340 return (status >> 12) & 0xF; 2341 break; 2342 default: 2343 break; 2344 } 2345 } 2346 2347 return 0; 2348 } 2349 2350 /* 2351 * Returns the AES sample rate class for the given card. 2352 */ 2353 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index) 2354 { 2355 int timecode; 2356 2357 switch (hdspm->io_type) { 2358 case AES32: 2359 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 2360 return (timecode >> (4*index)) & 0xF; 2361 break; 2362 default: 2363 break; 2364 } 2365 return 0; 2366 } 2367 2368 /* 2369 * Returns the sample rate class for input source <idx> for 2370 * 'new style' cards like the AIO and RayDAT. 2371 */ 2372 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx) 2373 { 2374 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2375 2376 return (status >> (idx*4)) & 0xF; 2377 } 2378 2379 #define ENUMERATED_CTL_INFO(info, texts) \ 2380 snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts) 2381 2382 2383 /* Helper function to query the external sample rate and return the 2384 * corresponding enum to be returned to userspace. 2385 */ 2386 static int hdspm_external_rate_to_enum(struct hdspm *hdspm) 2387 { 2388 int rate = hdspm_external_sample_rate(hdspm); 2389 int i, selected_rate = 0; 2390 for (i = 1; i < 10; i++) 2391 if (HDSPM_bit2freq(i) == rate) { 2392 selected_rate = i; 2393 break; 2394 } 2395 return selected_rate; 2396 } 2397 2398 2399 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 2400 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2401 .name = xname, \ 2402 .private_value = xindex, \ 2403 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2404 .info = snd_hdspm_info_autosync_sample_rate, \ 2405 .get = snd_hdspm_get_autosync_sample_rate \ 2406 } 2407 2408 2409 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2410 struct snd_ctl_elem_info *uinfo) 2411 { 2412 ENUMERATED_CTL_INFO(uinfo, texts_freq); 2413 return 0; 2414 } 2415 2416 2417 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2418 struct snd_ctl_elem_value * 2419 ucontrol) 2420 { 2421 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2422 2423 switch (hdspm->io_type) { 2424 case RayDAT: 2425 switch (kcontrol->private_value) { 2426 case 0: 2427 ucontrol->value.enumerated.item[0] = 2428 hdspm_get_wc_sample_rate(hdspm); 2429 break; 2430 case 7: 2431 ucontrol->value.enumerated.item[0] = 2432 hdspm_get_tco_sample_rate(hdspm); 2433 break; 2434 case 8: 2435 ucontrol->value.enumerated.item[0] = 2436 hdspm_get_sync_in_sample_rate(hdspm); 2437 break; 2438 default: 2439 ucontrol->value.enumerated.item[0] = 2440 hdspm_get_s1_sample_rate(hdspm, 2441 kcontrol->private_value-1); 2442 } 2443 break; 2444 2445 case AIO: 2446 switch (kcontrol->private_value) { 2447 case 0: /* WC */ 2448 ucontrol->value.enumerated.item[0] = 2449 hdspm_get_wc_sample_rate(hdspm); 2450 break; 2451 case 4: /* TCO */ 2452 ucontrol->value.enumerated.item[0] = 2453 hdspm_get_tco_sample_rate(hdspm); 2454 break; 2455 case 5: /* SYNC_IN */ 2456 ucontrol->value.enumerated.item[0] = 2457 hdspm_get_sync_in_sample_rate(hdspm); 2458 break; 2459 default: 2460 ucontrol->value.enumerated.item[0] = 2461 hdspm_get_s1_sample_rate(hdspm, 2462 kcontrol->private_value-1); 2463 } 2464 break; 2465 2466 case AES32: 2467 2468 switch (kcontrol->private_value) { 2469 case 0: /* WC */ 2470 ucontrol->value.enumerated.item[0] = 2471 hdspm_get_wc_sample_rate(hdspm); 2472 break; 2473 case 9: /* TCO */ 2474 ucontrol->value.enumerated.item[0] = 2475 hdspm_get_tco_sample_rate(hdspm); 2476 break; 2477 case 10: /* SYNC_IN */ 2478 ucontrol->value.enumerated.item[0] = 2479 hdspm_get_sync_in_sample_rate(hdspm); 2480 break; 2481 case 11: /* External Rate */ 2482 ucontrol->value.enumerated.item[0] = 2483 hdspm_external_rate_to_enum(hdspm); 2484 break; 2485 default: /* AES1 to AES8 */ 2486 ucontrol->value.enumerated.item[0] = 2487 hdspm_get_aes_sample_rate(hdspm, 2488 kcontrol->private_value - 2489 HDSPM_AES32_AUTOSYNC_FROM_AES1); 2490 break; 2491 } 2492 break; 2493 2494 case MADI: 2495 case MADIface: 2496 ucontrol->value.enumerated.item[0] = 2497 hdspm_external_rate_to_enum(hdspm); 2498 break; 2499 default: 2500 break; 2501 } 2502 2503 return 0; 2504 } 2505 2506 2507 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \ 2508 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2509 .name = xname, \ 2510 .index = xindex, \ 2511 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2512 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2513 .info = snd_hdspm_info_system_clock_mode, \ 2514 .get = snd_hdspm_get_system_clock_mode, \ 2515 .put = snd_hdspm_put_system_clock_mode, \ 2516 } 2517 2518 2519 /* 2520 * Returns the system clock mode for the given card. 2521 * @returns 0 - master, 1 - slave 2522 */ 2523 static int hdspm_system_clock_mode(struct hdspm *hdspm) 2524 { 2525 switch (hdspm->io_type) { 2526 case AIO: 2527 case RayDAT: 2528 if (hdspm->settings_register & HDSPM_c0Master) 2529 return 0; 2530 break; 2531 2532 default: 2533 if (hdspm->control_register & HDSPM_ClockModeMaster) 2534 return 0; 2535 } 2536 2537 return 1; 2538 } 2539 2540 2541 /* 2542 * Sets the system clock mode. 2543 * @param mode 0 - master, 1 - slave 2544 */ 2545 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode) 2546 { 2547 hdspm_set_toggle_setting(hdspm, 2548 (hdspm_is_raydat_or_aio(hdspm)) ? 2549 HDSPM_c0Master : HDSPM_ClockModeMaster, 2550 (0 == mode)); 2551 } 2552 2553 2554 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol, 2555 struct snd_ctl_elem_info *uinfo) 2556 { 2557 static const char *const texts[] = { "Master", "AutoSync" }; 2558 ENUMERATED_CTL_INFO(uinfo, texts); 2559 return 0; 2560 } 2561 2562 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol, 2563 struct snd_ctl_elem_value *ucontrol) 2564 { 2565 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2566 2567 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm); 2568 return 0; 2569 } 2570 2571 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol, 2572 struct snd_ctl_elem_value *ucontrol) 2573 { 2574 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2575 int val; 2576 2577 if (!snd_hdspm_use_is_exclusive(hdspm)) 2578 return -EBUSY; 2579 2580 val = ucontrol->value.enumerated.item[0]; 2581 if (val < 0) 2582 val = 0; 2583 else if (val > 1) 2584 val = 1; 2585 2586 hdspm_set_system_clock_mode(hdspm, val); 2587 2588 return 0; 2589 } 2590 2591 2592 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \ 2593 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2594 .name = xname, \ 2595 .index = xindex, \ 2596 .info = snd_hdspm_info_clock_source, \ 2597 .get = snd_hdspm_get_clock_source, \ 2598 .put = snd_hdspm_put_clock_source \ 2599 } 2600 2601 2602 static int hdspm_clock_source(struct hdspm * hdspm) 2603 { 2604 switch (hdspm->system_sample_rate) { 2605 case 32000: return 0; 2606 case 44100: return 1; 2607 case 48000: return 2; 2608 case 64000: return 3; 2609 case 88200: return 4; 2610 case 96000: return 5; 2611 case 128000: return 6; 2612 case 176400: return 7; 2613 case 192000: return 8; 2614 } 2615 2616 return -1; 2617 } 2618 2619 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode) 2620 { 2621 int rate; 2622 switch (mode) { 2623 case 0: 2624 rate = 32000; break; 2625 case 1: 2626 rate = 44100; break; 2627 case 2: 2628 rate = 48000; break; 2629 case 3: 2630 rate = 64000; break; 2631 case 4: 2632 rate = 88200; break; 2633 case 5: 2634 rate = 96000; break; 2635 case 6: 2636 rate = 128000; break; 2637 case 7: 2638 rate = 176400; break; 2639 case 8: 2640 rate = 192000; break; 2641 default: 2642 rate = 48000; 2643 } 2644 hdspm_set_rate(hdspm, rate, 1); 2645 return 0; 2646 } 2647 2648 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol, 2649 struct snd_ctl_elem_info *uinfo) 2650 { 2651 return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1); 2652 } 2653 2654 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol, 2655 struct snd_ctl_elem_value *ucontrol) 2656 { 2657 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2658 2659 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm); 2660 return 0; 2661 } 2662 2663 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol, 2664 struct snd_ctl_elem_value *ucontrol) 2665 { 2666 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2667 int change; 2668 int val; 2669 2670 if (!snd_hdspm_use_is_exclusive(hdspm)) 2671 return -EBUSY; 2672 val = ucontrol->value.enumerated.item[0]; 2673 if (val < 0) 2674 val = 0; 2675 if (val > 9) 2676 val = 9; 2677 spin_lock_irq(&hdspm->lock); 2678 if (val != hdspm_clock_source(hdspm)) 2679 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0; 2680 else 2681 change = 0; 2682 spin_unlock_irq(&hdspm->lock); 2683 return change; 2684 } 2685 2686 2687 #define HDSPM_PREF_SYNC_REF(xname, xindex) \ 2688 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2689 .name = xname, \ 2690 .index = xindex, \ 2691 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2692 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2693 .info = snd_hdspm_info_pref_sync_ref, \ 2694 .get = snd_hdspm_get_pref_sync_ref, \ 2695 .put = snd_hdspm_put_pref_sync_ref \ 2696 } 2697 2698 2699 /* 2700 * Returns the current preferred sync reference setting. 2701 * The semantics of the return value are depending on the 2702 * card, please see the comments for clarification. 2703 */ 2704 static int hdspm_pref_sync_ref(struct hdspm * hdspm) 2705 { 2706 switch (hdspm->io_type) { 2707 case AES32: 2708 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2709 case 0: return 0; /* WC */ 2710 case HDSPM_SyncRef0: return 1; /* AES 1 */ 2711 case HDSPM_SyncRef1: return 2; /* AES 2 */ 2712 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */ 2713 case HDSPM_SyncRef2: return 4; /* AES 4 */ 2714 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */ 2715 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */ 2716 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: 2717 return 7; /* AES 7 */ 2718 case HDSPM_SyncRef3: return 8; /* AES 8 */ 2719 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */ 2720 } 2721 break; 2722 2723 case MADI: 2724 case MADIface: 2725 if (hdspm->tco) { 2726 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2727 case 0: return 0; /* WC */ 2728 case HDSPM_SyncRef0: return 1; /* MADI */ 2729 case HDSPM_SyncRef1: return 2; /* TCO */ 2730 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2731 return 3; /* SYNC_IN */ 2732 } 2733 } else { 2734 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2735 case 0: return 0; /* WC */ 2736 case HDSPM_SyncRef0: return 1; /* MADI */ 2737 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2738 return 2; /* SYNC_IN */ 2739 } 2740 } 2741 break; 2742 2743 case RayDAT: 2744 if (hdspm->tco) { 2745 switch ((hdspm->settings_register & 2746 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2747 case 0: return 0; /* WC */ 2748 case 3: return 1; /* ADAT 1 */ 2749 case 4: return 2; /* ADAT 2 */ 2750 case 5: return 3; /* ADAT 3 */ 2751 case 6: return 4; /* ADAT 4 */ 2752 case 1: return 5; /* AES */ 2753 case 2: return 6; /* SPDIF */ 2754 case 9: return 7; /* TCO */ 2755 case 10: return 8; /* SYNC_IN */ 2756 } 2757 } else { 2758 switch ((hdspm->settings_register & 2759 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2760 case 0: return 0; /* WC */ 2761 case 3: return 1; /* ADAT 1 */ 2762 case 4: return 2; /* ADAT 2 */ 2763 case 5: return 3; /* ADAT 3 */ 2764 case 6: return 4; /* ADAT 4 */ 2765 case 1: return 5; /* AES */ 2766 case 2: return 6; /* SPDIF */ 2767 case 10: return 7; /* SYNC_IN */ 2768 } 2769 } 2770 2771 break; 2772 2773 case AIO: 2774 if (hdspm->tco) { 2775 switch ((hdspm->settings_register & 2776 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2777 case 0: return 0; /* WC */ 2778 case 3: return 1; /* ADAT */ 2779 case 1: return 2; /* AES */ 2780 case 2: return 3; /* SPDIF */ 2781 case 9: return 4; /* TCO */ 2782 case 10: return 5; /* SYNC_IN */ 2783 } 2784 } else { 2785 switch ((hdspm->settings_register & 2786 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2787 case 0: return 0; /* WC */ 2788 case 3: return 1; /* ADAT */ 2789 case 1: return 2; /* AES */ 2790 case 2: return 3; /* SPDIF */ 2791 case 10: return 4; /* SYNC_IN */ 2792 } 2793 } 2794 2795 break; 2796 } 2797 2798 return -1; 2799 } 2800 2801 2802 /* 2803 * Set the preferred sync reference to <pref>. The semantics 2804 * of <pref> are depending on the card type, see the comments 2805 * for clarification. 2806 */ 2807 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) 2808 { 2809 int p = 0; 2810 2811 switch (hdspm->io_type) { 2812 case AES32: 2813 hdspm->control_register &= ~HDSPM_SyncRefMask; 2814 switch (pref) { 2815 case 0: /* WC */ 2816 break; 2817 case 1: /* AES 1 */ 2818 hdspm->control_register |= HDSPM_SyncRef0; 2819 break; 2820 case 2: /* AES 2 */ 2821 hdspm->control_register |= HDSPM_SyncRef1; 2822 break; 2823 case 3: /* AES 3 */ 2824 hdspm->control_register |= 2825 HDSPM_SyncRef1+HDSPM_SyncRef0; 2826 break; 2827 case 4: /* AES 4 */ 2828 hdspm->control_register |= HDSPM_SyncRef2; 2829 break; 2830 case 5: /* AES 5 */ 2831 hdspm->control_register |= 2832 HDSPM_SyncRef2+HDSPM_SyncRef0; 2833 break; 2834 case 6: /* AES 6 */ 2835 hdspm->control_register |= 2836 HDSPM_SyncRef2+HDSPM_SyncRef1; 2837 break; 2838 case 7: /* AES 7 */ 2839 hdspm->control_register |= 2840 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0; 2841 break; 2842 case 8: /* AES 8 */ 2843 hdspm->control_register |= HDSPM_SyncRef3; 2844 break; 2845 case 9: /* TCO */ 2846 hdspm->control_register |= 2847 HDSPM_SyncRef3+HDSPM_SyncRef0; 2848 break; 2849 default: 2850 return -1; 2851 } 2852 2853 break; 2854 2855 case MADI: 2856 case MADIface: 2857 hdspm->control_register &= ~HDSPM_SyncRefMask; 2858 if (hdspm->tco) { 2859 switch (pref) { 2860 case 0: /* WC */ 2861 break; 2862 case 1: /* MADI */ 2863 hdspm->control_register |= HDSPM_SyncRef0; 2864 break; 2865 case 2: /* TCO */ 2866 hdspm->control_register |= HDSPM_SyncRef1; 2867 break; 2868 case 3: /* SYNC_IN */ 2869 hdspm->control_register |= 2870 HDSPM_SyncRef0+HDSPM_SyncRef1; 2871 break; 2872 default: 2873 return -1; 2874 } 2875 } else { 2876 switch (pref) { 2877 case 0: /* WC */ 2878 break; 2879 case 1: /* MADI */ 2880 hdspm->control_register |= HDSPM_SyncRef0; 2881 break; 2882 case 2: /* SYNC_IN */ 2883 hdspm->control_register |= 2884 HDSPM_SyncRef0+HDSPM_SyncRef1; 2885 break; 2886 default: 2887 return -1; 2888 } 2889 } 2890 2891 break; 2892 2893 case RayDAT: 2894 if (hdspm->tco) { 2895 switch (pref) { 2896 case 0: p = 0; break; /* WC */ 2897 case 1: p = 3; break; /* ADAT 1 */ 2898 case 2: p = 4; break; /* ADAT 2 */ 2899 case 3: p = 5; break; /* ADAT 3 */ 2900 case 4: p = 6; break; /* ADAT 4 */ 2901 case 5: p = 1; break; /* AES */ 2902 case 6: p = 2; break; /* SPDIF */ 2903 case 7: p = 9; break; /* TCO */ 2904 case 8: p = 10; break; /* SYNC_IN */ 2905 default: return -1; 2906 } 2907 } else { 2908 switch (pref) { 2909 case 0: p = 0; break; /* WC */ 2910 case 1: p = 3; break; /* ADAT 1 */ 2911 case 2: p = 4; break; /* ADAT 2 */ 2912 case 3: p = 5; break; /* ADAT 3 */ 2913 case 4: p = 6; break; /* ADAT 4 */ 2914 case 5: p = 1; break; /* AES */ 2915 case 6: p = 2; break; /* SPDIF */ 2916 case 7: p = 10; break; /* SYNC_IN */ 2917 default: return -1; 2918 } 2919 } 2920 break; 2921 2922 case AIO: 2923 if (hdspm->tco) { 2924 switch (pref) { 2925 case 0: p = 0; break; /* WC */ 2926 case 1: p = 3; break; /* ADAT */ 2927 case 2: p = 1; break; /* AES */ 2928 case 3: p = 2; break; /* SPDIF */ 2929 case 4: p = 9; break; /* TCO */ 2930 case 5: p = 10; break; /* SYNC_IN */ 2931 default: return -1; 2932 } 2933 } else { 2934 switch (pref) { 2935 case 0: p = 0; break; /* WC */ 2936 case 1: p = 3; break; /* ADAT */ 2937 case 2: p = 1; break; /* AES */ 2938 case 3: p = 2; break; /* SPDIF */ 2939 case 4: p = 10; break; /* SYNC_IN */ 2940 default: return -1; 2941 } 2942 } 2943 break; 2944 } 2945 2946 switch (hdspm->io_type) { 2947 case RayDAT: 2948 case AIO: 2949 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask; 2950 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p; 2951 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 2952 break; 2953 2954 case MADI: 2955 case MADIface: 2956 case AES32: 2957 hdspm_write(hdspm, HDSPM_controlRegister, 2958 hdspm->control_register); 2959 } 2960 2961 return 0; 2962 } 2963 2964 2965 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, 2966 struct snd_ctl_elem_info *uinfo) 2967 { 2968 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2969 2970 snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync); 2971 2972 return 0; 2973 } 2974 2975 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol, 2976 struct snd_ctl_elem_value *ucontrol) 2977 { 2978 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2979 int psf = hdspm_pref_sync_ref(hdspm); 2980 