xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision 588b48ca)
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41 
42 /* *************    Register Documentation   *******************************************************
43  *
44  * Work in progress! Documentation is based on the code in this file.
45  *
46  * --------- HDSPM_controlRegister ---------
47  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
48  * :||||.||||:||||.||||:||||.||||:||||.||||:
49  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
50  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
51  * :||||.||||:||||.||||:||||.||||:||||.||||:
52  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
53  * :    .    :    .    :    .    :  x .    :  HDSPM_AudioInterruptEnable \_ setting both bits
54  * :    .    :    .    :    .    :    .   x:  HDSPM_Start                /  enables audio IO
55  * :    .    :    .    :    .    :   x.    :  HDSPM_ClockModeMaster - 1: Master, 0: Slave
56  * :    .    :    .    :    .    :    .210 :  HDSPM_LatencyMask - 3 Bit value for latency
57  * :    .    :    .    :    .    :    .    :      0:64, 1:128, 2:256, 3:512,
58  * :    .    :    .    :    .    :    .    :      4:1024, 5:2048, 6:4096, 7:8192
59  * :x   .    :    .    :    .   x:xx  .    :  HDSPM_FrequencyMask
60  * :    .    :    .    :    .    :10  .    :  HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=??
61  * :    .    :    .    :    .   x:    .    :  <MADI> HDSPM_DoubleSpeed
62  * :x   .    :    .    :    .    :    .    :  <MADI> HDSPM_QuadSpeed
63  * :    .  3 :    .  10:  2 .    :    .    :  HDSPM_SyncRefMask :
64  * :    .    :    .   x:    .    :    .    :  HDSPM_SyncRef0
65  * :    .    :    .  x :    .    :    .    :  HDSPM_SyncRef1
66  * :    .    :    .    :  x .    :    .    :  <AES32> HDSPM_SyncRef2
67  * :    .  x :    .    :    .    :    .    :  <AES32> HDSPM_SyncRef3
68  * :    .    :    .  10:    .    :    .    :  <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn
69  * :    .  3 :    .  10:  2 .    :    .    :  <AES32>  0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn?
70  * :    .  x :    .    :    .    :    .    :  <MADIe> HDSPe_FLOAT_FORMAT
71  * :    .    :    .    : x  .    :    .    :  <MADI> HDSPM_InputSelect0 : 0=optical,1=coax
72  * :    .    :    .    :x   .    :    .    :  <MADI> HDSPM_InputSelect1
73  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
74  * :    .    :    .    :    . x  :    .    :  <MADI> HDSPM_TX_64ch
75  * :    .    :    .    :    . x  :    .    :  <AES32> HDSPM_Emphasis
76  * :    .    :    .    :    .x   :    .    :  <MADI> HDSPM_AutoInp
77  * :    .    :    . x  :    .    :    .    :  <MADI> HDSPM_SMUX
78  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
79  * :    .    :   x.    :    .    :    .    :  <MADI> HDSPM_taxi_reset
80  * :    .   x:    .    :    .    :    .    :  <MADI> HDSPM_LineOut
81  * :    .   x:    .    :    .    :    .    :  <AES32> ??????????????????
82  * :    .    :   x.    :    .    :    .    :  <AES32> HDSPM_WCK48
83  * :    .    :    .    :    .x   :    .    :  <AES32> HDSPM_Dolby
84  * :    .    : x  .    :    .    :    .    :  HDSPM_Midi0InterruptEnable
85  * :    .    :x   .    :    .    :    .    :  HDSPM_Midi1InterruptEnable
86  * :    .    :  x .    :    .    :    .    :  HDSPM_Midi2InterruptEnable
87  * :    . x  :    .    :    .    :    .    :  <MADI> HDSPM_Midi3InterruptEnable
88  * :    . x  :    .    :    .    :    .    :  <AES32> HDSPM_DS_DoubleWire
89  * :    .x   :    .    :    .    :    .    :  <AES32> HDSPM_QS_DoubleWire
90  * :   x.    :    .    :    .    :    .    :  <AES32> HDSPM_QS_QuadWire
91  * :    .    :    .    :    .  x :    .    :  <AES32> HDSPM_Professional
92  * : x  .    :    .    :    .    :    .    :  HDSPM_wclk_sel
93  * :    .    :    .    :    .    :    .    :
94  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
95  * :||||.||||:||||.||||:||||.||||:||||.||||:
96  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
97  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
98  * :||||.||||:||||.||||:||||.||||:||||.||||:
99  * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit
100  *
101  *
102  *
103  * AIO / RayDAT only
104  *
105  * ------------ HDSPM_WR_SETTINGS ----------
106  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
107  * :1098.7654:3210.9876:5432.1098:7654.3210:
108  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
109  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
110  * :||||.||||:||||.||||:||||.||||:||||.||||:
111  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
112  * :    .    :    .    :    .    :    .   x: HDSPM_c0Master 1: Master, 0: Slave
113  * :    .    :    .    :    .    :    .  x : HDSPM_c0_SyncRef0
114  * :    .    :    .    :    .    :    . x  : HDSPM_c0_SyncRef1
115  * :    .    :    .    :    .    :    .x   : HDSPM_c0_SyncRef2
116  * :    .    :    .    :    .    :   x.    : HDSPM_c0_SyncRef3
117  * :    .    :    .    :    .    :   3.210 : HDSPM_c0_SyncRefMask:
118  * :    .    :    .    :    .    :    .    :  RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4,
119  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
120  * :    .    :    .    :    .    :    .    :  AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT,
121  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
122  * :    .    :    .    :    .    :    .    :
123  * :    .    :    .    :    .    :    .    :
124  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
125  * :1098.7654:3210.9876:5432.1098:7654.3210:
126  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
127  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
128  * :||||.||||:||||.||||:||||.||||:||||.||||:
129  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
130  *
131  */
132 #include <linux/init.h>
133 #include <linux/delay.h>
134 #include <linux/interrupt.h>
135 #include <linux/module.h>
136 #include <linux/slab.h>
137 #include <linux/pci.h>
138 #include <linux/math64.h>
139 #include <asm/io.h>
140 
141 #include <sound/core.h>
142 #include <sound/control.h>
143 #include <sound/pcm.h>
144 #include <sound/pcm_params.h>
145 #include <sound/info.h>
146 #include <sound/asoundef.h>
147 #include <sound/rawmidi.h>
148 #include <sound/hwdep.h>
149 #include <sound/initval.h>
150 
151 #include <sound/hdspm.h>
152 
153 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
154 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
155 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
156 
157 module_param_array(index, int, NULL, 0444);
158 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
159 
160 module_param_array(id, charp, NULL, 0444);
161 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
162 
163 module_param_array(enable, bool, NULL, 0444);
164 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
165 
166 
167 MODULE_AUTHOR
168 (
169 	"Winfried Ritsch <ritsch_AT_iem.at>, "
170 	"Paul Davis <paul@linuxaudiosystems.com>, "
171 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
172 	"Remy Bruno <remy.bruno@trinnov.com>, "
173 	"Florian Faber <faberman@linuxproaudio.org>, "
174 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
175 );
176 MODULE_DESCRIPTION("RME HDSPM");
177 MODULE_LICENSE("GPL");
178 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
179 
180 /* --- Write registers. ---
181   These are defined as byte-offsets from the iobase value.  */
182 
183 #define HDSPM_WR_SETTINGS             0
184 #define HDSPM_outputBufferAddress    32
185 #define HDSPM_inputBufferAddress     36
186 #define HDSPM_controlRegister	     64
187 #define HDSPM_interruptConfirmation  96
188 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
189 #define HDSPM_freqReg                256  /* for setting arbitrary clock values (DDS feature) */
190 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
191 #define HDSPM_midiDataOut1	     356
192 #define HDSPM_eeprom_wr		     384  /* for AES32 */
193 
194 /* DMA enable for 64 channels, only Bit 0 is relevant */
195 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
196 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
197 
198 /* 16 page addresses for each of the 64 channels DMA buffer in and out
199    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
200 #define HDSPM_pageAddressBufferOut       8192
201 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
202 
203 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
204 
205 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
206 
207 /* --- Read registers. ---
208    These are defined as byte-offsets from the iobase value */
209 #define HDSPM_statusRegister    0
210 /*#define HDSPM_statusRegister2  96 */
211 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
212  * offset 192, for AES32 *and* MADI
213  * => need to check that offset 192 is working on MADI */
214 #define HDSPM_statusRegister2  192
215 #define HDSPM_timecodeRegister 128
216 
217 /* AIO, RayDAT */
218 #define HDSPM_RD_STATUS_0 0
219 #define HDSPM_RD_STATUS_1 64
220 #define HDSPM_RD_STATUS_2 128
221 #define HDSPM_RD_STATUS_3 192
222 
223 #define HDSPM_RD_TCO           256
224 #define HDSPM_RD_PLL_FREQ      512
225 #define HDSPM_WR_TCO           128
226 
227 #define HDSPM_TCO1_TCO_lock			0x00000001
228 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
229 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
230 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
231 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
232 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
233 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
234 
235 #define HDSPM_TCO1_set_TC			0x00000100
236 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
237 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
238 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
239 
240 #define HDSPM_TCO2_TC_run			0x00010000
241 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
242 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
243 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
244 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
245 #define HDSPM_TCO2_set_jam_sync			0x00200000
246 #define HDSPM_TCO2_set_flywheel			0x00400000
247 
248 #define HDSPM_TCO2_set_01_4			0x01000000
249 #define HDSPM_TCO2_set_pull_down		0x02000000
250 #define HDSPM_TCO2_set_pull_up			0x04000000
251 #define HDSPM_TCO2_set_freq			0x08000000
252 #define HDSPM_TCO2_set_term_75R			0x10000000
253 #define HDSPM_TCO2_set_input_LSB		0x20000000
254 #define HDSPM_TCO2_set_input_MSB		0x40000000
255 #define HDSPM_TCO2_set_freq_from_app		0x80000000
256 
257 
258 #define HDSPM_midiDataOut0    352
259 #define HDSPM_midiDataOut1    356
260 #define HDSPM_midiDataOut2    368
261 
262 #define HDSPM_midiDataIn0     360
263 #define HDSPM_midiDataIn1     364
264 #define HDSPM_midiDataIn2     372
265 #define HDSPM_midiDataIn3     376
266 
267 /* status is data bytes in MIDI-FIFO (0-128) */
268 #define HDSPM_midiStatusOut0  384
269 #define HDSPM_midiStatusOut1  388
270 #define HDSPM_midiStatusOut2  400
271 
272 #define HDSPM_midiStatusIn0   392
273 #define HDSPM_midiStatusIn1   396
274 #define HDSPM_midiStatusIn2   404
275 #define HDSPM_midiStatusIn3   408
276 
277 
278 /* the meters are regular i/o-mapped registers, but offset
279    considerably from the rest. the peak registers are reset
280    when read; the least-significant 4 bits are full-scale counters;
281    the actual peak value is in the most-significant 24 bits.
282 */
283 
284 #define HDSPM_MADI_INPUT_PEAK		4096
285 #define HDSPM_MADI_PLAYBACK_PEAK	4352
286 #define HDSPM_MADI_OUTPUT_PEAK		4608
287 
288 #define HDSPM_MADI_INPUT_RMS_L		6144
289 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
290 #define HDSPM_MADI_OUTPUT_RMS_L		6656
291 
292 #define HDSPM_MADI_INPUT_RMS_H		7168
293 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
294 #define HDSPM_MADI_OUTPUT_RMS_H		7680
295 
296 /* --- Control Register bits --------- */
297 #define HDSPM_Start                (1<<0) /* start engine */
298 
299 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
300 #define HDSPM_Latency1             (1<<2) /* where n is defined */
301 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
302 
303 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
304 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
305 					  register [RayDAT, AIO] */
306 
307 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
308 
309 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
310 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
311 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
312 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
313 
314 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
315 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
316 				     56channelMODE=0 */ /* MADI ONLY*/
317 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
318 
319 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
320                                      0=off, 1=on  */ /* MADI ONLY */
321 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
322 
323 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
324 				    * -- MADI ONLY
325 				    */
326 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
327 
328 #define HDSPM_SyncRef2     (1<<13)
329 #define HDSPM_SyncRef3     (1<<25)
330 
331 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
332 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
333                                       AES additional bits in
334 				      lower 5 Audiodatabits ??? */
335 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
336 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
337 
338 #define HDSPM_Midi0InterruptEnable 0x0400000
339 #define HDSPM_Midi1InterruptEnable 0x0800000
340 #define HDSPM_Midi2InterruptEnable 0x0200000
341 #define HDSPM_Midi3InterruptEnable 0x4000000
342 
343 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
344 #define HDSPe_FLOAT_FORMAT         0x2000000
345 
346 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
347 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
348 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
349 
350 #define HDSPM_wclk_sel (1<<30)
351 
352 /* additional control register bits for AIO*/
353 #define HDSPM_c0_Wck48				0x20 /* also RayDAT */
354 #define HDSPM_c0_Input0				0x1000
355 #define HDSPM_c0_Input1				0x2000
356 #define HDSPM_c0_Spdif_Opt			0x4000
357 #define HDSPM_c0_Pro				0x8000
358 #define HDSPM_c0_clr_tms			0x10000
359 #define HDSPM_c0_AEB1				0x20000
360 #define HDSPM_c0_AEB2				0x40000
361 #define HDSPM_c0_LineOut			0x80000
362 #define HDSPM_c0_AD_GAIN0			0x100000
363 #define HDSPM_c0_AD_GAIN1			0x200000
364 #define HDSPM_c0_DA_GAIN0			0x400000
365 #define HDSPM_c0_DA_GAIN1			0x800000
366 #define HDSPM_c0_PH_GAIN0			0x1000000
367 #define HDSPM_c0_PH_GAIN1			0x2000000
368 #define HDSPM_c0_Sym6db				0x4000000
369 
370 
371 /* --- bit helper defines */
372 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
373 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
374 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
375 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
376 #define HDSPM_InputOptical   0
377 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
378 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
379 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
380 
381 #define HDSPM_c0_SyncRef0      0x2
382 #define HDSPM_c0_SyncRef1      0x4
383 #define HDSPM_c0_SyncRef2      0x8
384 #define HDSPM_c0_SyncRef3      0x10
385 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
386 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
387 
388 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
389 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
390 #define HDSPM_SYNC_FROM_TCO     2
391 #define HDSPM_SYNC_FROM_SYNC_IN 3
392 
393 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
394 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
395 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
396 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
397 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
398 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
399 				HDSPM_Frequency0)
400 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
401 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
402 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
403 				 HDSPM_Frequency0)
404 
405 
406 /* Synccheck Status */
407 #define HDSPM_SYNC_CHECK_NO_LOCK 0
408 #define HDSPM_SYNC_CHECK_LOCK    1
409 #define HDSPM_SYNC_CHECK_SYNC	 2
410 
411 /* AutoSync References - used by "autosync_ref" control switch */
412 #define HDSPM_AUTOSYNC_FROM_WORD      0
413 #define HDSPM_AUTOSYNC_FROM_MADI      1
414 #define HDSPM_AUTOSYNC_FROM_TCO       2
415 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
416 #define HDSPM_AUTOSYNC_FROM_NONE      4
417 
418 /* Possible sources of MADI input */
419 #define HDSPM_OPTICAL 0		/* optical   */
420 #define HDSPM_COAXIAL 1		/* BNC */
421 
422 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
423 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
424 
425 #define hdspm_encode_in(x) (((x)&0x3)<<14)
426 #define hdspm_decode_in(x) (((x)>>14)&0x3)
427 
428 /* --- control2 register bits --- */
429 #define HDSPM_TMS             (1<<0)
430 #define HDSPM_TCK             (1<<1)
431 #define HDSPM_TDI             (1<<2)
432 #define HDSPM_JTAG            (1<<3)
433 #define HDSPM_PWDN            (1<<4)
434 #define HDSPM_PROGRAM	      (1<<5)
435 #define HDSPM_CONFIG_MODE_0   (1<<6)
436 #define HDSPM_CONFIG_MODE_1   (1<<7)
437 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
438 #define HDSPM_BIGENDIAN_MODE  (1<<9)
439 #define HDSPM_RD_MULTIPLE     (1<<10)
440 
441 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
442      that do not conflict with specific bits for AES32 seem to be valid also
443      for the AES32
444  */
445 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
446 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
447 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
448 					 * (like inp0)
449 					 */
450 
451 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
452 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
453 
454 #define HDSPM_tcoLockMadi    0x00000020 /* Optional TCO locked status for HDSPe MADI*/
455 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/
456 
457 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */
458 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */
459 
460 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
461 			/* since 64byte accurate, last 6 bits are not used */
462 
463 
464 
465 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
466 
467 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
468 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
469 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
470 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
471 
472 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
473 					 * Interrupt
474 					 */
475 #define HDSPM_tco_detect         0x08000000
476 #define HDSPM_tcoLockAes         0x20000000 /* Optional TCO locked status for HDSPe AES */
477 
478 #define HDSPM_s2_tco_detect      0x00000040
479 #define HDSPM_s2_AEBO_D          0x00000080
480 #define HDSPM_s2_AEBI_D          0x00000100
481 
482 
483 #define HDSPM_midi0IRQPending    0x40000000
484 #define HDSPM_midi1IRQPending    0x80000000
485 #define HDSPM_midi2IRQPending    0x20000000
486 #define HDSPM_midi2IRQPendingAES 0x00000020
487 #define HDSPM_midi3IRQPending    0x00200000
488 
489 /* --- status bit helpers */
490 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
491 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
492 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
493 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
494 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
495 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
496 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
497 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
498 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
499 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
500 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
501 
502 /* Status2 Register bits */ /* MADI ONLY */
503 
504 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
505 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
506 #define HDSPM_version2 (1<<2)
507 
508 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
509 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
510 
511 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
512 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
513 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, 111=128 */
514 #define HDSPM_wc_freq3 0x800	/* 1000=176.4, 1001=192 */
515 
516 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
517 #define HDSPM_SyncRef1 0x20000
518 
519 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
520 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
521 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
522 
523 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
524 
525 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\
526 			    HDSPM_wc_freq3)
527 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
528 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
529 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
530 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
531 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
532 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
533 #define HDSPM_wcFreq128   (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
534 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3)
535 #define HDSPM_wcFreq192   (HDSPM_wc_freq0|HDSPM_wc_freq3)
536 
537 #define HDSPM_status1_F_0 0x0400000
538 #define HDSPM_status1_F_1 0x0800000
539 #define HDSPM_status1_F_2 0x1000000
540 #define HDSPM_status1_F_3 0x2000000
541 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
542 
543 
544 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
545 				    HDSPM_SelSyncRef2)
546 #define HDSPM_SelSyncRef_WORD      0
547 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
548 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
549 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
550 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
551 				    HDSPM_SelSyncRef2)
552 
553 /*
554    For AES32, bits for status, status2 and timecode are different
555 */
556 /* status */
557 #define HDSPM_AES32_wcLock	0x0200000
558 #define HDSPM_AES32_wcSync	0x0100000
559 #define HDSPM_AES32_wcFreq_bit  22
560 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
561   HDSPM_bit2freq */
562 #define HDSPM_AES32_syncref_bit  16
563 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
564 
565 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
566 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
567 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
568 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
569 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
570 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
571 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
572 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
573 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
574 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9
575 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10
576 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11
577 
578 /*  status2 */
579 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
580 #define HDSPM_LockAES   0x80
581 #define HDSPM_LockAES1  0x80
582 #define HDSPM_LockAES2  0x40
583 #define HDSPM_LockAES3  0x20
584 #define HDSPM_LockAES4  0x10
585 #define HDSPM_LockAES5  0x8
586 #define HDSPM_LockAES6  0x4
587 #define HDSPM_LockAES7  0x2
588 #define HDSPM_LockAES8  0x1
589 /*
590    Timecode
591    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
592    AES i+1
593  bits 3210
594       0001  32kHz
595       0010  44.1kHz
596       0011  48kHz
597       0100  64kHz
598       0101  88.2kHz
599       0110  96kHz
600       0111  128kHz
601       1000  176.4kHz
602       1001  192kHz
603   NB: Timecode register doesn't seem to work on AES32 card revision 230
604 */
605 
606 /* Mixer Values */
607 #define UNITY_GAIN          32768	/* = 65536/2 */
608 #define MINUS_INFINITY_GAIN 0
609 
610 /* Number of channels for different Speed Modes */
611 #define MADI_SS_CHANNELS       64
612 #define MADI_DS_CHANNELS       32
613 #define MADI_QS_CHANNELS       16
614 
615 #define RAYDAT_SS_CHANNELS     36
616 #define RAYDAT_DS_CHANNELS     20
617 #define RAYDAT_QS_CHANNELS     12
618 
619 #define AIO_IN_SS_CHANNELS        14
620 #define AIO_IN_DS_CHANNELS        10
621 #define AIO_IN_QS_CHANNELS        8
622 #define AIO_OUT_SS_CHANNELS        16
623 #define AIO_OUT_DS_CHANNELS        12
624 #define AIO_OUT_QS_CHANNELS        10
625 
626 #define AES32_CHANNELS		16
627 
628 /* the size of a substream (1 mono data stream) */
629 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
630 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
631 
632 /* the size of the area we need to allocate for DMA transfers. the
633    size is the same regardless of the number of channels, and
634    also the latency to use.
635    for one direction !!!
636 */
637 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
638 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
639 
640 #define HDSPM_RAYDAT_REV	211
641 #define HDSPM_AIO_REV		212
642 #define HDSPM_MADIFACE_REV	213
643 
644 /* speed factor modes */
645 #define HDSPM_SPEED_SINGLE 0
646 #define HDSPM_SPEED_DOUBLE 1
647 #define HDSPM_SPEED_QUAD   2
648 
649 /* names for speed modes */
650 static char *hdspm_speed_names[] = { "single", "double", "quad" };
651 
652 static const char *const texts_autosync_aes_tco[] = { "Word Clock",
653 					  "AES1", "AES2", "AES3", "AES4",
654 					  "AES5", "AES6", "AES7", "AES8",
655 					  "TCO", "Sync In"
656 };
657 static const char *const texts_autosync_aes[] = { "Word Clock",
658 				      "AES1", "AES2", "AES3", "AES4",
659 				      "AES5", "AES6", "AES7", "AES8",
660 				      "Sync In"
661 };
662 static const char *const texts_autosync_madi_tco[] = { "Word Clock",
663 					   "MADI", "TCO", "Sync In" };
664 static const char *const texts_autosync_madi[] = { "Word Clock",
665 				       "MADI", "Sync In" };
666 
667 static const char *const texts_autosync_raydat_tco[] = {
668 	"Word Clock",
669 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
670 	"AES", "SPDIF", "TCO", "Sync In"
671 };
672 static const char *const texts_autosync_raydat[] = {
673 	"Word Clock",
674 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
675 	"AES", "SPDIF", "Sync In"
676 };
677 static const char *const texts_autosync_aio_tco[] = {
678 	"Word Clock",
679 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
680 };
681 static const char *const texts_autosync_aio[] = { "Word Clock",
682 				      "ADAT", "AES", "SPDIF", "Sync In" };
683 
684 static const char *const texts_freq[] = {
685 	"No Lock",
686 	"32 kHz",
687 	"44.1 kHz",
688 	"48 kHz",
689 	"64 kHz",
690 	"88.2 kHz",
691 	"96 kHz",
692 	"128 kHz",
693 	"176.4 kHz",
694 	"192 kHz"
695 };
696 
697 static char *texts_ports_madi[] = {
698 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
699 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
700 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
701 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
702 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
703 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
704 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
705 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
706 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
707 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
708 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
709 };
710 
711 
712 static char *texts_ports_raydat_ss[] = {
713 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
714 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
715 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
716 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
717 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
718 	"ADAT4.7", "ADAT4.8",
719 	"AES.L", "AES.R",
720 	"SPDIF.L", "SPDIF.R"
721 };
722 
723 static char *texts_ports_raydat_ds[] = {
724 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
725 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
726 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
727 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
728 	"AES.L", "AES.R",
729 	"SPDIF.L", "SPDIF.R"
730 };
731 
732 static char *texts_ports_raydat_qs[] = {
733 	"ADAT1.1", "ADAT1.2",
734 	"ADAT2.1", "ADAT2.2",
735 	"ADAT3.1", "ADAT3.2",
736 	"ADAT4.1", "ADAT4.2",
737 	"AES.L", "AES.R",
738 	"SPDIF.L", "SPDIF.R"
739 };
740 
741 
742 static char *texts_ports_aio_in_ss[] = {
743 	"Analogue.L", "Analogue.R",
744 	"AES.L", "AES.R",
745 	"SPDIF.L", "SPDIF.R",
746 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
747 	"ADAT.7", "ADAT.8",
748 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
749 };
750 
751 static char *texts_ports_aio_out_ss[] = {
752 	"Analogue.L", "Analogue.R",
753 	"AES.L", "AES.R",
754 	"SPDIF.L", "SPDIF.R",
755 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
756 	"ADAT.7", "ADAT.8",
757 	"Phone.L", "Phone.R",
758 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
759 };
760 
761 static char *texts_ports_aio_in_ds[] = {
762 	"Analogue.L", "Analogue.R",
763 	"AES.L", "AES.R",
764 	"SPDIF.L", "SPDIF.R",
765 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
766 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
767 };
768 
769 static char *texts_ports_aio_out_ds[] = {
770 	"Analogue.L", "Analogue.R",
771 	"AES.L", "AES.R",
772 	"SPDIF.L", "SPDIF.R",
773 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
774 	"Phone.L", "Phone.R",
775 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
776 };
777 
778 static char *texts_ports_aio_in_qs[] = {
779 	"Analogue.L", "Analogue.R",
780 	"AES.L", "AES.R",
781 	"SPDIF.L", "SPDIF.R",
782 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
783 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
784 };
785 
786 static char *texts_ports_aio_out_qs[] = {
787 	"Analogue.L", "Analogue.R",
788 	"AES.L", "AES.R",
789 	"SPDIF.L", "SPDIF.R",
790 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
791 	"Phone.L", "Phone.R",
792 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
793 };
794 
795 static char *texts_ports_aes32[] = {
796 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
797 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
798 	"AES.15", "AES.16"
799 };
800 
801 /* These tables map the ALSA channels 1..N to the channels that we
802    need to use in order to find the relevant channel buffer. RME
803    refers to this kind of mapping as between "the ADAT channel and
804    the DMA channel." We index it using the logical audio channel,
805    and the value is the DMA channel (i.e. channel buffer number)
806    where the data for that channel can be read/written from/to.
