xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41 
42 /* *************    Register Documentation   *******************************************************
43  *
44  * Work in progress! Documentation is based on the code in this file.
45  *
46  * --------- HDSPM_controlRegister ---------
47  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
48  * :||||.||||:||||.||||:||||.||||:||||.||||:
49  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
50  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
51  * :||||.||||:||||.||||:||||.||||:||||.||||:
52  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
53  * :    .    :    .    :    .    :  x .    :  HDSPM_AudioInterruptEnable \_ setting both bits
54  * :    .    :    .    :    .    :    .   x:  HDSPM_Start                /  enables audio IO
55  * :    .    :    .    :    .    :   x.    :  HDSPM_ClockModeMaster - 1: Master, 0: Slave
56  * :    .    :    .    :    .    :    .210 :  HDSPM_LatencyMask - 3 Bit value for latency
57  * :    .    :    .    :    .    :    .    :      0:64, 1:128, 2:256, 3:512,
58  * :    .    :    .    :    .    :    .    :      4:1024, 5:2048, 6:4096, 7:8192
59  * :x   .    :    .    :    .   x:xx  .    :  HDSPM_FrequencyMask
60  * :    .    :    .    :    .    :10  .    :  HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=??
61  * :    .    :    .    :    .   x:    .    :  <MADI> HDSPM_DoubleSpeed
62  * :x   .    :    .    :    .    :    .    :  <MADI> HDSPM_QuadSpeed
63  * :    .  3 :    .  10:  2 .    :    .    :  HDSPM_SyncRefMask :
64  * :    .    :    .   x:    .    :    .    :  HDSPM_SyncRef0
65  * :    .    :    .  x :    .    :    .    :  HDSPM_SyncRef1
66  * :    .    :    .    :  x .    :    .    :  <AES32> HDSPM_SyncRef2
67  * :    .  x :    .    :    .    :    .    :  <AES32> HDSPM_SyncRef3
68  * :    .    :    .  10:    .    :    .    :  <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn
69  * :    .  3 :    .  10:  2 .    :    .    :  <AES32>  0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn?
70  * :    .  x :    .    :    .    :    .    :  <MADIe> HDSPe_FLOAT_FORMAT
71  * :    .    :    .    : x  .    :    .    :  <MADI> HDSPM_InputSelect0 : 0=optical,1=coax
72  * :    .    :    .    :x   .    :    .    :  <MADI> HDSPM_InputSelect1
73  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
74  * :    .    :    .    :    . x  :    .    :  <MADI> HDSPM_TX_64ch
75  * :    .    :    .    :    . x  :    .    :  <AES32> HDSPM_Emphasis
76  * :    .    :    .    :    .x   :    .    :  <MADI> HDSPM_AutoInp
77  * :    .    :    . x  :    .    :    .    :  <MADI> HDSPM_SMUX
78  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
79  * :    .    :   x.    :    .    :    .    :  <MADI> HDSPM_taxi_reset
80  * :    .   x:    .    :    .    :    .    :  <MADI> HDSPM_LineOut
81  * :    .   x:    .    :    .    :    .    :  <AES32> ??????????????????
82  * :    .    :   x.    :    .    :    .    :  <AES32> HDSPM_WCK48
83  * :    .    :    .    :    .x   :    .    :  <AES32> HDSPM_Dolby
84  * :    .    : x  .    :    .    :    .    :  HDSPM_Midi0InterruptEnable
85  * :    .    :x   .    :    .    :    .    :  HDSPM_Midi1InterruptEnable
86  * :    .    :  x .    :    .    :    .    :  HDSPM_Midi2InterruptEnable
87  * :    . x  :    .    :    .    :    .    :  <MADI> HDSPM_Midi3InterruptEnable
88  * :    . x  :    .    :    .    :    .    :  <AES32> HDSPM_DS_DoubleWire
89  * :    .x   :    .    :    .    :    .    :  <AES32> HDSPM_QS_DoubleWire
90  * :   x.    :    .    :    .    :    .    :  <AES32> HDSPM_QS_QuadWire
91  * :    .    :    .    :    .  x :    .    :  <AES32> HDSPM_Professional
92  * : x  .    :    .    :    .    :    .    :  HDSPM_wclk_sel
93  * :    .    :    .    :    .    :    .    :
94  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
95  * :||||.||||:||||.||||:||||.||||:||||.||||:
96  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
97  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
98  * :||||.||||:||||.||||:||||.||||:||||.||||:
99  * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit
100  *
101  *
102  *
103  * AIO / RayDAT only
104  *
105  * ------------ HDSPM_WR_SETTINGS ----------
106  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
107  * :1098.7654:3210.9876:5432.1098:7654.3210:
108  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
109  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
110  * :||||.||||:||||.||||:||||.||||:||||.||||:
111  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
112  * :    .    :    .    :    .    :    .   x: HDSPM_c0Master 1: Master, 0: Slave
113  * :    .    :    .    :    .    :    .  x : HDSPM_c0_SyncRef0
114  * :    .    :    .    :    .    :    . x  : HDSPM_c0_SyncRef1
115  * :    .    :    .    :    .    :    .x   : HDSPM_c0_SyncRef2
116  * :    .    :    .    :    .    :   x.    : HDSPM_c0_SyncRef3
117  * :    .    :    .    :    .    :   3.210 : HDSPM_c0_SyncRefMask:
118  * :    .    :    .    :    .    :    .    :  RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4,
119  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
120  * :    .    :    .    :    .    :    .    :  AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT,
121  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
122  * :    .    :    .    :    .    :    .    :
123  * :    .    :    .    :    .    :    .    :
124  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
125  * :1098.7654:3210.9876:5432.1098:7654.3210:
126  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
127  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
128  * :||||.||||:||||.||||:||||.||||:||||.||||:
129  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
130  *
131  */
132 #include <linux/init.h>
133 #include <linux/delay.h>
134 #include <linux/interrupt.h>
135 #include <linux/module.h>
136 #include <linux/slab.h>
137 #include <linux/pci.h>
138 #include <linux/math64.h>
139 #include <linux/io.h>
140 
141 #include <sound/core.h>
142 #include <sound/control.h>
143 #include <sound/pcm.h>
144 #include <sound/pcm_params.h>
145 #include <sound/info.h>
146 #include <sound/asoundef.h>
147 #include <sound/rawmidi.h>
148 #include <sound/hwdep.h>
149 #include <sound/initval.h>
150 
151 #include <sound/hdspm.h>
152 
153 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
154 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
155 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
156 
157 module_param_array(index, int, NULL, 0444);
158 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
159 
160 module_param_array(id, charp, NULL, 0444);
161 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
162 
163 module_param_array(enable, bool, NULL, 0444);
164 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
165 
166 
167 MODULE_AUTHOR
168 (
169 	"Winfried Ritsch <ritsch_AT_iem.at>, "
170 	"Paul Davis <paul@linuxaudiosystems.com>, "
171 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
172 	"Remy Bruno <remy.bruno@trinnov.com>, "
173 	"Florian Faber <faberman@linuxproaudio.org>, "
174 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
175 );
176 MODULE_DESCRIPTION("RME HDSPM");
177 MODULE_LICENSE("GPL");
178 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
179 
180 /* --- Write registers. ---
181   These are defined as byte-offsets from the iobase value.  */
182 
183 #define HDSPM_WR_SETTINGS             0
184 #define HDSPM_outputBufferAddress    32
185 #define HDSPM_inputBufferAddress     36
186 #define HDSPM_controlRegister	     64
187 #define HDSPM_interruptConfirmation  96
188 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
189 #define HDSPM_freqReg                256  /* for setting arbitrary clock values (DDS feature) */
190 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
191 #define HDSPM_midiDataOut1	     356
192 #define HDSPM_eeprom_wr		     384  /* for AES32 */
193 
194 /* DMA enable for 64 channels, only Bit 0 is relevant */
195 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
196 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
197 
198 /* 16 page addresses for each of the 64 channels DMA buffer in and out
199    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
200 #define HDSPM_pageAddressBufferOut       8192
201 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
202 
203 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
204 
205 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
206 
207 /* --- Read registers. ---
208    These are defined as byte-offsets from the iobase value */
209 #define HDSPM_statusRegister    0
210 /*#define HDSPM_statusRegister2  96 */
211 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
212  * offset 192, for AES32 *and* MADI
213  * => need to check that offset 192 is working on MADI */
214 #define HDSPM_statusRegister2  192
215 #define HDSPM_timecodeRegister 128
216 
217 /* AIO, RayDAT */
218 #define HDSPM_RD_STATUS_0 0
219 #define HDSPM_RD_STATUS_1 64
220 #define HDSPM_RD_STATUS_2 128
221 #define HDSPM_RD_STATUS_3 192
222 
223 #define HDSPM_RD_TCO           256
224 #define HDSPM_RD_PLL_FREQ      512
225 #define HDSPM_WR_TCO           128
226 
227 #define HDSPM_TCO1_TCO_lock			0x00000001
228 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
229 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
230 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
231 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
232 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
233 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
234 
235 #define HDSPM_TCO1_set_TC			0x00000100
236 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
237 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
238 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
239 
240 #define HDSPM_TCO2_TC_run			0x00010000
241 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
242 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
243 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
244 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
245 #define HDSPM_TCO2_set_jam_sync			0x00200000
246 #define HDSPM_TCO2_set_flywheel			0x00400000
247 
248 #define HDSPM_TCO2_set_01_4			0x01000000
249 #define HDSPM_TCO2_set_pull_down		0x02000000
250 #define HDSPM_TCO2_set_pull_up			0x04000000
251 #define HDSPM_TCO2_set_freq			0x08000000
252 #define HDSPM_TCO2_set_term_75R			0x10000000
253 #define HDSPM_TCO2_set_input_LSB		0x20000000
254 #define HDSPM_TCO2_set_input_MSB		0x40000000
255 #define HDSPM_TCO2_set_freq_from_app		0x80000000
256 
257 
258 #define HDSPM_midiDataOut0    352
259 #define HDSPM_midiDataOut1    356
260 #define HDSPM_midiDataOut2    368
261 
262 #define HDSPM_midiDataIn0     360
263 #define HDSPM_midiDataIn1     364
264 #define HDSPM_midiDataIn2     372
265 #define HDSPM_midiDataIn3     376
266 
267 /* status is data bytes in MIDI-FIFO (0-128) */
268 #define HDSPM_midiStatusOut0  384
269 #define HDSPM_midiStatusOut1  388
270 #define HDSPM_midiStatusOut2  400
271 
272 #define HDSPM_midiStatusIn0   392
273 #define HDSPM_midiStatusIn1   396
274 #define HDSPM_midiStatusIn2   404
275 #define HDSPM_midiStatusIn3   408
276 
277 
278 /* the meters are regular i/o-mapped registers, but offset
279    considerably from the rest. the peak registers are reset
280    when read; the least-significant 4 bits are full-scale counters;
281    the actual peak value is in the most-significant 24 bits.
282 */
283 
284 #define HDSPM_MADI_INPUT_PEAK		4096
285 #define HDSPM_MADI_PLAYBACK_PEAK	4352
286 #define HDSPM_MADI_OUTPUT_PEAK		4608
287 
288 #define HDSPM_MADI_INPUT_RMS_L		6144
289 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
290 #define HDSPM_MADI_OUTPUT_RMS_L		6656
291 
292 #define HDSPM_MADI_INPUT_RMS_H		7168
293 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
294 #define HDSPM_MADI_OUTPUT_RMS_H		7680
295 
296 /* --- Control Register bits --------- */
297 #define HDSPM_Start                (1<<0) /* start engine */
298 
299 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
300 #define HDSPM_Latency1             (1<<2) /* where n is defined */
301 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
302 
303 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
304 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
305 					  register [RayDAT, AIO] */
306 
307 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
308 
309 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
310 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
311 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
312 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
313 
314 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
315 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
316 				     56channelMODE=0 */ /* MADI ONLY*/
317 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
318 
319 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
320                                      0=off, 1=on  */ /* MADI ONLY */
321 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
322 
323 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
324 				    * -- MADI ONLY
325 				    */
326 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
327 
328 #define HDSPM_SyncRef2     (1<<13)
329 #define HDSPM_SyncRef3     (1<<25)
330 
331 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
332 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
333                                       AES additional bits in
334 				      lower 5 Audiodatabits ??? */
335 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
336 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
337 
338 #define HDSPM_Midi0InterruptEnable 0x0400000
339 #define HDSPM_Midi1InterruptEnable 0x0800000
340 #define HDSPM_Midi2InterruptEnable 0x0200000
341 #define HDSPM_Midi3InterruptEnable 0x4000000
342 
343 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
344 #define HDSPe_FLOAT_FORMAT         0x2000000
345 
346 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
347 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
348 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
349 
350 #define HDSPM_wclk_sel (1<<30)
351 
352 /* additional control register bits for AIO*/
353 #define HDSPM_c0_Wck48				0x20 /* also RayDAT */
354 #define HDSPM_c0_Input0				0x1000
355 #define HDSPM_c0_Input1				0x2000
356 #define HDSPM_c0_Spdif_Opt			0x4000
357 #define HDSPM_c0_Pro				0x8000
358 #define HDSPM_c0_clr_tms			0x10000
359 #define HDSPM_c0_AEB1				0x20000
360 #define HDSPM_c0_AEB2				0x40000
361 #define HDSPM_c0_LineOut			0x80000
362 #define HDSPM_c0_AD_GAIN0			0x100000
363 #define HDSPM_c0_AD_GAIN1			0x200000
364 #define HDSPM_c0_DA_GAIN0			0x400000
365 #define HDSPM_c0_DA_GAIN1			0x800000
366 #define HDSPM_c0_PH_GAIN0			0x1000000
367 #define HDSPM_c0_PH_GAIN1			0x2000000
368 #define HDSPM_c0_Sym6db				0x4000000
369 
370 
371 /* --- bit helper defines */
372 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
373 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
374 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
375 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
376 #define HDSPM_InputOptical   0
377 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
378 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
379 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
380 
381 #define HDSPM_c0_SyncRef0      0x2
382 #define HDSPM_c0_SyncRef1      0x4
383 #define HDSPM_c0_SyncRef2      0x8
384 #define HDSPM_c0_SyncRef3      0x10
385 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
386 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
387 
388 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
389 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
390 #define HDSPM_SYNC_FROM_TCO     2
391 #define HDSPM_SYNC_FROM_SYNC_IN 3
392 
393 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
394 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
395 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
396 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
397 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
398 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
399 				HDSPM_Frequency0)
400 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
401 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
402 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
403 				 HDSPM_Frequency0)
404 
405 
406 /* Synccheck Status */
407 #define HDSPM_SYNC_CHECK_NO_LOCK 0
408 #define HDSPM_SYNC_CHECK_LOCK    1
409 #define HDSPM_SYNC_CHECK_SYNC	 2
410 
411 /* AutoSync References - used by "autosync_ref" control switch */
412 #define HDSPM_AUTOSYNC_FROM_WORD      0
413 #define HDSPM_AUTOSYNC_FROM_MADI      1
414 #define HDSPM_AUTOSYNC_FROM_TCO       2
415 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
416 #define HDSPM_AUTOSYNC_FROM_NONE      4
417 
418 /* Possible sources of MADI input */
419 #define HDSPM_OPTICAL 0		/* optical   */
420 #define HDSPM_COAXIAL 1		/* BNC */
421 
422 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
423 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
424 
425 #define hdspm_encode_in(x) (((x)&0x3)<<14)
426 #define hdspm_decode_in(x) (((x)>>14)&0x3)
427 
428 /* --- control2 register bits --- */
429 #define HDSPM_TMS             (1<<0)
430 #define HDSPM_TCK             (1<<1)
431 #define HDSPM_TDI             (1<<2)
432 #define HDSPM_JTAG            (1<<3)
433 #define HDSPM_PWDN            (1<<4)
434 #define HDSPM_PROGRAM	      (1<<5)
435 #define HDSPM_CONFIG_MODE_0   (1<<6)
436 #define HDSPM_CONFIG_MODE_1   (1<<7)
437 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
438 #define HDSPM_BIGENDIAN_MODE  (1<<9)
439 #define HDSPM_RD_MULTIPLE     (1<<10)
440 
441 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
442      that do not conflict with specific bits for AES32 seem to be valid also
443      for the AES32
444  */
445 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
446 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
447 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
448 					 * (like inp0)
449 					 */
450 
451 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
452 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
453 
454 #define HDSPM_tcoLockMadi    0x00000020 /* Optional TCO locked status for HDSPe MADI*/
455 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/
456 
457 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */
458 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */
459 
460 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
461 			/* since 64byte accurate, last 6 bits are not used */
462 
463 
464 
465 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
466 
467 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
468 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
469 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
470 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
471 
472 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
473 					 * Interrupt
474 					 */
475 #define HDSPM_tco_detect         0x08000000
476 #define HDSPM_tcoLockAes         0x20000000 /* Optional TCO locked status for HDSPe AES */
477 
478 #define HDSPM_s2_tco_detect      0x00000040
479 #define HDSPM_s2_AEBO_D          0x00000080
480 #define HDSPM_s2_AEBI_D          0x00000100
481 
482 
483 #define HDSPM_midi0IRQPending    0x40000000
484 #define HDSPM_midi1IRQPending    0x80000000
485 #define HDSPM_midi2IRQPending    0x20000000
486 #define HDSPM_midi2IRQPendingAES 0x00000020
487 #define HDSPM_midi3IRQPending    0x00200000
488 
489 /* --- status bit helpers */
490 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
491 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
492 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
493 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
494 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
495 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
496 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
497 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
498 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
499 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
500 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
501 
502 /* Status2 Register bits */ /* MADI ONLY */
503 
504 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
505 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
506 #define HDSPM_version2 (1<<2)
507 
508 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
509 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
510 
511 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
512 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
513 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, 111=128 */
514 #define HDSPM_wc_freq3 0x800	/* 1000=176.4, 1001=192 */
515 
516 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
517 #define HDSPM_SyncRef1 0x20000
518 
519 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
520 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
521 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
522 
523 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
524 
525 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\
526 			    HDSPM_wc_freq3)
527 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
528 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
529 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
530 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
531 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
532 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
533 #define HDSPM_wcFreq128   (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
534 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3)
535 #define HDSPM_wcFreq192   (HDSPM_wc_freq0|HDSPM_wc_freq3)
536 
537 #define HDSPM_status1_F_0 0x0400000
538 #define HDSPM_status1_F_1 0x0800000
539 #define HDSPM_status1_F_2 0x1000000
540 #define HDSPM_status1_F_3 0x2000000
541 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
542 
543 
544 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
545 				    HDSPM_SelSyncRef2)
546 #define HDSPM_SelSyncRef_WORD      0
547 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
548 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
549 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
550 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
551 				    HDSPM_SelSyncRef2)
552 
553 /*
554    For AES32, bits for status, status2 and timecode are different
555 */
556 /* status */
557 #define HDSPM_AES32_wcLock	0x0200000
558 #define HDSPM_AES32_wcSync	0x0100000
559 #define HDSPM_AES32_wcFreq_bit  22
560 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
561   HDSPM_bit2freq */
562 #define HDSPM_AES32_syncref_bit  16
563 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
564 
565 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
566 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
567 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
568 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
569 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
570 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
571 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
572 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
573 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
574 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9
575 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10
576 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11
577 
578 /*  status2 */
579 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
580 #define HDSPM_LockAES   0x80
581 #define HDSPM_LockAES1  0x80
582 #define HDSPM_LockAES2  0x40
583 #define HDSPM_LockAES3  0x20
584 #define HDSPM_LockAES4  0x10
585 #define HDSPM_LockAES5  0x8
586 #define HDSPM_LockAES6  0x4
587 #define HDSPM_LockAES7  0x2
588 #define HDSPM_LockAES8  0x1
589 /*
590    Timecode
591    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
592    AES i+1
593  bits 3210
594       0001  32kHz
595       0010  44.1kHz
596       0011  48kHz
597       0100  64kHz
598       0101  88.2kHz
599       0110  96kHz
600       0111  128kHz
601       1000  176.4kHz
602       1001  192kHz
603   NB: Timecode register doesn't seem to work on AES32 card revision 230
604 */
605 
606 /* Mixer Values */
607 #define UNITY_GAIN          32768	/* = 65536/2 */
608 #define MINUS_INFINITY_GAIN 0
609 
610 /* Number of channels for different Speed Modes */
611 #define MADI_SS_CHANNELS       64
612 #define MADI_DS_CHANNELS       32
613 #define MADI_QS_CHANNELS       16
614 
615 #define RAYDAT_SS_CHANNELS     36
616 #define RAYDAT_DS_CHANNELS     20
617 #define RAYDAT_QS_CHANNELS     12
618 
619 #define AIO_IN_SS_CHANNELS        14
620 #define AIO_IN_DS_CHANNELS        10
621 #define AIO_IN_QS_CHANNELS        8
622 #define AIO_OUT_SS_CHANNELS        16
623 #define AIO_OUT_DS_CHANNELS        12
624 #define AIO_OUT_QS_CHANNELS        10
625 
626 #define AES32_CHANNELS		16
627 
628 /* the size of a substream (1 mono data stream) */
629 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
630 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
631 
632 /* the size of the area we need to allocate for DMA transfers. the
633    size is the same regardless of the number of channels, and
634    also the latency to use.
635    for one direction !!!
636 */
637 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
638 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
639 
640 #define HDSPM_RAYDAT_REV	211
641 #define HDSPM_AIO_REV		212
642 #define HDSPM_MADIFACE_REV	213
643 
644 /* speed factor modes */
645 #define HDSPM_SPEED_SINGLE 0
646 #define HDSPM_SPEED_DOUBLE 1
647 #define HDSPM_SPEED_QUAD   2
648 
649 /* names for speed modes */
650 static char *hdspm_speed_names[] = { "single", "double", "quad" };
651 
652 static const char *const texts_autosync_aes_tco[] = { "Word Clock",
653 					  "AES1", "AES2", "AES3", "AES4",
654 					  "AES5", "AES6", "AES7", "AES8",
655 					  "TCO", "Sync In"
656 };
657 static const char *const texts_autosync_aes[] = { "Word Clock",
658 				      "AES1", "AES2", "AES3", "AES4",
659 				      "AES5", "AES6", "AES7", "AES8",
660 				      "Sync In"
661 };
662 static const char *const texts_autosync_madi_tco[] = { "Word Clock",
663 					   "MADI", "TCO", "Sync In" };
664 static const char *const texts_autosync_madi[] = { "Word Clock",
665 				       "MADI", "Sync In" };
666 
667 static const char *const texts_autosync_raydat_tco[] = {
668 	"Word Clock",
669 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
670 	"AES", "SPDIF", "TCO", "Sync In"
671 };
672 static const char *const texts_autosync_raydat[] = {
673 	"Word Clock",
674 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
675 	"AES", "SPDIF", "Sync In"
676 };
677 static const char *const texts_autosync_aio_tco[] = {
678 	"Word Clock",
679 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
680 };
681 static const char *const texts_autosync_aio[] = { "Word Clock",
682 				      "ADAT", "AES", "SPDIF", "Sync In" };
683 
684 static const char *const texts_freq[] = {
685 	"No Lock",
686 	"32 kHz",
687 	"44.1 kHz",
688 	"48 kHz",
689 	"64 kHz",
690 	"88.2 kHz",
691 	"96 kHz",
692 	"128 kHz",
693 	"176.4 kHz",
694 	"192 kHz"
695 };
696 
697 static char *texts_ports_madi[] = {
698 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
699 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
700 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
701 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
702 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
703 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
704 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
705 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
706 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
707 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
708 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
709 };
710 
711 
712 static char *texts_ports_raydat_ss[] = {
713 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
714 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
715 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
716 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
717 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
718 	"ADAT4.7", "ADAT4.8",
719 	"AES.L", "AES.R",
720 	"SPDIF.L", "SPDIF.R"
721 };
722 
723 static char *texts_ports_raydat_ds[] = {
724 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
725 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
726 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
727 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
728 	"AES.L", "AES.R",
729 	"SPDIF.L", "SPDIF.R"
730 };
731 
732 static char *texts_ports_raydat_qs[] = {
733 	"ADAT1.1", "ADAT1.2",
734 	"ADAT2.1", "ADAT2.2",
735 	"ADAT3.1", "ADAT3.2",
736 	"ADAT4.1", "ADAT4.2",
737 	"AES.L", "AES.R",
738 	"SPDIF.L", "SPDIF.R"
739 };
740 
741 
742 static char *texts_ports_aio_in_ss[] = {
743 	"Analogue.L", "Analogue.R",
744 	"AES.L", "AES.R",
745 	"SPDIF.L", "SPDIF.R",
746 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
747 	"ADAT.7", "ADAT.8",
748 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
749 };
750 
751 static char *texts_ports_aio_out_ss[] = {
752 	"Analogue.L", "Analogue.R",
753 	"AES.L", "AES.R",
754 	"SPDIF.L", "SPDIF.R",
755 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
756 	"ADAT.7", "ADAT.8",
757 	"Phone.L", "Phone.R",
758 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
759 };
760 
761 static char *texts_ports_aio_in_ds[] = {
762 	"Analogue.L", "Analogue.R",
763 	"AES.L", "AES.R",
764 	"SPDIF.L", "SPDIF.R",
765 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
766 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
767 };
768 
769 static char *texts_ports_aio_out_ds[] = {
770 	"Analogue.L", "Analogue.R",
771 	"AES.L", "AES.R",
772 	"SPDIF.L", "SPDIF.R",
773 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
774 	"Phone.L", "Phone.R",
775 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
776 };
777 
778 static char *texts_ports_aio_in_qs[] = {
779 	"Analogue.L", "Analogue.R",
780 	"AES.L", "AES.R",
781 	"SPDIF.L", "SPDIF.R",
782 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
783 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
784 };
785 
786 static char *texts_ports_aio_out_qs[] = {
787 	"Analogue.L", "Analogue.R",
788 	"AES.L", "AES.R",
789 	"SPDIF.L", "SPDIF.R",
790 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
791 	"Phone.L", "Phone.R",
792 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
793 };
794 
795 static char *texts_ports_aes32[] = {
796 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
797 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
798 	"AES.15", "AES.16"
799 };
800 
801 /* These tables map the ALSA channels 1..N to the channels that we
802    need to use in order to find the relevant channel buffer. RME
803    refers to this kind of mapping as between "the ADAT channel and
804    the DMA channel." We index it using the logical audio channel,
805    and the value is the DMA channel (i.e. channel buffer number)
806    where the data for that channel can be read/written from/to.
