xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision 7fe2f639)
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41 #include <linux/init.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/moduleparam.h>
45 #include <linux/slab.h>
46 #include <linux/pci.h>
47 #include <linux/math64.h>
48 #include <asm/io.h>
49 
50 #include <sound/core.h>
51 #include <sound/control.h>
52 #include <sound/pcm.h>
53 #include <sound/pcm_params.h>
54 #include <sound/info.h>
55 #include <sound/asoundef.h>
56 #include <sound/rawmidi.h>
57 #include <sound/hwdep.h>
58 #include <sound/initval.h>
59 
60 #include <sound/hdspm.h>
61 
62 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
63 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
64 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
65 
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
68 
69 module_param_array(id, charp, NULL, 0444);
70 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
71 
72 module_param_array(enable, bool, NULL, 0444);
73 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
74 
75 
76 MODULE_AUTHOR
77 (
78 	"Winfried Ritsch <ritsch_AT_iem.at>, "
79 	"Paul Davis <paul@linuxaudiosystems.com>, "
80 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
81 	"Remy Bruno <remy.bruno@trinnov.com>, "
82 	"Florian Faber <faberman@linuxproaudio.org>, "
83 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
84 );
85 MODULE_DESCRIPTION("RME HDSPM");
86 MODULE_LICENSE("GPL");
87 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88 
89 /* --- Write registers. ---
90   These are defined as byte-offsets from the iobase value.  */
91 
92 #define HDSPM_WR_SETTINGS             0
93 #define HDSPM_outputBufferAddress    32
94 #define HDSPM_inputBufferAddress     36
95 #define HDSPM_controlRegister	     64
96 #define HDSPM_interruptConfirmation  96
97 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
98 #define HDSPM_freqReg                256  /* for AES32 */
99 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
100 #define HDSPM_midiDataOut1	     356
101 #define HDSPM_eeprom_wr		     384  /* for AES32 */
102 
103 /* DMA enable for 64 channels, only Bit 0 is relevant */
104 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
105 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
106 
107 /* 16 page addresses for each of the 64 channels DMA buffer in and out
108    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
109 #define HDSPM_pageAddressBufferOut       8192
110 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
111 
112 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
113 
114 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
115 
116 /* --- Read registers. ---
117    These are defined as byte-offsets from the iobase value */
118 #define HDSPM_statusRegister    0
119 /*#define HDSPM_statusRegister2  96 */
120 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
121  * offset 192, for AES32 *and* MADI
122  * => need to check that offset 192 is working on MADI */
123 #define HDSPM_statusRegister2  192
124 #define HDSPM_timecodeRegister 128
125 
126 /* AIO, RayDAT */
127 #define HDSPM_RD_STATUS_0 0
128 #define HDSPM_RD_STATUS_1 64
129 #define HDSPM_RD_STATUS_2 128
130 #define HDSPM_RD_STATUS_3 192
131 
132 #define HDSPM_RD_TCO           256
133 #define HDSPM_RD_PLL_FREQ      512
134 #define HDSPM_WR_TCO           128
135 
136 #define HDSPM_TCO1_TCO_lock			0x00000001
137 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
138 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
139 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
140 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
141 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
142 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
143 
144 #define HDSPM_TCO1_set_TC			0x00000100
145 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
146 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
147 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
148 
149 #define HDSPM_TCO2_TC_run			0x00010000
150 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
151 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
152 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
153 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
154 #define HDSPM_TCO2_set_jam_sync			0x00200000
155 #define HDSPM_TCO2_set_flywheel			0x00400000
156 
157 #define HDSPM_TCO2_set_01_4			0x01000000
158 #define HDSPM_TCO2_set_pull_down		0x02000000
159 #define HDSPM_TCO2_set_pull_up			0x04000000
160 #define HDSPM_TCO2_set_freq			0x08000000
161 #define HDSPM_TCO2_set_term_75R			0x10000000
162 #define HDSPM_TCO2_set_input_LSB		0x20000000
163 #define HDSPM_TCO2_set_input_MSB		0x40000000
164 #define HDSPM_TCO2_set_freq_from_app		0x80000000
165 
166 
167 #define HDSPM_midiDataOut0    352
168 #define HDSPM_midiDataOut1    356
169 #define HDSPM_midiDataOut2    368
170 
171 #define HDSPM_midiDataIn0     360
172 #define HDSPM_midiDataIn1     364
173 #define HDSPM_midiDataIn2     372
174 #define HDSPM_midiDataIn3     376
175 
176 /* status is data bytes in MIDI-FIFO (0-128) */
177 #define HDSPM_midiStatusOut0  384
178 #define HDSPM_midiStatusOut1  388
179 #define HDSPM_midiStatusOut2  400
180 
181 #define HDSPM_midiStatusIn0   392
182 #define HDSPM_midiStatusIn1   396
183 #define HDSPM_midiStatusIn2   404
184 #define HDSPM_midiStatusIn3   408
185 
186 
187 /* the meters are regular i/o-mapped registers, but offset
188    considerably from the rest. the peak registers are reset
189    when read; the least-significant 4 bits are full-scale counters;
190    the actual peak value is in the most-significant 24 bits.
191 */
192 
193 #define HDSPM_MADI_INPUT_PEAK		4096
194 #define HDSPM_MADI_PLAYBACK_PEAK	4352
195 #define HDSPM_MADI_OUTPUT_PEAK		4608
196 
197 #define HDSPM_MADI_INPUT_RMS_L		6144
198 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
199 #define HDSPM_MADI_OUTPUT_RMS_L		6656
200 
201 #define HDSPM_MADI_INPUT_RMS_H		7168
202 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
203 #define HDSPM_MADI_OUTPUT_RMS_H		7680
204 
205 /* --- Control Register bits --------- */
206 #define HDSPM_Start                (1<<0) /* start engine */
207 
208 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
209 #define HDSPM_Latency1             (1<<2) /* where n is defined */
210 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
211 
212 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
213 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
214 					  register [RayDAT, AIO] */
215 
216 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
217 
218 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
219 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
220 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
221 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
222 
223 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
224 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
225 				     56channelMODE=0 */ /* MADI ONLY*/
226 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
227 
228 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
229                                      0=off, 1=on  */ /* MADI ONLY */
230 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
231 
232 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
233 				    * -- MADI ONLY
234 				    */
235 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
236 
237 #define HDSPM_SyncRef2     (1<<13)
238 #define HDSPM_SyncRef3     (1<<25)
239 
240 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
241 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
242                                       AES additional bits in
243 				      lower 5 Audiodatabits ??? */
244 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
245 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
246 
247 #define HDSPM_Midi0InterruptEnable 0x0400000
248 #define HDSPM_Midi1InterruptEnable 0x0800000
249 #define HDSPM_Midi2InterruptEnable 0x0200000
250 #define HDSPM_Midi3InterruptEnable 0x4000000
251 
252 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
253 #define HDSPe_FLOAT_FORMAT         0x2000000
254 
255 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
256 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
257 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
258 
259 #define HDSPM_wclk_sel (1<<30)
260 
261 /* --- bit helper defines */
262 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
263 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
264 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
265 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
266 #define HDSPM_InputOptical   0
267 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
268 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
269 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
270 
271 #define HDSPM_c0_SyncRef0      0x2
272 #define HDSPM_c0_SyncRef1      0x4
273 #define HDSPM_c0_SyncRef2      0x8
274 #define HDSPM_c0_SyncRef3      0x10
275 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
276 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
277 
278 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
279 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
280 #define HDSPM_SYNC_FROM_TCO     2
281 #define HDSPM_SYNC_FROM_SYNC_IN 3
282 
283 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
284 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
285 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
286 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
287 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
288 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
289 				HDSPM_Frequency0)
290 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
291 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
292 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
293 				 HDSPM_Frequency0)
294 
295 
296 /* Synccheck Status */
297 #define HDSPM_SYNC_CHECK_NO_LOCK 0
298 #define HDSPM_SYNC_CHECK_LOCK    1
299 #define HDSPM_SYNC_CHECK_SYNC	 2
300 
301 /* AutoSync References - used by "autosync_ref" control switch */
302 #define HDSPM_AUTOSYNC_FROM_WORD      0
303 #define HDSPM_AUTOSYNC_FROM_MADI      1
304 #define HDSPM_AUTOSYNC_FROM_TCO       2
305 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
306 #define HDSPM_AUTOSYNC_FROM_NONE      4
307 
308 /* Possible sources of MADI input */
309 #define HDSPM_OPTICAL 0		/* optical   */
310 #define HDSPM_COAXIAL 1		/* BNC */
311 
312 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
313 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
314 
315 #define hdspm_encode_in(x) (((x)&0x3)<<14)
316 #define hdspm_decode_in(x) (((x)>>14)&0x3)
317 
318 /* --- control2 register bits --- */
319 #define HDSPM_TMS             (1<<0)
320 #define HDSPM_TCK             (1<<1)
321 #define HDSPM_TDI             (1<<2)
322 #define HDSPM_JTAG            (1<<3)
323 #define HDSPM_PWDN            (1<<4)
324 #define HDSPM_PROGRAM	      (1<<5)
325 #define HDSPM_CONFIG_MODE_0   (1<<6)
326 #define HDSPM_CONFIG_MODE_1   (1<<7)
327 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
328 #define HDSPM_BIGENDIAN_MODE  (1<<9)
329 #define HDSPM_RD_MULTIPLE     (1<<10)
330 
331 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
332      that do not conflict with specific bits for AES32 seem to be valid also
333      for the AES32
334  */
335 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
336 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
337 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
338 					 * (like inp0)
339 					 */
340 
341 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
342 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
343 
344 #define HDSPM_tcoLock    0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
345 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status */
346 
347 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
348 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */
349 
350 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
351 			/* since 64byte accurate, last 6 bits are not used */
352 
353 
354 
355 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
356 
357 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
358 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
359 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
360 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
361 
362 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
363 					 * Interrupt
364 					 */
365 #define HDSPM_tco_detect         0x08000000
366 #define HDSPM_tco_lock	         0x20000000
367 
368 #define HDSPM_s2_tco_detect      0x00000040
369 #define HDSPM_s2_AEBO_D          0x00000080
370 #define HDSPM_s2_AEBI_D          0x00000100
371 
372 
373 #define HDSPM_midi0IRQPending    0x40000000
374 #define HDSPM_midi1IRQPending    0x80000000
375 #define HDSPM_midi2IRQPending    0x20000000
376 #define HDSPM_midi2IRQPendingAES 0x00000020
377 #define HDSPM_midi3IRQPending    0x00200000
378 
379 /* --- status bit helpers */
380 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
381 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
382 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
383 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
384 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
385 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
386 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
387 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
388 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
389 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
390 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
391 
392 /* Status2 Register bits */ /* MADI ONLY */
393 
394 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
395 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
396 #define HDSPM_version2 (1<<2)
397 
398 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
399 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
400 
401 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
402 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
403 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, */
404 /* missing Bit   for               111=128, 1000=176.4, 1001=192 */
405 
406 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
407 #define HDSPM_SyncRef1 0x20000
408 
409 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
410 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
411 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
412 
413 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
414 
415 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
416 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
417 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
418 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
419 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
420 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
421 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
422 
423 #define HDSPM_status1_F_0 0x0400000
424 #define HDSPM_status1_F_1 0x0800000
425 #define HDSPM_status1_F_2 0x1000000
426 #define HDSPM_status1_F_3 0x2000000
427 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
428 
429 
430 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
431 				    HDSPM_SelSyncRef2)
432 #define HDSPM_SelSyncRef_WORD      0
433 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
434 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
435 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
436 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
437 				    HDSPM_SelSyncRef2)
438 
439 /*
440    For AES32, bits for status, status2 and timecode are different
441 */
442 /* status */
443 #define HDSPM_AES32_wcLock	0x0200000
444 #define HDSPM_AES32_wcFreq_bit  22
445 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
446   HDSPM_bit2freq */
447 #define HDSPM_AES32_syncref_bit  16
448 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
449 
450 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
451 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
452 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
453 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
454 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
455 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
456 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
457 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
458 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
459 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
460 
461 /*  status2 */
462 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
463 #define HDSPM_LockAES   0x80
464 #define HDSPM_LockAES1  0x80
465 #define HDSPM_LockAES2  0x40
466 #define HDSPM_LockAES3  0x20
467 #define HDSPM_LockAES4  0x10
468 #define HDSPM_LockAES5  0x8
469 #define HDSPM_LockAES6  0x4
470 #define HDSPM_LockAES7  0x2
471 #define HDSPM_LockAES8  0x1
472 /*
473    Timecode
474    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
475    AES i+1
476  bits 3210
477       0001  32kHz
478       0010  44.1kHz
479       0011  48kHz
480       0100  64kHz
481       0101  88.2kHz
482       0110  96kHz
483       0111  128kHz
484       1000  176.4kHz
485       1001  192kHz
486   NB: Timecode register doesn't seem to work on AES32 card revision 230
487 */
488 
489 /* Mixer Values */
490 #define UNITY_GAIN          32768	/* = 65536/2 */
491 #define MINUS_INFINITY_GAIN 0
492 
493 /* Number of channels for different Speed Modes */
494 #define MADI_SS_CHANNELS       64
495 #define MADI_DS_CHANNELS       32
496 #define MADI_QS_CHANNELS       16
497 
498 #define RAYDAT_SS_CHANNELS     36
499 #define RAYDAT_DS_CHANNELS     20
500 #define RAYDAT_QS_CHANNELS     12
501 
502 #define AIO_IN_SS_CHANNELS        14
503 #define AIO_IN_DS_CHANNELS        10
504 #define AIO_IN_QS_CHANNELS        8
505 #define AIO_OUT_SS_CHANNELS        16
506 #define AIO_OUT_DS_CHANNELS        12
507 #define AIO_OUT_QS_CHANNELS        10
508 
509 #define AES32_CHANNELS		16
510 
511 /* the size of a substream (1 mono data stream) */
512 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
513 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
514 
515 /* the size of the area we need to allocate for DMA transfers. the
516    size is the same regardless of the number of channels, and
517    also the latency to use.
518    for one direction !!!
519 */
520 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
521 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
522 
523 /* revisions >= 230 indicate AES32 card */
524 #define HDSPM_MADI_OLD_REV	207
525 #define HDSPM_MADI_REV		210
526 #define HDSPM_RAYDAT_REV	211
527 #define HDSPM_AIO_REV		212
528 #define HDSPM_MADIFACE_REV	213
529 #define HDSPM_AES_REV		240
530 #define HDSPM_AES32_REV		234
531 #define HDSPM_AES32_OLD_REV	233
532 
533 /* speed factor modes */
534 #define HDSPM_SPEED_SINGLE 0
535 #define HDSPM_SPEED_DOUBLE 1
536 #define HDSPM_SPEED_QUAD   2
537 
538 /* names for speed modes */
539 static char *hdspm_speed_names[] = { "single", "double", "quad" };
540 
541 static char *texts_autosync_aes_tco[] = { "Word Clock",
542 					  "AES1", "AES2", "AES3", "AES4",
543 					  "AES5", "AES6", "AES7", "AES8",
544 					  "TCO" };
545 static char *texts_autosync_aes[] = { "Word Clock",
546 				      "AES1", "AES2", "AES3", "AES4",
547 				      "AES5", "AES6", "AES7", "AES8" };
548 static char *texts_autosync_madi_tco[] = { "Word Clock",
549 					   "MADI", "TCO", "Sync In" };
550 static char *texts_autosync_madi[] = { "Word Clock",
551 				       "MADI", "Sync In" };
552 
553 static char *texts_autosync_raydat_tco[] = {
554 	"Word Clock",
555 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
556 	"AES", "SPDIF", "TCO", "Sync In"
557 };
558 static char *texts_autosync_raydat[] = {
559 	"Word Clock",
560 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
561 	"AES", "SPDIF", "Sync In"
562 };
563 static char *texts_autosync_aio_tco[] = {
564 	"Word Clock",
565 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
566 };
567 static char *texts_autosync_aio[] = { "Word Clock",
568 				      "ADAT", "AES", "SPDIF", "Sync In" };
569 
570 static char *texts_freq[] = {
571 	"No Lock",
572 	"32 kHz",
573 	"44.1 kHz",
574 	"48 kHz",
575 	"64 kHz",
576 	"88.2 kHz",
577 	"96 kHz",
578 	"128 kHz",
579 	"176.4 kHz",
580 	"192 kHz"
581 };
582 
583 static char *texts_ports_madi[] = {
584 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
585 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
586 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
587 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
588 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
589 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
590 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
591 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
592 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
593 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
594 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
595 };
596 
597 
598 static char *texts_ports_raydat_ss[] = {
599 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
600 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
601 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
602 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
603 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
604 	"ADAT4.7", "ADAT4.8",
605 	"AES.L", "AES.R",
606 	"SPDIF.L", "SPDIF.R"
607 };
608 
609 static char *texts_ports_raydat_ds[] = {
610 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
611 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
612 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
613 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
614 	"AES.L", "AES.R",
615 	"SPDIF.L", "SPDIF.R"
616 };
617 
618 static char *texts_ports_raydat_qs[] = {
619 	"ADAT1.1", "ADAT1.2",
620 	"ADAT2.1", "ADAT2.2",
621 	"ADAT3.1", "ADAT3.2",
622 	"ADAT4.1", "ADAT4.2",
623 	"AES.L", "AES.R",
624 	"SPDIF.L", "SPDIF.R"
625 };
626 
627 
628 static char *texts_ports_aio_in_ss[] = {
629 	"Analogue.L", "Analogue.R",
630 	"AES.L", "AES.R",
631 	"SPDIF.L", "SPDIF.R",
632 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
633 	"ADAT.7", "ADAT.8"
634 };
635 
636 static char *texts_ports_aio_out_ss[] = {
637 	"Analogue.L", "Analogue.R",
638 	"AES.L", "AES.R",
639 	"SPDIF.L", "SPDIF.R",
640 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
641 	"ADAT.7", "ADAT.8",
642 	"Phone.L", "Phone.R"
643 };
644 
645 static char *texts_ports_aio_in_ds[] = {
646 	"Analogue.L", "Analogue.R",
647 	"AES.L", "AES.R",
648 	"SPDIF.L", "SPDIF.R",
649 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
650 };
651 
652 static char *texts_ports_aio_out_ds[] = {
653 	"Analogue.L", "Analogue.R",
654 	"AES.L", "AES.R",
655 	"SPDIF.L", "SPDIF.R",
656 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
657 	"Phone.L", "Phone.R"
658 };
659 
660 static char *texts_ports_aio_in_qs[] = {
661 	"Analogue.L", "Analogue.R",
662 	"AES.L", "AES.R",
663 	"SPDIF.L", "SPDIF.R",
664 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
665 };
666 
667 static char *texts_ports_aio_out_qs[] = {
668 	"Analogue.L", "Analogue.R",
669 	"AES.L", "AES.R",
670 	"SPDIF.L", "SPDIF.R",
671 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
672 	"Phone.L", "Phone.R"
673 };
674 
675 static char *texts_ports_aes32[] = {
676 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
677 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
678 	"AES.15", "AES.16"
679 };
680 
681 /* These tables map the ALSA channels 1..N to the channels that we
682    need to use in order to find the relevant channel buffer. RME
683    refers to this kind of mapping as between "the ADAT channel and
684    the DMA channel." We index it using the logical audio channel,
685    and the value is the DMA channel (i.e. channel buffer number)
686    where the data for that channel can be read/written from/to.
