xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision 4949009e)
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41 
42 /* *************    Register Documentation   *******************************************************
43  *
44  * Work in progress! Documentation is based on the code in this file.
45  *
46  * --------- HDSPM_controlRegister ---------
47  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
48  * :||||.||||:||||.||||:||||.||||:||||.||||:
49  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
50  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
51  * :||||.||||:||||.||||:||||.||||:||||.||||:
52  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
53  * :    .    :    .    :    .    :  x .    :  HDSPM_AudioInterruptEnable \_ setting both bits
54  * :    .    :    .    :    .    :    .   x:  HDSPM_Start                /  enables audio IO
55  * :    .    :    .    :    .    :   x.    :  HDSPM_ClockModeMaster - 1: Master, 0: Slave
56  * :    .    :    .    :    .    :    .210 :  HDSPM_LatencyMask - 3 Bit value for latency
57  * :    .    :    .    :    .    :    .    :      0:64, 1:128, 2:256, 3:512,
58  * :    .    :    .    :    .    :    .    :      4:1024, 5:2048, 6:4096, 7:8192
59  * :x   .    :    .    :    .   x:xx  .    :  HDSPM_FrequencyMask
60  * :    .    :    .    :    .    :10  .    :  HDSPM_Frequency1|HDSPM_Frequency0: 1=32K,2=44.1K,3=48K,0=??
61  * :    .    :    .    :    .   x:    .    :  <MADI> HDSPM_DoubleSpeed
62  * :x   .    :    .    :    .    :    .    :  <MADI> HDSPM_QuadSpeed
63  * :    .  3 :    .  10:  2 .    :    .    :  HDSPM_SyncRefMask :
64  * :    .    :    .   x:    .    :    .    :  HDSPM_SyncRef0
65  * :    .    :    .  x :    .    :    .    :  HDSPM_SyncRef1
66  * :    .    :    .    :  x .    :    .    :  <AES32> HDSPM_SyncRef2
67  * :    .  x :    .    :    .    :    .    :  <AES32> HDSPM_SyncRef3
68  * :    .    :    .  10:    .    :    .    :  <MADI> sync ref: 0:WC, 1:Madi, 2:TCO, 3:SyncIn
69  * :    .  3 :    .  10:  2 .    :    .    :  <AES32>  0:WC, 1:AES1 ... 8:AES8, 9: TCO, 10:SyncIn?
70  * :    .  x :    .    :    .    :    .    :  <MADIe> HDSPe_FLOAT_FORMAT
71  * :    .    :    .    : x  .    :    .    :  <MADI> HDSPM_InputSelect0 : 0=optical,1=coax
72  * :    .    :    .    :x   .    :    .    :  <MADI> HDSPM_InputSelect1
73  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
74  * :    .    :    .    :    . x  :    .    :  <MADI> HDSPM_TX_64ch
75  * :    .    :    .    :    . x  :    .    :  <AES32> HDSPM_Emphasis
76  * :    .    :    .    :    .x   :    .    :  <MADI> HDSPM_AutoInp
77  * :    .    :    . x  :    .    :    .    :  <MADI> HDSPM_SMUX
78  * :    .    :    .x   :    .    :    .    :  <MADI> HDSPM_clr_tms
79  * :    .    :   x.    :    .    :    .    :  <MADI> HDSPM_taxi_reset
80  * :    .   x:    .    :    .    :    .    :  <MADI> HDSPM_LineOut
81  * :    .   x:    .    :    .    :    .    :  <AES32> ??????????????????
82  * :    .    :   x.    :    .    :    .    :  <AES32> HDSPM_WCK48
83  * :    .    :    .    :    .x   :    .    :  <AES32> HDSPM_Dolby
84  * :    .    : x  .    :    .    :    .    :  HDSPM_Midi0InterruptEnable
85  * :    .    :x   .    :    .    :    .    :  HDSPM_Midi1InterruptEnable
86  * :    .    :  x .    :    .    :    .    :  HDSPM_Midi2InterruptEnable
87  * :    . x  :    .    :    .    :    .    :  <MADI> HDSPM_Midi3InterruptEnable
88  * :    . x  :    .    :    .    :    .    :  <AES32> HDSPM_DS_DoubleWire
89  * :    .x   :    .    :    .    :    .    :  <AES32> HDSPM_QS_DoubleWire
90  * :   x.    :    .    :    .    :    .    :  <AES32> HDSPM_QS_QuadWire
91  * :    .    :    .    :    .  x :    .    :  <AES32> HDSPM_Professional
92  * : x  .    :    .    :    .    :    .    :  HDSPM_wclk_sel
93  * :    .    :    .    :    .    :    .    :
94  * :7654.3210:7654.3210:7654.3210:7654.3210: bit number per byte
95  * :||||.||||:||||.||||:||||.||||:||||.||||:
96  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number
97  * :1098.7654:3210.9876:5432.1098:7654.3210: 0..31
98  * :||||.||||:||||.||||:||||.||||:||||.||||:
99  * :8421.8421:8421.8421:8421.8421:8421.8421:hex digit
100  *
101  *
102  *
103  * AIO / RayDAT only
104  *
105  * ------------ HDSPM_WR_SETTINGS ----------
106  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
107  * :1098.7654:3210.9876:5432.1098:7654.3210:
108  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
109  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
110  * :||||.||||:||||.||||:||||.||||:||||.||||:
111  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
112  * :    .    :    .    :    .    :    .   x: HDSPM_c0Master 1: Master, 0: Slave
113  * :    .    :    .    :    .    :    .  x : HDSPM_c0_SyncRef0
114  * :    .    :    .    :    .    :    . x  : HDSPM_c0_SyncRef1
115  * :    .    :    .    :    .    :    .x   : HDSPM_c0_SyncRef2
116  * :    .    :    .    :    .    :   x.    : HDSPM_c0_SyncRef3
117  * :    .    :    .    :    .    :   3.210 : HDSPM_c0_SyncRefMask:
118  * :    .    :    .    :    .    :    .    :  RayDat: 0:WC, 1:AES, 2:SPDIF, 3..6: ADAT1..4,
119  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
120  * :    .    :    .    :    .    :    .    :  AIO: 0:WC, 1:AES, 2: SPDIF, 3: ATAT,