807 */
808 
809 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
810 	0, 1, 2, 3, 4, 5, 6, 7,
811 	8, 9, 10, 11, 12, 13, 14, 15,
812 	16, 17, 18, 19, 20, 21, 22, 23,
813 	24, 25, 26, 27, 28, 29, 30, 31,
814 	32, 33, 34, 35, 36, 37, 38, 39,
815 	40, 41, 42, 43, 44, 45, 46, 47,
816 	48, 49, 50, 51, 52, 53, 54, 55,
817 	56, 57, 58, 59, 60, 61, 62, 63
818 };
819 
820 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
821 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
822 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
823 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
824 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
825 	0, 1,			/* AES */
826 	2, 3,			/* SPDIF */
827 	-1, -1, -1, -1,
828 	-1, -1, -1, -1, -1, -1, -1, -1,
829 	-1, -1, -1, -1, -1, -1, -1, -1,
830 	-1, -1, -1, -1, -1, -1, -1, -1,
831 };
832 
833 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
834 	4, 5, 6, 7,		/* ADAT 1 */
835 	8, 9, 10, 11,		/* ADAT 2 */
836 	12, 13, 14, 15,		/* ADAT 3 */
837 	16, 17, 18, 19,		/* ADAT 4 */
838 	0, 1,			/* AES */
839 	2, 3,			/* SPDIF */
840 	-1, -1, -1, -1,
841 	-1, -1, -1, -1, -1, -1, -1, -1,
842 	-1, -1, -1, -1, -1, -1, -1, -1,
843 	-1, -1, -1, -1, -1, -1, -1, -1,
844 	-1, -1, -1, -1, -1, -1, -1, -1,
845 	-1, -1, -1, -1, -1, -1, -1, -1,
846 };
847 
848 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
849 	4, 5,			/* ADAT 1 */
850 	6, 7,			/* ADAT 2 */
851 	8, 9,			/* ADAT 3 */
852 	10, 11,			/* ADAT 4 */
853 	0, 1,			/* AES */
854 	2, 3,			/* SPDIF */
855 	-1, -1, -1, -1,
856 	-1, -1, -1, -1, -1, -1, -1, -1,
857 	-1, -1, -1, -1, -1, -1, -1, -1,
858 	-1, -1, -1, -1, -1, -1, -1, -1,
859 	-1, -1, -1, -1, -1, -1, -1, -1,
860 	-1, -1, -1, -1, -1, -1, -1, -1,
861 	-1, -1, -1, -1, -1, -1, -1, -1,
862 };
863 
864 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
865 	0, 1,			/* line in */
866 	8, 9,			/* aes in, */
867 	10, 11,			/* spdif in */
868 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
869 	2, 3, 4, 5,		/* AEB */
870 	-1, -1, -1, -1, -1, -1,
871 	-1, -1, -1, -1, -1, -1, -1, -1,
872 	-1, -1, -1, -1, -1, -1, -1, -1,
873 	-1, -1, -1, -1, -1, -1, -1, -1,
874 	-1, -1, -1, -1, -1, -1, -1, -1,
875 	-1, -1, -1, -1, -1, -1, -1, -1,
876 };
877 
878 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
879 	0, 1,			/* line out */
880 	8, 9,			/* aes out */
881 	10, 11,			/* spdif out */
882 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
883 	6, 7,			/* phone out */
884 	2, 3, 4, 5,		/* AEB */
885 	-1, -1, -1, -1,
886 	-1, -1, -1, -1, -1, -1, -1, -1,
887 	-1, -1, -1, -1, -1, -1, -1, -1,
888 	-1, -1, -1, -1, -1, -1, -1, -1,
889 	-1, -1, -1, -1, -1, -1, -1, -1,
890 	-1, -1, -1, -1, -1, -1, -1, -1,
891 };
892 
893 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
894 	0, 1,			/* line in */
895 	8, 9,			/* aes in */
896 	10, 11,			/* spdif in */
897 	12, 14, 16, 18,		/* adat in */
898 	2, 3, 4, 5,		/* AEB */
899 	-1, -1,
900 	-1, -1, -1, -1, -1, -1, -1, -1,
901 	-1, -1, -1, -1, -1, -1, -1, -1,
902 	-1, -1, -1, -1, -1, -1, -1, -1,
903 	-1, -1, -1, -1, -1, -1, -1, -1,
904 	-1, -1, -1, -1, -1, -1, -1, -1,
905 	-1, -1, -1, -1, -1, -1, -1, -1
906 };
907 
908 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
909 	0, 1,			/* line out */
910 	8, 9,			/* aes out */
911 	10, 11,			/* spdif out */
912 	12, 14, 16, 18,		/* adat out */
913 	6, 7,			/* phone out */
914 	2, 3, 4, 5,		/* AEB */
915 	-1, -1, -1, -1, -1, -1, -1, -1,
916 	-1, -1, -1, -1, -1, -1, -1, -1,
917 	-1, -1, -1, -1, -1, -1, -1, -1,
918 	-1, -1, -1, -1, -1, -1, -1, -1,
919 	-1, -1, -1, -1, -1, -1, -1, -1,
920 	-1, -1, -1, -1, -1, -1, -1, -1
921 };
922 
923 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
924 	0, 1,			/* line in */
925 	8, 9,			/* aes in */
926 	10, 11,			/* spdif in */
927 	12, 16,			/* adat in */
928 	2, 3, 4, 5,		/* AEB */
929 	-1, -1, -1, -1,
930 	-1, -1, -1, -1, -1, -1, -1, -1,
931 	-1, -1, -1, -1, -1, -1, -1, -1,
932 	-1, -1, -1, -1, -1, -1, -1, -1,
933 	-1, -1, -1, -1, -1, -1, -1, -1,
934 	-1, -1, -1, -1, -1, -1, -1, -1,
935 	-1, -1, -1, -1, -1, -1, -1, -1
936 };
937 
938 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
939 	0, 1,			/* line out */
940 	8, 9,			/* aes out */
941 	10, 11,			/* spdif out */
942 	12, 16,			/* adat out */
943 	6, 7,			/* phone out */
944 	2, 3, 4, 5,		/* AEB */
945 	-1, -1,
946 	-1, -1, -1, -1, -1, -1, -1, -1,
947 	-1, -1, -1, -1, -1, -1, -1, -1,
948 	-1, -1, -1, -1, -1, -1, -1, -1,
949 	-1, -1, -1, -1, -1, -1, -1, -1,
950 	-1, -1, -1, -1, -1, -1, -1, -1,
951 	-1, -1, -1, -1, -1, -1, -1, -1
952 };
953 
954 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
955 	0, 1, 2, 3, 4, 5, 6, 7,
956 	8, 9, 10, 11, 12, 13, 14, 15,
957 	-1, -1, -1, -1, -1, -1, -1, -1,
958 	-1, -1, -1, -1, -1, -1, -1, -1,
959 	-1, -1, -1, -1, -1, -1, -1, -1,
960 	-1, -1, -1, -1, -1, -1, -1, -1,
961 	-1, -1, -1, -1, -1, -1, -1, -1,
962 	-1, -1, -1, -1, -1, -1, -1, -1
963 };
964 
965 struct hdspm_midi {
966 	struct hdspm *hdspm;
967 	int id;
968 	struct snd_rawmidi *rmidi;
969 	struct snd_rawmidi_substream *input;
970 	struct snd_rawmidi_substream *output;
971 	char istimer;		/* timer in use */
972 	struct timer_list timer;
973 	spinlock_t lock;
974 	int pending;
975 	int dataIn;
976 	int statusIn;
977 	int dataOut;
978 	int statusOut;
979 	int ie;
980 	int irq;
981 };
982 
983 struct hdspm_tco {
984 	int input; /* 0: LTC, 1:Video, 2: WC*/
985 	int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */
986 	int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */
987 	int samplerate; /* 0=44.1, 1=48, 2= freq from app */
988 	int pull; /*   0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/
989 	int term; /* 0 = off, 1 = on */
990 };
991 
992 struct hdspm {
993         spinlock_t lock;
994 	/* only one playback and/or capture stream */
995         struct snd_pcm_substream *capture_substream;
996         struct snd_pcm_substream *playback_substream;
997 
998 	char *card_name;	     /* for procinfo */
999 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
1000 
1001 	uint8_t io_type;
1002 
1003 	int monitor_outs;	/* set up monitoring outs init flag */
1004 
1005 	u32 control_register;	/* cached value */
1006 	u32 control2_register;	/* cached value */
1007 	u32 settings_register;  /* cached value for AIO / RayDat (sync reference, master/slave) */
1008 
1009 	struct hdspm_midi midi[4];
1010 	struct tasklet_struct midi_tasklet;
1011 
1012 	size_t period_bytes;
1013 	unsigned char ss_in_channels;
1014 	unsigned char ds_in_channels;
1015 	unsigned char qs_in_channels;
1016 	unsigned char ss_out_channels;
1017 	unsigned char ds_out_channels;
1018 	unsigned char qs_out_channels;
1019 
1020 	unsigned char max_channels_in;
1021 	unsigned char max_channels_out;
1022 
1023 	signed char *channel_map_in;
1024 	signed char *channel_map_out;
1025 
1026 	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
1027 	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
1028 
1029 	char **port_names_in;
1030 	char **port_names_out;
1031 
1032 	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
1033 	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
1034 
1035 	unsigned char *playback_buffer;	/* suitably aligned address */
1036 	unsigned char *capture_buffer;	/* suitably aligned address */
1037 
1038 	pid_t capture_pid;	/* process id which uses capture */
1039 	pid_t playback_pid;	/* process id which uses capture */
1040 	int running;		/* running status */
1041 
1042 	int last_external_sample_rate;	/* samplerate mystic ... */
1043 	int last_internal_sample_rate;
1044 	int system_sample_rate;
1045 
1046 	int dev;		/* Hardware vars... */
1047 	int irq;
1048 	unsigned long port;
1049 	void __iomem *iobase;
1050 
1051 	int irq_count;		/* for debug */
1052 	int midiPorts;
1053 
1054 	struct snd_card *card;	/* one card */
1055 	struct snd_pcm *pcm;		/* has one pcm */
1056 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
1057 	struct pci_dev *pci;	/* and an pci info */
1058 
1059 	/* Mixer vars */
1060 	/* fast alsa mixer */
1061 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
1062 	/* but input to much, so not used */
1063 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
1064 	/* full mixer accessible over mixer ioctl or hwdep-device */
1065 	struct hdspm_mixer *mixer;
1066 
1067 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
1068 
1069 	const char *const *texts_autosync;
1070 	int texts_autosync_items;
1071 
1072 	cycles_t last_interrupt;
1073 
1074 	unsigned int serial;
1075 
1076 	struct hdspm_peak_rms peak_rms;
1077 };
1078 
1079 
1080 static const struct pci_device_id snd_hdspm_ids[] = {
1081 	{
1082 	 .vendor = PCI_VENDOR_ID_XILINX,
1083 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
1084 	 .subvendor = PCI_ANY_ID,
1085 	 .subdevice = PCI_ANY_ID,
1086 	 .class = 0,
1087 	 .class_mask = 0,
1088 	 .driver_data = 0},
1089 	{0,}
1090 };
1091 
1092 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
1093 
1094 /* prototypes */
1095 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
1096 					 struct hdspm *hdspm);
1097 static int snd_hdspm_create_pcm(struct snd_card *card,
1098 				struct hdspm *hdspm);
1099 
1100 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
1101 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
1102 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
1103 static int hdspm_autosync_ref(struct hdspm *hdspm);
1104 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out);
1105 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
1106 static int hdspm_system_clock_mode(struct hdspm *hdspm);
1107 static void hdspm_set_sgbuf(struct hdspm *hdspm,
1108 			    struct snd_pcm_substream *substream,
1109 			     unsigned int reg, int channels);
1110 
1111 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx);
1112 static int hdspm_wc_sync_check(struct hdspm *hdspm);
1113 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1114 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1115 
1116 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index);
1117 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm);
1118 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm);
1119 
1120 
1121 
1122 static inline int HDSPM_bit2freq(int n)
1123 {
1124 	static const int bit2freq_tab[] = {
1125 		0, 32000, 44100, 48000, 64000, 88200,
1126 		96000, 128000, 176400, 192000 };
1127 	if (n < 1 || n > 9)
1128 		return 0;
1129 	return bit2freq_tab[n];
1130 }
1131 
1132 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm)
1133 {
1134 	return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type));
1135 }
1136 
1137 
1138 /* Write/read to/from HDSPM with Adresses in Bytes
1139    not words but only 32Bit writes are allowed */
1140 
1141 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
1142 			       unsigned int val)
1143 {
1144 	writel(val, hdspm->iobase + reg);
1145 }
1146 
1147 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1148 {
1149 	return readl(hdspm->iobase + reg);
1150 }
1151 
1152 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1153    mixer is write only on hardware so we have to cache him for read
1154    each fader is a u32, but uses only the first 16 bit */
1155 
1156 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1157 				     unsigned int in)
1158 {
1159 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1160 		return 0;
1161 
1162 	return hdspm->mixer->ch[chan].in[in];
1163 }
1164 
1165 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1166 				     unsigned int pb)
1167 {
1168 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1169 		return 0;
1170 	return hdspm->mixer->ch[chan].pb[pb];
1171 }
1172 
1173 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1174 				      unsigned int in, unsigned short data)
1175 {
1176 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1177 		return -1;
1178 
1179 	hdspm_write(hdspm,
1180 		    HDSPM_MADI_mixerBase +
1181 		    ((in + 128 * chan) * sizeof(u32)),
1182 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1183 	return 0;
1184 }
1185 
1186 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1187 				      unsigned int pb, unsigned short data)
1188 {
1189 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1190 		return -1;
1191 
1192 	hdspm_write(hdspm,
1193 		    HDSPM_MADI_mixerBase +
1194 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1195 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1196 	return 0;
1197 }
1198 
1199 
1200 /* enable DMA for specific channels, now available for DSP-MADI */
1201 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1202 {
1203 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1204 }
1205 
1206 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1207 {
1208 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1209 }
1210 
1211 /* check if same process is writing and reading */
1212 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1213 {
1214 	unsigned long flags;
1215 	int ret = 1;
1216 
1217 	spin_lock_irqsave(&hdspm->lock, flags);
1218 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1219 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1220 		ret = 0;
1221 	}
1222 	spin_unlock_irqrestore(&hdspm->lock, flags);
1223 	return ret;
1224 }
1225 
1226 /* round arbitary sample rates to commonly known rates */
1227 static int hdspm_round_frequency(int rate)
1228 {
1229 	if (rate < 38050)
1230 		return 32000;
1231 	if (rate < 46008)
1232 		return 44100;
1233 	else
1234 		return 48000;
1235 }
1236 
1237 /* QS and DS rates normally can not be detected
1238  * automatically by the card. Only exception is MADI
1239  * in 96k frame mode.
1240  *
1241  * So if we read SS values (32 .. 48k), check for
1242  * user-provided DS/QS bits in the control register
1243  * and multiply the base frequency accordingly.
1244  */
1245 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate)
1246 {
1247 	if (rate <= 48000) {
1248 		if (hdspm->control_register & HDSPM_QuadSpeed)
1249 			return rate * 4;
1250 		else if (hdspm->control_register &
1251 				HDSPM_DoubleSpeed)
1252 			return rate * 2;
1253 	}
1254 	return rate;
1255 }
1256 
1257 /* check for external sample rate, returns the sample rate in Hz*/
1258 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1259 {
1260 	unsigned int status, status2;
1261 	int syncref, rate = 0, rate_bits;
1262 
1263 	switch (hdspm->io_type) {
1264 	case AES32:
1265 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1266 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1267 
1268 		syncref = hdspm_autosync_ref(hdspm);
1269 		switch (syncref) {
1270 		case HDSPM_AES32_AUTOSYNC_FROM_WORD:
1271 		/* Check WC sync and get sample rate */
1272 			if (hdspm_wc_sync_check(hdspm))
1273 				return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm));
1274 			break;
1275 
1276 		case HDSPM_AES32_AUTOSYNC_FROM_AES1:
1277 		case HDSPM_AES32_AUTOSYNC_FROM_AES2:
1278 		case HDSPM_AES32_AUTOSYNC_FROM_AES3:
1279 		case HDSPM_AES32_AUTOSYNC_FROM_AES4:
1280 		case HDSPM_AES32_AUTOSYNC_FROM_AES5:
1281 		case HDSPM_AES32_AUTOSYNC_FROM_AES6:
1282 		case HDSPM_AES32_AUTOSYNC_FROM_AES7:
1283 		case HDSPM_AES32_AUTOSYNC_FROM_AES8:
1284 		/* Check AES sync and get sample rate */
1285 			if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))
1286 				return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm,
1287 							syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1));
1288 			break;
1289 
1290 
1291 		case HDSPM_AES32_AUTOSYNC_FROM_TCO:
1292 		/* Check TCO sync and get sample rate */
1293 			if (hdspm_tco_sync_check(hdspm))
1294 				return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm));
1295 			break;
1296 		default:
1297 			return 0;
1298 		} /* end switch(syncref) */
1299 		break;
1300 
1301 	case MADIface:
1302 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1303 
1304 		if (!(status & HDSPM_madiLock)) {
1305 			rate = 0;  /* no lock */
1306 		} else {
1307 			switch (status & (HDSPM_status1_freqMask)) {
1308 			case HDSPM_status1_F_0*1:
1309 				rate = 32000; break;
1310 			case HDSPM_status1_F_0*2:
1311 				rate = 44100; break;
1312 			case HDSPM_status1_F_0*3:
1313 				rate = 48000; break;
1314 			case HDSPM_status1_F_0*4:
1315 				rate = 64000; break;
1316 			case HDSPM_status1_F_0*5:
1317 				rate = 88200; break;
1318 			case HDSPM_status1_F_0*6:
1319 				rate = 96000; break;
1320 			case HDSPM_status1_F_0*7:
1321 				rate = 128000; break;
1322 			case HDSPM_status1_F_0*8:
1323 				rate = 176400; break;
1324 			case HDSPM_status1_F_0*9:
1325 				rate = 192000; break;
1326 			default:
1327 				rate = 0; break;
1328 			}
1329 		}
1330 
1331 		break;
1332 
1333 	case MADI:
1334 	case AIO:
1335 	case RayDAT:
1336 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1337 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1338 		rate = 0;
1339 
1340 		/* if wordclock has synced freq and wordclock is valid */
1341 		if ((status2 & HDSPM_wcLock) != 0 &&
1342 				(status2 & HDSPM_SelSyncRef0) == 0) {
1343 
1344 			rate_bits = status2 & HDSPM_wcFreqMask;
1345 
1346 
1347 			switch (rate_bits) {
1348 			case HDSPM_wcFreq32:
1349 				rate = 32000;
1350 				break;
1351 			case HDSPM_wcFreq44_1:
1352 				rate = 44100;
1353 				break;
1354 			case HDSPM_wcFreq48:
1355 				rate = 48000;
1356 				break;
1357 			case HDSPM_wcFreq64:
1358 				rate = 64000;
1359 				break;
1360 			case HDSPM_wcFreq88_2:
1361 				rate = 88200;
1362 				break;
1363 			case HDSPM_wcFreq96:
1364 				rate = 96000;
1365 				break;
1366 			case HDSPM_wcFreq128:
1367 				rate = 128000;
1368 				break;
1369 			case HDSPM_wcFreq176_4:
1370 				rate = 176400;
1371 				break;
1372 			case HDSPM_wcFreq192:
1373 				rate = 192000;
1374 				break;
1375 			default:
1376 				rate = 0;
1377 				break;
1378 			}
1379 		}
1380 
1381 		/* if rate detected and Syncref is Word than have it,
1382 		 * word has priority to MADI
1383 		 */
1384 		if (rate != 0 &&
1385 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1386 			return hdspm_rate_multiplier(hdspm, rate);
1387 
1388 		/* maybe a madi input (which is taken if sel sync is madi) */
1389 		if (status & HDSPM_madiLock) {
1390 			rate_bits = status & HDSPM_madiFreqMask;
1391 
1392 			switch (rate_bits) {
1393 			case HDSPM_madiFreq32:
1394 				rate = 32000;
1395 				break;
1396 			case HDSPM_madiFreq44_1:
1397 				rate = 44100;
1398 				break;
1399 			case HDSPM_madiFreq48:
1400 				rate = 48000;
1401 				break;
1402 			case HDSPM_madiFreq64:
1403 				rate = 64000;
1404 				break;
1405 			case HDSPM_madiFreq88_2:
1406 				rate = 88200;
1407 				break;
1408 			case HDSPM_madiFreq96:
1409 				rate = 96000;
1410 				break;
1411 			case HDSPM_madiFreq128:
1412 				rate = 128000;
1413 				break;
1414 			case HDSPM_madiFreq176_4:
1415 				rate = 176400;
1416 				break;
1417 			case HDSPM_madiFreq192:
1418 				rate = 192000;
1419 				break;
1420 			default:
1421 				rate = 0;
1422 				break;
1423 			}
1424 
1425 		} /* endif HDSPM_madiLock */
1426 
1427 		/* check sample rate from TCO or SYNC_IN */
1428 		{
1429 			bool is_valid_input = 0;
1430 			bool has_sync = 0;
1431 
1432 			syncref = hdspm_autosync_ref(hdspm);
1433 			if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1434 				is_valid_input = 1;
1435 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1436 					hdspm_tco_sync_check(hdspm));
1437 			} else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1438 				is_valid_input = 1;
1439 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1440 					hdspm_sync_in_sync_check(hdspm));
1441 			}
1442 
1443 			if (is_valid_input && has_sync) {
1444 				rate = hdspm_round_frequency(
1445 					hdspm_get_pll_freq(hdspm));
1446 			}
1447 		}
1448 
1449 		rate = hdspm_rate_multiplier(hdspm, rate);
1450 
1451 		break;
1452 	}
1453 
1454 	return rate;
1455 }
1456 
1457 /* return latency in samples per period */
1458 static int hdspm_get_latency(struct hdspm *hdspm)
1459 {
1460 	int n;
1461 
1462 	n = hdspm_decode_latency(hdspm->control_register);
1463 
1464 	/* Special case for new RME cards with 32 samples period size.
1465 	 * The three latency bits in the control register
1466 	 * (HDSP_LatencyMask) encode latency values of 64 samples as
1467 	 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1468 	 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1469 	 * it corresponds to 32 samples.
1470 	 */
1471 	if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1472 		n = -1;
1473 
1474 	return 1 << (n + 6);
1475 }
1476 
1477 /* Latency function */
1478 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1479 {
1480 	hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1481 }
1482 
1483 
1484 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1485 {
1486 	int position;
1487 
1488 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1489 
1490 	switch (hdspm->io_type) {
1491 	case RayDAT:
1492 	case AIO:
1493 		position &= HDSPM_BufferPositionMask;
1494 		position /= 4; /* Bytes per sample */
1495 		break;
1496 	default:
1497 		position = (position & HDSPM_BufferID) ?
1498 			(hdspm->period_bytes / 4) : 0;
1499 	}
1500 
1501 	return position;
1502 }
1503 
1504 
1505 static inline void hdspm_start_audio(struct hdspm * s)
1506 {
1507 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1508 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1509 }
1510 
1511 static inline void hdspm_stop_audio(struct hdspm * s)
1512 {
1513 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1514 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1515 }
1516 
1517 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1518 static void hdspm_silence_playback(struct hdspm *hdspm)
1519 {
1520 	int i;
1521 	int n = hdspm->period_bytes;
1522 	void *buf = hdspm->playback_buffer;
1523 
1524 	if (!buf)
1525 		return;
1526 
1527 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1528 		memset(buf, 0, n);
1529 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1530 	}
1531 }
1532 
1533 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1534 {
1535 	int n;
1536 
1537 	spin_lock_irq(&s->lock);
1538 
1539 	if (32 == frames) {
1540 		/* Special case for new RME cards like RayDAT/AIO which
1541 		 * support period sizes of 32 samples. Since latency is
1542 		 * encoded in the three bits of HDSP_LatencyMask, we can only
1543 		 * have values from 0 .. 7. While 0 still means 64 samples and
1544 		 * 6 represents 4096 samples on all cards, 7 represents 8192
1545 		 * on older cards and 32 samples on new cards.
1546 		 *
1547 		 * In other words, period size in samples is calculated by
1548 		 * 2^(n+6) with n ranging from 0 .. 7.
1549 		 */
1550 		n = 7;
1551 	} else {
1552 		frames >>= 7;
1553 		n = 0;
1554 		while (frames) {
1555 			n++;
1556 			frames >>= 1;
1557 		}
1558 	}
1559 
1560 	s->control_register &= ~HDSPM_LatencyMask;
1561 	s->control_register |= hdspm_encode_latency(n);
1562 
1563 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1564 
1565 	hdspm_compute_period_size(s);
1566 
1567 	spin_unlock_irq(&s->lock);
1568 
1569 	return 0;
1570 }
1571 
1572 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1573 {
1574 	u64 freq_const;
1575 
1576 	if (period == 0)
1577 		return 0;
1578 
1579 	switch (hdspm->io_type) {
1580 	case MADI:
1581 	case AES32:
1582 		freq_const = 110069313433624ULL;
1583 		break;
1584 	case RayDAT:
1585 	case AIO:
1586 		freq_const = 104857600000000ULL;
1587 		break;
1588 	case MADIface:
1589 		freq_const = 131072000000000ULL;
1590 		break;
1591 	default:
1592 		snd_BUG();
1593 		return 0;
1594 	}
1595 
1596 	return div_u64(freq_const, period);
1597 }
1598 
1599 
1600 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1601 {
1602 	u64 n;
1603 
1604 	if (snd_BUG_ON(rate <= 0))
1605 		return;
1606 
1607 	if (rate >= 112000)
1608 		rate /= 4;
1609 	else if (rate >= 56000)
1610 		rate /= 2;
1611 
1612 	switch (hdspm->io_type) {
1613 	case MADIface:
1614 		n = 131072000000000ULL;  /* 125 MHz */
1615 		break;
1616 	case MADI:
1617 	case AES32:
1618 		n = 110069313433624ULL;  /* 105 MHz */
1619 		break;
1620 	case RayDAT:
1621 	case AIO:
1622 		n = 104857600000000ULL;  /* 100 MHz */
1623 		break;
1624 	default:
1625 		snd_BUG();
1626 		return;
1627 	}
1628 
1629 	n = div_u64(n, rate);
1630 	/* n should be less than 2^32 for being written to FREQ register */
1631 	snd_BUG_ON(n >> 32);
1632 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1633 }
1634 
1635 /* dummy set rate lets see what happens */
1636 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1637 {
1638 	int current_rate;
1639 	int rate_bits;
1640 	int not_set = 0;
1641 	int current_speed, target_speed;
1642 
1643 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1644 	   it (e.g. during module initialization).