687 */
688 
689 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
690 	0, 1, 2, 3, 4, 5, 6, 7,
691 	8, 9, 10, 11, 12, 13, 14, 15,
692 	16, 17, 18, 19, 20, 21, 22, 23,
693 	24, 25, 26, 27, 28, 29, 30, 31,
694 	32, 33, 34, 35, 36, 37, 38, 39,
695 	40, 41, 42, 43, 44, 45, 46, 47,
696 	48, 49, 50, 51, 52, 53, 54, 55,
697 	56, 57, 58, 59, 60, 61, 62, 63
698 };
699 
700 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
701 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
702 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
703 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
704 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
705 	0, 1,			/* AES */
706 	2, 3,			/* SPDIF */
707 	-1, -1, -1, -1,
708 	-1, -1, -1, -1, -1, -1, -1, -1,
709 	-1, -1, -1, -1, -1, -1, -1, -1,
710 	-1, -1, -1, -1, -1, -1, -1, -1,
711 };
712 
713 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
714 	4, 5, 6, 7,		/* ADAT 1 */
715 	8, 9, 10, 11,		/* ADAT 2 */
716 	12, 13, 14, 15,		/* ADAT 3 */
717 	16, 17, 18, 19,		/* ADAT 4 */
718 	0, 1,			/* AES */
719 	2, 3,			/* SPDIF */
720 	-1, -1, -1, -1,
721 	-1, -1, -1, -1, -1, -1, -1, -1,
722 	-1, -1, -1, -1, -1, -1, -1, -1,
723 	-1, -1, -1, -1, -1, -1, -1, -1,
724 	-1, -1, -1, -1, -1, -1, -1, -1,
725 	-1, -1, -1, -1, -1, -1, -1, -1,
726 };
727 
728 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
729 	4, 5,			/* ADAT 1 */
730 	6, 7,			/* ADAT 2 */
731 	8, 9,			/* ADAT 3 */
732 	10, 11,			/* ADAT 4 */
733 	0, 1,			/* AES */
734 	2, 3,			/* SPDIF */
735 	-1, -1, -1, -1,
736 	-1, -1, -1, -1, -1, -1, -1, -1,
737 	-1, -1, -1, -1, -1, -1, -1, -1,
738 	-1, -1, -1, -1, -1, -1, -1, -1,
739 	-1, -1, -1, -1, -1, -1, -1, -1,
740 	-1, -1, -1, -1, -1, -1, -1, -1,
741 	-1, -1, -1, -1, -1, -1, -1, -1,
742 };
743 
744 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
745 	0, 1,			/* line in */
746 	8, 9,			/* aes in, */
747 	10, 11,			/* spdif in */
748 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
749 	-1, -1,
750 	-1, -1, -1, -1, -1, -1, -1, -1,
751 	-1, -1, -1, -1, -1, -1, -1, -1,
752 	-1, -1, -1, -1, -1, -1, -1, -1,
753 	-1, -1, -1, -1, -1, -1, -1, -1,
754 	-1, -1, -1, -1, -1, -1, -1, -1,
755 	-1, -1, -1, -1, -1, -1, -1, -1,
756 };
757 
758 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
759 	0, 1,			/* line out */
760 	8, 9,			/* aes out */
761 	10, 11,			/* spdif out */
762 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
763 	6, 7,			/* phone out */
764 	-1, -1, -1, -1, -1, -1, -1, -1,
765 	-1, -1, -1, -1, -1, -1, -1, -1,
766 	-1, -1, -1, -1, -1, -1, -1, -1,
767 	-1, -1, -1, -1, -1, -1, -1, -1,
768 	-1, -1, -1, -1, -1, -1, -1, -1,
769 	-1, -1, -1, -1, -1, -1, -1, -1,
770 };
771 
772 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
773 	0, 1,			/* line in */
774 	8, 9,			/* aes in */
775 	10, 11,			/* spdif in */
776 	12, 14, 16, 18,		/* adat in */
777 	-1, -1, -1, -1, -1, -1,
778 	-1, -1, -1, -1, -1, -1, -1, -1,
779 	-1, -1, -1, -1, -1, -1, -1, -1,
780 	-1, -1, -1, -1, -1, -1, -1, -1,
781 	-1, -1, -1, -1, -1, -1, -1, -1,
782 	-1, -1, -1, -1, -1, -1, -1, -1,
783 	-1, -1, -1, -1, -1, -1, -1, -1
784 };
785 
786 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
787 	0, 1,			/* line out */
788 	8, 9,			/* aes out */
789 	10, 11,			/* spdif out */
790 	12, 14, 16, 18,		/* adat out */
791 	6, 7,			/* phone out */
792 	-1, -1, -1, -1,
793 	-1, -1, -1, -1, -1, -1, -1, -1,
794 	-1, -1, -1, -1, -1, -1, -1, -1,
795 	-1, -1, -1, -1, -1, -1, -1, -1,
796 	-1, -1, -1, -1, -1, -1, -1, -1,
797 	-1, -1, -1, -1, -1, -1, -1, -1,
798 	-1, -1, -1, -1, -1, -1, -1, -1
799 };
800 
801 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
802 	0, 1,			/* line in */
803 	8, 9,			/* aes in */
804 	10, 11,			/* spdif in */
805 	12, 16,			/* adat in */
806 	-1, -1, -1, -1, -1, -1, -1, -1,
807 	-1, -1, -1, -1, -1, -1, -1, -1,
808 	-1, -1, -1, -1, -1, -1, -1, -1,
809 	-1, -1, -1, -1, -1, -1, -1, -1,
810 	-1, -1, -1, -1, -1, -1, -1, -1,
811 	-1, -1, -1, -1, -1, -1, -1, -1,
812 	-1, -1, -1, -1, -1, -1, -1, -1
813 };
814 
815 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
816 	0, 1,			/* line out */
817 	8, 9,			/* aes out */
818 	10, 11,			/* spdif out */
819 	12, 16,			/* adat out */
820 	6, 7,			/* phone out */
821 	-1, -1, -1, -1, -1, -1,
822 	-1, -1, -1, -1, -1, -1, -1, -1,
823 	-1, -1, -1, -1, -1, -1, -1, -1,
824 	-1, -1, -1, -1, -1, -1, -1, -1,
825 	-1, -1, -1, -1, -1, -1, -1, -1,
826 	-1, -1, -1, -1, -1, -1, -1, -1,
827 	-1, -1, -1, -1, -1, -1, -1, -1
828 };
829 
830 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
831 	0, 1, 2, 3, 4, 5, 6, 7,
832 	8, 9, 10, 11, 12, 13, 14, 15,
833 	-1, -1, -1, -1, -1, -1, -1, -1,
834 	-1, -1, -1, -1, -1, -1, -1, -1,
835 	-1, -1, -1, -1, -1, -1, -1, -1,
836 	-1, -1, -1, -1, -1, -1, -1, -1,
837 	-1, -1, -1, -1, -1, -1, -1, -1,
838 	-1, -1, -1, -1, -1, -1, -1, -1
839 };
840 
841 struct hdspm_midi {
842 	struct hdspm *hdspm;
843 	int id;
844 	struct snd_rawmidi *rmidi;
845 	struct snd_rawmidi_substream *input;
846 	struct snd_rawmidi_substream *output;
847 	char istimer;		/* timer in use */
848 	struct timer_list timer;
849 	spinlock_t lock;
850 	int pending;
851 	int dataIn;
852 	int statusIn;
853 	int dataOut;
854 	int statusOut;
855 	int ie;
856 	int irq;
857 };
858 
859 struct hdspm_tco {
860 	int input;
861 	int framerate;
862 	int wordclock;
863 	int samplerate;
864 	int pull;
865 	int term; /* 0 = off, 1 = on */
866 };
867 
868 struct hdspm {
869         spinlock_t lock;
870 	/* only one playback and/or capture stream */
871         struct snd_pcm_substream *capture_substream;
872         struct snd_pcm_substream *playback_substream;
873 
874 	char *card_name;	     /* for procinfo */
875 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
876 
877 	uint8_t io_type;
878 
879 	int monitor_outs;	/* set up monitoring outs init flag */
880 
881 	u32 control_register;	/* cached value */
882 	u32 control2_register;	/* cached value */
883 	u32 settings_register;
884 
885 	struct hdspm_midi midi[4];
886 	struct tasklet_struct midi_tasklet;
887 
888 	size_t period_bytes;
889 	unsigned char ss_in_channels;
890 	unsigned char ds_in_channels;
891 	unsigned char qs_in_channels;
892 	unsigned char ss_out_channels;
893 	unsigned char ds_out_channels;
894 	unsigned char qs_out_channels;
895 
896 	unsigned char max_channels_in;
897 	unsigned char max_channels_out;
898 
899 	signed char *channel_map_in;
900 	signed char *channel_map_out;
901 
902 	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
903 	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
904 
905 	char **port_names_in;
906 	char **port_names_out;
907 
908 	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
909 	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
910 
911 	unsigned char *playback_buffer;	/* suitably aligned address */
912 	unsigned char *capture_buffer;	/* suitably aligned address */
913 
914 	pid_t capture_pid;	/* process id which uses capture */
915 	pid_t playback_pid;	/* process id which uses capture */
916 	int running;		/* running status */
917 
918 	int last_external_sample_rate;	/* samplerate mystic ... */
919 	int last_internal_sample_rate;
920 	int system_sample_rate;
921 
922 	int dev;		/* Hardware vars... */
923 	int irq;
924 	unsigned long port;
925 	void __iomem *iobase;
926 
927 	int irq_count;		/* for debug */
928 	int midiPorts;
929 
930 	struct snd_card *card;	/* one card */
931 	struct snd_pcm *pcm;		/* has one pcm */
932 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
933 	struct pci_dev *pci;	/* and an pci info */
934 
935 	/* Mixer vars */
936 	/* fast alsa mixer */
937 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
938 	/* but input to much, so not used */
939 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
940 	/* full mixer accessible over mixer ioctl or hwdep-device */
941 	struct hdspm_mixer *mixer;
942 
943 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
944 
945 	char **texts_autosync;
946 	int texts_autosync_items;
947 
948 	cycles_t last_interrupt;
949 
950 	struct hdspm_peak_rms peak_rms;
951 };
952 
953 
954 static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
955 	{
956 	 .vendor = PCI_VENDOR_ID_XILINX,
957 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
958 	 .subvendor = PCI_ANY_ID,
959 	 .subdevice = PCI_ANY_ID,
960 	 .class = 0,
961 	 .class_mask = 0,
962 	 .driver_data = 0},
963 	{0,}
964 };
965 
966 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
967 
968 /* prototypes */
969 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
970 						   struct hdspm * hdspm);
971 static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
972 					  struct hdspm * hdspm);
973 
974 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
975 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
976 static int hdspm_autosync_ref(struct hdspm *hdspm);
977 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
978 static void hdspm_set_sgbuf(struct hdspm *hdspm,
979 			    struct snd_pcm_substream *substream,
980 			     unsigned int reg, int channels);
981 
982 static inline int HDSPM_bit2freq(int n)
983 {
984 	static const int bit2freq_tab[] = {
985 		0, 32000, 44100, 48000, 64000, 88200,
986 		96000, 128000, 176400, 192000 };
987 	if (n < 1 || n > 9)
988 		return 0;
989 	return bit2freq_tab[n];
990 }
991 
992 /* Write/read to/from HDSPM with Adresses in Bytes
993    not words but only 32Bit writes are allowed */
994 
995 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
996 			       unsigned int val)
997 {
998 	writel(val, hdspm->iobase + reg);
999 }
1000 
1001 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1002 {
1003 	return readl(hdspm->iobase + reg);
1004 }
1005 
1006 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1007    mixer is write only on hardware so we have to cache him for read
1008    each fader is a u32, but uses only the first 16 bit */
1009 
1010 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1011 				     unsigned int in)
1012 {
1013 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1014 		return 0;
1015 
1016 	return hdspm->mixer->ch[chan].in[in];
1017 }
1018 
1019 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1020 				     unsigned int pb)
1021 {
1022 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1023 		return 0;
1024 	return hdspm->mixer->ch[chan].pb[pb];
1025 }
1026 
1027 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1028 				      unsigned int in, unsigned short data)
1029 {
1030 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1031 		return -1;
1032 
1033 	hdspm_write(hdspm,
1034 		    HDSPM_MADI_mixerBase +
1035 		    ((in + 128 * chan) * sizeof(u32)),
1036 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1037 	return 0;
1038 }
1039 
1040 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1041 				      unsigned int pb, unsigned short data)
1042 {
1043 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1044 		return -1;
1045 
1046 	hdspm_write(hdspm,
1047 		    HDSPM_MADI_mixerBase +
1048 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1049 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1050 	return 0;
1051 }
1052 
1053 
1054 /* enable DMA for specific channels, now available for DSP-MADI */
1055 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1056 {
1057 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1058 }
1059 
1060 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1061 {
1062 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1063 }
1064 
1065 /* check if same process is writing and reading */
1066 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1067 {
1068 	unsigned long flags;
1069 	int ret = 1;
1070 
1071 	spin_lock_irqsave(&hdspm->lock, flags);
1072 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1073 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1074 		ret = 0;
1075 	}
1076 	spin_unlock_irqrestore(&hdspm->lock, flags);
1077 	return ret;
1078 }
1079 
1080 /* check for external sample rate */
1081 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1082 {
1083 	unsigned int status, status2, timecode;
1084 	int syncref, rate = 0, rate_bits;
1085 
1086 	switch (hdspm->io_type) {
1087 	case AES32:
1088 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1089 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1090 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
1091 
1092 		syncref = hdspm_autosync_ref(hdspm);
1093 
1094 		if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
1095 				status & HDSPM_AES32_wcLock)
1096 			return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
1097 
1098 		if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
1099 				syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
1100 				status2 & (HDSPM_LockAES >>
1101 				(syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
1102 			return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
1103 		return 0;
1104 		break;
1105 
1106 	case MADIface:
1107 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1108 
1109 		if (!(status & HDSPM_madiLock)) {
1110 			rate = 0;  /* no lock */
1111 		} else {
1112 			switch (status & (HDSPM_status1_freqMask)) {
1113 			case HDSPM_status1_F_0*1:
1114 				rate = 32000; break;
1115 			case HDSPM_status1_F_0*2:
1116 				rate = 44100; break;
1117 			case HDSPM_status1_F_0*3:
1118 				rate = 48000; break;
1119 			case HDSPM_status1_F_0*4:
1120 				rate = 64000; break;
1121 			case HDSPM_status1_F_0*5:
1122 				rate = 88200; break;
1123 			case HDSPM_status1_F_0*6:
1124 				rate = 96000; break;
1125 			case HDSPM_status1_F_0*7:
1126 				rate = 128000; break;
1127 			case HDSPM_status1_F_0*8:
1128 				rate = 176400; break;
1129 			case HDSPM_status1_F_0*9:
1130 				rate = 192000; break;
1131 			default:
1132 				rate = 0; break;
1133 			}
1134 		}
1135 
1136 		break;
1137 
1138 	case MADI:
1139 	case AIO:
1140 	case RayDAT:
1141 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1142 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1143 		rate = 0;
1144 
1145 		/* if wordclock has synced freq and wordclock is valid */
1146 		if ((status2 & HDSPM_wcLock) != 0 &&
1147 				(status2 & HDSPM_SelSyncRef0) == 0) {
1148 
1149 			rate_bits = status2 & HDSPM_wcFreqMask;
1150 
1151 
1152 			switch (rate_bits) {
1153 			case HDSPM_wcFreq32:
1154 				rate = 32000;
1155 				break;
1156 			case HDSPM_wcFreq44_1:
1157 				rate = 44100;
1158 				break;
1159 			case HDSPM_wcFreq48:
1160 				rate = 48000;
1161 				break;
1162 			case HDSPM_wcFreq64:
1163 				rate = 64000;
1164 				break;
1165 			case HDSPM_wcFreq88_2:
1166 				rate = 88200;
1167 				break;
1168 			case HDSPM_wcFreq96:
1169 				rate = 96000;
1170 				break;
1171 			default:
1172 				rate = 0;
1173 				break;
1174 			}
1175 		}
1176 
1177 		/* if rate detected and Syncref is Word than have it,
1178 		 * word has priority to MADI
1179 		 */
1180 		if (rate != 0 &&
1181 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1182 			return rate;
1183 
1184 		/* maybe a madi input (which is taken if sel sync is madi) */
1185 		if (status & HDSPM_madiLock) {
1186 			rate_bits = status & HDSPM_madiFreqMask;
1187 
1188 			switch (rate_bits) {
1189 			case HDSPM_madiFreq32:
1190 				rate = 32000;
1191 				break;
1192 			case HDSPM_madiFreq44_1:
1193 				rate = 44100;
1194 				break;
1195 			case HDSPM_madiFreq48:
1196 				rate = 48000;
1197 				break;
1198 			case HDSPM_madiFreq64:
1199 				rate = 64000;
1200 				break;
1201 			case HDSPM_madiFreq88_2:
1202 				rate = 88200;
1203 				break;
1204 			case HDSPM_madiFreq96:
1205 				rate = 96000;
1206 				break;
1207 			case HDSPM_madiFreq128:
1208 				rate = 128000;
1209 				break;
1210 			case HDSPM_madiFreq176_4:
1211 				rate = 176400;
1212 				break;
1213 			case HDSPM_madiFreq192:
1214 				rate = 192000;
1215 				break;
1216 			default:
1217 				rate = 0;
1218 				break;
1219 			}
1220 		}
1221 		break;
1222 	}
1223 
1224 	return rate;
1225 }
1226 
1227 /* Latency function */
1228 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1229 {
1230 	hdspm->period_bytes = 1 << ((hdspm_decode_latency(hdspm->control_register) + 8));
1231 }
1232 
1233 
1234 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1235 {
1236 	int position;
1237 
1238 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1239 
1240 	switch (hdspm->io_type) {
1241 	case RayDAT:
1242 	case AIO:
1243 		position &= HDSPM_BufferPositionMask;
1244 		position /= 4; /* Bytes per sample */
1245 		break;
1246 	default:
1247 		position = (position & HDSPM_BufferID) ?
1248 			(hdspm->period_bytes / 4) : 0;
1249 	}
1250 
1251 	return position;
1252 }
1253 
1254 
1255 static inline void hdspm_start_audio(struct hdspm * s)
1256 {
1257 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1258 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1259 }
1260 
1261 static inline void hdspm_stop_audio(struct hdspm * s)
1262 {
1263 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1264 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1265 }
1266 
1267 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1268 static void hdspm_silence_playback(struct hdspm *hdspm)
1269 {
1270 	int i;
1271 	int n = hdspm->period_bytes;
1272 	void *buf = hdspm->playback_buffer;
1273 
1274 	if (buf == NULL)
1275 		return;
1276 
1277 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1278 		memset(buf, 0, n);
1279 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1280 	}
1281 }
1282 
1283 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1284 {
1285 	int n;
1286 
1287 	spin_lock_irq(&s->lock);
1288 
1289 	frames >>= 7;
1290 	n = 0;
1291 	while (frames) {
1292 		n++;
1293 		frames >>= 1;
1294 	}
1295 	s->control_register &= ~HDSPM_LatencyMask;
1296 	s->control_register |= hdspm_encode_latency(n);
1297 
1298 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1299 
1300 	hdspm_compute_period_size(s);
1301 
1302 	spin_unlock_irq(&s->lock);
1303 
1304 	return 0;
1305 }
1306 
1307 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1308 {
1309 	u64 freq_const;
1310 
1311 	if (period == 0)
1312 		return 0;
1313 
1314 	switch (hdspm->io_type) {
1315 	case MADI:
1316 	case AES32:
1317 		freq_const = 110069313433624ULL;
1318 		break;
1319 	case RayDAT:
1320 	case AIO:
1321 		freq_const = 104857600000000ULL;
1322 		break;
1323 	case MADIface:
1324 		freq_const = 131072000000000ULL;
1325 	}
1326 
1327 	return div_u64(freq_const, period);
1328 }
1329 
1330 
1331 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1332 {
1333 	u64 n;
1334 
1335 	if (rate >= 112000)
1336 		rate /= 4;
1337 	else if (rate >= 56000)
1338 		rate /= 2;
1339 
1340 	switch (hdspm->io_type) {
1341 	case MADIface:
1342 	  n = 131072000000000ULL;  /* 125 MHz */
1343 	  break;
1344 	case MADI:
1345 	case AES32:
1346 	  n = 110069313433624ULL;  /* 105 MHz */
1347 	  break;
1348 	case RayDAT:
1349 	case AIO:
1350 	  n = 104857600000000ULL;  /* 100 MHz */
1351 	  break;
1352 	}
1353 
1354 	n = div_u64(n, rate);
1355 	/* n should be less than 2^32 for being written to FREQ register */
1356 	snd_BUG_ON(n >> 32);
1357 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1358 }
1359 
1360 /* dummy set rate lets see what happens */
1361 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1362 {
1363 	int current_rate;
1364 	int rate_bits;
1365 	int not_set = 0;
1366 	int current_speed, target_speed;
1367 
1368 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1369 	   it (e.g. during module initialization).
1370 	 */
1371 
1372 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1373 
1374 		/* SLAVE --- */
1375 		if (called_internally) {
1376 
1377 			/* request from ctl or card initialization
1378 			   just make a warning an remember setting
1379 			   for future master mode switching */
1380 
1381 			snd_printk(KERN_WARNING "HDSPM: "
1382 				   "Warning: device is not running "
1383 				   "as a clock master.\n");
1384 			not_set = 1;
1385 		} else {
1386 
1387 			/* hw_param request while in AutoSync mode */
1388 			int external_freq =
1389 			    hdspm_external_sample_rate(hdspm);
1390 
1391 			if (hdspm_autosync_ref(hdspm) ==
1392 			    HDSPM_AUTOSYNC_FROM_NONE) {
1393 
1394 				snd_printk(KERN_WARNING "HDSPM: "
1395 					   "Detected no Externel Sync \n");
1396 				not_set = 1;
1397 
1398 			} else if (rate != external_freq) {
1399 
1400 				snd_printk(KERN_WARNING "HDSPM: "
1401 					   "Warning: No AutoSync source for "
1402 					   "requested rate\n");
1403 				not_set = 1;
1404 			}
1405 		}
1406 	}
1407 
1408 	current_rate = hdspm->system_sample_rate;
1409 
1410 	/* Changing between Singe, Double and Quad speed is not
1411 	   allowed if any substreams are open. This is because such a change
1412 	   causes a shift in the location of the DMA buffers and a reduction
1413 	   in the number of available buffers.
1414 
1415 	   Note that a similar but essentially insoluble problem exists for
1416 	   externally-driven rate changes. All we can do is to flag rate
1417 	   changes in the read/write routines.
1418 	 */
1419 
1420 	if (current_rate <= 48000)
1421 		current_speed = HDSPM_SPEED_SINGLE;
1422 	else if (current_rate <= 96000)
1423 		current_speed = HDSPM_SPEED_DOUBLE;
1424 	else
1425 		current_speed = HDSPM_SPEED_QUAD;
1426 
1427 	if (rate <= 48000)
1428 		target_speed = HDSPM_SPEED_SINGLE;
1429 	else if (rate <= 96000)
1430 		target_speed = HDSPM_SPEED_DOUBLE;
1431 	else
1432 		target_speed = HDSPM_SPEED_QUAD;
1433 
1434 	switch (rate) {
1435 	case 32000:
1436 		rate_bits = HDSPM_Frequency32KHz;
1437 		break;
1438 	case 44100:
1439 		rate_bits = HDSPM_Frequency44_1KHz;
1440 		break;
1441 	case 48000:
1442 		rate_bits = HDSPM_Frequency48KHz;
1443 		break;
1444 	case 64000:
1445 		rate_bits = HDSPM_Frequency64KHz;
1446 		break;
1447 	case 88200:
1448 		rate_bits = HDSPM_Frequency88_2KHz;
1449 		break;
1450 	case 96000:
1451 		rate_bits = HDSPM_Frequency96KHz;
1452 		break;
1453 	case 128000:
1454 		rate_bits = HDSPM_Frequency128KHz;
1455 		break;
1456 	case 176400:
1457 		rate_bits = HDSPM_Frequency176_4KHz;
1458 		break;
1459 	case 192000:
1460 		rate_bits = HDSPM_Frequency192KHz;
1461 		break;
1462 	default:
1463 		return -EINVAL;
1464 	}
1465 
1466 	if (current_speed != target_speed
1467 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1468 		snd_printk
1469 		    (KERN_ERR "HDSPM: "
1470 		     "cannot change from %s speed to %s speed mode "
1471 		     "(capture PID = %d, playback PID = %d)\n",
1472 		     hdspm_speed_names[current_speed],
1473 		     hdspm_speed_names[target_speed],
1474 		     hdspm->capture_pid, hdspm->playback_pid);
1475 		return -EBUSY;
1476 	}
1477 
1478 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1479 	hdspm->control_register |= rate_bits;
1480 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1481 
1482 	/* For AES32, need to set DDS value in FREQ register
1483 	   For MADI, also apparently */
1484 	hdspm_set_dds_value(hdspm, rate);
1485 
1486 	if (AES32 == hdspm->io_type && rate != current_rate)
1487 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1488 
1489 	hdspm->system_sample_rate = rate;
1490 
1491 	if (rate <= 48000) {
1492 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1493 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1494 		hdspm->max_channels_in = hdspm->ss_in_channels;
1495 		hdspm->max_channels_out = hdspm->ss_out_channels;
1496 		hdspm->port_names_in = hdspm->port_names_in_ss;
1497 		hdspm->port_names_out = hdspm->port_names_out_ss;
1498 	} else if (rate <= 96000) {
1499 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1500 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1501 		hdspm->max_channels_in = hdspm->ds_in_channels;
1502 		hdspm->max_channels_out = hdspm->ds_out_channels;
1503 		hdspm->port_names_in = hdspm->port_names_in_ds;
1504 		hdspm->port_names_out = hdspm->port_names_out_ds;
1505 	} else {
1506 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1507 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1508 		hdspm->max_channels_in = hdspm->qs_in_channels;
1509 		hdspm->max_channels_out = hdspm->qs_out_channels;
1510 		hdspm->port_names_in = hdspm->port_names_in_qs;
1511 		hdspm->port_names_out = hdspm->port_names_out_qs;
1512 	}
1513 
1514 	if (not_set != 0)
1515 		return -1;
1516 
1517 	return 0;
1518 }
1519 
1520 /* mainly for init to 0 on load */
1521 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1522 {
1523 	int i, j;
1524 	unsigned int gain;
1525 
1526 	if (sgain > UNITY_GAIN)
1527 		gain = UNITY_GAIN;
1528 	else if (sgain < 0)
1529 		gain = 0;
1530 	else
1531 		gain = sgain;
1532 
1533 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1534 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1535 			hdspm_write_in_gain(hdspm, i, j, gain);
1536 			hdspm_write_pb_gain(hdspm, i, j, gain);
1537 		}
1538 }
1539 
1540 /*----------------------------------------------------------------------------
1541    MIDI
1542   ----------------------------------------------------------------------------*/
1543 
1544 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1545 						      int id)
1546 {
1547 	/* the hardware already does the relevant bit-mask with 0xff */
1548 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1549 }
1550 
1551 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1552 					      int val)
1553 {
1554 	/* the hardware already does the relevant bit-mask with 0xff */
1555 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1556 }
1557 
1558 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1559 {
1560 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1561 }
1562 
1563 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1564 {
1565 	int fifo_bytes_used;
1566 
1567 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1568 
1569 	if (fifo_bytes_used < 128)
1570 		return  128 - fifo_bytes_used;
1571 	else
1572 		return 0;
1573 }
1574 
1575 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1576 {
1577 	while (snd_hdspm_midi_input_available (hdspm, id))
1578 		snd_hdspm_midi_read_byte (hdspm, id);
1579 }
1580 
1581 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1582 {
1583 	unsigned long flags;
1584 	int n_pending;
1585 	int to_write;
1586 	int i;
1587 	unsigned char buf[128];
1588 
1589 	/* Output is not interrupt driven */
1590 
1591 	spin_lock_irqsave (&hmidi->lock, flags);
1592 	if (hmidi->output &&
1593 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1594 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1595 							    hmidi->id);
1596 		if (n_pending > 0) {
1597 			if (n_pending > (int)sizeof (buf))
1598 				n_pending = sizeof (buf);
1599 
1600 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1601 							 n_pending);
1602 			if (to_write > 0) {
1603 				for (i = 0; i < to_write; ++i)
1604 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1605 								   hmidi->id,
1606 								   buf[i]);
1607 			}
1608 		}
1609 	}
1610 	spin_unlock_irqrestore (&hmidi->lock, flags);
1611 	return 0;
1612 }
1613 
1614 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1615 {
1616 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1617 				 * input FIFO size
1618 				 */
1619 	unsigned long flags;
1620 	int n_pending;
1621 	int i;
1622 
1623 	spin_lock_irqsave (&hmidi->lock, flags);
1624 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1625 	if (n_pending > 0) {
1626 		if (hmidi->input) {
1627 			if (n_pending > (int)sizeof (buf))
1628 				n_pending = sizeof (buf);
1629 			for (i = 0; i < n_pending; ++i)
1630 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1631 								   hmidi->id);
1632 			if (n_pending)
1633 				snd_rawmidi_receive (hmidi->input, buf,
1634 						     n_pending);
1635 		} else {
1636 			/* flush the MIDI input FIFO */
1637 			while (n_pending--)
1638 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1639 							  hmidi->id);
1640 		}
1641 	}
1642 	hmidi->pending = 0;
1643 	spin_unlock_irqrestore(&hmidi->lock, flags);
1644 
1645 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1646 	hmidi->hdspm->control_register |= hmidi->ie;
1647 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1648 		    hmidi->hdspm->control_register);
1649 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1650 
1651 	return snd_hdspm_midi_output_write (hmidi);
1652 }
1653 
1654 static void
1655 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1656 {
1657 	struct hdspm *hdspm;
1658 	struct hdspm_midi *hmidi;
1659 	unsigned long flags;
1660 
1661 	hmidi = substream->rmidi->private_data;
1662 	hdspm = hmidi->hdspm;
1663 
1664 	spin_lock_irqsave (&hdspm->lock, flags);
1665 	if (up) {
1666 		if (!(hdspm->control_register & hmidi->ie)) {
1667 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1668 			hdspm->control_register |= hmidi->ie;
1669 		}
1670 	} else {
1671 		hdspm->control_register &= ~hmidi->ie;
1672 	}
1673 
1674 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1675 	spin_unlock_irqrestore (&hdspm->lock, flags);
1676 }
1677 
1678 static void snd_hdspm_midi_output_timer(unsigned long data)
1679 {
1680 	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1681 	unsigned long flags;
1682 
1683 	snd_hdspm_midi_output_write(hmidi);
1684 	spin_lock_irqsave (&hmidi->lock, flags);
1685 
1686 	/* this does not bump hmidi->istimer, because the
1687 	   kernel automatically removed the timer when it
1688 	   expired, and we are now adding it back, thus
1689 	   leaving istimer wherever it was set before.