121  * :    .    :    .    :    .    :    .    :          9:TCO, 10:SyncIn
122  * :    .    :    .    :    .    :    .    :
123  * :    .    :    .    :    .    :    .    :
124  * :3322.2222:2222.1111:1111.1100:0000.0000: bit number per byte
125  * :1098.7654:3210.9876:5432.1098:7654.3210:
126  * :||||.||||:||||.||||:||||.||||:||||.||||: bit number
127  * :7654.3210:7654.3210:7654.3210:7654.3210: 0..31
128  * :||||.||||:||||.||||:||||.||||:||||.||||:
129  * :8421.8421:8421.8421:8421.8421:8421.8421: hex digit
130  *
131  */
132 #include <linux/init.h>
133 #include <linux/delay.h>
134 #include <linux/interrupt.h>
135 #include <linux/module.h>
136 #include <linux/slab.h>
137 #include <linux/pci.h>
138 #include <linux/math64.h>
139 #include <asm/io.h>
140 
141 #include <sound/core.h>
142 #include <sound/control.h>
143 #include <sound/pcm.h>
144 #include <sound/pcm_params.h>
145 #include <sound/info.h>
146 #include <sound/asoundef.h>
147 #include <sound/rawmidi.h>
148 #include <sound/hwdep.h>
149 #include <sound/initval.h>
150 
151 #include <sound/hdspm.h>
152 
153 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
154 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
155 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
156 
157 module_param_array(index, int, NULL, 0444);
158 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
159 
160 module_param_array(id, charp, NULL, 0444);
161 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
162 
163 module_param_array(enable, bool, NULL, 0444);
164 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
165 
166 
167 MODULE_AUTHOR
168 (
169 	"Winfried Ritsch <ritsch_AT_iem.at>, "
170 	"Paul Davis <paul@linuxaudiosystems.com>, "
171 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
172 	"Remy Bruno <remy.bruno@trinnov.com>, "
173 	"Florian Faber <faberman@linuxproaudio.org>, "
174 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
175 );
176 MODULE_DESCRIPTION("RME HDSPM");
177 MODULE_LICENSE("GPL");
178 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
179 
180 /* --- Write registers. ---
181   These are defined as byte-offsets from the iobase value.  */
182 
183 #define HDSPM_WR_SETTINGS             0
184 #define HDSPM_outputBufferAddress    32
185 #define HDSPM_inputBufferAddress     36
186 #define HDSPM_controlRegister	     64
187 #define HDSPM_interruptConfirmation  96
188 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
189 #define HDSPM_freqReg                256  /* for setting arbitrary clock values (DDS feature) */
190 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
191 #define HDSPM_midiDataOut1	     356
192 #define HDSPM_eeprom_wr		     384  /* for AES32 */
193 
194 /* DMA enable for 64 channels, only Bit 0 is relevant */
195 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
196 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
197 
198 /* 16 page addresses for each of the 64 channels DMA buffer in and out
199    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
200 #define HDSPM_pageAddressBufferOut       8192
201 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
202 
203 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
204 
205 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
206 
207 /* --- Read registers. ---
208    These are defined as byte-offsets from the iobase value */
209 #define HDSPM_statusRegister    0
210 /*#define HDSPM_statusRegister2  96 */
211 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
212  * offset 192, for AES32 *and* MADI
213  * => need to check that offset 192 is working on MADI */
214 #define HDSPM_statusRegister2  192
215 #define HDSPM_timecodeRegister 128
216 
217 /* AIO, RayDAT */
218 #define HDSPM_RD_STATUS_0 0
219 #define HDSPM_RD_STATUS_1 64
220 #define HDSPM_RD_STATUS_2 128
221 #define HDSPM_RD_STATUS_3 192
222 
223 #define HDSPM_RD_TCO           256
224 #define HDSPM_RD_PLL_FREQ      512
225 #define HDSPM_WR_TCO           128
226 
227 #define HDSPM_TCO1_TCO_lock			0x00000001
228 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
229 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
230 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
231 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
232 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
233 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
234 
235 #define HDSPM_TCO1_set_TC			0x00000100
236 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
237 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
238 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
239 
240 #define HDSPM_TCO2_TC_run			0x00010000
241 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
242 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
243 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
244 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
245 #define HDSPM_TCO2_set_jam_sync			0x00200000
246 #define HDSPM_TCO2_set_flywheel			0x00400000
247 
248 #define HDSPM_TCO2_set_01_4			0x01000000
249 #define HDSPM_TCO2_set_pull_down		0x02000000
250 #define HDSPM_TCO2_set_pull_up			0x04000000
251 #define HDSPM_TCO2_set_freq			0x08000000
252 #define HDSPM_TCO2_set_term_75R			0x10000000
253 #define HDSPM_TCO2_set_input_LSB		0x20000000