1645 	 */
1646 
1647 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1648 
1649 		/* SLAVE --- */
1650 		if (called_internally) {
1651 
1652 			/* request from ctl or card initialization
1653 			   just make a warning an remember setting
1654 			   for future master mode switching */
1655 
1656 			dev_warn(hdspm->card->dev,
1657 				 "Warning: device is not running as a clock master.\n");
1658 			not_set = 1;
1659 		} else {
1660 
1661 			/* hw_param request while in AutoSync mode */
1662 			int external_freq =
1663 			    hdspm_external_sample_rate(hdspm);
1664 
1665 			if (hdspm_autosync_ref(hdspm) ==
1666 			    HDSPM_AUTOSYNC_FROM_NONE) {
1667 
1668 				dev_warn(hdspm->card->dev,
1669 					 "Detected no External Sync\n");
1670 				not_set = 1;
1671 
1672 			} else if (rate != external_freq) {
1673 
1674 				dev_warn(hdspm->card->dev,
1675 					 "Warning: No AutoSync source for requested rate\n");
1676 				not_set = 1;
1677 			}
1678 		}
1679 	}
1680 
1681 	current_rate = hdspm->system_sample_rate;
1682 
1683 	/* Changing between Singe, Double and Quad speed is not
1684 	   allowed if any substreams are open. This is because such a change
1685 	   causes a shift in the location of the DMA buffers and a reduction
1686 	   in the number of available buffers.
1687 
1688 	   Note that a similar but essentially insoluble problem exists for
1689 	   externally-driven rate changes. All we can do is to flag rate
1690 	   changes in the read/write routines.
1691 	 */
1692 
1693 	if (current_rate <= 48000)
1694 		current_speed = HDSPM_SPEED_SINGLE;
1695 	else if (current_rate <= 96000)
1696 		current_speed = HDSPM_SPEED_DOUBLE;
1697 	else
1698 		current_speed = HDSPM_SPEED_QUAD;
1699 
1700 	if (rate <= 48000)
1701 		target_speed = HDSPM_SPEED_SINGLE;
1702 	else if (rate <= 96000)
1703 		target_speed = HDSPM_SPEED_DOUBLE;
1704 	else
1705 		target_speed = HDSPM_SPEED_QUAD;
1706 
1707 	switch (rate) {
1708 	case 32000:
1709 		rate_bits = HDSPM_Frequency32KHz;
1710 		break;
1711 	case 44100:
1712 		rate_bits = HDSPM_Frequency44_1KHz;
1713 		break;
1714 	case 48000:
1715 		rate_bits = HDSPM_Frequency48KHz;
1716 		break;
1717 	case 64000:
1718 		rate_bits = HDSPM_Frequency64KHz;
1719 		break;
1720 	case 88200:
1721 		rate_bits = HDSPM_Frequency88_2KHz;
1722 		break;
1723 	case 96000:
1724 		rate_bits = HDSPM_Frequency96KHz;
1725 		break;
1726 	case 128000:
1727 		rate_bits = HDSPM_Frequency128KHz;
1728 		break;
1729 	case 176400:
1730 		rate_bits = HDSPM_Frequency176_4KHz;
1731 		break;
1732 	case 192000:
1733 		rate_bits = HDSPM_Frequency192KHz;
1734 		break;
1735 	default:
1736 		return -EINVAL;
1737 	}
1738 
1739 	if (current_speed != target_speed
1740 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1741 		dev_err(hdspm->card->dev,
1742 			"cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n",
1743 			hdspm_speed_names[current_speed],
1744 			hdspm_speed_names[target_speed],
1745 			hdspm->capture_pid, hdspm->playback_pid);
1746 		return -EBUSY;
1747 	}
1748 
1749 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1750 	hdspm->control_register |= rate_bits;
1751 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1752 
1753 	/* For AES32, need to set DDS value in FREQ register
1754 	   For MADI, also apparently */
1755 	hdspm_set_dds_value(hdspm, rate);
1756 
1757 	if (AES32 == hdspm->io_type && rate != current_rate)
1758 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1759 
1760 	hdspm->system_sample_rate = rate;
1761 
1762 	if (rate <= 48000) {
1763 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1764 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1765 		hdspm->max_channels_in = hdspm->ss_in_channels;
1766 		hdspm->max_channels_out = hdspm->ss_out_channels;
1767 		hdspm->port_names_in = hdspm->port_names_in_ss;
1768 		hdspm->port_names_out = hdspm->port_names_out_ss;
1769 	} else if (rate <= 96000) {
1770 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1771 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1772 		hdspm->max_channels_in = hdspm->ds_in_channels;
1773 		hdspm->max_channels_out = hdspm->ds_out_channels;
1774 		hdspm->port_names_in = hdspm->port_names_in_ds;
1775 		hdspm->port_names_out = hdspm->port_names_out_ds;
1776 	} else {
1777 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1778 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1779 		hdspm->max_channels_in = hdspm->qs_in_channels;
1780 		hdspm->max_channels_out = hdspm->qs_out_channels;
1781 		hdspm->port_names_in = hdspm->port_names_in_qs;
1782 		hdspm->port_names_out = hdspm->port_names_out_qs;
1783 	}
1784 
1785 	if (not_set != 0)
1786 		return -1;
1787 
1788 	return 0;
1789 }
1790 
1791 /* mainly for init to 0 on load */
1792 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1793 {
1794 	int i, j;
1795 	unsigned int gain;
1796 
1797 	if (sgain > UNITY_GAIN)
1798 		gain = UNITY_GAIN;
1799 	else if (sgain < 0)
1800 		gain = 0;
1801 	else
1802 		gain = sgain;
1803 
1804 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1805 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1806 			hdspm_write_in_gain(hdspm, i, j, gain);
1807 			hdspm_write_pb_gain(hdspm, i, j, gain);
1808 		}
1809 }
1810 
1811 /*----------------------------------------------------------------------------
1812    MIDI
1813   ----------------------------------------------------------------------------*/
1814 
1815 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1816 						      int id)
1817 {
1818 	/* the hardware already does the relevant bit-mask with 0xff */
1819 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1820 }
1821 
1822 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1823 					      int val)
1824 {
1825 	/* the hardware already does the relevant bit-mask with 0xff */
1826 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1827 }
1828 
1829 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1830 {
1831 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1832 }
1833 
1834 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1835 {
1836 	int fifo_bytes_used;
1837 
1838 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1839 
1840 	if (fifo_bytes_used < 128)
1841 		return  128 - fifo_bytes_used;
1842 	else
1843 		return 0;
1844 }
1845 
1846 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1847 {
1848 	while (snd_hdspm_midi_input_available (hdspm, id))
1849 		snd_hdspm_midi_read_byte (hdspm, id);
1850 }
1851 
1852 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1853 {
1854 	unsigned long flags;
1855 	int n_pending;
1856 	int to_write;
1857 	int i;
1858 	unsigned char buf[128];
1859 
1860 	/* Output is not interrupt driven */
1861 
1862 	spin_lock_irqsave (&hmidi->lock, flags);
1863 	if (hmidi->output &&
1864 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1865 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1866 							    hmidi->id);
1867 		if (n_pending > 0) {
1868 			if (n_pending > (int)sizeof (buf))
1869 				n_pending = sizeof (buf);
1870 
1871 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1872 							 n_pending);
1873 			if (to_write > 0) {
1874 				for (i = 0; i < to_write; ++i)
1875 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1876 								   hmidi->id,
1877 								   buf[i]);
1878 			}
1879 		}
1880 	}
1881 	spin_unlock_irqrestore (&hmidi->lock, flags);
1882 	return 0;
1883 }
1884 
1885 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1886 {
1887 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1888 				 * input FIFO size
1889 				 */
1890 	unsigned long flags;
1891 	int n_pending;
1892 	int i;
1893 
1894 	spin_lock_irqsave (&hmidi->lock, flags);
1895 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1896 	if (n_pending > 0) {
1897 		if (hmidi->input) {
1898 			if (n_pending > (int)sizeof (buf))
1899 				n_pending = sizeof (buf);
1900 			for (i = 0; i < n_pending; ++i)
1901 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1902 								   hmidi->id);
1903 			if (n_pending)
1904 				snd_rawmidi_receive (hmidi->input, buf,
1905 						     n_pending);
1906 		} else {
1907 			/* flush the MIDI input FIFO */
1908 			while (n_pending--)
1909 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1910 							  hmidi->id);
1911 		}
1912 	}
1913 	hmidi->pending = 0;
1914 	spin_unlock_irqrestore(&hmidi->lock, flags);
1915 
1916 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1917 	hmidi->hdspm->control_register |= hmidi->ie;
1918 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1919 		    hmidi->hdspm->control_register);
1920 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1921 
1922 	return snd_hdspm_midi_output_write (hmidi);
1923 }
1924 
1925 static void
1926 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1927 {
1928 	struct hdspm *hdspm;
1929 	struct hdspm_midi *hmidi;
1930 	unsigned long flags;
1931 
1932 	hmidi = substream->rmidi->private_data;
1933 	hdspm = hmidi->hdspm;
1934 
1935 	spin_lock_irqsave (&hdspm->lock, flags);
1936 	if (up) {
1937 		if (!(hdspm->control_register & hmidi->ie)) {
1938 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1939 			hdspm->control_register |= hmidi->ie;
1940 		}
1941 	} else {
1942 		hdspm->control_register &= ~hmidi->ie;
1943 	}
1944 
1945 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1946 	spin_unlock_irqrestore (&hdspm->lock, flags);
1947 }
1948 
1949 static void snd_hdspm_midi_output_timer(struct timer_list *t)
1950 {
1951 	struct hdspm_midi *hmidi = from_timer(hmidi, t, timer);
1952 	unsigned long flags;
1953 
1954 	snd_hdspm_midi_output_write(hmidi);
1955 	spin_lock_irqsave (&hmidi->lock, flags);
1956 
1957 	/* this does not bump hmidi->istimer, because the
1958 	   kernel automatically removed the timer when it
1959 	   expired, and we are now adding it back, thus
1960 	   leaving istimer wherever it was set before.
1961 	*/
1962 
1963 	if (hmidi->istimer)
1964 		mod_timer(&hmidi->timer, 1 + jiffies);
1965 
1966 	spin_unlock_irqrestore (&hmidi->lock, flags);
1967 }
1968 
1969 static void
1970 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1971 {
1972 	struct hdspm_midi *hmidi;
1973 	unsigned long flags;
1974 
1975 	hmidi = substream->rmidi->private_data;
1976 	spin_lock_irqsave (&hmidi->lock, flags);
1977 	if (up) {
1978 		if (!hmidi->istimer) {
1979 			timer_setup(&hmidi->timer,
1980 				    snd_hdspm_midi_output_timer, 0);
1981 			mod_timer(&hmidi->timer, 1 + jiffies);
1982 			hmidi->istimer++;
1983 		}
1984 	} else {
1985 		if (hmidi->istimer && --hmidi->istimer <= 0)
1986 			del_timer (&hmidi->timer);
1987 	}
1988 	spin_unlock_irqrestore (&hmidi->lock, flags);
1989 	if (up)
1990 		snd_hdspm_midi_output_write(hmidi);
1991 }
1992 
1993 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1994 {
1995 	struct hdspm_midi *hmidi;
1996 
1997 	hmidi = substream->rmidi->private_data;
1998 	spin_lock_irq (&hmidi->lock);
1999 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
2000 	hmidi->input = substream;
2001 	spin_unlock_irq (&hmidi->lock);
2002 
2003 	return 0;
2004 }
2005 
2006 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
2007 {
2008 	struct hdspm_midi *hmidi;
2009 
2010 	hmidi = substream->rmidi->private_data;
2011 	spin_lock_irq (&hmidi->lock);
2012 	hmidi->output = substream;
2013 	spin_unlock_irq (&hmidi->lock);
2014 
2015 	return 0;
2016 }
2017 
2018 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
2019 {
2020 	struct hdspm_midi *hmidi;
2021 
2022 	snd_hdspm_midi_input_trigger (substream, 0);
2023 
2024 	hmidi = substream->rmidi->private_data;
2025 	spin_lock_irq (&hmidi->lock);
2026 	hmidi->input = NULL;
2027 	spin_unlock_irq (&hmidi->lock);
2028 
2029 	return 0;
2030 }
2031 
2032 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
2033 {
2034 	struct hdspm_midi *hmidi;
2035 
2036 	snd_hdspm_midi_output_trigger (substream, 0);
2037 
2038 	hmidi = substream->rmidi->private_data;
2039 	spin_lock_irq (&hmidi->lock);
2040 	hmidi->output = NULL;
2041 	spin_unlock_irq (&hmidi->lock);
2042 
2043 	return 0;
2044 }
2045 
2046 static const struct snd_rawmidi_ops snd_hdspm_midi_output =
2047 {
2048 	.open =		snd_hdspm_midi_output_open,
2049 	.close =	snd_hdspm_midi_output_close,
2050 	.trigger =	snd_hdspm_midi_output_trigger,
2051 };
2052 
2053 static const struct snd_rawmidi_ops snd_hdspm_midi_input =
2054 {
2055 	.open =		snd_hdspm_midi_input_open,
2056 	.close =	snd_hdspm_midi_input_close,
2057 	.trigger =	snd_hdspm_midi_input_trigger,
2058 };
2059 
2060 static int snd_hdspm_create_midi(struct snd_card *card,
2061 				 struct hdspm *hdspm, int id)
2062 {
2063 	int err;
2064 	char buf[64];
2065 
2066 	hdspm->midi[id].id = id;
2067 	hdspm->midi[id].hdspm = hdspm;
2068 	spin_lock_init (&hdspm->midi[id].lock);
2069 
2070 	if (0 == id) {
2071 		if (MADIface == hdspm->io_type) {
2072 			/* MIDI-over-MADI on HDSPe MADIface */
2073 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
2074 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
2075 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
2076 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
2077 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
2078 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
2079 		} else {
2080 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
2081 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
2082 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
2083 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
2084 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
2085 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
2086 		}
2087 	} else if (1 == id) {
2088 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
2089 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
2090 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
2091 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
2092 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
2093 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
2094 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
2095 		/* MIDI-over-MADI on HDSPe MADI */
2096 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2097 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2098 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
2099 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
2100 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2101 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
2102 	} else if (2 == id) {
2103 		/* TCO MTC, read only */
2104 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2105 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2106 		hdspm->midi[2].dataOut = -1;
2107 		hdspm->midi[2].statusOut = -1;
2108 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2109 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
2110 	} else if (3 == id) {
2111 		/* TCO MTC on HDSPe MADI */
2112 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
2113 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
2114 		hdspm->midi[3].dataOut = -1;
2115 		hdspm->midi[3].statusOut = -1;
2116 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
2117 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
2118 	}
2119 
2120 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
2121 					(MADIface == hdspm->io_type)))) {
2122 		if ((id == 0) && (MADIface == hdspm->io_type)) {
2123 			snprintf(buf, sizeof(buf), "%s MIDIoverMADI",
2124 				 card->shortname);
2125 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
2126 			snprintf(buf, sizeof(buf), "%s MIDIoverMADI",
2127 				 card->shortname);
2128 		} else {
2129 			snprintf(buf, sizeof(buf), "%s MIDI %d",
2130 				 card->shortname, id+1);
2131 		}
2132 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2133 				&hdspm->midi[id].rmidi);
2134 		if (err < 0)
2135 			return err;
2136 
2137 		snprintf(hdspm->midi[id].rmidi->name,
2138 			 sizeof(hdspm->midi[id].rmidi->name),
2139 			 "%s MIDI %d", card->id, id+1);
2140 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2141 
2142 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2143 				SNDRV_RAWMIDI_STREAM_OUTPUT,
2144 				&snd_hdspm_midi_output);
2145 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2146 				SNDRV_RAWMIDI_STREAM_INPUT,
2147 				&snd_hdspm_midi_input);
2148 
2149 		hdspm->midi[id].rmidi->info_flags |=
2150 			SNDRV_RAWMIDI_INFO_OUTPUT |
2151 			SNDRV_RAWMIDI_INFO_INPUT |
2152 			SNDRV_RAWMIDI_INFO_DUPLEX;
2153 	} else {
2154 		/* TCO MTC, read only */
2155 		snprintf(buf, sizeof(buf), "%s MTC %d",
2156 			 card->shortname, id+1);
2157 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2158 				&hdspm->midi[id].rmidi);
2159 		if (err < 0)
2160 			return err;
2161 
2162 		snprintf(hdspm->midi[id].rmidi->name,
2163 			 sizeof(hdspm->midi[id].rmidi->name),
2164 			 "%s MTC %d", card->id, id+1);
2165 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2166 
2167 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2168 				SNDRV_RAWMIDI_STREAM_INPUT,
2169 				&snd_hdspm_midi_input);
2170 
2171 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 
2178 static void hdspm_midi_tasklet(unsigned long arg)
2179 {
2180 	struct hdspm *hdspm = (struct hdspm *)arg;
2181 	int i = 0;
2182 
2183 	while (i < hdspm->midiPorts) {
2184 		if (hdspm->midi[i].pending)
2185 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
2186 
2187 		i++;
2188 	}
2189 }
2190 
2191 
2192 /*-----------------------------------------------------------------------------
2193   Status Interface
2194   ----------------------------------------------------------------------------*/
2195 
2196 /* get the system sample rate which is set */
2197 
2198 
2199 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2200 {
2201 	unsigned int period, rate;
2202 
2203 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2204 	rate = hdspm_calc_dds_value(hdspm, period);
2205 
2206 	return rate;
2207 }
2208 
2209 /*
2210  * Calculate the real sample rate from the
2211  * current DDS value.
2212  */
2213 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2214 {
2215 	unsigned int rate;
2216 
2217 	rate = hdspm_get_pll_freq(hdspm);
2218 
2219 	if (rate > 207000) {
2220 		/* Unreasonable high sample rate as seen on PCI MADI cards. */
2221 		if (0 == hdspm_system_clock_mode(hdspm)) {
2222 			/* master mode, return internal sample rate */
2223 			rate = hdspm->system_sample_rate;
2224 		} else {
2225 			/* slave mode, return external sample rate */
2226 			rate = hdspm_external_sample_rate(hdspm);
2227 			if (!rate)
2228 				rate = hdspm->system_sample_rate;
2229 		}
2230 	}
2231 
2232 	return rate;
2233 }
2234 
2235 
2236 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2237 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2238 	.name = xname, \
2239 	.index = xindex, \
2240 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2241 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2242 	.info = snd_hdspm_info_system_sample_rate, \
2243 	.put = snd_hdspm_put_system_sample_rate, \
2244 	.get = snd_hdspm_get_system_sample_rate \
2245 }
2246 
2247 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2248 					     struct snd_ctl_elem_info *uinfo)
2249 {
2250 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2251 	uinfo->count = 1;
2252 	uinfo->value.integer.min = 27000;
2253 	uinfo->value.integer.max = 207000;
2254 	uinfo->value.integer.step = 1;
2255 	return 0;
2256 }
2257 
2258 
2259 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2260 					    struct snd_ctl_elem_value *
2261 					    ucontrol)
2262 {
2263 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2264 
2265 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2266 	return 0;
2267 }
2268 
2269 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2270 					    struct snd_ctl_elem_value *
2271 					    ucontrol)
2272 {
2273 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2274 	int rate = ucontrol->value.integer.value[0];
2275 
2276 	if (rate < 27000 || rate > 207000)
2277 		return -EINVAL;
2278 	hdspm_set_dds_value(hdspm, ucontrol->value.integer.value[0]);
2279 	return 0;
2280 }
2281 
2282 
2283 /*
2284  * Returns the WordClock sample rate class for the given card.
2285  */
2286 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2287 {
2288 	int status;
2289 
2290 	switch (hdspm->io_type) {
2291 	case RayDAT:
2292 	case AIO:
2293 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2294 		return (status >> 16) & 0xF;
2295 		break;
2296 	case AES32:
2297 		status = hdspm_read(hdspm, HDSPM_statusRegister);
2298 		return (status >> HDSPM_AES32_wcFreq_bit) & 0xF;
2299 	default:
2300 		break;
2301 	}
2302 
2303 
2304 	return 0;
2305 }
2306 
2307 
2308 /*
2309  * Returns the TCO sample rate class for the given card.
2310  */
2311 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2312 {
2313 	int status;
2314 
2315 	if (hdspm->tco) {
2316 		switch (hdspm->io_type) {
2317 		case RayDAT:
2318 		case AIO:
2319 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2320 			return (status >> 20) & 0xF;
2321 			break;
2322 		case AES32:
2323 			status = hdspm_read(hdspm, HDSPM_statusRegister);
2324 			return (status >> 1) & 0xF;
2325 		default:
2326 			break;
2327 		}
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 
2334 /*
2335  * Returns the SYNC_IN sample rate class for the given card.
2336  */
2337 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2338 {
2339 	int status;
2340 
2341 	if (hdspm->tco) {
2342 		switch (hdspm->io_type) {
2343 		case RayDAT:
2344 		case AIO:
2345 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2346 			return (status >> 12) & 0xF;
2347 			break;
2348 		default:
2349 			break;
2350 		}
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /*
2357  * Returns the AES sample rate class for the given card.
2358  */
2359 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index)
2360 {
2361 	int timecode;
2362 
2363 	switch (hdspm->io_type) {
2364 	case AES32:
2365 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
2366 		return (timecode >> (4*index)) & 0xF;
2367 		break;
2368 	default:
2369 		break;
2370 	}
2371 	return 0;
2372 }
2373 
2374 /*
2375  * Returns the sample rate class for input source <idx> for
2376  * 'new style' cards like the AIO and RayDAT.
2377  */
2378 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2379 {
2380 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2381 
2382 	return (status >> (idx*4)) & 0xF;
2383 }
2384 
2385 #define ENUMERATED_CTL_INFO(info, texts) \
2386 	snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts)
2387 
2388 
2389 /* Helper function to query the external sample rate and return the
2390  * corresponding enum to be returned to userspace.
2391  */
2392 static int hdspm_external_rate_to_enum(struct hdspm *hdspm)
2393 {
2394 	int rate = hdspm_external_sample_rate(hdspm);
2395 	int i, selected_rate = 0;
2396 	for (i = 1; i < 10; i++)
2397 		if (HDSPM_bit2freq(i) == rate) {
2398 			selected_rate = i;
2399 			break;
2400 		}
2401 	return selected_rate;
2402 }
2403 
2404 
2405 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2406 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2407 	.name = xname, \
2408 	.private_value = xindex, \
2409 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2410 	.info = snd_hdspm_info_autosync_sample_rate, \
2411 	.get = snd_hdspm_get_autosync_sample_rate \
2412 }
2413 
2414 
2415 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2416 					       struct snd_ctl_elem_info *uinfo)
2417 {
2418 	ENUMERATED_CTL_INFO(uinfo, texts_freq);
2419 	return 0;
2420 }
2421 
2422 
2423 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2424 					      struct snd_ctl_elem_value *
2425 					      ucontrol)
2426 {
2427 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2428 
2429 	switch (hdspm->io_type) {
2430 	case RayDAT:
2431 		switch (kcontrol->private_value) {
2432 		case 0:
2433 			ucontrol->value.enumerated.item[0] =
2434 				hdspm_get_wc_sample_rate(hdspm);
2435 			break;
2436 		case 7:
2437 			ucontrol->value.enumerated.item[0] =
2438 				hdspm_get_tco_sample_rate(hdspm);
2439 			break;
2440 		case 8:
2441 			ucontrol->value.enumerated.item[0] =
2442 				hdspm_get_sync_in_sample_rate(hdspm);
2443 			break;
2444 		default:
2445 			ucontrol->value.enumerated.item[0] =
2446 				hdspm_get_s1_sample_rate(hdspm,
2447 						kcontrol->private_value-1);
2448 		}
2449 		break;
2450 
2451 	case AIO:
2452 		switch (kcontrol->private_value) {
2453 		case 0: /* WC */
2454 			ucontrol->value.enumerated.item[0] =
2455 				hdspm_get_wc_sample_rate(hdspm);
2456 			break;
2457 		case 4: /* TCO */
2458 			ucontrol->value.enumerated.item[0] =
2459 				hdspm_get_tco_sample_rate(hdspm);
2460 			break;
2461 		case 5: /* SYNC_IN */
2462 			ucontrol->value.enumerated.item[0] =
2463 				hdspm_get_sync_in_sample_rate(hdspm);
2464 			break;
2465 		default:
2466 			ucontrol->value.enumerated.item[0] =
2467 				hdspm_get_s1_sample_rate(hdspm,
2468 						kcontrol->private_value-1);
2469 		}
2470 		break;
2471 
2472 	case AES32:
2473 
2474 		switch (kcontrol->private_value) {
2475 		case 0: /* WC */
2476 			ucontrol->value.enumerated.item[0] =
2477 				hdspm_get_wc_sample_rate(hdspm);
2478 			break;
2479 		case 9: /* TCO */
2480 			ucontrol->value.enumerated.item[0] =
2481 				hdspm_get_tco_sample_rate(hdspm);
2482 			break;
2483 		case 10: /* SYNC_IN */
2484 			ucontrol->value.enumerated.item[0] =
2485 				hdspm_get_sync_in_sample_rate(hdspm);
2486 			break;
2487 		case 11: /* External Rate */
2488 			ucontrol->value.enumerated.item[0] =
2489 				hdspm_external_rate_to_enum(hdspm);
2490 			break;
2491 		default: /* AES1 to AES8 */
2492 			ucontrol->value.enumerated.item[0] =
2493 				hdspm_get_aes_sample_rate(hdspm,
2494 						kcontrol->private_value -
2495 						HDSPM_AES32_AUTOSYNC_FROM_AES1);
2496 			break;
2497 		}
2498 		break;
2499 
2500 	case MADI:
2501 	case MADIface:
2502 		ucontrol->value.enumerated.item[0] =
2503 			hdspm_external_rate_to_enum(hdspm);
2504 		break;
2505 	default:
2506 		break;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 
2513 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2514 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2515 	.name = xname, \
2516 	.index = xindex, \
2517 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2518 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2519 	.info = snd_hdspm_info_system_clock_mode, \
2520 	.get = snd_hdspm_get_system_clock_mode, \
2521 	.put = snd_hdspm_put_system_clock_mode, \
2522 }
2523 
2524 
2525 /*
2526  * Returns the system clock mode for the given card.