1690 	*/
1691 
1692 	if (hmidi->istimer) {
1693 		hmidi->timer.expires = 1 + jiffies;
1694 		add_timer(&hmidi->timer);
1695 	}
1696 
1697 	spin_unlock_irqrestore (&hmidi->lock, flags);
1698 }
1699 
1700 static void
1701 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1702 {
1703 	struct hdspm_midi *hmidi;
1704 	unsigned long flags;
1705 
1706 	hmidi = substream->rmidi->private_data;
1707 	spin_lock_irqsave (&hmidi->lock, flags);
1708 	if (up) {
1709 		if (!hmidi->istimer) {
1710 			init_timer(&hmidi->timer);
1711 			hmidi->timer.function = snd_hdspm_midi_output_timer;
1712 			hmidi->timer.data = (unsigned long) hmidi;
1713 			hmidi->timer.expires = 1 + jiffies;
1714 			add_timer(&hmidi->timer);
1715 			hmidi->istimer++;
1716 		}
1717 	} else {
1718 		if (hmidi->istimer && --hmidi->istimer <= 0)
1719 			del_timer (&hmidi->timer);
1720 	}
1721 	spin_unlock_irqrestore (&hmidi->lock, flags);
1722 	if (up)
1723 		snd_hdspm_midi_output_write(hmidi);
1724 }
1725 
1726 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1727 {
1728 	struct hdspm_midi *hmidi;
1729 
1730 	hmidi = substream->rmidi->private_data;
1731 	spin_lock_irq (&hmidi->lock);
1732 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1733 	hmidi->input = substream;
1734 	spin_unlock_irq (&hmidi->lock);
1735 
1736 	return 0;
1737 }
1738 
1739 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
1740 {
1741 	struct hdspm_midi *hmidi;
1742 
1743 	hmidi = substream->rmidi->private_data;
1744 	spin_lock_irq (&hmidi->lock);
1745 	hmidi->output = substream;
1746 	spin_unlock_irq (&hmidi->lock);
1747 
1748 	return 0;
1749 }
1750 
1751 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
1752 {
1753 	struct hdspm_midi *hmidi;
1754 
1755 	snd_hdspm_midi_input_trigger (substream, 0);
1756 
1757 	hmidi = substream->rmidi->private_data;
1758 	spin_lock_irq (&hmidi->lock);
1759 	hmidi->input = NULL;
1760 	spin_unlock_irq (&hmidi->lock);
1761 
1762 	return 0;
1763 }
1764 
1765 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
1766 {
1767 	struct hdspm_midi *hmidi;
1768 
1769 	snd_hdspm_midi_output_trigger (substream, 0);
1770 
1771 	hmidi = substream->rmidi->private_data;
1772 	spin_lock_irq (&hmidi->lock);
1773 	hmidi->output = NULL;
1774 	spin_unlock_irq (&hmidi->lock);
1775 
1776 	return 0;
1777 }
1778 
1779 static struct snd_rawmidi_ops snd_hdspm_midi_output =
1780 {
1781 	.open =		snd_hdspm_midi_output_open,
1782 	.close =	snd_hdspm_midi_output_close,
1783 	.trigger =	snd_hdspm_midi_output_trigger,
1784 };
1785 
1786 static struct snd_rawmidi_ops snd_hdspm_midi_input =
1787 {
1788 	.open =		snd_hdspm_midi_input_open,
1789 	.close =	snd_hdspm_midi_input_close,
1790 	.trigger =	snd_hdspm_midi_input_trigger,
1791 };
1792 
1793 static int __devinit snd_hdspm_create_midi (struct snd_card *card,
1794 					    struct hdspm *hdspm, int id)
1795 {
1796 	int err;
1797 	char buf[32];
1798 
1799 	hdspm->midi[id].id = id;
1800 	hdspm->midi[id].hdspm = hdspm;
1801 	spin_lock_init (&hdspm->midi[id].lock);
1802 
1803 	if (0 == id) {
1804 		if (MADIface == hdspm->io_type) {
1805 			/* MIDI-over-MADI on HDSPe MADIface */
1806 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
1807 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
1808 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
1809 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
1810 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
1811 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
1812 		} else {
1813 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
1814 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
1815 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
1816 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
1817 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
1818 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
1819 		}
1820 	} else if (1 == id) {
1821 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
1822 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
1823 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
1824 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
1825 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
1826 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
1827 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
1828 		/* MIDI-over-MADI on HDSPe MADI */
1829 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1830 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1831 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
1832 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
1833 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1834 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
1835 	} else if (2 == id) {
1836 		/* TCO MTC, read only */
1837 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1838 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1839 		hdspm->midi[2].dataOut = -1;
1840 		hdspm->midi[2].statusOut = -1;
1841 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1842 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
1843 	} else if (3 == id) {
1844 		/* TCO MTC on HDSPe MADI */
1845 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
1846 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
1847 		hdspm->midi[3].dataOut = -1;
1848 		hdspm->midi[3].statusOut = -1;
1849 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
1850 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
1851 	}
1852 
1853 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
1854 					(MADIface == hdspm->io_type)))) {
1855 		if ((id == 0) && (MADIface == hdspm->io_type)) {
1856 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1857 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
1858 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1859 		} else {
1860 			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
1861 		}
1862 		err = snd_rawmidi_new(card, buf, id, 1, 1,
1863 				&hdspm->midi[id].rmidi);
1864 		if (err < 0)
1865 			return err;
1866 
1867 		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
1868 				card->id, id+1);
1869 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1870 
1871 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1872 				SNDRV_RAWMIDI_STREAM_OUTPUT,
1873 				&snd_hdspm_midi_output);
1874 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1875 				SNDRV_RAWMIDI_STREAM_INPUT,
1876 				&snd_hdspm_midi_input);
1877 
1878 		hdspm->midi[id].rmidi->info_flags |=
1879 			SNDRV_RAWMIDI_INFO_OUTPUT |
1880 			SNDRV_RAWMIDI_INFO_INPUT |
1881 			SNDRV_RAWMIDI_INFO_DUPLEX;
1882 	} else {
1883 		/* TCO MTC, read only */
1884 		sprintf(buf, "%s MTC %d", card->shortname, id+1);
1885 		err = snd_rawmidi_new(card, buf, id, 1, 1,
1886 				&hdspm->midi[id].rmidi);
1887 		if (err < 0)
1888 			return err;
1889 
1890 		sprintf(hdspm->midi[id].rmidi->name,
1891 				"%s MTC %d", card->id, id+1);
1892 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1893 
1894 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1895 				SNDRV_RAWMIDI_STREAM_INPUT,
1896 				&snd_hdspm_midi_input);
1897 
1898 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 
1905 static void hdspm_midi_tasklet(unsigned long arg)
1906 {
1907 	struct hdspm *hdspm = (struct hdspm *)arg;
1908 	int i = 0;
1909 
1910 	while (i < hdspm->midiPorts) {
1911 		if (hdspm->midi[i].pending)
1912 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
1913 
1914 		i++;
1915 	}
1916 }
1917 
1918 
1919 /*-----------------------------------------------------------------------------
1920   Status Interface
1921   ----------------------------------------------------------------------------*/
1922 
1923 /* get the system sample rate which is set */
1924 
1925 
1926 /**
1927  * Calculate the real sample rate from the
1928  * current DDS value.
1929  **/
1930 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
1931 {
1932 	unsigned int period, rate;
1933 
1934 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
1935 	rate = hdspm_calc_dds_value(hdspm, period);
1936 
1937 	return rate;
1938 }
1939 
1940 
1941 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
1942 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1943   .name = xname, \
1944   .index = xindex, \
1945   .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1946   .info = snd_hdspm_info_system_sample_rate, \
1947   .get = snd_hdspm_get_system_sample_rate \
1948 }
1949 
1950 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
1951 					     struct snd_ctl_elem_info *uinfo)
1952 {
1953 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1954 	uinfo->count = 1;
1955 	uinfo->value.integer.min = 27000;
1956 	uinfo->value.integer.max = 207000;
1957 	uinfo->value.integer.step = 1;
1958 	return 0;
1959 }
1960 
1961 
1962 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
1963 					    struct snd_ctl_elem_value *
1964 					    ucontrol)
1965 {
1966 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
1967 
1968 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
1969 	return 0;
1970 }
1971 
1972 
1973 /**
1974  * Returns the WordClock sample rate class for the given card.
1975  **/
1976 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
1977 {
1978 	int status;
1979 
1980 	switch (hdspm->io_type) {
1981 	case RayDAT:
1982 	case AIO:
1983 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
1984 		return (status >> 16) & 0xF;
1985 		break;
1986 	default:
1987 		break;
1988 	}
1989 
1990 
1991 	return 0;
1992 }
1993 
1994 
1995 /**
1996  * Returns the TCO sample rate class for the given card.
1997  **/
1998 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
1999 {
2000 	int status;
2001 
2002 	if (hdspm->tco) {
2003 		switch (hdspm->io_type) {
2004 		case RayDAT:
2005 		case AIO:
2006 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2007 			return (status >> 20) & 0xF;
2008 			break;
2009 		default:
2010 			break;
2011 		}
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 
2018 /**
2019  * Returns the SYNC_IN sample rate class for the given card.
2020  **/
2021 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2022 {
2023 	int status;
2024 
2025 	if (hdspm->tco) {
2026 		switch (hdspm->io_type) {
2027 		case RayDAT:
2028 		case AIO:
2029 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2030 			return (status >> 12) & 0xF;
2031 			break;
2032 		default:
2033 			break;
2034 		}
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 
2041 /**
2042  * Returns the sample rate class for input source <idx> for
2043  * 'new style' cards like the AIO and RayDAT.
2044  **/
2045 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2046 {
2047 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2048 
2049 	return (status >> (idx*4)) & 0xF;
2050 }
2051 
2052 
2053 
2054 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2055 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2056 	.name = xname, \
2057 	.private_value = xindex, \
2058 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2059 	.info = snd_hdspm_info_autosync_sample_rate, \
2060 	.get = snd_hdspm_get_autosync_sample_rate \
2061 }
2062 
2063 
2064 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2065 					       struct snd_ctl_elem_info *uinfo)
2066 {
2067 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2068 	uinfo->count = 1;
2069 	uinfo->value.enumerated.items = 10;
2070 
2071 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2072 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2073 	strcpy(uinfo->value.enumerated.name,
2074 			texts_freq[uinfo->value.enumerated.item]);
2075 	return 0;
2076 }
2077 
2078 
2079 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2080 					      struct snd_ctl_elem_value *
2081 					      ucontrol)
2082 {
2083 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2084 
2085 	switch (hdspm->io_type) {
2086 	case RayDAT:
2087 		switch (kcontrol->private_value) {
2088 		case 0:
2089 			ucontrol->value.enumerated.item[0] =
2090 				hdspm_get_wc_sample_rate(hdspm);
2091 			break;
2092 		case 7:
2093 			ucontrol->value.enumerated.item[0] =
2094 				hdspm_get_tco_sample_rate(hdspm);
2095 			break;
2096 		case 8:
2097 			ucontrol->value.enumerated.item[0] =
2098 				hdspm_get_sync_in_sample_rate(hdspm);
2099 			break;
2100 		default:
2101 			ucontrol->value.enumerated.item[0] =
2102 				hdspm_get_s1_sample_rate(hdspm,
2103 						kcontrol->private_value-1);
2104 		}
2105 
2106 	case AIO:
2107 		switch (kcontrol->private_value) {
2108 		case 0: /* WC */
2109 			ucontrol->value.enumerated.item[0] =
2110 				hdspm_get_wc_sample_rate(hdspm);
2111 			break;
2112 		case 4: /* TCO */
2113 			ucontrol->value.enumerated.item[0] =
2114 				hdspm_get_tco_sample_rate(hdspm);
2115 			break;
2116 		case 5: /* SYNC_IN */
2117 			ucontrol->value.enumerated.item[0] =
2118 				hdspm_get_sync_in_sample_rate(hdspm);
2119 			break;
2120 		default:
2121 			ucontrol->value.enumerated.item[0] =
2122 				hdspm_get_s1_sample_rate(hdspm,
2123 						ucontrol->id.index-1);
2124 		}
2125 
2126 	case AES32:
2127 
2128 		switch (kcontrol->private_value) {
2129 		case 0: /* WC */
2130 			ucontrol->value.enumerated.item[0] =
2131 				hdspm_get_wc_sample_rate(hdspm);
2132 			break;
2133 		case 9: /* TCO */
2134 			ucontrol->value.enumerated.item[0] =
2135 				hdspm_get_tco_sample_rate(hdspm);
2136 			break;
2137 		case 10: /* SYNC_IN */
2138 			ucontrol->value.enumerated.item[0] =
2139 				hdspm_get_sync_in_sample_rate(hdspm);
2140 			break;
2141 		default: /* AES1 to AES8 */
2142 			ucontrol->value.enumerated.item[0] =
2143 				hdspm_get_s1_sample_rate(hdspm,
2144 						kcontrol->private_value-1);
2145 			break;
2146 
2147 		}
2148 	default:
2149 		break;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 
2156 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2157 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2158 	.name = xname, \
2159 	.index = xindex, \
2160 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2161 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2162 	.info = snd_hdspm_info_system_clock_mode, \
2163 	.get = snd_hdspm_get_system_clock_mode, \
2164 	.put = snd_hdspm_put_system_clock_mode, \
2165 }
2166 
2167 
2168 /**
2169  * Returns the system clock mode for the given card.
2170  * @returns 0 - master, 1 - slave
2171  **/
2172 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2173 {
2174 	switch (hdspm->io_type) {
2175 	case AIO:
2176 	case RayDAT:
2177 		if (hdspm->settings_register & HDSPM_c0Master)
2178 			return 0;
2179 		break;
2180 
2181 	default:
2182 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2183 			return 0;
2184 	}
2185 
2186 	return 1;
2187 }
2188 
2189 
2190 /**
2191  * Sets the system clock mode.
2192  * @param mode 0 - master, 1 - slave
2193  **/
2194 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2195 {
2196 	switch (hdspm->io_type) {
2197 	case AIO:
2198 	case RayDAT:
2199 		if (0 == mode)
2200 			hdspm->settings_register |= HDSPM_c0Master;
2201 		else
2202 			hdspm->settings_register &= ~HDSPM_c0Master;
2203 
2204 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2205 		break;
2206 
2207 	default:
2208 		if (0 == mode)
2209 			hdspm->control_register |= HDSPM_ClockModeMaster;
2210 		else
2211 			hdspm->control_register &= ~HDSPM_ClockModeMaster;
2212 
2213 		hdspm_write(hdspm, HDSPM_controlRegister,
2214 				hdspm->control_register);
2215 	}
2216 }
2217 
2218 
2219 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2220 					    struct snd_ctl_elem_info *uinfo)
2221 {
2222 	static char *texts[] = { "Master", "AutoSync" };
2223 
2224 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2225 	uinfo->count = 1;
2226 	uinfo->value.enumerated.items = 2;
2227 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2228 		uinfo->value.enumerated.item =
2229 		    uinfo->value.enumerated.items - 1;
2230 	strcpy(uinfo->value.enumerated.name,
2231 	       texts[uinfo->value.enumerated.item]);
2232 	return 0;
2233 }
2234 
2235 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2236 					   struct snd_ctl_elem_value *ucontrol)
2237 {
2238 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2239 
2240 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2241 	return 0;
2242 }
2243 
2244 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2245 					   struct snd_ctl_elem_value *ucontrol)
2246 {
2247 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2248 	int val;
2249 
2250 	if (!snd_hdspm_use_is_exclusive(hdspm))
2251 		return -EBUSY;
2252 
2253 	val = ucontrol->value.enumerated.item[0];
2254 	if (val < 0)
2255 		val = 0;
2256 	else if (val > 1)
2257 		val = 1;
2258 
2259 	hdspm_set_system_clock_mode(hdspm, val);
2260 
2261 	return 0;
2262 }
2263 
2264 
2265 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2266 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2267 	.name = xname, \
2268 	.index = xindex, \
2269 	.info = snd_hdspm_info_clock_source, \
2270 	.get = snd_hdspm_get_clock_source, \
2271 	.put = snd_hdspm_put_clock_source \
2272 }
2273 
2274 
2275 static int hdspm_clock_source(struct hdspm * hdspm)
2276 {
2277 	switch (hdspm->system_sample_rate) {
2278 	case 32000: return 0;
2279 	case 44100: return 1;
2280 	case 48000: return 2;
2281 	case 64000: return 3;
2282 	case 88200: return 4;
2283 	case 96000: return 5;
2284 	case 128000: return 6;
2285 	case 176400: return 7;
2286 	case 192000: return 8;
2287 	}
2288 
2289 	return -1;
2290 }
2291 
2292 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2293 {
2294 	int rate;
2295 	switch (mode) {
2296 	case 0:
2297 		rate = 32000; break;
2298 	case 1:
2299 		rate = 44100; break;
2300 	case 2:
2301 		rate = 48000; break;
2302 	case 3:
2303 		rate = 64000; break;
2304 	case 4:
2305 		rate = 88200; break;
2306 	case 5:
2307 		rate = 96000; break;
2308 	case 6:
2309 		rate = 128000; break;
2310 	case 7:
2311 		rate = 176400; break;
2312 	case 8:
2313 		rate = 192000; break;
2314 	default:
2315 		rate = 48000;
2316 	}
2317 	hdspm_set_rate(hdspm, rate, 1);
2318 	return 0;
2319 }
2320 
2321 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2322 				       struct snd_ctl_elem_info *uinfo)
2323 {
2324 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2325 	uinfo->count = 1;
2326 	uinfo->value.enumerated.items = 9;
2327 
2328 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2329 		uinfo->value.enumerated.item =
2330 		    uinfo->value.enumerated.items - 1;
2331 
2332 	strcpy(uinfo->value.enumerated.name,
2333 	       texts_freq[uinfo->value.enumerated.item+1]);
2334 
2335 	return 0;
2336 }
2337 
2338 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2339 				      struct snd_ctl_elem_value *ucontrol)
2340 {
2341 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2342 
2343 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2344 	return 0;
2345 }
2346 
2347 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2348 				      struct snd_ctl_elem_value *ucontrol)
2349 {
2350 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2351 	int change;
2352 	int val;
2353 
2354 	if (!snd_hdspm_use_is_exclusive(hdspm))
2355 		return -EBUSY;
2356 	val = ucontrol->value.enumerated.item[0];
2357 	if (val < 0)
2358 		val = 0;
2359 	if (val > 9)
2360 		val = 9;
2361 	spin_lock_irq(&hdspm->lock);
2362 	if (val != hdspm_clock_source(hdspm))
2363 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2364 	else
2365 		change = 0;
2366 	spin_unlock_irq(&hdspm->lock);
2367 	return change;
2368 }
2369 
2370 
2371 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2372 {.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2373 	.name = xname, \
2374 	.index = xindex, \
2375 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2376 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2377 	.info = snd_hdspm_info_pref_sync_ref, \
2378 	.get = snd_hdspm_get_pref_sync_ref, \
2379 	.put = snd_hdspm_put_pref_sync_ref \
2380 }
2381 
2382 
2383 /**
2384  * Returns the current preferred sync reference setting.
2385  * The semantics of the return value are depending on the
2386  * card, please see the comments for clarification.
2387  **/
2388 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2389 {
2390 	switch (hdspm->io_type) {
2391 	case AES32:
2392 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2393 		case 0: return 0;  /* WC */
2394 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2395 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2396 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2397 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2398 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2399 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2400 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2401 						    return 7; /* AES 7 */
2402 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2403 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2404 		}
2405 		break;
2406 
2407 	case MADI:
2408 	case MADIface:
2409 		if (hdspm->tco) {
2410 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2411 			case 0: return 0;  /* WC */
2412 			case HDSPM_SyncRef0: return 1;  /* MADI */
2413 			case HDSPM_SyncRef1: return 2;  /* TCO */
2414 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2415 					     return 3;  /* SYNC_IN */
2416 			}
2417 		} else {
2418 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2419 			case 0: return 0;  /* WC */
2420 			case HDSPM_SyncRef0: return 1;  /* MADI */
2421 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2422 					     return 2;  /* SYNC_IN */
2423 			}
2424 		}
2425 		break;
2426 
2427 	case RayDAT:
2428 		if (hdspm->tco) {
2429 			switch ((hdspm->settings_register &
2430 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2431 			case 0: return 0;  /* WC */
2432 			case 3: return 1;  /* ADAT 1 */
2433 			case 4: return 2;  /* ADAT 2 */
2434 			case 5: return 3;  /* ADAT 3 */
2435 			case 6: return 4;  /* ADAT 4 */
2436 			case 1: return 5;  /* AES */
2437 			case 2: return 6;  /* SPDIF */
2438 			case 9: return 7;  /* TCO */
2439 			case 10: return 8; /* SYNC_IN */
2440 			}
2441 		} else {
2442 			switch ((hdspm->settings_register &
2443 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2444 			case 0: return 0;  /* WC */
2445 			case 3: return 1;  /* ADAT 1 */
2446 			case 4: return 2;  /* ADAT 2 */
2447 			case 5: return 3;  /* ADAT 3 */
2448 			case 6: return 4;  /* ADAT 4 */
2449 			case 1: return 5;  /* AES */
2450 			case 2: return 6;  /* SPDIF */
2451 			case 10: return 7; /* SYNC_IN */
2452 			}
2453 		}
2454 
2455 		break;
2456 
2457 	case AIO:
2458 		if (hdspm->tco) {
2459 			switch ((hdspm->settings_register &
2460 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2461 			case 0: return 0;  /* WC */
2462 			case 3: return 1;  /* ADAT */
2463 			case 1: return 2;  /* AES */
2464 			case 2: return 3;  /* SPDIF */
2465 			case 9: return 4;  /* TCO */
2466 			case 10: return 5; /* SYNC_IN */
2467 			}
2468 		} else {
2469 			switch ((hdspm->settings_register &
2470 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2471 			case 0: return 0;  /* WC */
2472 			case 3: return 1;  /* ADAT */
2473 			case 1: return 2;  /* AES */
2474 			case 2: return 3;  /* SPDIF */
2475 			case 10: return 4; /* SYNC_IN */
2476 			}
2477 		}
2478 
2479 		break;
2480 	}
2481 
2482 	return -1;
2483 }
2484 
2485 
2486 /**
2487  * Set the preferred sync reference to <pref>. The semantics
2488  * of <pref> are depending on the card type, see the comments
2489  * for clarification.