807 */
808 
809 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
810 	0, 1, 2, 3, 4, 5, 6, 7,
811 	8, 9, 10, 11, 12, 13, 14, 15,
812 	16, 17, 18, 19, 20, 21, 22, 23,
813 	24, 25, 26, 27, 28, 29, 30, 31,
814 	32, 33, 34, 35, 36, 37, 38, 39,
815 	40, 41, 42, 43, 44, 45, 46, 47,
816 	48, 49, 50, 51, 52, 53, 54, 55,
817 	56, 57, 58, 59, 60, 61, 62, 63
818 };
819 
820 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
821 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
822 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
823 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
824 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
825 	0, 1,			/* AES */
826 	2, 3,			/* SPDIF */
827 	-1, -1, -1, -1,
828 	-1, -1, -1, -1, -1, -1, -1, -1,
829 	-1, -1, -1, -1, -1, -1, -1, -1,
830 	-1, -1, -1, -1, -1, -1, -1, -1,
831 };
832 
833 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
834 	4, 5, 6, 7,		/* ADAT 1 */
835 	8, 9, 10, 11,		/* ADAT 2 */
836 	12, 13, 14, 15,		/* ADAT 3 */
837 	16, 17, 18, 19,		/* ADAT 4 */
838 	0, 1,			/* AES */
839 	2, 3,			/* SPDIF */
840 	-1, -1, -1, -1,
841 	-1, -1, -1, -1, -1, -1, -1, -1,
842 	-1, -1, -1, -1, -1, -1, -1, -1,
843 	-1, -1, -1, -1, -1, -1, -1, -1,
844 	-1, -1, -1, -1, -1, -1, -1, -1,
845 	-1, -1, -1, -1, -1, -1, -1, -1,
846 };
847 
848 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
849 	4, 5,			/* ADAT 1 */
850 	6, 7,			/* ADAT 2 */
851 	8, 9,			/* ADAT 3 */
852 	10, 11,			/* ADAT 4 */
853 	0, 1,			/* AES */
854 	2, 3,			/* SPDIF */
855 	-1, -1, -1, -1,
856 	-1, -1, -1, -1, -1, -1, -1, -1,
857 	-1, -1, -1, -1, -1, -1, -1, -1,
858 	-1, -1, -1, -1, -1, -1, -1, -1,
859 	-1, -1, -1, -1, -1, -1, -1, -1,
860 	-1, -1, -1, -1, -1, -1, -1, -1,
861 	-1, -1, -1, -1, -1, -1, -1, -1,
862 };
863 
864 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
865 	0, 1,			/* line in */
866 	8, 9,			/* aes in, */
867 	10, 11,			/* spdif in */
868 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
869 	2, 3, 4, 5,		/* AEB */
870 	-1, -1, -1, -1, -1, -1,
871 	-1, -1, -1, -1, -1, -1, -1, -1,
872 	-1, -1, -1, -1, -1, -1, -1, -1,
873 	-1, -1, -1, -1, -1, -1, -1, -1,
874 	-1, -1, -1, -1, -1, -1, -1, -1,
875 	-1, -1, -1, -1, -1, -1, -1, -1,
876 };
877 
878 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
879 	0, 1,			/* line out */
880 	8, 9,			/* aes out */
881 	10, 11,			/* spdif out */
882 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
883 	6, 7,			/* phone out */
884 	2, 3, 4, 5,		/* AEB */
885 	-1, -1, -1, -1,
886 	-1, -1, -1, -1, -1, -1, -1, -1,
887 	-1, -1, -1, -1, -1, -1, -1, -1,
888 	-1, -1, -1, -1, -1, -1, -1, -1,
889 	-1, -1, -1, -1, -1, -1, -1, -1,
890 	-1, -1, -1, -1, -1, -1, -1, -1,
891 };
892 
893 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
894 	0, 1,			/* line in */
895 	8, 9,			/* aes in */
896 	10, 11,			/* spdif in */
897 	12, 14, 16, 18,		/* adat in */
898 	2, 3, 4, 5,		/* AEB */
899 	-1, -1,
900 	-1, -1, -1, -1, -1, -1, -1, -1,
901 	-1, -1, -1, -1, -1, -1, -1, -1,
902 	-1, -1, -1, -1, -1, -1, -1, -1,
903 	-1, -1, -1, -1, -1, -1, -1, -1,
904 	-1, -1, -1, -1, -1, -1, -1, -1,
905 	-1, -1, -1, -1, -1, -1, -1, -1
906 };
907 
908 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
909 	0, 1,			/* line out */
910 	8, 9,			/* aes out */
911 	10, 11,			/* spdif out */
912 	12, 14, 16, 18,		/* adat out */
913 	6, 7,			/* phone out */
914 	2, 3, 4, 5,		/* AEB */
915 	-1, -1, -1, -1, -1, -1, -1, -1,
916 	-1, -1, -1, -1, -1, -1, -1, -1,
917 	-1, -1, -1, -1, -1, -1, -1, -1,
918 	-1, -1, -1, -1, -1, -1, -1, -1,
919 	-1, -1, -1, -1, -1, -1, -1, -1,
920 	-1, -1, -1, -1, -1, -1, -1, -1
921 };
922 
923 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
924 	0, 1,			/* line in */
925 	8, 9,			/* aes in */
926 	10, 11,			/* spdif in */
927 	12, 16,			/* adat in */
928 	2, 3, 4, 5,		/* AEB */
929 	-1, -1, -1, -1,
930 	-1, -1, -1, -1, -1, -1, -1, -1,
931 	-1, -1, -1, -1, -1, -1, -1, -1,
932 	-1, -1, -1, -1, -1, -1, -1, -1,
933 	-1, -1, -1, -1, -1, -1, -1, -1,
934 	-1, -1, -1, -1, -1, -1, -1, -1,
935 	-1, -1, -1, -1, -1, -1, -1, -1
936 };
937 
938 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
939 	0, 1,			/* line out */
940 	8, 9,			/* aes out */
941 	10, 11,			/* spdif out */
942 	12, 16,			/* adat out */
943 	6, 7,			/* phone out */
944 	2, 3, 4, 5,		/* AEB */
945 	-1, -1,
946 	-1, -1, -1, -1, -1, -1, -1, -1,
947 	-1, -1, -1, -1, -1, -1, -1, -1,
948 	-1, -1, -1, -1, -1, -1, -1, -1,
949 	-1, -1, -1, -1, -1, -1, -1, -1,
950 	-1, -1, -1, -1, -1, -1, -1, -1,
951 	-1, -1, -1, -1, -1, -1, -1, -1
952 };
953 
954 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
955 	0, 1, 2, 3, 4, 5, 6, 7,
956 	8, 9, 10, 11, 12, 13, 14, 15,
957 	-1, -1, -1, -1, -1, -1, -1, -1,
958 	-1, -1, -1, -1, -1, -1, -1, -1,
959 	-1, -1, -1, -1, -1, -1, -1, -1,
960 	-1, -1, -1, -1, -1, -1, -1, -1,
961 	-1, -1, -1, -1, -1, -1, -1, -1,
962 	-1, -1, -1, -1, -1, -1, -1, -1
963 };
964 
965 struct hdspm_midi {
966 	struct hdspm *hdspm;
967 	int id;
968 	struct snd_rawmidi *rmidi;
969 	struct snd_rawmidi_substream *input;
970 	struct snd_rawmidi_substream *output;
971 	char istimer;		/* timer in use */
972 	struct timer_list timer;
973 	spinlock_t lock;
974 	int pending;
975 	int dataIn;
976 	int statusIn;
977 	int dataOut;
978 	int statusOut;
979 	int ie;
980 	int irq;
981 };
982 
983 struct hdspm_tco {
984 	int input; /* 0: LTC, 1:Video, 2: WC*/
985 	int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */
986 	int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */
987 	int samplerate; /* 0=44.1, 1=48, 2= freq from app */
988 	int pull; /*   0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/
989 	int term; /* 0 = off, 1 = on */
990 };
991 
992 struct hdspm {
993         spinlock_t lock;
994 	/* only one playback and/or capture stream */
995         struct snd_pcm_substream *capture_substream;
996         struct snd_pcm_substream *playback_substream;
997 
998 	char *card_name;	     /* for procinfo */
999 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
1000 
1001 	uint8_t io_type;
1002 
1003 	int monitor_outs;	/* set up monitoring outs init flag */
1004 
1005 	u32 control_register;	/* cached value */
1006 	u32 control2_register;	/* cached value */
1007 	u32 settings_register;  /* cached value for AIO / RayDat (sync reference, master/slave) */
1008 
1009 	struct hdspm_midi midi[4];
1010 	struct tasklet_struct midi_tasklet;
1011 
1012 	size_t period_bytes;
1013 	unsigned char ss_in_channels;
1014 	unsigned char ds_in_channels;
1015 	unsigned char qs_in_channels;
1016 	unsigned char ss_out_channels;
1017 	unsigned char ds_out_channels;
1018 	unsigned char qs_out_channels;
1019 
1020 	unsigned char max_channels_in;
1021 	unsigned char max_channels_out;
1022 
1023 	signed char *channel_map_in;
1024 	signed char *channel_map_out;
1025 
1026 	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
1027 	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
1028 
1029 	char **port_names_in;
1030 	char **port_names_out;
1031 
1032 	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
1033 	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
1034 
1035 	unsigned char *playback_buffer;	/* suitably aligned address */
1036 	unsigned char *capture_buffer;	/* suitably aligned address */
1037 
1038 	pid_t capture_pid;	/* process id which uses capture */
1039 	pid_t playback_pid;	/* process id which uses capture */
1040 	int running;		/* running status */
1041 
1042 	int last_external_sample_rate;	/* samplerate mystic ... */
1043 	int last_internal_sample_rate;
1044 	int system_sample_rate;
1045 
1046 	int dev;		/* Hardware vars... */
1047 	int irq;
1048 	unsigned long port;
1049 	void __iomem *iobase;
1050 
1051 	int irq_count;		/* for debug */
1052 	int midiPorts;
1053 
1054 	struct snd_card *card;	/* one card */
1055 	struct snd_pcm *pcm;		/* has one pcm */
1056 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
1057 	struct pci_dev *pci;	/* and an pci info */
1058 
1059 	/* Mixer vars */
1060 	/* fast alsa mixer */
1061 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
1062 	/* but input to much, so not used */
1063 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
1064 	/* full mixer accessible over mixer ioctl or hwdep-device */
1065 	struct hdspm_mixer *mixer;
1066 
1067 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
1068 
1069 	const char *const *texts_autosync;
1070 	int texts_autosync_items;
1071 
1072 	cycles_t last_interrupt;
1073 
1074 	unsigned int serial;
1075 
1076 	struct hdspm_peak_rms peak_rms;
1077 };
1078 
1079 
1080 static const struct pci_device_id snd_hdspm_ids[] = {
1081 	{
1082 	 .vendor = PCI_VENDOR_ID_XILINX,
1083 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
1084 	 .subvendor = PCI_ANY_ID,
1085 	 .subdevice = PCI_ANY_ID,
1086 	 .class = 0,
1087 	 .class_mask = 0,
1088 	 .driver_data = 0},
1089 	{0,}
1090 };
1091 
1092 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
1093 
1094 /* prototypes */
1095 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
1096 					 struct hdspm *hdspm);
1097 static int snd_hdspm_create_pcm(struct snd_card *card,
1098 				struct hdspm *hdspm);
1099 
1100 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
1101 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
1102 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
1103 static int hdspm_autosync_ref(struct hdspm *hdspm);
1104 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out);
1105 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
1106 static int hdspm_system_clock_mode(struct hdspm *hdspm);
1107 static void hdspm_set_sgbuf(struct hdspm *hdspm,
1108 			    struct snd_pcm_substream *substream,
1109 			     unsigned int reg, int channels);
1110 
1111 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx);
1112 static int hdspm_wc_sync_check(struct hdspm *hdspm);
1113 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1114 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1115 
1116 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index);
1117 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm);
1118 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm);
1119 
1120 
1121 
1122 static inline int HDSPM_bit2freq(int n)
1123 {
1124 	static const int bit2freq_tab[] = {
1125 		0, 32000, 44100, 48000, 64000, 88200,
1126 		96000, 128000, 176400, 192000 };
1127 	if (n < 1 || n > 9)
1128 		return 0;
1129 	return bit2freq_tab[n];
1130 }
1131 
1132 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm)
1133 {
1134 	return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type));
1135 }
1136 
1137 
1138 /* Write/read to/from HDSPM with Adresses in Bytes
1139    not words but only 32Bit writes are allowed */
1140 
1141 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
1142 			       unsigned int val)
1143 {
1144 	writel(val, hdspm->iobase + reg);
1145 }
1146 
1147 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1148 {
1149 	return readl(hdspm->iobase + reg);
1150 }
1151 
1152 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1153    mixer is write only on hardware so we have to cache him for read
1154    each fader is a u32, but uses only the first 16 bit */
1155 
1156 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1157 				     unsigned int in)
1158 {
1159 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1160 		return 0;
1161 
1162 	return hdspm->mixer->ch[chan].in[in];
1163 }
1164 
1165 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1166 				     unsigned int pb)
1167 {
1168 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1169 		return 0;
1170 	return hdspm->mixer->ch[chan].pb[pb];
1171 }
1172 
1173 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1174 				      unsigned int in, unsigned short data)
1175 {
1176 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1177 		return -1;
1178 
1179 	hdspm_write(hdspm,
1180 		    HDSPM_MADI_mixerBase +
1181 		    ((in + 128 * chan) * sizeof(u32)),
1182 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1183 	return 0;
1184 }
1185 
1186 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1187 				      unsigned int pb, unsigned short data)
1188 {
1189 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1190 		return -1;
1191 
1192 	hdspm_write(hdspm,
1193 		    HDSPM_MADI_mixerBase +
1194 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1195 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1196 	return 0;
1197 }
1198 
1199 
1200 /* enable DMA for specific channels, now available for DSP-MADI */
1201 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1202 {
1203 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1204 }
1205 
1206 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1207 {
1208 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1209 }
1210 
1211 /* check if same process is writing and reading */
1212 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1213 {
1214 	unsigned long flags;
1215 	int ret = 1;
1216 
1217 	spin_lock_irqsave(&hdspm->lock, flags);
1218 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1219 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1220 		ret = 0;
1221 	}
1222 	spin_unlock_irqrestore(&hdspm->lock, flags);
1223 	return ret;
1224 }
1225 
1226 /* round arbitary sample rates to commonly known rates */
1227 static int hdspm_round_frequency(int rate)
1228 {
1229 	if (rate < 38050)
1230 		return 32000;
1231 	if (rate < 46008)
1232 		return 44100;
1233 	else
1234 		return 48000;
1235 }
1236 
1237 /* QS and DS rates normally can not be detected
1238  * automatically by the card. Only exception is MADI
1239  * in 96k frame mode.
1240  *
1241  * So if we read SS values (32 .. 48k), check for
1242  * user-provided DS/QS bits in the control register
1243  * and multiply the base frequency accordingly.
1244  */
1245 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate)
1246 {
1247 	if (rate <= 48000) {
1248 		if (hdspm->control_register & HDSPM_QuadSpeed)
1249 			return rate * 4;
1250 		else if (hdspm->control_register &
1251 				HDSPM_DoubleSpeed)
1252 			return rate * 2;
1253 	}
1254 	return rate;
1255 }
1256 
1257 /* check for external sample rate, returns the sample rate in Hz*/
1258 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1259 {
1260 	unsigned int status, status2, timecode;
1261 	int syncref, rate = 0, rate_bits;
1262 
1263 	switch (hdspm->io_type) {
1264 	case AES32:
1265 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1266 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1267 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
1268 
1269 		syncref = hdspm_autosync_ref(hdspm);
1270 		switch (syncref) {
1271 		case HDSPM_AES32_AUTOSYNC_FROM_WORD:
1272 		/* Check WC sync and get sample rate */
1273 			if (hdspm_wc_sync_check(hdspm))
1274 				return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm));
1275 			break;
1276 
1277 		case HDSPM_AES32_AUTOSYNC_FROM_AES1:
1278 		case HDSPM_AES32_AUTOSYNC_FROM_AES2:
1279 		case HDSPM_AES32_AUTOSYNC_FROM_AES3:
1280 		case HDSPM_AES32_AUTOSYNC_FROM_AES4:
1281 		case HDSPM_AES32_AUTOSYNC_FROM_AES5:
1282 		case HDSPM_AES32_AUTOSYNC_FROM_AES6:
1283 		case HDSPM_AES32_AUTOSYNC_FROM_AES7:
1284 		case HDSPM_AES32_AUTOSYNC_FROM_AES8:
1285 		/* Check AES sync and get sample rate */
1286 			if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))
1287 				return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm,
1288 							syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1));
1289 			break;
1290 
1291 
1292 		case HDSPM_AES32_AUTOSYNC_FROM_TCO:
1293 		/* Check TCO sync and get sample rate */
1294 			if (hdspm_tco_sync_check(hdspm))
1295 				return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm));
1296 			break;
1297 		default:
1298 			return 0;
1299 		} /* end switch(syncref) */
1300 		break;
1301 
1302 	case MADIface:
1303 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1304 
1305 		if (!(status & HDSPM_madiLock)) {
1306 			rate = 0;  /* no lock */
1307 		} else {
1308 			switch (status & (HDSPM_status1_freqMask)) {
1309 			case HDSPM_status1_F_0*1:
1310 				rate = 32000; break;
1311 			case HDSPM_status1_F_0*2:
1312 				rate = 44100; break;
1313 			case HDSPM_status1_F_0*3:
1314 				rate = 48000; break;
1315 			case HDSPM_status1_F_0*4:
1316 				rate = 64000; break;
1317 			case HDSPM_status1_F_0*5:
1318 				rate = 88200; break;
1319 			case HDSPM_status1_F_0*6:
1320 				rate = 96000; break;
1321 			case HDSPM_status1_F_0*7:
1322 				rate = 128000; break;
1323 			case HDSPM_status1_F_0*8:
1324 				rate = 176400; break;
1325 			case HDSPM_status1_F_0*9:
1326 				rate = 192000; break;
1327 			default:
1328 				rate = 0; break;
1329 			}
1330 		}
1331 
1332 		break;
1333 
1334 	case MADI:
1335 	case AIO:
1336 	case RayDAT:
1337 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1338 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1339 		rate = 0;
1340 
1341 		/* if wordclock has synced freq and wordclock is valid */
1342 		if ((status2 & HDSPM_wcLock) != 0 &&
1343 				(status2 & HDSPM_SelSyncRef0) == 0) {
1344 
1345 			rate_bits = status2 & HDSPM_wcFreqMask;
1346 
1347 
1348 			switch (rate_bits) {
1349 			case HDSPM_wcFreq32:
1350 				rate = 32000;
1351 				break;
1352 			case HDSPM_wcFreq44_1:
1353 				rate = 44100;
1354 				break;
1355 			case HDSPM_wcFreq48:
1356 				rate = 48000;
1357 				break;
1358 			case HDSPM_wcFreq64:
1359 				rate = 64000;
1360 				break;
1361 			case HDSPM_wcFreq88_2:
1362 				rate = 88200;
1363 				break;
1364 			case HDSPM_wcFreq96:
1365 				rate = 96000;
1366 				break;
1367 			case HDSPM_wcFreq128:
1368 				rate = 128000;
1369 				break;
1370 			case HDSPM_wcFreq176_4:
1371 				rate = 176400;
1372 				break;
1373 			case HDSPM_wcFreq192:
1374 				rate = 192000;
1375 				break;
1376 			default:
1377 				rate = 0;
1378 				break;
1379 			}
1380 		}
1381 
1382 		/* if rate detected and Syncref is Word than have it,
1383 		 * word has priority to MADI
1384 		 */
1385 		if (rate != 0 &&
1386 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1387 			return hdspm_rate_multiplier(hdspm, rate);
1388 
1389 		/* maybe a madi input (which is taken if sel sync is madi) */
1390 		if (status & HDSPM_madiLock) {
1391 			rate_bits = status & HDSPM_madiFreqMask;
1392 
1393 			switch (rate_bits) {
1394 			case HDSPM_madiFreq32:
1395 				rate = 32000;
1396 				break;
1397 			case HDSPM_madiFreq44_1:
1398 				rate = 44100;
1399 				break;
1400 			case HDSPM_madiFreq48:
1401 				rate = 48000;
1402 				break;
1403 			case HDSPM_madiFreq64:
1404 				rate = 64000;
1405 				break;
1406 			case HDSPM_madiFreq88_2:
1407 				rate = 88200;
1408 				break;
1409 			case HDSPM_madiFreq96:
1410 				rate = 96000;
1411 				break;
1412 			case HDSPM_madiFreq128:
1413 				rate = 128000;
1414 				break;
1415 			case HDSPM_madiFreq176_4:
1416 				rate = 176400;
1417 				break;
1418 			case HDSPM_madiFreq192:
1419 				rate = 192000;
1420 				break;
1421 			default:
1422 				rate = 0;
1423 				break;
1424 			}
1425 
1426 		} /* endif HDSPM_madiLock */
1427 
1428 		/* check sample rate from TCO or SYNC_IN */
1429 		{
1430 			bool is_valid_input = 0;
1431 			bool has_sync = 0;
1432 
1433 			syncref = hdspm_autosync_ref(hdspm);
1434 			if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1435 				is_valid_input = 1;
1436 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1437 					hdspm_tco_sync_check(hdspm));
1438 			} else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1439 				is_valid_input = 1;
1440 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1441 					hdspm_sync_in_sync_check(hdspm));
1442 			}
1443 
1444 			if (is_valid_input && has_sync) {
1445 				rate = hdspm_round_frequency(
1446 					hdspm_get_pll_freq(hdspm));
1447 			}
1448 		}
1449 
1450 		rate = hdspm_rate_multiplier(hdspm, rate);
1451 
1452 		break;
1453 	}
1454 
1455 	return rate;
1456 }
1457 
1458 /* return latency in samples per period */
1459 static int hdspm_get_latency(struct hdspm *hdspm)
1460 {
1461 	int n;
1462 
1463 	n = hdspm_decode_latency(hdspm->control_register);
1464 
1465 	/* Special case for new RME cards with 32 samples period size.
1466 	 * The three latency bits in the control register
1467 	 * (HDSP_LatencyMask) encode latency values of 64 samples as
1468 	 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1469 	 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1470 	 * it corresponds to 32 samples.
1471 	 */
1472 	if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1473 		n = -1;
1474 
1475 	return 1 << (n + 6);
1476 }
1477 
1478 /* Latency function */
1479 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1480 {
1481 	hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1482 }
1483 
1484 
1485 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1486 {
1487 	int position;
1488 
1489 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1490 
1491 	switch (hdspm->io_type) {
1492 	case RayDAT:
1493 	case AIO:
1494 		position &= HDSPM_BufferPositionMask;
1495 		position /= 4; /* Bytes per sample */
1496 		break;
1497 	default:
1498 		position = (position & HDSPM_BufferID) ?
1499 			(hdspm->period_bytes / 4) : 0;
1500 	}
1501 
1502 	return position;
1503 }
1504 
1505 
1506 static inline void hdspm_start_audio(struct hdspm * s)
1507 {
1508 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1509 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1510 }
1511 
1512 static inline void hdspm_stop_audio(struct hdspm * s)
1513 {
1514 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1515 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1516 }
1517 
1518 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1519 static void hdspm_silence_playback(struct hdspm *hdspm)
1520 {
1521 	int i;
1522 	int n = hdspm->period_bytes;
1523 	void *buf = hdspm->playback_buffer;
1524 
1525 	if (buf == NULL)
1526 		return;
1527 
1528 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1529 		memset(buf, 0, n);
1530 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1531 	}
1532 }
1533 
1534 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1535 {
1536 	int n;
1537 
1538 	spin_lock_irq(&s->lock);
1539 
1540 	if (32 == frames) {
1541 		/* Special case for new RME cards like RayDAT/AIO which
1542 		 * support period sizes of 32 samples. Since latency is
1543 		 * encoded in the three bits of HDSP_LatencyMask, we can only
1544 		 * have values from 0 .. 7. While 0 still means 64 samples and
1545 		 * 6 represents 4096 samples on all cards, 7 represents 8192
1546 		 * on older cards and 32 samples on new cards.
1547 		 *
1548 		 * In other words, period size in samples is calculated by
1549 		 * 2^(n+6) with n ranging from 0 .. 7.
1550 		 */
1551 		n = 7;
1552 	} else {
1553 		frames >>= 7;
1554 		n = 0;
1555 		while (frames) {
1556 			n++;
1557 			frames >>= 1;
1558 		}
1559 	}
1560 
1561 	s->control_register &= ~HDSPM_LatencyMask;
1562 	s->control_register |= hdspm_encode_latency(n);
1563 
1564 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1565 
1566 	hdspm_compute_period_size(s);
1567 
1568 	spin_unlock_irq(&s->lock);
1569 
1570 	return 0;
1571 }
1572 
1573 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1574 {
1575 	u64 freq_const;
1576 
1577 	if (period == 0)
1578 		return 0;
1579 
1580 	switch (hdspm->io_type) {
1581 	case MADI:
1582 	case AES32:
1583 		freq_const = 110069313433624ULL;
1584 		break;
1585 	case RayDAT:
1586 	case AIO:
1587 		freq_const = 104857600000000ULL;
1588 		break;
1589 	case MADIface:
1590 		freq_const = 131072000000000ULL;
1591 		break;
1592 	default:
1593 		snd_BUG();
1594 		return 0;
1595 	}
1596 
1597 	return div_u64(freq_const, period);
1598 }
1599 
1600 
1601 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1602 {
1603 	u64 n;
1604 
1605 	if (rate >= 112000)
1606 		rate /= 4;
1607 	else if (rate >= 56000)
1608 		rate /= 2;
1609 
1610 	switch (hdspm->io_type) {
1611 	case MADIface:
1612 		n = 131072000000000ULL;  /* 125 MHz */
1613 		break;
1614 	case MADI:
1615 	case AES32:
1616 		n = 110069313433624ULL;  /* 105 MHz */
1617 		break;
1618 	case RayDAT:
1619 	case AIO:
1620 		n = 104857600000000ULL;  /* 100 MHz */
1621 		break;
1622 	default:
1623 		snd_BUG();
1624 		return;
1625 	}
1626 
1627 	n = div_u64(n, rate);
1628 	/* n should be less than 2^32 for being written to FREQ register */
1629 	snd_BUG_ON(n >> 32);
1630 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1631 }
1632 
1633 /* dummy set rate lets see what happens */
1634 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1635 {
1636 	int current_rate;
1637 	int rate_bits;
1638 	int not_set = 0;
1639 	int current_speed, target_speed;
1640 
1641 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1642 	   it (e.g. during module initialization).