2527  * @returns 0 - master, 1 - slave
2528  */
2529 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2530 {
2531 	switch (hdspm->io_type) {
2532 	case AIO:
2533 	case RayDAT:
2534 		if (hdspm->settings_register & HDSPM_c0Master)
2535 			return 0;
2536 		break;
2537 
2538 	default:
2539 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2540 			return 0;
2541 	}
2542 
2543 	return 1;
2544 }
2545 
2546 
2547 /*
2548  * Sets the system clock mode.
2549  * @param mode 0 - master, 1 - slave
2550  */
2551 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2552 {
2553 	hdspm_set_toggle_setting(hdspm,
2554 			(hdspm_is_raydat_or_aio(hdspm)) ?
2555 			HDSPM_c0Master : HDSPM_ClockModeMaster,
2556 			(0 == mode));
2557 }
2558 
2559 
2560 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2561 					    struct snd_ctl_elem_info *uinfo)
2562 {
2563 	static const char *const texts[] = { "Master", "AutoSync" };
2564 	ENUMERATED_CTL_INFO(uinfo, texts);
2565 	return 0;
2566 }
2567 
2568 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2569 					   struct snd_ctl_elem_value *ucontrol)
2570 {
2571 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2572 
2573 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2574 	return 0;
2575 }
2576 
2577 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2578 					   struct snd_ctl_elem_value *ucontrol)
2579 {
2580 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2581 	int val;
2582 
2583 	if (!snd_hdspm_use_is_exclusive(hdspm))
2584 		return -EBUSY;
2585 
2586 	val = ucontrol->value.enumerated.item[0];
2587 	if (val < 0)
2588 		val = 0;
2589 	else if (val > 1)
2590 		val = 1;
2591 
2592 	hdspm_set_system_clock_mode(hdspm, val);
2593 
2594 	return 0;
2595 }
2596 
2597 
2598 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2599 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2600 	.name = xname, \
2601 	.index = xindex, \
2602 	.info = snd_hdspm_info_clock_source, \
2603 	.get = snd_hdspm_get_clock_source, \
2604 	.put = snd_hdspm_put_clock_source \
2605 }
2606 
2607 
2608 static int hdspm_clock_source(struct hdspm * hdspm)
2609 {
2610 	switch (hdspm->system_sample_rate) {
2611 	case 32000: return 0;
2612 	case 44100: return 1;
2613 	case 48000: return 2;
2614 	case 64000: return 3;
2615 	case 88200: return 4;
2616 	case 96000: return 5;
2617 	case 128000: return 6;
2618 	case 176400: return 7;
2619 	case 192000: return 8;
2620 	}
2621 
2622 	return -1;
2623 }
2624 
2625 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2626 {
2627 	int rate;
2628 	switch (mode) {
2629 	case 0:
2630 		rate = 32000; break;
2631 	case 1:
2632 		rate = 44100; break;
2633 	case 2:
2634 		rate = 48000; break;
2635 	case 3:
2636 		rate = 64000; break;
2637 	case 4:
2638 		rate = 88200; break;
2639 	case 5:
2640 		rate = 96000; break;
2641 	case 6:
2642 		rate = 128000; break;
2643 	case 7:
2644 		rate = 176400; break;
2645 	case 8:
2646 		rate = 192000; break;
2647 	default:
2648 		rate = 48000;
2649 	}
2650 	hdspm_set_rate(hdspm, rate, 1);
2651 	return 0;
2652 }
2653 
2654 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2655 				       struct snd_ctl_elem_info *uinfo)
2656 {
2657 	return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1);
2658 }
2659 
2660 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2661 				      struct snd_ctl_elem_value *ucontrol)
2662 {
2663 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2664 
2665 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2666 	return 0;
2667 }
2668 
2669 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2670 				      struct snd_ctl_elem_value *ucontrol)
2671 {
2672 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2673 	int change;
2674 	int val;
2675 
2676 	if (!snd_hdspm_use_is_exclusive(hdspm))
2677 		return -EBUSY;
2678 	val = ucontrol->value.enumerated.item[0];
2679 	if (val < 0)
2680 		val = 0;
2681 	if (val > 9)
2682 		val = 9;
2683 	spin_lock_irq(&hdspm->lock);
2684 	if (val != hdspm_clock_source(hdspm))
2685 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2686 	else
2687 		change = 0;
2688 	spin_unlock_irq(&hdspm->lock);
2689 	return change;
2690 }
2691 
2692 
2693 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2694 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2695 	.name = xname, \
2696 	.index = xindex, \
2697 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2698 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2699 	.info = snd_hdspm_info_pref_sync_ref, \
2700 	.get = snd_hdspm_get_pref_sync_ref, \
2701 	.put = snd_hdspm_put_pref_sync_ref \
2702 }
2703 
2704 
2705 /*
2706  * Returns the current preferred sync reference setting.
2707  * The semantics of the return value are depending on the
2708  * card, please see the comments for clarification.
2709  */
2710 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2711 {
2712 	switch (hdspm->io_type) {
2713 	case AES32:
2714 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2715 		case 0: return 0;  /* WC */
2716 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2717 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2718 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2719 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2720 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2721 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2722 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2723 						    return 7; /* AES 7 */
2724 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2725 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2726 		}
2727 		break;
2728 
2729 	case MADI:
2730 	case MADIface:
2731 		if (hdspm->tco) {
2732 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2733 			case 0: return 0;  /* WC */
2734 			case HDSPM_SyncRef0: return 1;  /* MADI */
2735 			case HDSPM_SyncRef1: return 2;  /* TCO */
2736 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2737 					     return 3;  /* SYNC_IN */
2738 			}
2739 		} else {
2740 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2741 			case 0: return 0;  /* WC */
2742 			case HDSPM_SyncRef0: return 1;  /* MADI */
2743 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2744 					     return 2;  /* SYNC_IN */
2745 			}
2746 		}
2747 		break;
2748 
2749 	case RayDAT:
2750 		if (hdspm->tco) {
2751 			switch ((hdspm->settings_register &
2752 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2753 			case 0: return 0;  /* WC */
2754 			case 3: return 1;  /* ADAT 1 */
2755 			case 4: return 2;  /* ADAT 2 */
2756 			case 5: return 3;  /* ADAT 3 */
2757 			case 6: return 4;  /* ADAT 4 */
2758 			case 1: return 5;  /* AES */
2759 			case 2: return 6;  /* SPDIF */
2760 			case 9: return 7;  /* TCO */
2761 			case 10: return 8; /* SYNC_IN */
2762 			}
2763 		} else {
2764 			switch ((hdspm->settings_register &
2765 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2766 			case 0: return 0;  /* WC */
2767 			case 3: return 1;  /* ADAT 1 */
2768 			case 4: return 2;  /* ADAT 2 */
2769 			case 5: return 3;  /* ADAT 3 */
2770 			case 6: return 4;  /* ADAT 4 */
2771 			case 1: return 5;  /* AES */
2772 			case 2: return 6;  /* SPDIF */
2773 			case 10: return 7; /* SYNC_IN */
2774 			}
2775 		}
2776 
2777 		break;
2778 
2779 	case AIO:
2780 		if (hdspm->tco) {
2781 			switch ((hdspm->settings_register &
2782 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2783 			case 0: return 0;  /* WC */
2784 			case 3: return 1;  /* ADAT */
2785 			case 1: return 2;  /* AES */
2786 			case 2: return 3;  /* SPDIF */
2787 			case 9: return 4;  /* TCO */
2788 			case 10: return 5; /* SYNC_IN */
2789 			}
2790 		} else {
2791 			switch ((hdspm->settings_register &
2792 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2793 			case 0: return 0;  /* WC */
2794 			case 3: return 1;  /* ADAT */
2795 			case 1: return 2;  /* AES */
2796 			case 2: return 3;  /* SPDIF */
2797 			case 10: return 4; /* SYNC_IN */
2798 			}
2799 		}
2800 
2801 		break;
2802 	}
2803 
2804 	return -1;
2805 }
2806 
2807 
2808 /*
2809  * Set the preferred sync reference to <pref>. The semantics
2810  * of <pref> are depending on the card type, see the comments
2811  * for clarification.
2812  */
2813 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2814 {
2815 	int p = 0;
2816 
2817 	switch (hdspm->io_type) {
2818 	case AES32:
2819 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2820 		switch (pref) {
2821 		case 0: /* WC  */
2822 			break;
2823 		case 1: /* AES 1 */
2824 			hdspm->control_register |= HDSPM_SyncRef0;
2825 			break;
2826 		case 2: /* AES 2 */
2827 			hdspm->control_register |= HDSPM_SyncRef1;
2828 			break;
2829 		case 3: /* AES 3 */
2830 			hdspm->control_register |=
2831 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2832 			break;
2833 		case 4: /* AES 4 */
2834 			hdspm->control_register |= HDSPM_SyncRef2;
2835 			break;
2836 		case 5: /* AES 5 */
2837 			hdspm->control_register |=
2838 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2839 			break;
2840 		case 6: /* AES 6 */
2841 			hdspm->control_register |=
2842 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2843 			break;
2844 		case 7: /* AES 7 */
2845 			hdspm->control_register |=
2846 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2847 			break;
2848 		case 8: /* AES 8 */
2849 			hdspm->control_register |= HDSPM_SyncRef3;
2850 			break;
2851 		case 9: /* TCO */
2852 			hdspm->control_register |=
2853 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2854 			break;
2855 		default:
2856 			return -1;
2857 		}
2858 
2859 		break;
2860 
2861 	case MADI:
2862 	case MADIface:
2863 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2864 		if (hdspm->tco) {
2865 			switch (pref) {
2866 			case 0: /* WC */
2867 				break;
2868 			case 1: /* MADI */
2869 				hdspm->control_register |= HDSPM_SyncRef0;
2870 				break;
2871 			case 2: /* TCO */
2872 				hdspm->control_register |= HDSPM_SyncRef1;
2873 				break;
2874 			case 3: /* SYNC_IN */
2875 				hdspm->control_register |=
2876 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2877 				break;
2878 			default:
2879 				return -1;
2880 			}
2881 		} else {
2882 			switch (pref) {
2883 			case 0: /* WC */
2884 				break;
2885 			case 1: /* MADI */
2886 				hdspm->control_register |= HDSPM_SyncRef0;
2887 				break;
2888 			case 2: /* SYNC_IN */
2889 				hdspm->control_register |=
2890 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2891 				break;
2892 			default:
2893 				return -1;
2894 			}
2895 		}
2896 
2897 		break;
2898 
2899 	case RayDAT:
2900 		if (hdspm->tco) {
2901 			switch (pref) {
2902 			case 0: p = 0; break;  /* WC */
2903 			case 1: p = 3; break;  /* ADAT 1 */
2904 			case 2: p = 4; break;  /* ADAT 2 */
2905 			case 3: p = 5; break;  /* ADAT 3 */
2906 			case 4: p = 6; break;  /* ADAT 4 */
2907 			case 5: p = 1; break;  /* AES */
2908 			case 6: p = 2; break;  /* SPDIF */
2909 			case 7: p = 9; break;  /* TCO */
2910 			case 8: p = 10; break; /* SYNC_IN */
2911 			default: return -1;
2912 			}
2913 		} else {
2914 			switch (pref) {
2915 			case 0: p = 0; break;  /* WC */
2916 			case 1: p = 3; break;  /* ADAT 1 */
2917 			case 2: p = 4; break;  /* ADAT 2 */
2918 			case 3: p = 5; break;  /* ADAT 3 */
2919 			case 4: p = 6; break;  /* ADAT 4 */
2920 			case 5: p = 1; break;  /* AES */
2921 			case 6: p = 2; break;  /* SPDIF */
2922 			case 7: p = 10; break; /* SYNC_IN */
2923 			default: return -1;
2924 			}
2925 		}
2926 		break;
2927 
2928 	case AIO:
2929 		if (hdspm->tco) {
2930 			switch (pref) {
2931 			case 0: p = 0; break;  /* WC */
2932 			case 1: p = 3; break;  /* ADAT */
2933 			case 2: p = 1; break;  /* AES */
2934 			case 3: p = 2; break;  /* SPDIF */
2935 			case 4: p = 9; break;  /* TCO */
2936 			case 5: p = 10; break; /* SYNC_IN */
2937 			default: return -1;
2938 			}
2939 		} else {
2940 			switch (pref) {
2941 			case 0: p = 0; break;  /* WC */
2942 			case 1: p = 3; break;  /* ADAT */
2943 			case 2: p = 1; break;  /* AES */
2944 			case 3: p = 2; break;  /* SPDIF */
2945 			case 4: p = 10; break; /* SYNC_IN */
2946 			default: return -1;
2947 			}
2948 		}
2949 		break;
2950 	}
2951 
2952 	switch (hdspm->io_type) {
2953 	case RayDAT:
2954 	case AIO:
2955 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2956 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2957 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2958 		break;
2959 
2960 	case MADI:
2961 	case MADIface:
2962 	case AES32:
2963 		hdspm_write(hdspm, HDSPM_controlRegister,
2964 				hdspm->control_register);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 
2971 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2972 					struct snd_ctl_elem_info *uinfo)
2973 {
2974 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2975 
2976 	snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync);
2977 
2978 	return 0;
2979 }
2980 
2981 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2982 				       struct snd_ctl_elem_value *ucontrol)
2983 {
2984 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2985 	int psf = hdspm_pref_sync_ref(hdspm);
2986 
2987 	if (psf >= 0) {
2988 		ucontrol->value.enumerated.item[0] = psf;
2989 		return 0;
2990 	}
2991 
2992 	return -1;
2993 }
2994 
2995 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2996 				       struct snd_ctl_elem_value *ucontrol)
2997 {
2998 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2999 	int val, change = 0;
3000 
3001 	if (!snd_hdspm_use_is_exclusive(hdspm))
3002 		return -EBUSY;
3003 
3004 	val = ucontrol->value.enumerated.item[0];
3005 
3006 	if (val < 0)
3007 		val = 0;
3008 	else if (val >= hdspm->texts_autosync_items)
3009 		val = hdspm->texts_autosync_items-1;
3010 
3011 	spin_lock_irq(&hdspm->lock);
3012 	if (val != hdspm_pref_sync_ref(hdspm))
3013 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
3014 
3015 	spin_unlock_irq(&hdspm->lock);
3016 	return change;
3017 }
3018 
3019 
3020 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
3021 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3022 	.name = xname, \
3023 	.index = xindex, \
3024 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
3025 	.info = snd_hdspm_info_autosync_ref, \
3026 	.get = snd_hdspm_get_autosync_ref, \
3027 }
3028 
3029 static int hdspm_autosync_ref(struct hdspm *hdspm)
3030 {
3031 	/* This looks at the autosync selected sync reference */
3032 	if (AES32 == hdspm->io_type) {
3033 
3034 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
3035 		unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
3036 		if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) &&
3037 				(syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) {
3038 			return syncref;
3039 		}
3040 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
3041 
3042 	} else if (MADI == hdspm->io_type) {
3043 
3044 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3045 		switch (status2 & HDSPM_SelSyncRefMask) {
3046 		case HDSPM_SelSyncRef_WORD:
3047 			return HDSPM_AUTOSYNC_FROM_WORD;
3048 		case HDSPM_SelSyncRef_MADI:
3049 			return HDSPM_AUTOSYNC_FROM_MADI;
3050 		case HDSPM_SelSyncRef_TCO:
3051 			return HDSPM_AUTOSYNC_FROM_TCO;
3052 		case HDSPM_SelSyncRef_SyncIn:
3053 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3054 		case HDSPM_SelSyncRef_NVALID:
3055 			return HDSPM_AUTOSYNC_FROM_NONE;
3056 		default:
3057 			return HDSPM_AUTOSYNC_FROM_NONE;
3058 		}
3059 
3060 	}
3061 	return 0;
3062 }
3063 
3064 
3065 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
3066 				       struct snd_ctl_elem_info *uinfo)
3067 {
3068 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3069 
3070 	if (AES32 == hdspm->io_type) {
3071 		static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3",
3072 			"AES4",	"AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"};
3073 
3074 		ENUMERATED_CTL_INFO(uinfo, texts);
3075 	} else if (MADI == hdspm->io_type) {
3076 		static const char *const texts[] = {"Word Clock", "MADI", "TCO",
3077 			"Sync In", "None" };
3078 
3079 		ENUMERATED_CTL_INFO(uinfo, texts);
3080 	}
3081 	return 0;
3082 }
3083 
3084 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
3085 				      struct snd_ctl_elem_value *ucontrol)
3086 {
3087 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3088 
3089 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
3090 	return 0;
3091 }
3092 
3093 
3094 
3095 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \
3096 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3097 	.name = xname, \
3098 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3099 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3100 	.info = snd_hdspm_info_tco_video_input_format, \
3101 	.get = snd_hdspm_get_tco_video_input_format, \
3102 }
3103 
3104 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol,
3105 				       struct snd_ctl_elem_info *uinfo)
3106 {
3107 	static const char *const texts[] = {"No video", "NTSC", "PAL"};
3108 	ENUMERATED_CTL_INFO(uinfo, texts);
3109 	return 0;
3110 }
3111 
3112 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol,
3113 				      struct snd_ctl_elem_value *ucontrol)
3114 {
3115 	u32 status;
3116 	int ret = 0;
3117 
3118 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3119 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3120 	switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC |
3121 			HDSPM_TCO1_Video_Input_Format_PAL)) {
3122 	case HDSPM_TCO1_Video_Input_Format_NTSC:
3123 		/* ntsc */
3124 		ret = 1;
3125 		break;
3126 	case HDSPM_TCO1_Video_Input_Format_PAL:
3127 		/* pal */
3128 		ret = 2;
3129 		break;
3130 	default:
3131 		/* no video */
3132 		ret = 0;
3133 		break;
3134 	}
3135 	ucontrol->value.enumerated.item[0] = ret;
3136 	return 0;
3137 }
3138 
3139 
3140 
3141 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \
3142 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3143 	.name = xname, \
3144 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3145 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3146 	.info = snd_hdspm_info_tco_ltc_frames, \
3147 	.get = snd_hdspm_get_tco_ltc_frames, \
3148 }
3149 
3150 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3151 				       struct snd_ctl_elem_info *uinfo)
3152 {
3153 	static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps",
3154 				"30 fps"};
3155 	ENUMERATED_CTL_INFO(uinfo, texts);
3156 	return 0;
3157 }
3158 
3159 static int hdspm_tco_ltc_frames(struct hdspm *hdspm)
3160 {
3161 	u32 status;
3162 	int ret = 0;
3163 
3164 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3165 	if (status & HDSPM_TCO1_LTC_Input_valid) {
3166 		switch (status & (HDSPM_TCO1_LTC_Format_LSB |
3167 					HDSPM_TCO1_LTC_Format_MSB)) {
3168 		case 0:
3169 			/* 24 fps */
3170 			ret = fps_24;
3171 			break;
3172 		case HDSPM_TCO1_LTC_Format_LSB:
3173 			/* 25 fps */
3174 			ret = fps_25;
3175 			break;
3176 		case HDSPM_TCO1_LTC_Format_MSB:
3177 			/* 29.97 fps */
3178 			ret = fps_2997;
3179 			break;
3180 		default:
3181 			/* 30 fps */
3182 			ret = fps_30;
3183 			break;
3184 		}
3185 	}
3186 
3187 	return ret;
3188 }
3189 
3190 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3191 				      struct snd_ctl_elem_value *ucontrol)
3192 {
3193 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3194 
3195 	ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm);
3196 	return 0;
3197 }
3198 
3199 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
3200 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3201 	.name = xname, \
3202 	.private_value = xindex, \
3203 	.info = snd_hdspm_info_toggle_setting, \
3204 	.get = snd_hdspm_get_toggle_setting, \
3205 	.put = snd_hdspm_put_toggle_setting \
3206 }
3207 
3208 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
3209 {
3210 	u32 reg;
3211 
3212 	if (hdspm_is_raydat_or_aio(hdspm))
3213 		reg = hdspm->settings_register;
3214 	else
3215 		reg = hdspm->control_register;
3216 
3217 	return (reg & regmask) ? 1 : 0;
3218 }
3219 
3220 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
3221 {
3222 	u32 *reg;
3223 	u32 target_reg;
3224 
3225 	if (hdspm_is_raydat_or_aio(hdspm)) {
3226 		reg = &(hdspm->settings_register);
3227 		target_reg = HDSPM_WR_SETTINGS;
3228 	} else {
3229 		reg = &(hdspm->control_register);
3230 		target_reg = HDSPM_controlRegister;
3231 	}
3232 
3233 	if (out)
3234 		*reg |= regmask;
3235 	else
3236 		*reg &= ~regmask;
3237 
3238 	hdspm_write(hdspm, target_reg, *reg);
3239 
3240 	return 0;
3241 }
3242 
3243 #define snd_hdspm_info_toggle_setting		snd_ctl_boolean_mono_info
3244 
3245 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
3246 			       struct snd_ctl_elem_value *ucontrol)
3247 {
3248 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3249 	u32 regmask = kcontrol->private_value;
3250 
3251 	spin_lock_irq(&hdspm->lock);
3252 	ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
3253 	spin_unlock_irq(&hdspm->lock);
3254 	return 0;
3255 }
3256 
3257 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
3258 			       struct snd_ctl_elem_value *ucontrol)
3259 {
3260 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3261 	u32 regmask = kcontrol->private_value;
3262 	int change;
3263 	unsigned int val;
3264 
3265 	if (!snd_hdspm_use_is_exclusive(hdspm))
3266 		return -EBUSY;
3267 	val = ucontrol->value.integer.value[0] & 1;
3268 	spin_lock_irq(&hdspm->lock);
3269 	change = (int) val != hdspm_toggle_setting(hdspm, regmask);
3270 	hdspm_set_toggle_setting(hdspm, regmask, val);
3271 	spin_unlock_irq(&hdspm->lock);
3272 	return change;
3273 }
3274 
3275 #define HDSPM_INPUT_SELECT(xname, xindex) \
3276 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3277 	.name = xname, \
3278 	.index = xindex, \
3279 	.info = snd_hdspm_info_input_select, \
3280 	.get = snd_hdspm_get_input_select, \
3281 	.put = snd_hdspm_put_input_select \
3282 }
3283 
3284 static int hdspm_input_select(struct hdspm * hdspm)
3285 {
3286 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3287 }
3288 
3289 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3290 {
3291 	if (out)
3292 		hdspm->control_register |= HDSPM_InputSelect0;
3293 	else
3294 		hdspm->control_register &= ~HDSPM_InputSelect0;
3295 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3296 
3297 	return 0;
3298 }
3299 
3300 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3301 				       struct snd_ctl_elem_info *uinfo)
3302 {
3303 	static const char *const texts[] = { "optical", "coaxial" };
3304 	ENUMERATED_CTL_INFO(uinfo, texts);
3305 	return 0;
3306 }
3307 
3308 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3309 				      struct snd_ctl_elem_value *ucontrol)
3310 {
3311 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3312 
3313 	spin_lock_irq(&hdspm->lock);
3314 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3315 	spin_unlock_irq(&hdspm->lock);
3316 	return 0;
3317 }
3318 
3319 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3320 				      struct snd_ctl_elem_value *ucontrol)
3321 {
3322 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3323 	int change;
3324 	unsigned int val;
3325 
3326 	if (!snd_hdspm_use_is_exclusive(hdspm))
3327 		return -EBUSY;
3328 	val = ucontrol->value.integer.value[0] & 1;
3329 	spin_lock_irq(&hdspm->lock);
3330 	change = (int) val != hdspm_input_select(hdspm);
3331 	hdspm_set_input_select(hdspm, val);
3332 	spin_unlock_irq(&hdspm->lock);
3333 	return change;
3334 }
3335 
3336 
3337 #define HDSPM_DS_WIRE(xname, xindex) \
3338 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3339 	.name = xname, \
3340 	.index = xindex, \
3341 	.info = snd_hdspm_info_ds_wire, \
3342 	.get = snd_hdspm_get_ds_wire, \
3343 	.put = snd_hdspm_put_ds_wire \
3344 }
3345 
3346 static int hdspm_ds_wire(struct hdspm * hdspm)
3347 {
3348 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3349 }
3350 
3351 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3352 {
3353 	if (ds)
3354 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3355 	else
3356 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3357 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3358 
3359 	return 0;
3360 }
3361 
3362 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3363 				  struct snd_ctl_elem_info *uinfo)
3364 {
3365 	static const char *const texts[] = { "Single", "Double" };
3366 	ENUMERATED_CTL_INFO(uinfo, texts);
3367 	return 0;
3368 }
3369 
3370 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3371 				 struct snd_ctl_elem_value *ucontrol)
3372 {
3373 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3374 
3375 	spin_lock_irq(&hdspm->lock);
3376 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3377 	spin_unlock_irq(&hdspm->lock);
3378 	return 0;
3379 }
3380 
3381 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3382 				 struct snd_ctl_elem_value *ucontrol)
3383 {
3384 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3385 	int change;
3386 	unsigned int val;
3387 
3388 	if (!snd_hdspm_use_is_exclusive(hdspm))
3389 		return -EBUSY;
3390 	val = ucontrol->value.integer.value[0] & 1;
3391 	spin_lock_irq(&hdspm->lock);
3392 	change = (int) val != hdspm_ds_wire(hdspm);
3393 	hdspm_set_ds_wire(hdspm, val);
3394 	spin_unlock_irq(&hdspm->lock);
3395 	return change;
3396 }
3397 
3398 
3399 #define HDSPM_QS_WIRE(xname, xindex) \
3400 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3401 	.name = xname, \
3402 	.index = xindex, \
3403 	.info = snd_hdspm_info_qs_wire, \
3404 	.get = snd_hdspm_get_qs_wire, \
3405 	.put = snd_hdspm_put_qs_wire \
3406 }
3407 
3408 static int hdspm_qs_wire(struct hdspm * hdspm)
3409 {
3410 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3411 		return 1;
3412 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3413 		return 2;
3414 	return 0;
3415 }
3416 
3417 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3418 {
3419 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3420 	switch (mode) {
3421 	case 0:
3422 		break;
3423 	case 1:
3424 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3425 		break;
3426 	case 2:
3427 		hdspm->control_register |= HDSPM_QS_QuadWire;
3428 		break;
3429 	}
3430 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3431 
3432 	return 0;
3433 }
3434 
3435 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3436 				       struct snd_ctl_elem_info *uinfo)
3437 {
3438 	static const char *const texts[] = { "Single", "Double", "Quad" };
3439 	ENUMERATED_CTL_INFO(uinfo, texts);
3440 	return 0;
3441 }
3442 
3443 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3444 				      struct snd_ctl_elem_value *ucontrol)
3445 {
3446 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3447 
3448 	spin_lock_irq(&hdspm->lock);
3449 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3450 	spin_unlock_irq(&hdspm->lock);
3451 	return 0;
3452 }
3453 
3454 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3455 				      struct snd_ctl_elem_value *ucontrol)
3456 {
3457 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3458 	int change;
3459 	int val;
3460 
3461 	if (!snd_hdspm_use_is_exclusive(hdspm))
3462 		return -EBUSY;
3463 	val = ucontrol->value.integer.value[0];
3464 	if (val < 0)
3465 		val = 0;
3466 	if (val > 2)
3467 		val = 2;
3468 	spin_lock_irq(&hdspm->lock);
3469 	change = val != hdspm_qs_wire(hdspm);
3470 	hdspm_set_qs_wire(hdspm, val);
3471 	spin_unlock_irq(&hdspm->lock);
3472 	return change;
3473 }
3474 
3475 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \
3476 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3477 	.name = xname, \
3478 	.private_value = xindex, \
3479 	.info = snd_hdspm_info_tristate, \
3480 	.get = snd_hdspm_get_tristate, \
3481 	.put = snd_hdspm_put_tristate \
3482 }
3483 
3484 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask)
3485 {
3486 	u32 reg = hdspm->settings_register & (regmask * 3);
3487 	return reg / regmask;
3488 }
3489 
3490 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask)
3491 {
3492 	hdspm->settings_register &= ~(regmask * 3);
3493 	hdspm->settings_register |= (regmask * mode);
3494 	hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
3495 
3496 	return 0;
3497 }
3498 
3499 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol,
3500 				       struct snd_ctl_elem_info *uinfo)
3501 {
3502 	u32 regmask = kcontrol->private_value;
3503 
3504 	static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" };
3505 	static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" };
3506 
3507 	switch (regmask) {
3508 	case HDSPM_c0_Input0:
3509 		ENUMERATED_CTL_INFO(uinfo, texts_spdif);
3510 		break;
3511 	default:
3512 		ENUMERATED_CTL_INFO(uinfo, texts_levels);
3513 		break;
3514 	}
3515 	return 0;
3516 }
3517 
3518 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol,