2490  **/
2491 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2492 {
2493 	int p = 0;
2494 
2495 	switch (hdspm->io_type) {
2496 	case AES32:
2497 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2498 		switch (pref) {
2499 		case 0: /* WC  */
2500 			break;
2501 		case 1: /* AES 1 */
2502 			hdspm->control_register |= HDSPM_SyncRef0;
2503 			break;
2504 		case 2: /* AES 2 */
2505 			hdspm->control_register |= HDSPM_SyncRef1;
2506 			break;
2507 		case 3: /* AES 3 */
2508 			hdspm->control_register |=
2509 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2510 			break;
2511 		case 4: /* AES 4 */
2512 			hdspm->control_register |= HDSPM_SyncRef2;
2513 			break;
2514 		case 5: /* AES 5 */
2515 			hdspm->control_register |=
2516 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2517 			break;
2518 		case 6: /* AES 6 */
2519 			hdspm->control_register |=
2520 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2521 			break;
2522 		case 7: /* AES 7 */
2523 			hdspm->control_register |=
2524 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2525 			break;
2526 		case 8: /* AES 8 */
2527 			hdspm->control_register |= HDSPM_SyncRef3;
2528 			break;
2529 		case 9: /* TCO */
2530 			hdspm->control_register |=
2531 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2532 			break;
2533 		default:
2534 			return -1;
2535 		}
2536 
2537 		break;
2538 
2539 	case MADI:
2540 	case MADIface:
2541 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2542 		if (hdspm->tco) {
2543 			switch (pref) {
2544 			case 0: /* WC */
2545 				break;
2546 			case 1: /* MADI */
2547 				hdspm->control_register |= HDSPM_SyncRef0;
2548 				break;
2549 			case 2: /* TCO */
2550 				hdspm->control_register |= HDSPM_SyncRef1;
2551 				break;
2552 			case 3: /* SYNC_IN */
2553 				hdspm->control_register |=
2554 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2555 				break;
2556 			default:
2557 				return -1;
2558 			}
2559 		} else {
2560 			switch (pref) {
2561 			case 0: /* WC */
2562 				break;
2563 			case 1: /* MADI */
2564 				hdspm->control_register |= HDSPM_SyncRef0;
2565 				break;
2566 			case 2: /* SYNC_IN */
2567 				hdspm->control_register |=
2568 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2569 				break;
2570 			default:
2571 				return -1;
2572 			}
2573 		}
2574 
2575 		break;
2576 
2577 	case RayDAT:
2578 		if (hdspm->tco) {
2579 			switch (pref) {
2580 			case 0: p = 0; break;  /* WC */
2581 			case 1: p = 3; break;  /* ADAT 1 */
2582 			case 2: p = 4; break;  /* ADAT 2 */
2583 			case 3: p = 5; break;  /* ADAT 3 */
2584 			case 4: p = 6; break;  /* ADAT 4 */
2585 			case 5: p = 1; break;  /* AES */
2586 			case 6: p = 2; break;  /* SPDIF */
2587 			case 7: p = 9; break;  /* TCO */
2588 			case 8: p = 10; break; /* SYNC_IN */
2589 			default: return -1;
2590 			}
2591 		} else {
2592 			switch (pref) {
2593 			case 0: p = 0; break;  /* WC */
2594 			case 1: p = 3; break;  /* ADAT 1 */
2595 			case 2: p = 4; break;  /* ADAT 2 */
2596 			case 3: p = 5; break;  /* ADAT 3 */
2597 			case 4: p = 6; break;  /* ADAT 4 */
2598 			case 5: p = 1; break;  /* AES */
2599 			case 6: p = 2; break;  /* SPDIF */
2600 			case 7: p = 10; break; /* SYNC_IN */
2601 			default: return -1;
2602 			}
2603 		}
2604 		break;
2605 
2606 	case AIO:
2607 		if (hdspm->tco) {
2608 			switch (pref) {
2609 			case 0: p = 0; break;  /* WC */
2610 			case 1: p = 3; break;  /* ADAT */
2611 			case 2: p = 1; break;  /* AES */
2612 			case 3: p = 2; break;  /* SPDIF */
2613 			case 4: p = 9; break;  /* TCO */
2614 			case 5: p = 10; break; /* SYNC_IN */
2615 			default: return -1;
2616 			}
2617 		} else {
2618 			switch (pref) {
2619 			case 0: p = 0; break;  /* WC */
2620 			case 1: p = 3; break;  /* ADAT */
2621 			case 2: p = 1; break;  /* AES */
2622 			case 3: p = 2; break;  /* SPDIF */
2623 			case 4: p = 10; break; /* SYNC_IN */
2624 			default: return -1;
2625 			}
2626 		}
2627 		break;
2628 	}
2629 
2630 	switch (hdspm->io_type) {
2631 	case RayDAT:
2632 	case AIO:
2633 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2634 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2635 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2636 		break;
2637 
2638 	case MADI:
2639 	case MADIface:
2640 	case AES32:
2641 		hdspm_write(hdspm, HDSPM_controlRegister,
2642 				hdspm->control_register);
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 
2649 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2650 					struct snd_ctl_elem_info *uinfo)
2651 {
2652 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2653 
2654 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2655 	uinfo->count = 1;
2656 	uinfo->value.enumerated.items = hdspm->texts_autosync_items;
2657 
2658 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2659 		uinfo->value.enumerated.item =
2660 			uinfo->value.enumerated.items - 1;
2661 
2662 	strcpy(uinfo->value.enumerated.name,
2663 			hdspm->texts_autosync[uinfo->value.enumerated.item]);
2664 
2665 	return 0;
2666 }
2667 
2668 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2669 				       struct snd_ctl_elem_value *ucontrol)
2670 {
2671 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2672 	int psf = hdspm_pref_sync_ref(hdspm);
2673 
2674 	if (psf >= 0) {
2675 		ucontrol->value.enumerated.item[0] = psf;
2676 		return 0;
2677 	}
2678 
2679 	return -1;
2680 }
2681 
2682 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2683 				       struct snd_ctl_elem_value *ucontrol)
2684 {
2685 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2686 	int val, change = 0;
2687 
2688 	if (!snd_hdspm_use_is_exclusive(hdspm))
2689 		return -EBUSY;
2690 
2691 	val = ucontrol->value.enumerated.item[0];
2692 
2693 	if (val < 0)
2694 		val = 0;
2695 	else if (val >= hdspm->texts_autosync_items)
2696 		val = hdspm->texts_autosync_items-1;
2697 
2698 	spin_lock_irq(&hdspm->lock);
2699 	if (val != hdspm_pref_sync_ref(hdspm))
2700 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
2701 
2702 	spin_unlock_irq(&hdspm->lock);
2703 	return change;
2704 }
2705 
2706 
2707 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
2708 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2709   .name = xname, \
2710   .index = xindex, \
2711   .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2712   .info = snd_hdspm_info_autosync_ref, \
2713   .get = snd_hdspm_get_autosync_ref, \
2714 }
2715 
2716 static int hdspm_autosync_ref(struct hdspm *hdspm)
2717 {
2718 	if (AES32 == hdspm->io_type) {
2719 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
2720 		unsigned int syncref =
2721 			(status >> HDSPM_AES32_syncref_bit) & 0xF;
2722 		if (syncref == 0)
2723 			return HDSPM_AES32_AUTOSYNC_FROM_WORD;
2724 		if (syncref <= 8)
2725 			return syncref;
2726 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
2727 	} else if (MADI == hdspm->io_type) {
2728 		/* This looks at the autosync selected sync reference */
2729 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2730 
2731 		switch (status2 & HDSPM_SelSyncRefMask) {
2732 		case HDSPM_SelSyncRef_WORD:
2733 			return HDSPM_AUTOSYNC_FROM_WORD;
2734 		case HDSPM_SelSyncRef_MADI:
2735 			return HDSPM_AUTOSYNC_FROM_MADI;
2736 		case HDSPM_SelSyncRef_TCO:
2737 			return HDSPM_AUTOSYNC_FROM_TCO;
2738 		case HDSPM_SelSyncRef_SyncIn:
2739 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
2740 		case HDSPM_SelSyncRef_NVALID:
2741 			return HDSPM_AUTOSYNC_FROM_NONE;
2742 		default:
2743 			return 0;
2744 		}
2745 
2746 	}
2747 	return 0;
2748 }
2749 
2750 
2751 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
2752 				       struct snd_ctl_elem_info *uinfo)
2753 {
2754 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2755 
2756 	if (AES32 == hdspm->io_type) {
2757 		static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
2758 			"AES4",	"AES5", "AES6", "AES7", "AES8", "None"};
2759 
2760 		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2761 		uinfo->count = 1;
2762 		uinfo->value.enumerated.items = 10;
2763 		if (uinfo->value.enumerated.item >=
2764 		    uinfo->value.enumerated.items)
2765 			uinfo->value.enumerated.item =
2766 				uinfo->value.enumerated.items - 1;
2767 		strcpy(uinfo->value.enumerated.name,
2768 				texts[uinfo->value.enumerated.item]);
2769 	} else if (MADI == hdspm->io_type) {
2770 		static char *texts[] = {"Word Clock", "MADI", "TCO",
2771 			"Sync In", "None" };
2772 
2773 		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2774 		uinfo->count = 1;
2775 		uinfo->value.enumerated.items = 5;
2776 		if (uinfo->value.enumerated.item >=
2777 				uinfo->value.enumerated.items)
2778 			uinfo->value.enumerated.item =
2779 				uinfo->value.enumerated.items - 1;
2780 		strcpy(uinfo->value.enumerated.name,
2781 				texts[uinfo->value.enumerated.item]);
2782 	}
2783 	return 0;
2784 }
2785 
2786 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
2787 				      struct snd_ctl_elem_value *ucontrol)
2788 {
2789 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2790 
2791 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
2792 	return 0;
2793 }
2794 
2795 
2796 #define HDSPM_LINE_OUT(xname, xindex) \
2797 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2798   .name = xname, \
2799   .index = xindex, \
2800   .info = snd_hdspm_info_line_out, \
2801   .get = snd_hdspm_get_line_out, \
2802   .put = snd_hdspm_put_line_out \
2803 }
2804 
2805 static int hdspm_line_out(struct hdspm * hdspm)
2806 {
2807 	return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
2808 }
2809 
2810 
2811 static int hdspm_set_line_output(struct hdspm * hdspm, int out)
2812 {
2813 	if (out)
2814 		hdspm->control_register |= HDSPM_LineOut;
2815 	else
2816 		hdspm->control_register &= ~HDSPM_LineOut;
2817 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2818 
2819 	return 0;
2820 }
2821 
2822 #define snd_hdspm_info_line_out		snd_ctl_boolean_mono_info
2823 
2824 static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
2825 				  struct snd_ctl_elem_value *ucontrol)
2826 {
2827 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2828 
2829 	spin_lock_irq(&hdspm->lock);
2830 	ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
2831 	spin_unlock_irq(&hdspm->lock);
2832 	return 0;
2833 }
2834 
2835 static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
2836 				  struct snd_ctl_elem_value *ucontrol)
2837 {
2838 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2839 	int change;
2840 	unsigned int val;
2841 
2842 	if (!snd_hdspm_use_is_exclusive(hdspm))
2843 		return -EBUSY;
2844 	val = ucontrol->value.integer.value[0] & 1;
2845 	spin_lock_irq(&hdspm->lock);
2846 	change = (int) val != hdspm_line_out(hdspm);
2847 	hdspm_set_line_output(hdspm, val);
2848 	spin_unlock_irq(&hdspm->lock);
2849 	return change;
2850 }
2851 
2852 
2853 #define HDSPM_TX_64(xname, xindex) \
2854 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2855   .name = xname, \
2856   .index = xindex, \
2857   .info = snd_hdspm_info_tx_64, \
2858   .get = snd_hdspm_get_tx_64, \
2859   .put = snd_hdspm_put_tx_64 \
2860 }
2861 
2862 static int hdspm_tx_64(struct hdspm * hdspm)
2863 {
2864 	return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
2865 }
2866 
2867 static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
2868 {
2869 	if (out)
2870 		hdspm->control_register |= HDSPM_TX_64ch;
2871 	else
2872 		hdspm->control_register &= ~HDSPM_TX_64ch;
2873 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2874 
2875 	return 0;
2876 }
2877 
2878 #define snd_hdspm_info_tx_64		snd_ctl_boolean_mono_info
2879 
2880 static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
2881 			       struct snd_ctl_elem_value *ucontrol)
2882 {
2883 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2884 
2885 	spin_lock_irq(&hdspm->lock);
2886 	ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
2887 	spin_unlock_irq(&hdspm->lock);
2888 	return 0;
2889 }
2890 
2891 static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
2892 			       struct snd_ctl_elem_value *ucontrol)
2893 {
2894 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2895 	int change;
2896 	unsigned int val;
2897 
2898 	if (!snd_hdspm_use_is_exclusive(hdspm))
2899 		return -EBUSY;
2900 	val = ucontrol->value.integer.value[0] & 1;
2901 	spin_lock_irq(&hdspm->lock);
2902 	change = (int) val != hdspm_tx_64(hdspm);
2903 	hdspm_set_tx_64(hdspm, val);
2904 	spin_unlock_irq(&hdspm->lock);
2905 	return change;
2906 }
2907 
2908 
2909 #define HDSPM_C_TMS(xname, xindex) \
2910 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2911   .name = xname, \
2912   .index = xindex, \
2913   .info = snd_hdspm_info_c_tms, \
2914   .get = snd_hdspm_get_c_tms, \
2915   .put = snd_hdspm_put_c_tms \
2916 }
2917 
2918 static int hdspm_c_tms(struct hdspm * hdspm)
2919 {
2920 	return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
2921 }
2922 
2923 static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
2924 {
2925 	if (out)
2926 		hdspm->control_register |= HDSPM_clr_tms;
2927 	else
2928 		hdspm->control_register &= ~HDSPM_clr_tms;
2929 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2930 
2931 	return 0;
2932 }
2933 
2934 #define snd_hdspm_info_c_tms		snd_ctl_boolean_mono_info
2935 
2936 static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
2937 			       struct snd_ctl_elem_value *ucontrol)
2938 {
2939 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2940 
2941 	spin_lock_irq(&hdspm->lock);
2942 	ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
2943 	spin_unlock_irq(&hdspm->lock);
2944 	return 0;
2945 }
2946 
2947 static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
2948 			       struct snd_ctl_elem_value *ucontrol)
2949 {
2950 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2951 	int change;
2952 	unsigned int val;
2953 
2954 	if (!snd_hdspm_use_is_exclusive(hdspm))
2955 		return -EBUSY;
2956 	val = ucontrol->value.integer.value[0] & 1;
2957 	spin_lock_irq(&hdspm->lock);
2958 	change = (int) val != hdspm_c_tms(hdspm);
2959 	hdspm_set_c_tms(hdspm, val);
2960 	spin_unlock_irq(&hdspm->lock);
2961 	return change;
2962 }
2963 
2964 
2965 #define HDSPM_SAFE_MODE(xname, xindex) \
2966 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2967   .name = xname, \
2968   .index = xindex, \
2969   .info = snd_hdspm_info_safe_mode, \
2970   .get = snd_hdspm_get_safe_mode, \
2971   .put = snd_hdspm_put_safe_mode \
2972 }
2973 
2974 static int hdspm_safe_mode(struct hdspm * hdspm)
2975 {
2976 	return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
2977 }
2978 
2979 static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
2980 {
2981 	if (out)
2982 		hdspm->control_register |= HDSPM_AutoInp;
2983 	else
2984 		hdspm->control_register &= ~HDSPM_AutoInp;
2985 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2986 
2987 	return 0;
2988 }
2989 
2990 #define snd_hdspm_info_safe_mode	snd_ctl_boolean_mono_info
2991 
2992 static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
2993 				   struct snd_ctl_elem_value *ucontrol)
2994 {
2995 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2996 
2997 	spin_lock_irq(&hdspm->lock);
2998 	ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
2999 	spin_unlock_irq(&hdspm->lock);
3000 	return 0;
3001 }
3002 
3003 static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
3004 				   struct snd_ctl_elem_value *ucontrol)
3005 {
3006 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3007 	int change;
3008 	unsigned int val;
3009 
3010 	if (!snd_hdspm_use_is_exclusive(hdspm))
3011 		return -EBUSY;
3012 	val = ucontrol->value.integer.value[0] & 1;
3013 	spin_lock_irq(&hdspm->lock);
3014 	change = (int) val != hdspm_safe_mode(hdspm);
3015 	hdspm_set_safe_mode(hdspm, val);
3016 	spin_unlock_irq(&hdspm->lock);
3017 	return change;
3018 }
3019 
3020 
3021 #define HDSPM_EMPHASIS(xname, xindex) \
3022 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3023   .name = xname, \
3024   .index = xindex, \
3025   .info = snd_hdspm_info_emphasis, \
3026   .get = snd_hdspm_get_emphasis, \
3027   .put = snd_hdspm_put_emphasis \
3028 }
3029 
3030 static int hdspm_emphasis(struct hdspm * hdspm)
3031 {
3032 	return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
3033 }
3034 
3035 static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
3036 {
3037 	if (emp)
3038 		hdspm->control_register |= HDSPM_Emphasis;
3039 	else
3040 		hdspm->control_register &= ~HDSPM_Emphasis;
3041 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3042 
3043 	return 0;
3044 }
3045 
3046 #define snd_hdspm_info_emphasis		snd_ctl_boolean_mono_info
3047 
3048 static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
3049 				  struct snd_ctl_elem_value *ucontrol)
3050 {
3051 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3052 
3053 	spin_lock_irq(&hdspm->lock);
3054 	ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
3055 	spin_unlock_irq(&hdspm->lock);
3056 	return 0;
3057 }
3058 
3059 static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
3060 				  struct snd_ctl_elem_value *ucontrol)
3061 {
3062 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3063 	int change;
3064 	unsigned int val;
3065 
3066 	if (!snd_hdspm_use_is_exclusive(hdspm))
3067 		return -EBUSY;
3068 	val = ucontrol->value.integer.value[0] & 1;
3069 	spin_lock_irq(&hdspm->lock);
3070 	change = (int) val != hdspm_emphasis(hdspm);
3071 	hdspm_set_emphasis(hdspm, val);
3072 	spin_unlock_irq(&hdspm->lock);
3073 	return change;
3074 }
3075 
3076 
3077 #define HDSPM_DOLBY(xname, xindex) \
3078 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3079   .name = xname, \
3080   .index = xindex, \
3081   .info = snd_hdspm_info_dolby, \
3082   .get = snd_hdspm_get_dolby, \
3083   .put = snd_hdspm_put_dolby \
3084 }
3085 
3086 static int hdspm_dolby(struct hdspm * hdspm)
3087 {
3088 	return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
3089 }
3090 
3091 static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
3092 {
3093 	if (dol)
3094 		hdspm->control_register |= HDSPM_Dolby;
3095 	else
3096 		hdspm->control_register &= ~HDSPM_Dolby;
3097 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3098 
3099 	return 0;
3100 }
3101 
3102 #define snd_hdspm_info_dolby		snd_ctl_boolean_mono_info
3103 
3104 static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
3105 			       struct snd_ctl_elem_value *ucontrol)
3106 {
3107 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3108 
3109 	spin_lock_irq(&hdspm->lock);
3110 	ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
3111 	spin_unlock_irq(&hdspm->lock);
3112 	return 0;
3113 }
3114 
3115 static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
3116 			       struct snd_ctl_elem_value *ucontrol)
3117 {
3118 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3119 	int change;
3120 	unsigned int val;
3121 
3122 	if (!snd_hdspm_use_is_exclusive(hdspm))
3123 		return -EBUSY;
3124 	val = ucontrol->value.integer.value[0] & 1;
3125 	spin_lock_irq(&hdspm->lock);
3126 	change = (int) val != hdspm_dolby(hdspm);
3127 	hdspm_set_dolby(hdspm, val);
3128 	spin_unlock_irq(&hdspm->lock);
3129 	return change;
3130 }
3131 
3132 
3133 #define HDSPM_PROFESSIONAL(xname, xindex) \
3134 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3135   .name = xname, \
3136   .index = xindex, \
3137   .info = snd_hdspm_info_professional, \
3138   .get = snd_hdspm_get_professional, \
3139   .put = snd_hdspm_put_professional \
3140 }
3141 
3142 static int hdspm_professional(struct hdspm * hdspm)
3143 {
3144 	return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
3145 }
3146 
3147 static int hdspm_set_professional(struct hdspm * hdspm, int dol)
3148 {
3149 	if (dol)
3150 		hdspm->control_register |= HDSPM_Professional;
3151 	else
3152 		hdspm->control_register &= ~HDSPM_Professional;
3153 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3154 
3155 	return 0;
3156 }
3157 
3158 #define snd_hdspm_info_professional	snd_ctl_boolean_mono_info
3159 
3160 static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
3161 				      struct snd_ctl_elem_value *ucontrol)
3162 {
3163 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3164 
3165 	spin_lock_irq(&hdspm->lock);
3166 	ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
3167 	spin_unlock_irq(&hdspm->lock);
3168 	return 0;
3169 }
3170 
3171 static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
3172 				      struct snd_ctl_elem_value *ucontrol)
3173 {
3174 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3175 	int change;
3176 	unsigned int val;
3177 
3178 	if (!snd_hdspm_use_is_exclusive(hdspm))
3179 		return -EBUSY;
3180 	val = ucontrol->value.integer.value[0] & 1;
3181 	spin_lock_irq(&hdspm->lock);
3182 	change = (int) val != hdspm_professional(hdspm);
3183 	hdspm_set_professional(hdspm, val);
3184 	spin_unlock_irq(&hdspm->lock);
3185 	return change;
3186 }
3187 
3188 #define HDSPM_INPUT_SELECT(xname, xindex) \
3189 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3190   .name = xname, \
3191   .index = xindex, \
3192   .info = snd_hdspm_info_input_select, \
3193   .get = snd_hdspm_get_input_select, \
3194   .put = snd_hdspm_put_input_select \
3195 }
3196 
3197 static int hdspm_input_select(struct hdspm * hdspm)
3198 {
3199 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3200 }
3201 
3202 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3203 {
3204 	if (out)
3205 		hdspm->control_register |= HDSPM_InputSelect0;
3206 	else
3207 		hdspm->control_register &= ~HDSPM_InputSelect0;
3208 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3209 
3210 	return 0;
3211 }
3212 
3213 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3214 				       struct snd_ctl_elem_info *uinfo)
3215 {
3216 	static char *texts[] = { "optical", "coaxial" };
3217 
3218 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3219 	uinfo->count = 1;
3220 	uinfo->value.enumerated.items = 2;
3221 
3222 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3223 		uinfo->value.enumerated.item =
3224 		    uinfo->value.enumerated.items - 1;
3225 	strcpy(uinfo->value.enumerated.name,
3226 	       texts[uinfo->value.enumerated.item]);
3227 
3228 	return 0;
3229 }
3230 
3231 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3232 				      struct snd_ctl_elem_value *ucontrol)
3233 {
3234 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3235 
3236 	spin_lock_irq(&hdspm->lock);
3237 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3238 	spin_unlock_irq(&hdspm->lock);
3239 	return 0;
3240 }
3241 
3242 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3243 				      struct snd_ctl_elem_value *ucontrol)
3244 {
3245 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3246 	int change;
3247 	unsigned int val;
3248 
3249 	if (!snd_hdspm_use_is_exclusive(hdspm))
3250 		return -EBUSY;
3251 	val = ucontrol->value.integer.value[0] & 1;
3252 	spin_lock_irq(&hdspm->lock);
3253 	change = (int) val != hdspm_input_select(hdspm);
3254 	hdspm_set_input_select(hdspm, val);
3255 	spin_unlock_irq(&hdspm->lock);
3256 	return change;
3257 }
3258 
3259 
3260 #define HDSPM_DS_WIRE(xname, xindex) \
3261 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3262   .name = xname, \
3263   .index = xindex, \
3264   .info = snd_hdspm_info_ds_wire, \
3265   .get = snd_hdspm_get_ds_wire, \
3266   .put = snd_hdspm_put_ds_wire \
3267 }
3268 
3269 static int hdspm_ds_wire(struct hdspm * hdspm)
3270 {
3271 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3272 }
3273 
3274 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3275 {
3276 	if (ds)
3277 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3278 	else
3279 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3280 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3281 
3282 	return 0;
3283 }
3284 
3285 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3286 				  struct snd_ctl_elem_info *uinfo)
3287 {
3288 	static char *texts[] = { "Single", "Double" };
3289 
3290 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3291 	uinfo->count = 1;
3292 	uinfo->value.enumerated.items = 2;
3293 
3294 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3295 		uinfo->value.enumerated.item =
3296 		    uinfo->value.enumerated.items - 1;
3297 	strcpy(uinfo->value.enumerated.name,
3298 	       texts[uinfo->value.enumerated.item]);
3299 
3300 	return 0;
3301 }
3302 
3303 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3304 				 struct snd_ctl_elem_value *ucontrol)
3305 {
3306 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3307 
3308 	spin_lock_irq(&hdspm->lock);
3309 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3310 	spin_unlock_irq(&hdspm->lock);
3311 	return 0;
3312 }
3313 
3314 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3315 				 struct snd_ctl_elem_value *ucontrol)
3316 {
3317 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3318 	int change;
3319 	unsigned int val;
3320 
3321 	if (!snd_hdspm_use_is_exclusive(hdspm))
3322 		return -EBUSY;
3323 	val = ucontrol->value.integer.value[0] & 1;
3324 	spin_lock_irq(&hdspm->lock);
3325 	change = (int) val != hdspm_ds_wire(hdspm);
3326 	hdspm_set_ds_wire(hdspm, val);
3327 	spin_unlock_irq(&hdspm->lock);
3328 	return change;
3329 }
3330 
3331 
3332 #define HDSPM_QS_WIRE(xname, xindex) \
3333 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3334   .name = xname, \
3335   .index = xindex, \
3336   .info = snd_hdspm_info_qs_wire, \
3337   .get = snd_hdspm_get_qs_wire, \
3338   .put = snd_hdspm_put_qs_wire \
3339 }
3340 
3341 static int hdspm_qs_wire(struct hdspm * hdspm)
3342 {
3343 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3344 		return 1;
3345 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3346 		return 2;
3347 	return 0;
3348 }
3349 
3350 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3351 {
3352 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3353 	switch (mode) {
3354 	case 0:
3355 		break;
3356 	case 1:
3357 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3358 		break;
3359 	case 2:
3360 		hdspm->control_register |= HDSPM_QS_QuadWire;
3361 		break;
3362 	}
3363 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3364 
3365 	return 0;
3366 }
3367 
3368 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3369 				       struct snd_ctl_elem_info *uinfo)
3370 {
3371 	static char *texts[] = { "Single", "Double", "Quad" };
3372 
3373 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3374 	uinfo->count = 1;
3375 	uinfo->value.enumerated.items = 3;
3376 
3377 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3378 		uinfo->value.enumerated.item =
3379 		    uinfo->value.enumerated.items - 1;
3380 	strcpy(uinfo->value.enumerated.name,
3381 	       texts[uinfo->value.enumerated.item]);
3382 
3383 	return 0;
3384 }
3385 
3386 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3387 				      struct snd_ctl_elem_value *ucontrol)
3388 {
3389 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3390 
3391 	spin_lock_irq(&hdspm->lock);
3392 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3393 	spin_unlock_irq(&hdspm->lock);
3394 	return 0;
3395 }
3396 
3397 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3398 				      struct snd_ctl_elem_value *ucontrol)
3399 {
3400 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3401 	int change;
3402 	int val;
3403 
3404 	if (!snd_hdspm_use_is_exclusive(hdspm))
3405 		return -EBUSY;
3406 	val = ucontrol->value.integer.value[0];
3407 	if (val < 0)
3408 		val = 0;
3409 	if (val > 2)
3410 		val = 2;
3411 	spin_lock_irq(&hdspm->lock);
3412 	change = val != hdspm_qs_wire(hdspm);
3413 	hdspm_set_qs_wire(hdspm, val);
3414 	spin_unlock_irq(&hdspm->lock);
3415 	return change;
3416 }
3417 
3418 
3419 #define HDSPM_MIXER(xname, xindex) \
3420 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3421   .name = xname, \
3422   .index = xindex, \
3423   .device = 0, \
3424   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3425 		 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3426   .info = snd_hdspm_info_mixer, \
3427   .get = snd_hdspm_get_mixer, \
3428   .put = snd_hdspm_put_mixer \
3429 }
3430 
3431 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3432 				struct snd_ctl_elem_info *uinfo)
3433 {
3434 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3435 	uinfo->count = 3;
3436 	uinfo->value.integer.min = 0;
3437 	uinfo->value.integer.max = 65535;
3438 	uinfo->value.integer.step = 1;
3439 	return 0;
3440 }
3441 
3442 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3443 			       struct snd_ctl_elem_value *ucontrol)
3444 {
3445 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3446 	int source;
3447 	int destination;
3448 
3449 	source = ucontrol->value.integer.value[0];
3450 	if (source < 0)
3451 		source = 0;
3452 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3453 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3454 
3455 	destination = ucontrol->value.integer.value[1];
3456 	if (destination < 0)
3457 		destination = 0;
3458 	else if (destination >= HDSPM_MAX_CHANNELS)
3459 		destination = HDSPM_MAX_CHANNELS - 1;
3460 
3461 	spin_lock_irq(&hdspm->lock);
3462 	if (source >= HDSPM_MAX_CHANNELS)
3463 		ucontrol->value.integer.value[2] =
3464 		    hdspm_read_pb_gain(hdspm, destination,
3465 				       source - HDSPM_MAX_CHANNELS);
3466 	else
3467 		ucontrol->value.integer.value[2] =
3468 		    hdspm_read_in_gain(hdspm, destination, source);
3469 
3470 	spin_unlock_irq(&hdspm->lock);
3471 
3472 	return 0;
3473 }
3474 
3475 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3476 			       struct snd_ctl_elem_value *ucontrol)
3477 {
3478 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3479 	int change;
3480 	int source;
3481 	int destination;
3482 	int gain;
3483 
3484 	if (!snd_hdspm_use_is_exclusive(hdspm))
3485 		return -EBUSY;
3486 
3487 	source = ucontrol->value.integer.value[0];
3488 	destination = ucontrol->value.integer.value[1];
3489 
3490 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3491 		return -1;
3492 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3493 		return -1;
3494 
3495 	gain = ucontrol->value.integer.value[2];
3496 
3497 	spin_lock_irq(&hdspm->lock);
3498 
3499 	if (source >= HDSPM_MAX_CHANNELS)
3500 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3501 						    source -
3502 						    HDSPM_MAX_CHANNELS);
3503 	else
3504 		change = gain != hdspm_read_in_gain(hdspm, destination,
3505 						    source);
3506 
3507 	if (change) {
3508 		if (source >= HDSPM_MAX_CHANNELS)
3509 			hdspm_write_pb_gain(hdspm, destination,
3510 					    source - HDSPM_MAX_CHANNELS,
3511 					    gain);
3512 		else
3513 			hdspm_write_in_gain(hdspm, destination, source,
3514 					    gain);
3515 	}
3516 	spin_unlock_irq(&hdspm->lock);
3517 
3518 	return change;
3519 }
3520 
3521 /* The simple mixer control(s) provide gain control for the
3522    basic 1:1 mappings of playback streams to output
3523    streams.