1643 	 */
1644 
1645 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1646 
1647 		/* SLAVE --- */
1648 		if (called_internally) {
1649 
1650 			/* request from ctl or card initialization
1651 			   just make a warning an remember setting
1652 			   for future master mode switching */
1653 
1654 			dev_warn(hdspm->card->dev,
1655 				 "Warning: device is not running as a clock master.\n");
1656 			not_set = 1;
1657 		} else {
1658 
1659 			/* hw_param request while in AutoSync mode */
1660 			int external_freq =
1661 			    hdspm_external_sample_rate(hdspm);
1662 
1663 			if (hdspm_autosync_ref(hdspm) ==
1664 			    HDSPM_AUTOSYNC_FROM_NONE) {
1665 
1666 				dev_warn(hdspm->card->dev,
1667 					 "Detected no Externel Sync\n");
1668 				not_set = 1;
1669 
1670 			} else if (rate != external_freq) {
1671 
1672 				dev_warn(hdspm->card->dev,
1673 					 "Warning: No AutoSync source for requested rate\n");
1674 				not_set = 1;
1675 			}
1676 		}
1677 	}
1678 
1679 	current_rate = hdspm->system_sample_rate;
1680 
1681 	/* Changing between Singe, Double and Quad speed is not
1682 	   allowed if any substreams are open. This is because such a change
1683 	   causes a shift in the location of the DMA buffers and a reduction
1684 	   in the number of available buffers.
1685 
1686 	   Note that a similar but essentially insoluble problem exists for
1687 	   externally-driven rate changes. All we can do is to flag rate
1688 	   changes in the read/write routines.
1689 	 */
1690 
1691 	if (current_rate <= 48000)
1692 		current_speed = HDSPM_SPEED_SINGLE;
1693 	else if (current_rate <= 96000)
1694 		current_speed = HDSPM_SPEED_DOUBLE;
1695 	else
1696 		current_speed = HDSPM_SPEED_QUAD;
1697 
1698 	if (rate <= 48000)
1699 		target_speed = HDSPM_SPEED_SINGLE;
1700 	else if (rate <= 96000)
1701 		target_speed = HDSPM_SPEED_DOUBLE;
1702 	else
1703 		target_speed = HDSPM_SPEED_QUAD;
1704 
1705 	switch (rate) {
1706 	case 32000:
1707 		rate_bits = HDSPM_Frequency32KHz;
1708 		break;
1709 	case 44100:
1710 		rate_bits = HDSPM_Frequency44_1KHz;
1711 		break;
1712 	case 48000:
1713 		rate_bits = HDSPM_Frequency48KHz;
1714 		break;
1715 	case 64000:
1716 		rate_bits = HDSPM_Frequency64KHz;
1717 		break;
1718 	case 88200:
1719 		rate_bits = HDSPM_Frequency88_2KHz;
1720 		break;
1721 	case 96000:
1722 		rate_bits = HDSPM_Frequency96KHz;
1723 		break;
1724 	case 128000:
1725 		rate_bits = HDSPM_Frequency128KHz;
1726 		break;
1727 	case 176400:
1728 		rate_bits = HDSPM_Frequency176_4KHz;
1729 		break;
1730 	case 192000:
1731 		rate_bits = HDSPM_Frequency192KHz;
1732 		break;
1733 	default:
1734 		return -EINVAL;
1735 	}
1736 
1737 	if (current_speed != target_speed
1738 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1739 		dev_err(hdspm->card->dev,
1740 			"cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n",
1741 			hdspm_speed_names[current_speed],
1742 			hdspm_speed_names[target_speed],
1743 			hdspm->capture_pid, hdspm->playback_pid);
1744 		return -EBUSY;
1745 	}
1746 
1747 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1748 	hdspm->control_register |= rate_bits;
1749 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1750 
1751 	/* For AES32, need to set DDS value in FREQ register
1752 	   For MADI, also apparently */
1753 	hdspm_set_dds_value(hdspm, rate);
1754 
1755 	if (AES32 == hdspm->io_type && rate != current_rate)
1756 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1757 
1758 	hdspm->system_sample_rate = rate;
1759 
1760 	if (rate <= 48000) {
1761 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1762 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1763 		hdspm->max_channels_in = hdspm->ss_in_channels;
1764 		hdspm->max_channels_out = hdspm->ss_out_channels;
1765 		hdspm->port_names_in = hdspm->port_names_in_ss;
1766 		hdspm->port_names_out = hdspm->port_names_out_ss;
1767 	} else if (rate <= 96000) {
1768 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1769 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1770 		hdspm->max_channels_in = hdspm->ds_in_channels;
1771 		hdspm->max_channels_out = hdspm->ds_out_channels;
1772 		hdspm->port_names_in = hdspm->port_names_in_ds;
1773 		hdspm->port_names_out = hdspm->port_names_out_ds;
1774 	} else {
1775 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1776 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1777 		hdspm->max_channels_in = hdspm->qs_in_channels;
1778 		hdspm->max_channels_out = hdspm->qs_out_channels;
1779 		hdspm->port_names_in = hdspm->port_names_in_qs;
1780 		hdspm->port_names_out = hdspm->port_names_out_qs;
1781 	}
1782 
1783 	if (not_set != 0)
1784 		return -1;
1785 
1786 	return 0;
1787 }
1788 
1789 /* mainly for init to 0 on load */
1790 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1791 {
1792 	int i, j;
1793 	unsigned int gain;
1794 
1795 	if (sgain > UNITY_GAIN)
1796 		gain = UNITY_GAIN;
1797 	else if (sgain < 0)
1798 		gain = 0;
1799 	else
1800 		gain = sgain;
1801 
1802 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1803 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1804 			hdspm_write_in_gain(hdspm, i, j, gain);
1805 			hdspm_write_pb_gain(hdspm, i, j, gain);
1806 		}
1807 }
1808 
1809 /*----------------------------------------------------------------------------
1810    MIDI
1811   ----------------------------------------------------------------------------*/
1812 
1813 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1814 						      int id)
1815 {
1816 	/* the hardware already does the relevant bit-mask with 0xff */
1817 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1818 }
1819 
1820 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1821 					      int val)
1822 {
1823 	/* the hardware already does the relevant bit-mask with 0xff */
1824 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1825 }
1826 
1827 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1828 {
1829 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1830 }
1831 
1832 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1833 {
1834 	int fifo_bytes_used;
1835 
1836 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1837 
1838 	if (fifo_bytes_used < 128)
1839 		return  128 - fifo_bytes_used;
1840 	else
1841 		return 0;
1842 }
1843 
1844 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1845 {
1846 	while (snd_hdspm_midi_input_available (hdspm, id))
1847 		snd_hdspm_midi_read_byte (hdspm, id);
1848 }
1849 
1850 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1851 {
1852 	unsigned long flags;
1853 	int n_pending;
1854 	int to_write;
1855 	int i;
1856 	unsigned char buf[128];
1857 
1858 	/* Output is not interrupt driven */
1859 
1860 	spin_lock_irqsave (&hmidi->lock, flags);
1861 	if (hmidi->output &&
1862 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1863 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1864 							    hmidi->id);
1865 		if (n_pending > 0) {
1866 			if (n_pending > (int)sizeof (buf))
1867 				n_pending = sizeof (buf);
1868 
1869 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1870 							 n_pending);
1871 			if (to_write > 0) {
1872 				for (i = 0; i < to_write; ++i)
1873 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1874 								   hmidi->id,
1875 								   buf[i]);
1876 			}
1877 		}
1878 	}
1879 	spin_unlock_irqrestore (&hmidi->lock, flags);
1880 	return 0;
1881 }
1882 
1883 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1884 {
1885 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1886 				 * input FIFO size
1887 				 */
1888 	unsigned long flags;
1889 	int n_pending;
1890 	int i;
1891 
1892 	spin_lock_irqsave (&hmidi->lock, flags);
1893 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1894 	if (n_pending > 0) {
1895 		if (hmidi->input) {
1896 			if (n_pending > (int)sizeof (buf))
1897 				n_pending = sizeof (buf);
1898 			for (i = 0; i < n_pending; ++i)
1899 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1900 								   hmidi->id);
1901 			if (n_pending)
1902 				snd_rawmidi_receive (hmidi->input, buf,
1903 						     n_pending);
1904 		} else {
1905 			/* flush the MIDI input FIFO */
1906 			while (n_pending--)
1907 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1908 							  hmidi->id);
1909 		}
1910 	}
1911 	hmidi->pending = 0;
1912 	spin_unlock_irqrestore(&hmidi->lock, flags);
1913 
1914 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1915 	hmidi->hdspm->control_register |= hmidi->ie;
1916 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1917 		    hmidi->hdspm->control_register);
1918 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1919 
1920 	return snd_hdspm_midi_output_write (hmidi);
1921 }
1922 
1923 static void
1924 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1925 {
1926 	struct hdspm *hdspm;
1927 	struct hdspm_midi *hmidi;
1928 	unsigned long flags;
1929 
1930 	hmidi = substream->rmidi->private_data;
1931 	hdspm = hmidi->hdspm;
1932 
1933 	spin_lock_irqsave (&hdspm->lock, flags);
1934 	if (up) {
1935 		if (!(hdspm->control_register & hmidi->ie)) {
1936 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1937 			hdspm->control_register |= hmidi->ie;
1938 		}
1939 	} else {
1940 		hdspm->control_register &= ~hmidi->ie;
1941 	}
1942 
1943 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1944 	spin_unlock_irqrestore (&hdspm->lock, flags);
1945 }
1946 
1947 static void snd_hdspm_midi_output_timer(unsigned long data)
1948 {
1949 	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1950 	unsigned long flags;
1951 
1952 	snd_hdspm_midi_output_write(hmidi);
1953 	spin_lock_irqsave (&hmidi->lock, flags);
1954 
1955 	/* this does not bump hmidi->istimer, because the
1956 	   kernel automatically removed the timer when it
1957 	   expired, and we are now adding it back, thus
1958 	   leaving istimer wherever it was set before.
1959 	*/
1960 
1961 	if (hmidi->istimer) {
1962 		hmidi->timer.expires = 1 + jiffies;
1963 		add_timer(&hmidi->timer);
1964 	}
1965 
1966 	spin_unlock_irqrestore (&hmidi->lock, flags);
1967 }
1968 
1969 static void
1970 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1971 {
1972 	struct hdspm_midi *hmidi;
1973 	unsigned long flags;
1974 
1975 	hmidi = substream->rmidi->private_data;
1976 	spin_lock_irqsave (&hmidi->lock, flags);
1977 	if (up) {
1978 		if (!hmidi->istimer) {
1979 			init_timer(&hmidi->timer);
1980 			hmidi->timer.function = snd_hdspm_midi_output_timer;
1981 			hmidi->timer.data = (unsigned long) hmidi;
1982 			hmidi->timer.expires = 1 + jiffies;
1983 			add_timer(&hmidi->timer);
1984 			hmidi->istimer++;
1985 		}
1986 	} else {
1987 		if (hmidi->istimer && --hmidi->istimer <= 0)
1988 			del_timer (&hmidi->timer);
1989 	}
1990 	spin_unlock_irqrestore (&hmidi->lock, flags);
1991 	if (up)
1992 		snd_hdspm_midi_output_write(hmidi);
1993 }
1994 
1995 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1996 {
1997 	struct hdspm_midi *hmidi;
1998 
1999 	hmidi = substream->rmidi->private_data;
2000 	spin_lock_irq (&hmidi->lock);
2001 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
2002 	hmidi->input = substream;
2003 	spin_unlock_irq (&hmidi->lock);
2004 
2005 	return 0;
2006 }
2007 
2008 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
2009 {
2010 	struct hdspm_midi *hmidi;
2011 
2012 	hmidi = substream->rmidi->private_data;
2013 	spin_lock_irq (&hmidi->lock);
2014 	hmidi->output = substream;
2015 	spin_unlock_irq (&hmidi->lock);
2016 
2017 	return 0;
2018 }
2019 
2020 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
2021 {
2022 	struct hdspm_midi *hmidi;
2023 
2024 	snd_hdspm_midi_input_trigger (substream, 0);
2025 
2026 	hmidi = substream->rmidi->private_data;
2027 	spin_lock_irq (&hmidi->lock);
2028 	hmidi->input = NULL;
2029 	spin_unlock_irq (&hmidi->lock);
2030 
2031 	return 0;
2032 }
2033 
2034 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
2035 {
2036 	struct hdspm_midi *hmidi;
2037 
2038 	snd_hdspm_midi_output_trigger (substream, 0);
2039 
2040 	hmidi = substream->rmidi->private_data;
2041 	spin_lock_irq (&hmidi->lock);
2042 	hmidi->output = NULL;
2043 	spin_unlock_irq (&hmidi->lock);
2044 
2045 	return 0;
2046 }
2047 
2048 static struct snd_rawmidi_ops snd_hdspm_midi_output =
2049 {
2050 	.open =		snd_hdspm_midi_output_open,
2051 	.close =	snd_hdspm_midi_output_close,
2052 	.trigger =	snd_hdspm_midi_output_trigger,
2053 };
2054 
2055 static struct snd_rawmidi_ops snd_hdspm_midi_input =
2056 {
2057 	.open =		snd_hdspm_midi_input_open,
2058 	.close =	snd_hdspm_midi_input_close,
2059 	.trigger =	snd_hdspm_midi_input_trigger,
2060 };
2061 
2062 static int snd_hdspm_create_midi(struct snd_card *card,
2063 				 struct hdspm *hdspm, int id)
2064 {
2065 	int err;
2066 	char buf[32];
2067 
2068 	hdspm->midi[id].id = id;
2069 	hdspm->midi[id].hdspm = hdspm;
2070 	spin_lock_init (&hdspm->midi[id].lock);
2071 
2072 	if (0 == id) {
2073 		if (MADIface == hdspm->io_type) {
2074 			/* MIDI-over-MADI on HDSPe MADIface */
2075 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
2076 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
2077 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
2078 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
2079 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
2080 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
2081 		} else {
2082 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
2083 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
2084 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
2085 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
2086 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
2087 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
2088 		}
2089 	} else if (1 == id) {
2090 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
2091 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
2092 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
2093 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
2094 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
2095 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
2096 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
2097 		/* MIDI-over-MADI on HDSPe MADI */
2098 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2099 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2100 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
2101 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
2102 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2103 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
2104 	} else if (2 == id) {
2105 		/* TCO MTC, read only */
2106 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2107 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2108 		hdspm->midi[2].dataOut = -1;
2109 		hdspm->midi[2].statusOut = -1;
2110 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2111 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
2112 	} else if (3 == id) {
2113 		/* TCO MTC on HDSPe MADI */
2114 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
2115 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
2116 		hdspm->midi[3].dataOut = -1;
2117 		hdspm->midi[3].statusOut = -1;
2118 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
2119 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
2120 	}
2121 
2122 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
2123 					(MADIface == hdspm->io_type)))) {
2124 		if ((id == 0) && (MADIface == hdspm->io_type)) {
2125 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
2126 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
2127 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
2128 		} else {
2129 			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
2130 		}
2131 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2132 				&hdspm->midi[id].rmidi);
2133 		if (err < 0)
2134 			return err;
2135 
2136 		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
2137 				card->id, id+1);
2138 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2139 
2140 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2141 				SNDRV_RAWMIDI_STREAM_OUTPUT,
2142 				&snd_hdspm_midi_output);
2143 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2144 				SNDRV_RAWMIDI_STREAM_INPUT,
2145 				&snd_hdspm_midi_input);
2146 
2147 		hdspm->midi[id].rmidi->info_flags |=
2148 			SNDRV_RAWMIDI_INFO_OUTPUT |
2149 			SNDRV_RAWMIDI_INFO_INPUT |
2150 			SNDRV_RAWMIDI_INFO_DUPLEX;
2151 	} else {
2152 		/* TCO MTC, read only */
2153 		sprintf(buf, "%s MTC %d", card->shortname, id+1);
2154 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2155 				&hdspm->midi[id].rmidi);
2156 		if (err < 0)
2157 			return err;
2158 
2159 		sprintf(hdspm->midi[id].rmidi->name,
2160 				"%s MTC %d", card->id, id+1);
2161 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2162 
2163 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2164 				SNDRV_RAWMIDI_STREAM_INPUT,
2165 				&snd_hdspm_midi_input);
2166 
2167 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 
2174 static void hdspm_midi_tasklet(unsigned long arg)
2175 {
2176 	struct hdspm *hdspm = (struct hdspm *)arg;
2177 	int i = 0;
2178 
2179 	while (i < hdspm->midiPorts) {
2180 		if (hdspm->midi[i].pending)
2181 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
2182 
2183 		i++;
2184 	}
2185 }
2186 
2187 
2188 /*-----------------------------------------------------------------------------
2189   Status Interface
2190   ----------------------------------------------------------------------------*/
2191 
2192 /* get the system sample rate which is set */
2193 
2194 
2195 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2196 {
2197 	unsigned int period, rate;
2198 
2199 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2200 	rate = hdspm_calc_dds_value(hdspm, period);
2201 
2202 	return rate;
2203 }
2204 
2205 /**
2206  * Calculate the real sample rate from the
2207  * current DDS value.
2208  **/
2209 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2210 {
2211 	unsigned int rate;
2212 
2213 	rate = hdspm_get_pll_freq(hdspm);
2214 
2215 	if (rate > 207000) {
2216 		/* Unreasonable high sample rate as seen on PCI MADI cards. */
2217 		if (0 == hdspm_system_clock_mode(hdspm)) {
2218 			/* master mode, return internal sample rate */
2219 			rate = hdspm->system_sample_rate;
2220 		} else {
2221 			/* slave mode, return external sample rate */
2222 			rate = hdspm_external_sample_rate(hdspm);
2223 		}
2224 	}
2225 
2226 	return rate;
2227 }
2228 
2229 
2230 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2231 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2232 	.name = xname, \
2233 	.index = xindex, \
2234 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2235 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2236 	.info = snd_hdspm_info_system_sample_rate, \
2237 	.put = snd_hdspm_put_system_sample_rate, \
2238 	.get = snd_hdspm_get_system_sample_rate \
2239 }
2240 
2241 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2242 					     struct snd_ctl_elem_info *uinfo)
2243 {
2244 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2245 	uinfo->count = 1;
2246 	uinfo->value.integer.min = 27000;
2247 	uinfo->value.integer.max = 207000;
2248 	uinfo->value.integer.step = 1;
2249 	return 0;
2250 }
2251 
2252 
2253 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2254 					    struct snd_ctl_elem_value *
2255 					    ucontrol)
2256 {
2257 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2258 
2259 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2260 	return 0;
2261 }
2262 
2263 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2264 					    struct snd_ctl_elem_value *
2265 					    ucontrol)
2266 {
2267 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2268 
2269 	hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]);
2270 	return 0;
2271 }
2272 
2273 
2274 /**
2275  * Returns the WordClock sample rate class for the given card.
2276  **/
2277 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2278 {
2279 	int status;
2280 
2281 	switch (hdspm->io_type) {
2282 	case RayDAT:
2283 	case AIO:
2284 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2285 		return (status >> 16) & 0xF;
2286 		break;
2287 	case AES32:
2288 		status = hdspm_read(hdspm, HDSPM_statusRegister);
2289 		return (status >> HDSPM_AES32_wcFreq_bit) & 0xF;
2290 	default:
2291 		break;
2292 	}
2293 
2294 
2295 	return 0;
2296 }
2297 
2298 
2299 /**
2300  * Returns the TCO sample rate class for the given card.
2301  **/
2302 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2303 {
2304 	int status;
2305 
2306 	if (hdspm->tco) {
2307 		switch (hdspm->io_type) {
2308 		case RayDAT:
2309 		case AIO:
2310 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2311 			return (status >> 20) & 0xF;
2312 			break;
2313 		case AES32:
2314 			status = hdspm_read(hdspm, HDSPM_statusRegister);
2315 			return (status >> 1) & 0xF;
2316 		default:
2317 			break;
2318 		}
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 
2325 /**
2326  * Returns the SYNC_IN sample rate class for the given card.
2327  **/
2328 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2329 {
2330 	int status;
2331 
2332 	if (hdspm->tco) {
2333 		switch (hdspm->io_type) {
2334 		case RayDAT:
2335 		case AIO:
2336 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2337 			return (status >> 12) & 0xF;
2338 			break;
2339 		default:
2340 			break;
2341 		}
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 /**
2348  * Returns the AES sample rate class for the given card.
2349  **/
2350 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index)
2351 {
2352 	int timecode;
2353 
2354 	switch (hdspm->io_type) {
2355 	case AES32:
2356 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
2357 		return (timecode >> (4*index)) & 0xF;
2358 		break;
2359 	default:
2360 		break;
2361 	}
2362 	return 0;
2363 }
2364 
2365 /**
2366  * Returns the sample rate class for input source <idx> for
2367  * 'new style' cards like the AIO and RayDAT.
2368  **/
2369 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2370 {
2371 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2372 
2373 	return (status >> (idx*4)) & 0xF;
2374 }
2375 
2376 #define ENUMERATED_CTL_INFO(info, texts) \
2377 	snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts)
2378 
2379 
2380 /* Helper function to query the external sample rate and return the
2381  * corresponding enum to be returned to userspace.
2382  */
2383 static int hdspm_external_rate_to_enum(struct hdspm *hdspm)
2384 {
2385 	int rate = hdspm_external_sample_rate(hdspm);
2386 	int i, selected_rate = 0;
2387 	for (i = 1; i < 10; i++)
2388 		if (HDSPM_bit2freq(i) == rate) {
2389 			selected_rate = i;
2390 			break;
2391 		}
2392 	return selected_rate;
2393 }
2394 
2395 
2396 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2397 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2398 	.name = xname, \
2399 	.private_value = xindex, \
2400 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2401 	.info = snd_hdspm_info_autosync_sample_rate, \
2402 	.get = snd_hdspm_get_autosync_sample_rate \
2403 }
2404 
2405 
2406 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2407 					       struct snd_ctl_elem_info *uinfo)
2408 {
2409 	ENUMERATED_CTL_INFO(uinfo, texts_freq);
2410 	return 0;
2411 }
2412 
2413 
2414 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2415 					      struct snd_ctl_elem_value *
2416 					      ucontrol)
2417 {
2418 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2419 
2420 	switch (hdspm->io_type) {
2421 	case RayDAT:
2422 		switch (kcontrol->private_value) {
2423 		case 0:
2424 			ucontrol->value.enumerated.item[0] =
2425 				hdspm_get_wc_sample_rate(hdspm);
2426 			break;
2427 		case 7:
2428 			ucontrol->value.enumerated.item[0] =
2429 				hdspm_get_tco_sample_rate(hdspm);
2430 			break;
2431 		case 8:
2432 			ucontrol->value.enumerated.item[0] =
2433 				hdspm_get_sync_in_sample_rate(hdspm);
2434 			break;
2435 		default:
2436 			ucontrol->value.enumerated.item[0] =
2437 				hdspm_get_s1_sample_rate(hdspm,
2438 						kcontrol->private_value-1);
2439 		}
2440 		break;
2441 
2442 	case AIO:
2443 		switch (kcontrol->private_value) {
2444 		case 0: /* WC */
2445 			ucontrol->value.enumerated.item[0] =
2446 				hdspm_get_wc_sample_rate(hdspm);
2447 			break;
2448 		case 4: /* TCO */
2449 			ucontrol->value.enumerated.item[0] =
2450 				hdspm_get_tco_sample_rate(hdspm);
2451 			break;
2452 		case 5: /* SYNC_IN */
2453 			ucontrol->value.enumerated.item[0] =
2454 				hdspm_get_sync_in_sample_rate(hdspm);
2455 			break;
2456 		default:
2457 			ucontrol->value.enumerated.item[0] =
2458 				hdspm_get_s1_sample_rate(hdspm,
2459 						kcontrol->private_value-1);
2460 		}
2461 		break;
2462 
2463 	case AES32:
2464 
2465 		switch (kcontrol->private_value) {
2466 		case 0: /* WC */
2467 			ucontrol->value.enumerated.item[0] =
2468 				hdspm_get_wc_sample_rate(hdspm);
2469 			break;
2470 		case 9: /* TCO */
2471 			ucontrol->value.enumerated.item[0] =
2472 				hdspm_get_tco_sample_rate(hdspm);
2473 			break;
2474 		case 10: /* SYNC_IN */
2475 			ucontrol->value.enumerated.item[0] =
2476 				hdspm_get_sync_in_sample_rate(hdspm);
2477 			break;
2478 		case 11: /* External Rate */
2479 			ucontrol->value.enumerated.item[0] =
2480 				hdspm_external_rate_to_enum(hdspm);
2481 			break;
2482 		default: /* AES1 to AES8 */
2483 			ucontrol->value.enumerated.item[0] =
2484 				hdspm_get_aes_sample_rate(hdspm,
2485 						kcontrol->private_value -
2486 						HDSPM_AES32_AUTOSYNC_FROM_AES1);
2487 			break;
2488 		}
2489 		break;
2490 
2491 	case MADI:
2492 	case MADIface:
2493 		ucontrol->value.enumerated.item[0] =
2494 			hdspm_external_rate_to_enum(hdspm);
2495 		break;
2496 	default:
2497 		break;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 
2504 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2505 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2506 	.name = xname, \
2507 	.index = xindex, \
2508 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2509 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2510 	.info = snd_hdspm_info_system_clock_mode, \
2511 	.get = snd_hdspm_get_system_clock_mode, \
2512 	.put = snd_hdspm_put_system_clock_mode, \
2513 }
2514 
2515 
2516 /**
2517  * Returns the system clock mode for the given card.
2518  * @returns 0 - master, 1 - slave
2519  **/
2520 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2521 {
2522 	switch (hdspm->io_type) {
2523 	case AIO:
2524 	case RayDAT:
2525 		if (hdspm->settings_register & HDSPM_c0Master)
2526 			return 0;
2527 		break;
2528 
2529 	default:
2530 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2531 			return 0;
2532 	}
2533 
2534 	return 1;
2535 }
2536 
2537 
2538 /**
2539  * Sets the system clock mode.