3519 				      struct snd_ctl_elem_value *ucontrol)
3520 {
3521 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3522 	u32 regmask = kcontrol->private_value;
3523 
3524 	spin_lock_irq(&hdspm->lock);
3525 	ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask);
3526 	spin_unlock_irq(&hdspm->lock);
3527 	return 0;
3528 }
3529 
3530 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol,
3531 				      struct snd_ctl_elem_value *ucontrol)
3532 {
3533 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3534 	u32 regmask = kcontrol->private_value;
3535 	int change;
3536 	int val;
3537 
3538 	if (!snd_hdspm_use_is_exclusive(hdspm))
3539 		return -EBUSY;
3540 	val = ucontrol->value.integer.value[0];
3541 	if (val < 0)
3542 		val = 0;
3543 	if (val > 2)
3544 		val = 2;
3545 
3546 	spin_lock_irq(&hdspm->lock);
3547 	change = val != hdspm_tristate(hdspm, regmask);
3548 	hdspm_set_tristate(hdspm, val, regmask);
3549 	spin_unlock_irq(&hdspm->lock);
3550 	return change;
3551 }
3552 
3553 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3554 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3555 	.name = xname, \
3556 	.index = xindex, \
3557 	.info = snd_hdspm_info_madi_speedmode, \
3558 	.get = snd_hdspm_get_madi_speedmode, \
3559 	.put = snd_hdspm_put_madi_speedmode \
3560 }
3561 
3562 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3563 {
3564 	if (hdspm->control_register & HDSPM_QuadSpeed)
3565 		return 2;
3566 	if (hdspm->control_register & HDSPM_DoubleSpeed)
3567 		return 1;
3568 	return 0;
3569 }
3570 
3571 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3572 {
3573 	hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3574 	switch (mode) {
3575 	case 0:
3576 		break;
3577 	case 1:
3578 		hdspm->control_register |= HDSPM_DoubleSpeed;
3579 		break;
3580 	case 2:
3581 		hdspm->control_register |= HDSPM_QuadSpeed;
3582 		break;
3583 	}
3584 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3585 
3586 	return 0;
3587 }
3588 
3589 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3590 				       struct snd_ctl_elem_info *uinfo)
3591 {
3592 	static const char *const texts[] = { "Single", "Double", "Quad" };
3593 	ENUMERATED_CTL_INFO(uinfo, texts);
3594 	return 0;
3595 }
3596 
3597 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3598 				      struct snd_ctl_elem_value *ucontrol)
3599 {
3600 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3601 
3602 	spin_lock_irq(&hdspm->lock);
3603 	ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3604 	spin_unlock_irq(&hdspm->lock);
3605 	return 0;
3606 }
3607 
3608 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3609 				      struct snd_ctl_elem_value *ucontrol)
3610 {
3611 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3612 	int change;
3613 	int val;
3614 
3615 	if (!snd_hdspm_use_is_exclusive(hdspm))
3616 		return -EBUSY;
3617 	val = ucontrol->value.integer.value[0];
3618 	if (val < 0)
3619 		val = 0;
3620 	if (val > 2)
3621 		val = 2;
3622 	spin_lock_irq(&hdspm->lock);
3623 	change = val != hdspm_madi_speedmode(hdspm);
3624 	hdspm_set_madi_speedmode(hdspm, val);
3625 	spin_unlock_irq(&hdspm->lock);
3626 	return change;
3627 }
3628 
3629 #define HDSPM_MIXER(xname, xindex) \
3630 {	.iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3631 	.name = xname, \
3632 	.index = xindex, \
3633 	.device = 0, \
3634 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3635 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3636 	.info = snd_hdspm_info_mixer, \
3637 	.get = snd_hdspm_get_mixer, \
3638 	.put = snd_hdspm_put_mixer \
3639 }
3640 
3641 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3642 				struct snd_ctl_elem_info *uinfo)
3643 {
3644 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3645 	uinfo->count = 3;
3646 	uinfo->value.integer.min = 0;
3647 	uinfo->value.integer.max = 65535;
3648 	uinfo->value.integer.step = 1;
3649 	return 0;
3650 }
3651 
3652 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3653 			       struct snd_ctl_elem_value *ucontrol)
3654 {
3655 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3656 	int source;
3657 	int destination;
3658 
3659 	source = ucontrol->value.integer.value[0];
3660 	if (source < 0)
3661 		source = 0;
3662 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3663 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3664 
3665 	destination = ucontrol->value.integer.value[1];
3666 	if (destination < 0)
3667 		destination = 0;
3668 	else if (destination >= HDSPM_MAX_CHANNELS)
3669 		destination = HDSPM_MAX_CHANNELS - 1;
3670 
3671 	spin_lock_irq(&hdspm->lock);
3672 	if (source >= HDSPM_MAX_CHANNELS)
3673 		ucontrol->value.integer.value[2] =
3674 		    hdspm_read_pb_gain(hdspm, destination,
3675 				       source - HDSPM_MAX_CHANNELS);
3676 	else
3677 		ucontrol->value.integer.value[2] =
3678 		    hdspm_read_in_gain(hdspm, destination, source);
3679 
3680 	spin_unlock_irq(&hdspm->lock);
3681 
3682 	return 0;
3683 }
3684 
3685 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3686 			       struct snd_ctl_elem_value *ucontrol)
3687 {
3688 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3689 	int change;
3690 	int source;
3691 	int destination;
3692 	int gain;
3693 
3694 	if (!snd_hdspm_use_is_exclusive(hdspm))
3695 		return -EBUSY;
3696 
3697 	source = ucontrol->value.integer.value[0];
3698 	destination = ucontrol->value.integer.value[1];
3699 
3700 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3701 		return -1;
3702 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3703 		return -1;
3704 
3705 	gain = ucontrol->value.integer.value[2];
3706 
3707 	spin_lock_irq(&hdspm->lock);
3708 
3709 	if (source >= HDSPM_MAX_CHANNELS)
3710 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3711 						    source -
3712 						    HDSPM_MAX_CHANNELS);
3713 	else
3714 		change = gain != hdspm_read_in_gain(hdspm, destination,
3715 						    source);
3716 
3717 	if (change) {
3718 		if (source >= HDSPM_MAX_CHANNELS)
3719 			hdspm_write_pb_gain(hdspm, destination,
3720 					    source - HDSPM_MAX_CHANNELS,
3721 					    gain);
3722 		else
3723 			hdspm_write_in_gain(hdspm, destination, source,
3724 					    gain);
3725 	}
3726 	spin_unlock_irq(&hdspm->lock);
3727 
3728 	return change;
3729 }
3730 
3731 /* The simple mixer control(s) provide gain control for the
3732    basic 1:1 mappings of playback streams to output
3733    streams.
3734 */
3735 
3736 #define HDSPM_PLAYBACK_MIXER \
3737 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3738 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3739 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3740 	.info = snd_hdspm_info_playback_mixer, \
3741 	.get = snd_hdspm_get_playback_mixer, \
3742 	.put = snd_hdspm_put_playback_mixer \
3743 }
3744 
3745 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3746 					 struct snd_ctl_elem_info *uinfo)
3747 {
3748 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3749 	uinfo->count = 1;
3750 	uinfo->value.integer.min = 0;
3751 	uinfo->value.integer.max = 64;
3752 	uinfo->value.integer.step = 1;
3753 	return 0;
3754 }
3755 
3756 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3757 					struct snd_ctl_elem_value *ucontrol)
3758 {
3759 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3760 	int channel;
3761 
3762 	channel = ucontrol->id.index - 1;
3763 
3764 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3765 		return -EINVAL;
3766 
3767 	spin_lock_irq(&hdspm->lock);
3768 	ucontrol->value.integer.value[0] =
3769 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3770 	spin_unlock_irq(&hdspm->lock);
3771 
3772 	return 0;
3773 }
3774 
3775 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3776 					struct snd_ctl_elem_value *ucontrol)
3777 {
3778 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3779 	int change;
3780 	int channel;
3781 	int gain;
3782 
3783 	if (!snd_hdspm_use_is_exclusive(hdspm))
3784 		return -EBUSY;
3785 
3786 	channel = ucontrol->id.index - 1;
3787 
3788 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3789 		return -EINVAL;
3790 
3791 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3792 
3793 	spin_lock_irq(&hdspm->lock);
3794 	change =
3795 	    gain != hdspm_read_pb_gain(hdspm, channel,
3796 				       channel);
3797 	if (change)
3798 		hdspm_write_pb_gain(hdspm, channel, channel,
3799 				    gain);
3800 	spin_unlock_irq(&hdspm->lock);
3801 	return change;
3802 }
3803 
3804 #define HDSPM_SYNC_CHECK(xname, xindex) \
3805 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3806 	.name = xname, \
3807 	.private_value = xindex, \
3808 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3809 	.info = snd_hdspm_info_sync_check, \
3810 	.get = snd_hdspm_get_sync_check \
3811 }
3812 
3813 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3814 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3815 	.name = xname, \
3816 	.private_value = xindex, \
3817 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3818 	.info = snd_hdspm_tco_info_lock_check, \
3819 	.get = snd_hdspm_get_sync_check \
3820 }
3821 
3822 
3823 
3824 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3825 				     struct snd_ctl_elem_info *uinfo)
3826 {
3827 	static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3828 	ENUMERATED_CTL_INFO(uinfo, texts);
3829 	return 0;
3830 }
3831 
3832 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3833 				     struct snd_ctl_elem_info *uinfo)
3834 {
3835 	static const char *const texts[] = { "No Lock", "Lock" };
3836 	ENUMERATED_CTL_INFO(uinfo, texts);
3837 	return 0;
3838 }
3839 
3840 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3841 {
3842 	int status, status2;
3843 
3844 	switch (hdspm->io_type) {
3845 	case AES32:
3846 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3847 		if (status & HDSPM_AES32_wcLock) {
3848 			if (status & HDSPM_AES32_wcSync)
3849 				return 2;
3850 			else
3851 				return 1;
3852 		}
3853 		return 0;
3854 		break;
3855 
3856 	case MADI:
3857 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3858 		if (status2 & HDSPM_wcLock) {
3859 			if (status2 & HDSPM_wcSync)
3860 				return 2;
3861 			else
3862 				return 1;
3863 		}
3864 		return 0;
3865 		break;
3866 
3867 	case RayDAT:
3868 	case AIO:
3869 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3870 
3871 		if (status & 0x2000000)
3872 			return 2;
3873 		else if (status & 0x1000000)
3874 			return 1;
3875 		return 0;
3876 
3877 		break;
3878 
3879 	case MADIface:
3880 		break;
3881 	}
3882 
3883 
3884 	return 3;
3885 }
3886 
3887 
3888 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3889 {
3890 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3891 	if (status & HDSPM_madiLock) {
3892 		if (status & HDSPM_madiSync)
3893 			return 2;
3894 		else
3895 			return 1;
3896 	}
3897 	return 0;
3898 }
3899 
3900 
3901 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3902 {
3903 	int status, lock, sync;
3904 
3905 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3906 
3907 	lock = (status & (0x1<<idx)) ? 1 : 0;
3908 	sync = (status & (0x100<<idx)) ? 1 : 0;
3909 
3910 	if (lock && sync)
3911 		return 2;
3912 	else if (lock)
3913 		return 1;
3914 	return 0;
3915 }
3916 
3917 
3918 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3919 {
3920 	int status, lock = 0, sync = 0;
3921 
3922 	switch (hdspm->io_type) {
3923 	case RayDAT:
3924 	case AIO:
3925 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3926 		lock = (status & 0x400) ? 1 : 0;
3927 		sync = (status & 0x800) ? 1 : 0;
3928 		break;
3929 
3930 	case MADI:
3931 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3932 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3933 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3934 		break;
3935 
3936 	case AES32:
3937 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3938 		lock = (status & 0x100000) ? 1 : 0;
3939 		sync = (status & 0x200000) ? 1 : 0;
3940 		break;
3941 
3942 	case MADIface:
3943 		break;
3944 	}
3945 
3946 	if (lock && sync)
3947 		return 2;
3948 	else if (lock)
3949 		return 1;
3950 
3951 	return 0;
3952 }
3953 
3954 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3955 {
3956 	int status2, lock, sync;
3957 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3958 
3959 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3960 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3961 
3962 	if (sync)
3963 		return 2;
3964 	else if (lock)
3965 		return 1;
3966 	return 0;
3967 }
3968 
3969 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3970 {
3971 	u32 status;
3972 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3973 
3974 	return (status & mask) ? 1 : 0;
3975 }
3976 
3977 
3978 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3979 {
3980 	int status;
3981 
3982 	if (hdspm->tco) {
3983 		switch (hdspm->io_type) {
3984 		case MADI:
3985 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3986 			if (status & HDSPM_tcoLockMadi) {
3987 				if (status & HDSPM_tcoSync)
3988 					return 2;
3989 				else
3990 					return 1;
3991 			}
3992 			return 0;
3993 		case AES32:
3994 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3995 			if (status & HDSPM_tcoLockAes) {
3996 				if (status & HDSPM_tcoSync)
3997 					return 2;
3998 				else
3999 					return 1;
4000 			}
4001 			return 0;
4002 		case RayDAT:
4003 		case AIO:
4004 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
4005 
4006 			if (status & 0x8000000)
4007 				return 2; /* Sync */
4008 			if (status & 0x4000000)
4009 				return 1; /* Lock */
4010 			return 0; /* No signal */
4011 
4012 		default:
4013 			break;
4014 		}
4015 	}
4016 
4017 	return 3; /* N/A */
4018 }
4019 
4020 
4021 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
4022 				    struct snd_ctl_elem_value *ucontrol)
4023 {
4024 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4025 	int val = -1;
4026 
4027 	switch (hdspm->io_type) {
4028 	case RayDAT:
4029 		switch (kcontrol->private_value) {
4030 		case 0: /* WC */
4031 			val = hdspm_wc_sync_check(hdspm); break;
4032 		case 7: /* TCO */
4033 			val = hdspm_tco_sync_check(hdspm); break;
4034 		case 8: /* SYNC IN */
4035 			val = hdspm_sync_in_sync_check(hdspm); break;
4036 		default:
4037 			val = hdspm_s1_sync_check(hdspm,
4038 					kcontrol->private_value-1);
4039 		}
4040 		break;
4041 
4042 	case AIO:
4043 		switch (kcontrol->private_value) {
4044 		case 0: /* WC */
4045 			val = hdspm_wc_sync_check(hdspm); break;
4046 		case 4: /* TCO */
4047 			val = hdspm_tco_sync_check(hdspm); break;
4048 		case 5: /* SYNC IN */
4049 			val = hdspm_sync_in_sync_check(hdspm); break;
4050 		default:
4051 			val = hdspm_s1_sync_check(hdspm,
4052 					kcontrol->private_value-1);
4053 		}
4054 		break;
4055 
4056 	case MADI:
4057 		switch (kcontrol->private_value) {
4058 		case 0: /* WC */
4059 			val = hdspm_wc_sync_check(hdspm); break;
4060 		case 1: /* MADI */
4061 			val = hdspm_madi_sync_check(hdspm); break;
4062 		case 2: /* TCO */
4063 			val = hdspm_tco_sync_check(hdspm); break;
4064 		case 3: /* SYNC_IN */
4065 			val = hdspm_sync_in_sync_check(hdspm); break;
4066 		}
4067 		break;
4068 
4069 	case MADIface:
4070 		val = hdspm_madi_sync_check(hdspm); /* MADI */
4071 		break;
4072 
4073 	case AES32:
4074 		switch (kcontrol->private_value) {
4075 		case 0: /* WC */
4076 			val = hdspm_wc_sync_check(hdspm); break;
4077 		case 9: /* TCO */
4078 			val = hdspm_tco_sync_check(hdspm); break;
4079 		case 10 /* SYNC IN */:
4080 			val = hdspm_sync_in_sync_check(hdspm); break;
4081 		default: /* AES1 to AES8 */
4082 			 val = hdspm_aes_sync_check(hdspm,
4083 					 kcontrol->private_value-1);
4084 		}
4085 		break;
4086 
4087 	}
4088 
4089 	if (hdspm->tco) {
4090 		switch (kcontrol->private_value) {
4091 		case 11:
4092 			/* Check TCO for lock state of its current input */
4093 			val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
4094 			break;
4095 		case 12:
4096 			/* Check TCO for valid time code on LTC input. */
4097 			val = hdspm_tco_input_check(hdspm,
4098 				HDSPM_TCO1_LTC_Input_valid);
4099 			break;
4100 		default:
4101 			break;
4102 		}
4103 	}
4104 
4105 	if (-1 == val)
4106 		val = 3;
4107 
4108 	ucontrol->value.enumerated.item[0] = val;
4109 	return 0;
4110 }
4111 
4112 
4113 
4114 /*
4115  * TCO controls
4116  */
4117 static void hdspm_tco_write(struct hdspm *hdspm)
4118 {
4119 	unsigned int tc[4] = { 0, 0, 0, 0};
4120 
4121 	switch (hdspm->tco->input) {
4122 	case 0:
4123 		tc[2] |= HDSPM_TCO2_set_input_MSB;
4124 		break;
4125 	case 1:
4126 		tc[2] |= HDSPM_TCO2_set_input_LSB;
4127 		break;
4128 	default:
4129 		break;
4130 	}
4131 
4132 	switch (hdspm->tco->framerate) {
4133 	case 1:
4134 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4135 		break;
4136 	case 2:
4137 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4138 		break;
4139 	case 3:
4140 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4141 			HDSPM_TCO1_set_drop_frame_flag;
4142 		break;
4143 	case 4:
4144 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4145 			HDSPM_TCO1_LTC_Format_MSB;
4146 		break;
4147 	case 5:
4148 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4149 			HDSPM_TCO1_LTC_Format_MSB +
4150 			HDSPM_TCO1_set_drop_frame_flag;
4151 		break;
4152 	default:
4153 		break;
4154 	}
4155 
4156 	switch (hdspm->tco->wordclock) {
4157 	case 1:
4158 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4159 		break;
4160 	case 2:
4161 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4162 		break;
4163 	default:
4164 		break;
4165 	}
4166 
4167 	switch (hdspm->tco->samplerate) {
4168 	case 1:
4169 		tc[2] |= HDSPM_TCO2_set_freq;
4170 		break;
4171 	case 2:
4172 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
4173 		break;
4174 	default:
4175 		break;
4176 	}
4177 
4178 	switch (hdspm->tco->pull) {
4179 	case 1:
4180 		tc[2] |= HDSPM_TCO2_set_pull_up;
4181 		break;
4182 	case 2:
4183 		tc[2] |= HDSPM_TCO2_set_pull_down;
4184 		break;
4185 	case 3:
4186 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4187 		break;
4188 	case 4:
4189 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4190 		break;
4191 	default:
4192 		break;
4193 	}
4194 
4195 	if (1 == hdspm->tco->term) {
4196 		tc[2] |= HDSPM_TCO2_set_term_75R;
4197 	}
4198 
4199 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4200 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4201 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4202 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4203 }
4204 
4205 
4206 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4207 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4208 	.name = xname, \
4209 	.index = xindex, \
4210 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4211 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4212 	.info = snd_hdspm_info_tco_sample_rate, \
4213 	.get = snd_hdspm_get_tco_sample_rate, \
4214 	.put = snd_hdspm_put_tco_sample_rate \
4215 }
4216 
4217 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4218 					  struct snd_ctl_elem_info *uinfo)
4219 {
4220 	/* TODO freq from app could be supported here, see tco->samplerate */
4221 	static const char *const texts[] = { "44.1 kHz", "48 kHz" };
4222 	ENUMERATED_CTL_INFO(uinfo, texts);
4223 	return 0;
4224 }
4225 
4226 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4227 				      struct snd_ctl_elem_value *ucontrol)
4228 {
4229 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4230 
4231 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4232 
4233 	return 0;
4234 }
4235 
4236 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4237 					 struct snd_ctl_elem_value *ucontrol)
4238 {
4239 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4240 
4241 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4242 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4243 
4244 		hdspm_tco_write(hdspm);
4245 
4246 		return 1;
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 
4253 #define HDSPM_TCO_PULL(xname, xindex) \
4254 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4255 	.name = xname, \
4256 	.index = xindex, \
4257 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4258 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4259 	.info = snd_hdspm_info_tco_pull, \
4260 	.get = snd_hdspm_get_tco_pull, \
4261 	.put = snd_hdspm_put_tco_pull \
4262 }
4263 
4264 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4265 				   struct snd_ctl_elem_info *uinfo)
4266 {
4267 	static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %",
4268 		"+ 4 %", "- 4 %" };
4269 	ENUMERATED_CTL_INFO(uinfo, texts);
4270 	return 0;
4271 }
4272 
4273 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4274 				  struct snd_ctl_elem_value *ucontrol)
4275 {
4276 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4277 
4278 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4279 
4280 	return 0;
4281 }
4282 
4283 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4284 				  struct snd_ctl_elem_value *ucontrol)
4285 {
4286 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4287 
4288 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4289 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4290 
4291 		hdspm_tco_write(hdspm);
4292 
4293 		return 1;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4300 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4301 	.name = xname, \
4302 	.index = xindex, \
4303 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4304 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4305 	.info = snd_hdspm_info_tco_wck_conversion, \
4306 	.get = snd_hdspm_get_tco_wck_conversion, \
4307 	.put = snd_hdspm_put_tco_wck_conversion \
4308 }
4309 
4310 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4311 					     struct snd_ctl_elem_info *uinfo)
4312 {
4313 	static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4314 	ENUMERATED_CTL_INFO(uinfo, texts);
4315 	return 0;
4316 }
4317 
4318 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4319 					    struct snd_ctl_elem_value *ucontrol)
4320 {
4321 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4322 
4323 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4324 
4325 	return 0;
4326 }
4327 
4328 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4329 					    struct snd_ctl_elem_value *ucontrol)
4330 {
4331 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4332 
4333 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4334 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4335 
4336 		hdspm_tco_write(hdspm);
4337 
4338 		return 1;
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 
4345 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4346 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4347 	.name = xname, \
4348 	.index = xindex, \
4349 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4350 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4351 	.info = snd_hdspm_info_tco_frame_rate, \
4352 	.get = snd_hdspm_get_tco_frame_rate, \
4353 	.put = snd_hdspm_put_tco_frame_rate \
4354 }
4355 
4356 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4357 					  struct snd_ctl_elem_info *uinfo)
4358 {
4359 	static const char *const texts[] = { "24 fps", "25 fps", "29.97fps",
4360 		"29.97 dfps", "30 fps", "30 dfps" };
4361 	ENUMERATED_CTL_INFO(uinfo, texts);
4362 	return 0;
4363 }
4364 
4365 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4366 					struct snd_ctl_elem_value *ucontrol)
4367 {
4368 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4369 
4370 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4371 
4372 	return 0;
4373 }
4374 
4375 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4376 					struct snd_ctl_elem_value *ucontrol)
4377 {
4378 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4379 
4380 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4381 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4382 
4383 		hdspm_tco_write(hdspm);
4384 
4385 		return 1;
4386 	}
4387 
4388 	return 0;
4389 }
4390 
4391 
4392 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4393 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4394 	.name = xname, \
4395 	.index = xindex, \
4396 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4397 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4398 	.info = snd_hdspm_info_tco_sync_source, \
4399 	.get = snd_hdspm_get_tco_sync_source, \
4400 	.put = snd_hdspm_put_tco_sync_source \
4401 }
4402 
4403 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4404 					  struct snd_ctl_elem_info *uinfo)
4405 {
4406 	static const char *const texts[] = { "LTC", "Video", "WCK" };
4407 	ENUMERATED_CTL_INFO(uinfo, texts);
4408 	return 0;
4409 }
4410 
4411 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4412 					 struct snd_ctl_elem_value *ucontrol)
4413 {
4414 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4415 
4416 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4417 
4418 	return 0;
4419 }
4420 
4421 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4422 					 struct snd_ctl_elem_value *ucontrol)
4423 {
4424 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4425 
4426 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4427 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4428 
4429 		hdspm_tco_write(hdspm);
4430 
4431 		return 1;
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 
4438 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4439 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4440 	.name = xname, \
4441 	.index = xindex, \
4442 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4443 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4444 	.info = snd_hdspm_info_tco_word_term, \
4445 	.get = snd_hdspm_get_tco_word_term, \
4446 	.put = snd_hdspm_put_tco_word_term \
4447 }
4448 
4449 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4450 					struct snd_ctl_elem_info *uinfo)
4451 {
4452 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4453 	uinfo->count = 1;
4454 	uinfo->value.integer.min = 0;
4455 	uinfo->value.integer.max = 1;
4456 
4457 	return 0;
4458 }
4459 
4460 
4461 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4462 				       struct snd_ctl_elem_value *ucontrol)
4463 {
4464 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4465 
4466 	ucontrol->value.integer.value[0] = hdspm->tco->term;
4467 
4468 	return 0;
4469 }
4470 
4471 
4472 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4473 				       struct snd_ctl_elem_value *ucontrol)
4474 {
4475 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4476 
4477 	if (hdspm->tco->term != ucontrol->value.integer.value[0]) {
4478 		hdspm->tco->term = ucontrol->value.integer.value[0];
4479 
4480 		hdspm_tco_write(hdspm);
4481 
4482 		return 1;
4483 	}
4484 
4485 	return 0;
4486 }
4487 
4488 
4489 
4490 
4491 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4492 	HDSPM_MIXER("Mixer", 0),
4493 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4494 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4495 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4496 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4497 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4498 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4499 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4500 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4501 	HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4502 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4503 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4504 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4505 	HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4506 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4507 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4508 	HDSPM_INPUT_SELECT("Input Select", 0),
4509 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4510 };
4511 
4512 
4513 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4514 	HDSPM_MIXER("Mixer", 0),
4515 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4516 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4517 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4518 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4519 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4520 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4521 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4522 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4523 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4524 };
4525 
4526 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4527 	HDSPM_MIXER("Mixer", 0),