3524 */
3525 
3526 #define HDSPM_PLAYBACK_MIXER \
3527 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3528   .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3529 		 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3530   .info = snd_hdspm_info_playback_mixer, \
3531   .get = snd_hdspm_get_playback_mixer, \
3532   .put = snd_hdspm_put_playback_mixer \
3533 }
3534 
3535 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3536 					 struct snd_ctl_elem_info *uinfo)
3537 {
3538 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3539 	uinfo->count = 1;
3540 	uinfo->value.integer.min = 0;
3541 	uinfo->value.integer.max = 64;
3542 	uinfo->value.integer.step = 1;
3543 	return 0;
3544 }
3545 
3546 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3547 					struct snd_ctl_elem_value *ucontrol)
3548 {
3549 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3550 	int channel;
3551 
3552 	channel = ucontrol->id.index - 1;
3553 
3554 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3555 		return -EINVAL;
3556 
3557 	spin_lock_irq(&hdspm->lock);
3558 	ucontrol->value.integer.value[0] =
3559 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3560 	spin_unlock_irq(&hdspm->lock);
3561 
3562 	return 0;
3563 }
3564 
3565 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3566 					struct snd_ctl_elem_value *ucontrol)
3567 {
3568 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3569 	int change;
3570 	int channel;
3571 	int gain;
3572 
3573 	if (!snd_hdspm_use_is_exclusive(hdspm))
3574 		return -EBUSY;
3575 
3576 	channel = ucontrol->id.index - 1;
3577 
3578 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3579 		return -EINVAL;
3580 
3581 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3582 
3583 	spin_lock_irq(&hdspm->lock);
3584 	change =
3585 	    gain != hdspm_read_pb_gain(hdspm, channel,
3586 				       channel);
3587 	if (change)
3588 		hdspm_write_pb_gain(hdspm, channel, channel,
3589 				    gain);
3590 	spin_unlock_irq(&hdspm->lock);
3591 	return change;
3592 }
3593 
3594 #define HDSPM_SYNC_CHECK(xname, xindex) \
3595 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3596 	.name = xname, \
3597 	.private_value = xindex, \
3598 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3599 	.info = snd_hdspm_info_sync_check, \
3600 	.get = snd_hdspm_get_sync_check \
3601 }
3602 
3603 
3604 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3605 				     struct snd_ctl_elem_info *uinfo)
3606 {
3607 	static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3608 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3609 	uinfo->count = 1;
3610 	uinfo->value.enumerated.items = 4;
3611 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3612 		uinfo->value.enumerated.item =
3613 			uinfo->value.enumerated.items - 1;
3614 	strcpy(uinfo->value.enumerated.name,
3615 			texts[uinfo->value.enumerated.item]);
3616 	return 0;
3617 }
3618 
3619 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3620 {
3621 	int status, status2;
3622 
3623 	switch (hdspm->io_type) {
3624 	case AES32:
3625 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3626 		if (status & HDSPM_wcSync)
3627 			return 2;
3628 		else if (status & HDSPM_wcLock)
3629 			return 1;
3630 		return 0;
3631 		break;
3632 
3633 	case MADI:
3634 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3635 		if (status2 & HDSPM_wcLock) {
3636 			if (status2 & HDSPM_wcSync)
3637 				return 2;
3638 			else
3639 				return 1;
3640 		}
3641 		return 0;
3642 		break;
3643 
3644 	case RayDAT:
3645 	case AIO:
3646 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3647 
3648 		if (status & 0x2000000)
3649 			return 2;
3650 		else if (status & 0x1000000)
3651 			return 1;
3652 		return 0;
3653 
3654 		break;
3655 
3656 	case MADIface:
3657 		break;
3658 	}
3659 
3660 
3661 	return 3;
3662 }
3663 
3664 
3665 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3666 {
3667 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3668 	if (status & HDSPM_madiLock) {
3669 		if (status & HDSPM_madiSync)
3670 			return 2;
3671 		else
3672 			return 1;
3673 	}
3674 	return 0;
3675 }
3676 
3677 
3678 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3679 {
3680 	int status, lock, sync;
3681 
3682 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3683 
3684 	lock = (status & (0x1<<idx)) ? 1 : 0;
3685 	sync = (status & (0x100<<idx)) ? 1 : 0;
3686 
3687 	if (lock && sync)
3688 		return 2;
3689 	else if (lock)
3690 		return 1;
3691 	return 0;
3692 }
3693 
3694 
3695 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3696 {
3697 	int status, lock = 0, sync = 0;
3698 
3699 	switch (hdspm->io_type) {
3700 	case RayDAT:
3701 	case AIO:
3702 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3703 		lock = (status & 0x400) ? 1 : 0;
3704 		sync = (status & 0x800) ? 1 : 0;
3705 		break;
3706 
3707 	case MADI:
3708 	case AES32:
3709 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3710 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3711 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3712 		break;
3713 
3714 	case MADIface:
3715 		break;
3716 	}
3717 
3718 	if (lock && sync)
3719 		return 2;
3720 	else if (lock)
3721 		return 1;
3722 
3723 	return 0;
3724 }
3725 
3726 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3727 {
3728 	int status2, lock, sync;
3729 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3730 
3731 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3732 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3733 
3734 	if (sync)
3735 		return 2;
3736 	else if (lock)
3737 		return 1;
3738 	return 0;
3739 }
3740 
3741 
3742 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3743 {
3744 	int status;
3745 
3746 	if (hdspm->tco) {
3747 		switch (hdspm->io_type) {
3748 		case MADI:
3749 		case AES32:
3750 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3751 			if (status & HDSPM_tcoLock) {
3752 				if (status & HDSPM_tcoSync)
3753 					return 2;
3754 				else
3755 					return 1;
3756 			}
3757 			return 0;
3758 
3759 			break;
3760 
3761 		case RayDAT:
3762 		case AIO:
3763 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3764 
3765 			if (status & 0x8000000)
3766 				return 2; /* Sync */
3767 			if (status & 0x4000000)
3768 				return 1; /* Lock */
3769 			return 0; /* No signal */
3770 			break;
3771 
3772 		default:
3773 			break;
3774 		}
3775 	}
3776 
3777 	return 3; /* N/A */
3778 }
3779 
3780 
3781 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
3782 				    struct snd_ctl_elem_value *ucontrol)
3783 {
3784 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3785 	int val = -1;
3786 
3787 	switch (hdspm->io_type) {
3788 	case RayDAT:
3789 		switch (kcontrol->private_value) {
3790 		case 0: /* WC */
3791 			val = hdspm_wc_sync_check(hdspm); break;
3792 		case 7: /* TCO */
3793 			val = hdspm_tco_sync_check(hdspm); break;
3794 		case 8: /* SYNC IN */
3795 			val = hdspm_sync_in_sync_check(hdspm); break;
3796 		default:
3797 			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3798 		}
3799 
3800 	case AIO:
3801 		switch (kcontrol->private_value) {
3802 		case 0: /* WC */
3803 			val = hdspm_wc_sync_check(hdspm); break;
3804 		case 4: /* TCO */
3805 			val = hdspm_tco_sync_check(hdspm); break;
3806 		case 5: /* SYNC IN */
3807 			val = hdspm_sync_in_sync_check(hdspm); break;
3808 		default:
3809 			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3810 		}
3811 
3812 	case MADI:
3813 		switch (kcontrol->private_value) {
3814 		case 0: /* WC */
3815 			val = hdspm_wc_sync_check(hdspm); break;
3816 		case 1: /* MADI */
3817 			val = hdspm_madi_sync_check(hdspm); break;
3818 		case 2: /* TCO */
3819 			val = hdspm_tco_sync_check(hdspm); break;
3820 		case 3: /* SYNC_IN */
3821 			val = hdspm_sync_in_sync_check(hdspm); break;
3822 		}
3823 
3824 	case MADIface:
3825 		val = hdspm_madi_sync_check(hdspm); /* MADI */
3826 		break;
3827 
3828 	case AES32:
3829 		switch (kcontrol->private_value) {
3830 		case 0: /* WC */
3831 			val = hdspm_wc_sync_check(hdspm); break;
3832 		case 9: /* TCO */
3833 			val = hdspm_tco_sync_check(hdspm); break;
3834 		case 10 /* SYNC IN */:
3835 			val = hdspm_sync_in_sync_check(hdspm); break;
3836 		default: /* AES1 to AES8 */
3837 			 val = hdspm_aes_sync_check(hdspm,
3838 					 kcontrol->private_value-1);
3839 		}
3840 
3841 	}
3842 
3843 	if (-1 == val)
3844 		val = 3;
3845 
3846 	ucontrol->value.enumerated.item[0] = val;
3847 	return 0;
3848 }
3849 
3850 
3851 
3852 /**
3853  * TCO controls
3854  **/
3855 static void hdspm_tco_write(struct hdspm *hdspm)
3856 {
3857 	unsigned int tc[4] = { 0, 0, 0, 0};
3858 
3859 	switch (hdspm->tco->input) {
3860 	case 0:
3861 		tc[2] |= HDSPM_TCO2_set_input_MSB;
3862 		break;
3863 	case 1:
3864 		tc[2] |= HDSPM_TCO2_set_input_LSB;
3865 		break;
3866 	default:
3867 		break;
3868 	}
3869 
3870 	switch (hdspm->tco->framerate) {
3871 	case 1:
3872 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
3873 		break;
3874 	case 2:
3875 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
3876 		break;
3877 	case 3:
3878 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
3879 			HDSPM_TCO1_set_drop_frame_flag;
3880 		break;
3881 	case 4:
3882 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3883 			HDSPM_TCO1_LTC_Format_MSB;
3884 		break;
3885 	case 5:
3886 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3887 			HDSPM_TCO1_LTC_Format_MSB +
3888 			HDSPM_TCO1_set_drop_frame_flag;
3889 		break;
3890 	default:
3891 		break;
3892 	}
3893 
3894 	switch (hdspm->tco->wordclock) {
3895 	case 1:
3896 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
3897 		break;
3898 	case 2:
3899 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
3900 		break;
3901 	default:
3902 		break;
3903 	}
3904 
3905 	switch (hdspm->tco->samplerate) {
3906 	case 1:
3907 		tc[2] |= HDSPM_TCO2_set_freq;
3908 		break;
3909 	case 2:
3910 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
3911 		break;
3912 	default:
3913 		break;
3914 	}
3915 
3916 	switch (hdspm->tco->pull) {
3917 	case 1:
3918 		tc[2] |= HDSPM_TCO2_set_pull_up;
3919 		break;
3920 	case 2:
3921 		tc[2] |= HDSPM_TCO2_set_pull_down;
3922 		break;
3923 	case 3:
3924 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
3925 		break;
3926 	case 4:
3927 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
3928 		break;
3929 	default:
3930 		break;
3931 	}
3932 
3933 	if (1 == hdspm->tco->term) {
3934 		tc[2] |= HDSPM_TCO2_set_term_75R;
3935 	}
3936 
3937 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
3938 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
3939 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
3940 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
3941 }
3942 
3943 
3944 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
3945 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3946 	.name = xname, \
3947 	.index = xindex, \
3948 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3949 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3950 	.info = snd_hdspm_info_tco_sample_rate, \
3951 	.get = snd_hdspm_get_tco_sample_rate, \
3952 	.put = snd_hdspm_put_tco_sample_rate \
3953 }
3954 
3955 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
3956 					  struct snd_ctl_elem_info *uinfo)
3957 {
3958 	static char *texts[] = { "44.1 kHz", "48 kHz" };
3959 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3960 	uinfo->count = 1;
3961 	uinfo->value.enumerated.items = 2;
3962 
3963 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3964 		uinfo->value.enumerated.item =
3965 			uinfo->value.enumerated.items - 1;
3966 
3967 	strcpy(uinfo->value.enumerated.name,
3968 			texts[uinfo->value.enumerated.item]);
3969 
3970 	return 0;
3971 }
3972 
3973 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
3974 				      struct snd_ctl_elem_value *ucontrol)
3975 {
3976 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3977 
3978 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
3979 
3980 	return 0;
3981 }
3982 
3983 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
3984 					 struct snd_ctl_elem_value *ucontrol)
3985 {
3986 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3987 
3988 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
3989 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
3990 
3991 		hdspm_tco_write(hdspm);
3992 
3993 		return 1;
3994 	}
3995 
3996 	return 0;
3997 }
3998 
3999 
4000 #define HDSPM_TCO_PULL(xname, xindex) \
4001 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4002 	.name = xname, \
4003 	.index = xindex, \
4004 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4005 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4006 	.info = snd_hdspm_info_tco_pull, \
4007 	.get = snd_hdspm_get_tco_pull, \
4008 	.put = snd_hdspm_put_tco_pull \
4009 }
4010 
4011 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4012 				   struct snd_ctl_elem_info *uinfo)
4013 {
4014 	static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
4015 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4016 	uinfo->count = 1;
4017 	uinfo->value.enumerated.items = 5;
4018 
4019 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4020 		uinfo->value.enumerated.item =
4021 			uinfo->value.enumerated.items - 1;
4022 
4023 	strcpy(uinfo->value.enumerated.name,
4024 			texts[uinfo->value.enumerated.item]);
4025 
4026 	return 0;
4027 }
4028 
4029 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4030 				  struct snd_ctl_elem_value *ucontrol)
4031 {
4032 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4033 
4034 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4035 
4036 	return 0;
4037 }
4038 
4039 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4040 				  struct snd_ctl_elem_value *ucontrol)
4041 {
4042 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4043 
4044 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4045 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4046 
4047 		hdspm_tco_write(hdspm);
4048 
4049 		return 1;
4050 	}
4051 
4052 	return 0;
4053 }
4054 
4055 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4056 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4057 	.name = xname, \
4058 	.index = xindex, \
4059 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4060 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4061 	.info = snd_hdspm_info_tco_wck_conversion, \
4062 	.get = snd_hdspm_get_tco_wck_conversion, \
4063 	.put = snd_hdspm_put_tco_wck_conversion \
4064 }
4065 
4066 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4067 					     struct snd_ctl_elem_info *uinfo)
4068 {
4069 	static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4070 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4071 	uinfo->count = 1;
4072 	uinfo->value.enumerated.items = 3;
4073 
4074 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4075 		uinfo->value.enumerated.item =
4076 			uinfo->value.enumerated.items - 1;
4077 
4078 	strcpy(uinfo->value.enumerated.name,
4079 			texts[uinfo->value.enumerated.item]);
4080 
4081 	return 0;
4082 }
4083 
4084 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4085 					    struct snd_ctl_elem_value *ucontrol)
4086 {
4087 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4088 
4089 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4090 
4091 	return 0;
4092 }
4093 
4094 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4095 					    struct snd_ctl_elem_value *ucontrol)
4096 {
4097 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4098 
4099 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4100 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4101 
4102 		hdspm_tco_write(hdspm);
4103 
4104 		return 1;
4105 	}
4106 
4107 	return 0;
4108 }
4109 
4110 
4111 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4112 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4113 	.name = xname, \
4114 	.index = xindex, \
4115 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4116 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4117 	.info = snd_hdspm_info_tco_frame_rate, \
4118 	.get = snd_hdspm_get_tco_frame_rate, \
4119 	.put = snd_hdspm_put_tco_frame_rate \
4120 }
4121 
4122 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4123 					  struct snd_ctl_elem_info *uinfo)
4124 {
4125 	static char *texts[] = { "24 fps", "25 fps", "29.97fps",
4126 		"29.97 dfps", "30 fps", "30 dfps" };
4127 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4128 	uinfo->count = 1;
4129 	uinfo->value.enumerated.items = 6;
4130 
4131 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4132 		uinfo->value.enumerated.item =
4133 			uinfo->value.enumerated.items - 1;
4134 
4135 	strcpy(uinfo->value.enumerated.name,
4136 			texts[uinfo->value.enumerated.item]);
4137 
4138 	return 0;
4139 }
4140 
4141 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4142 					struct snd_ctl_elem_value *ucontrol)
4143 {
4144 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4145 
4146 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4147 
4148 	return 0;
4149 }
4150 
4151 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4152 					struct snd_ctl_elem_value *ucontrol)
4153 {
4154 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4155 
4156 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4157 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4158 
4159 		hdspm_tco_write(hdspm);
4160 
4161 		return 1;
4162 	}
4163 
4164 	return 0;
4165 }
4166 
4167 
4168 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4169 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4170 	.name = xname, \
4171 	.index = xindex, \
4172 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4173 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4174 	.info = snd_hdspm_info_tco_sync_source, \
4175 	.get = snd_hdspm_get_tco_sync_source, \
4176 	.put = snd_hdspm_put_tco_sync_source \
4177 }
4178 
4179 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4180 					  struct snd_ctl_elem_info *uinfo)
4181 {
4182 	static char *texts[] = { "LTC", "Video", "WCK" };
4183 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4184 	uinfo->count = 1;
4185 	uinfo->value.enumerated.items = 3;
4186 
4187 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4188 		uinfo->value.enumerated.item =
4189 			uinfo->value.enumerated.items - 1;
4190 
4191 	strcpy(uinfo->value.enumerated.name,
4192 			texts[uinfo->value.enumerated.item]);
4193 
4194 	return 0;
4195 }
4196 
4197 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4198 					 struct snd_ctl_elem_value *ucontrol)
4199 {
4200 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4201 
4202 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4203 
4204 	return 0;
4205 }
4206 
4207 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4208 					 struct snd_ctl_elem_value *ucontrol)
4209 {
4210 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4211 
4212 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4213 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4214 
4215 		hdspm_tco_write(hdspm);
4216 
4217 		return 1;
4218 	}
4219 
4220 	return 0;
4221 }
4222 
4223 
4224 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4225 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4226 	.name = xname, \
4227 	.index = xindex, \
4228 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4229 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4230 	.info = snd_hdspm_info_tco_word_term, \
4231 	.get = snd_hdspm_get_tco_word_term, \
4232 	.put = snd_hdspm_put_tco_word_term \
4233 }
4234 
4235 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4236 					struct snd_ctl_elem_info *uinfo)
4237 {
4238 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4239 	uinfo->count = 1;
4240 	uinfo->value.integer.min = 0;
4241 	uinfo->value.integer.max = 1;
4242 
4243 	return 0;
4244 }
4245 
4246 
4247 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4248 				       struct snd_ctl_elem_value *ucontrol)
4249 {
4250 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4251 
4252 	ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4253 
4254 	return 0;
4255 }
4256 
4257 
4258 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4259 				       struct snd_ctl_elem_value *ucontrol)
4260 {
4261 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4262 
4263 	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4264 		hdspm->tco->term = ucontrol->value.enumerated.item[0];
4265 
4266 		hdspm_tco_write(hdspm);
4267 
4268 		return 1;
4269 	}
4270 
4271 	return 0;
4272 }
4273 
4274 
4275 
4276 
4277 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4278 	HDSPM_MIXER("Mixer", 0),
4279 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4280 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4281 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4282 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4283 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4284 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4285 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4286 	HDSPM_SYNC_CHECK("TCO SyncCHeck", 2),
4287 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4288 	HDSPM_LINE_OUT("Line Out", 0),
4289 	HDSPM_TX_64("TX 64 channels mode", 0),
4290 	HDSPM_C_TMS("Clear Track Marker", 0),
4291 	HDSPM_SAFE_MODE("Safe Mode", 0),
4292 	HDSPM_INPUT_SELECT("Input Select", 0)
4293 };
4294 
4295 
4296 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4297 	HDSPM_MIXER("Mixer", 0),
4298 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4299 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4300 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4301 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4302 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4303 	HDSPM_TX_64("TX 64 channels mode", 0),
4304 	HDSPM_C_TMS("Clear Track Marker", 0),
4305 	HDSPM_SAFE_MODE("Safe Mode", 0)
4306 };
4307 
4308 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4309 	HDSPM_MIXER("Mixer", 0),
4310 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4311 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4312 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4313 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4314 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4315 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4316 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4317 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4318 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4319 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4320 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4321 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4322 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4323 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4324 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4325 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4326 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4327 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)
4328 
4329 		/*
4330 		   HDSPM_INPUT_SELECT("Input Select", 0),
4331 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4332 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4333 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4334 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4335 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4336 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4337 		   HDSPM_PHONES("Phones", 0);
4338 		   */
4339 };
4340 
4341 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4342 	HDSPM_MIXER("Mixer", 0),
4343 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4344 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4345 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4346 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4347 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4348 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4349 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4350 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4351 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4352 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4353 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4354 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4355 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4356 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4357 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4358 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4359 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4360 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4361 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4362 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4363 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4364 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