2981 if (psf >= 0) { 2982 ucontrol->value.enumerated.item[0] = psf; 2983 return 0; 2984 } 2985 2986 return -1; 2987 } 2988 2989 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, 2990 struct snd_ctl_elem_value *ucontrol) 2991 { 2992 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2993 int val, change = 0; 2994 2995 if (!snd_hdspm_use_is_exclusive(hdspm)) 2996 return -EBUSY; 2997 2998 val = ucontrol->value.enumerated.item[0]; 2999 3000 if (val < 0) 3001 val = 0; 3002 else if (val >= hdspm->texts_autosync_items) 3003 val = hdspm->texts_autosync_items-1; 3004 3005 spin_lock_irq(&hdspm->lock); 3006 if (val != hdspm_pref_sync_ref(hdspm)) 3007 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0; 3008 3009 spin_unlock_irq(&hdspm->lock); 3010 return change; 3011 } 3012 3013 3014 #define HDSPM_AUTOSYNC_REF(xname, xindex) \ 3015 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3016 .name = xname, \ 3017 .index = xindex, \ 3018 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 3019 .info = snd_hdspm_info_autosync_ref, \ 3020 .get = snd_hdspm_get_autosync_ref, \ 3021 } 3022 3023 static int hdspm_autosync_ref(struct hdspm *hdspm) 3024 { 3025 /* This looks at the autosync selected sync reference */ 3026 if (AES32 == hdspm->io_type) { 3027 3028 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 3029 unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF; 3030 if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) && 3031 (syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) { 3032 return syncref; 3033 } 3034 return HDSPM_AES32_AUTOSYNC_FROM_NONE; 3035 3036 } else if (MADI == hdspm->io_type) { 3037 3038 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3039 switch (status2 & HDSPM_SelSyncRefMask) { 3040 case HDSPM_SelSyncRef_WORD: 3041 return HDSPM_AUTOSYNC_FROM_WORD; 3042 case HDSPM_SelSyncRef_MADI: 3043 return HDSPM_AUTOSYNC_FROM_MADI; 3044 case HDSPM_SelSyncRef_TCO: 3045 return HDSPM_AUTOSYNC_FROM_TCO; 3046 case HDSPM_SelSyncRef_SyncIn: 3047 return HDSPM_AUTOSYNC_FROM_SYNC_IN; 3048 case HDSPM_SelSyncRef_NVALID: 3049 return HDSPM_AUTOSYNC_FROM_NONE; 3050 default: 3051 return HDSPM_AUTOSYNC_FROM_NONE; 3052 } 3053 3054 } 3055 return 0; 3056 } 3057 3058 3059 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, 3060 struct snd_ctl_elem_info *uinfo) 3061 { 3062 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3063 3064 if (AES32 == hdspm->io_type) { 3065 static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3", 3066 "AES4", "AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"}; 3067 3068 ENUMERATED_CTL_INFO(uinfo, texts); 3069 } else if (MADI == hdspm->io_type) { 3070 static const char *const texts[] = {"Word Clock", "MADI", "TCO", 3071 "Sync In", "None" }; 3072 3073 ENUMERATED_CTL_INFO(uinfo, texts); 3074 } 3075 return 0; 3076 } 3077 3078 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol, 3079 struct snd_ctl_elem_value *ucontrol) 3080 { 3081 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3082 3083 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm); 3084 return 0; 3085 } 3086 3087 3088 3089 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \ 3090 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3091 .name = xname, \ 3092 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3093 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3094 .info = snd_hdspm_info_tco_video_input_format, \ 3095 .get = snd_hdspm_get_tco_video_input_format, \ 3096 } 3097 3098 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol, 3099 struct snd_ctl_elem_info *uinfo) 3100 { 3101 static const char *const texts[] = {"No video", "NTSC", "PAL"}; 3102 ENUMERATED_CTL_INFO(uinfo, texts); 3103 return 0; 3104 } 3105 3106 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol, 3107 struct snd_ctl_elem_value *ucontrol) 3108 { 3109 u32 status; 3110 int ret = 0; 3111 3112 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3113 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3114 switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC | 3115 HDSPM_TCO1_Video_Input_Format_PAL)) { 3116 case HDSPM_TCO1_Video_Input_Format_NTSC: 3117 /* ntsc */ 3118 ret = 1; 3119 break; 3120 case HDSPM_TCO1_Video_Input_Format_PAL: 3121 /* pal */ 3122 ret = 2; 3123 break; 3124 default: 3125 /* no video */ 3126 ret = 0; 3127 break; 3128 } 3129 ucontrol->value.enumerated.item[0] = ret; 3130 return 0; 3131 } 3132 3133 3134 3135 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \ 3136 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3137 .name = xname, \ 3138 .access = SNDRV_CTL_ELEM_ACCESS_READ |\ 3139 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3140 .info = snd_hdspm_info_tco_ltc_frames, \ 3141 .get = snd_hdspm_get_tco_ltc_frames, \ 3142 } 3143 3144 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3145 struct snd_ctl_elem_info *uinfo) 3146 { 3147 static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps", 3148 "30 fps"}; 3149 ENUMERATED_CTL_INFO(uinfo, texts); 3150 return 0; 3151 } 3152 3153 static int hdspm_tco_ltc_frames(struct hdspm *hdspm) 3154 { 3155 u32 status; 3156 int ret = 0; 3157 3158 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3159 if (status & HDSPM_TCO1_LTC_Input_valid) { 3160 switch (status & (HDSPM_TCO1_LTC_Format_LSB | 3161 HDSPM_TCO1_LTC_Format_MSB)) { 3162 case 0: 3163 /* 24 fps */ 3164 ret = fps_24; 3165 break; 3166 case HDSPM_TCO1_LTC_Format_LSB: 3167 /* 25 fps */ 3168 ret = fps_25; 3169 break; 3170 case HDSPM_TCO1_LTC_Format_MSB: 3171 /* 29.97 fps */ 3172 ret = fps_2997; 3173 break; 3174 default: 3175 /* 30 fps */ 3176 ret = fps_30; 3177 break; 3178 } 3179 } 3180 3181 return ret; 3182 } 3183 3184 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol, 3185 struct snd_ctl_elem_value *ucontrol) 3186 { 3187 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3188 3189 ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm); 3190 return 0; 3191 } 3192 3193 #define HDSPM_TOGGLE_SETTING(xname, xindex) \ 3194 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3195 .name = xname, \ 3196 .private_value = xindex, \ 3197 .info = snd_hdspm_info_toggle_setting, \ 3198 .get = snd_hdspm_get_toggle_setting, \ 3199 .put = snd_hdspm_put_toggle_setting \ 3200 } 3201 3202 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask) 3203 { 3204 u32 reg; 3205 3206 if (hdspm_is_raydat_or_aio(hdspm)) 3207 reg = hdspm->settings_register; 3208 else 3209 reg = hdspm->control_register; 3210 3211 return (reg & regmask) ? 1 : 0; 3212 } 3213 3214 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out) 3215 { 3216 u32 *reg; 3217 u32 target_reg; 3218 3219 if (hdspm_is_raydat_or_aio(hdspm)) { 3220 reg = &(hdspm->settings_register); 3221 target_reg = HDSPM_WR_SETTINGS; 3222 } else { 3223 reg = &(hdspm->control_register); 3224 target_reg = HDSPM_controlRegister; 3225 } 3226 3227 if (out) 3228 *reg |= regmask; 3229 else 3230 *reg &= ~regmask; 3231 3232 hdspm_write(hdspm, target_reg, *reg); 3233 3234 return 0; 3235 } 3236 3237 #define snd_hdspm_info_toggle_setting snd_ctl_boolean_mono_info 3238 3239 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol, 3240 struct snd_ctl_elem_value *ucontrol) 3241 { 3242 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3243 u32 regmask = kcontrol->private_value; 3244 3245 spin_lock_irq(&hdspm->lock); 3246 ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask); 3247 spin_unlock_irq(&hdspm->lock); 3248 return 0; 3249 } 3250 3251 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol, 3252 struct snd_ctl_elem_value *ucontrol) 3253 { 3254 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3255 u32 regmask = kcontrol->private_value; 3256 int change; 3257 unsigned int val; 3258 3259 if (!snd_hdspm_use_is_exclusive(hdspm)) 3260 return -EBUSY; 3261 val = ucontrol->value.integer.value[0] & 1; 3262 spin_lock_irq(&hdspm->lock); 3263 change = (int) val != hdspm_toggle_setting(hdspm, regmask); 3264 hdspm_set_toggle_setting(hdspm, regmask, val); 3265 spin_unlock_irq(&hdspm->lock); 3266 return change; 3267 } 3268 3269 #define HDSPM_INPUT_SELECT(xname, xindex) \ 3270 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3271 .name = xname, \ 3272 .index = xindex, \ 3273 .info = snd_hdspm_info_input_select, \ 3274 .get = snd_hdspm_get_input_select, \ 3275 .put = snd_hdspm_put_input_select \ 3276 } 3277 3278 static int hdspm_input_select(struct hdspm * hdspm) 3279 { 3280 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; 3281 } 3282 3283 static int hdspm_set_input_select(struct hdspm * hdspm, int out) 3284 { 3285 if (out) 3286 hdspm->control_register |= HDSPM_InputSelect0; 3287 else 3288 hdspm->control_register &= ~HDSPM_InputSelect0; 3289 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3290 3291 return 0; 3292 } 3293 3294 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, 3295 struct snd_ctl_elem_info *uinfo) 3296 { 3297 static const char *const texts[] = { "optical", "coaxial" }; 3298 ENUMERATED_CTL_INFO(uinfo, texts); 3299 return 0; 3300 } 3301 3302 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, 3303 struct snd_ctl_elem_value *ucontrol) 3304 { 3305 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3306 3307 spin_lock_irq(&hdspm->lock); 3308 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); 3309 spin_unlock_irq(&hdspm->lock); 3310 return 0; 3311 } 3312 3313 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, 3314 struct snd_ctl_elem_value *ucontrol) 3315 { 3316 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3317 int change; 3318 unsigned int val; 3319 3320 if (!snd_hdspm_use_is_exclusive(hdspm)) 3321 return -EBUSY; 3322 val = ucontrol->value.integer.value[0] & 1; 3323 spin_lock_irq(&hdspm->lock); 3324 change = (int) val != hdspm_input_select(hdspm); 3325 hdspm_set_input_select(hdspm, val); 3326 spin_unlock_irq(&hdspm->lock); 3327 return change; 3328 } 3329 3330 3331 #define HDSPM_DS_WIRE(xname, xindex) \ 3332 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3333 .name = xname, \ 3334 .index = xindex, \ 3335 .info = snd_hdspm_info_ds_wire, \ 3336 .get = snd_hdspm_get_ds_wire, \ 3337 .put = snd_hdspm_put_ds_wire \ 3338 } 3339 3340 static int hdspm_ds_wire(struct hdspm * hdspm) 3341 { 3342 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0; 3343 } 3344 3345 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds) 3346 { 3347 if (ds) 3348 hdspm->control_register |= HDSPM_DS_DoubleWire; 3349 else 3350 hdspm->control_register &= ~HDSPM_DS_DoubleWire; 3351 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3352 3353 return 0; 3354 } 3355 3356 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol, 3357 struct snd_ctl_elem_info *uinfo) 3358 { 3359 static const char *const texts[] = { "Single", "Double" }; 3360 ENUMERATED_CTL_INFO(uinfo, texts); 3361 return 0; 3362 } 3363 3364 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol, 3365 struct snd_ctl_elem_value *ucontrol) 3366 { 3367 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3368 3369 spin_lock_irq(&hdspm->lock); 3370 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm); 3371 spin_unlock_irq(&hdspm->lock); 3372 return 0; 3373 } 3374 3375 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol, 3376 struct snd_ctl_elem_value *ucontrol) 3377 { 3378 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3379 int change; 3380 unsigned int val; 3381 3382 if (!snd_hdspm_use_is_exclusive(hdspm)) 3383 return -EBUSY; 3384 val = ucontrol->value.integer.value[0] & 1; 3385 spin_lock_irq(&hdspm->lock); 3386 change = (int) val != hdspm_ds_wire(hdspm); 3387 hdspm_set_ds_wire(hdspm, val); 3388 spin_unlock_irq(&hdspm->lock); 3389 return change; 3390 } 3391 3392 3393 #define HDSPM_QS_WIRE(xname, xindex) \ 3394 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3395 .name = xname, \ 3396 .index = xindex, \ 3397 .info = snd_hdspm_info_qs_wire, \ 3398 .get = snd_hdspm_get_qs_wire, \ 3399 .put = snd_hdspm_put_qs_wire \ 3400 } 3401 3402 static int hdspm_qs_wire(struct hdspm * hdspm) 3403 { 3404 if (hdspm->control_register & HDSPM_QS_DoubleWire) 3405 return 1; 3406 if (hdspm->control_register & HDSPM_QS_QuadWire) 3407 return 2; 3408 return 0; 3409 } 3410 3411 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode) 3412 { 3413 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire); 3414 switch (mode) { 3415 case 0: 3416 break; 3417 case 1: 3418 hdspm->control_register |= HDSPM_QS_DoubleWire; 3419 break; 3420 case 2: 3421 hdspm->control_register |= HDSPM_QS_QuadWire; 3422 break; 3423 } 3424 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3425 3426 return 0; 3427 } 3428 3429 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol, 3430 struct snd_ctl_elem_info *uinfo) 3431 { 3432 static const char *const texts[] = { "Single", "Double", "Quad" }; 3433 ENUMERATED_CTL_INFO(uinfo, texts); 3434 return 0; 3435 } 3436 3437 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol, 3438 struct snd_ctl_elem_value *ucontrol) 3439 { 3440 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3441 3442 spin_lock_irq(&hdspm->lock); 3443 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm); 3444 spin_unlock_irq(&hdspm->lock); 3445 return 0; 3446 } 3447 3448 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol, 3449 struct snd_ctl_elem_value *ucontrol) 3450 { 3451 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3452 int change; 3453 int val; 3454 3455 if (!snd_hdspm_use_is_exclusive(hdspm)) 3456 return -EBUSY; 3457 val = ucontrol->value.integer.value[0]; 3458 if (val < 0) 3459 val = 0; 3460 if (val > 2) 3461 val = 2; 3462 spin_lock_irq(&hdspm->lock); 3463 change = val != hdspm_qs_wire(hdspm); 3464 hdspm_set_qs_wire(hdspm, val); 3465 spin_unlock_irq(&hdspm->lock); 3466 return change; 3467 } 3468 3469 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \ 3470 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3471 .name = xname, \ 3472 .private_value = xindex, \ 3473 .info = snd_hdspm_info_tristate, \ 3474 .get = snd_hdspm_get_tristate, \ 3475 .put = snd_hdspm_put_tristate \ 3476 } 3477 3478 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask) 3479 { 3480 u32 reg = hdspm->settings_register & (regmask * 3); 3481 return reg / regmask; 3482 } 3483 3484 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask) 3485 { 3486 hdspm->settings_register &= ~(regmask * 3); 3487 hdspm->settings_register |= (regmask * mode); 3488 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 3489 3490 return 0; 3491 } 3492 3493 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol, 3494 struct snd_ctl_elem_info *uinfo) 3495 { 3496 u32 regmask = kcontrol->private_value; 3497 3498 static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" }; 3499 static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" }; 3500 3501 switch (regmask) { 3502 case HDSPM_c0_Input0: 3503 ENUMERATED_CTL_INFO(uinfo, texts_spdif); 3504 break; 3505 default: 3506 ENUMERATED_CTL_INFO(uinfo, texts_levels); 3507 break; 3508 } 3509 return 0; 3510 } 3511 3512 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol, 3513 struct snd_ctl_elem_value *ucontrol) 3514 { 3515 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3516 u32 regmask = kcontrol->private_value; 3517 3518 spin_lock_irq(&hdspm->lock); 3519 ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask); 3520 spin_unlock_irq(&hdspm->lock); 3521 return 0; 3522 } 3523 3524 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol, 3525 struct snd_ctl_elem_value *ucontrol) 3526 { 3527 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3528 u32 regmask = kcontrol->private_value; 3529 int change; 3530 int val; 3531 3532 if (!snd_hdspm_use_is_exclusive(hdspm)) 3533 return -EBUSY; 3534 val = ucontrol->value.integer.value[0]; 3535 if (val < 0) 3536 val = 0; 3537 if (val > 2) 3538 val = 2; 3539 3540 spin_lock_irq(&hdspm->lock); 3541 change = val != hdspm_tristate(hdspm, regmask); 3542 hdspm_set_tristate(hdspm, val, regmask); 3543 spin_unlock_irq(&hdspm->lock); 3544 return change; 3545 } 3546 3547 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \ 3548 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3549 .name = xname, \ 3550 .index = xindex, \ 3551 .info = snd_hdspm_info_madi_speedmode, \ 3552 .get = snd_hdspm_get_madi_speedmode, \ 3553 .put = snd_hdspm_put_madi_speedmode \ 3554 } 3555 3556 static int hdspm_madi_speedmode(struct hdspm *hdspm) 3557 { 3558 if (hdspm->control_register & HDSPM_QuadSpeed) 3559 return 2; 3560 if (hdspm->control_register & HDSPM_DoubleSpeed) 3561 return 1; 3562 return 0; 3563 } 3564 3565 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode) 3566 { 3567 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed); 3568 switch (mode) { 3569 case 0: 3570 break; 3571 case 1: 3572 hdspm->control_register |= HDSPM_DoubleSpeed; 3573 break; 3574 case 2: 3575 hdspm->control_register |= HDSPM_QuadSpeed; 3576 break; 3577 } 3578 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3579 3580 return 0; 3581 } 3582 3583 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol, 3584 struct snd_ctl_elem_info *uinfo) 3585 { 3586 static const char *const texts[] = { "Single", "Double", "Quad" }; 3587 ENUMERATED_CTL_INFO(uinfo, texts); 3588 return 0; 3589 } 3590 3591 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol, 3592 struct snd_ctl_elem_value *ucontrol) 3593 { 3594 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3595 3596 spin_lock_irq(&hdspm->lock); 3597 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm); 3598 spin_unlock_irq(&hdspm->lock); 3599 return 0; 3600 } 3601 3602 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol, 3603 struct snd_ctl_elem_value *ucontrol) 3604 { 3605 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3606 int change; 3607 int val; 3608 3609 if (!snd_hdspm_use_is_exclusive(hdspm)) 3610 return -EBUSY; 3611 val = ucontrol->value.integer.value[0]; 3612 if (val < 0) 3613 val = 0; 3614 if (val > 2) 3615 val = 2; 3616 spin_lock_irq(&hdspm->lock); 3617 change = val != hdspm_madi_speedmode(hdspm); 3618 hdspm_set_madi_speedmode(hdspm, val); 3619 spin_unlock_irq(&hdspm->lock); 3620 return change; 3621 } 3622 3623 #define HDSPM_MIXER(xname, xindex) \ 3624 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 3625 .name = xname, \ 3626 .index = xindex, \ 3627 .device = 0, \ 3628 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 3629 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3630 .info = snd_hdspm_info_mixer, \ 3631 .get = snd_hdspm_get_mixer, \ 3632 .put = snd_hdspm_put_mixer \ 3633 } 3634 3635 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol, 3636 struct snd_ctl_elem_info *uinfo) 3637 { 3638 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3639 uinfo->count = 3; 3640 uinfo->value.integer.min = 0; 3641 uinfo->value.integer.max = 65535; 3642 uinfo->value.integer.step = 1; 3643 return 0; 3644 } 3645 3646 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol, 3647 struct snd_ctl_elem_value *ucontrol) 3648 { 3649 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3650 int source; 3651 int destination; 3652 3653 source = ucontrol->value.integer.value[0]; 3654 if (source < 0) 3655 source = 0; 3656 else if (source >= 2 * HDSPM_MAX_CHANNELS) 3657 source = 2 * HDSPM_MAX_CHANNELS - 1; 3658 3659 destination = ucontrol->value.integer.value[1]; 3660 if (destination < 0) 3661 destination = 0; 3662 else if (destination >= HDSPM_MAX_CHANNELS) 3663 destination = HDSPM_MAX_CHANNELS - 1; 3664 3665 spin_lock_irq(&hdspm->lock); 3666 if (source >= HDSPM_MAX_CHANNELS) 3667 ucontrol->value.integer.value[2] = 3668 hdspm_read_pb_gain(hdspm, destination, 3669 source - HDSPM_MAX_CHANNELS); 3670 else 3671 ucontrol->value.integer.value[2] = 3672 hdspm_read_in_gain(hdspm, destination, source); 3673 3674 spin_unlock_irq(&hdspm->lock); 3675 3676 return 0; 3677 } 3678 3679 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol, 3680 struct snd_ctl_elem_value *ucontrol) 3681 { 3682 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3683 int change; 3684 int source; 3685 int destination; 3686 int gain; 3687 3688 if (!snd_hdspm_use_is_exclusive(hdspm)) 3689 return -EBUSY; 3690 3691 source = ucontrol->value.integer.value[0]; 3692 destination = ucontrol->value.integer.value[1]; 3693 3694 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS) 3695 return -1; 3696 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS) 3697 return -1; 3698 3699 gain = ucontrol->value.integer.value[2]; 3700 3701 spin_lock_irq(&hdspm->lock); 3702 3703 if (source >= HDSPM_MAX_CHANNELS) 3704 change = gain != hdspm_read_pb_gain(hdspm, destination, 3705 source - 3706 HDSPM_MAX_CHANNELS); 3707 else 3708 change = gain != hdspm_read_in_gain(hdspm, destination, 3709 source); 3710 3711 if (change) { 3712 if (source >= HDSPM_MAX_CHANNELS) 3713 hdspm_write_pb_gain(hdspm, destination, 3714 source - HDSPM_MAX_CHANNELS, 3715 gain); 3716 else 3717 hdspm_write_in_gain(hdspm, destination, source, 3718 gain); 3719 } 3720 spin_unlock_irq(&hdspm->lock); 3721 3722 return change; 3723 } 3724 3725 /* The simple mixer control(s) provide gain control for the 3726 basic 1:1 mappings of playback streams to output 3727 streams. 3728 */ 3729 3730 #define HDSPM_PLAYBACK_MIXER \ 3731 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3732 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \ 3733 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3734 .info = snd_hdspm_info_playback_mixer, \ 3735 .get = snd_hdspm_get_playback_mixer, \ 3736 .put = snd_hdspm_put_playback_mixer \ 3737 } 3738 3739 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol, 3740 struct snd_ctl_elem_info *uinfo) 3741 { 3742 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3743 uinfo->count = 1; 3744 uinfo->value.integer.min = 0; 3745 uinfo->value.integer.max = 64; 3746 uinfo->value.integer.step = 1; 3747 return 0; 3748 } 3749 3750 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol, 3751 struct snd_ctl_elem_value *ucontrol) 3752 { 3753 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3754 int channel; 3755 3756 channel = ucontrol->id.index - 1; 3757 3758 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3759 return -EINVAL; 3760 3761 spin_lock_irq(&hdspm->lock); 3762 ucontrol->value.integer.value[0] = 3763 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN; 3764 spin_unlock_irq(&hdspm->lock); 3765 3766 return 0; 3767 } 3768 3769 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol, 3770 struct snd_ctl_elem_value *ucontrol) 3771 { 3772 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3773 int change; 3774 int channel; 3775 int gain; 3776 3777 if (!snd_hdspm_use_is_exclusive(hdspm)) 3778 return -EBUSY; 3779 3780 channel = ucontrol->id.index - 1; 3781 3782 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3783 return -EINVAL; 3784 3785 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64; 3786 3787 spin_lock_irq(&hdspm->lock); 3788 change = 3789 gain != hdspm_read_pb_gain(hdspm, channel, 3790 channel); 3791 if (change) 3792 hdspm_write_pb_gain(hdspm, channel, channel, 3793 gain); 3794 spin_unlock_irq(&hdspm->lock); 3795 return change; 3796 } 3797 3798 #define HDSPM_SYNC_CHECK(xname, xindex) \ 3799 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3800 .name = xname, \ 3801 .private_value = xindex, \ 3802 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3803 .info = snd_hdspm_info_sync_check, \ 3804 .get = snd_hdspm_get_sync_check \ 3805 } 3806 3807 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \ 3808 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3809 .name = xname, \ 3810 .private_value = xindex, \ 3811 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3812 .info = snd_hdspm_tco_info_lock_check, \ 3813 .get = snd_hdspm_get_sync_check \ 3814 } 3815 3816 3817 3818 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, 3819 struct snd_ctl_elem_info *uinfo) 3820 { 3821 static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" }; 3822 ENUMERATED_CTL_INFO(uinfo, texts); 3823 return 0; 3824 } 3825 3826 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol, 3827 struct snd_ctl_elem_info *uinfo) 3828 { 3829 static const char *const texts[] = { "No Lock", "Lock" }; 3830 ENUMERATED_CTL_INFO(uinfo, texts); 3831 return 0; 3832 } 3833 3834 static int hdspm_wc_sync_check(struct hdspm *hdspm) 3835 { 3836 int status, status2; 3837 3838 switch (hdspm->io_type) { 3839 case AES32: 3840 status = hdspm_read(hdspm, HDSPM_statusRegister); 3841 if (status & HDSPM_AES32_wcLock) { 3842 if (status & HDSPM_AES32_wcSync) 3843 return 2; 3844 else 3845 return 1; 3846 } 3847 return 0; 3848 break; 3849 3850 case MADI: 3851 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3852 if (status2 & HDSPM_wcLock) { 3853 if (status2 & HDSPM_wcSync) 3854 return 2; 3855 else 3856 return 1; 3857 } 3858 return 0; 3859 break; 3860 3861 case RayDAT: 3862 case AIO: 3863 status = hdspm_read(hdspm, HDSPM_statusRegister); 3864 3865 if (status & 0x2000000) 3866 return 2; 3867 else if (status & 0x1000000) 3868 return 1; 3869 return 0; 3870 3871 break; 3872 3873 case MADIface: 3874 break; 3875 } 3876 3877 3878 return 3; 3879 } 3880 3881 3882 static int hdspm_madi_sync_check(struct hdspm *hdspm) 3883 { 3884 int status = hdspm_read(hdspm, HDSPM_statusRegister); 3885 if (status & HDSPM_madiLock) { 3886 if (status & HDSPM_madiSync) 3887 return 2; 3888 else 3889 return 1; 3890 } 3891 return 0; 3892 } 3893 3894 3895 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx) 3896 { 3897 int status, lock, sync; 3898 3899 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3900 3901 lock = (status & (0x1<<idx)) ? 1 : 0; 3902 sync = (status & (0x100<<idx)) ? 1 : 0; 3903 3904 if (lock && sync) 3905 return 2; 3906 else if (lock) 3907 return 1; 3908 return 0; 3909 } 3910 3911 3912 static int hdspm_sync_in_sync_check(struct hdspm *hdspm) 3913 { 3914 int status, lock = 0, sync = 0; 3915 3916 switch (hdspm->io_type) { 3917 case RayDAT: 3918 case AIO: 3919 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3); 3920 lock = (status & 0x400) ? 1 : 0; 3921 sync = (status & 0x800) ? 1 : 0; 3922 break; 3923 3924 case MADI: 3925 status = hdspm_read(hdspm, HDSPM_statusRegister); 3926 lock = (status & HDSPM_syncInLock) ? 1 : 0; 3927 sync = (status & HDSPM_syncInSync) ? 1 : 0; 3928 break; 3929 3930 case AES32: 3931 status = hdspm_read(hdspm, HDSPM_statusRegister2); 3932 lock = (status & 0x100000) ? 1 : 0; 3933 sync = (status & 0x200000) ? 1 : 0; 3934 break; 3935 3936 case MADIface: 3937 break; 3938 } 3939 3940 if (lock && sync) 3941 return 2; 3942 else if (lock) 3943 return 1; 3944 3945 return 0; 3946 } 3947 3948 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx) 3949 { 3950 int status2, lock, sync; 3951 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3952 3953 lock = (status2 & (0x0080 >> idx)) ? 1 : 0; 3954 sync = (status2 & (0x8000 >> idx)) ? 1 : 0; 3955 3956 if (sync) 3957 return 2; 3958 else if (lock) 3959 return 1; 3960 return 0; 3961 } 3962 3963 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask) 3964 { 3965 u32 status; 3966 status = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 3967 3968 return (status & mask) ? 1 : 0; 3969 } 3970 3971 3972 static int hdspm_tco_sync_check(struct hdspm *hdspm) 3973 { 3974 int status; 3975 3976 if (hdspm->tco) { 3977 switch (hdspm->io_type) { 3978 case MADI: 3979 status = hdspm_read(hdspm, HDSPM_statusRegister); 3980 if (status & HDSPM_tcoLockMadi) { 3981 if (status & HDSPM_tcoSync) 3982 return 2; 3983 else 3984 return 1; 3985 } 3986 return 0; 3987 case AES32: 3988 status = hdspm_read(hdspm, HDSPM_statusRegister); 3989 if (status & HDSPM_tcoLockAes) { 3990 if (status & HDSPM_tcoSync) 3991 return 2; 3992 else 3993 return 1; 3994 } 3995 return 0; 3996 case RayDAT: 3997 case AIO: 3998 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3999 4000 if (status & 0x8000000) 4001 return 2; /* Sync */ 4002 if (status & 0x4000000) 4003 return 1; /* Lock */ 4004 return 0; /* No signal */ 4005 4006 default: 4007 break; 4008 } 4009 } 4010 4011 return 3; /* N/A */ 4012 } 4013 4014 4015 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol, 4016 struct snd_ctl_elem_value *ucontrol) 4017 { 4018 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4019 int val = -1; 4020 4021 switch (hdspm->io_type) { 4022 case RayDAT: 4023 switch (kcontrol->private_value) { 4024 case 0: /* WC */ 4025 val = hdspm_wc_sync_check(hdspm); break; 4026 case 7: /* TCO */ 4027 val = hdspm_tco_sync_check(hdspm); break; 4028 case 8: /* SYNC IN */ 4029 val = hdspm_sync_in_sync_check(hdspm); break; 4030 default: 4031 val = hdspm_s1_sync_check(hdspm, 4032 kcontrol->private_value-1); 4033 } 4034 break; 4035 4036 case AIO: 4037 switch (kcontrol->private_value) { 4038 case 0: /* WC */ 4039 val = hdspm_wc_sync_check(hdspm); break; 4040 case 4: /* TCO */ 4041 val = hdspm_tco_sync_check(hdspm); break; 4042 case 5: /* SYNC IN */ 4043 val = hdspm_sync_in_sync_check(hdspm); break; 4044 default: 4045 val = hdspm_s1_sync_check(hdspm, 4046 kcontrol->private_value-1); 4047 } 4048 break; 4049 4050 case MADI: 4051 switch (kcontrol->private_value) { 4052 case 0: /* WC */ 4053 val = hdspm_wc_sync_check(hdspm); break; 4054 case 1: /* MADI */ 4055 val = hdspm_madi_sync_check(hdspm); break; 4056 case 2: /* TCO */ 4057 val = hdspm_tco_sync_check(hdspm); break; 4058 case 3: /* SYNC_IN */ 4059 val = hdspm_sync_in_sync_check(hdspm); break; 4060 } 4061 break; 4062 4063 case MADIface: 4064 val = hdspm_madi_sync_check(hdspm); /* MADI */ 4065 break; 4066 4067 case AES32: 4068 switch (kcontrol->private_value) { 4069 case 0: /* WC */ 4070 val = hdspm_wc_sync_check(hdspm); break; 4071 case 9: /* TCO */ 4072 val = hdspm_tco_sync_check(hdspm); break; 4073 case 10 /* SYNC IN */: 4074 val = hdspm_sync_in_sync_check(hdspm); break; 4075 default: /* AES1 to AES8 */ 4076 val = hdspm_aes_sync_check(hdspm, 4077 kcontrol->private_value-1); 4078 } 4079 break; 4080 4081 } 4082 4083 if (hdspm->tco) { 4084 switch (kcontrol->private_value) { 4085 case 11: 4086 /* Check TCO for lock state of its current input */ 4087 val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock); 4088 break; 4089 case 12: 4090 /* Check TCO for valid time code on LTC input. */ 4091 val = hdspm_tco_input_check(hdspm, 4092 HDSPM_TCO1_LTC_Input_valid); 4093 break; 4094 default: 4095 break; 4096 } 4097 } 4098 4099 if (-1 == val) 4100 val = 3; 4101 4102 ucontrol->value.enumerated.item[0] = val; 4103 return 0; 4104 } 4105 4106 4107 4108 /* 4109 * TCO controls 4110 */ 4111 static void hdspm_tco_write(struct hdspm *hdspm) 4112 { 4113 unsigned int tc[4] = { 0, 0, 0, 0}; 4114 4115 switch (hdspm->tco->input) { 4116 case 0: 4117 tc[2] |= HDSPM_TCO2_set_input_MSB; 4118 break; 4119 case 1: 4120 tc[2] |= HDSPM_TCO2_set_input_LSB; 4121 break; 4122 default: 4123 break; 4124 } 4125 4126 switch (hdspm->tco->framerate) { 4127 case 1: 4128 tc[1] |= HDSPM_TCO1_LTC_Format_LSB; 4129 break; 4130 case 2: 4131 tc[1] |= HDSPM_TCO1_LTC_Format_MSB; 4132 break; 4133 case 3: 4134 tc[1] |= HDSPM_TCO1_LTC_Format_MSB + 4135 HDSPM_TCO1_set_drop_frame_flag; 4136 break; 4137 case 4: 4138 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4139 HDSPM_TCO1_LTC_Format_MSB; 4140 break; 4141 case 5: 4142 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4143 HDSPM_TCO1_LTC_Format_MSB + 4144 HDSPM_TCO1_set_drop_frame_flag; 4145 break; 4146 default: 4147 break; 4148 } 4149 4150 switch (hdspm->tco->wordclock) { 4151 case 1: 4152 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB; 4153 break; 4154 case 2: 4155 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB; 4156 break; 4157 default: 4158 break; 4159 } 4160 4161 switch (hdspm->tco->samplerate) { 4162 case 1: 4163 tc[2] |= HDSPM_TCO2_set_freq; 4164 break; 4165 case 2: 4166 tc[2] |= HDSPM_TCO2_set_freq_from_app; 4167 break; 4168 default: 4169 break; 4170 } 4171 4172 switch (hdspm->tco->pull) { 4173 case 1: 4174 tc[2] |= HDSPM_TCO2_set_pull_up; 4175 break; 4176 case 2: 4177 tc[2] |= HDSPM_TCO2_set_pull_down; 4178 break; 4179 case 3: 4180 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4; 4181 break; 4182 case 4: 4183 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4; 4184 break; 4185 default: 4186 break; 4187 } 4188 4189 if (1 == hdspm->tco->term) { 4190 tc[2] |= HDSPM_TCO2_set_term_75R; 4191 } 4192 4193 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]); 4194 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]); 4195 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]); 4196 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]); 4197 } 4198 4199 4200 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \ 4201 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4202 .name = xname, \ 4203 .index = xindex, \ 4204 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4205 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4206 .info = snd_hdspm_info_tco_sample_rate, \ 4207 .get = snd_hdspm_get_tco_sample_rate, \ 4208 .put = snd_hdspm_put_tco_sample_rate \ 4209 } 4210 4211 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol, 4212 struct snd_ctl_elem_info *uinfo) 4213 { 4214 /* TODO freq from app could be supported here, see tco->samplerate */ 4215 static const char *const texts[] = { "44.1 kHz", "48 kHz" }; 4216 ENUMERATED_CTL_INFO(uinfo, texts); 4217 return 0; 4218 } 4219 4220 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol, 4221 struct snd_ctl_elem_value *ucontrol) 4222 { 4223 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4224 4225 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate; 4226 4227 return 0; 4228 } 4229 4230 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol, 4231 struct snd_ctl_elem_value *ucontrol) 4232 { 4233 