2540  * @param mode 0 - master, 1 - slave
2541  **/
2542 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2543 {
2544 	hdspm_set_toggle_setting(hdspm,
2545 			(hdspm_is_raydat_or_aio(hdspm)) ?
2546 			HDSPM_c0Master : HDSPM_ClockModeMaster,
2547 			(0 == mode));
2548 }
2549 
2550 
2551 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2552 					    struct snd_ctl_elem_info *uinfo)
2553 {
2554 	static const char *const texts[] = { "Master", "AutoSync" };
2555 	ENUMERATED_CTL_INFO(uinfo, texts);
2556 	return 0;
2557 }
2558 
2559 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2560 					   struct snd_ctl_elem_value *ucontrol)
2561 {
2562 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2563 
2564 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2565 	return 0;
2566 }
2567 
2568 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2569 					   struct snd_ctl_elem_value *ucontrol)
2570 {
2571 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2572 	int val;
2573 
2574 	if (!snd_hdspm_use_is_exclusive(hdspm))
2575 		return -EBUSY;
2576 
2577 	val = ucontrol->value.enumerated.item[0];
2578 	if (val < 0)
2579 		val = 0;
2580 	else if (val > 1)
2581 		val = 1;
2582 
2583 	hdspm_set_system_clock_mode(hdspm, val);
2584 
2585 	return 0;
2586 }
2587 
2588 
2589 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2590 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2591 	.name = xname, \
2592 	.index = xindex, \
2593 	.info = snd_hdspm_info_clock_source, \
2594 	.get = snd_hdspm_get_clock_source, \
2595 	.put = snd_hdspm_put_clock_source \
2596 }
2597 
2598 
2599 static int hdspm_clock_source(struct hdspm * hdspm)
2600 {
2601 	switch (hdspm->system_sample_rate) {
2602 	case 32000: return 0;
2603 	case 44100: return 1;
2604 	case 48000: return 2;
2605 	case 64000: return 3;
2606 	case 88200: return 4;
2607 	case 96000: return 5;
2608 	case 128000: return 6;
2609 	case 176400: return 7;
2610 	case 192000: return 8;
2611 	}
2612 
2613 	return -1;
2614 }
2615 
2616 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2617 {
2618 	int rate;
2619 	switch (mode) {
2620 	case 0:
2621 		rate = 32000; break;
2622 	case 1:
2623 		rate = 44100; break;
2624 	case 2:
2625 		rate = 48000; break;
2626 	case 3:
2627 		rate = 64000; break;
2628 	case 4:
2629 		rate = 88200; break;
2630 	case 5:
2631 		rate = 96000; break;
2632 	case 6:
2633 		rate = 128000; break;
2634 	case 7:
2635 		rate = 176400; break;
2636 	case 8:
2637 		rate = 192000; break;
2638 	default:
2639 		rate = 48000;
2640 	}
2641 	hdspm_set_rate(hdspm, rate, 1);
2642 	return 0;
2643 }
2644 
2645 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2646 				       struct snd_ctl_elem_info *uinfo)
2647 {
2648 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2649 	uinfo->count = 1;
2650 	uinfo->value.enumerated.items = 9;
2651 
2652 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2653 		uinfo->value.enumerated.item =
2654 		    uinfo->value.enumerated.items - 1;
2655 
2656 	strcpy(uinfo->value.enumerated.name,
2657 	       texts_freq[uinfo->value.enumerated.item+1]);
2658 
2659 	return 0;
2660 }
2661 
2662 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2663 				      struct snd_ctl_elem_value *ucontrol)
2664 {
2665 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2666 
2667 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2668 	return 0;
2669 }
2670 
2671 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2672 				      struct snd_ctl_elem_value *ucontrol)
2673 {
2674 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2675 	int change;
2676 	int val;
2677 
2678 	if (!snd_hdspm_use_is_exclusive(hdspm))
2679 		return -EBUSY;
2680 	val = ucontrol->value.enumerated.item[0];
2681 	if (val < 0)
2682 		val = 0;
2683 	if (val > 9)
2684 		val = 9;
2685 	spin_lock_irq(&hdspm->lock);
2686 	if (val != hdspm_clock_source(hdspm))
2687 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2688 	else
2689 		change = 0;
2690 	spin_unlock_irq(&hdspm->lock);
2691 	return change;
2692 }
2693 
2694 
2695 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2696 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2697 	.name = xname, \
2698 	.index = xindex, \
2699 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2700 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2701 	.info = snd_hdspm_info_pref_sync_ref, \
2702 	.get = snd_hdspm_get_pref_sync_ref, \
2703 	.put = snd_hdspm_put_pref_sync_ref \
2704 }
2705 
2706 
2707 /**
2708  * Returns the current preferred sync reference setting.
2709  * The semantics of the return value are depending on the
2710  * card, please see the comments for clarification.
2711  **/
2712 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2713 {
2714 	switch (hdspm->io_type) {
2715 	case AES32:
2716 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2717 		case 0: return 0;  /* WC */
2718 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2719 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2720 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2721 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2722 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2723 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2724 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2725 						    return 7; /* AES 7 */
2726 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2727 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2728 		}
2729 		break;
2730 
2731 	case MADI:
2732 	case MADIface:
2733 		if (hdspm->tco) {
2734 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2735 			case 0: return 0;  /* WC */
2736 			case HDSPM_SyncRef0: return 1;  /* MADI */
2737 			case HDSPM_SyncRef1: return 2;  /* TCO */
2738 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2739 					     return 3;  /* SYNC_IN */
2740 			}
2741 		} else {
2742 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2743 			case 0: return 0;  /* WC */
2744 			case HDSPM_SyncRef0: return 1;  /* MADI */
2745 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2746 					     return 2;  /* SYNC_IN */
2747 			}
2748 		}
2749 		break;
2750 
2751 	case RayDAT:
2752 		if (hdspm->tco) {
2753 			switch ((hdspm->settings_register &
2754 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2755 			case 0: return 0;  /* WC */
2756 			case 3: return 1;  /* ADAT 1 */
2757 			case 4: return 2;  /* ADAT 2 */
2758 			case 5: return 3;  /* ADAT 3 */
2759 			case 6: return 4;  /* ADAT 4 */
2760 			case 1: return 5;  /* AES */
2761 			case 2: return 6;  /* SPDIF */
2762 			case 9: return 7;  /* TCO */
2763 			case 10: return 8; /* SYNC_IN */
2764 			}
2765 		} else {
2766 			switch ((hdspm->settings_register &
2767 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2768 			case 0: return 0;  /* WC */
2769 			case 3: return 1;  /* ADAT 1 */
2770 			case 4: return 2;  /* ADAT 2 */
2771 			case 5: return 3;  /* ADAT 3 */
2772 			case 6: return 4;  /* ADAT 4 */
2773 			case 1: return 5;  /* AES */
2774 			case 2: return 6;  /* SPDIF */
2775 			case 10: return 7; /* SYNC_IN */
2776 			}
2777 		}
2778 
2779 		break;
2780 
2781 	case AIO:
2782 		if (hdspm->tco) {
2783 			switch ((hdspm->settings_register &
2784 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2785 			case 0: return 0;  /* WC */
2786 			case 3: return 1;  /* ADAT */
2787 			case 1: return 2;  /* AES */
2788 			case 2: return 3;  /* SPDIF */
2789 			case 9: return 4;  /* TCO */
2790 			case 10: return 5; /* SYNC_IN */
2791 			}
2792 		} else {
2793 			switch ((hdspm->settings_register &
2794 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2795 			case 0: return 0;  /* WC */
2796 			case 3: return 1;  /* ADAT */
2797 			case 1: return 2;  /* AES */
2798 			case 2: return 3;  /* SPDIF */
2799 			case 10: return 4; /* SYNC_IN */
2800 			}
2801 		}
2802 
2803 		break;
2804 	}
2805 
2806 	return -1;
2807 }
2808 
2809 
2810 /**
2811  * Set the preferred sync reference to <pref>. The semantics
2812  * of <pref> are depending on the card type, see the comments
2813  * for clarification.
2814  **/
2815 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2816 {
2817 	int p = 0;
2818 
2819 	switch (hdspm->io_type) {
2820 	case AES32:
2821 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2822 		switch (pref) {
2823 		case 0: /* WC  */
2824 			break;
2825 		case 1: /* AES 1 */
2826 			hdspm->control_register |= HDSPM_SyncRef0;
2827 			break;
2828 		case 2: /* AES 2 */
2829 			hdspm->control_register |= HDSPM_SyncRef1;
2830 			break;
2831 		case 3: /* AES 3 */
2832 			hdspm->control_register |=
2833 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2834 			break;
2835 		case 4: /* AES 4 */
2836 			hdspm->control_register |= HDSPM_SyncRef2;
2837 			break;
2838 		case 5: /* AES 5 */
2839 			hdspm->control_register |=
2840 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2841 			break;
2842 		case 6: /* AES 6 */
2843 			hdspm->control_register |=
2844 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2845 			break;
2846 		case 7: /* AES 7 */
2847 			hdspm->control_register |=
2848 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2849 			break;
2850 		case 8: /* AES 8 */
2851 			hdspm->control_register |= HDSPM_SyncRef3;
2852 			break;
2853 		case 9: /* TCO */
2854 			hdspm->control_register |=
2855 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2856 			break;
2857 		default:
2858 			return -1;
2859 		}
2860 
2861 		break;
2862 
2863 	case MADI:
2864 	case MADIface:
2865 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2866 		if (hdspm->tco) {
2867 			switch (pref) {
2868 			case 0: /* WC */
2869 				break;
2870 			case 1: /* MADI */
2871 				hdspm->control_register |= HDSPM_SyncRef0;
2872 				break;
2873 			case 2: /* TCO */
2874 				hdspm->control_register |= HDSPM_SyncRef1;
2875 				break;
2876 			case 3: /* SYNC_IN */
2877 				hdspm->control_register |=
2878 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2879 				break;
2880 			default:
2881 				return -1;
2882 			}
2883 		} else {
2884 			switch (pref) {
2885 			case 0: /* WC */
2886 				break;
2887 			case 1: /* MADI */
2888 				hdspm->control_register |= HDSPM_SyncRef0;
2889 				break;
2890 			case 2: /* SYNC_IN */
2891 				hdspm->control_register |=
2892 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2893 				break;
2894 			default:
2895 				return -1;
2896 			}
2897 		}
2898 
2899 		break;
2900 
2901 	case RayDAT:
2902 		if (hdspm->tco) {
2903 			switch (pref) {
2904 			case 0: p = 0; break;  /* WC */
2905 			case 1: p = 3; break;  /* ADAT 1 */
2906 			case 2: p = 4; break;  /* ADAT 2 */
2907 			case 3: p = 5; break;  /* ADAT 3 */
2908 			case 4: p = 6; break;  /* ADAT 4 */
2909 			case 5: p = 1; break;  /* AES */
2910 			case 6: p = 2; break;  /* SPDIF */
2911 			case 7: p = 9; break;  /* TCO */
2912 			case 8: p = 10; break; /* SYNC_IN */
2913 			default: return -1;
2914 			}
2915 		} else {
2916 			switch (pref) {
2917 			case 0: p = 0; break;  /* WC */
2918 			case 1: p = 3; break;  /* ADAT 1 */
2919 			case 2: p = 4; break;  /* ADAT 2 */
2920 			case 3: p = 5; break;  /* ADAT 3 */
2921 			case 4: p = 6; break;  /* ADAT 4 */
2922 			case 5: p = 1; break;  /* AES */
2923 			case 6: p = 2; break;  /* SPDIF */
2924 			case 7: p = 10; break; /* SYNC_IN */
2925 			default: return -1;
2926 			}
2927 		}
2928 		break;
2929 
2930 	case AIO:
2931 		if (hdspm->tco) {
2932 			switch (pref) {
2933 			case 0: p = 0; break;  /* WC */
2934 			case 1: p = 3; break;  /* ADAT */
2935 			case 2: p = 1; break;  /* AES */
2936 			case 3: p = 2; break;  /* SPDIF */
2937 			case 4: p = 9; break;  /* TCO */
2938 			case 5: p = 10; break; /* SYNC_IN */
2939 			default: return -1;
2940 			}
2941 		} else {
2942 			switch (pref) {
2943 			case 0: p = 0; break;  /* WC */
2944 			case 1: p = 3; break;  /* ADAT */
2945 			case 2: p = 1; break;  /* AES */
2946 			case 3: p = 2; break;  /* SPDIF */
2947 			case 4: p = 10; break; /* SYNC_IN */
2948 			default: return -1;
2949 			}
2950 		}
2951 		break;
2952 	}
2953 
2954 	switch (hdspm->io_type) {
2955 	case RayDAT:
2956 	case AIO:
2957 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2958 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2959 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2960 		break;
2961 
2962 	case MADI:
2963 	case MADIface:
2964 	case AES32:
2965 		hdspm_write(hdspm, HDSPM_controlRegister,
2966 				hdspm->control_register);
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 
2973 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2974 					struct snd_ctl_elem_info *uinfo)
2975 {
2976 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2977 
2978 	snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync);
2979 
2980 	return 0;
2981 }
2982 
2983 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2984 				       struct snd_ctl_elem_value *ucontrol)
2985 {
2986 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2987 	int psf = hdspm_pref_sync_ref(hdspm);
2988 
2989 	if (psf >= 0) {
2990 		ucontrol->value.enumerated.item[0] = psf;
2991 		return 0;
2992 	}
2993 
2994 	return -1;
2995 }
2996 
2997 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2998 				       struct snd_ctl_elem_value *ucontrol)
2999 {
3000 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3001 	int val, change = 0;
3002 
3003 	if (!snd_hdspm_use_is_exclusive(hdspm))
3004 		return -EBUSY;
3005 
3006 	val = ucontrol->value.enumerated.item[0];
3007 
3008 	if (val < 0)
3009 		val = 0;
3010 	else if (val >= hdspm->texts_autosync_items)
3011 		val = hdspm->texts_autosync_items-1;
3012 
3013 	spin_lock_irq(&hdspm->lock);
3014 	if (val != hdspm_pref_sync_ref(hdspm))
3015 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
3016 
3017 	spin_unlock_irq(&hdspm->lock);
3018 	return change;
3019 }
3020 
3021 
3022 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
3023 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3024 	.name = xname, \
3025 	.index = xindex, \
3026 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
3027 	.info = snd_hdspm_info_autosync_ref, \
3028 	.get = snd_hdspm_get_autosync_ref, \
3029 }
3030 
3031 static int hdspm_autosync_ref(struct hdspm *hdspm)
3032 {
3033 	/* This looks at the autosync selected sync reference */
3034 	if (AES32 == hdspm->io_type) {
3035 
3036 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
3037 		unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
3038 		if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) &&
3039 				(syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) {
3040 			return syncref;
3041 		}
3042 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
3043 
3044 	} else if (MADI == hdspm->io_type) {
3045 
3046 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3047 		switch (status2 & HDSPM_SelSyncRefMask) {
3048 		case HDSPM_SelSyncRef_WORD:
3049 			return HDSPM_AUTOSYNC_FROM_WORD;
3050 		case HDSPM_SelSyncRef_MADI:
3051 			return HDSPM_AUTOSYNC_FROM_MADI;
3052 		case HDSPM_SelSyncRef_TCO:
3053 			return HDSPM_AUTOSYNC_FROM_TCO;
3054 		case HDSPM_SelSyncRef_SyncIn:
3055 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3056 		case HDSPM_SelSyncRef_NVALID:
3057 			return HDSPM_AUTOSYNC_FROM_NONE;
3058 		default:
3059 			return HDSPM_AUTOSYNC_FROM_NONE;
3060 		}
3061 
3062 	}
3063 	return 0;
3064 }
3065 
3066 
3067 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
3068 				       struct snd_ctl_elem_info *uinfo)
3069 {
3070 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3071 
3072 	if (AES32 == hdspm->io_type) {
3073 		static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3",
3074 			"AES4",	"AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"};
3075 
3076 		ENUMERATED_CTL_INFO(uinfo, texts);
3077 	} else if (MADI == hdspm->io_type) {
3078 		static const char *const texts[] = {"Word Clock", "MADI", "TCO",
3079 			"Sync In", "None" };
3080 
3081 		ENUMERATED_CTL_INFO(uinfo, texts);
3082 	}
3083 	return 0;
3084 }
3085 
3086 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
3087 				      struct snd_ctl_elem_value *ucontrol)
3088 {
3089 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3090 
3091 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
3092 	return 0;
3093 }
3094 
3095 
3096 
3097 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \
3098 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3099 	.name = xname, \
3100 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3101 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3102 	.info = snd_hdspm_info_tco_video_input_format, \
3103 	.get = snd_hdspm_get_tco_video_input_format, \
3104 }
3105 
3106 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol,
3107 				       struct snd_ctl_elem_info *uinfo)
3108 {
3109 	static const char *const texts[] = {"No video", "NTSC", "PAL"};
3110 	ENUMERATED_CTL_INFO(uinfo, texts);
3111 	return 0;
3112 }
3113 
3114 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol,
3115 				      struct snd_ctl_elem_value *ucontrol)
3116 {
3117 	u32 status;
3118 	int ret = 0;
3119 
3120 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3121 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3122 	switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC |
3123 			HDSPM_TCO1_Video_Input_Format_PAL)) {
3124 	case HDSPM_TCO1_Video_Input_Format_NTSC:
3125 		/* ntsc */
3126 		ret = 1;
3127 		break;
3128 	case HDSPM_TCO1_Video_Input_Format_PAL:
3129 		/* pal */
3130 		ret = 2;
3131 		break;
3132 	default:
3133 		/* no video */
3134 		ret = 0;
3135 		break;
3136 	}
3137 	ucontrol->value.enumerated.item[0] = ret;
3138 	return 0;
3139 }
3140 
3141 
3142 
3143 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \
3144 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3145 	.name = xname, \
3146 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3147 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3148 	.info = snd_hdspm_info_tco_ltc_frames, \
3149 	.get = snd_hdspm_get_tco_ltc_frames, \
3150 }
3151 
3152 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3153 				       struct snd_ctl_elem_info *uinfo)
3154 {
3155 	static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps",
3156 				"30 fps"};
3157 	ENUMERATED_CTL_INFO(uinfo, texts);
3158 	return 0;
3159 }
3160 
3161 static int hdspm_tco_ltc_frames(struct hdspm *hdspm)
3162 {
3163 	u32 status;
3164 	int ret = 0;
3165 
3166 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3167 	if (status & HDSPM_TCO1_LTC_Input_valid) {
3168 		switch (status & (HDSPM_TCO1_LTC_Format_LSB |
3169 					HDSPM_TCO1_LTC_Format_MSB)) {
3170 		case 0:
3171 			/* 24 fps */
3172 			ret = fps_24;
3173 			break;
3174 		case HDSPM_TCO1_LTC_Format_LSB:
3175 			/* 25 fps */
3176 			ret = fps_25;
3177 			break;
3178 		case HDSPM_TCO1_LTC_Format_MSB:
3179 			/* 29.97 fps */
3180 			ret = fps_2997;
3181 			break;
3182 		default:
3183 			/* 30 fps */
3184 			ret = fps_30;
3185 			break;
3186 		}
3187 	}
3188 
3189 	return ret;
3190 }
3191 
3192 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3193 				      struct snd_ctl_elem_value *ucontrol)
3194 {
3195 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3196 
3197 	ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm);
3198 	return 0;
3199 }
3200 
3201 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
3202 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3203 	.name = xname, \
3204 	.private_value = xindex, \
3205 	.info = snd_hdspm_info_toggle_setting, \
3206 	.get = snd_hdspm_get_toggle_setting, \
3207 	.put = snd_hdspm_put_toggle_setting \
3208 }
3209 
3210 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
3211 {
3212 	u32 reg;
3213 
3214 	if (hdspm_is_raydat_or_aio(hdspm))
3215 		reg = hdspm->settings_register;
3216 	else
3217 		reg = hdspm->control_register;
3218 
3219 	return (reg & regmask) ? 1 : 0;
3220 }
3221 
3222 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
3223 {
3224 	u32 *reg;
3225 	u32 target_reg;
3226 
3227 	if (hdspm_is_raydat_or_aio(hdspm)) {
3228 		reg = &(hdspm->settings_register);
3229 		target_reg = HDSPM_WR_SETTINGS;
3230 	} else {
3231 		reg = &(hdspm->control_register);
3232 		target_reg = HDSPM_controlRegister;
3233 	}
3234 
3235 	if (out)
3236 		*reg |= regmask;
3237 	else
3238 		*reg &= ~regmask;
3239 
3240 	hdspm_write(hdspm, target_reg, *reg);
3241 
3242 	return 0;
3243 }
3244 
3245 #define snd_hdspm_info_toggle_setting		snd_ctl_boolean_mono_info
3246 
3247 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
3248 			       struct snd_ctl_elem_value *ucontrol)
3249 {
3250 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3251 	u32 regmask = kcontrol->private_value;
3252 
3253 	spin_lock_irq(&hdspm->lock);
3254 	ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
3255 	spin_unlock_irq(&hdspm->lock);
3256 	return 0;
3257 }
3258 
3259 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
3260 			       struct snd_ctl_elem_value *ucontrol)
3261 {
3262 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3263 	u32 regmask = kcontrol->private_value;
3264 	int change;
3265 	unsigned int val;
3266 
3267 	if (!snd_hdspm_use_is_exclusive(hdspm))
3268 		return -EBUSY;
3269 	val = ucontrol->value.integer.value[0] & 1;
3270 	spin_lock_irq(&hdspm->lock);
3271 	change = (int) val != hdspm_toggle_setting(hdspm, regmask);
3272 	hdspm_set_toggle_setting(hdspm, regmask, val);
3273 	spin_unlock_irq(&hdspm->lock);
3274 	return change;
3275 }
3276 
3277 #define HDSPM_INPUT_SELECT(xname, xindex) \
3278 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3279 	.name = xname, \
3280 	.index = xindex, \
3281 	.info = snd_hdspm_info_input_select, \
3282 	.get = snd_hdspm_get_input_select, \
3283 	.put = snd_hdspm_put_input_select \
3284 }
3285 
3286 static int hdspm_input_select(struct hdspm * hdspm)
3287 {
3288 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3289 }
3290 
3291 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3292 {
3293 	if (out)
3294 		hdspm->control_register |= HDSPM_InputSelect0;
3295 	else
3296 		hdspm->control_register &= ~HDSPM_InputSelect0;
3297 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3298 
3299 	return 0;
3300 }
3301 
3302 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3303 				       struct snd_ctl_elem_info *uinfo)
3304 {
3305 	static const char *const texts[] = { "optical", "coaxial" };
3306 	ENUMERATED_CTL_INFO(uinfo, texts);
3307 	return 0;
3308 }
3309 
3310 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3311 				      struct snd_ctl_elem_value *ucontrol)
3312 {
3313 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3314 
3315 	spin_lock_irq(&hdspm->lock);
3316 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3317 	spin_unlock_irq(&hdspm->lock);
3318 	return 0;
3319 }
3320 
3321 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3322 				      struct snd_ctl_elem_value *ucontrol)
3323 {
3324 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3325 	int change;
3326 	unsigned int val;
3327 
3328 	if (!snd_hdspm_use_is_exclusive(hdspm))
3329 		return -EBUSY;
3330 	val = ucontrol->value.integer.value[0] & 1;
3331 	spin_lock_irq(&hdspm->lock);
3332 	change = (int) val != hdspm_input_select(hdspm);
3333 	hdspm_set_input_select(hdspm, val);
3334 	spin_unlock_irq(&hdspm->lock);
3335 	return change;
3336 }
3337 
3338 
3339 #define HDSPM_DS_WIRE(xname, xindex) \
3340 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3341 	.name = xname, \
3342 	.index = xindex, \
3343 	.info = snd_hdspm_info_ds_wire, \
3344 	.get = snd_hdspm_get_ds_wire, \
3345 	.put = snd_hdspm_put_ds_wire \
3346 }
3347 
3348 static int hdspm_ds_wire(struct hdspm * hdspm)
3349 {
3350 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3351 }
3352 
3353 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3354 {
3355 	if (ds)
3356 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3357 	else
3358 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3359 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3360 
3361 	return 0;
3362 }
3363 
3364 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3365 				  struct snd_ctl_elem_info *uinfo)
3366 {
3367 	static const char *const texts[] = { "Single", "Double" };
3368 	ENUMERATED_CTL_INFO(uinfo, texts);
3369 	return 0;
3370 }
3371 
3372 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3373 				 struct snd_ctl_elem_value *ucontrol)
3374 {
3375 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3376 
3377 	spin_lock_irq(&hdspm->lock);
3378 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3379 	spin_unlock_irq(&hdspm->lock);
3380 	return 0;
3381 }
3382 
3383 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3384 				 struct snd_ctl_elem_value *ucontrol)
3385 {
3386 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3387 	int change;
3388 	unsigned int val;
3389 
3390 	if (!snd_hdspm_use_is_exclusive(hdspm))
3391 		return -EBUSY;
3392 	val = ucontrol->value.integer.value[0] & 1;
3393 	spin_lock_irq(&hdspm->lock);
3394 	change = (int) val != hdspm_ds_wire(hdspm);
3395 	hdspm_set_ds_wire(hdspm, val);
3396 	spin_unlock_irq(&hdspm->lock);
3397 	return change;
3398 }
3399 
3400 
3401 #define HDSPM_QS_WIRE(xname, xindex) \
3402 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3403 	.name = xname, \
3404 	.index = xindex, \
3405 	.info = snd_hdspm_info_qs_wire, \
3406 	.get = snd_hdspm_get_qs_wire, \
3407 	.put = snd_hdspm_put_qs_wire \
3408 }
3409 
3410 static int hdspm_qs_wire(struct hdspm * hdspm)
3411 {
3412 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3413 		return 1;
3414 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3415 		return 2;
3416 	return 0;
3417 }
3418 
3419 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3420 {
3421 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3422 	switch (mode) {
3423 	case 0:
3424 		break;
3425 	case 1:
3426 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3427 		break;
3428 	case 2:
3429 		hdspm->control_register |= HDSPM_QS_QuadWire;
3430 		break;
3431 	}
3432 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3433 
3434 	return 0;
3435 }
3436 
3437 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3438 				       struct snd_ctl_elem_info *uinfo)
3439 {
3440 	static const char *const texts[] = { "Single", "Double", "Quad" };
3441 	ENUMERATED_CTL_INFO(uinfo, texts);
3442 	return 0;
3443 }
3444 
3445 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3446 				      struct snd_ctl_elem_value *ucontrol)
3447 {
3448 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3449 
3450 	spin_lock_irq(&hdspm->lock);
3451 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3452 	spin_unlock_irq(&hdspm->lock);
3453 	return 0;
3454 }
3455 
3456 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3457 				      struct snd_ctl_elem_value *ucontrol)
3458 {
3459 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3460 	int change;
3461 	int val;
3462 
3463 	if (!snd_hdspm_use_is_exclusive(hdspm))
3464 		return -EBUSY;
3465 	val = ucontrol->value.integer.value[0];
3466 	if (val < 0)
3467 		val = 0;
3468 	if (val > 2)
3469 		val = 2;
3470 	spin_lock_irq(&hdspm->lock);
3471 	change = val != hdspm_qs_wire(hdspm);
3472 	hdspm_set_qs_wire(hdspm, val);
3473 	spin_unlock_irq(&hdspm->lock);
3474 	return change;
3475 }
3476 
3477 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \
3478 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3479 	.name = xname, \
3480 	.private_value = xindex, \
3481 	.info = snd_hdspm_info_tristate, \
3482 	.get = snd_hdspm_get_tristate, \
3483 	.put = snd_hdspm_put_tristate \
3484 }
3485 
3486 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask)
3487 {
3488 	u32 reg = hdspm->settings_register & (regmask * 3);
3489 	return reg / regmask;
3490 }
3491 
3492 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask)
3493 {
3494 	hdspm->settings_register &= ~(regmask * 3);
3495 	hdspm->settings_register |= (regmask * mode);
3496 	hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
3497 
3498 	return 0;
3499 }
3500 
3501 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol,
3502 				       struct snd_ctl_elem_info *uinfo)
3503 {
3504 	u32 regmask = kcontrol->private_value;
3505 
3506 	static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" };
3507 	static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" };
3508 
3509 	switch (regmask) {
3510 	case HDSPM_c0_Input0:
3511 		ENUMERATED_CTL_INFO(uinfo, texts_spdif);
3512 		break;
3513 	default:
3514 		ENUMERATED_CTL_INFO(uinfo, texts_levels);
3515 		break;
3516 	}
3517 	return 0;
3518 }
3519 
3520 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol,
3521 				      struct snd_ctl_elem_value *ucontrol)
3522 {
3523 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3524 	u32 regmask = kcontrol->private_value;
3525 
3526 	spin_lock_irq(&hdspm->lock);