4365 };
4366 
4367 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4368 	HDSPM_MIXER("Mixer", 0),
4369 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4370 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4371 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4372 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4373 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4374 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4375 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4376 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4377 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4378 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4379 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4380 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4381 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4382 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4383 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4384 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4385 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4386 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4387 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4388 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4389 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4390 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4391 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4392 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4393 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4394 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4395 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4396 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4397 	HDSPM_LINE_OUT("Line Out", 0),
4398 	HDSPM_EMPHASIS("Emphasis", 0),
4399 	HDSPM_DOLBY("Non Audio", 0),
4400 	HDSPM_PROFESSIONAL("Professional", 0),
4401 	HDSPM_C_TMS("Clear Track Marker", 0),
4402 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4403 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4404 };
4405 
4406 
4407 
4408 /* Control elements for the optional TCO module */
4409 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4410 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4411 	HDSPM_TCO_PULL("TCO Pull", 0),
4412 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4413 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4414 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4415 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
4416 };
4417 
4418 
4419 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4420 
4421 
4422 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4423 {
4424 	int i;
4425 
4426 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4427 		if (hdspm->system_sample_rate > 48000) {
4428 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4429 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4430 				SNDRV_CTL_ELEM_ACCESS_READ |
4431 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4432 		} else {
4433 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4434 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4435 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4436 		}
4437 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4438 				SNDRV_CTL_EVENT_MASK_INFO,
4439 				&hdspm->playback_mixer_ctls[i]->id);
4440 	}
4441 
4442 	return 0;
4443 }
4444 
4445 
4446 static int snd_hdspm_create_controls(struct snd_card *card,
4447 					struct hdspm *hdspm)
4448 {
4449 	unsigned int idx, limit;
4450 	int err;
4451 	struct snd_kcontrol *kctl;
4452 	struct snd_kcontrol_new *list = NULL;
4453 
4454 	switch (hdspm->io_type) {
4455 	case MADI:
4456 		list = snd_hdspm_controls_madi;
4457 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4458 		break;
4459 	case MADIface:
4460 		list = snd_hdspm_controls_madiface;
4461 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4462 		break;
4463 	case AIO:
4464 		list = snd_hdspm_controls_aio;
4465 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4466 		break;
4467 	case RayDAT:
4468 		list = snd_hdspm_controls_raydat;
4469 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4470 		break;
4471 	case AES32:
4472 		list = snd_hdspm_controls_aes32;
4473 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4474 		break;
4475 	}
4476 
4477 	if (NULL != list) {
4478 		for (idx = 0; idx < limit; idx++) {
4479 			err = snd_ctl_add(card,
4480 					snd_ctl_new1(&list[idx], hdspm));
4481 			if (err < 0)
4482 				return err;
4483 		}
4484 	}
4485 
4486 
4487 	/* create simple 1:1 playback mixer controls */
4488 	snd_hdspm_playback_mixer.name = "Chn";
4489 	if (hdspm->system_sample_rate >= 128000) {
4490 		limit = hdspm->qs_out_channels;
4491 	} else if (hdspm->system_sample_rate >= 64000) {
4492 		limit = hdspm->ds_out_channels;
4493 	} else {
4494 		limit = hdspm->ss_out_channels;
4495 	}
4496 	for (idx = 0; idx < limit; ++idx) {
4497 		snd_hdspm_playback_mixer.index = idx + 1;
4498 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4499 		err = snd_ctl_add(card, kctl);
4500 		if (err < 0)
4501 			return err;
4502 		hdspm->playback_mixer_ctls[idx] = kctl;
4503 	}
4504 
4505 
4506 	if (hdspm->tco) {
4507 		/* add tco control elements */
4508 		list = snd_hdspm_controls_tco;
4509 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4510 		for (idx = 0; idx < limit; idx++) {
4511 			err = snd_ctl_add(card,
4512 					snd_ctl_new1(&list[idx], hdspm));
4513 			if (err < 0)
4514 				return err;
4515 		}
4516 	}
4517 
4518 	return 0;
4519 }
4520 
4521 /*------------------------------------------------------------
4522    /proc interface
4523  ------------------------------------------------------------*/
4524 
4525 static void
4526 snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
4527 			 struct snd_info_buffer *buffer)
4528 {
4529 	struct hdspm *hdspm = entry->private_data;
4530 	unsigned int status, status2, control, freq;
4531 
4532 	char *pref_sync_ref;
4533 	char *autosync_ref;
4534 	char *system_clock_mode;
4535 	char *insel;
4536 	int x, x2;
4537 
4538 	/* TCO stuff */
4539 	int a, ltc, frames, seconds, minutes, hours;
4540 	unsigned int period;
4541 	u64 freq_const = 0;
4542 	u32 rate;
4543 
4544 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4545 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4546 	control = hdspm->control_register;
4547 	freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
4548 
4549 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4550 			hdspm->card_name, hdspm->card->number + 1,
4551 			hdspm->firmware_rev,
4552 			(status2 & HDSPM_version0) |
4553 			(status2 & HDSPM_version1) | (status2 &
4554 				HDSPM_version2));
4555 
4556 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4557 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4558 			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
4559 
4560 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4561 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4562 
4563 	snd_iprintf(buffer, "--- System ---\n");
4564 
4565 	snd_iprintf(buffer,
4566 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4567 		status & HDSPM_audioIRQPending,
4568 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4569 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4570 		hdspm->irq_count);
4571 	snd_iprintf(buffer,
4572 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4573 		"estimated= %ld (bytes)\n",
4574 		((status & HDSPM_BufferID) ? 1 : 0),
4575 		(status & HDSPM_BufferPositionMask),
4576 		(status & HDSPM_BufferPositionMask) %
4577 		(2 * (int)hdspm->period_bytes),
4578 		((status & HDSPM_BufferPositionMask) - 64) %
4579 		(2 * (int)hdspm->period_bytes),
4580 		(long) hdspm_hw_pointer(hdspm) * 4);
4581 
4582 	snd_iprintf(buffer,
4583 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4584 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4585 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4586 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4587 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4588 	snd_iprintf(buffer,
4589 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4590 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4591 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4592 	snd_iprintf(buffer,
4593 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4594 		"status2=0x%x\n",
4595 		hdspm->control_register, hdspm->control2_register,
4596 		status, status2);
4597 	if (status & HDSPM_tco_detect) {
4598 		snd_iprintf(buffer, "TCO module detected.\n");
4599 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4600 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4601 			snd_iprintf(buffer, "  LTC valid, ");
4602 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4603 						HDSPM_TCO1_LTC_Format_MSB)) {
4604 			case 0:
4605 				snd_iprintf(buffer, "24 fps, ");
4606 				break;
4607 			case HDSPM_TCO1_LTC_Format_LSB:
4608 				snd_iprintf(buffer, "25 fps, ");
4609 				break;
4610 			case HDSPM_TCO1_LTC_Format_MSB:
4611 				snd_iprintf(buffer, "29.97 fps, ");
4612 				break;
4613 			default:
4614 				snd_iprintf(buffer, "30 fps, ");
4615 				break;
4616 			}
4617 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4618 				snd_iprintf(buffer, "drop frame\n");
4619 			} else {
4620 				snd_iprintf(buffer, "full frame\n");
4621 			}
4622 		} else {
4623 			snd_iprintf(buffer, "  no LTC\n");
4624 		}
4625 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4626 			snd_iprintf(buffer, "  Video: NTSC\n");
4627 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4628 			snd_iprintf(buffer, "  Video: PAL\n");
4629 		} else {
4630 			snd_iprintf(buffer, "  No video\n");
4631 		}
4632 		if (a & HDSPM_TCO1_TCO_lock) {
4633 			snd_iprintf(buffer, "  Sync: lock\n");
4634 		} else {
4635 			snd_iprintf(buffer, "  Sync: no lock\n");
4636 		}
4637 
4638 		switch (hdspm->io_type) {
4639 		case MADI:
4640 		case AES32:
4641 			freq_const = 110069313433624ULL;
4642 			break;
4643 		case RayDAT:
4644 		case AIO:
4645 			freq_const = 104857600000000ULL;
4646 			break;
4647 		case MADIface:
4648 			break; /* no TCO possible */
4649 		}
4650 
4651 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4652 		snd_iprintf(buffer, "    period: %u\n", period);
4653 
4654 
4655 		/* rate = freq_const/period; */
4656 		rate = div_u64(freq_const, period);
4657 
4658 		if (control & HDSPM_QuadSpeed) {
4659 			rate *= 4;
4660 		} else if (control & HDSPM_DoubleSpeed) {
4661 			rate *= 2;
4662 		}
4663 
4664 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4665 				(unsigned int) rate);
4666 
4667 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4668 		frames = ltc & 0xF;
4669 		ltc >>= 4;
4670 		frames += (ltc & 0x3) * 10;
4671 		ltc >>= 4;
4672 		seconds = ltc & 0xF;
4673 		ltc >>= 4;
4674 		seconds += (ltc & 0x7) * 10;
4675 		ltc >>= 4;
4676 		minutes = ltc & 0xF;
4677 		ltc >>= 4;
4678 		minutes += (ltc & 0x7) * 10;
4679 		ltc >>= 4;
4680 		hours = ltc & 0xF;
4681 		ltc >>= 4;
4682 		hours += (ltc & 0x3) * 10;
4683 		snd_iprintf(buffer,
4684 			"  LTC In: %02d:%02d:%02d:%02d\n",
4685 			hours, minutes, seconds, frames);
4686 
4687 	} else {
4688 		snd_iprintf(buffer, "No TCO module detected.\n");
4689 	}
4690 
4691 	snd_iprintf(buffer, "--- Settings ---\n");
4692 
4693 	x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
4694 							HDSPM_LatencyMask));
4695 
4696 	snd_iprintf(buffer,
4697 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4698 		x, (unsigned long) hdspm->period_bytes);
4699 
4700 	snd_iprintf(buffer, "Line out: %s\n",
4701 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4702 
4703 	switch (hdspm->control_register & HDSPM_InputMask) {
4704 	case HDSPM_InputOptical:
4705 		insel = "Optical";
4706 		break;
4707 	case HDSPM_InputCoaxial:
4708 		insel = "Coaxial";
4709 		break;
4710 	default:
4711 		insel = "Unkown";
4712 	}
4713 
4714 	snd_iprintf(buffer,
4715 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4716 		"Auto Input %s\n",
4717 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4718 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4719 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4720 
4721 
4722 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4723 		system_clock_mode = "AutoSync";
4724 	else
4725 		system_clock_mode = "Master";
4726 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4727 
4728 	switch (hdspm_pref_sync_ref(hdspm)) {
4729 	case HDSPM_SYNC_FROM_WORD:
4730 		pref_sync_ref = "Word Clock";
4731 		break;
4732 	case HDSPM_SYNC_FROM_MADI:
4733 		pref_sync_ref = "MADI Sync";
4734 		break;
4735 	case HDSPM_SYNC_FROM_TCO:
4736 		pref_sync_ref = "TCO";
4737 		break;
4738 	case HDSPM_SYNC_FROM_SYNC_IN:
4739 		pref_sync_ref = "Sync In";
4740 		break;
4741 	default:
4742 		pref_sync_ref = "XXXX Clock";
4743 		break;
4744 	}
4745 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4746 			pref_sync_ref);
4747 
4748 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4749 			hdspm->system_sample_rate);
4750 
4751 
4752 	snd_iprintf(buffer, "--- Status:\n");
4753 
4754 	x = status & HDSPM_madiSync;
4755 	x2 = status2 & HDSPM_wcSync;
4756 
4757 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4758 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4759 			"NoLock",
4760 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4761 			"NoLock");
4762 
4763 	switch (hdspm_autosync_ref(hdspm)) {
4764 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4765 		autosync_ref = "Sync In";
4766 		break;
4767 	case HDSPM_AUTOSYNC_FROM_TCO:
4768 		autosync_ref = "TCO";
4769 		break;
4770 	case HDSPM_AUTOSYNC_FROM_WORD:
4771 		autosync_ref = "Word Clock";
4772 		break;
4773 	case HDSPM_AUTOSYNC_FROM_MADI:
4774 		autosync_ref = "MADI Sync";
4775 		break;
4776 	case HDSPM_AUTOSYNC_FROM_NONE:
4777 		autosync_ref = "Input not valid";
4778 		break;
4779 	default:
4780 		autosync_ref = "---";
4781 		break;
4782 	}
4783 	snd_iprintf(buffer,
4784 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
4785 		autosync_ref, hdspm_external_sample_rate(hdspm),
4786 		(status & HDSPM_madiFreqMask) >> 22,
4787 		(status2 & HDSPM_wcFreqMask) >> 5);
4788 
4789 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
4790 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
4791 		(status & HDSPM_RX_64ch) ? "64 channels" :
4792 		"56 channels");
4793 
4794 	snd_iprintf(buffer, "\n");
4795 }
4796 
4797 static void
4798 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
4799 			  struct snd_info_buffer *buffer)
4800 {
4801 	struct hdspm *hdspm = entry->private_data;
4802 	unsigned int status;
4803 	unsigned int status2;
4804 	unsigned int timecode;
4805 	int pref_syncref;
4806 	char *autosync_ref;
4807 	int x;
4808 
4809 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4810 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4811 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
4812 
4813 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
4814 		    hdspm->card_name, hdspm->card->number + 1,
4815 		    hdspm->firmware_rev);
4816 
4817 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4818 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4819 
4820 	snd_iprintf(buffer, "--- System ---\n");
4821 
4822 	snd_iprintf(buffer,
4823 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4824 		    status & HDSPM_audioIRQPending,
4825 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
4826 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
4827 		    hdspm->irq_count);
4828 	snd_iprintf(buffer,
4829 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
4830 		    "estimated= %ld (bytes)\n",
4831 		    ((status & HDSPM_BufferID) ? 1 : 0),
4832 		    (status & HDSPM_BufferPositionMask),
4833 		    (status & HDSPM_BufferPositionMask) %
4834 		    (2 * (int)hdspm->period_bytes),
4835 		    ((status & HDSPM_BufferPositionMask) - 64) %
4836 		    (2 * (int)hdspm->period_bytes),
4837 		    (long) hdspm_hw_pointer(hdspm) * 4);
4838 
4839 	snd_iprintf(buffer,
4840 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4841 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4842 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4843 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4844 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4845 	snd_iprintf(buffer,
4846 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4847 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4848 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4849 	snd_iprintf(buffer,
4850 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4851 		    "status2=0x%x\n",
4852 		    hdspm->control_register, hdspm->control2_register,
4853 		    status, status2);
4854 
4855 	snd_iprintf(buffer, "--- Settings ---\n");
4856 
4857 	x = 1 << (6 + hdspm_decode_latency(hdspm->control_register &
4858 				HDSPM_LatencyMask));
4859 
4860 	snd_iprintf(buffer,
4861 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4862 		    x, (unsigned long) hdspm->period_bytes);
4863 
4864 	snd_iprintf(buffer, "Line out: %s\n",
4865 		    (hdspm->
4866 		     control_register & HDSPM_LineOut) ? "on " : "off");
4867 
4868 	snd_iprintf(buffer,
4869 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
4870 		    (hdspm->
4871 		     control_register & HDSPM_clr_tms) ? "on" : "off",
4872 		    (hdspm->
4873 		     control_register & HDSPM_Emphasis) ? "on" : "off",
4874 		    (hdspm->
4875 		     control_register & HDSPM_Dolby) ? "on" : "off");
4876 
4877 
4878 	pref_syncref = hdspm_pref_sync_ref(hdspm);
4879 	if (pref_syncref == 0)
4880 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
4881 	else
4882 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
4883 				pref_syncref);
4884 
4885 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4886 		    hdspm->system_sample_rate);
4887 
4888 	snd_iprintf(buffer, "Double speed: %s\n",
4889 			hdspm->control_register & HDSPM_DS_DoubleWire?
4890 			"Double wire" : "Single wire");
4891 	snd_iprintf(buffer, "Quad speed: %s\n",
4892 			hdspm->control_register & HDSPM_QS_DoubleWire?
4893 			"Double wire" :
4894 			hdspm->control_register & HDSPM_QS_QuadWire?
4895 			"Quad wire" : "Single wire");
4896 
4897 	snd_iprintf(buffer, "--- Status:\n");
4898 
4899 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
4900 		    (status & HDSPM_AES32_wcLock) ? "Sync   " : "No Lock",
4901 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
4902 
4903 	for (x = 0; x < 8; x++) {
4904 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
4905 			    x+1,
4906 			    (status2 & (HDSPM_LockAES >> x)) ?
4907 			    "Sync   " : "No Lock",
4908 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
4909 	}
4910 
4911 	switch (hdspm_autosync_ref(hdspm)) {
4912 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
4913 		autosync_ref = "None"; break;
4914 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
4915 		autosync_ref = "Word Clock"; break;
4916 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
4917 		autosync_ref = "AES1"; break;
4918 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
4919 		autosync_ref = "AES2"; break;
4920 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
4921 		autosync_ref = "AES3"; break;
4922 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
4923 		autosync_ref = "AES4"; break;
4924 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
4925 		autosync_ref = "AES5"; break;
4926 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
4927 		autosync_ref = "AES6"; break;
4928 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
4929 		autosync_ref = "AES7"; break;
4930 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
4931 		autosync_ref = "AES8"; break;
4932 	default:
4933 		autosync_ref = "---"; break;
4934 	}
4935 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
4936 
4937 	snd_iprintf(buffer, "\n");
4938 }
4939 
4940 static void
4941 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
4942 			 struct snd_info_buffer *buffer)
4943 {
4944 	struct hdspm *hdspm = entry->private_data;
4945 	unsigned int status1, status2, status3, control, i;
4946 	unsigned int lock, sync;
4947 
4948 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
4949 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
4950 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
4951 
4952 	control = hdspm->control_register;
4953 
4954 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
4955 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
4956 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
4957 
4958 
4959 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
4960 
4961 	snd_iprintf(buffer, "Clock mode      : %s\n",
4962 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
4963 	snd_iprintf(buffer, "System frequency: %d Hz\n",
4964 		hdspm_get_system_sample_rate(hdspm));
4965 
4966 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
4967 
4968 	lock = 0x1;
4969 	sync = 0x100;
4970 
4971 	for (i = 0; i < 8; i++) {
4972 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
4973 				i,
4974 				(status1 & lock) ? 1 : 0,
4975 				(status1 & sync) ? 1 : 0,
4976 				texts_freq[(status2 >> (i * 4)) & 0xF]);
4977 
4978 		lock = lock<<1;
4979 		sync = sync<<1;
4980 	}
4981 
4982 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
4983 			(status1 & 0x1000000) ? 1 : 0,
4984 			(status1 & 0x2000000) ? 1 : 0,
4985 			texts_freq[(status1 >> 16) & 0xF]);
4986 
4987 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
4988 			(status1 & 0x4000000) ? 1 : 0,
4989 			(status1 & 0x8000000) ? 1 : 0,
4990 			texts_freq[(status1 >> 20) & 0xF]);
4991 
4992 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
4993 			(status3 & 0x400) ? 1 : 0,
4994 			(status3 & 0x800) ? 1 : 0,
4995 			texts_freq[(status2 >> 12) & 0xF]);
4996 
4997 }
4998 
4999 #ifdef CONFIG_SND_DEBUG
5000 static void
5001 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5002 			  struct snd_info_buffer *buffer)
5003 {
5004 	struct hdspm *hdspm = entry->private_data;
5005 
5006 	int j,i;
5007 
5008 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
5009 		snd_iprintf(buffer, "0x%08X: ", i);
5010 		for (j = 0; j < 16; j += 4)
5011 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5012 		snd_iprintf(buffer, "\n");
5013 	}
5014 }
5015 #endif
5016 
5017 
5018 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5019 			  struct snd_info_buffer *buffer)
5020 {
5021 	struct hdspm *hdspm = entry->private_data;
5022 	int i;
5023 
5024 	snd_iprintf(buffer, "# generated by hdspm\n");
5025 
5026 	for (i = 0; i < hdspm->max_channels_in; i++) {
5027 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5028 	}
5029 }
5030 
5031 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5032 			  struct snd_info_buffer *buffer)
5033 {
5034 	struct hdspm *hdspm = entry->private_data;
5035 	int i;
5036 
5037 	snd_iprintf(buffer, "# generated by hdspm\n");
5038 
5039 	for (i = 0; i < hdspm->max_channels_out; i++) {
5040 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5041 	}
5042 }
5043 
5044 
5045 static void __devinit snd_hdspm_proc_init(struct hdspm *hdspm)
5046 {
5047 	struct snd_info_entry *entry;
5048 
5049 	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5050 		switch (hdspm->io_type) {
5051 		case AES32:
5052 			snd_info_set_text_ops(entry, hdspm,
5053 					snd_hdspm_proc_read_aes32);
5054 			break;
5055 		case MADI:
5056 			snd_info_set_text_ops(entry, hdspm,
5057 					snd_hdspm_proc_read_madi);
5058 			break;
5059 		case MADIface:
5060 			/* snd_info_set_text_ops(entry, hdspm,
5061 			 snd_hdspm_proc_read_madiface); */
5062 			break;
5063 		case RayDAT:
5064 			snd_info_set_text_ops(entry, hdspm,
5065 					snd_hdspm_proc_read_raydat);
5066 			break;
5067 		case AIO:
5068 			break;
5069 		}
5070 	}
5071 
5072 	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5073 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5074 	}
5075 
5076 	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5077 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5078 	}
5079 
5080 #ifdef CONFIG_SND_DEBUG
5081 	/* debug file to read all hdspm registers */
5082 	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5083 		snd_info_set_text_ops(entry, hdspm,
5084 				snd_hdspm_proc_read_debug);
5085 #endif
5086 }
5087 
5088 /*------------------------------------------------------------
5089    hdspm intitialize
5090  ------------------------------------------------------------*/
5091 
5092 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5093 {
5094 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
5095 	   hold it (e.g. during module initialization).