4528 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4529 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4530 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4531 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4532 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4533 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4534 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4535 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4536 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4537 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4538 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4539 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4540 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4541 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4542 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4543 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4544 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5),
4545 	HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0),
4546 	HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt),
4547 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4548 	HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1),
4549 	HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db),
4550 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48),
4551 	HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0),
4552 	HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0),
4553 	HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0)
4554 
4555 		/*
4556 		   HDSPM_INPUT_SELECT("Input Select", 0),
4557 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4558 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4559 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4560 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4561 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4562 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4563 		   HDSPM_PHONES("Phones", 0);
4564 		   */
4565 };
4566 
4567 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4568 	HDSPM_MIXER("Mixer", 0),
4569 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4570 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4571 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4572 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4573 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4574 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4575 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4576 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4577 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4578 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4579 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4580 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4581 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4582 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4583 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4584 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4585 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4586 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4587 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4588 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4589 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4590 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8),
4591 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4592 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48)
4593 };
4594 
4595 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4596 	HDSPM_MIXER("Mixer", 0),
4597 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4598 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4599 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4600 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4601 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4602 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11),
4603 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4604 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4605 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4606 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4607 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4608 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4609 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4610 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4611 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4612 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4613 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4614 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4615 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4616 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4617 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4618 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4619 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4620 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4621 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4622 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4623 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4624 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4625 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4626 	HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4627 	HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4628 	HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4629 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4630 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4631 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4632 };
4633 
4634 
4635 
4636 /* Control elements for the optional TCO module */
4637 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4638 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4639 	HDSPM_TCO_PULL("TCO Pull", 0),
4640 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4641 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4642 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4643 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0),
4644 	HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11),
4645 	HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12),
4646 	HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0),
4647 	HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0)
4648 };
4649 
4650 
4651 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4652 
4653 
4654 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4655 {
4656 	int i;
4657 
4658 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4659 		if (hdspm->system_sample_rate > 48000) {
4660 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4661 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4662 				SNDRV_CTL_ELEM_ACCESS_READ |
4663 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4664 		} else {
4665 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4666 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4667 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4668 		}
4669 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4670 				SNDRV_CTL_EVENT_MASK_INFO,
4671 				&hdspm->playback_mixer_ctls[i]->id);
4672 	}
4673 
4674 	return 0;
4675 }
4676 
4677 
4678 static int snd_hdspm_create_controls(struct snd_card *card,
4679 					struct hdspm *hdspm)
4680 {
4681 	unsigned int idx, limit;
4682 	int err;
4683 	struct snd_kcontrol *kctl;
4684 	struct snd_kcontrol_new *list = NULL;
4685 
4686 	switch (hdspm->io_type) {
4687 	case MADI:
4688 		list = snd_hdspm_controls_madi;
4689 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4690 		break;
4691 	case MADIface:
4692 		list = snd_hdspm_controls_madiface;
4693 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4694 		break;
4695 	case AIO:
4696 		list = snd_hdspm_controls_aio;
4697 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4698 		break;
4699 	case RayDAT:
4700 		list = snd_hdspm_controls_raydat;
4701 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4702 		break;
4703 	case AES32:
4704 		list = snd_hdspm_controls_aes32;
4705 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4706 		break;
4707 	}
4708 
4709 	if (list) {
4710 		for (idx = 0; idx < limit; idx++) {
4711 			err = snd_ctl_add(card,
4712 					snd_ctl_new1(&list[idx], hdspm));
4713 			if (err < 0)
4714 				return err;
4715 		}
4716 	}
4717 
4718 
4719 	/* create simple 1:1 playback mixer controls */
4720 	snd_hdspm_playback_mixer.name = "Chn";
4721 	if (hdspm->system_sample_rate >= 128000) {
4722 		limit = hdspm->qs_out_channels;
4723 	} else if (hdspm->system_sample_rate >= 64000) {
4724 		limit = hdspm->ds_out_channels;
4725 	} else {
4726 		limit = hdspm->ss_out_channels;
4727 	}
4728 	for (idx = 0; idx < limit; ++idx) {
4729 		snd_hdspm_playback_mixer.index = idx + 1;
4730 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4731 		err = snd_ctl_add(card, kctl);
4732 		if (err < 0)
4733 			return err;
4734 		hdspm->playback_mixer_ctls[idx] = kctl;
4735 	}
4736 
4737 
4738 	if (hdspm->tco) {
4739 		/* add tco control elements */
4740 		list = snd_hdspm_controls_tco;
4741 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4742 		for (idx = 0; idx < limit; idx++) {
4743 			err = snd_ctl_add(card,
4744 					snd_ctl_new1(&list[idx], hdspm));
4745 			if (err < 0)
4746 				return err;
4747 		}
4748 	}
4749 
4750 	return 0;
4751 }
4752 
4753 /*------------------------------------------------------------
4754    /proc interface
4755  ------------------------------------------------------------*/
4756 
4757 static void
4758 snd_hdspm_proc_read_tco(struct snd_info_entry *entry,
4759 					struct snd_info_buffer *buffer)
4760 {
4761 	struct hdspm *hdspm = entry->private_data;
4762 	unsigned int status, control;
4763 	int a, ltc, frames, seconds, minutes, hours;
4764 	unsigned int period;
4765 	u64 freq_const = 0;
4766 	u32 rate;
4767 
4768 	snd_iprintf(buffer, "--- TCO ---\n");
4769 
4770 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4771 	control = hdspm->control_register;
4772 
4773 
4774 	if (status & HDSPM_tco_detect) {
4775 		snd_iprintf(buffer, "TCO module detected.\n");
4776 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4777 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4778 			snd_iprintf(buffer, "  LTC valid, ");
4779 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4780 						HDSPM_TCO1_LTC_Format_MSB)) {
4781 			case 0:
4782 				snd_iprintf(buffer, "24 fps, ");
4783 				break;
4784 			case HDSPM_TCO1_LTC_Format_LSB:
4785 				snd_iprintf(buffer, "25 fps, ");
4786 				break;
4787 			case HDSPM_TCO1_LTC_Format_MSB:
4788 				snd_iprintf(buffer, "29.97 fps, ");
4789 				break;
4790 			default:
4791 				snd_iprintf(buffer, "30 fps, ");
4792 				break;
4793 			}
4794 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4795 				snd_iprintf(buffer, "drop frame\n");
4796 			} else {
4797 				snd_iprintf(buffer, "full frame\n");
4798 			}
4799 		} else {
4800 			snd_iprintf(buffer, "  no LTC\n");
4801 		}
4802 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4803 			snd_iprintf(buffer, "  Video: NTSC\n");
4804 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4805 			snd_iprintf(buffer, "  Video: PAL\n");
4806 		} else {
4807 			snd_iprintf(buffer, "  No video\n");
4808 		}
4809 		if (a & HDSPM_TCO1_TCO_lock) {
4810 			snd_iprintf(buffer, "  Sync: lock\n");
4811 		} else {
4812 			snd_iprintf(buffer, "  Sync: no lock\n");
4813 		}
4814 
4815 		switch (hdspm->io_type) {
4816 		case MADI:
4817 		case AES32:
4818 			freq_const = 110069313433624ULL;
4819 			break;
4820 		case RayDAT:
4821 		case AIO:
4822 			freq_const = 104857600000000ULL;
4823 			break;
4824 		case MADIface:
4825 			break; /* no TCO possible */
4826 		}
4827 
4828 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4829 		snd_iprintf(buffer, "    period: %u\n", period);
4830 
4831 
4832 		/* rate = freq_const/period; */
4833 		rate = div_u64(freq_const, period);
4834 
4835 		if (control & HDSPM_QuadSpeed) {
4836 			rate *= 4;
4837 		} else if (control & HDSPM_DoubleSpeed) {
4838 			rate *= 2;
4839 		}
4840 
4841 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4842 				(unsigned int) rate);
4843 
4844 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4845 		frames = ltc & 0xF;
4846 		ltc >>= 4;
4847 		frames += (ltc & 0x3) * 10;
4848 		ltc >>= 4;
4849 		seconds = ltc & 0xF;
4850 		ltc >>= 4;
4851 		seconds += (ltc & 0x7) * 10;
4852 		ltc >>= 4;
4853 		minutes = ltc & 0xF;
4854 		ltc >>= 4;
4855 		minutes += (ltc & 0x7) * 10;
4856 		ltc >>= 4;
4857 		hours = ltc & 0xF;
4858 		ltc >>= 4;
4859 		hours += (ltc & 0x3) * 10;
4860 		snd_iprintf(buffer,
4861 			"  LTC In: %02d:%02d:%02d:%02d\n",
4862 			hours, minutes, seconds, frames);
4863 
4864 	} else {
4865 		snd_iprintf(buffer, "No TCO module detected.\n");
4866 	}
4867 }
4868 
4869 static void
4870 snd_hdspm_proc_read_madi(struct snd_info_entry *entry,
4871 			 struct snd_info_buffer *buffer)
4872 {
4873 	struct hdspm *hdspm = entry->private_data;
4874 	unsigned int status, status2;
4875 
4876 	char *pref_sync_ref;
4877 	char *autosync_ref;
4878 	char *system_clock_mode;
4879 	int x, x2;
4880 
4881 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4882 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4883 
4884 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4885 			hdspm->card_name, hdspm->card->number + 1,
4886 			hdspm->firmware_rev,
4887 			(status2 & HDSPM_version0) |
4888 			(status2 & HDSPM_version1) | (status2 &
4889 				HDSPM_version2));
4890 
4891 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4892 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4893 			hdspm->serial);
4894 
4895 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4896 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4897 
4898 	snd_iprintf(buffer, "--- System ---\n");
4899 
4900 	snd_iprintf(buffer,
4901 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4902 		status & HDSPM_audioIRQPending,
4903 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4904 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4905 		hdspm->irq_count);
4906 	snd_iprintf(buffer,
4907 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4908 		"estimated= %ld (bytes)\n",
4909 		((status & HDSPM_BufferID) ? 1 : 0),
4910 		(status & HDSPM_BufferPositionMask),
4911 		(status & HDSPM_BufferPositionMask) %
4912 		(2 * (int)hdspm->period_bytes),
4913 		((status & HDSPM_BufferPositionMask) - 64) %
4914 		(2 * (int)hdspm->period_bytes),
4915 		(long) hdspm_hw_pointer(hdspm) * 4);
4916 
4917 	snd_iprintf(buffer,
4918 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4919 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4920 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4921 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4922 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4923 	snd_iprintf(buffer,
4924 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4925 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4926 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4927 	snd_iprintf(buffer,
4928 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4929 		"status2=0x%x\n",
4930 		hdspm->control_register, hdspm->control2_register,
4931 		status, status2);
4932 
4933 
4934 	snd_iprintf(buffer, "--- Settings ---\n");
4935 
4936 	x = hdspm_get_latency(hdspm);
4937 
4938 	snd_iprintf(buffer,
4939 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4940 		x, (unsigned long) hdspm->period_bytes);
4941 
4942 	snd_iprintf(buffer, "Line out: %s\n",
4943 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4944 
4945 	snd_iprintf(buffer,
4946 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4947 		"Auto Input %s\n",
4948 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4949 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4950 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4951 
4952 
4953 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4954 		system_clock_mode = "AutoSync";
4955 	else
4956 		system_clock_mode = "Master";
4957 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4958 
4959 	switch (hdspm_pref_sync_ref(hdspm)) {
4960 	case HDSPM_SYNC_FROM_WORD:
4961 		pref_sync_ref = "Word Clock";
4962 		break;
4963 	case HDSPM_SYNC_FROM_MADI:
4964 		pref_sync_ref = "MADI Sync";
4965 		break;
4966 	case HDSPM_SYNC_FROM_TCO:
4967 		pref_sync_ref = "TCO";
4968 		break;
4969 	case HDSPM_SYNC_FROM_SYNC_IN:
4970 		pref_sync_ref = "Sync In";
4971 		break;
4972 	default:
4973 		pref_sync_ref = "XXXX Clock";
4974 		break;
4975 	}
4976 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4977 			pref_sync_ref);
4978 
4979 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4980 			hdspm->system_sample_rate);
4981 
4982 
4983 	snd_iprintf(buffer, "--- Status:\n");
4984 
4985 	x = status & HDSPM_madiSync;
4986 	x2 = status2 & HDSPM_wcSync;
4987 
4988 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4989 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4990 			"NoLock",
4991 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4992 			"NoLock");
4993 
4994 	switch (hdspm_autosync_ref(hdspm)) {
4995 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4996 		autosync_ref = "Sync In";
4997 		break;
4998 	case HDSPM_AUTOSYNC_FROM_TCO:
4999 		autosync_ref = "TCO";
5000 		break;
5001 	case HDSPM_AUTOSYNC_FROM_WORD:
5002 		autosync_ref = "Word Clock";
5003 		break;
5004 	case HDSPM_AUTOSYNC_FROM_MADI:
5005 		autosync_ref = "MADI Sync";
5006 		break;
5007 	case HDSPM_AUTOSYNC_FROM_NONE:
5008 		autosync_ref = "Input not valid";
5009 		break;
5010 	default:
5011 		autosync_ref = "---";
5012 		break;
5013 	}
5014 	snd_iprintf(buffer,
5015 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
5016 		autosync_ref, hdspm_external_sample_rate(hdspm),
5017 		(status & HDSPM_madiFreqMask) >> 22,
5018 		(status2 & HDSPM_wcFreqMask) >> 5);
5019 
5020 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
5021 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
5022 		(status & HDSPM_RX_64ch) ? "64 channels" :
5023 		"56 channels");
5024 
5025 	/* call readout function for TCO specific status */
5026 	snd_hdspm_proc_read_tco(entry, buffer);
5027 
5028 	snd_iprintf(buffer, "\n");
5029 }
5030 
5031 static void
5032 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
5033 			  struct snd_info_buffer *buffer)
5034 {
5035 	struct hdspm *hdspm = entry->private_data;
5036 	unsigned int status;
5037 	unsigned int status2;
5038 	unsigned int timecode;
5039 	unsigned int wcLock, wcSync;
5040 	int pref_syncref;
5041 	char *autosync_ref;
5042 	int x;
5043 
5044 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5045 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5046 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
5047 
5048 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
5049 		    hdspm->card_name, hdspm->card->number + 1,
5050 		    hdspm->firmware_rev);
5051 
5052 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
5053 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
5054 
5055 	snd_iprintf(buffer, "--- System ---\n");
5056 
5057 	snd_iprintf(buffer,
5058 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
5059 		    status & HDSPM_audioIRQPending,
5060 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
5061 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
5062 		    hdspm->irq_count);
5063 	snd_iprintf(buffer,
5064 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
5065 		    "estimated= %ld (bytes)\n",
5066 		    ((status & HDSPM_BufferID) ? 1 : 0),
5067 		    (status & HDSPM_BufferPositionMask),
5068 		    (status & HDSPM_BufferPositionMask) %
5069 		    (2 * (int)hdspm->period_bytes),
5070 		    ((status & HDSPM_BufferPositionMask) - 64) %
5071 		    (2 * (int)hdspm->period_bytes),
5072 		    (long) hdspm_hw_pointer(hdspm) * 4);
5073 
5074 	snd_iprintf(buffer,
5075 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
5076 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
5077 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
5078 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
5079 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
5080 	snd_iprintf(buffer,
5081 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
5082 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
5083 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
5084 	snd_iprintf(buffer,
5085 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
5086 		    "status2=0x%x\n",
5087 		    hdspm->control_register, hdspm->control2_register,
5088 		    status, status2);
5089 
5090 	snd_iprintf(buffer, "--- Settings ---\n");
5091 
5092 	x = hdspm_get_latency(hdspm);
5093 
5094 	snd_iprintf(buffer,
5095 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5096 		    x, (unsigned long) hdspm->period_bytes);
5097 
5098 	snd_iprintf(buffer, "Line out: %s\n",
5099 		    (hdspm->
5100 		     control_register & HDSPM_LineOut) ? "on " : "off");
5101 
5102 	snd_iprintf(buffer,
5103 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5104 		    (hdspm->
5105 		     control_register & HDSPM_clr_tms) ? "on" : "off",
5106 		    (hdspm->
5107 		     control_register & HDSPM_Emphasis) ? "on" : "off",
5108 		    (hdspm->
5109 		     control_register & HDSPM_Dolby) ? "on" : "off");
5110 
5111 
5112 	pref_syncref = hdspm_pref_sync_ref(hdspm);
5113 	if (pref_syncref == 0)
5114 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5115 	else
5116 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5117 				pref_syncref);
5118 
5119 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
5120 		    hdspm->system_sample_rate);
5121 
5122 	snd_iprintf(buffer, "Double speed: %s\n",
5123 			hdspm->control_register & HDSPM_DS_DoubleWire?
5124 			"Double wire" : "Single wire");
5125 	snd_iprintf(buffer, "Quad speed: %s\n",
5126 			hdspm->control_register & HDSPM_QS_DoubleWire?
5127 			"Double wire" :
5128 			hdspm->control_register & HDSPM_QS_QuadWire?
5129 			"Quad wire" : "Single wire");
5130 
5131 	snd_iprintf(buffer, "--- Status:\n");
5132 
5133 	wcLock = status & HDSPM_AES32_wcLock;
5134 	wcSync = wcLock && (status & HDSPM_AES32_wcSync);
5135 
5136 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
5137 		    (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
5138 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
5139 
5140 	for (x = 0; x < 8; x++) {
5141 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
5142 			    x+1,
5143 			    (status2 & (HDSPM_LockAES >> x)) ?
5144 			    "Sync   " : "No Lock",
5145 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
5146 	}
5147 
5148 	switch (hdspm_autosync_ref(hdspm)) {
5149 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5150 		autosync_ref = "None"; break;
5151 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5152 		autosync_ref = "Word Clock"; break;
5153 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5154 		autosync_ref = "AES1"; break;
5155 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5156 		autosync_ref = "AES2"; break;
5157 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5158 		autosync_ref = "AES3"; break;
5159 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5160 		autosync_ref = "AES4"; break;
5161 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5162 		autosync_ref = "AES5"; break;
5163 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5164 		autosync_ref = "AES6"; break;
5165 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5166 		autosync_ref = "AES7"; break;
5167 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5168 		autosync_ref = "AES8"; break;
5169 	case HDSPM_AES32_AUTOSYNC_FROM_TCO:
5170 		autosync_ref = "TCO"; break;
5171 	case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN:
5172 		autosync_ref = "Sync In"; break;
5173 	default:
5174 		autosync_ref = "---"; break;
5175 	}
5176 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5177 
5178 	/* call readout function for TCO specific status */
5179 	snd_hdspm_proc_read_tco(entry, buffer);
5180 
5181 	snd_iprintf(buffer, "\n");
5182 }
5183 
5184 static void
5185 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5186 			 struct snd_info_buffer *buffer)
5187 {
5188 	struct hdspm *hdspm = entry->private_data;
5189 	unsigned int status1, status2, status3, i;
5190 	unsigned int lock, sync;
5191 
5192 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5193 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5194 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5195 
5196 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5197 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5198 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5199 
5200 
5201 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5202 
5203 	snd_iprintf(buffer, "Clock mode      : %s\n",
5204 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5205 	snd_iprintf(buffer, "System frequency: %d Hz\n",
5206 		hdspm_get_system_sample_rate(hdspm));
5207 
5208 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5209 
5210 	lock = 0x1;
5211 	sync = 0x100;
5212 
5213 	for (i = 0; i < 8; i++) {
5214 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5215 				i,
5216 				(status1 & lock) ? 1 : 0,
5217 				(status1 & sync) ? 1 : 0,
5218 				texts_freq[(status2 >> (i * 4)) & 0xF]);
5219 
5220 		lock = lock<<1;
5221 		sync = sync<<1;
5222 	}
5223 
5224 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5225 			(status1 & 0x1000000) ? 1 : 0,
5226 			(status1 & 0x2000000) ? 1 : 0,
5227 			texts_freq[(status1 >> 16) & 0xF]);
5228 
5229 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5230 			(status1 & 0x4000000) ? 1 : 0,
5231 			(status1 & 0x8000000) ? 1 : 0,
5232 			texts_freq[(status1 >> 20) & 0xF]);
5233 
5234 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5235 			(status3 & 0x400) ? 1 : 0,
5236 			(status3 & 0x800) ? 1 : 0,
5237 			texts_freq[(status2 >> 12) & 0xF]);
5238 
5239 }
5240 
5241 #ifdef CONFIG_SND_DEBUG
5242 static void
5243 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5244 			  struct snd_info_buffer *buffer)
5245 {
5246 	struct hdspm *hdspm = entry->private_data;
5247 
5248 	int j,i;
5249 
5250 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
5251 		snd_iprintf(buffer, "0x%08X: ", i);
5252 		for (j = 0; j < 16; j += 4)
5253 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5254 		snd_iprintf(buffer, "\n");
5255 	}
5256 }
5257 #endif
5258 
5259 
5260 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5261 			  struct snd_info_buffer *buffer)
5262 {
5263 	struct hdspm *hdspm = entry->private_data;
5264 	int i;
5265 
5266 	snd_iprintf(buffer, "# generated by hdspm\n");
5267 
5268 	for (i = 0; i < hdspm->max_channels_in; i++) {
5269 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5270 	}
5271 }
5272 
5273 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5274 			  struct snd_info_buffer *buffer)
5275 {
5276 	struct hdspm *hdspm = entry->private_data;
5277 	int i;
5278 
5279 	snd_iprintf(buffer, "# generated by hdspm\n");
5280 
5281 	for (i = 0; i < hdspm->max_channels_out; i++) {
5282 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5283 	}
5284 }
5285 
5286 
5287 static void snd_hdspm_proc_init(struct hdspm *hdspm)
5288 {
5289 	struct snd_info_entry *entry;
5290 
5291 	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5292 		switch (hdspm->io_type) {
5293 		case AES32:
5294 			snd_info_set_text_ops(entry, hdspm,
5295 					snd_hdspm_proc_read_aes32);
5296 			break;
5297 		case MADI:
5298 			snd_info_set_text_ops(entry, hdspm,
5299 					snd_hdspm_proc_read_madi);
5300 			break;
5301 		case MADIface:
5302 			/* snd_info_set_text_ops(entry, hdspm,
5303 			 snd_hdspm_proc_read_madiface); */
5304 			break;
5305 		case RayDAT:
5306 			snd_info_set_text_ops(entry, hdspm,
5307 					snd_hdspm_proc_read_raydat);
5308 			break;
5309 		case AIO:
5310 			break;
5311 		}
5312 	}
5313 
5314 	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5315 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5316 	}
5317 
5318 	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5319 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5320 	}
5321 
5322 #ifdef CONFIG_SND_DEBUG
5323 	/* debug file to read all hdspm registers */
5324 	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5325 		snd_info_set_text_ops(entry, hdspm,
5326 				snd_hdspm_proc_read_debug);
5327 #endif
5328 }
5329 
5330 /*------------------------------------------------------------
5331    hdspm intitialize
5332  ------------------------------------------------------------*/
5333 
5334 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5335 {
5336 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
5337 	   hold it (e.g. during module initialization).