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4234 4235 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) { 4236 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0]; 4237 4238 hdspm_tco_write(hdspm); 4239 4240 return 1; 4241 } 4242 4243 return 0; 4244 } 4245 4246 4247 #define HDSPM_TCO_PULL(xname, xindex) \ 4248 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4249 .name = xname, \ 4250 .index = xindex, \ 4251 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4252 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4253 .info = snd_hdspm_info_tco_pull, \ 4254 .get = snd_hdspm_get_tco_pull, \ 4255 .put = snd_hdspm_put_tco_pull \ 4256 } 4257 4258 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol, 4259 struct snd_ctl_elem_info *uinfo) 4260 { 4261 static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %", 4262 "+ 4 %", "- 4 %" }; 4263 ENUMERATED_CTL_INFO(uinfo, texts); 4264 return 0; 4265 } 4266 4267 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol, 4268 struct snd_ctl_elem_value *ucontrol) 4269 { 4270 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4271 4272 ucontrol->value.enumerated.item[0] = hdspm->tco->pull; 4273 4274 return 0; 4275 } 4276 4277 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol, 4278 struct snd_ctl_elem_value *ucontrol) 4279 { 4280 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4281 4282 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) { 4283 hdspm->tco->pull = ucontrol->value.enumerated.item[0]; 4284 4285 hdspm_tco_write(hdspm); 4286 4287 return 1; 4288 } 4289 4290 return 0; 4291 } 4292 4293 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \ 4294 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4295 .name = xname, \ 4296 .index = xindex, \ 4297 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4298 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4299 .info = snd_hdspm_info_tco_wck_conversion, \ 4300 .get = snd_hdspm_get_tco_wck_conversion, \ 4301 .put = snd_hdspm_put_tco_wck_conversion \ 4302 } 4303 4304 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4305 struct snd_ctl_elem_info *uinfo) 4306 { 4307 static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" }; 4308 ENUMERATED_CTL_INFO(uinfo, texts); 4309 return 0; 4310 } 4311 4312 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4313 struct snd_ctl_elem_value *ucontrol) 4314 { 4315 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4316 4317 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock; 4318 4319 return 0; 4320 } 4321 4322 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4323 struct snd_ctl_elem_value *ucontrol) 4324 { 4325 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4326 4327 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) { 4328 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0]; 4329 4330 hdspm_tco_write(hdspm); 4331 4332 return 1; 4333 } 4334 4335 return 0; 4336 } 4337 4338 4339 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \ 4340 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4341 .name = xname, \ 4342 .index = xindex, \ 4343 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4344 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4345 .info = snd_hdspm_info_tco_frame_rate, \ 4346 .get = snd_hdspm_get_tco_frame_rate, \ 4347 .put = snd_hdspm_put_tco_frame_rate \ 4348 } 4349 4350 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol, 4351 struct snd_ctl_elem_info *uinfo) 4352 { 4353 static const char *const texts[] = { "24 fps", "25 fps", "29.97fps", 4354 "29.97 dfps", "30 fps", "30 dfps" }; 4355 ENUMERATED_CTL_INFO(uinfo, texts); 4356 return 0; 4357 } 4358 4359 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol, 4360 struct snd_ctl_elem_value *ucontrol) 4361 { 4362 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4363 4364 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate; 4365 4366 return 0; 4367 } 4368 4369 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol, 4370 struct snd_ctl_elem_value *ucontrol) 4371 { 4372 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4373 4374 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) { 4375 hdspm->tco->framerate = ucontrol->value.enumerated.item[0]; 4376 4377 hdspm_tco_write(hdspm); 4378 4379 return 1; 4380 } 4381 4382 return 0; 4383 } 4384 4385 4386 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \ 4387 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4388 .name = xname, \ 4389 .index = xindex, \ 4390 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4391 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4392 .info = snd_hdspm_info_tco_sync_source, \ 4393 .get = snd_hdspm_get_tco_sync_source, \ 4394 .put = snd_hdspm_put_tco_sync_source \ 4395 } 4396 4397 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol, 4398 struct snd_ctl_elem_info *uinfo) 4399 { 4400 static const char *const texts[] = { "LTC", "Video", "WCK" }; 4401 ENUMERATED_CTL_INFO(uinfo, texts); 4402 return 0; 4403 } 4404 4405 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol, 4406 struct snd_ctl_elem_value *ucontrol) 4407 { 4408 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4409 4410 ucontrol->value.enumerated.item[0] = hdspm->tco->input; 4411 4412 return 0; 4413 } 4414 4415 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol, 4416 struct snd_ctl_elem_value *ucontrol) 4417 { 4418 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4419 4420 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) { 4421 hdspm->tco->input = ucontrol->value.enumerated.item[0]; 4422 4423 hdspm_tco_write(hdspm); 4424 4425 return 1; 4426 } 4427 4428 return 0; 4429 } 4430 4431 4432 #define HDSPM_TCO_WORD_TERM(xname, xindex) \ 4433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4434 .name = xname, \ 4435 .index = xindex, \ 4436 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4437 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4438 .info = snd_hdspm_info_tco_word_term, \ 4439 .get = snd_hdspm_get_tco_word_term, \ 4440 .put = snd_hdspm_put_tco_word_term \ 4441 } 4442 4443 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol, 4444 struct snd_ctl_elem_info *uinfo) 4445 { 4446 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 4447 uinfo->count = 1; 4448 uinfo->value.integer.min = 0; 4449 uinfo->value.integer.max = 1; 4450 4451 return 0; 4452 } 4453 4454 4455 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol, 4456 struct snd_ctl_elem_value *ucontrol) 4457 { 4458 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4459 4460 ucontrol->value.integer.value[0] = hdspm->tco->term; 4461 4462 return 0; 4463 } 4464 4465 4466 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol, 4467 struct snd_ctl_elem_value *ucontrol) 4468 { 4469 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4470 4471 if (hdspm->tco->term != ucontrol->value.integer.value[0]) { 4472 hdspm->tco->term = ucontrol->value.integer.value[0]; 4473 4474 hdspm_tco_write(hdspm); 4475 4476 return 1; 4477 } 4478 4479 return 0; 4480 } 4481 4482 4483 4484 4485 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = { 4486 HDSPM_MIXER("Mixer", 0), 4487 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4488 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4489 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4490 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4491 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4492 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4493 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4494 HDSPM_SYNC_CHECK("MADI SyncCheck", 1), 4495 HDSPM_SYNC_CHECK("TCO SyncCheck", 2), 4496 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3), 4497 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4498 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4499 HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX), 4500 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4501 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4502 HDSPM_INPUT_SELECT("Input Select", 0), 4503 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4504 }; 4505 4506 4507 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = { 4508 HDSPM_MIXER("Mixer", 0), 4509 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4510 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4511 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4512 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4513 HDSPM_SYNC_CHECK("MADI SyncCheck", 0), 4514 HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch), 4515 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4516 HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp), 4517 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4518 }; 4519 4520 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = { 4521 HDSPM_MIXER("Mixer", 0), 4522 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4523 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4524 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4525 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4526 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4527 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4528 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4529 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4530 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3), 4531 HDSPM_SYNC_CHECK("TCO SyncCheck", 4), 4532 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5), 4533 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4534 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4535 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4536 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3), 4537 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4), 4538 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5), 4539 HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0), 4540 HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt), 4541 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4542 HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1), 4543 HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db), 4544 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48), 4545 HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0), 4546 HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0), 4547 HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0) 4548 4549 /* 4550 HDSPM_INPUT_SELECT("Input Select", 0), 4551 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0), 4552 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0); 4553 HDSPM_SPDIF_IN("SPDIF In", 0); 4554 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0); 4555 HDSPM_INPUT_LEVEL("Input Level", 0); 4556 HDSPM_OUTPUT_LEVEL("Output Level", 0); 4557 HDSPM_PHONES("Phones", 0); 4558 */ 4559 }; 4560 4561 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = { 4562 HDSPM_MIXER("Mixer", 0), 4563 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4564 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0), 4565 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0), 4566 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4567 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4568 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4569 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4570 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3), 4571 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4), 4572 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5), 4573 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6), 4574 HDSPM_SYNC_CHECK("TCO SyncCheck", 7), 4575 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8), 4576 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4577 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4578 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4579 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3), 4580 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4), 4581 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5), 4582 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6), 4583 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7), 4584 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8), 4585 HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro), 4586 HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48) 4587 }; 4588 4589 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = { 4590 HDSPM_MIXER("Mixer", 0), 4591 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4592 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4593 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4594 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4595 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4596 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11), 4597 HDSPM_SYNC_CHECK("WC Sync Check", 0), 4598 HDSPM_SYNC_CHECK("AES1 Sync Check", 1), 4599 HDSPM_SYNC_CHECK("AES2 Sync Check", 2), 4600 HDSPM_SYNC_CHECK("AES3 Sync Check", 3), 4601 HDSPM_SYNC_CHECK("AES4 Sync Check", 4), 4602 HDSPM_SYNC_CHECK("AES5 Sync Check", 5), 4603 HDSPM_SYNC_CHECK("AES6 Sync Check", 6), 4604 HDSPM_SYNC_CHECK("AES7 Sync Check", 7), 4605 HDSPM_SYNC_CHECK("AES8 Sync Check", 8), 4606 HDSPM_SYNC_CHECK("TCO Sync Check", 9), 4607 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10), 4608 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4609 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1), 4610 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2), 4611 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3), 4612 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4), 4613 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5), 4614 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6), 4615 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7), 4616 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8), 4617 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9), 4618 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10), 4619 HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut), 4620 HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis), 4621 HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby), 4622 HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional), 4623 HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms), 4624 HDSPM_DS_WIRE("Double Speed Wire Mode", 0), 4625 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0), 4626 }; 4627 4628 4629 4630 /* Control elements for the optional TCO module */ 4631 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = { 4632 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0), 4633 HDSPM_TCO_PULL("TCO Pull", 0), 4634 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0), 4635 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0), 4636 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0), 4637 HDSPM_TCO_WORD_TERM("TCO Word Term", 0), 4638 HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11), 4639 HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12), 4640 HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0), 4641 HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0) 4642 }; 4643 4644 4645 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; 4646 4647 4648 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm) 4649 { 4650 int i; 4651 4652 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) { 4653 if (hdspm->system_sample_rate > 48000) { 4654 hdspm->playback_mixer_ctls[i]->vd[0].access = 4655 SNDRV_CTL_ELEM_ACCESS_INACTIVE | 4656 SNDRV_CTL_ELEM_ACCESS_READ | 4657 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4658 } else { 4659 hdspm->playback_mixer_ctls[i]->vd[0].access = 4660 SNDRV_CTL_ELEM_ACCESS_READWRITE | 4661 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4662 } 4663 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE | 4664 SNDRV_CTL_EVENT_MASK_INFO, 4665 &hdspm->playback_mixer_ctls[i]->id); 4666 } 4667 4668 return 0; 4669 } 4670 4671 4672 static int snd_hdspm_create_controls(struct snd_card *card, 4673 struct hdspm *hdspm) 4674 { 4675 unsigned int idx, limit; 4676 int err; 4677 struct snd_kcontrol *kctl; 4678 struct snd_kcontrol_new *list = NULL; 4679 4680 switch (hdspm->io_type) { 4681 case MADI: 4682 list = snd_hdspm_controls_madi; 4683 limit = ARRAY_SIZE(snd_hdspm_controls_madi); 4684 break; 4685 case MADIface: 4686 list = snd_hdspm_controls_madiface; 4687 limit = ARRAY_SIZE(snd_hdspm_controls_madiface); 4688 break; 4689 case AIO: 4690 list = snd_hdspm_controls_aio; 4691 limit = ARRAY_SIZE(snd_hdspm_controls_aio); 4692 break; 4693 case RayDAT: 4694 list = snd_hdspm_controls_raydat; 4695 limit = ARRAY_SIZE(snd_hdspm_controls_raydat); 4696 break; 4697 case AES32: 4698 list = snd_hdspm_controls_aes32; 4699 limit = ARRAY_SIZE(snd_hdspm_controls_aes32); 4700 break; 4701 } 4702 4703 if (NULL != list) { 4704 for (idx = 0; idx < limit; idx++) { 4705 err = snd_ctl_add(card, 4706 snd_ctl_new1(&list[idx], hdspm)); 4707 if (err < 0) 4708 return err; 4709 } 4710 } 4711 4712 4713 /* create simple 1:1 playback mixer controls */ 4714 snd_hdspm_playback_mixer.name = "Chn"; 4715 if (hdspm->system_sample_rate >= 128000) { 4716 limit = hdspm->qs_out_channels; 4717 } else if (hdspm->system_sample_rate >= 64000) { 4718 limit = hdspm->ds_out_channels; 4719 } else { 4720 limit = hdspm->ss_out_channels; 4721 } 4722 for (idx = 0; idx < limit; ++idx) { 4723 snd_hdspm_playback_mixer.index = idx + 1; 4724 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm); 4725 err = snd_ctl_add(card, kctl); 4726 if (err < 0) 4727 return err; 4728 hdspm->playback_mixer_ctls[idx] = kctl; 4729 } 4730 4731 4732 if (hdspm->tco) { 4733 /* add tco control elements */ 4734 list = snd_hdspm_controls_tco; 4735 limit = ARRAY_SIZE(snd_hdspm_controls_tco); 4736 for (idx = 0; idx < limit; idx++) { 4737 err = snd_ctl_add(card, 4738 snd_ctl_new1(&list[idx], hdspm)); 4739 if (err < 0) 4740 return err; 4741 } 4742 } 4743 4744 return 0; 4745 } 4746 4747 /*------------------------------------------------------------ 4748 /proc interface 4749 ------------------------------------------------------------*/ 4750 4751 static void 4752 snd_hdspm_proc_read_tco(struct snd_info_entry *entry, 4753 struct snd_info_buffer *buffer) 4754 { 4755 struct hdspm *hdspm = entry->private_data; 4756 unsigned int status, control; 4757 int a, ltc, frames, seconds, minutes, hours; 4758 unsigned int period; 4759 u64 freq_const = 0; 4760 u32 rate; 4761 4762 snd_iprintf(buffer, "--- TCO ---\n"); 4763 4764 status = hdspm_read(hdspm, HDSPM_statusRegister); 4765 control = hdspm->control_register; 4766 4767 4768 if (status & HDSPM_tco_detect) { 4769 snd_iprintf(buffer, "TCO module detected.