254 #define HDSPM_TCO2_set_input_MSB		0x40000000
255 #define HDSPM_TCO2_set_freq_from_app		0x80000000
256 
257 
258 #define HDSPM_midiDataOut0    352
259 #define HDSPM_midiDataOut1    356
260 #define HDSPM_midiDataOut2    368
261 
262 #define HDSPM_midiDataIn0     360
263 #define HDSPM_midiDataIn1     364
264 #define HDSPM_midiDataIn2     372
265 #define HDSPM_midiDataIn3     376
266 
267 /* status is data bytes in MIDI-FIFO (0-128) */
268 #define HDSPM_midiStatusOut0  384
269 #define HDSPM_midiStatusOut1  388
270 #define HDSPM_midiStatusOut2  400
271 
272 #define HDSPM_midiStatusIn0   392
273 #define HDSPM_midiStatusIn1   396
274 #define HDSPM_midiStatusIn2   404
275 #define HDSPM_midiStatusIn3   408
276 
277 
278 /* the meters are regular i/o-mapped registers, but offset
279    considerably from the rest. the peak registers are reset
280    when read; the least-significant 4 bits are full-scale counters;
281    the actual peak value is in the most-significant 24 bits.
282 */
283 
284 #define HDSPM_MADI_INPUT_PEAK		4096
285 #define HDSPM_MADI_PLAYBACK_PEAK	4352
286 #define HDSPM_MADI_OUTPUT_PEAK		4608
287 
288 #define HDSPM_MADI_INPUT_RMS_L		6144
289 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
290 #define HDSPM_MADI_OUTPUT_RMS_L		6656
291 
292 #define HDSPM_MADI_INPUT_RMS_H		7168
293 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
294 #define HDSPM_MADI_OUTPUT_RMS_H		7680
295 
296 /* --- Control Register bits --------- */
297 #define HDSPM_Start                (1<<0) /* start engine */
298 
299 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
300 #define HDSPM_Latency1             (1<<2) /* where n is defined */
301 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
302 
303 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
304 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
305 					  register [RayDAT, AIO] */
306 
307 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
308 
309 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
310 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
311 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
312 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
313 
314 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
315 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
316 				     56channelMODE=0 */ /* MADI ONLY*/
317 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
318 
319 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
320                                      0=off, 1=on  */ /* MADI ONLY */
321 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
322 
323 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
324 				    * -- MADI ONLY
325 				    */
326 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
327 
328 #define HDSPM_SyncRef2     (1<<13)
329 #define HDSPM_SyncRef3     (1<<25)
330 
331 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
332 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
333                                       AES additional bits in
334 				      lower 5 Audiodatabits ??? */
335 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
336 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
337 
338 #define HDSPM_Midi0InterruptEnable 0x0400000
339 #define HDSPM_Midi1InterruptEnable 0x0800000
340 #define HDSPM_Midi2InterruptEnable 0x0200000
341 #define HDSPM_Midi3InterruptEnable 0x4000000
342 
343 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
344 #define HDSPe_FLOAT_FORMAT         0x2000000
345 
346 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
347 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
348 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
349 
350 #define HDSPM_wclk_sel (1<<30)
351 
352 /* additional control register bits for AIO*/
353 #define HDSPM_c0_Wck48				0x20 /* also RayDAT */
354 #define HDSPM_c0_Input0				0x1000
355 #define HDSPM_c0_Input1				0x2000
356 #define HDSPM_c0_Spdif_Opt			0x4000
357 #define HDSPM_c0_Pro				0x8000
358 #define HDSPM_c0_clr_tms			0x10000
359 #define HDSPM_c0_AEB1				0x20000
360 #define HDSPM_c0_AEB2				0x40000
361 #define HDSPM_c0_LineOut			0x80000
362 #define HDSPM_c0_AD_GAIN0			0x100000
363 #define HDSPM_c0_AD_GAIN1			0x200000
364 #define HDSPM_c0_DA_GAIN0			0x400000
365 #define HDSPM_c0_DA_GAIN1			0x800000
366 #define HDSPM_c0_PH_GAIN0			0x1000000
367 #define HDSPM_c0_PH_GAIN1			0x2000000
368 #define HDSPM_c0_Sym6db				0x4000000
369 
370 
371 /* --- bit helper defines */
372 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
373 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
374 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
375 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
376 #define HDSPM_InputOptical   0
377 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
378 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
379 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
380 
381 #define HDSPM_c0_SyncRef0      0x2
382 #define HDSPM_c0_SyncRef1      0x4
383 #define HDSPM_c0_SyncRef2      0x8
384 #define HDSPM_c0_SyncRef3      0x10
385 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
386 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
387 
388 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