3527 	ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask);
3528 	spin_unlock_irq(&hdspm->lock);
3529 	return 0;
3530 }
3531 
3532 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol,
3533 				      struct snd_ctl_elem_value *ucontrol)
3534 {
3535 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3536 	u32 regmask = kcontrol->private_value;
3537 	int change;
3538 	int val;
3539 
3540 	if (!snd_hdspm_use_is_exclusive(hdspm))
3541 		return -EBUSY;
3542 	val = ucontrol->value.integer.value[0];
3543 	if (val < 0)
3544 		val = 0;
3545 	if (val > 2)
3546 		val = 2;
3547 
3548 	spin_lock_irq(&hdspm->lock);
3549 	change = val != hdspm_tristate(hdspm, regmask);
3550 	hdspm_set_tristate(hdspm, val, regmask);
3551 	spin_unlock_irq(&hdspm->lock);
3552 	return change;
3553 }
3554 
3555 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3556 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3557 	.name = xname, \
3558 	.index = xindex, \
3559 	.info = snd_hdspm_info_madi_speedmode, \
3560 	.get = snd_hdspm_get_madi_speedmode, \
3561 	.put = snd_hdspm_put_madi_speedmode \
3562 }
3563 
3564 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3565 {
3566 	if (hdspm->control_register & HDSPM_QuadSpeed)
3567 		return 2;
3568 	if (hdspm->control_register & HDSPM_DoubleSpeed)
3569 		return 1;
3570 	return 0;
3571 }
3572 
3573 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3574 {
3575 	hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3576 	switch (mode) {
3577 	case 0:
3578 		break;
3579 	case 1:
3580 		hdspm->control_register |= HDSPM_DoubleSpeed;
3581 		break;
3582 	case 2:
3583 		hdspm->control_register |= HDSPM_QuadSpeed;
3584 		break;
3585 	}
3586 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3587 
3588 	return 0;
3589 }
3590 
3591 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3592 				       struct snd_ctl_elem_info *uinfo)
3593 {
3594 	static const char *const texts[] = { "Single", "Double", "Quad" };
3595 	ENUMERATED_CTL_INFO(uinfo, texts);
3596 	return 0;
3597 }
3598 
3599 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3600 				      struct snd_ctl_elem_value *ucontrol)
3601 {
3602 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3603 
3604 	spin_lock_irq(&hdspm->lock);
3605 	ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3606 	spin_unlock_irq(&hdspm->lock);
3607 	return 0;
3608 }
3609 
3610 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3611 				      struct snd_ctl_elem_value *ucontrol)
3612 {
3613 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3614 	int change;
3615 	int val;
3616 
3617 	if (!snd_hdspm_use_is_exclusive(hdspm))
3618 		return -EBUSY;
3619 	val = ucontrol->value.integer.value[0];
3620 	if (val < 0)
3621 		val = 0;
3622 	if (val > 2)
3623 		val = 2;
3624 	spin_lock_irq(&hdspm->lock);
3625 	change = val != hdspm_madi_speedmode(hdspm);
3626 	hdspm_set_madi_speedmode(hdspm, val);
3627 	spin_unlock_irq(&hdspm->lock);
3628 	return change;
3629 }
3630 
3631 #define HDSPM_MIXER(xname, xindex) \
3632 {	.iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3633 	.name = xname, \
3634 	.index = xindex, \
3635 	.device = 0, \
3636 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3637 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3638 	.info = snd_hdspm_info_mixer, \
3639 	.get = snd_hdspm_get_mixer, \
3640 	.put = snd_hdspm_put_mixer \
3641 }
3642 
3643 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3644 				struct snd_ctl_elem_info *uinfo)
3645 {
3646 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3647 	uinfo->count = 3;
3648 	uinfo->value.integer.min = 0;
3649 	uinfo->value.integer.max = 65535;
3650 	uinfo->value.integer.step = 1;
3651 	return 0;
3652 }
3653 
3654 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3655 			       struct snd_ctl_elem_value *ucontrol)
3656 {
3657 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3658 	int source;
3659 	int destination;
3660 
3661 	source = ucontrol->value.integer.value[0];
3662 	if (source < 0)
3663 		source = 0;
3664 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3665 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3666 
3667 	destination = ucontrol->value.integer.value[1];
3668 	if (destination < 0)
3669 		destination = 0;
3670 	else if (destination >= HDSPM_MAX_CHANNELS)
3671 		destination = HDSPM_MAX_CHANNELS - 1;
3672 
3673 	spin_lock_irq(&hdspm->lock);
3674 	if (source >= HDSPM_MAX_CHANNELS)
3675 		ucontrol->value.integer.value[2] =
3676 		    hdspm_read_pb_gain(hdspm, destination,
3677 				       source - HDSPM_MAX_CHANNELS);
3678 	else
3679 		ucontrol->value.integer.value[2] =
3680 		    hdspm_read_in_gain(hdspm, destination, source);
3681 
3682 	spin_unlock_irq(&hdspm->lock);
3683 
3684 	return 0;
3685 }
3686 
3687 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3688 			       struct snd_ctl_elem_value *ucontrol)
3689 {
3690 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3691 	int change;
3692 	int source;
3693 	int destination;
3694 	int gain;
3695 
3696 	if (!snd_hdspm_use_is_exclusive(hdspm))
3697 		return -EBUSY;
3698 
3699 	source = ucontrol->value.integer.value[0];
3700 	destination = ucontrol->value.integer.value[1];
3701 
3702 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3703 		return -1;
3704 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3705 		return -1;
3706 
3707 	gain = ucontrol->value.integer.value[2];
3708 
3709 	spin_lock_irq(&hdspm->lock);
3710 
3711 	if (source >= HDSPM_MAX_CHANNELS)
3712 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3713 						    source -
3714 						    HDSPM_MAX_CHANNELS);
3715 	else
3716 		change = gain != hdspm_read_in_gain(hdspm, destination,
3717 						    source);
3718 
3719 	if (change) {
3720 		if (source >= HDSPM_MAX_CHANNELS)
3721 			hdspm_write_pb_gain(hdspm, destination,
3722 					    source - HDSPM_MAX_CHANNELS,
3723 					    gain);
3724 		else
3725 			hdspm_write_in_gain(hdspm, destination, source,
3726 					    gain);
3727 	}
3728 	spin_unlock_irq(&hdspm->lock);
3729 
3730 	return change;
3731 }
3732 
3733 /* The simple mixer control(s) provide gain control for the
3734    basic 1:1 mappings of playback streams to output
3735    streams.
3736 */
3737 
3738 #define HDSPM_PLAYBACK_MIXER \
3739 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3740 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3741 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3742 	.info = snd_hdspm_info_playback_mixer, \
3743 	.get = snd_hdspm_get_playback_mixer, \
3744 	.put = snd_hdspm_put_playback_mixer \
3745 }
3746 
3747 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3748 					 struct snd_ctl_elem_info *uinfo)
3749 {
3750 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3751 	uinfo->count = 1;
3752 	uinfo->value.integer.min = 0;
3753 	uinfo->value.integer.max = 64;
3754 	uinfo->value.integer.step = 1;
3755 	return 0;
3756 }
3757 
3758 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3759 					struct snd_ctl_elem_value *ucontrol)
3760 {
3761 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3762 	int channel;
3763 
3764 	channel = ucontrol->id.index - 1;
3765 
3766 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3767 		return -EINVAL;
3768 
3769 	spin_lock_irq(&hdspm->lock);
3770 	ucontrol->value.integer.value[0] =
3771 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3772 	spin_unlock_irq(&hdspm->lock);
3773 
3774 	return 0;
3775 }
3776 
3777 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3778 					struct snd_ctl_elem_value *ucontrol)
3779 {
3780 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3781 	int change;
3782 	int channel;
3783 	int gain;
3784 
3785 	if (!snd_hdspm_use_is_exclusive(hdspm))
3786 		return -EBUSY;
3787 
3788 	channel = ucontrol->id.index - 1;
3789 
3790 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3791 		return -EINVAL;
3792 
3793 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3794 
3795 	spin_lock_irq(&hdspm->lock);
3796 	change =
3797 	    gain != hdspm_read_pb_gain(hdspm, channel,
3798 				       channel);
3799 	if (change)
3800 		hdspm_write_pb_gain(hdspm, channel, channel,
3801 				    gain);
3802 	spin_unlock_irq(&hdspm->lock);
3803 	return change;
3804 }
3805 
3806 #define HDSPM_SYNC_CHECK(xname, xindex) \
3807 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3808 	.name = xname, \
3809 	.private_value = xindex, \
3810 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3811 	.info = snd_hdspm_info_sync_check, \
3812 	.get = snd_hdspm_get_sync_check \
3813 }
3814 
3815 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3816 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3817 	.name = xname, \
3818 	.private_value = xindex, \
3819 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3820 	.info = snd_hdspm_tco_info_lock_check, \
3821 	.get = snd_hdspm_get_sync_check \
3822 }
3823 
3824 
3825 
3826 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3827 				     struct snd_ctl_elem_info *uinfo)
3828 {
3829 	static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3830 	ENUMERATED_CTL_INFO(uinfo, texts);
3831 	return 0;
3832 }
3833 
3834 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3835 				     struct snd_ctl_elem_info *uinfo)
3836 {
3837 	static const char *const texts[] = { "No Lock", "Lock" };
3838 	ENUMERATED_CTL_INFO(uinfo, texts);
3839 	return 0;
3840 }
3841 
3842 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3843 {
3844 	int status, status2;
3845 
3846 	switch (hdspm->io_type) {
3847 	case AES32:
3848 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3849 		if (status & HDSPM_AES32_wcLock) {
3850 			if (status & HDSPM_AES32_wcSync)
3851 				return 2;
3852 			else
3853 				return 1;
3854 		}
3855 		return 0;
3856 		break;
3857 
3858 	case MADI:
3859 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3860 		if (status2 & HDSPM_wcLock) {
3861 			if (status2 & HDSPM_wcSync)
3862 				return 2;
3863 			else
3864 				return 1;
3865 		}
3866 		return 0;
3867 		break;
3868 
3869 	case RayDAT:
3870 	case AIO:
3871 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3872 
3873 		if (status & 0x2000000)
3874 			return 2;
3875 		else if (status & 0x1000000)
3876 			return 1;
3877 		return 0;
3878 
3879 		break;
3880 
3881 	case MADIface:
3882 		break;
3883 	}
3884 
3885 
3886 	return 3;
3887 }
3888 
3889 
3890 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3891 {
3892 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3893 	if (status & HDSPM_madiLock) {
3894 		if (status & HDSPM_madiSync)
3895 			return 2;
3896 		else
3897 			return 1;
3898 	}
3899 	return 0;
3900 }
3901 
3902 
3903 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3904 {
3905 	int status, lock, sync;
3906 
3907 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3908 
3909 	lock = (status & (0x1<<idx)) ? 1 : 0;
3910 	sync = (status & (0x100<<idx)) ? 1 : 0;
3911 
3912 	if (lock && sync)
3913 		return 2;
3914 	else if (lock)
3915 		return 1;
3916 	return 0;
3917 }
3918 
3919 
3920 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3921 {
3922 	int status, lock = 0, sync = 0;
3923 
3924 	switch (hdspm->io_type) {
3925 	case RayDAT:
3926 	case AIO:
3927 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3928 		lock = (status & 0x400) ? 1 : 0;
3929 		sync = (status & 0x800) ? 1 : 0;
3930 		break;
3931 
3932 	case MADI:
3933 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3934 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3935 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3936 		break;
3937 
3938 	case AES32:
3939 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3940 		lock = (status & 0x100000) ? 1 : 0;
3941 		sync = (status & 0x200000) ? 1 : 0;
3942 		break;
3943 
3944 	case MADIface:
3945 		break;
3946 	}
3947 
3948 	if (lock && sync)
3949 		return 2;
3950 	else if (lock)
3951 		return 1;
3952 
3953 	return 0;
3954 }
3955 
3956 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3957 {
3958 	int status2, lock, sync;
3959 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3960 
3961 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3962 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3963 
3964 	if (sync)
3965 		return 2;
3966 	else if (lock)
3967 		return 1;
3968 	return 0;
3969 }
3970 
3971 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3972 {
3973 	u32 status;
3974 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3975 
3976 	return (status & mask) ? 1 : 0;
3977 }
3978 
3979 
3980 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3981 {
3982 	int status;
3983 
3984 	if (hdspm->tco) {
3985 		switch (hdspm->io_type) {
3986 		case MADI:
3987 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3988 			if (status & HDSPM_tcoLockMadi) {
3989 				if (status & HDSPM_tcoSync)
3990 					return 2;
3991 				else
3992 					return 1;
3993 			}
3994 			return 0;
3995 		case AES32:
3996 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3997 			if (status & HDSPM_tcoLockAes) {
3998 				if (status & HDSPM_tcoSync)
3999 					return 2;
4000 				else
4001 					return 1;
4002 			}
4003 			return 0;
4004 		case RayDAT:
4005 		case AIO:
4006 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
4007 
4008 			if (status & 0x8000000)
4009 				return 2; /* Sync */
4010 			if (status & 0x4000000)
4011 				return 1; /* Lock */
4012 			return 0; /* No signal */
4013 
4014 		default:
4015 			break;
4016 		}
4017 	}
4018 
4019 	return 3; /* N/A */
4020 }
4021 
4022 
4023 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
4024 				    struct snd_ctl_elem_value *ucontrol)
4025 {
4026 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4027 	int val = -1;
4028 
4029 	switch (hdspm->io_type) {
4030 	case RayDAT:
4031 		switch (kcontrol->private_value) {
4032 		case 0: /* WC */
4033 			val = hdspm_wc_sync_check(hdspm); break;
4034 		case 7: /* TCO */
4035 			val = hdspm_tco_sync_check(hdspm); break;
4036 		case 8: /* SYNC IN */
4037 			val = hdspm_sync_in_sync_check(hdspm); break;
4038 		default:
4039 			val = hdspm_s1_sync_check(hdspm,
4040 					kcontrol->private_value-1);
4041 		}
4042 		break;
4043 
4044 	case AIO:
4045 		switch (kcontrol->private_value) {
4046 		case 0: /* WC */
4047 			val = hdspm_wc_sync_check(hdspm); break;
4048 		case 4: /* TCO */
4049 			val = hdspm_tco_sync_check(hdspm); break;
4050 		case 5: /* SYNC IN */
4051 			val = hdspm_sync_in_sync_check(hdspm); break;
4052 		default:
4053 			val = hdspm_s1_sync_check(hdspm,
4054 					kcontrol->private_value-1);
4055 		}
4056 		break;
4057 
4058 	case MADI:
4059 		switch (kcontrol->private_value) {
4060 		case 0: /* WC */
4061 			val = hdspm_wc_sync_check(hdspm); break;
4062 		case 1: /* MADI */
4063 			val = hdspm_madi_sync_check(hdspm); break;
4064 		case 2: /* TCO */
4065 			val = hdspm_tco_sync_check(hdspm); break;
4066 		case 3: /* SYNC_IN */
4067 			val = hdspm_sync_in_sync_check(hdspm); break;
4068 		}
4069 		break;
4070 
4071 	case MADIface:
4072 		val = hdspm_madi_sync_check(hdspm); /* MADI */
4073 		break;
4074 
4075 	case AES32:
4076 		switch (kcontrol->private_value) {
4077 		case 0: /* WC */
4078 			val = hdspm_wc_sync_check(hdspm); break;
4079 		case 9: /* TCO */
4080 			val = hdspm_tco_sync_check(hdspm); break;
4081 		case 10 /* SYNC IN */:
4082 			val = hdspm_sync_in_sync_check(hdspm); break;
4083 		default: /* AES1 to AES8 */
4084 			 val = hdspm_aes_sync_check(hdspm,
4085 					 kcontrol->private_value-1);
4086 		}
4087 		break;
4088 
4089 	}
4090 
4091 	if (hdspm->tco) {
4092 		switch (kcontrol->private_value) {
4093 		case 11:
4094 			/* Check TCO for lock state of its current input */
4095 			val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
4096 			break;
4097 		case 12:
4098 			/* Check TCO for valid time code on LTC input. */
4099 			val = hdspm_tco_input_check(hdspm,
4100 				HDSPM_TCO1_LTC_Input_valid);
4101 			break;
4102 		default:
4103 			break;
4104 		}
4105 	}
4106 
4107 	if (-1 == val)
4108 		val = 3;
4109 
4110 	ucontrol->value.enumerated.item[0] = val;
4111 	return 0;
4112 }
4113 
4114 
4115 
4116 /**
4117  * TCO controls
4118  **/
4119 static void hdspm_tco_write(struct hdspm *hdspm)
4120 {
4121 	unsigned int tc[4] = { 0, 0, 0, 0};
4122 
4123 	switch (hdspm->tco->input) {
4124 	case 0:
4125 		tc[2] |= HDSPM_TCO2_set_input_MSB;
4126 		break;
4127 	case 1:
4128 		tc[2] |= HDSPM_TCO2_set_input_LSB;
4129 		break;
4130 	default:
4131 		break;
4132 	}
4133 
4134 	switch (hdspm->tco->framerate) {
4135 	case 1:
4136 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4137 		break;
4138 	case 2:
4139 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4140 		break;
4141 	case 3:
4142 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4143 			HDSPM_TCO1_set_drop_frame_flag;
4144 		break;
4145 	case 4:
4146 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4147 			HDSPM_TCO1_LTC_Format_MSB;
4148 		break;
4149 	case 5:
4150 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4151 			HDSPM_TCO1_LTC_Format_MSB +
4152 			HDSPM_TCO1_set_drop_frame_flag;
4153 		break;
4154 	default:
4155 		break;
4156 	}
4157 
4158 	switch (hdspm->tco->wordclock) {
4159 	case 1:
4160 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4161 		break;
4162 	case 2:
4163 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4164 		break;
4165 	default:
4166 		break;
4167 	}
4168 
4169 	switch (hdspm->tco->samplerate) {
4170 	case 1:
4171 		tc[2] |= HDSPM_TCO2_set_freq;
4172 		break;
4173 	case 2:
4174 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
4175 		break;
4176 	default:
4177 		break;
4178 	}
4179 
4180 	switch (hdspm->tco->pull) {
4181 	case 1:
4182 		tc[2] |= HDSPM_TCO2_set_pull_up;
4183 		break;
4184 	case 2:
4185 		tc[2] |= HDSPM_TCO2_set_pull_down;
4186 		break;
4187 	case 3:
4188 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4189 		break;
4190 	case 4:
4191 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4192 		break;
4193 	default:
4194 		break;
4195 	}
4196 
4197 	if (1 == hdspm->tco->term) {
4198 		tc[2] |= HDSPM_TCO2_set_term_75R;
4199 	}
4200 
4201 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4202 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4203 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4204 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4205 }
4206 
4207 
4208 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4209 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4210 	.name = xname, \
4211 	.index = xindex, \
4212 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4213 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4214 	.info = snd_hdspm_info_tco_sample_rate, \
4215 	.get = snd_hdspm_get_tco_sample_rate, \
4216 	.put = snd_hdspm_put_tco_sample_rate \
4217 }
4218 
4219 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4220 					  struct snd_ctl_elem_info *uinfo)
4221 {
4222 	/* TODO freq from app could be supported here, see tco->samplerate */
4223 	static const char *const texts[] = { "44.1 kHz", "48 kHz" };
4224 	ENUMERATED_CTL_INFO(uinfo, texts);
4225 	return 0;
4226 }
4227 
4228 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4229 				      struct snd_ctl_elem_value *ucontrol)
4230 {
4231 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4232 
4233 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4234 
4235 	return 0;
4236 }
4237 
4238 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4239 					 struct snd_ctl_elem_value *ucontrol)
4240 {
4241 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4242 
4243 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4244 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4245 
4246 		hdspm_tco_write(hdspm);
4247 
4248 		return 1;
4249 	}
4250 
4251 	return 0;
4252 }
4253 
4254 
4255 #define HDSPM_TCO_PULL(xname, xindex) \
4256 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4257 	.name = xname, \
4258 	.index = xindex, \
4259 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4260 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4261 	.info = snd_hdspm_info_tco_pull, \
4262 	.get = snd_hdspm_get_tco_pull, \
4263 	.put = snd_hdspm_put_tco_pull \
4264 }
4265 
4266 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4267 				   struct snd_ctl_elem_info *uinfo)
4268 {
4269 	static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %",
4270 		"+ 4 %", "- 4 %" };
4271 	ENUMERATED_CTL_INFO(uinfo, texts);
4272 	return 0;
4273 }
4274 
4275 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4276 				  struct snd_ctl_elem_value *ucontrol)
4277 {
4278 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4279 
4280 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4281 
4282 	return 0;
4283 }
4284 
4285 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4286 				  struct snd_ctl_elem_value *ucontrol)
4287 {
4288 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4289 
4290 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4291 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4292 
4293 		hdspm_tco_write(hdspm);
4294 
4295 		return 1;
4296 	}
4297 
4298 	return 0;
4299 }
4300 
4301 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4302 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4303 	.name = xname, \
4304 	.index = xindex, \
4305 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4306 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4307 	.info = snd_hdspm_info_tco_wck_conversion, \
4308 	.get = snd_hdspm_get_tco_wck_conversion, \
4309 	.put = snd_hdspm_put_tco_wck_conversion \
4310 }
4311 
4312 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4313 					     struct snd_ctl_elem_info *uinfo)
4314 {
4315 	static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4316 	ENUMERATED_CTL_INFO(uinfo, texts);
4317 	return 0;
4318 }
4319 
4320 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4321 					    struct snd_ctl_elem_value *ucontrol)
4322 {
4323 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4324 
4325 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4326 
4327 	return 0;
4328 }
4329 
4330 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4331 					    struct snd_ctl_elem_value *ucontrol)
4332 {
4333 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4334 
4335 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4336 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4337 
4338 		hdspm_tco_write(hdspm);
4339 
4340 		return 1;
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 
4347 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4348 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4349 	.name = xname, \
4350 	.index = xindex, \
4351 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4352 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4353 	.info = snd_hdspm_info_tco_frame_rate, \
4354 	.get = snd_hdspm_get_tco_frame_rate, \
4355 	.put = snd_hdspm_put_tco_frame_rate \
4356 }
4357 
4358 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4359 					  struct snd_ctl_elem_info *uinfo)
4360 {
4361 	static const char *const texts[] = { "24 fps", "25 fps", "29.97fps",
4362 		"29.97 dfps", "30 fps", "30 dfps" };
4363 	ENUMERATED_CTL_INFO(uinfo, texts);
4364 	return 0;
4365 }
4366 
4367 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4368 					struct snd_ctl_elem_value *ucontrol)
4369 {
4370 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4371 
4372 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4373 
4374 	return 0;
4375 }
4376 
4377 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4378 					struct snd_ctl_elem_value *ucontrol)
4379 {
4380 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4381 
4382 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4383 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4384 
4385 		hdspm_tco_write(hdspm);
4386 
4387 		return 1;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 
4394 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4395 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4396 	.name = xname, \
4397 	.index = xindex, \
4398 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4399 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4400 	.info = snd_hdspm_info_tco_sync_source, \
4401 	.get = snd_hdspm_get_tco_sync_source, \
4402 	.put = snd_hdspm_put_tco_sync_source \
4403 }
4404 
4405 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4406 					  struct snd_ctl_elem_info *uinfo)
4407 {
4408 	static const char *const texts[] = { "LTC", "Video", "WCK" };
4409 	ENUMERATED_CTL_INFO(uinfo, texts);
4410 	return 0;
4411 }
4412 
4413 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4414 					 struct snd_ctl_elem_value *ucontrol)
4415 {
4416 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4417 
4418 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4419 
4420 	return 0;
4421 }
4422 
4423 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4424 					 struct snd_ctl_elem_value *ucontrol)
4425 {
4426 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4427 
4428 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4429 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4430 
4431 		hdspm_tco_write(hdspm);
4432 
4433 		return 1;
4434 	}
4435 
4436 	return 0;
4437 }
4438 
4439 
4440 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4441 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4442 	.name = xname, \
4443 	.index = xindex, \
4444 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4445 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4446 	.info = snd_hdspm_info_tco_word_term, \
4447 	.get = snd_hdspm_get_tco_word_term, \
4448 	.put = snd_hdspm_put_tco_word_term \
4449 }
4450 
4451 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4452 					struct snd_ctl_elem_info *uinfo)
4453 {
4454 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4455 	uinfo->count = 1;
4456 	uinfo->value.integer.min = 0;
4457 	uinfo->value.integer.max = 1;
4458 
4459 	return 0;
4460 }
4461 
4462 
4463 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4464 				       struct snd_ctl_elem_value *ucontrol)
4465 {
4466 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4467 
4468 	ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4469 
4470 	return 0;
4471 }
4472 
4473 
4474 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4475 				       struct snd_ctl_elem_value *ucontrol)
4476 {
4477 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4478 
4479 	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4480 		hdspm->tco->term = ucontrol->value.enumerated.item[0];
4481 
4482 		hdspm_tco_write(hdspm);
4483 
4484 		return 1;
4485 	}
4486 
4487 	return 0;
4488 }
4489 
4490 
4491 
4492 
4493 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4494 	HDSPM_MIXER("Mixer", 0),
4495 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4496 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4497 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4498 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4499 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4500 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4501 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4502 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4503 	HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4504 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4505 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4506 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4507 	HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4508 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4509 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4510 	HDSPM_INPUT_SELECT("Input Select", 0),
4511 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4512 };
4513 
4514 
4515 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4516 	HDSPM_MIXER("Mixer", 0),
4517 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4518 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4519 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4520 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4521 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4522 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4523 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4524 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4525 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4526 };
4527 
4528 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4529 	HDSPM_MIXER("Mixer", 0),