\n"); 4770 a = hdspm_read(hdspm, HDSPM_RD_TCO+4); 4771 if (a & HDSPM_TCO1_LTC_Input_valid) { 4772 snd_iprintf(buffer, " LTC valid, "); 4773 switch (a & (HDSPM_TCO1_LTC_Format_LSB | 4774 HDSPM_TCO1_LTC_Format_MSB)) { 4775 case 0: 4776 snd_iprintf(buffer, "24 fps, "); 4777 break; 4778 case HDSPM_TCO1_LTC_Format_LSB: 4779 snd_iprintf(buffer, "25 fps, "); 4780 break; 4781 case HDSPM_TCO1_LTC_Format_MSB: 4782 snd_iprintf(buffer, "29.97 fps, "); 4783 break; 4784 default: 4785 snd_iprintf(buffer, "30 fps, "); 4786 break; 4787 } 4788 if (a & HDSPM_TCO1_set_drop_frame_flag) { 4789 snd_iprintf(buffer, "drop frame\n"); 4790 } else { 4791 snd_iprintf(buffer, "full frame\n"); 4792 } 4793 } else { 4794 snd_iprintf(buffer, " no LTC\n"); 4795 } 4796 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) { 4797 snd_iprintf(buffer, " Video: NTSC\n"); 4798 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) { 4799 snd_iprintf(buffer, " Video: PAL\n"); 4800 } else { 4801 snd_iprintf(buffer, " No video\n"); 4802 } 4803 if (a & HDSPM_TCO1_TCO_lock) { 4804 snd_iprintf(buffer, " Sync: lock\n"); 4805 } else { 4806 snd_iprintf(buffer, " Sync: no lock\n"); 4807 } 4808 4809 switch (hdspm->io_type) { 4810 case MADI: 4811 case AES32: 4812 freq_const = 110069313433624ULL; 4813 break; 4814 case RayDAT: 4815 case AIO: 4816 freq_const = 104857600000000ULL; 4817 break; 4818 case MADIface: 4819 break; /* no TCO possible */ 4820 } 4821 4822 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 4823 snd_iprintf(buffer, " period: %u\n", period); 4824 4825 4826 /* rate = freq_const/period; */ 4827 rate = div_u64(freq_const, period); 4828 4829 if (control & HDSPM_QuadSpeed) { 4830 rate *= 4; 4831 } else if (control & HDSPM_DoubleSpeed) { 4832 rate *= 2; 4833 } 4834 4835 snd_iprintf(buffer, " Frequency: %u Hz\n", 4836 (unsigned int) rate); 4837 4838 ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 4839 frames = ltc & 0xF; 4840 ltc >>= 4; 4841 frames += (ltc & 0x3) * 10; 4842 ltc >>= 4; 4843 seconds = ltc & 0xF; 4844 ltc >>= 4; 4845 seconds += (ltc & 0x7) * 10; 4846 ltc >>= 4; 4847 minutes = ltc & 0xF; 4848 ltc >>= 4; 4849 minutes += (ltc & 0x7) * 10; 4850 ltc >>= 4; 4851 hours = ltc & 0xF; 4852 ltc >>= 4; 4853 hours += (ltc & 0x3) * 10; 4854 snd_iprintf(buffer, 4855 " LTC In: %02d:%02d:%02d:%02d\n", 4856 hours, minutes, seconds, frames); 4857 4858 } else { 4859 snd_iprintf(buffer, "No TCO module detected.\n"); 4860 } 4861 } 4862 4863 static void 4864 snd_hdspm_proc_read_madi(struct snd_info_entry *entry, 4865 struct snd_info_buffer *buffer) 4866 { 4867 struct hdspm *hdspm = entry->private_data; 4868 unsigned int status, status2; 4869 4870 char *pref_sync_ref; 4871 char *autosync_ref; 4872 char *system_clock_mode; 4873 int x, x2; 4874 4875 status = hdspm_read(hdspm, HDSPM_statusRegister); 4876 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 4877 4878 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n", 4879 hdspm->card_name, hdspm->card->number + 1, 4880 hdspm->firmware_rev, 4881 (status2 & HDSPM_version0) | 4882 (status2 & HDSPM_version1) | (status2 & 4883 HDSPM_version2)); 4884 4885 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n", 4886 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF, 4887 hdspm->serial); 4888 4889 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 4890 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 4891 4892 snd_iprintf(buffer, "--- System ---\n"); 4893 4894 snd_iprintf(buffer, 4895 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 4896 status & HDSPM_audioIRQPending, 4897 (status & HDSPM_midi0IRQPending) ? 1 : 0, 4898 (status & HDSPM_midi1IRQPending) ? 1 : 0, 4899 hdspm->irq_count); 4900 snd_iprintf(buffer, 4901 "HW pointer: id = %d, rawptr = %d (%d->%d) " 4902 "estimated= %ld (bytes)\n", 4903 ((status & HDSPM_BufferID) ? 1 : 0), 4904 (status & HDSPM_BufferPositionMask), 4905 (status & HDSPM_BufferPositionMask) % 4906 (2 * (int)hdspm->period_bytes), 4907 ((status & HDSPM_BufferPositionMask) - 64) % 4908 (2 * (int)hdspm->period_bytes), 4909 (long) hdspm_hw_pointer(hdspm) * 4); 4910 4911 snd_iprintf(buffer, 4912 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 4913 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 4914 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 4915 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 4916 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 4917 snd_iprintf(buffer, 4918 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 4919 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 4920 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 4921 snd_iprintf(buffer, 4922 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 4923 "status2=0x%x\n", 4924 hdspm->control_register, hdspm->control2_register, 4925 status, status2); 4926 4927 4928 snd_iprintf(buffer, "--- Settings ---\n"); 4929 4930 x = hdspm_get_latency(hdspm); 4931 4932 snd_iprintf(buffer, 4933 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 4934 x, (unsigned long) hdspm->period_bytes); 4935 4936 snd_iprintf(buffer, "Line out: %s\n", 4937 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off"); 4938 4939 snd_iprintf(buffer, 4940 "ClearTrackMarker = %s, Transmit in %s Channel Mode, " 4941 "Auto Input %s\n", 4942 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off", 4943 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56", 4944 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off"); 4945 4946 4947 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 4948 system_clock_mode = "AutoSync"; 4949 else 4950 system_clock_mode = "Master"; 4951 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode); 4952 4953 switch (hdspm_pref_sync_ref(hdspm)) { 4954 case HDSPM_SYNC_FROM_WORD: 4955 pref_sync_ref = "Word Clock"; 4956 break; 4957 case HDSPM_SYNC_FROM_MADI: 4958 pref_sync_ref = "MADI Sync"; 4959 break; 4960 case HDSPM_SYNC_FROM_TCO: 4961 pref_sync_ref = "TCO"; 4962 break; 4963 case HDSPM_SYNC_FROM_SYNC_IN: 4964 pref_sync_ref = "Sync In"; 4965 break; 4966 default: 4967 pref_sync_ref = "XXXX Clock"; 4968 break; 4969 } 4970 snd_iprintf(buffer, "Preferred Sync Reference: %s\n", 4971 pref_sync_ref); 4972 4973 snd_iprintf(buffer, "System Clock Frequency: %d\n", 4974 hdspm->system_sample_rate); 4975 4976 4977 snd_iprintf(buffer, "--- Status:\n"); 4978 4979 x = status & HDSPM_madiSync; 4980 x2 = status2 & HDSPM_wcSync; 4981 4982 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n", 4983 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") : 4984 "NoLock", 4985 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") : 4986 "NoLock"); 4987 4988 switch (hdspm_autosync_ref(hdspm)) { 4989 case HDSPM_AUTOSYNC_FROM_SYNC_IN: 4990 autosync_ref = "Sync In"; 4991 break; 4992 case HDSPM_AUTOSYNC_FROM_TCO: 4993 autosync_ref = "TCO"; 4994 break; 4995 case HDSPM_AUTOSYNC_FROM_WORD: 4996 autosync_ref = "Word Clock"; 4997 break; 4998 case HDSPM_AUTOSYNC_FROM_MADI: 4999 autosync_ref = "MADI Sync"; 5000 break; 5001 case HDSPM_AUTOSYNC_FROM_NONE: 5002 autosync_ref = "Input not valid"; 5003 break; 5004 default: 5005 autosync_ref = "---"; 5006 break; 5007 } 5008 snd_iprintf(buffer, 5009 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n", 5010 autosync_ref, hdspm_external_sample_rate(hdspm), 5011 (status & HDSPM_madiFreqMask) >> 22, 5012 (status2 & HDSPM_wcFreqMask) >> 5); 5013 5014 snd_iprintf(buffer, "Input: %s, Mode=%s\n", 5015 (status & HDSPM_AB_int) ? "Coax" : "Optical", 5016 (status & HDSPM_RX_64ch) ? "64 channels" : 5017 "56 channels"); 5018 5019 /* call readout function for TCO specific status */ 5020 snd_hdspm_proc_read_tco(entry, buffer); 5021 5022 snd_iprintf(buffer, "\n"); 5023 } 5024 5025 static void 5026 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry, 5027 struct snd_info_buffer *buffer) 5028 { 5029 struct hdspm *hdspm = entry->private_data; 5030 unsigned int status; 5031 unsigned int status2; 5032 unsigned int timecode; 5033 unsigned int wcLock, wcSync; 5034 int pref_syncref; 5035 char *autosync_ref; 5036 int x; 5037 5038 status = hdspm_read(hdspm, HDSPM_statusRegister); 5039 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 5040 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 5041 5042 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n", 5043 hdspm->card_name, hdspm->card->number + 1, 5044 hdspm->firmware_rev); 5045 5046 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 5047 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 5048 5049 snd_iprintf(buffer, "--- System ---\n"); 5050 5051 snd_iprintf(buffer, 5052 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 5053 status & HDSPM_audioIRQPending, 5054 (status & HDSPM_midi0IRQPending) ? 1 : 0, 5055 (status & HDSPM_midi1IRQPending) ? 1 : 0, 5056 hdspm->irq_count); 5057 snd_iprintf(buffer, 5058 "HW pointer: id = %d, rawptr = %d (%d->%d) " 5059 "estimated= %ld (bytes)\n", 5060 ((status & HDSPM_BufferID) ? 1 : 0), 5061 (status & HDSPM_BufferPositionMask), 5062 (status & HDSPM_BufferPositionMask) % 5063 (2 * (int)hdspm->period_bytes), 5064 ((status & HDSPM_BufferPositionMask) - 64) % 5065 (2 * (int)hdspm->period_bytes), 5066 (long) hdspm_hw_pointer(hdspm) * 4); 5067 5068 snd_iprintf(buffer, 5069 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 5070 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 5071 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 5072 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 5073 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 5074 snd_iprintf(buffer, 5075 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 5076 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 5077 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 5078 snd_iprintf(buffer, 5079 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 5080 "status2=0x%x\n", 5081 hdspm->control_register, hdspm->control2_register, 5082 status, status2); 5083 5084 snd_iprintf(buffer, "--- Settings ---\n"); 5085 5086 x = hdspm_get_latency(hdspm); 5087 5088 snd_iprintf(buffer, 5089 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 5090 x, (unsigned long) hdspm->period_bytes); 5091 5092 snd_iprintf(buffer, "Line out: %s\n", 5093 (hdspm-> 5094 control_register & HDSPM_LineOut) ? "on " : "off"); 5095 5096 snd_iprintf(buffer, 5097 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n", 5098 (hdspm-> 5099 control_register & HDSPM_clr_tms) ? "on" : "off", 5100 (hdspm-> 5101 control_register & HDSPM_Emphasis) ? "on" : "off", 5102 (hdspm-> 5103 control_register & HDSPM_Dolby) ? "on" : "off"); 5104 5105 5106 pref_syncref = hdspm_pref_sync_ref(hdspm); 5107 if (pref_syncref == 0) 5108 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n"); 5109 else 5110 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n", 5111 pref_syncref); 5112 5113 snd_iprintf(buffer, "System Clock Frequency: %d\n", 5114 hdspm->system_sample_rate); 5115 5116 snd_iprintf(buffer, "Double speed: %s\n", 5117 hdspm->control_register & HDSPM_DS_DoubleWire? 5118 "Double wire" : "Single wire"); 5119 snd_iprintf(buffer, "Quad speed: %s\n", 5120 hdspm->control_register & HDSPM_QS_DoubleWire? 5121 "Double wire" : 5122 hdspm->control_register & HDSPM_QS_QuadWire? 5123 "Quad wire" : "Single wire"); 5124 5125 snd_iprintf(buffer, "--- Status:\n"); 5126 5127 wcLock = status & HDSPM_AES32_wcLock; 5128 wcSync = wcLock && (status & HDSPM_AES32_wcSync); 5129 5130 snd_iprintf(buffer, "Word: %s Frequency: %d\n", 5131 (wcLock) ? (wcSync ? "Sync " : "Lock ") : "No Lock", 5132 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF)); 5133 5134 for (x = 0; x < 8; x++) { 5135 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n", 5136 x+1, 5137 (status2 & (HDSPM_LockAES >> x)) ? 5138 "Sync " : "No Lock", 5139 HDSPM_bit2freq((timecode >> (4*x)) & 0xF)); 5140 } 5141 5142 switch (hdspm_autosync_ref(hdspm)) { 5143 case HDSPM_AES32_AUTOSYNC_FROM_NONE: 5144 autosync_ref = "None"; break; 5145 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 5146 autosync_ref = "Word Clock"; break; 5147 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 5148 autosync_ref = "AES1"; break; 5149 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 5150 autosync_ref = "AES2"; break; 5151 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 5152 autosync_ref = "AES3"; break; 5153 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 5154 autosync_ref = "AES4"; break; 5155 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 5156 autosync_ref = "AES5"; break; 5157 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 5158 autosync_ref = "AES6"; break; 5159 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 5160 autosync_ref = "AES7"; break; 5161 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 5162 autosync_ref = "AES8"; break; 5163 case HDSPM_AES32_AUTOSYNC_FROM_TCO: 5164 autosync_ref = "TCO"; break; 5165 case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN: 5166 autosync_ref = "Sync In"; break; 5167 default: 5168 autosync_ref = "---"; break; 5169 } 5170 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref); 5171 5172 /* call readout function for TCO specific status */ 5173 snd_hdspm_proc_read_tco(entry, buffer); 5174 5175 snd_iprintf(buffer, "\n"); 5176 } 5177 5178 static void 5179 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry, 5180 struct snd_info_buffer *buffer) 5181 { 5182 struct hdspm *hdspm = entry->private_data; 5183 unsigned int status1, status2, status3, i; 5184 unsigned int lock, sync; 5185 5186 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */ 5187 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */ 5188 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */ 5189 5190 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1); 5191 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2); 5192 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3); 5193 5194 5195 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n"); 5196 5197 snd_iprintf(buffer, "Clock mode : %s\n", 5198 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave"); 5199 snd_iprintf(buffer, "System frequency: %d Hz\n", 5200 hdspm_get_system_sample_rate(hdspm)); 5201 5202 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n"); 5203 5204 lock = 0x1; 5205 sync = 0x100; 5206 5207 for (i = 0; i < 8; i++) { 5208 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n", 5209 i, 5210 (status1 & lock) ? 1 : 0, 5211 (status1 & sync) ? 1 : 0, 5212 texts_freq[(status2 >> (i * 4)) & 0xF]); 5213 5214 lock = lock<<1; 5215 sync = sync<<1; 5216 } 5217 5218 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n", 5219 (status1 & 0x1000000) ? 1 : 0, 5220 (status1 & 0x2000000) ? 1 : 0, 5221 texts_freq[(status1 >> 16) & 0xF]); 5222 5223 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n", 5224 (status1 & 0x4000000) ? 1 : 0, 5225 (status1 & 0x8000000) ? 1 : 0, 5226 texts_freq[(status1 >> 20) & 0xF]); 5227 5228 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n", 5229 (status3 & 0x400) ? 1 : 0, 5230 (status3 & 0x800) ? 