5338 	   */
5339 
5340 	/* set defaults:       */
5341 
5342 	hdspm->settings_register = 0;
5343 
5344 	switch (hdspm->io_type) {
5345 	case MADI:
5346 	case MADIface:
5347 		hdspm->control_register =
5348 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5349 		break;
5350 
5351 	case RayDAT:
5352 	case AIO:
5353 		hdspm->settings_register = 0x1 + 0x1000;
5354 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5355 		 * line_out */
5356 		hdspm->control_register =
5357 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5358 		break;
5359 
5360 	case AES32:
5361 		hdspm->control_register =
5362 			HDSPM_ClockModeMaster |	/* Master Clock Mode on */
5363 			hdspm_encode_latency(7) | /* latency max=8192samples */
5364 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
5365 			HDSPM_LineOut |	/* Analog output in */
5366 			HDSPM_Professional;  /* Professional mode */
5367 		break;
5368 	}
5369 
5370 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5371 
5372 	if (AES32 == hdspm->io_type) {
5373 		/* No control2 register for AES32 */
5374 #ifdef SNDRV_BIG_ENDIAN
5375 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5376 #else
5377 		hdspm->control2_register = 0;
5378 #endif
5379 
5380 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5381 	}
5382 	hdspm_compute_period_size(hdspm);
5383 
5384 	/* silence everything */
5385 
5386 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5387 
5388 	if (hdspm_is_raydat_or_aio(hdspm))
5389 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5390 
5391 	/* set a default rate so that the channel map is set up. */
5392 	hdspm_set_rate(hdspm, 48000, 1);
5393 
5394 	return 0;
5395 }
5396 
5397 
5398 /*------------------------------------------------------------
5399    interrupt
5400  ------------------------------------------------------------*/
5401 
5402 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5403 {
5404 	struct hdspm *hdspm = (struct hdspm *) dev_id;
5405 	unsigned int status;
5406 	int i, audio, midi, schedule = 0;
5407 	/* cycles_t now; */
5408 
5409 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5410 
5411 	audio = status & HDSPM_audioIRQPending;
5412 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5413 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5414 
5415 	/* now = get_cycles(); */
5416 	/*
5417 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5418 	 *          6       4096   ~256053425     ~514672358
5419 	 *          5       2048   ~128024983     ~257373821
5420 	 *          4       1024    ~64023706     ~128718089
5421 	 *          3        512    ~32005945      ~64385999
5422 	 *          2        256    ~16003039      ~32260176
5423 	 *          1        128     ~7998738      ~16194507
5424 	 *          0         64     ~3998231       ~8191558
5425 	 */
5426 	/*
5427 	  dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n",
5428 	   now-hdspm->last_interrupt, status & 0xFFC0);
5429 	   hdspm->last_interrupt = now;
5430 	*/
5431 
5432 	if (!audio && !midi)
5433 		return IRQ_NONE;
5434 
5435 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5436 	hdspm->irq_count++;
5437 
5438 
5439 	if (audio) {
5440 		if (hdspm->capture_substream)
5441 			snd_pcm_period_elapsed(hdspm->capture_substream);
5442 
5443 		if (hdspm->playback_substream)
5444 			snd_pcm_period_elapsed(hdspm->playback_substream);
5445 	}
5446 
5447 	if (midi) {
5448 		i = 0;
5449 		while (i < hdspm->midiPorts) {
5450 			if ((hdspm_read(hdspm,
5451 				hdspm->midi[i].statusIn) & 0xff) &&
5452 					(status & hdspm->midi[i].irq)) {
5453 				/* we disable interrupts for this input until
5454 				 * processing is done
5455 				 */
5456 				hdspm->control_register &= ~hdspm->midi[i].ie;
5457 				hdspm_write(hdspm, HDSPM_controlRegister,
5458 						hdspm->control_register);
5459 				hdspm->midi[i].pending = 1;
5460 				schedule = 1;
5461 			}
5462 
5463 			i++;
5464 		}
5465 
5466 		if (schedule)
5467 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5468 	}
5469 
5470 	return IRQ_HANDLED;
5471 }
5472 
5473 /*------------------------------------------------------------
5474    pcm interface
5475   ------------------------------------------------------------*/
5476 
5477 
5478 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5479 					      *substream)
5480 {
5481 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5482 	return hdspm_hw_pointer(hdspm);
5483 }
5484 
5485 
5486 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5487 {
5488 	struct snd_pcm_runtime *runtime = substream->runtime;
5489 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5490 	struct snd_pcm_substream *other;
5491 
5492 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5493 		other = hdspm->capture_substream;
5494 	else
5495 		other = hdspm->playback_substream;
5496 
5497 	if (hdspm->running)
5498 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5499 	else
5500 		runtime->status->hw_ptr = 0;
5501 	if (other) {
5502 		struct snd_pcm_substream *s;
5503 		struct snd_pcm_runtime *oruntime = other->runtime;
5504 		snd_pcm_group_for_each_entry(s, substream) {
5505 			if (s == other) {
5506 				oruntime->status->hw_ptr =
5507 					runtime->status->hw_ptr;
5508 				break;
5509 			}
5510 		}
5511 	}
5512 	return 0;
5513 }
5514 
5515 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5516 			       struct snd_pcm_hw_params *params)
5517 {
5518 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5519 	int err;
5520 	int i;
5521 	pid_t this_pid;
5522 	pid_t other_pid;
5523 
5524 	spin_lock_irq(&hdspm->lock);
5525 
5526 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5527 		this_pid = hdspm->playback_pid;
5528 		other_pid = hdspm->capture_pid;
5529 	} else {
5530 		this_pid = hdspm->capture_pid;
5531 		other_pid = hdspm->playback_pid;
5532 	}
5533 
5534 	if (other_pid > 0 && this_pid != other_pid) {
5535 
5536 		/* The other stream is open, and not by the same
5537 		   task as this one. Make sure that the parameters
5538 		   that matter are the same.
5539 		   */
5540 
5541 		if (params_rate(params) != hdspm->system_sample_rate) {
5542 			spin_unlock_irq(&hdspm->lock);
5543 			_snd_pcm_hw_param_setempty(params,
5544 					SNDRV_PCM_HW_PARAM_RATE);
5545 			return -EBUSY;
5546 		}
5547 
5548 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5549 			spin_unlock_irq(&hdspm->lock);
5550 			_snd_pcm_hw_param_setempty(params,
5551 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5552 			return -EBUSY;
5553 		}
5554 
5555 	}
5556 	/* We're fine. */
5557 	spin_unlock_irq(&hdspm->lock);
5558 
5559 	/* how to make sure that the rate matches an externally-set one ?   */
5560 
5561 	spin_lock_irq(&hdspm->lock);
5562 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5563 	if (err < 0) {
5564 		dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err);
5565 		spin_unlock_irq(&hdspm->lock);
5566 		_snd_pcm_hw_param_setempty(params,
5567 				SNDRV_PCM_HW_PARAM_RATE);
5568 		return err;
5569 	}
5570 	spin_unlock_irq(&hdspm->lock);
5571 
5572 	err = hdspm_set_interrupt_interval(hdspm,
5573 			params_period_size(params));
5574 	if (err < 0) {
5575 		dev_info(hdspm->card->dev,
5576 			 "err on hdspm_set_interrupt_interval: %d\n", err);
5577 		_snd_pcm_hw_param_setempty(params,
5578 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5579 		return err;
5580 	}
5581 
5582 	/* Memory allocation, takashi's method, dont know if we should
5583 	 * spinlock
5584 	 */
5585 	/* malloc all buffer even if not enabled to get sure */
5586 	/* Update for MADI rev 204: we need to allocate for all channels,
5587 	 * otherwise it doesn't work at 96kHz */
5588 
5589 	err =
5590 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5591 	if (err < 0) {
5592 		dev_info(hdspm->card->dev,
5593 			 "err on snd_pcm_lib_malloc_pages: %d\n", err);
5594 		return err;
5595 	}
5596 
5597 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5598 
5599 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5600 				params_channels(params));
5601 
5602 		for (i = 0; i < params_channels(params); ++i)
5603 			snd_hdspm_enable_out(hdspm, i, 1);
5604 
5605 		hdspm->playback_buffer =
5606 			(unsigned char *) substream->runtime->dma_area;
5607 		dev_dbg(hdspm->card->dev,
5608 			"Allocated sample buffer for playback at %p\n",
5609 				hdspm->playback_buffer);
5610 	} else {
5611 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5612 				params_channels(params));
5613 
5614 		for (i = 0; i < params_channels(params); ++i)
5615 			snd_hdspm_enable_in(hdspm, i, 1);
5616 
5617 		hdspm->capture_buffer =
5618 			(unsigned char *) substream->runtime->dma_area;
5619 		dev_dbg(hdspm->card->dev,
5620 			"Allocated sample buffer for capture at %p\n",
5621 				hdspm->capture_buffer);
5622 	}
5623 
5624 	/*
5625 	   dev_dbg(hdspm->card->dev,
5626 	   "Allocated sample buffer for %s at 0x%08X\n",
5627 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5628 	   "playback" : "capture",
5629 	   snd_pcm_sgbuf_get_addr(substream, 0));
5630 	   */
5631 	/*
5632 	   dev_dbg(hdspm->card->dev,
5633 	   "set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5634 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5635 	   "playback" : "capture",
5636 	   params_rate(params), params_channels(params),
5637 	   params_buffer_size(params));
5638 	   */
5639 
5640 
5641 	/*  For AES cards, the float format bit is the same as the
5642 	 *  preferred sync reference. Since we don't want to break
5643 	 *  sync settings, we have to skip the remaining part of this
5644 	 *  function.
5645 	 */
5646 	if (hdspm->io_type == AES32) {
5647 		return 0;
5648 	}
5649 
5650 
5651 	/* Switch to native float format if requested */
5652 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5653 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5654 			dev_info(hdspm->card->dev,
5655 				 "Switching to native 32bit LE float format.\n");
5656 
5657 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5658 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5659 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5660 			dev_info(hdspm->card->dev,
5661 				 "Switching to native 32bit LE integer format.\n");
5662 
5663 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5664 	}
5665 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5666 
5667 	return 0;
5668 }
5669 
5670 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5671 {
5672 	int i;
5673 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5674 
5675 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5676 
5677 		/* params_channels(params) should be enough,
5678 		   but to get sure in case of error */
5679 		for (i = 0; i < hdspm->max_channels_out; ++i)
5680 			snd_hdspm_enable_out(hdspm, i, 0);
5681 
5682 		hdspm->playback_buffer = NULL;
5683 	} else {
5684 		for (i = 0; i < hdspm->max_channels_in; ++i)
5685 			snd_hdspm_enable_in(hdspm, i, 0);
5686 
5687 		hdspm->capture_buffer = NULL;
5688 
5689 	}
5690 
5691 	snd_pcm_lib_free_pages(substream);
5692 
5693 	return 0;
5694 }
5695 
5696 
5697 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5698 		struct snd_pcm_channel_info *info)
5699 {
5700 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5701 
5702 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5703 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5704 			dev_info(hdspm->card->dev,
5705 				 "snd_hdspm_channel_info: output channel out of range (%d)\n",
5706 				 info->channel);
5707 			return -EINVAL;
5708 		}
5709 
5710 		if (hdspm->channel_map_out[info->channel] < 0) {
5711 			dev_info(hdspm->card->dev,
5712 				 "snd_hdspm_channel_info: output channel %d mapped out\n",
5713 				 info->channel);
5714 			return -EINVAL;
5715 		}
5716 
5717 		info->offset = hdspm->channel_map_out[info->channel] *
5718 			HDSPM_CHANNEL_BUFFER_BYTES;
5719 	} else {
5720 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5721 			dev_info(hdspm->card->dev,
5722 				 "snd_hdspm_channel_info: input channel out of range (%d)\n",
5723 				 info->channel);
5724 			return -EINVAL;
5725 		}
5726 
5727 		if (hdspm->channel_map_in[info->channel] < 0) {
5728 			dev_info(hdspm->card->dev,
5729 				 "snd_hdspm_channel_info: input channel %d mapped out\n",
5730 				 info->channel);
5731 			return -EINVAL;
5732 		}
5733 
5734 		info->offset = hdspm->channel_map_in[info->channel] *
5735 			HDSPM_CHANNEL_BUFFER_BYTES;
5736 	}
5737 
5738 	info->first = 0;
5739 	info->step = 32;
5740 	return 0;
5741 }
5742 
5743 
5744 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5745 		unsigned int cmd, void *arg)
5746 {
5747 	switch (cmd) {
5748 	case SNDRV_PCM_IOCTL1_RESET:
5749 		return snd_hdspm_reset(substream);
5750 
5751 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5752 		{
5753 			struct snd_pcm_channel_info *info = arg;
5754 			return snd_hdspm_channel_info(substream, info);
5755 		}
5756 	default:
5757 		break;
5758 	}
5759 
5760 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5761 }
5762 
5763 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5764 {
5765 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5766 	struct snd_pcm_substream *other;
5767 	int running;
5768 
5769 	spin_lock(&hdspm->lock);
5770 	running = hdspm->running;
5771 	switch (cmd) {
5772 	case SNDRV_PCM_TRIGGER_START:
5773 		running |= 1 << substream->stream;
5774 		break;
5775 	case SNDRV_PCM_TRIGGER_STOP:
5776 		running &= ~(1 << substream->stream);
5777 		break;
5778 	default:
5779 		snd_BUG();
5780 		spin_unlock(&hdspm->lock);
5781 		return -EINVAL;
5782 	}
5783 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5784 		other = hdspm->capture_substream;
5785 	else
5786 		other = hdspm->playback_substream;
5787 
5788 	if (other) {
5789 		struct snd_pcm_substream *s;
5790 		snd_pcm_group_for_each_entry(s, substream) {
5791 			if (s == other) {
5792 				snd_pcm_trigger_done(s, substream);
5793 				if (cmd == SNDRV_PCM_TRIGGER_START)
5794 					running |= 1 << s->stream;
5795 				else
5796 					running &= ~(1 << s->stream);
5797 				goto _ok;
5798 			}
5799 		}
5800 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5801 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5802 					&& substream->stream ==
5803 					SNDRV_PCM_STREAM_CAPTURE)
5804 				hdspm_silence_playback(hdspm);
5805 		} else {
5806 			if (running &&
5807 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5808 				hdspm_silence_playback(hdspm);
5809 		}
5810 	} else {
5811 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5812 			hdspm_silence_playback(hdspm);
5813 	}
5814 _ok:
5815 	snd_pcm_trigger_done(substream, substream);
5816 	if (!hdspm->running && running)
5817 		hdspm_start_audio(hdspm);
5818 	else if (hdspm->running && !running)
5819 		hdspm_stop_audio(hdspm);
5820 	hdspm->running = running;
5821 	spin_unlock(&hdspm->lock);
5822 
5823 	return 0;
5824 }
5825 
5826 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5827 {
5828 	return 0;
5829 }
5830 
5831 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5832 	.info = (SNDRV_PCM_INFO_MMAP |
5833 		 SNDRV_PCM_INFO_MMAP_VALID |
5834 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5835 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5836 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5837 	.rates = (SNDRV_PCM_RATE_32000 |
5838 		  SNDRV_PCM_RATE_44100 |
5839 		  SNDRV_PCM_RATE_48000 |
5840 		  SNDRV_PCM_RATE_64000 |
5841 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5842 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5843 	.rate_min = 32000,
5844 	.rate_max = 192000,
5845 	.channels_min = 1,
5846 	.channels_max = HDSPM_MAX_CHANNELS,
5847 	.buffer_bytes_max =
5848 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5849 	.period_bytes_min = (32 * 4),
5850 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5851 	.periods_min = 2,
5852 	.periods_max = 512,
5853 	.fifo_size = 0
5854 };
5855 
5856 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5857 	.info = (SNDRV_PCM_INFO_MMAP |
5858 		 SNDRV_PCM_INFO_MMAP_VALID |
5859 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5860 		 SNDRV_PCM_INFO_SYNC_START),
5861 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5862 	.rates = (SNDRV_PCM_RATE_32000 |
5863 		  SNDRV_PCM_RATE_44100 |
5864 		  SNDRV_PCM_RATE_48000 |
5865 		  SNDRV_PCM_RATE_64000 |
5866 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5867 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5868 	.rate_min = 32000,
5869 	.rate_max = 192000,
5870 	.channels_min = 1,
5871 	.channels_max = HDSPM_MAX_CHANNELS,
5872 	.buffer_bytes_max =
5873 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5874 	.period_bytes_min = (32 * 4),
5875 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5876 	.periods_min = 2,
5877 	.periods_max = 512,
5878 	.fifo_size = 0
5879 };
5880 
5881 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5882 					   struct snd_pcm_hw_rule *rule)
5883 {
5884 	struct hdspm *hdspm = rule->private;
5885 	struct snd_interval *c =
5886 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5887 	struct snd_interval *r =
5888 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5889 
5890 	if (r->min > 96000 && r->max <= 192000) {
5891 		struct snd_interval t = {
5892 			.min = hdspm->qs_in_channels,
5893 			.max = hdspm->qs_in_channels,
5894 			.integer = 1,
5895 		};
5896 		return snd_interval_refine(c, &t);
5897 	} else if (r->min > 48000 && r->max <= 96000) {
5898 		struct snd_interval t = {
5899 			.min = hdspm->ds_in_channels,
5900 			.max = hdspm->ds_in_channels,
5901 			.integer = 1,
5902 		};
5903 		return snd_interval_refine(c, &t);
5904 	} else if (r->max < 64000) {
5905 		struct snd_interval t = {
5906 			.min = hdspm->ss_in_channels,
5907 			.max = hdspm->ss_in_channels,
5908 			.integer = 1,
5909 		};
5910 		return snd_interval_refine(c, &t);
5911 	}
5912 
5913 	return 0;
5914 }
5915 
5916 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5917 					   struct snd_pcm_hw_rule * rule)
5918 {
5919 	struct hdspm *hdspm = rule->private;
5920 	struct snd_interval *c =
5921 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5922 	struct snd_interval *r =
5923 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5924 
5925 	if (r->min > 96000 && r->max <= 192000) {
5926 		struct snd_interval t = {
5927 			.min = hdspm->qs_out_channels,
5928 			.max = hdspm->qs_out_channels,
5929 			.integer = 1,
5930 		};
5931 		return snd_interval_refine(c, &t);
5932 	} else if (r->min > 48000 && r->max <= 96000) {
5933 		struct snd_interval t = {
5934 			.min = hdspm->ds_out_channels,
5935 			.max = hdspm->ds_out_channels,
5936 			.integer = 1,
5937 		};
5938 		return snd_interval_refine(c, &t);
5939 	} else if (r->max < 64000) {
5940 		struct snd_interval t = {
5941 			.min = hdspm->ss_out_channels,
5942 			.max = hdspm->ss_out_channels,
5943 			.integer = 1,
5944 		};
5945 		return snd_interval_refine(c, &t);
5946 	} else {
5947 	}
5948 	return 0;
5949 }
5950 
5951 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5952 					   struct snd_pcm_hw_rule * rule)
5953 {
5954 	struct hdspm *hdspm = rule->private;
5955 	struct snd_interval *c =
5956 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5957 	struct snd_interval *r =
5958 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5959 
5960 	if (c->min >= hdspm->ss_in_channels) {
5961 		struct snd_interval t = {
5962 			.min = 32000,
5963 			.max = 48000,
5964 			.integer = 1,
5965 		};
5966 		return snd_interval_refine(r, &t);
5967 	} else if (c->max <= hdspm->qs_in_channels) {
5968 		struct snd_interval t = {
5969 			.min = 128000,
5970 			.max = 192000,
5971 			.integer = 1,
5972 		};
5973 		return snd_interval_refine(r, &t);
5974 	} else if (c->max <= hdspm->ds_in_channels) {
5975 		struct snd_interval t = {
5976 			.min = 64000,
5977 			.max = 96000,
5978 			.integer = 1,
5979 		};
5980 		return snd_interval_refine(r, &t);
5981 	}
5982 
5983 	return 0;
5984 }
5985 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5986 					   struct snd_pcm_hw_rule *rule)
5987 {
5988 	struct hdspm *hdspm = rule->private;
5989 	struct snd_interval *c =
5990 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5991 	struct snd_interval *r =
5992 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5993 
5994 	if (c->min >= hdspm->ss_out_channels) {
5995 		struct snd_interval t = {
5996 			.min = 32000,
5997 			.max = 48000,
5998 			.integer = 1,
5999 		};
6000 		return snd_interval_refine(r, &t);
6001 	} else if (c->max <= hdspm->qs_out_channels) {
6002 		struct snd_interval t = {
6003 			.min = 128000,
6004 			.max = 192000,
6005 			.integer = 1,
6006 		};
6007 		return snd_interval_refine(r, &t);
6008 	} else if (c->max <= hdspm->ds_out_channels) {
6009 		struct snd_interval t = {
6010 			.min = 64000,
6011 			.max = 96000,
6012 			.integer = 1,
6013 		};
6014 		return snd_interval_refine(r, &t);
6015 	}
6016 
6017 	return 0;
6018 }
6019 
6020 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
6021 				      struct snd_pcm_hw_rule *rule)
6022 {
6023 	unsigned int list[3];
6024 	struct hdspm *hdspm = rule->private;
6025 	struct snd_interval *c = hw_param_interval(params,
6026 			SNDRV_PCM_HW_PARAM_CHANNELS);
6027 
6028 	list[0] = hdspm->qs_in_channels;
6029 	list[1] = hdspm->ds_in_channels;
6030 	list[2] = hdspm->ss_in_channels;
6031 	return snd_interval_list(c, 3, list, 0);
6032 }
6033 
6034 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
6035 				      struct snd_pcm_hw_rule *rule)
6036 {
6037 	unsigned int list[3];
6038 	struct hdspm *hdspm = rule->private;
6039 	struct snd_interval *c = hw_param_interval(params,
6040 			SNDRV_PCM_HW_PARAM_CHANNELS);
6041 
6042 	list[0] = hdspm->qs_out_channels;
6043 	list[1] = hdspm->ds_out_channels;
6044 	list[2] = hdspm->ss_out_channels;
6045 	return snd_interval_list(c, 3, list, 0);
6046 }
6047 
6048 
6049 static const unsigned int hdspm_aes32_sample_rates[] = {
6050 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
6051 };
6052 
6053 static const struct snd_pcm_hw_constraint_list
6054 hdspm_hw_constraints_aes32_sample_rates = {
6055 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
6056 	.list = hdspm_aes32_sample_rates,
6057 	.mask = 0
6058 };
6059 
6060 static int snd_hdspm_open(struct snd_pcm_substream *substream)
6061 {
6062 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6063 	struct snd_pcm_runtime *runtime = substream->runtime;
6064 	bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
6065 
6066 	spin_lock_irq(&hdspm->lock);
6067 	snd_pcm_set_sync(substream);
6068 	runtime->hw = (playback) ? snd_hdspm_playback_subinfo :
6069 		snd_hdspm_capture_subinfo;
6070 
6071 	if (playback) {
6072 		if (!hdspm->capture_substream)
6073 			hdspm_stop_audio(hdspm);
6074 
6075 		hdspm->playback_pid = current->pid;
6076 		hdspm->playback_substream = substream;
6077 	} else {
6078 		if (!hdspm->playback_substream)
6079 			hdspm_stop_audio(hdspm);
6080 
6081 		hdspm->capture_pid = current->pid;
6082 		hdspm->capture_substream = substream;
6083 	}
6084 
6085 	spin_unlock_irq(&hdspm->lock);
6086 
6087 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6088 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6089 
6090 	switch (hdspm->io_type) {
6091 	case AIO:
6092 	case RayDAT:
6093 		snd_pcm_hw_constraint_minmax(runtime,
6094 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6095 					     32, 4096);
6096 		/* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
6097 		snd_pcm_hw_constraint_single(runtime,
6098 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6099 					     16384);
6100 		break;
6101 
6102 	default:
6103 		snd_pcm_hw_constraint_minmax(runtime,
6104 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6105 					     64, 8192);
6106 		snd_pcm_hw_constraint_single(runtime,
6107 					     SNDRV_PCM_HW_PARAM_PERIODS, 2);
6108 		break;
6109 	}
6110 
6111 	if (AES32 == hdspm->io_type) {
6112 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6113 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6114 				&hdspm_hw_constraints_aes32_sample_rates);
6115 	} else {
6116 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6117 				(playback ?