5096 	   */
5097 
5098 	/* set defaults:       */
5099 
5100 	hdspm->settings_register = 0;
5101 
5102 	switch (hdspm->io_type) {
5103 	case MADI:
5104 	case MADIface:
5105 		hdspm->control_register =
5106 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5107 		break;
5108 
5109 	case RayDAT:
5110 	case AIO:
5111 		hdspm->settings_register = 0x1 + 0x1000;
5112 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5113 		 * line_out */
5114 		hdspm->control_register =
5115 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5116 		break;
5117 
5118 	case AES32:
5119 		hdspm->control_register =
5120 			HDSPM_ClockModeMaster |	/* Master Cloack Mode on */
5121 			hdspm_encode_latency(7) | /* latency max=8192samples */
5122 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
5123 			HDSPM_LineOut |	/* Analog output in */
5124 			HDSPM_Professional;  /* Professional mode */
5125 		break;
5126 	}
5127 
5128 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5129 
5130 	if (AES32 == hdspm->io_type) {
5131 		/* No control2 register for AES32 */
5132 #ifdef SNDRV_BIG_ENDIAN
5133 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5134 #else
5135 		hdspm->control2_register = 0;
5136 #endif
5137 
5138 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5139 	}
5140 	hdspm_compute_period_size(hdspm);
5141 
5142 	/* silence everything */
5143 
5144 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5145 
5146 	if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
5147 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5148 	}
5149 
5150 	/* set a default rate so that the channel map is set up. */
5151 	hdspm_set_rate(hdspm, 48000, 1);
5152 
5153 	return 0;
5154 }
5155 
5156 
5157 /*------------------------------------------------------------
5158    interrupt
5159  ------------------------------------------------------------*/
5160 
5161 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5162 {
5163 	struct hdspm *hdspm = (struct hdspm *) dev_id;
5164 	unsigned int status;
5165 	int i, audio, midi, schedule = 0;
5166 	/* cycles_t now; */
5167 
5168 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5169 
5170 	audio = status & HDSPM_audioIRQPending;
5171 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5172 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5173 
5174 	/* now = get_cycles(); */
5175 	/**
5176 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5177 	 *          6       4096   ~256053425     ~514672358
5178 	 *          5       2048   ~128024983     ~257373821
5179 	 *          4       1024    ~64023706     ~128718089
5180 	 *          3        512    ~32005945      ~64385999
5181 	 *          2        256    ~16003039      ~32260176
5182 	 *          1        128     ~7998738      ~16194507
5183 	 *          0         64     ~3998231       ~8191558
5184 	 **/
5185 	/*
5186 	   snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
5187 	   now-hdspm->last_interrupt, status & 0xFFC0);
5188 	   hdspm->last_interrupt = now;
5189 	*/
5190 
5191 	if (!audio && !midi)
5192 		return IRQ_NONE;
5193 
5194 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5195 	hdspm->irq_count++;
5196 
5197 
5198 	if (audio) {
5199 		if (hdspm->capture_substream)
5200 			snd_pcm_period_elapsed(hdspm->capture_substream);
5201 
5202 		if (hdspm->playback_substream)
5203 			snd_pcm_period_elapsed(hdspm->playback_substream);
5204 	}
5205 
5206 	if (midi) {
5207 		i = 0;
5208 		while (i < hdspm->midiPorts) {
5209 			if ((hdspm_read(hdspm,
5210 				hdspm->midi[i].statusIn) & 0xff) &&
5211 					(status & hdspm->midi[i].irq)) {
5212 				/* we disable interrupts for this input until
5213 				 * processing is done
5214 				 */
5215 				hdspm->control_register &= ~hdspm->midi[i].ie;
5216 				hdspm_write(hdspm, HDSPM_controlRegister,
5217 						hdspm->control_register);
5218 				hdspm->midi[i].pending = 1;
5219 				schedule = 1;
5220 			}
5221 
5222 			i++;
5223 		}
5224 
5225 		if (schedule)
5226 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5227 	}
5228 
5229 	return IRQ_HANDLED;
5230 }
5231 
5232 /*------------------------------------------------------------
5233    pcm interface
5234   ------------------------------------------------------------*/
5235 
5236 
5237 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5238 					      *substream)
5239 {
5240 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5241 	return hdspm_hw_pointer(hdspm);
5242 }
5243 
5244 
5245 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5246 {
5247 	struct snd_pcm_runtime *runtime = substream->runtime;
5248 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5249 	struct snd_pcm_substream *other;
5250 
5251 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5252 		other = hdspm->capture_substream;
5253 	else
5254 		other = hdspm->playback_substream;
5255 
5256 	if (hdspm->running)
5257 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5258 	else
5259 		runtime->status->hw_ptr = 0;
5260 	if (other) {
5261 		struct snd_pcm_substream *s;
5262 		struct snd_pcm_runtime *oruntime = other->runtime;
5263 		snd_pcm_group_for_each_entry(s, substream) {
5264 			if (s == other) {
5265 				oruntime->status->hw_ptr =
5266 					runtime->status->hw_ptr;
5267 				break;
5268 			}
5269 		}
5270 	}
5271 	return 0;
5272 }
5273 
5274 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5275 			       struct snd_pcm_hw_params *params)
5276 {
5277 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5278 	int err;
5279 	int i;
5280 	pid_t this_pid;
5281 	pid_t other_pid;
5282 
5283 	spin_lock_irq(&hdspm->lock);
5284 
5285 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5286 		this_pid = hdspm->playback_pid;
5287 		other_pid = hdspm->capture_pid;
5288 	} else {
5289 		this_pid = hdspm->capture_pid;
5290 		other_pid = hdspm->playback_pid;
5291 	}
5292 
5293 	if (other_pid > 0 && this_pid != other_pid) {
5294 
5295 		/* The other stream is open, and not by the same
5296 		   task as this one. Make sure that the parameters
5297 		   that matter are the same.
5298 		   */
5299 
5300 		if (params_rate(params) != hdspm->system_sample_rate) {
5301 			spin_unlock_irq(&hdspm->lock);
5302 			_snd_pcm_hw_param_setempty(params,
5303 					SNDRV_PCM_HW_PARAM_RATE);
5304 			return -EBUSY;
5305 		}
5306 
5307 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5308 			spin_unlock_irq(&hdspm->lock);
5309 			_snd_pcm_hw_param_setempty(params,
5310 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5311 			return -EBUSY;
5312 		}
5313 
5314 	}
5315 	/* We're fine. */
5316 	spin_unlock_irq(&hdspm->lock);
5317 
5318 	/* how to make sure that the rate matches an externally-set one ?   */
5319 
5320 	spin_lock_irq(&hdspm->lock);
5321 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5322 	if (err < 0) {
5323 		snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
5324 		spin_unlock_irq(&hdspm->lock);
5325 		_snd_pcm_hw_param_setempty(params,
5326 				SNDRV_PCM_HW_PARAM_RATE);
5327 		return err;
5328 	}
5329 	spin_unlock_irq(&hdspm->lock);
5330 
5331 	err = hdspm_set_interrupt_interval(hdspm,
5332 			params_period_size(params));
5333 	if (err < 0) {
5334 		snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
5335 		_snd_pcm_hw_param_setempty(params,
5336 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5337 		return err;
5338 	}
5339 
5340 	/* Memory allocation, takashi's method, dont know if we should
5341 	 * spinlock
5342 	 */
5343 	/* malloc all buffer even if not enabled to get sure */
5344 	/* Update for MADI rev 204: we need to allocate for all channels,
5345 	 * otherwise it doesn't work at 96kHz */
5346 
5347 	err =
5348 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5349 	if (err < 0) {
5350 		snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
5351 		return err;
5352 	}
5353 
5354 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5355 
5356 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5357 				params_channels(params));
5358 
5359 		for (i = 0; i < params_channels(params); ++i)
5360 			snd_hdspm_enable_out(hdspm, i, 1);
5361 
5362 		hdspm->playback_buffer =
5363 			(unsigned char *) substream->runtime->dma_area;
5364 		snd_printdd("Allocated sample buffer for playback at %p\n",
5365 				hdspm->playback_buffer);
5366 	} else {
5367 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5368 				params_channels(params));
5369 
5370 		for (i = 0; i < params_channels(params); ++i)
5371 			snd_hdspm_enable_in(hdspm, i, 1);
5372 
5373 		hdspm->capture_buffer =
5374 			(unsigned char *) substream->runtime->dma_area;
5375 		snd_printdd("Allocated sample buffer for capture at %p\n",
5376 				hdspm->capture_buffer);
5377 	}
5378 
5379 	/*
5380 	   snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5381 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5382 	   "playback" : "capture",
5383 	   snd_pcm_sgbuf_get_addr(substream, 0));
5384 	   */
5385 	/*
5386 	   snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5387 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5388 	   "playback" : "capture",
5389 	   params_rate(params), params_channels(params),
5390 	   params_buffer_size(params));
5391 	   */
5392 
5393 
5394 	/* Switch to native float format if requested */
5395 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5396 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5397 			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5398 
5399 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5400 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5401 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5402 			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5403 
5404 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5405 	}
5406 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5407 
5408 	return 0;
5409 }
5410 
5411 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5412 {
5413 	int i;
5414 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5415 
5416 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5417 
5418 		/* params_channels(params) should be enough,
5419 		   but to get sure in case of error */
5420 		for (i = 0; i < hdspm->max_channels_out; ++i)
5421 			snd_hdspm_enable_out(hdspm, i, 0);
5422 
5423 		hdspm->playback_buffer = NULL;
5424 	} else {
5425 		for (i = 0; i < hdspm->max_channels_in; ++i)
5426 			snd_hdspm_enable_in(hdspm, i, 0);
5427 
5428 		hdspm->capture_buffer = NULL;
5429 
5430 	}
5431 
5432 	snd_pcm_lib_free_pages(substream);
5433 
5434 	return 0;
5435 }
5436 
5437 
5438 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5439 		struct snd_pcm_channel_info *info)
5440 {
5441 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5442 
5443 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5444 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5445 			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5446 			return -EINVAL;
5447 		}
5448 
5449 		if (hdspm->channel_map_out[info->channel] < 0) {
5450 			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5451 			return -EINVAL;
5452 		}
5453 
5454 		info->offset = hdspm->channel_map_out[info->channel] *
5455 			HDSPM_CHANNEL_BUFFER_BYTES;
5456 	} else {
5457 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5458 			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5459 			return -EINVAL;
5460 		}
5461 
5462 		if (hdspm->channel_map_in[info->channel] < 0) {
5463 			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5464 			return -EINVAL;
5465 		}
5466 
5467 		info->offset = hdspm->channel_map_in[info->channel] *
5468 			HDSPM_CHANNEL_BUFFER_BYTES;
5469 	}
5470 
5471 	info->first = 0;
5472 	info->step = 32;
5473 	return 0;
5474 }
5475 
5476 
5477 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5478 		unsigned int cmd, void *arg)
5479 {
5480 	switch (cmd) {
5481 	case SNDRV_PCM_IOCTL1_RESET:
5482 		return snd_hdspm_reset(substream);
5483 
5484 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5485 		{
5486 			struct snd_pcm_channel_info *info = arg;
5487 			return snd_hdspm_channel_info(substream, info);
5488 		}
5489 	default:
5490 		break;
5491 	}
5492 
5493 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5494 }
5495 
5496 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5497 {
5498 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5499 	struct snd_pcm_substream *other;
5500 	int running;
5501 
5502 	spin_lock(&hdspm->lock);
5503 	running = hdspm->running;
5504 	switch (cmd) {
5505 	case SNDRV_PCM_TRIGGER_START:
5506 		running |= 1 << substream->stream;
5507 		break;
5508 	case SNDRV_PCM_TRIGGER_STOP:
5509 		running &= ~(1 << substream->stream);
5510 		break;
5511 	default:
5512 		snd_BUG();
5513 		spin_unlock(&hdspm->lock);
5514 		return -EINVAL;
5515 	}
5516 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5517 		other = hdspm->capture_substream;
5518 	else
5519 		other = hdspm->playback_substream;
5520 
5521 	if (other) {
5522 		struct snd_pcm_substream *s;
5523 		snd_pcm_group_for_each_entry(s, substream) {
5524 			if (s == other) {
5525 				snd_pcm_trigger_done(s, substream);
5526 				if (cmd == SNDRV_PCM_TRIGGER_START)
5527 					running |= 1 << s->stream;
5528 				else
5529 					running &= ~(1 << s->stream);
5530 				goto _ok;
5531 			}
5532 		}
5533 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5534 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5535 					&& substream->stream ==
5536 					SNDRV_PCM_STREAM_CAPTURE)
5537 				hdspm_silence_playback(hdspm);
5538 		} else {
5539 			if (running &&
5540 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5541 				hdspm_silence_playback(hdspm);
5542 		}
5543 	} else {
5544 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5545 			hdspm_silence_playback(hdspm);
5546 	}
5547 _ok:
5548 	snd_pcm_trigger_done(substream, substream);
5549 	if (!hdspm->running && running)
5550 		hdspm_start_audio(hdspm);
5551 	else if (hdspm->running && !running)
5552 		hdspm_stop_audio(hdspm);
5553 	hdspm->running = running;
5554 	spin_unlock(&hdspm->lock);
5555 
5556 	return 0;
5557 }
5558 
5559 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5560 {
5561 	return 0;
5562 }
5563 
5564 static unsigned int period_sizes_old[] = {
5565 	64, 128, 256, 512, 1024, 2048, 4096
5566 };
5567 
5568 static unsigned int period_sizes_new[] = {
5569 	32, 64, 128, 256, 512, 1024, 2048, 4096
5570 };
5571 
5572 /* RayDAT and AIO always have a buffer of 16384 samples per channel */
5573 static unsigned int raydat_aio_buffer_sizes[] = {
5574 	16384
5575 };
5576 
5577 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5578 	.info = (SNDRV_PCM_INFO_MMAP |
5579 		 SNDRV_PCM_INFO_MMAP_VALID |
5580 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5581 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5582 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5583 	.rates = (SNDRV_PCM_RATE_32000 |
5584 		  SNDRV_PCM_RATE_44100 |
5585 		  SNDRV_PCM_RATE_48000 |
5586 		  SNDRV_PCM_RATE_64000 |
5587 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5588 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5589 	.rate_min = 32000,
5590 	.rate_max = 192000,
5591 	.channels_min = 1,
5592 	.channels_max = HDSPM_MAX_CHANNELS,
5593 	.buffer_bytes_max =
5594 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5595 	.period_bytes_min = (64 * 4),
5596 	.period_bytes_max = (4096 * 4) * HDSPM_MAX_CHANNELS,
5597 	.periods_min = 2,
5598 	.periods_max = 512,
5599 	.fifo_size = 0
5600 };
5601 
5602 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5603 	.info = (SNDRV_PCM_INFO_MMAP |
5604 		 SNDRV_PCM_INFO_MMAP_VALID |
5605 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5606 		 SNDRV_PCM_INFO_SYNC_START),
5607 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5608 	.rates = (SNDRV_PCM_RATE_32000 |
5609 		  SNDRV_PCM_RATE_44100 |
5610 		  SNDRV_PCM_RATE_48000 |
5611 		  SNDRV_PCM_RATE_64000 |
5612 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5613 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5614 	.rate_min = 32000,
5615 	.rate_max = 192000,
5616 	.channels_min = 1,
5617 	.channels_max = HDSPM_MAX_CHANNELS,
5618 	.buffer_bytes_max =
5619 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5620 	.period_bytes_min = (64 * 4),
5621 	.period_bytes_max = (4096 * 4) * HDSPM_MAX_CHANNELS,
5622 	.periods_min = 2,
5623 	.periods_max = 512,
5624 	.fifo_size = 0
5625 };
5626 
5627 static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes_old = {
5628 	.count = ARRAY_SIZE(period_sizes_old),
5629 	.list = period_sizes_old,
5630 	.mask = 0
5631 };
5632 
5633 static struct snd_pcm_hw_constraint_list hw_constraints_period_sizes_new = {
5634 	.count = ARRAY_SIZE(period_sizes_new),
5635 	.list = period_sizes_new,
5636 	.mask = 0
5637 };
5638 
5639 static struct snd_pcm_hw_constraint_list hw_constraints_raydat_io_buffer = {
5640 	.count = ARRAY_SIZE(raydat_aio_buffer_sizes),
5641 	.list = raydat_aio_buffer_sizes,
5642 	.mask = 0
5643 };
5644 
5645 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5646 					   struct snd_pcm_hw_rule *rule)
5647 {
5648 	struct hdspm *hdspm = rule->private;
5649 	struct snd_interval *c =
5650 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5651 	struct snd_interval *r =
5652 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5653 
5654 	if (r->min > 96000 && r->max <= 192000) {
5655 		struct snd_interval t = {
5656 			.min = hdspm->qs_in_channels,
5657 			.max = hdspm->qs_in_channels,
5658 			.integer = 1,
5659 		};
5660 		return snd_interval_refine(c, &t);
5661 	} else if (r->min > 48000 && r->max <= 96000) {
5662 		struct snd_interval t = {
5663 			.min = hdspm->ds_in_channels,
5664 			.max = hdspm->ds_in_channels,
5665 			.integer = 1,
5666 		};
5667 		return snd_interval_refine(c, &t);
5668 	} else if (r->max < 64000) {
5669 		struct snd_interval t = {
5670 			.min = hdspm->ss_in_channels,
5671 			.max = hdspm->ss_in_channels,
5672 			.integer = 1,
5673 		};
5674 		return snd_interval_refine(c, &t);
5675 	}
5676 
5677 	return 0;
5678 }
5679 
5680 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5681 					   struct snd_pcm_hw_rule * rule)
5682 {
5683 	struct hdspm *hdspm = rule->private;
5684 	struct snd_interval *c =
5685 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5686 	struct snd_interval *r =
5687 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5688 
5689 	if (r->min > 96000 && r->max <= 192000) {
5690 		struct snd_interval t = {
5691 			.min = hdspm->qs_out_channels,
5692 			.max = hdspm->qs_out_channels,
5693 			.integer = 1,
5694 		};
5695 		return snd_interval_refine(c, &t);
5696 	} else if (r->min > 48000 && r->max <= 96000) {
5697 		struct snd_interval t = {
5698 			.min = hdspm->ds_out_channels,
5699 			.max = hdspm->ds_out_channels,
5700 			.integer = 1,
5701 		};
5702 		return snd_interval_refine(c, &t);
5703 	} else if (r->max < 64000) {
5704 		struct snd_interval t = {
5705 			.min = hdspm->ss_out_channels,
5706 			.max = hdspm->ss_out_channels,
5707 			.integer = 1,
5708 		};
5709 		return snd_interval_refine(c, &t);
5710 	} else {
5711 	}
5712 	return 0;
5713 }
5714 
5715 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5716 					   struct snd_pcm_hw_rule * rule)
5717 {
5718 	struct hdspm *hdspm = rule->private;
5719 	struct snd_interval *c =
5720 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5721 	struct snd_interval *r =
5722 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5723 
5724 	if (c->min >= hdspm->ss_in_channels) {
5725 		struct snd_interval t = {
5726 			.min = 32000,
5727 			.max = 48000,
5728 			.integer = 1,
5729 		};
5730 		return snd_interval_refine(r, &t);
5731 	} else if (c->max <= hdspm->qs_in_channels) {
5732 		struct snd_interval t = {
5733 			.min = 128000,
5734 			.max = 192000,
5735 			.integer = 1,
5736 		};
5737 		return snd_interval_refine(r, &t);
5738 	} else if (c->max <= hdspm->ds_in_channels) {
5739 		struct snd_interval t = {
5740 			.min = 64000,
5741 			.max = 96000,
5742 			.integer = 1,
5743 		};
5744 		return snd_interval_refine(r, &t);
5745 	}
5746 
5747 	return 0;
5748 }
5749 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5750 					   struct snd_pcm_hw_rule *rule)
5751 {
5752 	struct hdspm *hdspm = rule->private;
5753 	struct snd_interval *c =
5754 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5755 	struct snd_interval *r =
5756 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5757 
5758 	if (c->min >= hdspm->ss_out_channels) {
5759 		struct snd_interval t = {
5760 			.min = 32000,
5761 			.max = 48000,
5762 			.integer = 1,
5763 		};
5764 		return snd_interval_refine(r, &t);
5765 	} else if (c->max <= hdspm->qs_out_channels) {
5766 		struct snd_interval t = {
5767 			.min = 128000,
5768 			.max = 192000,
5769 			.integer = 1,
5770 		};
5771 		return snd_interval_refine(r, &t);
5772 	} else if (c->max <= hdspm->ds_out_channels) {
5773 		struct snd_interval t = {
5774 			.min = 64000,
5775 			.max = 96000,
5776 			.integer = 1,
5777 		};
5778 		return snd_interval_refine(r, &t);
5779 	}
5780 
5781 	return 0;
5782 }
5783 
5784 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
5785 				      struct snd_pcm_hw_rule *rule)
5786 {
5787 	unsigned int list[3];
5788 	struct hdspm *hdspm = rule->private;
5789 	struct snd_interval *c = hw_param_interval(params,
5790 			SNDRV_PCM_HW_PARAM_CHANNELS);
5791 
5792 	list[0] = hdspm->qs_in_channels;
5793 	list[1] = hdspm->ds_in_channels;
5794 	list[2] = hdspm->ss_in_channels;
5795 	return snd_interval_list(c, 3, list, 0);
5796 }
5797 
5798 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
5799 				      struct snd_pcm_hw_rule *rule)
5800 {
5801 	unsigned int list[3];
5802 	struct hdspm *hdspm = rule->private;
5803 	struct snd_interval *c = hw_param_interval(params,
5804 			SNDRV_PCM_HW_PARAM_CHANNELS);
5805 
5806 	list[0] = hdspm->qs_out_channels;
5807 	list[1] = hdspm->ds_out_channels;
5808 	list[2] = hdspm->ss_out_channels;
5809 	return snd_interval_list(c, 3, list, 0);
5810 }
5811 
5812 
5813 static unsigned int hdspm_aes32_sample_rates[] = {
5814 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
5815 };
5816 
5817 static struct snd_pcm_hw_constraint_list
5818 hdspm_hw_constraints_aes32_sample_rates = {
5819 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
5820 	.list = hdspm_aes32_sample_rates,
5821 	.mask = 0
5822 };
5823 
5824 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
5825 {
5826 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5827 	struct snd_pcm_runtime *runtime = substream->runtime;
5828 
5829 	spin_lock_irq(&hdspm->lock);
5830 
5831 	snd_pcm_set_sync(substream);
5832 
5833 
5834 	runtime->hw = snd_hdspm_playback_subinfo;
5835 
5836 	if (hdspm->capture_substream == NULL)
5837 		hdspm_stop_audio(hdspm);
5838 
5839 	hdspm->playback_pid = current->pid;
5840 	hdspm->playback_substream = substream;
5841 
5842 	spin_unlock_irq(&hdspm->lock);
5843 
5844 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5845 
5846 	switch (hdspm->io_type) {
5847 	case AIO:
5848 	case RayDAT:
5849 		snd_pcm_hw_constraint_list(runtime, 0,
5850 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5851 				&hw_constraints_period_sizes_new);
5852 		snd_pcm_hw_constraint_list(runtime, 0,
5853 				SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5854 				&hw_constraints_raydat_io_buffer);
5855 
5856 		break;
5857 
5858 	default:
5859 		snd_pcm_hw_constraint_list(runtime, 0,
5860 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5861 				&hw_constraints_period_sizes_old);
5862 	}
5863 
5864 	if (AES32 == hdspm->io_type) {
5865 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5866 				&hdspm_hw_constraints_aes32_sample_rates);
5867 	} else {
5868 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5869 				snd_hdspm_hw_rule_rate_out_channels, hdspm,
5870 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5871 	}
5872 
5873 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5874 			snd_hdspm_hw_rule_out_channels, hdspm,
5875 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5876 
5877 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5878 			snd_hdspm_hw_rule_out_channels_rate, hdspm,
5879 			SNDRV_PCM_HW_PARAM_RATE, -1);
5880 
5881 	return 0;
5882 }
5883 
5884 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
5885 {
5886 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5887 
5888 	spin_lock_irq(&hdspm->lock);
5889 
5890 	hdspm->playback_pid = -1;
5891 	hdspm->playback_substream = NULL;
5892 
5893 	spin_unlock_irq(&hdspm->lock);
5894 
5895 	return 0;
5896 }
5897 
5898 
5899 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
5900 {
5901 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5902 	struct snd_pcm_runtime *runtime = substream->runtime;
5903 
5904 	spin_lock_irq(&hdspm->lock);
5905 	snd_pcm_set_sync(substream);
5906 	runtime->hw = snd_hdspm_capture_subinfo;
5907 
5908 	if (hdspm->playback_substream == NULL)
5909 		hdspm_stop_audio(hdspm);
5910 
5911 	hdspm->capture_pid = current->pid;
5912 	hdspm->capture_substream = substream;
5913 
5914 	spin_unlock_irq(&hdspm->lock);
5915 
5916 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5917 	switch (hdspm->io_type) {
5918 	case AIO:
5919 	case RayDAT:
5920 	  snd_pcm_hw_constraint_list(runtime, 0,
5921 				     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5922 				     &hw_constraints_period_sizes_new);
5923 	  snd_pcm_hw_constraint_list(runtime, 0,
5924 				     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5925 				     &hw_constraints_raydat_io_buffer);
5926 	  break;
5927 
5928 	default:
5929 	  snd_pcm_hw_constraint_list(runtime, 0,
5930 				     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5931 				     &hw_constraints_period_sizes_old);
5932 	}
5933 
5934 	if (AES32 == hdspm->io_type) {
5935 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5936 				&hdspm_hw_constraints_aes32_sample_rates);