1 : 0, 5231 texts_freq[(status2 >> 12) & 0xF]); 5232 5233 } 5234 5235 #ifdef CONFIG_SND_DEBUG 5236 static void 5237 snd_hdspm_proc_read_debug(struct snd_info_entry *entry, 5238 struct snd_info_buffer *buffer) 5239 { 5240 struct hdspm *hdspm = entry->private_data; 5241 5242 int j,i; 5243 5244 for (i = 0; i < 256 /* 1024*64 */; i += j) { 5245 snd_iprintf(buffer, "0x%08X: ", i); 5246 for (j = 0; j < 16; j += 4) 5247 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j)); 5248 snd_iprintf(buffer, "\n"); 5249 } 5250 } 5251 #endif 5252 5253 5254 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry, 5255 struct snd_info_buffer *buffer) 5256 { 5257 struct hdspm *hdspm = entry->private_data; 5258 int i; 5259 5260 snd_iprintf(buffer, "# generated by hdspm\n"); 5261 5262 for (i = 0; i < hdspm->max_channels_in; i++) { 5263 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]); 5264 } 5265 } 5266 5267 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry, 5268 struct snd_info_buffer *buffer) 5269 { 5270 struct hdspm *hdspm = entry->private_data; 5271 int i; 5272 5273 snd_iprintf(buffer, "# generated by hdspm\n"); 5274 5275 for (i = 0; i < hdspm->max_channels_out; i++) { 5276 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]); 5277 } 5278 } 5279 5280 5281 static void snd_hdspm_proc_init(struct hdspm *hdspm) 5282 { 5283 struct snd_info_entry *entry; 5284 5285 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) { 5286 switch (hdspm->io_type) { 5287 case AES32: 5288 snd_info_set_text_ops(entry, hdspm, 5289 snd_hdspm_proc_read_aes32); 5290 break; 5291 case MADI: 5292 snd_info_set_text_ops(entry, hdspm, 5293 snd_hdspm_proc_read_madi); 5294 break; 5295 case MADIface: 5296 /* snd_info_set_text_ops(entry, hdspm, 5297 snd_hdspm_proc_read_madiface); */ 5298 break; 5299 case RayDAT: 5300 snd_info_set_text_ops(entry, hdspm, 5301 snd_hdspm_proc_read_raydat); 5302 break; 5303 case AIO: 5304 break; 5305 } 5306 } 5307 5308 if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) { 5309 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in); 5310 } 5311 5312 if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) { 5313 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out); 5314 } 5315 5316 #ifdef CONFIG_SND_DEBUG 5317 /* debug file to read all hdspm registers */ 5318 if (!snd_card_proc_new(hdspm->card, "debug", &entry)) 5319 snd_info_set_text_ops(entry, hdspm, 5320 snd_hdspm_proc_read_debug); 5321 #endif 5322 } 5323 5324 /*------------------------------------------------------------ 5325 hdspm intitialize 5326 ------------------------------------------------------------*/ 5327 5328 static int snd_hdspm_set_defaults(struct hdspm * hdspm) 5329 { 5330 /* ASSUMPTION: hdspm->lock is either held, or there is no need to 5331 hold it (e.g. during module initialization). 5332 */ 5333 5334 /* set defaults: */ 5335 5336 hdspm->settings_register = 0; 5337 5338 switch (hdspm->io_type) { 5339 case MADI: 5340 case MADIface: 5341 hdspm->control_register = 5342 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5343 break; 5344 5345 case RayDAT: 5346 case AIO: 5347 hdspm->settings_register = 0x1 + 0x1000; 5348 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0, 5349 * line_out */ 5350 hdspm->control_register = 5351 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5352 break; 5353 5354 case AES32: 5355 hdspm->control_register = 5356 HDSPM_ClockModeMaster | /* Master Clock Mode on */ 5357 hdspm_encode_latency(7) | /* latency max=8192samples */ 5358 HDSPM_SyncRef0 | /* AES1 is syncclock */ 5359 HDSPM_LineOut | /* Analog output in */ 5360 HDSPM_Professional; /* Professional mode */ 5361 break; 5362 } 5363 5364 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5365 5366 if (AES32 == hdspm->io_type) { 5367 /* No control2 register for AES32 */ 5368 #ifdef SNDRV_BIG_ENDIAN 5369 hdspm->control2_register = HDSPM_BIGENDIAN_MODE; 5370 #else 5371 hdspm->control2_register = 0; 5372 #endif 5373 5374 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register); 5375 } 5376 hdspm_compute_period_size(hdspm); 5377 5378 /* silence everything */ 5379 5380 all_in_all_mixer(hdspm, 0 * UNITY_GAIN); 5381 5382 if (hdspm_is_raydat_or_aio(hdspm)) 5383 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 5384 5385 /* set a default rate so that the channel map is set up. */ 5386 hdspm_set_rate(hdspm, 48000, 1); 5387 5388 return 0; 5389 } 5390 5391 5392 /*------------------------------------------------------------ 5393 interrupt 5394 ------------------------------------------------------------*/ 5395 5396 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id) 5397 { 5398 struct hdspm *hdspm = (struct hdspm *) dev_id; 5399 unsigned int status; 5400 int i, audio, midi, schedule = 0; 5401 /* cycles_t now; */ 5402 5403 status = hdspm_read(hdspm, HDSPM_statusRegister); 5404 5405 audio = status & HDSPM_audioIRQPending; 5406 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending | 5407 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending); 5408 5409 /* now = get_cycles(); */ 5410 /* 5411 * LAT_2..LAT_0 period counter (win) counter (mac) 5412 * 6 4096 ~256053425 ~514672358 5413 * 5 2048 ~128024983 ~257373821 5414 * 4 1024 ~64023706 ~128718089 5415 * 3 512 ~32005945 ~64385999 5416 * 2 256 ~16003039 ~32260176 5417 * 1 128 ~7998738 ~16194507 5418 * 0 64 ~3998231 ~8191558 5419 */ 5420 /* 5421 dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n", 5422 now-hdspm->last_interrupt, status & 0xFFC0); 5423 hdspm->last_interrupt = now; 5424 */ 5425 5426 if (!audio && !midi) 5427 return IRQ_NONE; 5428 5429 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0); 5430 hdspm->irq_count++; 5431 5432 5433 if (audio) { 5434 if (hdspm->capture_substream) 5435 snd_pcm_period_elapsed(hdspm->capture_substream); 5436 5437 if (hdspm->playback_substream) 5438 snd_pcm_period_elapsed(hdspm->playback_substream); 5439 } 5440 5441 if (midi) { 5442 i = 0; 5443 while (i < hdspm->midiPorts) { 5444 if ((hdspm_read(hdspm, 5445 hdspm->midi[i].statusIn) & 0xff) && 5446 (status & hdspm->midi[i].irq)) { 5447 /* we disable interrupts for this input until 5448 * processing is done 5449 */ 5450 hdspm->control_register &= ~hdspm->midi[i].ie; 5451 hdspm_write(hdspm, HDSPM_controlRegister, 5452 hdspm->control_register); 5453 hdspm->midi[i].pending = 1; 5454 schedule = 1; 5455 } 5456 5457 i++; 5458 } 5459 5460 if (schedule) 5461 tasklet_hi_schedule(&hdspm->midi_tasklet); 5462 } 5463 5464 return IRQ_HANDLED; 5465 } 5466 5467 /*------------------------------------------------------------ 5468 pcm interface 5469 ------------------------------------------------------------*/ 5470 5471 5472 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream 5473 *substream) 5474 { 5475 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5476 return hdspm_hw_pointer(hdspm); 5477 } 5478 5479 5480 static int snd_hdspm_reset(struct snd_pcm_substream *substream) 5481 { 5482 struct snd_pcm_runtime *runtime = substream->runtime; 5483 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5484 struct snd_pcm_substream *other; 5485 5486 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5487 other = hdspm->capture_substream; 5488 else 5489 other = hdspm->playback_substream; 5490 5491 if (hdspm->running) 5492 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm); 5493 else 5494 runtime->status->hw_ptr = 0; 5495 if (other) { 5496 struct snd_pcm_substream *s; 5497 struct snd_pcm_runtime *oruntime = other->runtime; 5498 snd_pcm_group_for_each_entry(s, substream) { 5499 if (s == other) { 5500 oruntime->status->hw_ptr = 5501 runtime->status->hw_ptr; 5502 break; 5503 } 5504 } 5505 } 5506 return 0; 5507 } 5508 5509 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, 5510 struct snd_pcm_hw_params *params) 5511 { 5512 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5513 int err; 5514 int i; 5515 pid_t this_pid; 5516 pid_t other_pid; 5517 5518 spin_lock_irq(&hdspm->lock); 5519 5520 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5521 this_pid = hdspm->playback_pid; 5522 other_pid = hdspm->capture_pid; 5523 } else { 5524 this_pid = hdspm->capture_pid; 5525 other_pid = hdspm->playback_pid; 5526 } 5527 5528 if (other_pid > 0 && this_pid != other_pid) { 5529 5530 /* The other stream is open, and not by the same 5531 task as this one. Make sure that the parameters 5532 that matter are the same. 5533 */ 5534 5535 if (params_rate(params) != hdspm->system_sample_rate) { 5536 spin_unlock_irq(&hdspm->lock); 5537 _snd_pcm_hw_param_setempty(params, 5538 SNDRV_PCM_HW_PARAM_RATE); 5539 return -EBUSY; 5540 } 5541 5542 if (params_period_size(params) != hdspm->period_bytes / 4) { 5543 spin_unlock_irq(&hdspm->lock); 5544 _snd_pcm_hw_param_setempty(params, 5545 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5546 return -EBUSY; 5547 } 5548 5549 } 5550 /* We're fine. */ 5551 spin_unlock_irq(&hdspm->lock); 5552 5553 /* how to make sure that the rate matches an externally-set one ? */ 5554 5555 spin_lock_irq(&hdspm->lock); 5556 err = hdspm_set_rate(hdspm, params_rate(params), 0); 5557 if (err < 0) { 5558 dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err); 5559 spin_unlock_irq(&hdspm->lock); 5560 _snd_pcm_hw_param_setempty(params, 5561 SNDRV_PCM_HW_PARAM_RATE); 5562 return err; 5563 } 5564 spin_unlock_irq(&hdspm->lock); 5565 5566 err = hdspm_set_interrupt_interval(hdspm, 5567 params_period_size(params)); 5568 if (err < 0) { 5569 dev_info(hdspm->card->dev, 5570 "err on hdspm_set_interrupt_interval: %d\n", err); 5571 _snd_pcm_hw_param_setempty(params, 5572 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5573 return err; 5574 } 5575 5576 /* Memory allocation, takashi's method, dont know if we should 5577 * spinlock 5578 */ 5579 /* malloc all buffer even if not enabled to get sure */ 5580 /* Update for MADI rev 204: we need to allocate for all channels, 5581 * otherwise it doesn't work at 96kHz */ 5582 5583 err = 5584 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES); 5585 if (err < 0) { 5586 dev_info(hdspm->card->dev, 5587 "err on snd_pcm_lib_malloc_pages: %d\n", err); 5588 return err; 5589 } 5590 5591 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5592 5593 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut, 5594 params_channels(params)); 5595 5596 for (i = 0; i < params_channels(params); ++i) 5597 snd_hdspm_enable_out(hdspm, i, 1); 5598 5599 hdspm->playback_buffer = 5600 (unsigned char *) substream->runtime->dma_area; 5601 dev_dbg(hdspm->card->dev, 5602 "Allocated sample buffer for playback at %p\n", 5603 hdspm->playback_buffer); 5604 } else { 5605 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn, 5606 params_channels(params)); 5607 5608 for (i = 0; i < params_channels(params); ++i) 5609 snd_hdspm_enable_in(hdspm, i, 1); 5610 5611 hdspm->capture_buffer = 5612 (unsigned char *) substream->runtime->dma_area; 5613 dev_dbg(hdspm->card->dev, 5614 "Allocated sample buffer for capture at %p\n", 5615 hdspm->capture_buffer); 5616 } 5617 5618 /* 5619 dev_dbg(hdspm->card->dev, 5620 "Allocated sample buffer for %s at 0x%08X\n", 5621 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5622 "playback" : "capture", 5623 snd_pcm_sgbuf_get_addr(substream, 0)); 5624 */ 5625 /* 5626 dev_dbg(hdspm->card->dev, 5627 "set_hwparams: %s %d Hz, %d channels, bs = %d\n", 5628 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5629 "playback" : "capture", 5630 params_rate(params), params_channels(params), 5631 params_buffer_size(params)); 5632 */ 5633 5634 5635 /* For AES cards, the float format bit is the same as the 5636 * preferred sync reference. Since we don't want to break 5637 * sync settings, we have to skip the remaining part of this 5638 * function. 5639 */ 5640 if (hdspm->io_type == AES32) { 5641 return 0; 5642 } 5643 5644 5645 /* Switch to native float format if requested */ 5646 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) { 5647 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT)) 5648 dev_info(hdspm->card->dev, 5649 "Switching to native 32bit LE float format.\n"); 5650 5651 hdspm->control_register |= HDSPe_FLOAT_FORMAT; 5652 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) { 5653 if (hdspm->control_register & HDSPe_FLOAT_FORMAT) 5654 dev_info(hdspm->card->dev, 5655 "Switching to native 32bit LE integer format.\n"); 5656 5657 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT; 5658 } 5659 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5660 5661 return 0; 5662 } 5663 5664 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream) 5665 { 5666 int i; 5667 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5668 5669 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5670 5671 /* params_channels(params) should be enough, 5672 but to get sure in case of error */ 5673 for (i = 0; i < hdspm->max_channels_out; ++i) 5674 snd_hdspm_enable_out(hdspm, i, 0); 5675 5676 hdspm->playback_buffer = NULL; 5677 } else { 5678 for (i = 0; i < hdspm->max_channels_in; ++i) 5679 snd_hdspm_enable_in(hdspm, i, 0); 5680 5681 hdspm->capture_buffer = NULL; 5682 5683 } 5684 5685 snd_pcm_lib_free_pages(substream); 5686 5687 return 0; 5688 } 5689 5690 5691 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream, 5692 struct snd_pcm_channel_info *info) 5693 { 5694 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5695 5696 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5697 if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) { 5698 dev_info(hdspm->card->dev, 5699 "snd_hdspm_channel_info: output channel out of range (%d)\n", 5700 info->channel); 5701 return -EINVAL; 5702 } 5703 5704 if (hdspm->channel_map_out[info->channel] < 0) { 5705 dev_info(hdspm->card->dev, 5706 "snd_hdspm_channel_info: output channel %d mapped out\n", 5707 info->channel); 5708 return -EINVAL; 5709 } 5710 5711 info->offset = hdspm->channel_map_out[info->channel] * 5712 HDSPM_CHANNEL_BUFFER_BYTES; 5713 } else { 5714 if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) { 5715 dev_info(hdspm->card->dev, 5716 "snd_hdspm_channel_info: input channel out of range (%d)\n", 5717 info->channel); 5718 return -EINVAL; 5719 } 5720 5721 if (hdspm->channel_map_in[info->channel] < 0) { 5722 dev_info(hdspm->card->dev, 5723 "snd_hdspm_channel_info: input channel %d mapped out\n", 5724 info->channel); 5725 return -EINVAL; 5726 } 5727 5728 info->offset = hdspm->channel_map_in[info->channel] * 5729 HDSPM_CHANNEL_BUFFER_BYTES; 5730 } 5731 5732 info->first = 0; 5733 info->step = 32; 5734 return 0; 5735 } 5736 5737 5738 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream, 5739 unsigned int cmd, void *arg) 5740 { 5741 switch (cmd) { 5742 case SNDRV_PCM_IOCTL1_RESET: 5743 return snd_hdspm_reset(substream); 5744 5745 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 5746 { 5747 struct snd_pcm_channel_info *info = arg; 5748 return snd_hdspm_channel_info(substream, info); 5749 } 5750 default: 5751 break; 5752 } 5753 5754 return snd_pcm_lib_ioctl(substream, cmd, arg); 5755 } 5756 5757 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd) 5758 { 5759 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5760 struct snd_pcm_substream *other; 5761 int running; 5762 5763 spin_lock(&hdspm->lock); 5764 running = hdspm->running; 5765 switch (cmd) { 5766 case SNDRV_PCM_TRIGGER_START: 5767 running |= 1 << substream->stream; 5768 break; 5769 case SNDRV_PCM_TRIGGER_STOP: 5770 running &= ~(1 << substream->stream); 5771 break; 5772 default: 5773 snd_BUG(); 5774 spin_unlock(&hdspm->lock); 5775 return -EINVAL; 5776 } 5777 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5778 other = hdspm->capture_substream; 5779 else 5780 other = hdspm->playback_substream; 5781 5782 if (other) { 5783 struct snd_pcm_substream *s; 5784 snd_pcm_group_for_each_entry(s, substream) { 5785 if (s == other) { 5786 snd_pcm_trigger_done(s, substream); 5787 if (cmd == SNDRV_PCM_TRIGGER_START) 5788 running |= 1 << s->stream; 5789 else 5790 running &= ~(1 << s->stream); 5791 goto _ok; 5792 } 5793 } 5794 if (cmd == SNDRV_PCM_TRIGGER_START) { 5795 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) 5796 && substream->stream == 5797 SNDRV_PCM_STREAM_CAPTURE) 5798 hdspm_silence_playback(hdspm); 5799 } else { 5800 if (running && 5801 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5802 hdspm_silence_playback(hdspm); 5803 } 5804 } else { 5805 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 5806 hdspm_silence_playback(hdspm); 5807 } 5808 _ok: 5809 snd_pcm_trigger_done(substream, substream); 5810 if (!hdspm->running && running) 5811 hdspm_start_audio(hdspm); 5812 else if (hdspm->running && !running) 5813 hdspm_stop_audio(hdspm); 5814 hdspm->running = running; 5815 spin_unlock(&hdspm->lock); 5816 5817 return 0; 5818 } 5819 5820 static int snd_hdspm_prepare(struct snd_pcm_substream *substream) 5821 { 5822 return 0; 5823 } 5824 5825 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = { 5826 .info = (SNDRV_PCM_INFO_MMAP | 5827 SNDRV_PCM_INFO_MMAP_VALID | 5828 SNDRV_PCM_INFO_NONINTERLEAVED | 5829 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE), 5830 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5831 .rates = (SNDRV_PCM_RATE_32000 | 5832 SNDRV_PCM_RATE_44100 | 5833 SNDRV_PCM_RATE_48000 | 5834 SNDRV_PCM_RATE_64000 | 5835 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5836 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ), 5837 .rate_min = 32000, 5838 .rate_max = 192000, 5839 .channels_min = 1, 5840 .channels_max = HDSPM_MAX_CHANNELS, 5841 .buffer_bytes_max = 5842 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5843 .period_bytes_min = (32 * 4), 5844 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5845 .periods_min = 2, 5846 .periods_max = 512, 5847 .fifo_size = 0 5848 }; 5849 5850 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = { 5851 .info = (SNDRV_PCM_INFO_MMAP | 5852 SNDRV_PCM_INFO_MMAP_VALID | 5853 SNDRV_PCM_INFO_NONINTERLEAVED | 5854 SNDRV_PCM_INFO_SYNC_START), 5855 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5856 .rates = (SNDRV_PCM_RATE_32000 | 5857 SNDRV_PCM_RATE_44100 | 5858 SNDRV_PCM_RATE_48000 | 5859 SNDRV_PCM_RATE_64000 | 5860 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5861 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000), 5862 .rate_min = 32000, 5863 .rate_max = 192000, 5864 .channels_min = 1, 5865 .channels_max = HDSPM_MAX_CHANNELS, 5866 .buffer_bytes_max = 5867 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5868 .period_bytes_min = (32 * 4), 5869 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5870 .periods_min = 2, 5871 .periods_max = 512, 5872 .fifo_size = 0 5873 }; 5874 5875 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 5876 struct snd_pcm_hw_rule *rule) 5877 { 5878 struct hdspm *hdspm = rule->private; 5879 struct snd_interval *c = 5880 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5881 struct snd_interval *r = 5882 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5883 5884 if (r->min > 96000 && r->max <= 192000) { 5885 struct snd_interval t = { 5886 .min = hdspm->qs_in_channels, 5887 .max = hdspm->qs_in_channels, 5888 .integer = 1, 5889 }; 5890 return snd_interval_refine(c, &t); 5891 } else if (r->min > 48000 && r->max <= 96000) { 5892 struct snd_interval t = { 5893 .min = hdspm->ds_in_channels, 5894 .max = hdspm->ds_in_channels, 5895 .integer = 1, 5896 }; 5897 return snd_interval_refine(c, &t); 5898 } else if (r->max < 64000) { 5899 struct snd_interval t = { 5900 .min = hdspm->ss_in_channels, 5901 .max = hdspm->ss_in_channels, 5902 .integer = 1, 5903 }; 5904 return snd_interval_refine(c, &t); 5905 } 5906 5907 return 0; 5908 } 5909 5910 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 5911 struct snd_pcm_hw_rule * rule) 5912 { 5913 struct hdspm *hdspm = rule->private; 5914 struct snd_interval *c = 5915 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5916 struct snd_interval *r = 5917 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5918 5919 if (r->min > 96000 && r->max <= 192000) { 5920 struct snd_interval t = { 5921 .min = hdspm->qs_out_channels, 5922 .max = hdspm->qs_out_channels, 5923 .integer = 1, 5924 }; 5925 return snd_interval_refine(c, &t); 5926 } else if (r->min > 48000 && r->max <= 96000) { 5927 struct snd_interval t = { 5928 .min = hdspm->ds_out_channels, 5929 .max = hdspm->ds_out_channels, 5930 .integer = 1, 5931 }; 5932 return snd_interval_refine(c, &t); 5933 } else if (r->max < 64000) { 5934 struct snd_interval t = { 5935 .min = hdspm->ss_out_channels, 5936 .max = hdspm->ss_out_channels, 5937 .integer = 1, 5938 }; 5939 return snd_interval_refine(c, &t); 5940 } else { 5941 } 5942 return 0; 5943 } 5944 5945 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 5946 struct snd_pcm_hw_rule * rule) 5947 { 5948 struct hdspm *hdspm = rule->private; 5949 struct snd_interval *c = 5950 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5951 struct snd_interval *r = 5952 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5953 5954 if (c->min >= hdspm->ss_in_channels) { 5955 struct snd_interval t = { 5956 .min = 32000, 5957 .max = 48000, 5958 .integer = 1, 5959 }; 5960 return snd_interval_refine(r, &t); 5961 } else if (c->max <= hdspm->qs_in_channels) { 5962 struct snd_interval t = { 5963 .min = 128000, 5964 .max = 192000, 5965 .integer = 1, 5966 }; 5967 return snd_interval_refine(r, &t); 5968 } else if (c->max <= hdspm->ds_in_channels) { 5969 struct snd_interval t = { 5970 .min = 64000, 5971 .max = 96000, 5972 .integer = 1, 5973 }; 5974 return snd_interval_refine(r, &t); 5975 } 5976 5977 return 0; 5978 } 5979 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 5980 struct snd_pcm_hw_rule *rule) 5981 { 5982 struct hdspm *hdspm = rule->private; 5983 struct snd_interval *c = 5984 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5985 struct snd_interval *r = 5986 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5987 5988 if (c->min >= hdspm->ss_out_channels) { 5989 struct snd_interval t = { 5990 .min = 32000, 5991 .max = 48000, 5992 .integer = 1, 5993 }; 5994 return snd_interval_refine(r, &t); 5995 } else if (c->max <= hdspm->qs_out_channels) { 5996 struct snd_interval t = { 5997 .min = 128000, 5998 .max = 192000, 5999 .integer = 1, 6000 }; 6001 return snd_interval_refine(r, &t); 6002 } else if (c->max <= hdspm->ds_out_channels) { 6003 struct snd_interval t = { 6004 .min = 64000, 6005 .max = 96000, 6006 .integer = 1, 6007 }; 6008 return snd_interval_refine(r, &t); 6009 } 6010 6011 return 0; 6012 } 6013 6014 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params, 6015 struct snd_pcm_hw_rule *rule) 6016 { 6017 unsigned int list[3]; 6018 struct hdspm *hdspm = rule->private; 6019 struct snd_interval *c = hw_param_interval(params, 6020 SNDRV_PCM_HW_PARAM_CHANNELS); 6021 6022 list[0] = hdspm->qs_in_channels; 6023 list[1] = hdspm->ds_in_channels; 6024 list[2] = hdspm->ss_in_channels; 6025 return snd_interval_list(c, 3, list, 0); 6026 } 6027 6028 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params, 6029 struct snd_pcm_hw_rule *rule) 6030 { 6031 unsigned int list[3]; 6032 struct hdspm *hdspm = rule->private; 6033 struct snd_interval *c = hw_param_interval(params, 6034 SNDRV_PCM_HW_PARAM_CHANNELS); 6035 6036 list[0] = hdspm->qs_out_channels; 6037 list[1] = hdspm->ds_out_channels; 6038 list[2] = hdspm->ss_out_channels; 6039 return snd_interval_list(c, 3, list, 0); 6040 } 6041 6042 6043 static unsigned int hdspm_aes32_sample_rates[] = { 6044 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 6045 }; 6046 6047 static struct snd_pcm_hw_constraint_list 6048 hdspm_hw_constraints_aes32_sample_rates = { 6049 .count = ARRAY_SIZE(hdspm_aes32_sample_rates), 6050 .list = hdspm_aes32_sample_rates, 6051 .mask = 0 6052 }; 6053 6054 static int snd_hdspm_open(struct snd_pcm_substream *substream) 6055 { 6056 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6057 struct snd_pcm_runtime *runtime = substream->runtime; 6058 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6059 6060 spin_lock_irq(&hdspm->lock); 6061 snd_pcm_set_sync(substream); 6062 runtime->hw = (playback) ? snd_hdspm_playback_subinfo : 6063 snd_hdspm_capture_subinfo; 6064 6065 if (playback) { 6066 if (hdspm->capture_substream == NULL) 6067 hdspm_stop_audio(hdspm); 6068 6069 hdspm->playback_pid = current->pid; 6070 hdspm->playback_substream = substream; 6071 } else { 6072 if (hdspm->playback_substream == NULL) 6073 hdspm_stop_audio(hdspm); 6074 6075 hdspm->capture_pid = current->pid; 6076 hdspm->capture_substream = substream; 6077 } 6078 6079 spin_unlock_irq(&hdspm->lock); 6080 6081 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 6082 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 6083 6084 switch (hdspm->io_type) { 6085 case AIO: 6086 case RayDAT: 6087 snd_pcm_hw_constraint_minmax(runtime, 6088 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6089 32, 4096); 6090 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */ 6091 snd_pcm_hw_constraint_single(runtime, 6092 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 6093 16384); 6094 break; 6095 6096 default: 6097 snd_pcm_hw_constraint_minmax(runtime, 6098 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6099 64, 8192); 6100 snd_pcm_hw_constraint_single(runtime, 6101 SNDRV_PCM_HW_PARAM_PERIODS, 2); 6102 break; 6103 } 6104 6105 if (AES32 == hdspm->io_type) { 6106 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 6107 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6108 &hdspm_hw_constraints_aes32_sample_rates); 6109 } else { 6110 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6111 (playback ? 6112 snd_hdspm_hw_rule_rate_out_channels : 6113 snd_hdspm_hw_rule_rate_in_channels), hdspm, 6114 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6115 } 6116 6117 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6118 (playback ? snd_hdspm_hw_rule_out_channels : 6119 snd_hdspm_hw_rule_in_channels), hdspm, 6120 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6121 6122 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6123 (playback ? snd_hdspm_hw_rule_out_channels_rate : 6124 snd_hdspm_hw_rule_in_channels_rate), hdspm, 6125 SNDRV_PCM_HW_PARAM_RATE, -1); 6126 6127 return 0; 6128 } 6129 6130 static int snd_hdspm_release(struct snd_pcm_substream *substream) 6131 { 6132 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6133 bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); 6134 6135 spin_lock_irq(&hdspm->lock); 6136 6137 if (playback) { 6138 hdspm->playback_pid = -1; 6139 hdspm->playback_substream = NULL; 6140 } else { 6141 hdspm->capture_pid = -1; 6142 hdspm->capture_substream = NULL; 6143 } 6144 6145 spin_unlock_irq(&hdspm->lock); 6146 6147 return 0; 6148 } 6149 6150 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file) 6151 { 6152 /* we have nothing to initialize but the call is required */ 6153 return 0; 6154 } 6155 6156 static inline int copy_u32_le(void __user *dest, void __iomem *src) 6157 { 6158 u32 val = readl(src); 6159 return copy_to_user(dest, &val, 4); 6160 } 6161 6162 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, 6163 unsigned int cmd, unsigned long arg) 6164 { 6165 void __user *argp = (void __user *)arg; 6166 struct hdspm *hdspm = hw->private_data; 6167 struct hdspm_mixer_ioctl mixer; 6168 struct hdspm_config info; 6169 struct hdspm_status status; 6170 struct hdspm_version hdspm_version; 6171 struct hdspm_peak_rms *levels; 6172 struct hdspm_ltc ltc; 6173 unsigned int statusregister; 6174 long unsigned int s; 6175 int i = 0; 6176 6177 switch (cmd) { 6178 6179 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS: 6180 levels = &hdspm->peak_rms; 6181 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 6182 levels->input_peaks[i] = 6183 readl(hdspm->iobase + 6184 HDSPM_MADI_INPUT_PEAK + i*4); 6185 levels->playback_peaks[i] = 6186 readl(hdspm->iobase + 6187 HDSPM_MADI_PLAYBACK_PEAK + i*4); 6188 levels->output_peaks[i] = 6189 readl(hdspm->iobase + 6190 HDSPM_MADI_OUTPUT_PEAK + i*4); 6191 6192 levels->input_rms[i] = 6193 ((uint64_t) readl(hdspm->iobase + 6194 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) | 6195 (uint64_t) readl(hdspm->iobase + 6196 HDSPM_MADI_INPUT_RMS_L + i*4); 6197 levels->playback_rms[i] = 6198 ((uint64_t)readl(hdspm->iobase + 6199 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) | 6200 (uint64_t)readl(hdspm->iobase + 6201 HDSPM_MADI_PLAYBACK_RMS_L + i*4); 6202 levels->output_rms[i] = 6203 ((uint64_t)readl(hdspm->iobase + 6204 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) | 6205 (uint64_t)readl(hdspm->iobase + 6206 HDSPM_MADI_OUTPUT_RMS_L + i*4); 6207 } 6208 6209 if (hdspm->system_sample_rate > 96000) { 6210 levels->speed = qs; 6211 } else if (hdspm->system_sample_rate > 48000) { 6212 levels->speed = ds; 6213 } else { 6214 levels->speed = ss; 6215 } 6216 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 6217 6218 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms)); 6219 if (0 != s) { 6220 /* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu 6221 [Levels]\n", sizeof(struct hdspm_peak_rms), s); 6222 */ 6223 return -EFAULT; 6224 } 6225 break; 6226 6227 case SNDRV_HDSPM_IOCTL_GET_LTC: 6228 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 6229 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 6230 if (i & HDSPM_TCO1_LTC_Input_valid) { 6231 switch (i & (HDSPM_TCO1_LTC_Format_LSB | 6232 HDSPM_TCO1_LTC_Format_MSB)) { 6233 case 0: 6234 ltc.format = fps_24; 6235 break; 6236 case HDSPM_TCO1_LTC_Format_LSB: 6237 ltc.format = fps_25; 6238 break; 6239 case HDSPM_TCO1_LTC_Format_MSB: 6240 ltc.format = fps_2997; 6241 break; 6242 default: 6243 ltc.format = fps_30; 6244 break; 6245 } 6246 if (i & HDSPM_TCO1_set_drop_frame_flag) { 6247 ltc.frame = drop_frame; 6248 } else { 6249 ltc.frame = full_frame; 6250 } 6251 } else { 6252 ltc.format = format_invalid; 6253 ltc.frame = frame_invalid; 6254 } 6255 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) { 6256 ltc.input_format = ntsc; 6257 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) { 6258 ltc.input_format = pal; 6259 } else { 6260 ltc.input_format = no_video; 6261 } 6262 6263 s = copy_to_user(argp, <c, sizeof(struct hdspm_ltc)); 6264 if (0 != s) { 6265 /* 6266 dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */ 6267 return -EFAULT; 6268 } 6269 6270 break; 6271 6272 case SNDRV_HDSPM_IOCTL_GET_CONFIG: 6273 6274 memset(&info, 0, sizeof(info)); 6275 spin_lock_irq(&hdspm->lock); 6276 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm); 6277 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm); 6278 6279 info.system_sample_rate = hdspm->system_sample_rate; 6280 info.autosync_sample_rate = 6281 hdspm_external_sample_rate(hdspm); 6282 info.system_clock_mode = hdspm_system_clock_mode(hdspm); 6283 info.clock_source = hdspm_clock_source(hdspm); 6284 info.autosync_ref = hdspm_autosync_ref(hdspm); 6285 info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut); 6286 info.passthru = 0; 6287 spin_unlock_irq(&hdspm->lock); 6288 if (copy_to_user(argp, &info, sizeof(info))) 6289 return -EFAULT; 6290 break; 6291 6292 case SNDRV_HDSPM_IOCTL_GET_STATUS: 6293 memset(&status, 0, sizeof(status)); 6294 6295 status.card_type = hdspm->io_type; 6296 6297 status.autosync_source = hdspm_autosync_ref(hdspm); 6298 6299 status.card_clock = 110069313433624ULL; 6300 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 6301 6302 switch (hdspm->io_type) { 6303 case MADI: 6304 case MADIface: 6305 status.card_specific.madi.sync_wc = 6306 hdspm_wc_sync_check(hdspm); 6307 status.card_specific.madi.sync_madi = 6308 hdspm_madi_sync_check(hdspm); 6309 status.card_specific.madi.sync_tco = 6310 hdspm_tco_sync_check(hdspm); 6311 status.card_specific.madi.sync_in = 6312 hdspm_sync_in_sync_check(hdspm); 6313 6314 statusregister = 6315 hdspm_read(hdspm, HDSPM_statusRegister); 6316 status.card_specific.madi.madi_input = 6317 (statusregister & HDSPM_AB_int) ? 1 : 0; 6318 status.card_specific.madi.channel_format = 6319 (statusregister & HDSPM_RX_64ch) ? 