389 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
390 #define HDSPM_SYNC_FROM_TCO     2
391 #define HDSPM_SYNC_FROM_SYNC_IN 3
392 
393 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
394 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
395 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
396 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
397 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
398 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
399 				HDSPM_Frequency0)
400 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
401 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
402 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
403 				 HDSPM_Frequency0)
404 
405 
406 /* Synccheck Status */
407 #define HDSPM_SYNC_CHECK_NO_LOCK 0
408 #define HDSPM_SYNC_CHECK_LOCK    1
409 #define HDSPM_SYNC_CHECK_SYNC	 2
410 
411 /* AutoSync References - used by "autosync_ref" control switch */
412 #define HDSPM_AUTOSYNC_FROM_WORD      0
413 #define HDSPM_AUTOSYNC_FROM_MADI      1
414 #define HDSPM_AUTOSYNC_FROM_TCO       2
415 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
416 #define HDSPM_AUTOSYNC_FROM_NONE      4
417 
418 /* Possible sources of MADI input */
419 #define HDSPM_OPTICAL 0		/* optical   */
420 #define HDSPM_COAXIAL 1		/* BNC */
421 
422 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
423 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
424 
425 #define hdspm_encode_in(x) (((x)&0x3)<<14)
426 #define hdspm_decode_in(x) (((x)>>14)&0x3)
427 
428 /* --- control2 register bits --- */
429 #define HDSPM_TMS             (1<<0)
430 #define HDSPM_TCK             (1<<1)
431 #define HDSPM_TDI             (1<<2)
432 #define HDSPM_JTAG            (1<<3)
433 #define HDSPM_PWDN            (1<<4)
434 #define HDSPM_PROGRAM	      (1<<5)
435 #define HDSPM_CONFIG_MODE_0   (1<<6)
436 #define HDSPM_CONFIG_MODE_1   (1<<7)
437 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
438 #define HDSPM_BIGENDIAN_MODE  (1<<9)
439 #define HDSPM_RD_MULTIPLE     (1<<10)
440 
441 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
442      that do not conflict with specific bits for AES32 seem to be valid also
443      for the AES32
444  */
445 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
446 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
447 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
448 					 * (like inp0)
449 					 */
450 
451 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
452 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
453 
454 #define HDSPM_tcoLockMadi    0x00000020 /* Optional TCO locked status for HDSPe MADI*/
455 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status for HDSPe MADI and AES32!*/
456 
457 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status for HDSPe MADI! */
458 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status for HDSPe MADI! */
459 
460 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
461 			/* since 64byte accurate, last 6 bits are not used */
462 
463 
464 
465 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
466 
467 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
468 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
469 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
470 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
471 
472 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
473 					 * Interrupt
474 					 */
475 #define HDSPM_tco_detect         0x08000000
476 #define HDSPM_tcoLockAes         0x20000000 /* Optional TCO locked status for HDSPe AES */
477 
478 #define HDSPM_s2_tco_detect      0x00000040
479 #define HDSPM_s2_AEBO_D          0x00000080
480 #define HDSPM_s2_AEBI_D          0x00000100
481 
482 
483 #define HDSPM_midi0IRQPending    0x40000000
484 #define HDSPM_midi1IRQPending    0x80000000
485 #define HDSPM_midi2IRQPending    0x20000000
486 #define HDSPM_midi2IRQPendingAES 0x00000020
487 #define HDSPM_midi3IRQPending    0x00200000
488 
489 /* --- status bit helpers */
490 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
491 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
492 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
493 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
494 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
495 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
496 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
497 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
498 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
499 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
500 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
501 
502 /* Status2 Register bits */ /* MADI ONLY */
503 
504 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
505 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
506 #define HDSPM_version2 (1<<2)
507 
508 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
509 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
510 
511 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
512 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
513 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, 111=128 */
514 #define HDSPM_wc_freq3 0x800	/* 1000=176.4, 1001=192 */
515 