4530 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4531 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4532 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4533 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4534 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4535 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4536 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4537 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4538 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4539 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4540 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4541 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4542 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4543 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4544 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4545 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4546 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5),
4547 	HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0),
4548 	HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt),
4549 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4550 	HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1),
4551 	HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db),
4552 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48),
4553 	HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0),
4554 	HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0),
4555 	HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0)
4556 
4557 		/*
4558 		   HDSPM_INPUT_SELECT("Input Select", 0),
4559 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4560 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4561 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4562 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4563 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4564 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4565 		   HDSPM_PHONES("Phones", 0);
4566 		   */
4567 };
4568 
4569 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4570 	HDSPM_MIXER("Mixer", 0),
4571 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4572 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4573 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4574 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4575 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4576 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4577 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4578 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4579 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4580 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4581 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4582 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4583 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4584 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4585 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4586 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4587 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4588 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4589 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4590 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4591 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4592 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8),
4593 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4594 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48)
4595 };
4596 
4597 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4598 	HDSPM_MIXER("Mixer", 0),
4599 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4600 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4601 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4602 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4603 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4604 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11),
4605 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4606 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4607 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4608 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4609 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4610 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4611 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4612 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4613 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4614 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4615 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4616 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4617 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4618 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4619 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4620 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4621 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4622 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4623 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4624 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4625 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4626 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4627 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4628 	HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4629 	HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4630 	HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4631 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4632 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4633 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4634 };
4635 
4636 
4637 
4638 /* Control elements for the optional TCO module */
4639 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4640 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4641 	HDSPM_TCO_PULL("TCO Pull", 0),
4642 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4643 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4644 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4645 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0),
4646 	HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11),
4647 	HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12),
4648 	HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0),
4649 	HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0)
4650 };
4651 
4652 
4653 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4654 
4655 
4656 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4657 {
4658 	int i;
4659 
4660 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4661 		if (hdspm->system_sample_rate > 48000) {
4662 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4663 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4664 				SNDRV_CTL_ELEM_ACCESS_READ |
4665 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4666 		} else {
4667 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4668 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4669 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4670 		}
4671 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4672 				SNDRV_CTL_EVENT_MASK_INFO,
4673 				&hdspm->playback_mixer_ctls[i]->id);
4674 	}
4675 
4676 	return 0;
4677 }
4678 
4679 
4680 static int snd_hdspm_create_controls(struct snd_card *card,
4681 					struct hdspm *hdspm)
4682 {
4683 	unsigned int idx, limit;
4684 	int err;
4685 	struct snd_kcontrol *kctl;
4686 	struct snd_kcontrol_new *list = NULL;
4687 
4688 	switch (hdspm->io_type) {
4689 	case MADI:
4690 		list = snd_hdspm_controls_madi;
4691 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4692 		break;
4693 	case MADIface:
4694 		list = snd_hdspm_controls_madiface;
4695 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4696 		break;
4697 	case AIO:
4698 		list = snd_hdspm_controls_aio;
4699 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4700 		break;
4701 	case RayDAT:
4702 		list = snd_hdspm_controls_raydat;
4703 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4704 		break;
4705 	case AES32:
4706 		list = snd_hdspm_controls_aes32;
4707 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4708 		break;
4709 	}
4710 
4711 	if (NULL != list) {
4712 		for (idx = 0; idx < limit; idx++) {
4713 			err = snd_ctl_add(card,
4714 					snd_ctl_new1(&list[idx], hdspm));
4715 			if (err < 0)
4716 				return err;
4717 		}
4718 	}
4719 
4720 
4721 	/* create simple 1:1 playback mixer controls */
4722 	snd_hdspm_playback_mixer.name = "Chn";
4723 	if (hdspm->system_sample_rate >= 128000) {
4724 		limit = hdspm->qs_out_channels;
4725 	} else if (hdspm->system_sample_rate >= 64000) {
4726 		limit = hdspm->ds_out_channels;
4727 	} else {
4728 		limit = hdspm->ss_out_channels;
4729 	}
4730 	for (idx = 0; idx < limit; ++idx) {
4731 		snd_hdspm_playback_mixer.index = idx + 1;
4732 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4733 		err = snd_ctl_add(card, kctl);
4734 		if (err < 0)
4735 			return err;
4736 		hdspm->playback_mixer_ctls[idx] = kctl;
4737 	}
4738 
4739 
4740 	if (hdspm->tco) {
4741 		/* add tco control elements */
4742 		list = snd_hdspm_controls_tco;
4743 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4744 		for (idx = 0; idx < limit; idx++) {
4745 			err = snd_ctl_add(card,
4746 					snd_ctl_new1(&list[idx], hdspm));
4747 			if (err < 0)
4748 				return err;
4749 		}
4750 	}
4751 
4752 	return 0;
4753 }
4754 
4755 /*------------------------------------------------------------
4756    /proc interface
4757  ------------------------------------------------------------*/
4758 
4759 static void
4760 snd_hdspm_proc_read_tco(struct snd_info_entry *entry,
4761 					struct snd_info_buffer *buffer)
4762 {
4763 	struct hdspm *hdspm = entry->private_data;
4764 	unsigned int status, control;
4765 	int a, ltc, frames, seconds, minutes, hours;
4766 	unsigned int period;
4767 	u64 freq_const = 0;
4768 	u32 rate;
4769 
4770 	snd_iprintf(buffer, "--- TCO ---\n");
4771 
4772 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4773 	control = hdspm->control_register;
4774 
4775 
4776 	if (status & HDSPM_tco_detect) {
4777 		snd_iprintf(buffer, "TCO module detected.\n");
4778 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4779 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4780 			snd_iprintf(buffer, "  LTC valid, ");
4781 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4782 						HDSPM_TCO1_LTC_Format_MSB)) {
4783 			case 0:
4784 				snd_iprintf(buffer, "24 fps, ");
4785 				break;
4786 			case HDSPM_TCO1_LTC_Format_LSB:
4787 				snd_iprintf(buffer, "25 fps, ");
4788 				break;
4789 			case HDSPM_TCO1_LTC_Format_MSB:
4790 				snd_iprintf(buffer, "29.97 fps, ");
4791 				break;
4792 			default:
4793 				snd_iprintf(buffer, "30 fps, ");
4794 				break;
4795 			}
4796 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4797 				snd_iprintf(buffer, "drop frame\n");
4798 			} else {
4799 				snd_iprintf(buffer, "full frame\n");
4800 			}
4801 		} else {
4802 			snd_iprintf(buffer, "  no LTC\n");
4803 		}
4804 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4805 			snd_iprintf(buffer, "  Video: NTSC\n");
4806 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4807 			snd_iprintf(buffer, "  Video: PAL\n");
4808 		} else {
4809 			snd_iprintf(buffer, "  No video\n");
4810 		}
4811 		if (a & HDSPM_TCO1_TCO_lock) {
4812 			snd_iprintf(buffer, "  Sync: lock\n");
4813 		} else {
4814 			snd_iprintf(buffer, "  Sync: no lock\n");
4815 		}
4816 
4817 		switch (hdspm->io_type) {
4818 		case MADI:
4819 		case AES32:
4820 			freq_const = 110069313433624ULL;
4821 			break;
4822 		case RayDAT:
4823 		case AIO:
4824 			freq_const = 104857600000000ULL;
4825 			break;
4826 		case MADIface:
4827 			break; /* no TCO possible */
4828 		}
4829 
4830 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4831 		snd_iprintf(buffer, "    period: %u\n", period);
4832 
4833 
4834 		/* rate = freq_const/period; */
4835 		rate = div_u64(freq_const, period);
4836 
4837 		if (control & HDSPM_QuadSpeed) {
4838 			rate *= 4;
4839 		} else if (control & HDSPM_DoubleSpeed) {
4840 			rate *= 2;
4841 		}
4842 
4843 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4844 				(unsigned int) rate);
4845 
4846 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4847 		frames = ltc & 0xF;
4848 		ltc >>= 4;
4849 		frames += (ltc & 0x3) * 10;
4850 		ltc >>= 4;
4851 		seconds = ltc & 0xF;
4852 		ltc >>= 4;
4853 		seconds += (ltc & 0x7) * 10;
4854 		ltc >>= 4;
4855 		minutes = ltc & 0xF;
4856 		ltc >>= 4;
4857 		minutes += (ltc & 0x7) * 10;
4858 		ltc >>= 4;
4859 		hours = ltc & 0xF;
4860 		ltc >>= 4;
4861 		hours += (ltc & 0x3) * 10;
4862 		snd_iprintf(buffer,
4863 			"  LTC In: %02d:%02d:%02d:%02d\n",
4864 			hours, minutes, seconds, frames);
4865 
4866 	} else {
4867 		snd_iprintf(buffer, "No TCO module detected.\n");
4868 	}
4869 }
4870 
4871 static void
4872 snd_hdspm_proc_read_madi(struct snd_info_entry *entry,
4873 			 struct snd_info_buffer *buffer)
4874 {
4875 	struct hdspm *hdspm = entry->private_data;
4876 	unsigned int status, status2, control, freq;
4877 
4878 	char *pref_sync_ref;
4879 	char *autosync_ref;
4880 	char *system_clock_mode;
4881 	char *insel;
4882 	int x, x2;
4883 
4884 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4885 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4886 	control = hdspm->control_register;
4887 	freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
4888 
4889 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4890 			hdspm->card_name, hdspm->card->number + 1,
4891 			hdspm->firmware_rev,
4892 			(status2 & HDSPM_version0) |
4893 			(status2 & HDSPM_version1) | (status2 &
4894 				HDSPM_version2));
4895 
4896 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4897 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4898 			hdspm->serial);
4899 
4900 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4901 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4902 
4903 	snd_iprintf(buffer, "--- System ---\n");
4904 
4905 	snd_iprintf(buffer,
4906 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4907 		status & HDSPM_audioIRQPending,
4908 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4909 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4910 		hdspm->irq_count);
4911 	snd_iprintf(buffer,
4912 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4913 		"estimated= %ld (bytes)\n",
4914 		((status & HDSPM_BufferID) ? 1 : 0),
4915 		(status & HDSPM_BufferPositionMask),
4916 		(status & HDSPM_BufferPositionMask) %
4917 		(2 * (int)hdspm->period_bytes),
4918 		((status & HDSPM_BufferPositionMask) - 64) %
4919 		(2 * (int)hdspm->period_bytes),
4920 		(long) hdspm_hw_pointer(hdspm) * 4);
4921 
4922 	snd_iprintf(buffer,
4923 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4924 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4925 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4926 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4927 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4928 	snd_iprintf(buffer,
4929 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4930 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4931 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4932 	snd_iprintf(buffer,
4933 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4934 		"status2=0x%x\n",
4935 		hdspm->control_register, hdspm->control2_register,
4936 		status, status2);
4937 
4938 
4939 	snd_iprintf(buffer, "--- Settings ---\n");
4940 
4941 	x = hdspm_get_latency(hdspm);
4942 
4943 	snd_iprintf(buffer,
4944 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4945 		x, (unsigned long) hdspm->period_bytes);
4946 
4947 	snd_iprintf(buffer, "Line out: %s\n",
4948 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4949 
4950 	switch (hdspm->control_register & HDSPM_InputMask) {
4951 	case HDSPM_InputOptical:
4952 		insel = "Optical";
4953 		break;
4954 	case HDSPM_InputCoaxial:
4955 		insel = "Coaxial";
4956 		break;
4957 	default:
4958 		insel = "Unknown";
4959 	}
4960 
4961 	snd_iprintf(buffer,
4962 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4963 		"Auto Input %s\n",
4964 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4965 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4966 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4967 
4968 
4969 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4970 		system_clock_mode = "AutoSync";
4971 	else
4972 		system_clock_mode = "Master";
4973 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4974 
4975 	switch (hdspm_pref_sync_ref(hdspm)) {
4976 	case HDSPM_SYNC_FROM_WORD:
4977 		pref_sync_ref = "Word Clock";
4978 		break;
4979 	case HDSPM_SYNC_FROM_MADI:
4980 		pref_sync_ref = "MADI Sync";
4981 		break;
4982 	case HDSPM_SYNC_FROM_TCO:
4983 		pref_sync_ref = "TCO";
4984 		break;
4985 	case HDSPM_SYNC_FROM_SYNC_IN:
4986 		pref_sync_ref = "Sync In";
4987 		break;
4988 	default:
4989 		pref_sync_ref = "XXXX Clock";
4990 		break;
4991 	}
4992 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4993 			pref_sync_ref);
4994 
4995 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4996 			hdspm->system_sample_rate);
4997 
4998 
4999 	snd_iprintf(buffer, "--- Status:\n");
5000 
5001 	x = status & HDSPM_madiSync;
5002 	x2 = status2 & HDSPM_wcSync;
5003 
5004 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
5005 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
5006 			"NoLock",
5007 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
5008 			"NoLock");
5009 
5010 	switch (hdspm_autosync_ref(hdspm)) {
5011 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
5012 		autosync_ref = "Sync In";
5013 		break;
5014 	case HDSPM_AUTOSYNC_FROM_TCO:
5015 		autosync_ref = "TCO";
5016 		break;
5017 	case HDSPM_AUTOSYNC_FROM_WORD:
5018 		autosync_ref = "Word Clock";
5019 		break;
5020 	case HDSPM_AUTOSYNC_FROM_MADI:
5021 		autosync_ref = "MADI Sync";
5022 		break;
5023 	case HDSPM_AUTOSYNC_FROM_NONE:
5024 		autosync_ref = "Input not valid";
5025 		break;
5026 	default:
5027 		autosync_ref = "---";
5028 		break;
5029 	}
5030 	snd_iprintf(buffer,
5031 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
5032 		autosync_ref, hdspm_external_sample_rate(hdspm),
5033 		(status & HDSPM_madiFreqMask) >> 22,
5034 		(status2 & HDSPM_wcFreqMask) >> 5);
5035 
5036 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
5037 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
5038 		(status & HDSPM_RX_64ch) ? "64 channels" :
5039 		"56 channels");
5040 
5041 	/* call readout function for TCO specific status */
5042 	snd_hdspm_proc_read_tco(entry, buffer);
5043 
5044 	snd_iprintf(buffer, "\n");
5045 }
5046 
5047 static void
5048 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
5049 			  struct snd_info_buffer *buffer)
5050 {
5051 	struct hdspm *hdspm = entry->private_data;
5052 	unsigned int status;
5053 	unsigned int status2;
5054 	unsigned int timecode;
5055 	unsigned int wcLock, wcSync;
5056 	int pref_syncref;
5057 	char *autosync_ref;
5058 	int x;
5059 
5060 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5061 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5062 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
5063 
5064 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
5065 		    hdspm->card_name, hdspm->card->number + 1,
5066 		    hdspm->firmware_rev);
5067 
5068 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
5069 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
5070 
5071 	snd_iprintf(buffer, "--- System ---\n");
5072 
5073 	snd_iprintf(buffer,
5074 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
5075 		    status & HDSPM_audioIRQPending,
5076 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
5077 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
5078 		    hdspm->irq_count);
5079 	snd_iprintf(buffer,
5080 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
5081 		    "estimated= %ld (bytes)\n",
5082 		    ((status & HDSPM_BufferID) ? 1 : 0),
5083 		    (status & HDSPM_BufferPositionMask),
5084 		    (status & HDSPM_BufferPositionMask) %
5085 		    (2 * (int)hdspm->period_bytes),
5086 		    ((status & HDSPM_BufferPositionMask) - 64) %
5087 		    (2 * (int)hdspm->period_bytes),
5088 		    (long) hdspm_hw_pointer(hdspm) * 4);
5089 
5090 	snd_iprintf(buffer,
5091 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
5092 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
5093 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
5094 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
5095 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
5096 	snd_iprintf(buffer,
5097 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
5098 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
5099 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
5100 	snd_iprintf(buffer,
5101 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
5102 		    "status2=0x%x\n",
5103 		    hdspm->control_register, hdspm->control2_register,
5104 		    status, status2);
5105 
5106 	snd_iprintf(buffer, "--- Settings ---\n");
5107 
5108 	x = hdspm_get_latency(hdspm);
5109 
5110 	snd_iprintf(buffer,
5111 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5112 		    x, (unsigned long) hdspm->period_bytes);
5113 
5114 	snd_iprintf(buffer, "Line out: %s\n",
5115 		    (hdspm->
5116 		     control_register & HDSPM_LineOut) ? "on " : "off");
5117 
5118 	snd_iprintf(buffer,
5119 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5120 		    (hdspm->
5121 		     control_register & HDSPM_clr_tms) ? "on" : "off",
5122 		    (hdspm->
5123 		     control_register & HDSPM_Emphasis) ? "on" : "off",
5124 		    (hdspm->
5125 		     control_register & HDSPM_Dolby) ? "on" : "off");
5126 
5127 
5128 	pref_syncref = hdspm_pref_sync_ref(hdspm);
5129 	if (pref_syncref == 0)
5130 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5131 	else
5132 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5133 				pref_syncref);
5134 
5135 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
5136 		    hdspm->system_sample_rate);
5137 
5138 	snd_iprintf(buffer, "Double speed: %s\n",
5139 			hdspm->control_register & HDSPM_DS_DoubleWire?
5140 			"Double wire" : "Single wire");
5141 	snd_iprintf(buffer, "Quad speed: %s\n",
5142 			hdspm->control_register & HDSPM_QS_DoubleWire?
5143 			"Double wire" :
5144 			hdspm->control_register & HDSPM_QS_QuadWire?
5145 			"Quad wire" : "Single wire");
5146 
5147 	snd_iprintf(buffer, "--- Status:\n");
5148 
5149 	wcLock = status & HDSPM_AES32_wcLock;
5150 	wcSync = wcLock && (status & HDSPM_AES32_wcSync);
5151 
5152 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
5153 		    (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
5154 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
5155 
5156 	for (x = 0; x < 8; x++) {
5157 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
5158 			    x+1,
5159 			    (status2 & (HDSPM_LockAES >> x)) ?
5160 			    "Sync   " : "No Lock",
5161 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
5162 	}
5163 
5164 	switch (hdspm_autosync_ref(hdspm)) {
5165 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5166 		autosync_ref = "None"; break;
5167 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5168 		autosync_ref = "Word Clock"; break;
5169 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5170 		autosync_ref = "AES1"; break;
5171 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5172 		autosync_ref = "AES2"; break;
5173 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5174 		autosync_ref = "AES3"; break;
5175 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5176 		autosync_ref = "AES4"; break;
5177 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5178 		autosync_ref = "AES5"; break;
5179 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5180 		autosync_ref = "AES6"; break;
5181 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5182 		autosync_ref = "AES7"; break;
5183 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5184 		autosync_ref = "AES8"; break;
5185 	case HDSPM_AES32_AUTOSYNC_FROM_TCO:
5186 		autosync_ref = "TCO"; break;
5187 	case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN:
5188 		autosync_ref = "Sync In"; break;
5189 	default:
5190 		autosync_ref = "---"; break;
5191 	}
5192 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5193 
5194 	/* call readout function for TCO specific status */
5195 	snd_hdspm_proc_read_tco(entry, buffer);
5196 
5197 	snd_iprintf(buffer, "\n");
5198 }
5199 
5200 static void
5201 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5202 			 struct snd_info_buffer *buffer)
5203 {
5204 	struct hdspm *hdspm = entry->private_data;
5205 	unsigned int status1, status2, status3, control, i;
5206 	unsigned int lock, sync;
5207 
5208 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5209 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5210 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5211 
5212 	control = hdspm->control_register;
5213 
5214 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5215 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5216 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5217 
5218 
5219 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5220 
5221 	snd_iprintf(buffer, "Clock mode      : %s\n",
5222 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5223 	snd_iprintf(buffer, "System frequency: %d Hz\n",
5224 		hdspm_get_system_sample_rate(hdspm));
5225 
5226 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5227 
5228 	lock = 0x1;
5229 	sync = 0x100;
5230 
5231 	for (i = 0; i < 8; i++) {
5232 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5233 				i,
5234 				(status1 & lock) ? 1 : 0,
5235 				(status1 & sync) ? 1 : 0,
5236 				texts_freq[(status2 >> (i * 4)) & 0xF]);
5237 
5238 		lock = lock<<1;
5239 		sync = sync<<1;
5240 	}
5241 
5242 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5243 			(status1 & 0x1000000) ? 1 : 0,
5244 			(status1 & 0x2000000) ? 1 : 0,
5245 			texts_freq[(status1 >> 16) & 0xF]);
5246 
5247 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5248 			(status1 & 0x4000000) ? 1 : 0,
5249 			(status1 & 0x8000000) ? 1 : 0,
5250 			texts_freq[(status1 >> 20) & 0xF]);
5251 
5252 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5253 			(status3 & 0x400) ? 1 : 0,
5254 			(status3 & 0x800) ? 1 : 0,
5255 			texts_freq[(status2 >> 12) & 0xF]);
5256 
5257 }
5258 
5259 #ifdef CONFIG_SND_DEBUG
5260 static void
5261 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5262 			  struct snd_info_buffer *buffer)
5263 {
5264 	struct hdspm *hdspm = entry->private_data;
5265 
5266 	int j,i;
5267 
5268 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
5269 		snd_iprintf(buffer, "0x%08X: ", i);
5270 		for (j = 0; j < 16; j += 4)
5271 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5272 		snd_iprintf(buffer, "\n");
5273 	}
5274 }
5275 #endif
5276 
5277 
5278 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5279 			  struct snd_info_buffer *buffer)
5280 {
5281 	struct hdspm *hdspm = entry->private_data;
5282 	int i;
5283 
5284 	snd_iprintf(buffer, "# generated by hdspm\n");
5285 
5286 	for (i = 0; i < hdspm->max_channels_in; i++) {
5287 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5288 	}
5289 }
5290 
5291 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5292 			  struct snd_info_buffer *buffer)
5293 {
5294 	struct hdspm *hdspm = entry->private_data;
5295 	int i;
5296 
5297 	snd_iprintf(buffer, "# generated by hdspm\n");
5298 
5299 	for (i = 0; i < hdspm->max_channels_out; i++) {
5300 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5301 	}
5302 }
5303 
5304 
5305 static void snd_hdspm_proc_init(struct hdspm *hdspm)
5306 {
5307 	struct snd_info_entry *entry;
5308 
5309 	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5310 		switch (hdspm->io_type) {
5311 		case AES32:
5312 			snd_info_set_text_ops(entry, hdspm,
5313 					snd_hdspm_proc_read_aes32);
5314 			break;
5315 		case MADI:
5316 			snd_info_set_text_ops(entry, hdspm,
5317 					snd_hdspm_proc_read_madi);
5318 			break;
5319 		case MADIface:
5320 			/* snd_info_set_text_ops(entry, hdspm,
5321 			 snd_hdspm_proc_read_madiface); */
5322 			break;
5323 		case RayDAT:
5324 			snd_info_set_text_ops(entry, hdspm,
5325 					snd_hdspm_proc_read_raydat);
5326 			break;
5327 		case AIO:
5328 			break;
5329 		}
5330 	}
5331 
5332 	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5333 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5334 	}
5335 
5336 	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5337 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5338 	}
5339 
5340 #ifdef CONFIG_SND_DEBUG
5341 	/* debug file to read all hdspm registers */
5342 	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5343 		snd_info_set_text_ops(entry, hdspm,
5344 				snd_hdspm_proc_read_debug);
5345 #endif
5346 }
5347 
5348 /*------------------------------------------------------------
5349    hdspm intitialize
5350  ------------------------------------------------------------*/
5351 
5352 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5353 {
5354 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
5355 	   hold it (e.g. during module initialization).