6118 				 snd_hdspm_hw_rule_rate_out_channels :
6119 				 snd_hdspm_hw_rule_rate_in_channels), hdspm,
6120 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6121 	}
6122 
6123 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6124 			(playback ? snd_hdspm_hw_rule_out_channels :
6125 			 snd_hdspm_hw_rule_in_channels), hdspm,
6126 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6127 
6128 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6129 			(playback ? snd_hdspm_hw_rule_out_channels_rate :
6130 			 snd_hdspm_hw_rule_in_channels_rate), hdspm,
6131 			SNDRV_PCM_HW_PARAM_RATE, -1);
6132 
6133 	return 0;
6134 }
6135 
6136 static int snd_hdspm_release(struct snd_pcm_substream *substream)
6137 {
6138 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6139 	bool playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
6140 
6141 	spin_lock_irq(&hdspm->lock);
6142 
6143 	if (playback) {
6144 		hdspm->playback_pid = -1;
6145 		hdspm->playback_substream = NULL;
6146 	} else {
6147 		hdspm->capture_pid = -1;
6148 		hdspm->capture_substream = NULL;
6149 	}
6150 
6151 	spin_unlock_irq(&hdspm->lock);
6152 
6153 	return 0;
6154 }
6155 
6156 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6157 {
6158 	/* we have nothing to initialize but the call is required */
6159 	return 0;
6160 }
6161 
6162 static inline int copy_u32_le(void __user *dest, void __iomem *src)
6163 {
6164 	u32 val = readl(src);
6165 	return copy_to_user(dest, &val, 4);
6166 }
6167 
6168 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
6169 		unsigned int cmd, unsigned long arg)
6170 {
6171 	void __user *argp = (void __user *)arg;
6172 	struct hdspm *hdspm = hw->private_data;
6173 	struct hdspm_mixer_ioctl mixer;
6174 	struct hdspm_config info;
6175 	struct hdspm_status status;
6176 	struct hdspm_version hdspm_version;
6177 	struct hdspm_peak_rms *levels;
6178 	struct hdspm_ltc ltc;
6179 	unsigned int statusregister;
6180 	long unsigned int s;
6181 	int i = 0;
6182 
6183 	switch (cmd) {
6184 
6185 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
6186 		levels = &hdspm->peak_rms;
6187 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
6188 			levels->input_peaks[i] =
6189 				readl(hdspm->iobase +
6190 						HDSPM_MADI_INPUT_PEAK + i*4);
6191 			levels->playback_peaks[i] =
6192 				readl(hdspm->iobase +
6193 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
6194 			levels->output_peaks[i] =
6195 				readl(hdspm->iobase +
6196 						HDSPM_MADI_OUTPUT_PEAK + i*4);
6197 
6198 			levels->input_rms[i] =
6199 				((uint64_t) readl(hdspm->iobase +
6200 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6201 				(uint64_t) readl(hdspm->iobase +
6202 						HDSPM_MADI_INPUT_RMS_L + i*4);
6203 			levels->playback_rms[i] =
6204 				((uint64_t)readl(hdspm->iobase +
6205 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6206 				(uint64_t)readl(hdspm->iobase +
6207 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6208 			levels->output_rms[i] =
6209 				((uint64_t)readl(hdspm->iobase +
6210 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6211 				(uint64_t)readl(hdspm->iobase +
6212 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
6213 		}
6214 
6215 		if (hdspm->system_sample_rate > 96000) {
6216 			levels->speed = qs;
6217 		} else if (hdspm->system_sample_rate > 48000) {
6218 			levels->speed = ds;
6219 		} else {
6220 			levels->speed = ss;
6221 		}
6222 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6223 
6224 		s = copy_to_user(argp, levels, sizeof(*levels));
6225 		if (0 != s) {
6226 			/* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu
6227 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6228 			 */
6229 			return -EFAULT;
6230 		}
6231 		break;
6232 
6233 	case SNDRV_HDSPM_IOCTL_GET_LTC:
6234 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6235 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6236 		if (i & HDSPM_TCO1_LTC_Input_valid) {
6237 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6238 				HDSPM_TCO1_LTC_Format_MSB)) {
6239 			case 0:
6240 				ltc.format = fps_24;
6241 				break;
6242 			case HDSPM_TCO1_LTC_Format_LSB:
6243 				ltc.format = fps_25;
6244 				break;
6245 			case HDSPM_TCO1_LTC_Format_MSB:
6246 				ltc.format = fps_2997;
6247 				break;
6248 			default:
6249 				ltc.format = fps_30;
6250 				break;
6251 			}
6252 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
6253 				ltc.frame = drop_frame;
6254 			} else {
6255 				ltc.frame = full_frame;
6256 			}
6257 		} else {
6258 			ltc.format = format_invalid;
6259 			ltc.frame = frame_invalid;
6260 		}
6261 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6262 			ltc.input_format = ntsc;
6263 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6264 			ltc.input_format = pal;
6265 		} else {
6266 			ltc.input_format = no_video;
6267 		}
6268 
6269 		s = copy_to_user(argp, &ltc, sizeof(ltc));
6270 		if (0 != s) {
6271 			/*
6272 			  dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6273 			return -EFAULT;
6274 		}
6275 
6276 		break;
6277 
6278 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6279 
6280 		memset(&info, 0, sizeof(info));
6281 		spin_lock_irq(&hdspm->lock);
6282 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6283 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6284 
6285 		info.system_sample_rate = hdspm->system_sample_rate;
6286 		info.autosync_sample_rate =
6287 			hdspm_external_sample_rate(hdspm);
6288 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6289 		info.clock_source = hdspm_clock_source(hdspm);
6290 		info.autosync_ref = hdspm_autosync_ref(hdspm);
6291 		info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
6292 		info.passthru = 0;
6293 		spin_unlock_irq(&hdspm->lock);
6294 		if (copy_to_user(argp, &info, sizeof(info)))
6295 			return -EFAULT;
6296 		break;
6297 
6298 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
6299 		memset(&status, 0, sizeof(status));
6300 
6301 		status.card_type = hdspm->io_type;
6302 
6303 		status.autosync_source = hdspm_autosync_ref(hdspm);
6304 
6305 		status.card_clock = 110069313433624ULL;
6306 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6307 
6308 		switch (hdspm->io_type) {
6309 		case MADI:
6310 		case MADIface:
6311 			status.card_specific.madi.sync_wc =
6312 				hdspm_wc_sync_check(hdspm);
6313 			status.card_specific.madi.sync_madi =
6314 				hdspm_madi_sync_check(hdspm);
6315 			status.card_specific.madi.sync_tco =
6316 				hdspm_tco_sync_check(hdspm);
6317 			status.card_specific.madi.sync_in =
6318 				hdspm_sync_in_sync_check(hdspm);
6319 
6320 			statusregister =
6321 				hdspm_read(hdspm, HDSPM_statusRegister);
6322 			status.card_specific.madi.madi_input =
6323 				(statusregister & HDSPM_AB_int) ? 1 : 0;
6324 			status.card_specific.madi.channel_format =
6325 				(statusregister & HDSPM_RX_64ch) ? 1 : 0;
6326 			/* TODO: Mac driver sets it when f_s>48kHz */
6327 			status.card_specific.madi.frame_format = 0;
6328 
6329 		default:
6330 			break;
6331 		}
6332 
6333 		if (copy_to_user(argp, &status, sizeof(status)))
6334 			return -EFAULT;
6335 
6336 
6337 		break;
6338 
6339 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
6340 		memset(&hdspm_version, 0, sizeof(hdspm_version));
6341 
6342 		hdspm_version.card_type = hdspm->io_type;
6343 		strlcpy(hdspm_version.cardname, hdspm->card_name,
6344 				sizeof(hdspm_version.cardname));
6345 		hdspm_version.serial = hdspm->serial;
6346 		hdspm_version.firmware_rev = hdspm->firmware_rev;
6347 		hdspm_version.addons = 0;
6348 		if (hdspm->tco)
6349 			hdspm_version.addons |= HDSPM_ADDON_TCO;
6350 
6351 		if (copy_to_user(argp, &hdspm_version,
6352 					sizeof(hdspm_version)))
6353 			return -EFAULT;
6354 		break;
6355 
6356 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
6357 		if (copy_from_user(&mixer, argp, sizeof(mixer)))
6358 			return -EFAULT;
6359 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6360 				 sizeof(*mixer.mixer)))
6361 			return -EFAULT;
6362 		break;
6363 
6364 	default:
6365 		return -EINVAL;
6366 	}
6367 	return 0;
6368 }
6369 
6370 static const struct snd_pcm_ops snd_hdspm_ops = {
6371 	.open = snd_hdspm_open,
6372 	.close = snd_hdspm_release,
6373 	.ioctl = snd_hdspm_ioctl,
6374 	.hw_params = snd_hdspm_hw_params,
6375 	.hw_free = snd_hdspm_hw_free,
6376 	.prepare = snd_hdspm_prepare,
6377 	.trigger = snd_hdspm_trigger,
6378 	.pointer = snd_hdspm_hw_pointer,
6379 	.page = snd_pcm_sgbuf_ops_page,
6380 };
6381 
6382 static int snd_hdspm_create_hwdep(struct snd_card *card,
6383 				  struct hdspm *hdspm)
6384 {
6385 	struct snd_hwdep *hw;
6386 	int err;
6387 
6388 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6389 	if (err < 0)
6390 		return err;
6391 
6392 	hdspm->hwdep = hw;
6393 	hw->private_data = hdspm;
6394 	strcpy(hw->name, "HDSPM hwdep interface");
6395 
6396 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6397 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6398 	hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6399 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6400 
6401 	return 0;
6402 }
6403 
6404 
6405 /*------------------------------------------------------------
6406    memory interface
6407  ------------------------------------------------------------*/
6408 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6409 {
6410 	int err;
6411 	struct snd_pcm *pcm;
6412 	size_t wanted;
6413 
6414 	pcm = hdspm->pcm;
6415 
6416 	wanted = HDSPM_DMA_AREA_BYTES;
6417 
6418 	err =
6419 	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6420 						   SNDRV_DMA_TYPE_DEV_SG,
6421 						   snd_dma_pci_data(hdspm->pci),
6422 						   wanted,
6423 						   wanted);
6424 	if (err < 0) {
6425 		dev_dbg(hdspm->card->dev,
6426 			"Could not preallocate %zd Bytes\n", wanted);
6427 
6428 		return err;
6429 	} else
6430 		dev_dbg(hdspm->card->dev,
6431 			" Preallocated %zd Bytes\n", wanted);
6432 
6433 	return 0;
6434 }
6435 
6436 
6437 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6438 			    struct snd_pcm_substream *substream,
6439 			     unsigned int reg, int channels)
6440 {
6441 	int i;
6442 
6443 	/* continuous memory segment */
6444 	for (i = 0; i < (channels * 16); i++)
6445 		hdspm_write(hdspm, reg + 4 * i,
6446 				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6447 }
6448 
6449 
6450 /* ------------- ALSA Devices ---------------------------- */
6451 static int snd_hdspm_create_pcm(struct snd_card *card,
6452 				struct hdspm *hdspm)
6453 {
6454 	struct snd_pcm *pcm;
6455 	int err;
6456 
6457 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6458 	if (err < 0)
6459 		return err;
6460 
6461 	hdspm->pcm = pcm;
6462 	pcm->private_data = hdspm;
6463 	strcpy(pcm->name, hdspm->card_name);
6464 
6465 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6466 			&snd_hdspm_ops);
6467 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6468 			&snd_hdspm_ops);
6469 
6470 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6471 
6472 	err = snd_hdspm_preallocate_memory(hdspm);
6473 	if (err < 0)
6474 		return err;
6475 
6476 	return 0;
6477 }
6478 
6479 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6480 {
6481 	int i;
6482 
6483 	for (i = 0; i < hdspm->midiPorts; i++)
6484 		snd_hdspm_flush_midi_input(hdspm, i);
6485 }
6486 
6487 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6488 					 struct hdspm *hdspm)
6489 {
6490 	int err, i;
6491 
6492 	dev_dbg(card->dev, "Create card...\n");
6493 	err = snd_hdspm_create_pcm(card, hdspm);
6494 	if (err < 0)
6495 		return err;
6496 
6497 	i = 0;
6498 	while (i < hdspm->midiPorts) {
6499 		err = snd_hdspm_create_midi(card, hdspm, i);
6500 		if (err < 0) {
6501 			return err;
6502 		}
6503 		i++;
6504 	}
6505 
6506 	err = snd_hdspm_create_controls(card, hdspm);
6507 	if (err < 0)
6508 		return err;
6509 
6510 	err = snd_hdspm_create_hwdep(card, hdspm);
6511 	if (err < 0)
6512 		return err;
6513 
6514 	dev_dbg(card->dev, "proc init...\n");
6515 	snd_hdspm_proc_init(hdspm);
6516 
6517 	hdspm->system_sample_rate = -1;
6518 	hdspm->last_external_sample_rate = -1;
6519 	hdspm->last_internal_sample_rate = -1;
6520 	hdspm->playback_pid = -1;
6521 	hdspm->capture_pid = -1;
6522 	hdspm->capture_substream = NULL;
6523 	hdspm->playback_substream = NULL;
6524 
6525 	dev_dbg(card->dev, "Set defaults...\n");
6526 	err = snd_hdspm_set_defaults(hdspm);
6527 	if (err < 0)
6528 		return err;
6529 
6530 	dev_dbg(card->dev, "Update mixer controls...\n");
6531 	hdspm_update_simple_mixer_controls(hdspm);
6532 
6533 	dev_dbg(card->dev, "Initializeing complete ???\n");
6534 
6535 	err = snd_card_register(card);
6536 	if (err < 0) {
6537 		dev_err(card->dev, "error registering card\n");
6538 		return err;
6539 	}
6540 
6541 	dev_dbg(card->dev, "... yes now\n");
6542 
6543 	return 0;
6544 }
6545 
6546 static int snd_hdspm_create(struct snd_card *card,
6547 			    struct hdspm *hdspm)
6548 {
6549 
6550 	struct pci_dev *pci = hdspm->pci;
6551 	int err;
6552 	unsigned long io_extent;
6553 
6554 	hdspm->irq = -1;
6555 	hdspm->card = card;
6556 
6557 	spin_lock_init(&hdspm->lock);
6558 
6559 	pci_read_config_word(hdspm->pci,
6560 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6561 
6562 	strcpy(card->mixername, "Xilinx FPGA");
6563 	strcpy(card->driver, "HDSPM");
6564 
6565 	switch (hdspm->firmware_rev) {
6566 	case HDSPM_RAYDAT_REV:
6567 		hdspm->io_type = RayDAT;
6568 		hdspm->card_name = "RME RayDAT";
6569 		hdspm->midiPorts = 2;
6570 		break;
6571 	case HDSPM_AIO_REV:
6572 		hdspm->io_type = AIO;
6573 		hdspm->card_name = "RME AIO";
6574 		hdspm->midiPorts = 1;
6575 		break;
6576 	case HDSPM_MADIFACE_REV:
6577 		hdspm->io_type = MADIface;
6578 		hdspm->card_name = "RME MADIface";
6579 		hdspm->midiPorts = 1;
6580 		break;
6581 	default:
6582 		if ((hdspm->firmware_rev == 0xf0) ||
6583 			((hdspm->firmware_rev >= 0xe6) &&
6584 					(hdspm->firmware_rev <= 0xea))) {
6585 			hdspm->io_type = AES32;
6586 			hdspm->card_name = "RME AES32";
6587 			hdspm->midiPorts = 2;
6588 		} else if ((hdspm->firmware_rev == 0xd2) ||
6589 			((hdspm->firmware_rev >= 0xc8)  &&
6590 				(hdspm->firmware_rev <= 0xcf))) {
6591 			hdspm->io_type = MADI;
6592 			hdspm->card_name = "RME MADI";
6593 			hdspm->midiPorts = 3;
6594 		} else {
6595 			dev_err(card->dev,
6596 				"unknown firmware revision %x\n",
6597 				hdspm->firmware_rev);
6598 			return -ENODEV;
6599 		}
6600 	}
6601 
6602 	err = pci_enable_device(pci);
6603 	if (err < 0)
6604 		return err;
6605 
6606 	pci_set_master(hdspm->pci);
6607 
6608 	err = pci_request_regions(pci, "hdspm");
6609 	if (err < 0)
6610 		return err;
6611 
6612 	hdspm->port = pci_resource_start(pci, 0);
6613 	io_extent = pci_resource_len(pci, 0);
6614 
6615 	dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n",
6616 			hdspm->port, hdspm->port + io_extent - 1);
6617 
6618 	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6619 	if (!hdspm->iobase) {
6620 		dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n",
6621 				hdspm->port, hdspm->port + io_extent - 1);
6622 		return -EBUSY;
6623 	}
6624 	dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n",
6625 			(unsigned long)hdspm->iobase, hdspm->port,
6626 			hdspm->port + io_extent - 1);
6627 
6628 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6629 			IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6630 		dev_err(card->dev, "unable to use IRQ %d\n", pci->irq);
6631 		return -EBUSY;
6632 	}
6633 
6634 	dev_dbg(card->dev, "use IRQ %d\n", pci->irq);
6635 
6636 	hdspm->irq = pci->irq;
6637 
6638 	dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n",
6639 		sizeof(*hdspm->mixer));
6640 	hdspm->mixer = kzalloc(sizeof(*hdspm->mixer), GFP_KERNEL);
6641 	if (!hdspm->mixer)
6642 		return -ENOMEM;
6643 
6644 	hdspm->port_names_in = NULL;
6645 	hdspm->port_names_out = NULL;
6646 
6647 	switch (hdspm->io_type) {
6648 	case AES32:
6649 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6650 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6651 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6652 
6653 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6654 			channel_map_aes32;
6655 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6656 			channel_map_aes32;
6657 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6658 			channel_map_aes32;
6659 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6660 			texts_ports_aes32;
6661 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6662 			texts_ports_aes32;
6663 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6664 			texts_ports_aes32;
6665 
6666 		hdspm->max_channels_out = hdspm->max_channels_in =
6667 			AES32_CHANNELS;
6668 		hdspm->port_names_in = hdspm->port_names_out =
6669 			texts_ports_aes32;
6670 		hdspm->channel_map_in = hdspm->channel_map_out =
6671 			channel_map_aes32;
6672 
6673 		break;
6674 
6675 	case MADI:
6676 	case MADIface:
6677 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6678 			MADI_SS_CHANNELS;
6679 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6680 			MADI_DS_CHANNELS;
6681 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6682 			MADI_QS_CHANNELS;
6683 
6684 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6685 			channel_map_unity_ss;
6686 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6687 			channel_map_unity_ss;
6688 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6689 			channel_map_unity_ss;
6690 
6691 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6692 			texts_ports_madi;
6693 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6694 			texts_ports_madi;
6695 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6696 			texts_ports_madi;
6697 		break;
6698 
6699 	case AIO:
6700 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6701 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6702 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6703 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6704 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6705 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6706 
6707 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6708 			dev_info(card->dev, "AEB input board found\n");
6709 			hdspm->ss_in_channels += 4;
6710 			hdspm->ds_in_channels += 4;
6711 			hdspm->qs_in_channels += 4;
6712 		}
6713 
6714 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) {
6715 			dev_info(card->dev, "AEB output board found\n");
6716 			hdspm->ss_out_channels += 4;
6717 			hdspm->ds_out_channels += 4;
6718 			hdspm->qs_out_channels += 4;
6719 		}
6720 
6721 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6722 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6723 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6724 
6725 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6726 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6727 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6728 
6729 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6730 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6731 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6732 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6733 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6734 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6735 
6736 		break;
6737 
6738 	case RayDAT:
6739 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6740 			RAYDAT_SS_CHANNELS;
6741 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6742 			RAYDAT_DS_CHANNELS;
6743 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6744 			RAYDAT_QS_CHANNELS;
6745 
6746 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6747 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6748 
6749 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6750 			channel_map_raydat_ss;
6751 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6752 			channel_map_raydat_ds;
6753 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6754 			channel_map_raydat_qs;
6755 		hdspm->channel_map_in = hdspm->channel_map_out =
6756 			channel_map_raydat_ss;
6757 
6758 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6759 			texts_ports_raydat_ss;
6760 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6761 			texts_ports_raydat_ds;
6762 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6763 			texts_ports_raydat_qs;
6764 
6765 
6766 		break;
6767 
6768 	}
6769 
6770 	/* TCO detection */
6771 	switch (hdspm->io_type) {
6772 	case AIO:
6773 	case RayDAT:
6774 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6775 				HDSPM_s2_tco_detect) {
6776 			hdspm->midiPorts++;
6777 			hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL);
6778 			if (hdspm->tco)
6779 				hdspm_tco_write(hdspm);
6780 
6781 			dev_info(card->dev, "AIO/RayDAT TCO module found\n");
6782 		} else {
6783 			hdspm->tco = NULL;
6784 		}
6785 		break;
6786 
6787 	case MADI:
6788 	case AES32:
6789 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6790 			hdspm->midiPorts++;
6791 			hdspm->tco = kzalloc(sizeof(*hdspm->tco), GFP_KERNEL);
6792 			if (hdspm->tco)
6793 				hdspm_tco_write(hdspm);
6794 
6795 			dev_info(card->dev, "MADI/AES TCO module found\n");
6796 		} else {
6797 			hdspm->tco = NULL;
6798 		}
6799 		break;
6800 
6801 	default:
6802 		hdspm->tco = NULL;
6803 	}
6804 
6805 	/* texts */
6806 	switch (hdspm->io_type) {
6807 	case AES32:
6808 		if (hdspm->tco) {
6809 			hdspm->texts_autosync = texts_autosync_aes_tco;
6810 			hdspm->texts_autosync_items =
6811 				ARRAY_SIZE(texts_autosync_aes_tco);
6812 		} else {
6813 			hdspm->texts_autosync = texts_autosync_aes;
6814 			hdspm->texts_autosync_items =
6815 				ARRAY_SIZE(texts_autosync_aes);
6816 		}
6817 		break;
6818 
6819 	case MADI:
6820 		if (hdspm->tco) {
6821 			hdspm->texts_autosync = texts_autosync_madi_tco;
6822 			hdspm->texts_autosync_items = 4;
6823 		} else {
6824 			hdspm->texts_autosync = texts_autosync_madi;
6825 			hdspm->texts_autosync_items = 3;
6826 		}
6827 		break;
6828 
6829 	case MADIface:
6830 
6831 		break;
6832 
6833 	case RayDAT:
6834 		if (hdspm->tco) {
6835 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6836 			hdspm->texts_autosync_items = 9;
6837 		} else {
6838 			hdspm->texts_autosync = texts_autosync_raydat;
6839 			hdspm->texts_autosync_items = 8;
6840 		}
6841 		break;
6842 
6843 	case AIO:
6844 		if (hdspm->tco) {
6845 			hdspm->texts_autosync = texts_autosync_aio_tco;
6846 			hdspm->texts_autosync_items = 6;
6847 		} else {
6848 			hdspm->texts_autosync = texts_autosync_aio;
6849 			hdspm->texts_autosync_items = 5;
6850 		}
6851 		break;
6852 
6853 	}
6854 
6855 	tasklet_init(&hdspm->midi_tasklet,
6856 			hdspm_midi_tasklet, (unsigned long) hdspm);
6857 
6858 
6859 	if (hdspm->io_type != MADIface) {
6860 		hdspm->serial = (hdspm_read(hdspm,
6861 				HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6862 		/* id contains either a user-provided value or the default
6863 		 * NULL. If it's the default, we're safe to
6864 		 * fill card->id with the serial number.
6865 		 *
6866 		 * If the serial number is 0xFFFFFF, then we're dealing with
6867 		 * an old PCI revision that comes without a sane number. In
6868 		 * this case, we don't set card->id to avoid collisions
6869 		 * when running with multiple cards.
6870 		 */
6871 		if (!id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6872 			snprintf(card->id, sizeof(card->id),
6873 				 "HDSPMx%06x", hdspm->serial);
6874 			snd_card_set_id(card, card->id);
6875 		}
6876 	}
6877 
6878 	dev_dbg(card->dev, "create alsa devices.\n");
6879 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6880 	if (err < 0)
6881 		return err;
6882 
6883 	snd_hdspm_initialize_midi_flush(hdspm);
6884 
6885 	return 0;
6886 }
6887 
6888 
6889 static int snd_hdspm_free(struct hdspm * hdspm)
6890 {
6891 
6892 	if (hdspm->port) {
6893 
6894 		/* stop th audio, and cancel all interrupts */
6895 		hdspm->control_register &=
6896 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6897 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6898 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6899 		hdspm_write(hdspm, HDSPM_controlRegister,
6900 			    hdspm->control_register);
6901 	}
6902 
6903 	if (hdspm->irq >= 0)
6904 		free_irq(hdspm->irq, (void *) hdspm);
6905 
6906 	kfree(hdspm->mixer);
6907 	iounmap(hdspm->iobase);
6908 
6909 	if (hdspm->port)
6910 		pci_release_regions(hdspm->pci);
6911 
6912 	pci_disable_device(hdspm->pci);
6913 	return 0;
6914 }
6915 
6916 
6917 static void snd_hdspm_card_free(struct snd_card *card)
6918 {
6919 	struct hdspm *hdspm = card->private_data;
6920 
6921 	if (hdspm)
6922 		snd_hdspm_free(hdspm);
6923 }
6924 
6925 
6926 static int snd_hdspm_probe(struct pci_dev *pci,
6927 			   const struct pci_device_id *pci_id)
6928 {
6929 	static int dev;
6930 	struct hdspm *hdspm;
6931 	struct snd_card *card;
6932 	int err;
6933 
6934 	if (dev >= SNDRV_CARDS)
6935 		return -ENODEV;
6936 	if (!enable[dev]) {
6937 		dev++;
6938 		return -ENOENT;
6939 	}
6940 
6941 	err = snd_card_new(&pci->dev, index[dev], id[dev],
6942 			   THIS_MODULE, sizeof(*hdspm), &card);
6943 	if (err < 0)
6944 		return err;
6945 
6946 	hdspm = card->private_data;
6947 	card->private_free = snd_hdspm_card_free;
6948 	hdspm->dev = dev;
6949 	hdspm->pci = pci;
6950 
6951 	err = snd_hdspm_create(card, hdspm);
6952 	if (err < 0)
6953 		goto free_card;
6954 
6955 	if (hdspm->io_type != MADIface) {
6956 		snprintf(card->shortname, sizeof(card->shortname), "%s_%x",
6957 			hdspm->card_name, hdspm->serial);
6958 		snprintf(card->longname, sizeof(card->longname),
6959 			 "%s S/N 0x%x at 0x%lx, irq %d",
6960 			 hdspm->card_name, hdspm->serial,
6961 			 hdspm->port, hdspm->irq);
6962 	} else {
6963 		snprintf(card->shortname, sizeof(card->shortname), "%s",
6964 			 hdspm->card_name);
6965 		snprintf(card->longname, sizeof(card->longname),
6966 			 "%s at 0x%lx, irq %d",
6967 			 hdspm->card_name, hdspm->port, hdspm->irq);
6968 	}
6969 
6970 	err = snd_card_register(card);
6971 	if (err < 0)
6972 		goto free_card;
6973 
6974 	pci_set_drvdata(pci, card);
6975 
6976 	dev++;
6977 	return 0;
6978 
6979 free_card:
6980 	snd_card_free(card);
6981 	return err;
6982 }
6983 
6984 static void snd_hdspm_remove(struct pci_dev *pci)
6985 {
6986 	snd_card_free(pci_get_drvdata(pci));
6987 }
6988 
6989 static struct pci_driver hdspm_driver = {
6990 	.name = KBUILD_MODNAME,
6991 	.id_table = snd_hdspm_ids,
6992 	.probe = snd_hdspm_probe,
6993 	.remove = snd_hdspm_remove,
6994 };
6995 
6996 module_pci_driver(hdspm_driver);
6997