516 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
517 #define HDSPM_SyncRef1 0x20000
518 
519 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
520 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
521 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
522 
523 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
524 
525 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2|\
526 			    HDSPM_wc_freq3)
527 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
528 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
529 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
530 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
531 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
532 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
533 #define HDSPM_wcFreq128   (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
534 #define HDSPM_wcFreq176_4 (HDSPM_wc_freq3)
535 #define HDSPM_wcFreq192   (HDSPM_wc_freq0|HDSPM_wc_freq3)
536 
537 #define HDSPM_status1_F_0 0x0400000
538 #define HDSPM_status1_F_1 0x0800000
539 #define HDSPM_status1_F_2 0x1000000
540 #define HDSPM_status1_F_3 0x2000000
541 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
542 
543 
544 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
545 				    HDSPM_SelSyncRef2)
546 #define HDSPM_SelSyncRef_WORD      0
547 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
548 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
549 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
550 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
551 				    HDSPM_SelSyncRef2)
552 
553 /*
554    For AES32, bits for status, status2 and timecode are different
555 */
556 /* status */
557 #define HDSPM_AES32_wcLock	0x0200000
558 #define HDSPM_AES32_wcSync	0x0100000
559 #define HDSPM_AES32_wcFreq_bit  22
560 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
561   HDSPM_bit2freq */
562 #define HDSPM_AES32_syncref_bit  16
563 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
564 
565 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
566 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
567 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
568 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
569 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
570 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
571 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
572 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
573 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
574 #define HDSPM_AES32_AUTOSYNC_FROM_TCO 9
575 #define HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN 10
576 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 11
577 
578 /*  status2 */
579 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
580 #define HDSPM_LockAES   0x80
581 #define HDSPM_LockAES1  0x80
582 #define HDSPM_LockAES2  0x40
583 #define HDSPM_LockAES3  0x20
584 #define HDSPM_LockAES4  0x10
585 #define HDSPM_LockAES5  0x8
586 #define HDSPM_LockAES6  0x4
587 #define HDSPM_LockAES7  0x2
588 #define HDSPM_LockAES8  0x1
589 /*
590    Timecode
591    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
592    AES i+1
593  bits 3210
594       0001  32kHz
595       0010  44.1kHz
596       0011  48kHz
597       0100  64kHz
598       0101  88.2kHz
599       0110  96kHz
600       0111  128kHz
601       1000  176.4kHz
602       1001  192kHz
603   NB: Timecode register doesn't seem to work on AES32 card revision 230
604 */
605 
606 /* Mixer Values */
607 #define UNITY_GAIN          32768	/* = 65536/2 */
608 #define MINUS_INFINITY_GAIN 0
609 
610 /* Number of channels for different Speed Modes */
611 #define MADI_SS_CHANNELS       64
612 #define MADI_DS_CHANNELS       32
613 #define MADI_QS_CHANNELS       16
614 
615 #define RAYDAT_SS_CHANNELS     36
616 #define RAYDAT_DS_CHANNELS     20
617 #define RAYDAT_QS_CHANNELS     12
618 
619 #define AIO_IN_SS_CHANNELS        14
620 #define AIO_IN_DS_CHANNELS        10
621 #define AIO_IN_QS_CHANNELS        8
622 #define AIO_OUT_SS_CHANNELS        16
623 #define AIO_OUT_DS_CHANNELS        12
624 #define AIO_OUT_QS_CHANNELS        10
625 
626 #define AES32_CHANNELS		16
627 
628 /* the size of a substream (1 mono data stream) */
629 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
630 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
631 
632 /* the size of the area we need to allocate for DMA transfers. the
633    size is the same regardless of the number of channels, and
634    also the latency to use.
635    for one direction !!!
636 */
637 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
638 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
639 
640 #define HDSPM_RAYDAT_REV	211
641 #define HDSPM_AIO_REV		212
642 #define HDSPM_MADIFACE_REV	213
643 
644 /* speed factor modes */
645 #define HDSPM_SPEED_SINGLE 0
646 #define HDSPM_SPEED_DOUBLE 1
647 #define HDSPM_SPEED_QUAD   2
648 
649 /* names for speed modes */
650 static char *hdspm_speed_names[] = { "single", "double", "quad" };
651 
652 static const char *const texts_autosync_aes_tco[] = { "Word Clock",
653 					  "AES1", "AES2", "AES3", "AES4",
654 					  "AES5", "AES6", "AES7", "AES8",
655 					  "TCO", "Sync In"
656 };
657 static const char *const texts_autosync_aes[] = { "Word Clock",