5356 	   */
5357 
5358 	/* set defaults:       */
5359 
5360 	hdspm->settings_register = 0;
5361 
5362 	switch (hdspm->io_type) {
5363 	case MADI:
5364 	case MADIface:
5365 		hdspm->control_register =
5366 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5367 		break;
5368 
5369 	case RayDAT:
5370 	case AIO:
5371 		hdspm->settings_register = 0x1 + 0x1000;
5372 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5373 		 * line_out */
5374 		hdspm->control_register =
5375 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5376 		break;
5377 
5378 	case AES32:
5379 		hdspm->control_register =
5380 			HDSPM_ClockModeMaster |	/* Master Clock Mode on */
5381 			hdspm_encode_latency(7) | /* latency max=8192samples */
5382 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
5383 			HDSPM_LineOut |	/* Analog output in */
5384 			HDSPM_Professional;  /* Professional mode */
5385 		break;
5386 	}
5387 
5388 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5389 
5390 	if (AES32 == hdspm->io_type) {
5391 		/* No control2 register for AES32 */
5392 #ifdef SNDRV_BIG_ENDIAN
5393 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5394 #else
5395 		hdspm->control2_register = 0;
5396 #endif
5397 
5398 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5399 	}
5400 	hdspm_compute_period_size(hdspm);
5401 
5402 	/* silence everything */
5403 
5404 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5405 
5406 	if (hdspm_is_raydat_or_aio(hdspm))
5407 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5408 
5409 	/* set a default rate so that the channel map is set up. */
5410 	hdspm_set_rate(hdspm, 48000, 1);
5411 
5412 	return 0;
5413 }
5414 
5415 
5416 /*------------------------------------------------------------
5417    interrupt
5418  ------------------------------------------------------------*/
5419 
5420 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5421 {
5422 	struct hdspm *hdspm = (struct hdspm *) dev_id;
5423 	unsigned int status;
5424 	int i, audio, midi, schedule = 0;
5425 	/* cycles_t now; */
5426 
5427 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5428 
5429 	audio = status & HDSPM_audioIRQPending;
5430 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5431 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5432 
5433 	/* now = get_cycles(); */
5434 	/**
5435 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5436 	 *          6       4096   ~256053425     ~514672358
5437 	 *          5       2048   ~128024983     ~257373821
5438 	 *          4       1024    ~64023706     ~128718089
5439 	 *          3        512    ~32005945      ~64385999
5440 	 *          2        256    ~16003039      ~32260176
5441 	 *          1        128     ~7998738      ~16194507
5442 	 *          0         64     ~3998231       ~8191558
5443 	 **/
5444 	/*
5445 	  dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n",
5446 	   now-hdspm->last_interrupt, status & 0xFFC0);
5447 	   hdspm->last_interrupt = now;
5448 	*/
5449 
5450 	if (!audio && !midi)
5451 		return IRQ_NONE;
5452 
5453 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5454 	hdspm->irq_count++;
5455 
5456 
5457 	if (audio) {
5458 		if (hdspm->capture_substream)
5459 			snd_pcm_period_elapsed(hdspm->capture_substream);
5460 
5461 		if (hdspm->playback_substream)
5462 			snd_pcm_period_elapsed(hdspm->playback_substream);
5463 	}
5464 
5465 	if (midi) {
5466 		i = 0;
5467 		while (i < hdspm->midiPorts) {
5468 			if ((hdspm_read(hdspm,
5469 				hdspm->midi[i].statusIn) & 0xff) &&
5470 					(status & hdspm->midi[i].irq)) {
5471 				/* we disable interrupts for this input until
5472 				 * processing is done
5473 				 */
5474 				hdspm->control_register &= ~hdspm->midi[i].ie;
5475 				hdspm_write(hdspm, HDSPM_controlRegister,
5476 						hdspm->control_register);
5477 				hdspm->midi[i].pending = 1;
5478 				schedule = 1;
5479 			}
5480 
5481 			i++;
5482 		}
5483 
5484 		if (schedule)
5485 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5486 	}
5487 
5488 	return IRQ_HANDLED;
5489 }
5490 
5491 /*------------------------------------------------------------
5492    pcm interface
5493   ------------------------------------------------------------*/
5494 
5495 
5496 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5497 					      *substream)
5498 {
5499 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5500 	return hdspm_hw_pointer(hdspm);
5501 }
5502 
5503 
5504 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5505 {
5506 	struct snd_pcm_runtime *runtime = substream->runtime;
5507 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5508 	struct snd_pcm_substream *other;
5509 
5510 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5511 		other = hdspm->capture_substream;
5512 	else
5513 		other = hdspm->playback_substream;
5514 
5515 	if (hdspm->running)
5516 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5517 	else
5518 		runtime->status->hw_ptr = 0;
5519 	if (other) {
5520 		struct snd_pcm_substream *s;
5521 		struct snd_pcm_runtime *oruntime = other->runtime;
5522 		snd_pcm_group_for_each_entry(s, substream) {
5523 			if (s == other) {
5524 				oruntime->status->hw_ptr =
5525 					runtime->status->hw_ptr;
5526 				break;
5527 			}
5528 		}
5529 	}
5530 	return 0;
5531 }
5532 
5533 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5534 			       struct snd_pcm_hw_params *params)
5535 {
5536 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5537 	int err;
5538 	int i;
5539 	pid_t this_pid;
5540 	pid_t other_pid;
5541 
5542 	spin_lock_irq(&hdspm->lock);
5543 
5544 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5545 		this_pid = hdspm->playback_pid;
5546 		other_pid = hdspm->capture_pid;
5547 	} else {
5548 		this_pid = hdspm->capture_pid;
5549 		other_pid = hdspm->playback_pid;
5550 	}
5551 
5552 	if (other_pid > 0 && this_pid != other_pid) {
5553 
5554 		/* The other stream is open, and not by the same
5555 		   task as this one. Make sure that the parameters
5556 		   that matter are the same.
5557 		   */
5558 
5559 		if (params_rate(params) != hdspm->system_sample_rate) {
5560 			spin_unlock_irq(&hdspm->lock);
5561 			_snd_pcm_hw_param_setempty(params,
5562 					SNDRV_PCM_HW_PARAM_RATE);
5563 			return -EBUSY;
5564 		}
5565 
5566 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5567 			spin_unlock_irq(&hdspm->lock);
5568 			_snd_pcm_hw_param_setempty(params,
5569 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5570 			return -EBUSY;
5571 		}
5572 
5573 	}
5574 	/* We're fine. */
5575 	spin_unlock_irq(&hdspm->lock);
5576 
5577 	/* how to make sure that the rate matches an externally-set one ?   */
5578 
5579 	spin_lock_irq(&hdspm->lock);
5580 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5581 	if (err < 0) {
5582 		dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err);
5583 		spin_unlock_irq(&hdspm->lock);
5584 		_snd_pcm_hw_param_setempty(params,
5585 				SNDRV_PCM_HW_PARAM_RATE);
5586 		return err;
5587 	}
5588 	spin_unlock_irq(&hdspm->lock);
5589 
5590 	err = hdspm_set_interrupt_interval(hdspm,
5591 			params_period_size(params));
5592 	if (err < 0) {
5593 		dev_info(hdspm->card->dev,
5594 			 "err on hdspm_set_interrupt_interval: %d\n", err);
5595 		_snd_pcm_hw_param_setempty(params,
5596 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5597 		return err;
5598 	}
5599 
5600 	/* Memory allocation, takashi's method, dont know if we should
5601 	 * spinlock
5602 	 */
5603 	/* malloc all buffer even if not enabled to get sure */
5604 	/* Update for MADI rev 204: we need to allocate for all channels,
5605 	 * otherwise it doesn't work at 96kHz */
5606 
5607 	err =
5608 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5609 	if (err < 0) {
5610 		dev_info(hdspm->card->dev,
5611 			 "err on snd_pcm_lib_malloc_pages: %d\n", err);
5612 		return err;
5613 	}
5614 
5615 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5616 
5617 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5618 				params_channels(params));
5619 
5620 		for (i = 0; i < params_channels(params); ++i)
5621 			snd_hdspm_enable_out(hdspm, i, 1);
5622 
5623 		hdspm->playback_buffer =
5624 			(unsigned char *) substream->runtime->dma_area;
5625 		dev_dbg(hdspm->card->dev,
5626 			"Allocated sample buffer for playback at %p\n",
5627 				hdspm->playback_buffer);
5628 	} else {
5629 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5630 				params_channels(params));
5631 
5632 		for (i = 0; i < params_channels(params); ++i)
5633 			snd_hdspm_enable_in(hdspm, i, 1);
5634 
5635 		hdspm->capture_buffer =
5636 			(unsigned char *) substream->runtime->dma_area;
5637 		dev_dbg(hdspm->card->dev,
5638 			"Allocated sample buffer for capture at %p\n",
5639 				hdspm->capture_buffer);
5640 	}
5641 
5642 	/*
5643 	   dev_dbg(hdspm->card->dev,
5644 	   "Allocated sample buffer for %s at 0x%08X\n",
5645 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5646 	   "playback" : "capture",
5647 	   snd_pcm_sgbuf_get_addr(substream, 0));
5648 	   */
5649 	/*
5650 	   dev_dbg(hdspm->card->dev,
5651 	   "set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5652 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5653 	   "playback" : "capture",
5654 	   params_rate(params), params_channels(params),
5655 	   params_buffer_size(params));
5656 	   */
5657 
5658 
5659 	/*  For AES cards, the float format bit is the same as the
5660 	 *  preferred sync reference. Since we don't want to break
5661 	 *  sync settings, we have to skip the remaining part of this
5662 	 *  function.
5663 	 */
5664 	if (hdspm->io_type == AES32) {
5665 		return 0;
5666 	}
5667 
5668 
5669 	/* Switch to native float format if requested */
5670 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5671 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5672 			dev_info(hdspm->card->dev,
5673 				 "Switching to native 32bit LE float format.\n");
5674 
5675 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5676 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5677 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5678 			dev_info(hdspm->card->dev,
5679 				 "Switching to native 32bit LE integer format.\n");
5680 
5681 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5682 	}
5683 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5684 
5685 	return 0;
5686 }
5687 
5688 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5689 {
5690 	int i;
5691 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5692 
5693 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5694 
5695 		/* params_channels(params) should be enough,
5696 		   but to get sure in case of error */
5697 		for (i = 0; i < hdspm->max_channels_out; ++i)
5698 			snd_hdspm_enable_out(hdspm, i, 0);
5699 
5700 		hdspm->playback_buffer = NULL;
5701 	} else {
5702 		for (i = 0; i < hdspm->max_channels_in; ++i)
5703 			snd_hdspm_enable_in(hdspm, i, 0);
5704 
5705 		hdspm->capture_buffer = NULL;
5706 
5707 	}
5708 
5709 	snd_pcm_lib_free_pages(substream);
5710 
5711 	return 0;
5712 }
5713 
5714 
5715 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5716 		struct snd_pcm_channel_info *info)
5717 {
5718 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5719 
5720 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5721 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5722 			dev_info(hdspm->card->dev,
5723 				 "snd_hdspm_channel_info: output channel out of range (%d)\n",
5724 				 info->channel);
5725 			return -EINVAL;
5726 		}
5727 
5728 		if (hdspm->channel_map_out[info->channel] < 0) {
5729 			dev_info(hdspm->card->dev,
5730 				 "snd_hdspm_channel_info: output channel %d mapped out\n",
5731 				 info->channel);
5732 			return -EINVAL;
5733 		}
5734 
5735 		info->offset = hdspm->channel_map_out[info->channel] *
5736 			HDSPM_CHANNEL_BUFFER_BYTES;
5737 	} else {
5738 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5739 			dev_info(hdspm->card->dev,
5740 				 "snd_hdspm_channel_info: input channel out of range (%d)\n",
5741 				 info->channel);
5742 			return -EINVAL;
5743 		}
5744 
5745 		if (hdspm->channel_map_in[info->channel] < 0) {
5746 			dev_info(hdspm->card->dev,
5747 				 "snd_hdspm_channel_info: input channel %d mapped out\n",
5748 				 info->channel);
5749 			return -EINVAL;
5750 		}
5751 
5752 		info->offset = hdspm->channel_map_in[info->channel] *
5753 			HDSPM_CHANNEL_BUFFER_BYTES;
5754 	}
5755 
5756 	info->first = 0;
5757 	info->step = 32;
5758 	return 0;
5759 }
5760 
5761 
5762 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5763 		unsigned int cmd, void *arg)
5764 {
5765 	switch (cmd) {
5766 	case SNDRV_PCM_IOCTL1_RESET:
5767 		return snd_hdspm_reset(substream);
5768 
5769 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5770 		{
5771 			struct snd_pcm_channel_info *info = arg;
5772 			return snd_hdspm_channel_info(substream, info);
5773 		}
5774 	default:
5775 		break;
5776 	}
5777 
5778 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5779 }
5780 
5781 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5782 {
5783 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5784 	struct snd_pcm_substream *other;
5785 	int running;
5786 
5787 	spin_lock(&hdspm->lock);
5788 	running = hdspm->running;
5789 	switch (cmd) {
5790 	case SNDRV_PCM_TRIGGER_START:
5791 		running |= 1 << substream->stream;
5792 		break;
5793 	case SNDRV_PCM_TRIGGER_STOP:
5794 		running &= ~(1 << substream->stream);
5795 		break;
5796 	default:
5797 		snd_BUG();
5798 		spin_unlock(&hdspm->lock);
5799 		return -EINVAL;
5800 	}
5801 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5802 		other = hdspm->capture_substream;
5803 	else
5804 		other = hdspm->playback_substream;
5805 
5806 	if (other) {
5807 		struct snd_pcm_substream *s;
5808 		snd_pcm_group_for_each_entry(s, substream) {
5809 			if (s == other) {
5810 				snd_pcm_trigger_done(s, substream);
5811 				if (cmd == SNDRV_PCM_TRIGGER_START)
5812 					running |= 1 << s->stream;
5813 				else
5814 					running &= ~(1 << s->stream);
5815 				goto _ok;
5816 			}
5817 		}
5818 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5819 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5820 					&& substream->stream ==
5821 					SNDRV_PCM_STREAM_CAPTURE)
5822 				hdspm_silence_playback(hdspm);
5823 		} else {
5824 			if (running &&
5825 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5826 				hdspm_silence_playback(hdspm);
5827 		}
5828 	} else {
5829 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5830 			hdspm_silence_playback(hdspm);
5831 	}
5832 _ok:
5833 	snd_pcm_trigger_done(substream, substream);
5834 	if (!hdspm->running && running)
5835 		hdspm_start_audio(hdspm);
5836 	else if (hdspm->running && !running)
5837 		hdspm_stop_audio(hdspm);
5838 	hdspm->running = running;
5839 	spin_unlock(&hdspm->lock);
5840 
5841 	return 0;
5842 }
5843 
5844 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5845 {
5846 	return 0;
5847 }
5848 
5849 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5850 	.info = (SNDRV_PCM_INFO_MMAP |
5851 		 SNDRV_PCM_INFO_MMAP_VALID |
5852 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5853 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5854 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5855 	.rates = (SNDRV_PCM_RATE_32000 |
5856 		  SNDRV_PCM_RATE_44100 |
5857 		  SNDRV_PCM_RATE_48000 |
5858 		  SNDRV_PCM_RATE_64000 |
5859 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5860 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5861 	.rate_min = 32000,
5862 	.rate_max = 192000,
5863 	.channels_min = 1,
5864 	.channels_max = HDSPM_MAX_CHANNELS,
5865 	.buffer_bytes_max =
5866 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5867 	.period_bytes_min = (32 * 4),
5868 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5869 	.periods_min = 2,
5870 	.periods_max = 512,
5871 	.fifo_size = 0
5872 };
5873 
5874 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5875 	.info = (SNDRV_PCM_INFO_MMAP |
5876 		 SNDRV_PCM_INFO_MMAP_VALID |
5877 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5878 		 SNDRV_PCM_INFO_SYNC_START),
5879 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5880 	.rates = (SNDRV_PCM_RATE_32000 |
5881 		  SNDRV_PCM_RATE_44100 |
5882 		  SNDRV_PCM_RATE_48000 |
5883 		  SNDRV_PCM_RATE_64000 |
5884 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5885 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5886 	.rate_min = 32000,
5887 	.rate_max = 192000,
5888 	.channels_min = 1,
5889 	.channels_max = HDSPM_MAX_CHANNELS,
5890 	.buffer_bytes_max =
5891 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5892 	.period_bytes_min = (32 * 4),
5893 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5894 	.periods_min = 2,
5895 	.periods_max = 512,
5896 	.fifo_size = 0
5897 };
5898 
5899 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5900 					   struct snd_pcm_hw_rule *rule)
5901 {
5902 	struct hdspm *hdspm = rule->private;
5903 	struct snd_interval *c =
5904 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5905 	struct snd_interval *r =
5906 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5907 
5908 	if (r->min > 96000 && r->max <= 192000) {
5909 		struct snd_interval t = {
5910 			.min = hdspm->qs_in_channels,
5911 			.max = hdspm->qs_in_channels,
5912 			.integer = 1,
5913 		};
5914 		return snd_interval_refine(c, &t);
5915 	} else if (r->min > 48000 && r->max <= 96000) {
5916 		struct snd_interval t = {
5917 			.min = hdspm->ds_in_channels,
5918 			.max = hdspm->ds_in_channels,
5919 			.integer = 1,
5920 		};
5921 		return snd_interval_refine(c, &t);
5922 	} else if (r->max < 64000) {
5923 		struct snd_interval t = {
5924 			.min = hdspm->ss_in_channels,
5925 			.max = hdspm->ss_in_channels,
5926 			.integer = 1,
5927 		};
5928 		return snd_interval_refine(c, &t);
5929 	}
5930 
5931 	return 0;
5932 }
5933 
5934 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5935 					   struct snd_pcm_hw_rule * rule)
5936 {
5937 	struct hdspm *hdspm = rule->private;
5938 	struct snd_interval *c =
5939 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5940 	struct snd_interval *r =
5941 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5942 
5943 	if (r->min > 96000 && r->max <= 192000) {
5944 		struct snd_interval t = {
5945 			.min = hdspm->qs_out_channels,
5946 			.max = hdspm->qs_out_channels,
5947 			.integer = 1,
5948 		};
5949 		return snd_interval_refine(c, &t);
5950 	} else if (r->min > 48000 && r->max <= 96000) {
5951 		struct snd_interval t = {
5952 			.min = hdspm->ds_out_channels,
5953 			.max = hdspm->ds_out_channels,
5954 			.integer = 1,
5955 		};
5956 		return snd_interval_refine(c, &t);
5957 	} else if (r->max < 64000) {
5958 		struct snd_interval t = {
5959 			.min = hdspm->ss_out_channels,
5960 			.max = hdspm->ss_out_channels,
5961 			.integer = 1,
5962 		};
5963 		return snd_interval_refine(c, &t);
5964 	} else {
5965 	}
5966 	return 0;
5967 }
5968 
5969 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5970 					   struct snd_pcm_hw_rule * rule)
5971 {
5972 	struct hdspm *hdspm = rule->private;
5973 	struct snd_interval *c =
5974 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5975 	struct snd_interval *r =
5976 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5977 
5978 	if (c->min >= hdspm->ss_in_channels) {
5979 		struct snd_interval t = {
5980 			.min = 32000,
5981 			.max = 48000,
5982 			.integer = 1,
5983 		};
5984 		return snd_interval_refine(r, &t);
5985 	} else if (c->max <= hdspm->qs_in_channels) {
5986 		struct snd_interval t = {
5987 			.min = 128000,
5988 			.max = 192000,
5989 			.integer = 1,
5990 		};
5991 		return snd_interval_refine(r, &t);
5992 	} else if (c->max <= hdspm->ds_in_channels) {
5993 		struct snd_interval t = {
5994 			.min = 64000,
5995 			.max = 96000,
5996 			.integer = 1,
5997 		};
5998 		return snd_interval_refine(r, &t);
5999 	}
6000 
6001 	return 0;
6002 }
6003 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
6004 					   struct snd_pcm_hw_rule *rule)
6005 {
6006 	struct hdspm *hdspm = rule->private;
6007 	struct snd_interval *c =
6008 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
6009 	struct snd_interval *r =
6010 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
6011 
6012 	if (c->min >= hdspm->ss_out_channels) {
6013 		struct snd_interval t = {
6014 			.min = 32000,
6015 			.max = 48000,
6016 			.integer = 1,
6017 		};
6018 		return snd_interval_refine(r, &t);
6019 	} else if (c->max <= hdspm->qs_out_channels) {
6020 		struct snd_interval t = {
6021 			.min = 128000,
6022 			.max = 192000,
6023 			.integer = 1,
6024 		};
6025 		return snd_interval_refine(r, &t);
6026 	} else if (c->max <= hdspm->ds_out_channels) {
6027 		struct snd_interval t = {
6028 			.min = 64000,
6029 			.max = 96000,
6030 			.integer = 1,
6031 		};
6032 		return snd_interval_refine(r, &t);
6033 	}
6034 
6035 	return 0;
6036 }
6037 
6038 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
6039 				      struct snd_pcm_hw_rule *rule)
6040 {
6041 	unsigned int list[3];
6042 	struct hdspm *hdspm = rule->private;
6043 	struct snd_interval *c = hw_param_interval(params,
6044 			SNDRV_PCM_HW_PARAM_CHANNELS);
6045 
6046 	list[0] = hdspm->qs_in_channels;
6047 	list[1] = hdspm->ds_in_channels;
6048 	list[2] = hdspm->ss_in_channels;
6049 	return snd_interval_list(c, 3, list, 0);
6050 }
6051 
6052 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
6053 				      struct snd_pcm_hw_rule *rule)
6054 {
6055 	unsigned int list[3];
6056 	struct hdspm *hdspm = rule->private;
6057 	struct snd_interval *c = hw_param_interval(params,
6058 			SNDRV_PCM_HW_PARAM_CHANNELS);
6059 
6060 	list[0] = hdspm->qs_out_channels;
6061 	list[1] = hdspm->ds_out_channels;
6062 	list[2] = hdspm->ss_out_channels;
6063 	return snd_interval_list(c, 3, list, 0);
6064 }
6065 
6066 
6067 static unsigned int hdspm_aes32_sample_rates[] = {
6068 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
6069 };
6070 
6071 static struct snd_pcm_hw_constraint_list
6072 hdspm_hw_constraints_aes32_sample_rates = {
6073 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
6074 	.list = hdspm_aes32_sample_rates,
6075 	.mask = 0
6076 };
6077 
6078 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
6079 {
6080 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6081 	struct snd_pcm_runtime *runtime = substream->runtime;
6082 
6083 	spin_lock_irq(&hdspm->lock);
6084 
6085 	snd_pcm_set_sync(substream);
6086 
6087 
6088 	runtime->hw = snd_hdspm_playback_subinfo;
6089 
6090 	if (hdspm->capture_substream == NULL)
6091 		hdspm_stop_audio(hdspm);
6092 
6093 	hdspm->playback_pid = current->pid;
6094 	hdspm->playback_substream = substream;
6095 
6096 	spin_unlock_irq(&hdspm->lock);
6097 
6098 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6099 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6100 
6101 	switch (hdspm->io_type) {
6102 	case AIO:
6103 	case RayDAT:
6104 		snd_pcm_hw_constraint_minmax(runtime,
6105 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6106 					     32, 4096);
6107 		/* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
6108 		snd_pcm_hw_constraint_minmax(runtime,
6109 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6110 					     16384, 16384);
6111 		break;
6112 
6113 	default:
6114 		snd_pcm_hw_constraint_minmax(runtime,
6115 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6116 					     64, 8192);
6117 		break;
6118 	}
6119 
6120 	if (AES32 == hdspm->io_type) {
6121 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6122 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6123 				&hdspm_hw_constraints_aes32_sample_rates);
6124 	} else {
6125 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6126 				snd_hdspm_hw_rule_rate_out_channels, hdspm,
6127 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6128 	}
6129 
6130 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6131 			snd_hdspm_hw_rule_out_channels, hdspm,
6132 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6133 
6134 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6135 			snd_hdspm_hw_rule_out_channels_rate, hdspm,
6136 			SNDRV_PCM_HW_PARAM_RATE, -1);
6137 
6138 	return 0;
6139 }
6140 
6141 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
6142 {
6143 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6144 
6145 	spin_lock_irq(&hdspm->lock);
6146 
6147 	hdspm->playback_pid = -1;
6148 	hdspm->playback_substream = NULL;
6149 
6150 	spin_unlock_irq(&hdspm->lock);
6151 
6152 	return 0;
6153 }
6154 
6155 
6156 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
6157 {
6158 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6159 	struct snd_pcm_runtime *runtime = substream->runtime;
6160 
6161 	spin_lock_irq(&hdspm->lock);
6162 	snd_pcm_set_sync(substream);
6163 	runtime->hw = snd_hdspm_capture_subinfo;
6164 
6165 	if (hdspm->playback_substream == NULL)
6166 		hdspm_stop_audio(hdspm);
6167 
6168 	hdspm->capture_pid = current->pid;
6169 	hdspm->capture_substream = substream;
6170 
6171 	spin_unlock_irq(&hdspm->lock);
6172 
6173 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6174 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6175 
6176 	switch (hdspm->io_type) {
6177 	case AIO:
6178 	case RayDAT:
6179 		snd_pcm_hw_constraint_minmax(runtime,
6180 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6181 					     32, 4096);
6182 		snd_pcm_hw_constraint_minmax(runtime,
6183 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6184 					     16384, 16384);
6185 		break;
6186 
6187 	default:
6188 		snd_pcm_hw_constraint_minmax(runtime,
6189 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6190 					     64, 8192);
6191 		break;
6192 	}
6193 
6194 	if (AES32 == hdspm->io_type) {
6195 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6196 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6197 				&hdspm_hw_constraints_aes32_sample_rates);
6198 	} else {
6199 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6200 				snd_hdspm_hw_rule_rate_in_channels, hdspm,
6201 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6202 	}
6203 
6204 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6205 			snd_hdspm_hw_rule_in_channels, hdspm,
6206 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6207 
6208 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6209 			snd_hdspm_hw_rule_in_channels_rate, hdspm,