5937 	} else {
5938 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5939 				snd_hdspm_hw_rule_rate_in_channels, hdspm,
5940 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5941 	}
5942 
5943 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5944 			snd_hdspm_hw_rule_in_channels, hdspm,
5945 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5946 
5947 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5948 			snd_hdspm_hw_rule_in_channels_rate, hdspm,
5949 			SNDRV_PCM_HW_PARAM_RATE, -1);
5950 
5951 	return 0;
5952 }
5953 
5954 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
5955 {
5956 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5957 
5958 	spin_lock_irq(&hdspm->lock);
5959 
5960 	hdspm->capture_pid = -1;
5961 	hdspm->capture_substream = NULL;
5962 
5963 	spin_unlock_irq(&hdspm->lock);
5964 	return 0;
5965 }
5966 
5967 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
5968 {
5969 	/* we have nothing to initialize but the call is required */
5970 	return 0;
5971 }
5972 
5973 static inline int copy_u32_le(void __user *dest, void __iomem *src)
5974 {
5975 	u32 val = readl(src);
5976 	return copy_to_user(dest, &val, 4);
5977 }
5978 
5979 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
5980 		unsigned int cmd, unsigned long __user arg)
5981 {
5982 	void __user *argp = (void __user *)arg;
5983 	struct hdspm *hdspm = hw->private_data;
5984 	struct hdspm_mixer_ioctl mixer;
5985 	struct hdspm_config info;
5986 	struct hdspm_status status;
5987 	struct hdspm_version hdspm_version;
5988 	struct hdspm_peak_rms *levels;
5989 	struct hdspm_ltc ltc;
5990 	unsigned int statusregister;
5991 	long unsigned int s;
5992 	int i = 0;
5993 
5994 	switch (cmd) {
5995 
5996 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
5997 		levels = &hdspm->peak_rms;
5998 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
5999 			levels->input_peaks[i] =
6000 				readl(hdspm->iobase +
6001 						HDSPM_MADI_INPUT_PEAK + i*4);
6002 			levels->playback_peaks[i] =
6003 				readl(hdspm->iobase +
6004 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
6005 			levels->output_peaks[i] =
6006 				readl(hdspm->iobase +
6007 						HDSPM_MADI_OUTPUT_PEAK + i*4);
6008 
6009 			levels->input_rms[i] =
6010 				((uint64_t) readl(hdspm->iobase +
6011 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6012 				(uint64_t) readl(hdspm->iobase +
6013 						HDSPM_MADI_INPUT_RMS_L + i*4);
6014 			levels->playback_rms[i] =
6015 				((uint64_t)readl(hdspm->iobase +
6016 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6017 				(uint64_t)readl(hdspm->iobase +
6018 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6019 			levels->output_rms[i] =
6020 				((uint64_t)readl(hdspm->iobase +
6021 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6022 				(uint64_t)readl(hdspm->iobase +
6023 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
6024 		}
6025 
6026 		if (hdspm->system_sample_rate > 96000) {
6027 			levels->speed = qs;
6028 		} else if (hdspm->system_sample_rate > 48000) {
6029 			levels->speed = ds;
6030 		} else {
6031 			levels->speed = ss;
6032 		}
6033 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6034 
6035 		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
6036 		if (0 != s) {
6037 			/* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
6038 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6039 			 */
6040 			return -EFAULT;
6041 		}
6042 		break;
6043 
6044 	case SNDRV_HDSPM_IOCTL_GET_LTC:
6045 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6046 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6047 		if (i & HDSPM_TCO1_LTC_Input_valid) {
6048 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6049 				HDSPM_TCO1_LTC_Format_MSB)) {
6050 			case 0:
6051 				ltc.format = fps_24;
6052 				break;
6053 			case HDSPM_TCO1_LTC_Format_LSB:
6054 				ltc.format = fps_25;
6055 				break;
6056 			case HDSPM_TCO1_LTC_Format_MSB:
6057 				ltc.format = fps_2997;
6058 				break;
6059 			default:
6060 				ltc.format = 30;
6061 				break;
6062 			}
6063 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
6064 				ltc.frame = drop_frame;
6065 			} else {
6066 				ltc.frame = full_frame;
6067 			}
6068 		} else {
6069 			ltc.format = format_invalid;
6070 			ltc.frame = frame_invalid;
6071 		}
6072 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6073 			ltc.input_format = ntsc;
6074 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6075 			ltc.input_format = pal;
6076 		} else {
6077 			ltc.input_format = no_video;
6078 		}
6079 
6080 		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6081 		if (0 != s) {
6082 			/*
6083 			 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6084 			return -EFAULT;
6085 		}
6086 
6087 		break;
6088 
6089 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6090 
6091 		memset(&info, 0, sizeof(info));
6092 		spin_lock_irq(&hdspm->lock);
6093 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6094 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6095 
6096 		info.system_sample_rate = hdspm->system_sample_rate;
6097 		info.autosync_sample_rate =
6098 			hdspm_external_sample_rate(hdspm);
6099 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6100 		info.clock_source = hdspm_clock_source(hdspm);
6101 		info.autosync_ref = hdspm_autosync_ref(hdspm);
6102 		info.line_out = hdspm_line_out(hdspm);
6103 		info.passthru = 0;
6104 		spin_unlock_irq(&hdspm->lock);
6105 		if (copy_to_user((void __user *) arg, &info, sizeof(info)))
6106 			return -EFAULT;
6107 		break;
6108 
6109 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
6110 		status.card_type = hdspm->io_type;
6111 
6112 		status.autosync_source = hdspm_autosync_ref(hdspm);
6113 
6114 		status.card_clock = 110069313433624ULL;
6115 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6116 
6117 		switch (hdspm->io_type) {
6118 		case MADI:
6119 		case MADIface:
6120 			status.card_specific.madi.sync_wc =
6121 				hdspm_wc_sync_check(hdspm);
6122 			status.card_specific.madi.sync_madi =
6123 				hdspm_madi_sync_check(hdspm);
6124 			status.card_specific.madi.sync_tco =
6125 				hdspm_tco_sync_check(hdspm);
6126 			status.card_specific.madi.sync_in =
6127 				hdspm_sync_in_sync_check(hdspm);
6128 
6129 			statusregister =
6130 				hdspm_read(hdspm, HDSPM_statusRegister);
6131 			status.card_specific.madi.madi_input =
6132 				(statusregister & HDSPM_AB_int) ? 1 : 0;
6133 			status.card_specific.madi.channel_format =
6134 				(statusregister & HDSPM_TX_64ch) ? 1 : 0;
6135 			/* TODO: Mac driver sets it when f_s>48kHz */
6136 			status.card_specific.madi.frame_format = 0;
6137 
6138 		default:
6139 			break;
6140 		}
6141 
6142 		if (copy_to_user((void __user *) arg, &status, sizeof(status)))
6143 			return -EFAULT;
6144 
6145 
6146 		break;
6147 
6148 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
6149 		hdspm_version.card_type = hdspm->io_type;
6150 		strncpy(hdspm_version.cardname, hdspm->card_name,
6151 				sizeof(hdspm_version.cardname));
6152 		hdspm_version.serial = (hdspm_read(hdspm,
6153 					HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6154 		hdspm_version.firmware_rev = hdspm->firmware_rev;
6155 		hdspm_version.addons = 0;
6156 		if (hdspm->tco)
6157 			hdspm_version.addons |= HDSPM_ADDON_TCO;
6158 
6159 		if (copy_to_user((void __user *) arg, &hdspm_version,
6160 					sizeof(hdspm_version)))
6161 			return -EFAULT;
6162 		break;
6163 
6164 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
6165 		if (copy_from_user(&mixer, (void __user *)arg, sizeof(mixer)))
6166 			return -EFAULT;
6167 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6168 					sizeof(struct hdspm_mixer)))
6169 			return -EFAULT;
6170 		break;
6171 
6172 	default:
6173 		return -EINVAL;
6174 	}
6175 	return 0;
6176 }
6177 
6178 static struct snd_pcm_ops snd_hdspm_playback_ops = {
6179 	.open = snd_hdspm_playback_open,
6180 	.close = snd_hdspm_playback_release,
6181 	.ioctl = snd_hdspm_ioctl,
6182 	.hw_params = snd_hdspm_hw_params,
6183 	.hw_free = snd_hdspm_hw_free,
6184 	.prepare = snd_hdspm_prepare,
6185 	.trigger = snd_hdspm_trigger,
6186 	.pointer = snd_hdspm_hw_pointer,
6187 	.page = snd_pcm_sgbuf_ops_page,
6188 };
6189 
6190 static struct snd_pcm_ops snd_hdspm_capture_ops = {
6191 	.open = snd_hdspm_capture_open,
6192 	.close = snd_hdspm_capture_release,
6193 	.ioctl = snd_hdspm_ioctl,
6194 	.hw_params = snd_hdspm_hw_params,
6195 	.hw_free = snd_hdspm_hw_free,
6196 	.prepare = snd_hdspm_prepare,
6197 	.trigger = snd_hdspm_trigger,
6198 	.pointer = snd_hdspm_hw_pointer,
6199 	.page = snd_pcm_sgbuf_ops_page,
6200 };
6201 
6202 static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
6203 					    struct hdspm * hdspm)
6204 {
6205 	struct snd_hwdep *hw;
6206 	int err;
6207 
6208 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6209 	if (err < 0)
6210 		return err;
6211 
6212 	hdspm->hwdep = hw;
6213 	hw->private_data = hdspm;
6214 	strcpy(hw->name, "HDSPM hwdep interface");
6215 
6216 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6217 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6218 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6219 
6220 	return 0;
6221 }
6222 
6223 
6224 /*------------------------------------------------------------
6225    memory interface
6226  ------------------------------------------------------------*/
6227 static int __devinit snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6228 {
6229 	int err;
6230 	struct snd_pcm *pcm;
6231 	size_t wanted;
6232 
6233 	pcm = hdspm->pcm;
6234 
6235 	wanted = HDSPM_DMA_AREA_BYTES;
6236 
6237 	err =
6238 	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6239 						   SNDRV_DMA_TYPE_DEV_SG,
6240 						   snd_dma_pci_data(hdspm->pci),
6241 						   wanted,
6242 						   wanted);
6243 	if (err < 0) {
6244 		snd_printdd("Could not preallocate %zd Bytes\n", wanted);
6245 
6246 		return err;
6247 	} else
6248 		snd_printdd(" Preallocated %zd Bytes\n", wanted);
6249 
6250 	return 0;
6251 }
6252 
6253 
6254 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6255 			    struct snd_pcm_substream *substream,
6256 			     unsigned int reg, int channels)
6257 {
6258 	int i;
6259 
6260 	/* continuous memory segment */
6261 	for (i = 0; i < (channels * 16); i++)
6262 		hdspm_write(hdspm, reg + 4 * i,
6263 				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6264 }
6265 
6266 
6267 /* ------------- ALSA Devices ---------------------------- */
6268 static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
6269 					  struct hdspm *hdspm)
6270 {
6271 	struct snd_pcm *pcm;
6272 	int err;
6273 
6274 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6275 	if (err < 0)
6276 		return err;
6277 
6278 	hdspm->pcm = pcm;
6279 	pcm->private_data = hdspm;
6280 	strcpy(pcm->name, hdspm->card_name);
6281 
6282 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6283 			&snd_hdspm_playback_ops);
6284 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6285 			&snd_hdspm_capture_ops);
6286 
6287 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6288 
6289 	err = snd_hdspm_preallocate_memory(hdspm);
6290 	if (err < 0)
6291 		return err;
6292 
6293 	return 0;
6294 }
6295 
6296 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6297 {
6298 	int i;
6299 
6300 	for (i = 0; i < hdspm->midiPorts; i++)
6301 		snd_hdspm_flush_midi_input(hdspm, i);
6302 }
6303 
6304 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
6305 						   struct hdspm * hdspm)
6306 {
6307 	int err, i;
6308 
6309 	snd_printdd("Create card...\n");
6310 	err = snd_hdspm_create_pcm(card, hdspm);
6311 	if (err < 0)
6312 		return err;
6313 
6314 	i = 0;
6315 	while (i < hdspm->midiPorts) {
6316 		err = snd_hdspm_create_midi(card, hdspm, i);
6317 		if (err < 0) {
6318 			return err;
6319 		}
6320 		i++;
6321 	}
6322 
6323 	err = snd_hdspm_create_controls(card, hdspm);
6324 	if (err < 0)
6325 		return err;
6326 
6327 	err = snd_hdspm_create_hwdep(card, hdspm);
6328 	if (err < 0)
6329 		return err;
6330 
6331 	snd_printdd("proc init...\n");
6332 	snd_hdspm_proc_init(hdspm);
6333 
6334 	hdspm->system_sample_rate = -1;
6335 	hdspm->last_external_sample_rate = -1;
6336 	hdspm->last_internal_sample_rate = -1;
6337 	hdspm->playback_pid = -1;
6338 	hdspm->capture_pid = -1;
6339 	hdspm->capture_substream = NULL;
6340 	hdspm->playback_substream = NULL;
6341 
6342 	snd_printdd("Set defaults...\n");
6343 	err = snd_hdspm_set_defaults(hdspm);
6344 	if (err < 0)
6345 		return err;
6346 
6347 	snd_printdd("Update mixer controls...\n");
6348 	hdspm_update_simple_mixer_controls(hdspm);
6349 
6350 	snd_printdd("Initializeing complete ???\n");
6351 
6352 	err = snd_card_register(card);
6353 	if (err < 0) {
6354 		snd_printk(KERN_ERR "HDSPM: error registering card\n");
6355 		return err;
6356 	}
6357 
6358 	snd_printdd("... yes now\n");
6359 
6360 	return 0;
6361 }
6362 
6363 static int __devinit snd_hdspm_create(struct snd_card *card,
6364 		struct hdspm *hdspm) {
6365 
6366 	struct pci_dev *pci = hdspm->pci;
6367 	int err;
6368 	unsigned long io_extent;
6369 
6370 	hdspm->irq = -1;
6371 	hdspm->card = card;
6372 
6373 	spin_lock_init(&hdspm->lock);
6374 
6375 	pci_read_config_word(hdspm->pci,
6376 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6377 
6378 	strcpy(card->mixername, "Xilinx FPGA");
6379 	strcpy(card->driver, "HDSPM");
6380 
6381 	switch (hdspm->firmware_rev) {
6382 	case HDSPM_MADI_REV:
6383 	case HDSPM_MADI_OLD_REV:
6384 		hdspm->io_type = MADI;
6385 		hdspm->card_name = "RME MADI";
6386 		hdspm->midiPorts = 3;
6387 		break;
6388 	case HDSPM_RAYDAT_REV:
6389 		hdspm->io_type = RayDAT;
6390 		hdspm->card_name = "RME RayDAT";
6391 		hdspm->midiPorts = 2;
6392 		break;
6393 	case HDSPM_AIO_REV:
6394 		hdspm->io_type = AIO;
6395 		hdspm->card_name = "RME AIO";
6396 		hdspm->midiPorts = 1;
6397 		break;
6398 	case HDSPM_MADIFACE_REV:
6399 		hdspm->io_type = MADIface;
6400 		hdspm->card_name = "RME MADIface";
6401 		hdspm->midiPorts = 1;
6402 		break;
6403 	case HDSPM_AES_REV:
6404 	case HDSPM_AES32_REV:
6405 	case HDSPM_AES32_OLD_REV:
6406 		hdspm->io_type = AES32;
6407 		hdspm->card_name = "RME AES32";
6408 		hdspm->midiPorts = 2;
6409 		break;
6410 	default:
6411 		snd_printk(KERN_ERR "HDSPM: unknown firmware revision %x\n",
6412 				hdspm->firmware_rev);
6413 		return -ENODEV;
6414 	}
6415 
6416 	err = pci_enable_device(pci);
6417 	if (err < 0)
6418 		return err;
6419 
6420 	pci_set_master(hdspm->pci);
6421 
6422 	err = pci_request_regions(pci, "hdspm");
6423 	if (err < 0)
6424 		return err;
6425 
6426 	hdspm->port = pci_resource_start(pci, 0);
6427 	io_extent = pci_resource_len(pci, 0);
6428 
6429 	snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
6430 			hdspm->port, hdspm->port + io_extent - 1);
6431 
6432 	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6433 	if (!hdspm->iobase) {
6434 		snd_printk(KERN_ERR "HDSPM: "
6435 				"unable to remap region 0x%lx-0x%lx\n",
6436 				hdspm->port, hdspm->port + io_extent - 1);
6437 		return -EBUSY;
6438 	}
6439 	snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
6440 			(unsigned long)hdspm->iobase, hdspm->port,
6441 			hdspm->port + io_extent - 1);
6442 
6443 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6444 				IRQF_SHARED, "hdspm", hdspm)) {
6445 		snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6446 		return -EBUSY;
6447 	}
6448 
6449 	snd_printdd("use IRQ %d\n", pci->irq);
6450 
6451 	hdspm->irq = pci->irq;
6452 
6453 	snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
6454 			sizeof(struct hdspm_mixer));
6455 	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6456 	if (!hdspm->mixer) {
6457 		snd_printk(KERN_ERR "HDSPM: "
6458 				"unable to kmalloc Mixer memory of %d Bytes\n",
6459 				(int)sizeof(struct hdspm_mixer));
6460 		return err;
6461 	}
6462 
6463 	hdspm->port_names_in = NULL;
6464 	hdspm->port_names_out = NULL;
6465 
6466 	switch (hdspm->io_type) {
6467 	case AES32:
6468 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6469 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6470 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6471 
6472 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6473 			channel_map_aes32;
6474 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6475 			channel_map_aes32;
6476 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6477 			channel_map_aes32;
6478 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6479 			texts_ports_aes32;
6480 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6481 			texts_ports_aes32;
6482 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6483 			texts_ports_aes32;
6484 
6485 		hdspm->max_channels_out = hdspm->max_channels_in =
6486 			AES32_CHANNELS;
6487 		hdspm->port_names_in = hdspm->port_names_out =
6488 			texts_ports_aes32;
6489 		hdspm->channel_map_in = hdspm->channel_map_out =
6490 			channel_map_aes32;
6491 
6492 		break;
6493 
6494 	case MADI:
6495 	case MADIface:
6496 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6497 			MADI_SS_CHANNELS;
6498 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6499 			MADI_DS_CHANNELS;
6500 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6501 			MADI_QS_CHANNELS;
6502 
6503 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6504 			channel_map_unity_ss;
6505 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6506 			channel_map_unity_ss;
6507 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6508 			channel_map_unity_ss;
6509 
6510 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6511 			texts_ports_madi;
6512 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6513 			texts_ports_madi;
6514 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6515 			texts_ports_madi;
6516 		break;
6517 
6518 	case AIO:
6519 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6520 			snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
6521 		}
6522 
6523 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6524 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6525 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6526 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6527 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6528 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6529 
6530 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6531 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6532 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6533 
6534 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6535 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6536 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6537 
6538 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6539 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6540 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6541 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6542 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6543 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6544 
6545 		break;
6546 
6547 	case RayDAT:
6548 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6549 			RAYDAT_SS_CHANNELS;
6550 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6551 			RAYDAT_DS_CHANNELS;
6552 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6553 			RAYDAT_QS_CHANNELS;
6554 
6555 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6556 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6557 
6558 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6559 			channel_map_raydat_ss;
6560 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6561 			channel_map_raydat_ds;
6562 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6563 			channel_map_raydat_qs;
6564 		hdspm->channel_map_in = hdspm->channel_map_out =
6565 			channel_map_raydat_ss;
6566 
6567 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6568 			texts_ports_raydat_ss;
6569 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6570 			texts_ports_raydat_ds;
6571 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6572 			texts_ports_raydat_qs;
6573 
6574 
6575 		break;
6576 
6577 	}
6578 
6579 	/* TCO detection */
6580 	switch (hdspm->io_type) {
6581 	case AIO:
6582 	case RayDAT:
6583 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6584 				HDSPM_s2_tco_detect) {
6585 			hdspm->midiPorts++;
6586 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6587 					GFP_KERNEL);
6588 			if (NULL != hdspm->tco) {
6589 				hdspm_tco_write(hdspm);
6590 			}
6591 			snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6592 		} else {
6593 			hdspm->tco = NULL;
6594 		}
6595 		break;
6596 
6597 	case MADI:
6598 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6599 			hdspm->midiPorts++;
6600 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6601 					GFP_KERNEL);
6602 			if (NULL != hdspm->tco) {
6603 				hdspm_tco_write(hdspm);
6604 			}
6605 			snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
6606 		} else {
6607 			hdspm->tco = NULL;
6608 		}
6609 		break;
6610 
6611 	default:
6612 		hdspm->tco = NULL;
6613 	}
6614 
6615 	/* texts */
6616 	switch (hdspm->io_type) {
6617 	case AES32:
6618 		if (hdspm->tco) {
6619 			hdspm->texts_autosync = texts_autosync_aes_tco;
6620 			hdspm->texts_autosync_items = 10;
6621 		} else {
6622 			hdspm->texts_autosync = texts_autosync_aes;
6623 			hdspm->texts_autosync_items = 9;
6624 		}
6625 		break;
6626 
6627 	case MADI:
6628 		if (hdspm->tco) {
6629 			hdspm->texts_autosync = texts_autosync_madi_tco;
6630 			hdspm->texts_autosync_items = 4;
6631 		} else {
6632 			hdspm->texts_autosync = texts_autosync_madi;
6633 			hdspm->texts_autosync_items = 3;
6634 		}
6635 		break;
6636 
6637 	case MADIface:
6638 
6639 		break;
6640 
6641 	case RayDAT:
6642 		if (hdspm->tco) {
6643 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6644 			hdspm->texts_autosync_items = 9;
6645 		} else {
6646 			hdspm->texts_autosync = texts_autosync_raydat;
6647 			hdspm->texts_autosync_items = 8;
6648 		}
6649 		break;
6650 
6651 	case AIO:
6652 		if (hdspm->tco) {
6653 			hdspm->texts_autosync = texts_autosync_aio_tco;
6654 			hdspm->texts_autosync_items = 6;
6655 		} else {
6656 			hdspm->texts_autosync = texts_autosync_aio;
6657 			hdspm->texts_autosync_items = 5;
6658 		}
6659 		break;
6660 
6661 	}
6662 
6663 	tasklet_init(&hdspm->midi_tasklet,
6664 			hdspm_midi_tasklet, (unsigned long) hdspm);
6665 
6666 	snd_printdd("create alsa devices.\n");
6667 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6668 	if (err < 0)
6669 		return err;
6670 
6671 	snd_hdspm_initialize_midi_flush(hdspm);
6672 
6673 	return 0;
6674 }
6675 
6676 
6677 static int snd_hdspm_free(struct hdspm * hdspm)
6678 {
6679 
6680 	if (hdspm->port) {
6681 
6682 		/* stop th audio, and cancel all interrupts */
6683 		hdspm->control_register &=
6684 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6685 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6686 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6687 		hdspm_write(hdspm, HDSPM_controlRegister,
6688 			    hdspm->control_register);
6689 	}
6690 
6691 	if (hdspm->irq >= 0)
6692 		free_irq(hdspm->irq, (void *) hdspm);
6693 
6694 	kfree(hdspm->mixer);
6695 
6696 	if (hdspm->iobase)
6697 		iounmap(hdspm->iobase);
6698 
6699 	if (hdspm->port)
6700 		pci_release_regions(hdspm->pci);
6701 
6702 	pci_disable_device(hdspm->pci);
6703 	return 0;
6704 }
6705 
6706 
6707 static void snd_hdspm_card_free(struct snd_card *card)
6708 {
6709 	struct hdspm *hdspm = card->private_data;
6710 
6711 	if (hdspm)
6712 		snd_hdspm_free(hdspm);
6713 }
6714 
6715 
6716 static int __devinit snd_hdspm_probe(struct pci_dev *pci,
6717 				     const struct pci_device_id *pci_id)
6718 {
6719 	static int dev;
6720 	struct hdspm *hdspm;
6721 	struct snd_card *card;
6722 	int err;
6723 
6724 	if (dev >= SNDRV_CARDS)
6725 		return -ENODEV;
6726 	if (!enable[dev]) {
6727 		dev++;
6728 		return -ENOENT;
6729 	}
6730 
6731 	err = snd_card_create(index[dev], id[dev],
6732 			THIS_MODULE, sizeof(struct hdspm), &card);
6733 	if (err < 0)
6734 		return err;
6735 
6736 	hdspm = card->private_data;
6737 	card->private_free = snd_hdspm_card_free;
6738 	hdspm->dev = dev;
6739 	hdspm->pci = pci;
6740 
6741 	snd_card_set_dev(card, &pci->dev);
6742 
6743 	err = snd_hdspm_create(card, hdspm);
6744 	if (err < 0) {
6745 		snd_card_free(card);
6746 		return err;
6747 	}
6748 
6749 	if (hdspm->io_type != MADIface) {
6750 		sprintf(card->shortname, "%s_%x",
6751 			hdspm->card_name,
6752 			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
6753 		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6754 			hdspm->card_name,
6755 			(hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF,
6756 			hdspm->port, hdspm->irq);
6757 	} else {
6758 		sprintf(card->shortname, "%s", hdspm->card_name);
6759 		sprintf(card->longname, "%s at 0x%lx, irq %d",
6760 				hdspm->card_name, hdspm->port, hdspm->irq);
6761 	}
6762 
6763 	err = snd_card_register(card);
6764 	if (err < 0) {
6765 		snd_card_free(card);
6766 		return err;
6767 	}
6768 
6769 	pci_set_drvdata(pci, card);
6770 
6771 	dev++;
6772 	return 0;
6773 }
6774 
6775 static void __devexit snd_hdspm_remove(struct pci_dev *pci)
6776 {
6777 	snd_card_free(pci_get_drvdata(pci));
6778 	pci_set_drvdata(pci, NULL);
6779 }
6780 
6781 static struct pci_driver driver = {
6782 	.name = "RME Hammerfall DSP MADI",
6783 	.id_table = snd_hdspm_ids,
6784 	.probe = snd_hdspm_probe,
6785 	.remove = __devexit_p(snd_hdspm_remove),
6786 };
6787 
6788 
6789 static int __init alsa_card_hdspm_init(void)
6790 {
6791 	return pci_register_driver(&driver);
6792 }
6793 
6794 static void __exit alsa_card_hdspm_exit(void)
6795 {
6796 	pci_unregister_driver(&driver);
6797 }
6798 
6799 module_init(alsa_card_hdspm_init)
6800 module_exit(alsa_card_hdspm_exit)
6801