658 				      "AES1", "AES2", "AES3", "AES4",
659 				      "AES5", "AES6", "AES7", "AES8",
660 				      "Sync In"
661 };
662 static const char *const texts_autosync_madi_tco[] = { "Word Clock",
663 					   "MADI", "TCO", "Sync In" };
664 static const char *const texts_autosync_madi[] = { "Word Clock",
665 				       "MADI", "Sync In" };
666 
667 static const char *const texts_autosync_raydat_tco[] = {
668 	"Word Clock",
669 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
670 	"AES", "SPDIF", "TCO", "Sync In"
671 };
672 static const char *const texts_autosync_raydat[] = {
673 	"Word Clock",
674 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
675 	"AES", "SPDIF", "Sync In"
676 };
677 static const char *const texts_autosync_aio_tco[] = {
678 	"Word Clock",
679 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
680 };
681 static const char *const texts_autosync_aio[] = { "Word Clock",
682 				      "ADAT", "AES", "SPDIF", "Sync In" };
683 
684 static const char *const texts_freq[] = {
685 	"No Lock",
686 	"32 kHz",
687 	"44.1 kHz",
688 	"48 kHz",
689 	"64 kHz",
690 	"88.2 kHz",
691 	"96 kHz",
692 	"128 kHz",
693 	"176.4 kHz",
694 	"192 kHz"
695 };
696 
697 static char *texts_ports_madi[] = {
698 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
699 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
700 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
701 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
702 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
703 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
704 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
705 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
706 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
707 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
708 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
709 };
710 
711 
712 static char *texts_ports_raydat_ss[] = {
713 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
714 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
715 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
716 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
717 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
718 	"ADAT4.7", "ADAT4.8",
719 	"AES.L", "AES.R",
720 	"SPDIF.L", "SPDIF.R"
721 };
722 
723 static char *texts_ports_raydat_ds[] = {
724 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
725 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
726 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
727 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
728 	"AES.L", "AES.R",
729 	"SPDIF.L", "SPDIF.R"
730 };
731 
732 static char *texts_ports_raydat_qs[] = {
733 	"ADAT1.1", "ADAT1.2",
734 	"ADAT2.1", "ADAT2.2",
735 	"ADAT3.1", "ADAT3.2",
736 	"ADAT4.1", "ADAT4.2",
737 	"AES.L", "AES.R",
738 	"SPDIF.L", "SPDIF.R"
739 };
740 
741 
742 static char *texts_ports_aio_in_ss[] = {
743 	"Analogue.L", "Analogue.R",
744 	"AES.L", "AES.R",
745 	"SPDIF.L", "SPDIF.R",
746 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
747 	"ADAT.7", "ADAT.8",
748 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
749 };
750 
751 static char *texts_ports_aio_out_ss[] = {
752 	"Analogue.L", "Analogue.R",
753 	"AES.L", "AES.R",
754 	"SPDIF.L", "SPDIF.R",
755 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
756 	"ADAT.7", "ADAT.8",
757 	"Phone.L", "Phone.R",
758 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
759 };
760 
761 static char *texts_ports_aio_in_ds[] = {
762 	"Analogue.L", "Analogue.R",
763 	"AES.L", "AES.R",
764 	"SPDIF.L", "SPDIF.R",
765 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
766 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
767 };
768 
769 static char *texts_ports_aio_out_ds[] = {
770 	"Analogue.L", "Analogue.R",
771 	"AES.L", "AES.R",
772 	"SPDIF.L", "SPDIF.R",
773 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
774 	"Phone.L", "Phone.R",
775 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
776 };
777 
778 static char *texts_ports_aio_in_qs[] = {
779 	"Analogue.L", "Analogue.R",
780 	"AES.L", "AES.R",
781 	"SPDIF.L", "SPDIF.R",
782 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
783 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
784 };
785 
786 static char *texts_ports_aio_out_qs[] = {
787 	"Analogue.L", "Analogue.R",
788 	"AES.L", "AES.R",
789 	"SPDIF.L", "SPDIF.R",
790 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
791 	"Phone.L", "Phone.R",
792 	"AEB.1", "AEB.2", "AEB.3", "AEB.4"
793 };
794 
795 static char *texts_ports_aes32[] = {
796 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
797 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
798 	"AES.15", "AES.16"
799 };
800 
801 /* These tables map the ALSA channels 1..N to the channels that we
802    need to use in order to find the relevant channel buffer. RME
803    refers to this kind of mapping as between "the ADAT channel and
804    the DMA channel." We index it using the logical audio channel,
805    and the value is the DMA channel (i.e. channel buffer number)
806    where the data for that channel can be read/written from/to.
807 */
808 
809 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
810 	0, 1, 2, 3, 4, 5, 6, 7,