6210 			SNDRV_PCM_HW_PARAM_RATE, -1);
6211 
6212 	return 0;
6213 }
6214 
6215 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
6216 {
6217 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6218 
6219 	spin_lock_irq(&hdspm->lock);
6220 
6221 	hdspm->capture_pid = -1;
6222 	hdspm->capture_substream = NULL;
6223 
6224 	spin_unlock_irq(&hdspm->lock);
6225 	return 0;
6226 }
6227 
6228 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6229 {
6230 	/* we have nothing to initialize but the call is required */
6231 	return 0;
6232 }
6233 
6234 static inline int copy_u32_le(void __user *dest, void __iomem *src)
6235 {
6236 	u32 val = readl(src);
6237 	return copy_to_user(dest, &val, 4);
6238 }
6239 
6240 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
6241 		unsigned int cmd, unsigned long arg)
6242 {
6243 	void __user *argp = (void __user *)arg;
6244 	struct hdspm *hdspm = hw->private_data;
6245 	struct hdspm_mixer_ioctl mixer;
6246 	struct hdspm_config info;
6247 	struct hdspm_status status;
6248 	struct hdspm_version hdspm_version;
6249 	struct hdspm_peak_rms *levels;
6250 	struct hdspm_ltc ltc;
6251 	unsigned int statusregister;
6252 	long unsigned int s;
6253 	int i = 0;
6254 
6255 	switch (cmd) {
6256 
6257 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
6258 		levels = &hdspm->peak_rms;
6259 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
6260 			levels->input_peaks[i] =
6261 				readl(hdspm->iobase +
6262 						HDSPM_MADI_INPUT_PEAK + i*4);
6263 			levels->playback_peaks[i] =
6264 				readl(hdspm->iobase +
6265 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
6266 			levels->output_peaks[i] =
6267 				readl(hdspm->iobase +
6268 						HDSPM_MADI_OUTPUT_PEAK + i*4);
6269 
6270 			levels->input_rms[i] =
6271 				((uint64_t) readl(hdspm->iobase +
6272 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6273 				(uint64_t) readl(hdspm->iobase +
6274 						HDSPM_MADI_INPUT_RMS_L + i*4);
6275 			levels->playback_rms[i] =
6276 				((uint64_t)readl(hdspm->iobase +
6277 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6278 				(uint64_t)readl(hdspm->iobase +
6279 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6280 			levels->output_rms[i] =
6281 				((uint64_t)readl(hdspm->iobase +
6282 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6283 				(uint64_t)readl(hdspm->iobase +
6284 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
6285 		}
6286 
6287 		if (hdspm->system_sample_rate > 96000) {
6288 			levels->speed = qs;
6289 		} else if (hdspm->system_sample_rate > 48000) {
6290 			levels->speed = ds;
6291 		} else {
6292 			levels->speed = ss;
6293 		}
6294 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6295 
6296 		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
6297 		if (0 != s) {
6298 			/* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu
6299 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6300 			 */
6301 			return -EFAULT;
6302 		}
6303 		break;
6304 
6305 	case SNDRV_HDSPM_IOCTL_GET_LTC:
6306 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6307 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6308 		if (i & HDSPM_TCO1_LTC_Input_valid) {
6309 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6310 				HDSPM_TCO1_LTC_Format_MSB)) {
6311 			case 0:
6312 				ltc.format = fps_24;
6313 				break;
6314 			case HDSPM_TCO1_LTC_Format_LSB:
6315 				ltc.format = fps_25;
6316 				break;
6317 			case HDSPM_TCO1_LTC_Format_MSB:
6318 				ltc.format = fps_2997;
6319 				break;
6320 			default:
6321 				ltc.format = fps_30;
6322 				break;
6323 			}
6324 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
6325 				ltc.frame = drop_frame;
6326 			} else {
6327 				ltc.frame = full_frame;
6328 			}
6329 		} else {
6330 			ltc.format = format_invalid;
6331 			ltc.frame = frame_invalid;
6332 		}
6333 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6334 			ltc.input_format = ntsc;
6335 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6336 			ltc.input_format = pal;
6337 		} else {
6338 			ltc.input_format = no_video;
6339 		}
6340 
6341 		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6342 		if (0 != s) {
6343 			/*
6344 			  dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6345 			return -EFAULT;
6346 		}
6347 
6348 		break;
6349 
6350 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6351 
6352 		memset(&info, 0, sizeof(info));
6353 		spin_lock_irq(&hdspm->lock);
6354 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6355 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6356 
6357 		info.system_sample_rate = hdspm->system_sample_rate;
6358 		info.autosync_sample_rate =
6359 			hdspm_external_sample_rate(hdspm);
6360 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6361 		info.clock_source = hdspm_clock_source(hdspm);
6362 		info.autosync_ref = hdspm_autosync_ref(hdspm);
6363 		info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
6364 		info.passthru = 0;
6365 		spin_unlock_irq(&hdspm->lock);
6366 		if (copy_to_user(argp, &info, sizeof(info)))
6367 			return -EFAULT;
6368 		break;
6369 
6370 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
6371 		memset(&status, 0, sizeof(status));
6372 
6373 		status.card_type = hdspm->io_type;
6374 
6375 		status.autosync_source = hdspm_autosync_ref(hdspm);
6376 
6377 		status.card_clock = 110069313433624ULL;
6378 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6379 
6380 		switch (hdspm->io_type) {
6381 		case MADI:
6382 		case MADIface:
6383 			status.card_specific.madi.sync_wc =
6384 				hdspm_wc_sync_check(hdspm);
6385 			status.card_specific.madi.sync_madi =
6386 				hdspm_madi_sync_check(hdspm);
6387 			status.card_specific.madi.sync_tco =
6388 				hdspm_tco_sync_check(hdspm);
6389 			status.card_specific.madi.sync_in =
6390 				hdspm_sync_in_sync_check(hdspm);
6391 
6392 			statusregister =
6393 				hdspm_read(hdspm, HDSPM_statusRegister);
6394 			status.card_specific.madi.madi_input =
6395 				(statusregister & HDSPM_AB_int) ? 1 : 0;
6396 			status.card_specific.madi.channel_format =
6397 				(statusregister & HDSPM_RX_64ch) ? 1 : 0;
6398 			/* TODO: Mac driver sets it when f_s>48kHz */
6399 			status.card_specific.madi.frame_format = 0;
6400 
6401 		default:
6402 			break;
6403 		}
6404 
6405 		if (copy_to_user(argp, &status, sizeof(status)))
6406 			return -EFAULT;
6407 
6408 
6409 		break;
6410 
6411 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
6412 		memset(&hdspm_version, 0, sizeof(hdspm_version));
6413 
6414 		hdspm_version.card_type = hdspm->io_type;
6415 		strlcpy(hdspm_version.cardname, hdspm->card_name,
6416 				sizeof(hdspm_version.cardname));
6417 		hdspm_version.serial = hdspm->serial;
6418 		hdspm_version.firmware_rev = hdspm->firmware_rev;
6419 		hdspm_version.addons = 0;
6420 		if (hdspm->tco)
6421 			hdspm_version.addons |= HDSPM_ADDON_TCO;
6422 
6423 		if (copy_to_user(argp, &hdspm_version,
6424 					sizeof(hdspm_version)))
6425 			return -EFAULT;
6426 		break;
6427 
6428 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
6429 		if (copy_from_user(&mixer, argp, sizeof(mixer)))
6430 			return -EFAULT;
6431 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6432 					sizeof(struct hdspm_mixer)))
6433 			return -EFAULT;
6434 		break;
6435 
6436 	default:
6437 		return -EINVAL;
6438 	}
6439 	return 0;
6440 }
6441 
6442 static struct snd_pcm_ops snd_hdspm_playback_ops = {
6443 	.open = snd_hdspm_playback_open,
6444 	.close = snd_hdspm_playback_release,
6445 	.ioctl = snd_hdspm_ioctl,
6446 	.hw_params = snd_hdspm_hw_params,
6447 	.hw_free = snd_hdspm_hw_free,
6448 	.prepare = snd_hdspm_prepare,
6449 	.trigger = snd_hdspm_trigger,
6450 	.pointer = snd_hdspm_hw_pointer,
6451 	.page = snd_pcm_sgbuf_ops_page,
6452 };
6453 
6454 static struct snd_pcm_ops snd_hdspm_capture_ops = {
6455 	.open = snd_hdspm_capture_open,
6456 	.close = snd_hdspm_capture_release,
6457 	.ioctl = snd_hdspm_ioctl,
6458 	.hw_params = snd_hdspm_hw_params,
6459 	.hw_free = snd_hdspm_hw_free,
6460 	.prepare = snd_hdspm_prepare,
6461 	.trigger = snd_hdspm_trigger,
6462 	.pointer = snd_hdspm_hw_pointer,
6463 	.page = snd_pcm_sgbuf_ops_page,
6464 };
6465 
6466 static int snd_hdspm_create_hwdep(struct snd_card *card,
6467 				  struct hdspm *hdspm)
6468 {
6469 	struct snd_hwdep *hw;
6470 	int err;
6471 
6472 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6473 	if (err < 0)
6474 		return err;
6475 
6476 	hdspm->hwdep = hw;
6477 	hw->private_data = hdspm;
6478 	strcpy(hw->name, "HDSPM hwdep interface");
6479 
6480 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6481 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6482 	hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6483 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6484 
6485 	return 0;
6486 }
6487 
6488 
6489 /*------------------------------------------------------------
6490    memory interface
6491  ------------------------------------------------------------*/
6492 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6493 {
6494 	int err;
6495 	struct snd_pcm *pcm;
6496 	size_t wanted;
6497 
6498 	pcm = hdspm->pcm;
6499 
6500 	wanted = HDSPM_DMA_AREA_BYTES;
6501 
6502 	err =
6503 	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6504 						   SNDRV_DMA_TYPE_DEV_SG,
6505 						   snd_dma_pci_data(hdspm->pci),
6506 						   wanted,
6507 						   wanted);
6508 	if (err < 0) {
6509 		dev_dbg(hdspm->card->dev,
6510 			"Could not preallocate %zd Bytes\n", wanted);
6511 
6512 		return err;
6513 	} else
6514 		dev_dbg(hdspm->card->dev,
6515 			" Preallocated %zd Bytes\n", wanted);
6516 
6517 	return 0;
6518 }
6519 
6520 
6521 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6522 			    struct snd_pcm_substream *substream,
6523 			     unsigned int reg, int channels)
6524 {
6525 	int i;
6526 
6527 	/* continuous memory segment */
6528 	for (i = 0; i < (channels * 16); i++)
6529 		hdspm_write(hdspm, reg + 4 * i,
6530 				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6531 }
6532 
6533 
6534 /* ------------- ALSA Devices ---------------------------- */
6535 static int snd_hdspm_create_pcm(struct snd_card *card,
6536 				struct hdspm *hdspm)
6537 {
6538 	struct snd_pcm *pcm;
6539 	int err;
6540 
6541 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6542 	if (err < 0)
6543 		return err;
6544 
6545 	hdspm->pcm = pcm;
6546 	pcm->private_data = hdspm;
6547 	strcpy(pcm->name, hdspm->card_name);
6548 
6549 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6550 			&snd_hdspm_playback_ops);
6551 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6552 			&snd_hdspm_capture_ops);
6553 
6554 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6555 
6556 	err = snd_hdspm_preallocate_memory(hdspm);
6557 	if (err < 0)
6558 		return err;
6559 
6560 	return 0;
6561 }
6562 
6563 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6564 {
6565 	int i;
6566 
6567 	for (i = 0; i < hdspm->midiPorts; i++)
6568 		snd_hdspm_flush_midi_input(hdspm, i);
6569 }
6570 
6571 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6572 					 struct hdspm *hdspm)
6573 {
6574 	int err, i;
6575 
6576 	dev_dbg(card->dev, "Create card...\n");
6577 	err = snd_hdspm_create_pcm(card, hdspm);
6578 	if (err < 0)
6579 		return err;
6580 
6581 	i = 0;
6582 	while (i < hdspm->midiPorts) {
6583 		err = snd_hdspm_create_midi(card, hdspm, i);
6584 		if (err < 0) {
6585 			return err;
6586 		}
6587 		i++;
6588 	}
6589 
6590 	err = snd_hdspm_create_controls(card, hdspm);
6591 	if (err < 0)
6592 		return err;
6593 
6594 	err = snd_hdspm_create_hwdep(card, hdspm);
6595 	if (err < 0)
6596 		return err;
6597 
6598 	dev_dbg(card->dev, "proc init...\n");
6599 	snd_hdspm_proc_init(hdspm);
6600 
6601 	hdspm->system_sample_rate = -1;
6602 	hdspm->last_external_sample_rate = -1;
6603 	hdspm->last_internal_sample_rate = -1;
6604 	hdspm->playback_pid = -1;
6605 	hdspm->capture_pid = -1;
6606 	hdspm->capture_substream = NULL;
6607 	hdspm->playback_substream = NULL;
6608 
6609 	dev_dbg(card->dev, "Set defaults...\n");
6610 	err = snd_hdspm_set_defaults(hdspm);
6611 	if (err < 0)
6612 		return err;
6613 
6614 	dev_dbg(card->dev, "Update mixer controls...\n");
6615 	hdspm_update_simple_mixer_controls(hdspm);
6616 
6617 	dev_dbg(card->dev, "Initializeing complete ???\n");
6618 
6619 	err = snd_card_register(card);
6620 	if (err < 0) {
6621 		dev_err(card->dev, "error registering card\n");
6622 		return err;
6623 	}
6624 
6625 	dev_dbg(card->dev, "... yes now\n");
6626 
6627 	return 0;
6628 }
6629 
6630 static int snd_hdspm_create(struct snd_card *card,
6631 			    struct hdspm *hdspm)
6632 {
6633 
6634 	struct pci_dev *pci = hdspm->pci;
6635 	int err;
6636 	unsigned long io_extent;
6637 
6638 	hdspm->irq = -1;
6639 	hdspm->card = card;
6640 
6641 	spin_lock_init(&hdspm->lock);
6642 
6643 	pci_read_config_word(hdspm->pci,
6644 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6645 
6646 	strcpy(card->mixername, "Xilinx FPGA");
6647 	strcpy(card->driver, "HDSPM");
6648 
6649 	switch (hdspm->firmware_rev) {
6650 	case HDSPM_RAYDAT_REV:
6651 		hdspm->io_type = RayDAT;
6652 		hdspm->card_name = "RME RayDAT";
6653 		hdspm->midiPorts = 2;
6654 		break;
6655 	case HDSPM_AIO_REV:
6656 		hdspm->io_type = AIO;
6657 		hdspm->card_name = "RME AIO";
6658 		hdspm->midiPorts = 1;
6659 		break;
6660 	case HDSPM_MADIFACE_REV:
6661 		hdspm->io_type = MADIface;
6662 		hdspm->card_name = "RME MADIface";
6663 		hdspm->midiPorts = 1;
6664 		break;
6665 	default:
6666 		if ((hdspm->firmware_rev == 0xf0) ||
6667 			((hdspm->firmware_rev >= 0xe6) &&
6668 					(hdspm->firmware_rev <= 0xea))) {
6669 			hdspm->io_type = AES32;
6670 			hdspm->card_name = "RME AES32";
6671 			hdspm->midiPorts = 2;
6672 		} else if ((hdspm->firmware_rev == 0xd2) ||
6673 			((hdspm->firmware_rev >= 0xc8)  &&
6674 				(hdspm->firmware_rev <= 0xcf))) {
6675 			hdspm->io_type = MADI;
6676 			hdspm->card_name = "RME MADI";
6677 			hdspm->midiPorts = 3;
6678 		} else {
6679 			dev_err(card->dev,
6680 				"unknown firmware revision %x\n",
6681 				hdspm->firmware_rev);
6682 			return -ENODEV;
6683 		}
6684 	}
6685 
6686 	err = pci_enable_device(pci);
6687 	if (err < 0)
6688 		return err;
6689 
6690 	pci_set_master(hdspm->pci);
6691 
6692 	err = pci_request_regions(pci, "hdspm");
6693 	if (err < 0)
6694 		return err;
6695 
6696 	hdspm->port = pci_resource_start(pci, 0);
6697 	io_extent = pci_resource_len(pci, 0);
6698 
6699 	dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n",
6700 			hdspm->port, hdspm->port + io_extent - 1);
6701 
6702 	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6703 	if (!hdspm->iobase) {
6704 		dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n",
6705 				hdspm->port, hdspm->port + io_extent - 1);
6706 		return -EBUSY;
6707 	}
6708 	dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n",
6709 			(unsigned long)hdspm->iobase, hdspm->port,
6710 			hdspm->port + io_extent - 1);
6711 
6712 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6713 			IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6714 		dev_err(card->dev, "unable to use IRQ %d\n", pci->irq);
6715 		return -EBUSY;
6716 	}
6717 
6718 	dev_dbg(card->dev, "use IRQ %d\n", pci->irq);
6719 
6720 	hdspm->irq = pci->irq;
6721 
6722 	dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n",
6723 			sizeof(struct hdspm_mixer));
6724 	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6725 	if (!hdspm->mixer) {
6726 		dev_err(card->dev,
6727 			"unable to kmalloc Mixer memory of %d Bytes\n",
6728 				(int)sizeof(struct hdspm_mixer));
6729 		return -ENOMEM;
6730 	}
6731 
6732 	hdspm->port_names_in = NULL;
6733 	hdspm->port_names_out = NULL;
6734 
6735 	switch (hdspm->io_type) {
6736 	case AES32:
6737 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6738 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6739 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6740 
6741 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6742 			channel_map_aes32;
6743 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6744 			channel_map_aes32;
6745 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6746 			channel_map_aes32;
6747 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6748 			texts_ports_aes32;
6749 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6750 			texts_ports_aes32;
6751 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6752 			texts_ports_aes32;
6753 
6754 		hdspm->max_channels_out = hdspm->max_channels_in =
6755 			AES32_CHANNELS;
6756 		hdspm->port_names_in = hdspm->port_names_out =
6757 			texts_ports_aes32;
6758 		hdspm->channel_map_in = hdspm->channel_map_out =
6759 			channel_map_aes32;
6760 
6761 		break;
6762 
6763 	case MADI:
6764 	case MADIface:
6765 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6766 			MADI_SS_CHANNELS;
6767 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6768 			MADI_DS_CHANNELS;
6769 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6770 			MADI_QS_CHANNELS;
6771 
6772 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6773 			channel_map_unity_ss;
6774 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6775 			channel_map_unity_ss;
6776 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6777 			channel_map_unity_ss;
6778 
6779 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6780 			texts_ports_madi;
6781 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6782 			texts_ports_madi;
6783 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6784 			texts_ports_madi;
6785 		break;
6786 
6787 	case AIO:
6788 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6789 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6790 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6791 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6792 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6793 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6794 
6795 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6796 			dev_info(card->dev, "AEB input board found\n");
6797 			hdspm->ss_in_channels += 4;
6798 			hdspm->ds_in_channels += 4;
6799 			hdspm->qs_in_channels += 4;
6800 		}
6801 
6802 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) {
6803 			dev_info(card->dev, "AEB output board found\n");
6804 			hdspm->ss_out_channels += 4;
6805 			hdspm->ds_out_channels += 4;
6806 			hdspm->qs_out_channels += 4;
6807 		}
6808 
6809 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6810 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6811 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6812 
6813 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6814 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6815 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6816 
6817 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6818 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6819 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6820 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6821 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6822 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6823 
6824 		break;
6825 
6826 	case RayDAT:
6827 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6828 			RAYDAT_SS_CHANNELS;
6829 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6830 			RAYDAT_DS_CHANNELS;
6831 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6832 			RAYDAT_QS_CHANNELS;
6833 
6834 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6835 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6836 
6837 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6838 			channel_map_raydat_ss;
6839 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6840 			channel_map_raydat_ds;
6841 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6842 			channel_map_raydat_qs;
6843 		hdspm->channel_map_in = hdspm->channel_map_out =
6844 			channel_map_raydat_ss;
6845 
6846 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6847 			texts_ports_raydat_ss;
6848 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6849 			texts_ports_raydat_ds;
6850 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6851 			texts_ports_raydat_qs;
6852 
6853 
6854 		break;
6855 
6856 	}
6857 
6858 	/* TCO detection */
6859 	switch (hdspm->io_type) {
6860 	case AIO:
6861 	case RayDAT:
6862 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6863 				HDSPM_s2_tco_detect) {
6864 			hdspm->midiPorts++;
6865 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6866 					GFP_KERNEL);
6867 			if (NULL != hdspm->tco) {
6868 				hdspm_tco_write(hdspm);
6869 			}
6870 			dev_info(card->dev, "AIO/RayDAT TCO module found\n");
6871 		} else {
6872 			hdspm->tco = NULL;
6873 		}
6874 		break;
6875 
6876 	case MADI:
6877 	case AES32:
6878 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6879 			hdspm->midiPorts++;
6880 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6881 					GFP_KERNEL);
6882 			if (NULL != hdspm->tco) {
6883 				hdspm_tco_write(hdspm);
6884 			}
6885 			dev_info(card->dev, "MADI/AES TCO module found\n");
6886 		} else {
6887 			hdspm->tco = NULL;
6888 		}
6889 		break;
6890 
6891 	default:
6892 		hdspm->tco = NULL;
6893 	}
6894 
6895 	/* texts */
6896 	switch (hdspm->io_type) {
6897 	case AES32:
6898 		if (hdspm->tco) {
6899 			hdspm->texts_autosync = texts_autosync_aes_tco;
6900 			hdspm->texts_autosync_items =
6901 				ARRAY_SIZE(texts_autosync_aes_tco);
6902 		} else {
6903 			hdspm->texts_autosync = texts_autosync_aes;
6904 			hdspm->texts_autosync_items =
6905 				ARRAY_SIZE(texts_autosync_aes);
6906 		}
6907 		break;
6908 
6909 	case MADI:
6910 		if (hdspm->tco) {
6911 			hdspm->texts_autosync = texts_autosync_madi_tco;
6912 			hdspm->texts_autosync_items = 4;
6913 		} else {
6914 			hdspm->texts_autosync = texts_autosync_madi;
6915 			hdspm->texts_autosync_items = 3;
6916 		}
6917 		break;
6918 
6919 	case MADIface:
6920 
6921 		break;
6922 
6923 	case RayDAT:
6924 		if (hdspm->tco) {
6925 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6926 			hdspm->texts_autosync_items = 9;
6927 		} else {
6928 			hdspm->texts_autosync = texts_autosync_raydat;
6929 			hdspm->texts_autosync_items = 8;
6930 		}
6931 		break;
6932 
6933 	case AIO:
6934 		if (hdspm->tco) {
6935 			hdspm->texts_autosync = texts_autosync_aio_tco;
6936 			hdspm->texts_autosync_items = 6;
6937 		} else {
6938 			hdspm->texts_autosync = texts_autosync_aio;
6939 			hdspm->texts_autosync_items = 5;
6940 		}
6941 		break;
6942 
6943 	}
6944 
6945 	tasklet_init(&hdspm->midi_tasklet,
6946 			hdspm_midi_tasklet, (unsigned long) hdspm);
6947 
6948 
6949 	if (hdspm->io_type != MADIface) {
6950 		hdspm->serial = (hdspm_read(hdspm,
6951 				HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6952 		/* id contains either a user-provided value or the default
6953 		 * NULL. If it's the default, we're safe to
6954 		 * fill card->id with the serial number.
6955 		 *
6956 		 * If the serial number is 0xFFFFFF, then we're dealing with
6957 		 * an old PCI revision that comes without a sane number. In
6958 		 * this case, we don't set card->id to avoid collisions
6959 		 * when running with multiple cards.
6960 		 */
6961 		if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6962 			sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6963 			snd_card_set_id(card, card->id);
6964 		}
6965 	}
6966 
6967 	dev_dbg(card->dev, "create alsa devices.\n");
6968 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6969 	if (err < 0)
6970 		return err;
6971 
6972 	snd_hdspm_initialize_midi_flush(hdspm);
6973 
6974 	return 0;
6975 }
6976 
6977 
6978 static int snd_hdspm_free(struct hdspm * hdspm)
6979 {
6980 
6981 	if (hdspm->port) {
6982 
6983 		/* stop th audio, and cancel all interrupts */
6984 		hdspm->control_register &=
6985 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6986 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6987 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6988 		hdspm_write(hdspm, HDSPM_controlRegister,
6989 			    hdspm->control_register);
6990 	}
6991 
6992 	if (hdspm->irq >= 0)
6993 		free_irq(hdspm->irq, (void *) hdspm);
6994 
6995 	kfree(hdspm->mixer);
6996 
6997 	if (hdspm->iobase)
6998 		iounmap(hdspm->iobase);
6999 
7000 	if (hdspm->port)
7001 		pci_release_regions(hdspm->pci);
7002 
7003 	pci_disable_device(hdspm->pci);
7004 	return 0;
7005 }
7006 
7007 
7008 static void snd_hdspm_card_free(struct snd_card *card)
7009 {
7010 	struct hdspm *hdspm = card->private_data;
7011 
7012 	if (hdspm)
7013 		snd_hdspm_free(hdspm);
7014 }
7015 
7016 
7017 static int snd_hdspm_probe(struct pci_dev *pci,
7018 			   const struct pci_device_id *pci_id)
7019 {
7020 	static int dev;
7021 	struct hdspm *hdspm;
7022 	struct snd_card *card;
7023 	int err;
7024 
7025 	if (dev >= SNDRV_CARDS)
7026 		return -ENODEV;
7027 	if (!enable[dev]) {
7028 		dev++;
7029 		return -ENOENT;
7030 	}
7031 
7032 	err = snd_card_new(&pci->dev, index[dev], id[dev],
7033 			   THIS_MODULE, sizeof(struct hdspm), &card);
7034 	if (err < 0)
7035 		return err;
7036 
7037 	hdspm = card->private_data;
7038 	card->private_free = snd_hdspm_card_free;
7039 	hdspm->dev = dev;
7040 	hdspm->pci = pci;
7041 
7042 	err = snd_hdspm_create(card, hdspm);
7043 	if (err < 0) {
7044 		snd_card_free(card);
7045 		return err;
7046 	}
7047 
7048 	if (hdspm->io_type != MADIface) {
7049 		sprintf(card->shortname, "%s_%x",
7050 			hdspm->card_name,
7051 			hdspm->serial);
7052 		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
7053 			hdspm->card_name,
7054 			hdspm->serial,
7055 			hdspm->port, hdspm->irq);
7056 	} else {
7057 		sprintf(card->shortname, "%s", hdspm->card_name);
7058 		sprintf(card->longname, "%s at 0x%lx, irq %d",
7059 				hdspm->card_name, hdspm->port, hdspm->irq);
7060 	}
7061 
7062 	err = snd_card_register(card);
7063 	if (err < 0) {
7064 		snd_card_free(card);
7065 		return err;
7066 	}
7067 
7068 	pci_set_drvdata(pci, card);
7069 
7070 	dev++;
7071 	return 0;
7072 }
7073 
7074 static void snd_hdspm_remove(struct pci_dev *pci)
7075 {
7076 	snd_card_free(pci_get_drvdata(pci));
7077 }
7078 
7079 static struct pci_driver hdspm_driver = {
7080 	.name = KBUILD_MODNAME,
7081 	.id_table = snd_hdspm_ids,
7082 	.probe = snd_hdspm_probe,
7083 	.remove = snd_hdspm_remove,
7084 };
7085 
7086 module_pci_driver(hdspm_driver);
7087