1 : 0; 6320 /* TODO: Mac driver sets it when f_s>48kHz */ 6321 status.card_specific.madi.frame_format = 0; 6322 6323 default: 6324 break; 6325 } 6326 6327 if (copy_to_user(argp, &status, sizeof(status))) 6328 return -EFAULT; 6329 6330 6331 break; 6332 6333 case SNDRV_HDSPM_IOCTL_GET_VERSION: 6334 memset(&hdspm_version, 0, sizeof(hdspm_version)); 6335 6336 hdspm_version.card_type = hdspm->io_type; 6337 strlcpy(hdspm_version.cardname, hdspm->card_name, 6338 sizeof(hdspm_version.cardname)); 6339 hdspm_version.serial = hdspm->serial; 6340 hdspm_version.firmware_rev = hdspm->firmware_rev; 6341 hdspm_version.addons = 0; 6342 if (hdspm->tco) 6343 hdspm_version.addons |= HDSPM_ADDON_TCO; 6344 6345 if (copy_to_user(argp, &hdspm_version, 6346 sizeof(hdspm_version))) 6347 return -EFAULT; 6348 break; 6349 6350 case SNDRV_HDSPM_IOCTL_GET_MIXER: 6351 if (copy_from_user(&mixer, argp, sizeof(mixer))) 6352 return -EFAULT; 6353 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer, 6354 sizeof(struct hdspm_mixer))) 6355 return -EFAULT; 6356 break; 6357 6358 default: 6359 return -EINVAL; 6360 } 6361 return 0; 6362 } 6363 6364 static const struct snd_pcm_ops snd_hdspm_ops = { 6365 .open = snd_hdspm_open, 6366 .close = snd_hdspm_release, 6367 .ioctl = snd_hdspm_ioctl, 6368 .hw_params = snd_hdspm_hw_params, 6369 .hw_free = snd_hdspm_hw_free, 6370 .prepare = snd_hdspm_prepare, 6371 .trigger = snd_hdspm_trigger, 6372 .pointer = snd_hdspm_hw_pointer, 6373 .page = snd_pcm_sgbuf_ops_page, 6374 }; 6375 6376 static int snd_hdspm_create_hwdep(struct snd_card *card, 6377 struct hdspm *hdspm) 6378 { 6379 struct snd_hwdep *hw; 6380 int err; 6381 6382 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw); 6383 if (err < 0) 6384 return err; 6385 6386 hdspm->hwdep = hw; 6387 hw->private_data = hdspm; 6388 strcpy(hw->name, "HDSPM hwdep interface"); 6389 6390 hw->ops.open = snd_hdspm_hwdep_dummy_op; 6391 hw->ops.ioctl = snd_hdspm_hwdep_ioctl; 6392 hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl; 6393 hw->ops.release = snd_hdspm_hwdep_dummy_op; 6394 6395 return 0; 6396 } 6397 6398 6399 /*------------------------------------------------------------ 6400 memory interface 6401 ------------------------------------------------------------*/ 6402 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm) 6403 { 6404 int err; 6405 struct snd_pcm *pcm; 6406 size_t wanted; 6407 6408 pcm = hdspm->pcm; 6409 6410 wanted = HDSPM_DMA_AREA_BYTES; 6411 6412 err = 6413 snd_pcm_lib_preallocate_pages_for_all(pcm, 6414 SNDRV_DMA_TYPE_DEV_SG, 6415 snd_dma_pci_data(hdspm->pci), 6416 wanted, 6417 wanted); 6418 if (err < 0) { 6419 dev_dbg(hdspm->card->dev, 6420 "Could not preallocate %zd Bytes\n", wanted); 6421 6422 return err; 6423 } else 6424 dev_dbg(hdspm->card->dev, 6425 " Preallocated %zd Bytes\n", wanted); 6426 6427 return 0; 6428 } 6429 6430 6431 static void hdspm_set_sgbuf(struct hdspm *hdspm, 6432 struct snd_pcm_substream *substream, 6433 unsigned int reg, int channels) 6434 { 6435 int i; 6436 6437 /* continuous memory segment */ 6438 for (i = 0; i < (channels * 16); i++) 6439 hdspm_write(hdspm, reg + 4 * i, 6440 snd_pcm_sgbuf_get_addr(substream, 4096 * i)); 6441 } 6442 6443 6444 /* ------------- ALSA Devices ---------------------------- */ 6445 static int snd_hdspm_create_pcm(struct snd_card *card, 6446 struct hdspm *hdspm) 6447 { 6448 struct snd_pcm *pcm; 6449 int err; 6450 6451 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm); 6452 if (err < 0) 6453 return err; 6454 6455 hdspm->pcm = pcm; 6456 pcm->private_data = hdspm; 6457 strcpy(pcm->name, hdspm->card_name); 6458 6459 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 6460 &snd_hdspm_ops); 6461 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 6462 &snd_hdspm_ops); 6463 6464 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 6465 6466 err = snd_hdspm_preallocate_memory(hdspm); 6467 if (err < 0) 6468 return err; 6469 6470 return 0; 6471 } 6472 6473 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm) 6474 { 6475 int i; 6476 6477 for (i = 0; i < hdspm->midiPorts; i++) 6478 snd_hdspm_flush_midi_input(hdspm, i); 6479 } 6480 6481 static int snd_hdspm_create_alsa_devices(struct snd_card *card, 6482 struct hdspm *hdspm) 6483 { 6484 int err, i; 6485 6486 dev_dbg(card->dev, "Create card...\n"); 6487 err = snd_hdspm_create_pcm(card, hdspm); 6488 if (err < 0) 6489 return err; 6490 6491 i = 0; 6492 while (i < hdspm->midiPorts) { 6493 err = snd_hdspm_create_midi(card, hdspm, i); 6494 if (err < 0) { 6495 return err; 6496 } 6497 i++; 6498 } 6499 6500 err = snd_hdspm_create_controls(card, hdspm); 6501 if (err < 0) 6502 return err; 6503 6504 err = snd_hdspm_create_hwdep(card, hdspm); 6505 if (err < 0) 6506 return err; 6507 6508 dev_dbg(card->dev, "proc init...\n"); 6509 snd_hdspm_proc_init(hdspm); 6510 6511 hdspm->system_sample_rate = -1; 6512 hdspm->last_external_sample_rate = -1; 6513 hdspm->last_internal_sample_rate = -1; 6514 hdspm->playback_pid = -1; 6515 hdspm->capture_pid = -1; 6516 hdspm->capture_substream = NULL; 6517 hdspm->playback_substream = NULL; 6518 6519 dev_dbg(card->dev, "Set defaults...\n"); 6520 err = snd_hdspm_set_defaults(hdspm); 6521 if (err < 0) 6522 return err; 6523 6524 dev_dbg(card->dev, "Update mixer controls...\n"); 6525 hdspm_update_simple_mixer_controls(hdspm); 6526 6527 dev_dbg(card->dev, "Initializeing complete ???\n"); 6528 6529 err = snd_card_register(card); 6530 if (err < 0) { 6531 dev_err(card->dev, "error registering card\n"); 6532 return err; 6533 } 6534 6535 dev_dbg(card->dev, "... yes now\n"); 6536 6537 return 0; 6538 } 6539 6540 static int snd_hdspm_create(struct snd_card *card, 6541 struct hdspm *hdspm) 6542 { 6543 6544 struct pci_dev *pci = hdspm->pci; 6545 int err; 6546 unsigned long io_extent; 6547 6548 hdspm->irq = -1; 6549 hdspm->card = card; 6550 6551 spin_lock_init(&hdspm->lock); 6552 6553 pci_read_config_word(hdspm->pci, 6554 PCI_CLASS_REVISION, &hdspm->firmware_rev); 6555 6556 strcpy(card->mixername, "Xilinx FPGA"); 6557 strcpy(card->driver, "HDSPM"); 6558 6559 switch (hdspm->firmware_rev) { 6560 case HDSPM_RAYDAT_REV: 6561 hdspm->io_type = RayDAT; 6562 hdspm->card_name = "RME RayDAT"; 6563 hdspm->midiPorts = 2; 6564 break; 6565 case HDSPM_AIO_REV: 6566 hdspm->io_type = AIO; 6567 hdspm->card_name = "RME AIO"; 6568 hdspm->midiPorts = 1; 6569 break; 6570 case HDSPM_MADIFACE_REV: 6571 hdspm->io_type = MADIface; 6572 hdspm->card_name = "RME MADIface"; 6573 hdspm->midiPorts = 1; 6574 break; 6575 default: 6576 if ((hdspm->firmware_rev == 0xf0) || 6577 ((hdspm->firmware_rev >= 0xe6) && 6578 (hdspm->firmware_rev <= 0xea))) { 6579 hdspm->io_type = AES32; 6580 hdspm->card_name = "RME AES32"; 6581 hdspm->midiPorts = 2; 6582 } else if ((hdspm->firmware_rev == 0xd2) || 6583 ((hdspm->firmware_rev >= 0xc8) && 6584 (hdspm->firmware_rev <= 0xcf))) { 6585 hdspm->io_type = MADI; 6586 hdspm->card_name = "RME MADI"; 6587 hdspm->midiPorts = 3; 6588 } else { 6589 dev_err(card->dev, 6590 "unknown firmware revision %x\n", 6591 hdspm->firmware_rev); 6592 return -ENODEV; 6593 } 6594 } 6595 6596 err = pci_enable_device(pci); 6597 if (err < 0) 6598 return err; 6599 6600 pci_set_master(hdspm->pci); 6601 6602 err = pci_request_regions(pci, "hdspm"); 6603 if (err < 0) 6604 return err; 6605 6606 hdspm->port = pci_resource_start(pci, 0); 6607 io_extent = pci_resource_len(pci, 0); 6608 6609 dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n", 6610 hdspm->port, hdspm->port + io_extent - 1); 6611 6612 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent); 6613 if (!hdspm->iobase) { 6614 dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n", 6615 hdspm->port, hdspm->port + io_extent - 1); 6616 return -EBUSY; 6617 } 6618 dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n", 6619 (unsigned long)hdspm->iobase, hdspm->port, 6620 hdspm->port + io_extent - 1); 6621 6622 if (request_irq(pci->irq, snd_hdspm_interrupt, 6623 IRQF_SHARED, KBUILD_MODNAME, hdspm)) { 6624 dev_err(card->dev, "unable to use IRQ %d\n", pci->irq); 6625 return -EBUSY; 6626 } 6627 6628 dev_dbg(card->dev, "use IRQ %d\n", pci->irq); 6629 6630 hdspm->irq = pci->irq; 6631 6632 dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n", 6633 sizeof(struct hdspm_mixer)); 6634 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL); 6635 if (!hdspm->mixer) { 6636 dev_err(card->dev, 6637 "unable to kmalloc Mixer memory of %d Bytes\n", 6638 (int)sizeof(struct hdspm_mixer)); 6639 return -ENOMEM; 6640 } 6641 6642 hdspm->port_names_in = NULL; 6643 hdspm->port_names_out = NULL; 6644 6645 switch (hdspm->io_type) { 6646 case AES32: 6647 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS; 6648 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS; 6649 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS; 6650 6651 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6652 channel_map_aes32; 6653 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6654 channel_map_aes32; 6655 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6656 channel_map_aes32; 6657 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6658 texts_ports_aes32; 6659 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6660 texts_ports_aes32; 6661 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6662 texts_ports_aes32; 6663 6664 hdspm->max_channels_out = hdspm->max_channels_in = 6665 AES32_CHANNELS; 6666 hdspm->port_names_in = hdspm->port_names_out = 6667 texts_ports_aes32; 6668 hdspm->channel_map_in = hdspm->channel_map_out = 6669 channel_map_aes32; 6670 6671 break; 6672 6673 case MADI: 6674 case MADIface: 6675 hdspm->ss_in_channels = hdspm->ss_out_channels = 6676 MADI_SS_CHANNELS; 6677 hdspm->ds_in_channels = hdspm->ds_out_channels = 6678 MADI_DS_CHANNELS; 6679 hdspm->qs_in_channels = hdspm->qs_out_channels = 6680 MADI_QS_CHANNELS; 6681 6682 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6683 channel_map_unity_ss; 6684 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6685 channel_map_unity_ss; 6686 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6687 channel_map_unity_ss; 6688 6689 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6690 texts_ports_madi; 6691 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6692 texts_ports_madi; 6693 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6694 texts_ports_madi; 6695 break; 6696 6697 case AIO: 6698 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS; 6699 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS; 6700 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS; 6701 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS; 6702 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS; 6703 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS; 6704 6705 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) { 6706 dev_info(card->dev, "AEB input board found\n"); 6707 hdspm->ss_in_channels += 4; 6708 hdspm->ds_in_channels += 4; 6709 hdspm->qs_in_channels += 4; 6710 } 6711 6712 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) { 6713 dev_info(card->dev, "AEB output board found\n"); 6714 hdspm->ss_out_channels += 4; 6715 hdspm->ds_out_channels += 4; 6716 hdspm->qs_out_channels += 4; 6717 } 6718 6719 hdspm->channel_map_out_ss = channel_map_aio_out_ss; 6720 hdspm->channel_map_out_ds = channel_map_aio_out_ds; 6721 hdspm->channel_map_out_qs = channel_map_aio_out_qs; 6722 6723 hdspm->channel_map_in_ss = channel_map_aio_in_ss; 6724 hdspm->channel_map_in_ds = channel_map_aio_in_ds; 6725 hdspm->channel_map_in_qs = channel_map_aio_in_qs; 6726 6727 hdspm->port_names_in_ss = texts_ports_aio_in_ss; 6728 hdspm->port_names_out_ss = texts_ports_aio_out_ss; 6729 hdspm->port_names_in_ds = texts_ports_aio_in_ds; 6730 hdspm->port_names_out_ds = texts_ports_aio_out_ds; 6731 hdspm->port_names_in_qs = texts_ports_aio_in_qs; 6732 hdspm->port_names_out_qs = texts_ports_aio_out_qs; 6733 6734 break; 6735 6736 case RayDAT: 6737 hdspm->ss_in_channels = hdspm->ss_out_channels = 6738 RAYDAT_SS_CHANNELS; 6739 hdspm->ds_in_channels = hdspm->ds_out_channels = 6740 RAYDAT_DS_CHANNELS; 6741 hdspm->qs_in_channels = hdspm->qs_out_channels = 6742 RAYDAT_QS_CHANNELS; 6743 6744 hdspm->max_channels_in = RAYDAT_SS_CHANNELS; 6745 hdspm->max_channels_out = RAYDAT_SS_CHANNELS; 6746 6747 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6748 channel_map_raydat_ss; 6749 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6750 channel_map_raydat_ds; 6751 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6752 channel_map_raydat_qs; 6753 hdspm->channel_map_in = hdspm->channel_map_out = 6754 channel_map_raydat_ss; 6755 6756 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6757 texts_ports_raydat_ss; 6758 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6759 texts_ports_raydat_ds; 6760 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6761 texts_ports_raydat_qs; 6762 6763 6764 break; 6765 6766 } 6767 6768 /* TCO detection */ 6769 switch (hdspm->io_type) { 6770 case AIO: 6771 case RayDAT: 6772 if (hdspm_read(hdspm, HDSPM_statusRegister2) & 6773 HDSPM_s2_tco_detect) { 6774 hdspm->midiPorts++; 6775 hdspm->tco = kzalloc(sizeof(struct hdspm_tco), 6776 GFP_KERNEL); 6777 if (NULL != hdspm->tco) { 6778 hdspm_tco_write(hdspm); 6779 } 6780 dev_info(card->dev, "AIO/RayDAT TCO module found\n"); 6781 } else { 6782 hdspm->tco = NULL; 6783 } 6784 break; 6785 6786 case MADI: 6787 case AES32: 6788 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) { 6789 hdspm->midiPorts++; 6790 hdspm->tco = kzalloc(sizeof(struct hdspm_tco), 6791 GFP_KERNEL); 6792 if (NULL != hdspm->tco) { 6793 hdspm_tco_write(hdspm); 6794 } 6795 dev_info(card->dev, "MADI/AES TCO module found\n"); 6796 } else { 6797 hdspm->tco = NULL; 6798 } 6799 break; 6800 6801 default: 6802 hdspm->tco = NULL; 6803 } 6804 6805 /* texts */ 6806 switch (hdspm->io_type) { 6807 case AES32: 6808 if (hdspm->tco) { 6809 hdspm->texts_autosync = texts_autosync_aes_tco; 6810 hdspm->texts_autosync_items = 6811 ARRAY_SIZE(texts_autosync_aes_tco); 6812 } else { 6813 hdspm->texts_autosync = texts_autosync_aes; 6814 hdspm->texts_autosync_items = 6815 ARRAY_SIZE(texts_autosync_aes); 6816 } 6817 break; 6818 6819 case MADI: 6820 if (hdspm->tco) { 6821 hdspm->texts_autosync = texts_autosync_madi_tco; 6822 hdspm->texts_autosync_items = 4; 6823 } else { 6824 hdspm->texts_autosync = texts_autosync_madi; 6825 hdspm->texts_autosync_items = 3; 6826 } 6827 break; 6828 6829 case MADIface: 6830 6831 break; 6832 6833 case RayDAT: 6834 if (hdspm->tco) { 6835 hdspm->texts_autosync = texts_autosync_raydat_tco; 6836 hdspm->texts_autosync_items = 9; 6837 } else { 6838 hdspm->texts_autosync = texts_autosync_raydat; 6839 hdspm->texts_autosync_items = 8; 6840 } 6841 break; 6842 6843 case AIO: 6844 if (hdspm->tco) { 6845 hdspm->texts_autosync = texts_autosync_aio_tco; 6846 hdspm->texts_autosync_items = 6; 6847 } else { 6848 hdspm->texts_autosync = texts_autosync_aio; 6849 hdspm->texts_autosync_items = 5; 6850 } 6851 break; 6852 6853 } 6854 6855 tasklet_init(&hdspm->midi_tasklet, 6856 hdspm_midi_tasklet, (unsigned long) hdspm); 6857 6858 6859 if (hdspm->io_type != MADIface) { 6860 hdspm->serial = (hdspm_read(hdspm, 6861 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF; 6862 /* id contains either a user-provided value or the default 6863 * NULL. If it's the default, we're safe to 6864 * fill card->id with the serial number. 6865 * 6866 * If the serial number is 0xFFFFFF, then we're dealing with 6867 * an old PCI revision that comes without a sane number. In 6868 * this case, we don't set card->id to avoid collisions 6869 * when running with multiple cards. 6870 */ 6871 if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) { 6872 sprintf(card->id, "HDSPMx%06x", hdspm->serial); 6873 snd_card_set_id(card, card->id); 6874 } 6875 } 6876 6877 dev_dbg(card->dev, "create alsa devices.\n"); 6878 err = snd_hdspm_create_alsa_devices(card, hdspm); 6879 if (err < 0) 6880 return err; 6881 6882 snd_hdspm_initialize_midi_flush(hdspm); 6883 6884 return 0; 6885 } 6886 6887 6888 static int snd_hdspm_free(struct hdspm * hdspm) 6889 { 6890 6891 if (hdspm->port) { 6892 6893 /* stop th audio, and cancel all interrupts */ 6894 hdspm->control_register &= 6895 ~(HDSPM_Start | HDSPM_AudioInterruptEnable | 6896 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable | 6897 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable); 6898 hdspm_write(hdspm, HDSPM_controlRegister, 6899 hdspm->control_register); 6900 } 6901 6902 if (hdspm->irq >= 0) 6903 free_irq(hdspm->irq, (void *) hdspm); 6904 6905 kfree(hdspm->mixer); 6906 iounmap(hdspm->iobase); 6907 6908 if (hdspm->port) 6909 pci_release_regions(hdspm->pci); 6910 6911 pci_disable_device(hdspm->pci); 6912 return 0; 6913 } 6914 6915 6916 static void snd_hdspm_card_free(struct snd_card *card) 6917 { 6918 struct hdspm *hdspm = card->private_data; 6919 6920 if (hdspm) 6921 snd_hdspm_free(hdspm); 6922 } 6923 6924 6925 static int snd_hdspm_probe(struct pci_dev *pci, 6926 const struct pci_device_id *pci_id) 6927 { 6928 static int dev; 6929 struct hdspm *hdspm; 6930 struct snd_card *card; 6931 int err; 6932 6933 if (dev >= SNDRV_CARDS) 6934 return -ENODEV; 6935 if (!enable[dev]) { 6936 dev++; 6937 return -ENOENT; 6938 } 6939 6940 err = snd_card_new(&pci->dev, index[dev], id[dev], 6941 THIS_MODULE, sizeof(struct hdspm), &card); 6942 if (err < 0) 6943 return err; 6944 6945 hdspm = card->private_data; 6946 card->private_free = snd_hdspm_card_free; 6947 hdspm->dev = dev; 6948 hdspm->pci = pci; 6949 6950 err = snd_hdspm_create(card, hdspm); 6951 if (err < 0) { 6952 snd_card_free(card); 6953 return err; 6954 } 6955 6956 if (hdspm->io_type != MADIface) { 6957 sprintf(card->shortname, "%s_%x", 6958 hdspm->card_name, 6959 hdspm->serial); 6960 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d", 6961 hdspm->card_name, 6962 hdspm->serial, 6963 hdspm->port, hdspm->irq); 6964 } else { 6965 sprintf(card->shortname, "%s", hdspm->card_name); 6966 sprintf(card->longname, "%s at 0x%lx, irq %d", 6967 hdspm->card_name, hdspm->port, hdspm->irq); 6968 } 6969 6970 err = snd_card_register(card); 6971 if (err < 0) { 6972 snd_card_free(card); 6973 return err; 6974 } 6975 6976 pci_set_drvdata(pci, card); 6977 6978 dev++; 6979 return 0; 6980 } 6981 6982 static void snd_hdspm_remove(struct pci_dev *pci) 6983 { 6984 snd_card_free(pci_get_drvdata(pci)); 6985 } 6986 6987 static struct pci_driver hdspm_driver = { 6988 .name = KBUILD_MODNAME, 6989 .id_table = snd_hdspm_ids, 6990 .probe = snd_hdspm_probe, 6991 .remove = snd_hdspm_remove, 6992 }; 6993 6994 module_pci_driver(hdspm_driver); 6995