811 	8, 9, 10, 11, 12, 13, 14, 15,
812 	16, 17, 18, 19, 20, 21, 22, 23,
813 	24, 25, 26, 27, 28, 29, 30, 31,
814 	32, 33, 34, 35, 36, 37, 38, 39,
815 	40, 41, 42, 43, 44, 45, 46, 47,
816 	48, 49, 50, 51, 52, 53, 54, 55,
817 	56, 57, 58, 59, 60, 61, 62, 63
818 };
819 
820 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
821 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
822 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
823 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
824 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
825 	0, 1,			/* AES */
826 	2, 3,			/* SPDIF */
827 	-1, -1, -1, -1,
828 	-1, -1, -1, -1, -1, -1, -1, -1,
829 	-1, -1, -1, -1, -1, -1, -1, -1,
830 	-1, -1, -1, -1, -1, -1, -1, -1,
831 };
832 
833 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
834 	4, 5, 6, 7,		/* ADAT 1 */
835 	8, 9, 10, 11,		/* ADAT 2 */
836 	12, 13, 14, 15,		/* ADAT 3 */
837 	16, 17, 18, 19,		/* ADAT 4 */
838 	0, 1,			/* AES */
839 	2, 3,			/* SPDIF */
840 	-1, -1, -1, -1,
841 	-1, -1, -1, -1, -1, -1, -1, -1,
842 	-1, -1, -1, -1, -1, -1, -1, -1,
843 	-1, -1, -1, -1, -1, -1, -1, -1,
844 	-1, -1, -1, -1, -1, -1, -1, -1,
845 	-1, -1, -1, -1, -1, -1, -1, -1,
846 };
847 
848 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
849 	4, 5,			/* ADAT 1 */
850 	6, 7,			/* ADAT 2 */
851 	8, 9,			/* ADAT 3 */
852 	10, 11,			/* ADAT 4 */
853 	0, 1,			/* AES */
854 	2, 3,			/* SPDIF */
855 	-1, -1, -1, -1,
856 	-1, -1, -1, -1, -1, -1, -1, -1,
857 	-1, -1, -1, -1, -1, -1, -1, -1,
858 	-1, -1, -1, -1, -1, -1, -1, -1,
859 	-1, -1, -1, -1, -1, -1, -1, -1,
860 	-1, -1, -1, -1, -1, -1, -1, -1,
861 	-1, -1, -1, -1, -1, -1, -1, -1,
862 };
863 
864 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
865 	0, 1,			/* line in */
866 	8, 9,			/* aes in, */
867 	10, 11,			/* spdif in */
868 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
869 	2, 3, 4, 5,		/* AEB */
870 	-1, -1, -1, -1, -1, -1,
871 	-1, -1, -1, -1, -1, -1, -1, -1,
872 	-1, -1, -1, -1, -1, -1, -1, -1,
873 	-1, -1, -1, -1, -1, -1, -1, -1,
874 	-1, -1, -1, -1, -1, -1, -1, -1,
875 	-1, -1, -1, -1, -1, -1, -1, -1,
876 };
877 
878 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
879 	0, 1,			/* line out */
880 	8, 9,			/* aes out */
881 	10, 11,			/* spdif out */
882 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
883 	6, 7,			/* phone out */
884 	2, 3, 4, 5,		/* AEB */
885 	-1, -1, -1, -1,
886 	-1, -1, -1, -1, -1, -1, -1, -1,
887 	-1, -1, -1, -1, -1, -1, -1, -1,
888 	-1, -1, -1, -1, -1, -1, -1, -1,
889 	-1, -1, -1, -1, -1, -1, -1, -1,
890 	-1, -1, -1, -1, -1, -1, -1, -1,
891 };
892 
893 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
894 	0, 1,			/* line in */
895 	8, 9,			/* aes in */
896 	10, 11,			/* spdif in */
897 	12, 14, 16, 18,		/* adat in */
898 	2, 3, 4, 5,		/* AEB */
899 	-1, -1,
900 	-1, -1, -1, -1, -1, -1, -1, -1,
901 	-1, -1, -1, -1, -1, -1, -1, -1,
902 	-1, -1, -1, -1, -1, -1, -1, -1,
903 	-1, -1, -1, -1, -1, -1, -1, -1,
904 	-1, -1, -1, -1, -1, -1, -1, -1,
905 	-1, -1, -1, -1, -1, -1, -1, -1
906 };
907 
908 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
909 	0, 1,			/* line out */
910 	8, 9,			/* aes out */
911 	10, 11,			/* spdif out */
912 	12, 14, 16, 18,		/* adat out */
913 	6, 7,			/* phone out */
914 	2, 3, 4, 5,		/* AEB */
915 	-1, -1, -1, -1, -1, -1, -1, -1,
916 	-1, -1, -1, -1, -1, -1, -1, -1,
917 	-1, -1, -1, -1, -1, -1, -1, -1,
918 	-1, -1, -1, -1, -1, -1, -1, -1,
919 	-1, -1, -1, -1, -1, -1, -1, -1,
920 	-1, -1, -1, -1, -1, -1, -1, -1
921 };
922 
923 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
924 	0, 1,			/* line in */
925 	8, 9,			/* aes in */
926 	10, 11,			/* spdif in */
927 	12, 16,			/* adat in */
928 	2, 3, 4, 5,		/* AEB */
929 	-1, -1, -1, -1,
930 	-1, -1, -1, -1, -1, -1, -1, -1,
931 	-1, -1, -1, -1, -1, -1, -1, -1,
932 	-1, -1, -1, -1, -1, -1, -1, -1,
933 	-1, -1, -1, -1, -1, -1, -1, -1,
934 	-1, -1, -1, -1, -1, -1, -1, -1,
935 	-1, -1, -1, -1, -1, -1, -1, -1
936 };
937 
938 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
939 	0, 1,			/* line out */
940 	8, 9,			/* aes out */
941 	10, 11,			/* spdif out */
942 	12, 16,			/* adat out */
943 	6, 7,			/* phone out */
944 	2, 3, 4, 5,		/* AEB */
945 	-1, -1,
946 	-1, -1, -1, -1, -1, -1, -1, -1,
947 	-1, -1, -1, -1, -1, -1, -1, -1,
948 	-1, -1, -1, -1, -1, -1, -1, -1,
949 	-1, -1, -1, -1, -1, -1, -1, -1,
950 	-1, -1, -1, -1, -1, -1, -1, -1,
951 	-1, -1, -1, -1, -1, -1, -1, -1
952 };
953 
954 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
955 	0, 1, 2, 3, 4, 5, 6, 7,
956 	8, 9, 10, 11, 12, 13, 14, 15,
957 	-1, -1, -1, -1, -1, -1, -1, -1,
958 	-1, -1, -1, -1, -1, -1, -1, -1,
959 	-1, -1, -1, -1, -1, -1, -1, -1,
960 	-1, -1, -1, -1, -1, -1, -1, -1,
961 	-1, -1, -1, -1, -1, -1, -1, -1,
962 	-1, -1, -1, -1, -1, -1, -1, -1
963 };
964 
965 struct hdspm_midi {
966 	struct hdspm *hdspm;
967 	int id;
968 	struct snd_rawmidi *rmidi;
969 	struct snd_rawmidi_substream *input;
970 	struct snd_rawmidi_substream *output;
971 	char istimer;		/* timer in use */
972 	struct timer_list timer;
973 	spinlock_t lock;
974 	int pending;
975 	int dataIn;
976 	int statusIn;
977 	int dataOut;
978 	int statusOut;
979 	int ie;
980 	int irq;
981 };
982 
983 struct hdspm_tco {
984 	int input; /* 0: LTC, 1:Video, 2: WC*/
985 	int framerate; /* 0=24, 1=25, 2=29.97, 3=29.97d, 4=30, 5=30d */
986 	int wordclock; /* 0=1:1, 1=44.1->48, 2=48->44.1 */
987 	int samplerate; /* 0=44.1, 1=48, 2= freq from app */
988 	int pull; /*   0=0, 1=+0.1%, 2=-0.1%, 3=+4%, 4=-4%*/
989 	int term; /* 0 = off, 1 = on */
990 };
991 
992 struct hdspm {
993         spinlock_t lock;
994 	/* only one playback and/or capture stream */
995         struct snd_pcm_substream *capture_substream;
996         struct snd_pcm_substream *playback_substream;
997 
998 	char *card_name;	     /* for procinfo */
999 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
1000 
1001 	uint8_t io_type;
1002 
1003 	int monitor_outs;	/* set up monitoring outs init flag */
1004 
1005 	u32 control_register;	/* cached value */
1006 	u32 control2_register;	/* cached value */
1007 	u32 settings_register;  /* cached value for AIO / RayDat (sync reference, master/slave) */
1008 
1009 	struct hdspm_midi midi[4];
1010 	struct tasklet_struct midi_tasklet;
1011 
1012 	size_t period_bytes;
1013 	unsigned char ss_in_channels;
1014 	unsigned char ds_in_channels;
1015 	unsigned char qs_in_channels;
1016 	unsigned char ss_out_channels;
1017 	unsigned char ds_out_channels;
1018 	unsigned char qs_out_channels;
1019 
1020 	unsigned char max_channels_in;
1021 	unsigned char max_channels_out;
1022 
1023 	signed char *channel_map_in;
1024 	signed char *channel_map_out;
1025 
1026 	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
1027 	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
1028 
1029 	char **port_names_in;
1030 	char **port_names_out;
1031 
1032 	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
1033 	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
1034 
1035 	unsigned char *playback_buffer;	/* suitably aligned address */
1036 	unsigned char *capture_buffer;	/* suitably aligned address */
1037 
1038 	pid_t capture_pid;	/* process id which uses capture */
1039 	pid_t playback_pid;	/* process id which uses capture */
1040 	int running;		/* running status */
1041 
1042 	int last_external_sample_rate;	/* samplerate mystic ... */
1043 	int last_internal_sample_rate;
1044 	int system_sample_rate;
1045 
1046 	int dev;		/* Hardware vars... */
1047 	int irq;
1048 	unsigned long port;
1049 	void __iomem *iobase;
1050 
1051 	int irq_count;		/* for debug */
1052 	int midiPorts;
1053 
1054 	struct snd_card *card;	/* one card */
1055 	struct snd_pcm *pcm;		/* has one pcm */
1056 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
1057 	struct pci_dev *pci;	/* and an pci info */
1058 
1059 	/* Mixer vars */
1060 	/* fast alsa mixer */
1061 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
1062 	/* but input to much, so not used */
1063 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
1064 	/* full mixer accessible over mixer ioctl or hwdep-device */
1065 	struct hdspm_mixer *mixer;
1066 
1067 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
1068 
1069 	const char *const *texts_autosync;
1070 	int texts_autosync_items;
1071 
1072 	cycles_t last_interrupt;
1073 
1074 	unsigned int serial;
1075 
1076 	struct hdspm_peak_rms peak_rms;
1077 };
1078 
1079 
1080 static const struct pci_device_id snd_hdspm_ids[] = {
1081 	{
1082 	 .vendor = PCI_VENDOR_ID_XILINX,
1083 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
1084 	 .subvendor = PCI_ANY_ID,
1085 	 .subdevice = PCI_ANY_ID,
1086 	 .class = 0,
1087 	 .class_mask = 0,
1088 	 .driver_data = 0},
1089 	{0,}
1090 };
1091 
1092 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
1093 
1094 /* prototypes */
1095 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
1096 					 struct hdspm *hdspm);
1097 static int snd_hdspm_create_pcm(struct snd_card *card,
1098 				struct hdspm *hdspm);
1099 
1100 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
1101 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
1102 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
1103 static int hdspm_autosync_ref(struct hdspm *hdspm);
1104 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out);
1105 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
1106 static int hdspm_system_clock_mode(struct hdspm *hdspm);
1107 static void hdspm_set_sgbuf(struct hdspm *hdspm,
1108 			    struct snd_pcm_substream *substream,
1109 			     unsigned int reg, int channels);
1110 
1111 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx);
1112 static int hdspm_wc_sync_check(struct hdspm *hdspm);
1113 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1114 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1115 
1116 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index);
1117 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm);
1118 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm);
1119 
1120 
1121 
1122 static inline int HDSPM_bit2freq(int n)
1123 {
1124 	static const int bit2freq_tab[] = {
1125 		0, 32000, 44100, 48000, 64000, 88200,
1126 		96000, 128000, 176400, 192000 };
1127 	if (n < 1 || n > 9)
1128 		return 0;
1129 	return bit2freq_tab[n];
1130 }
1131 
1132 static bool hdspm_is_raydat_or_aio(struct hdspm *hdspm)
1133 {
1134 	return ((AIO == hdspm->io_type) || (RayDAT == hdspm->io_type));
1135 }
1136 
1137 
1138 /* Write/read to/from HDSPM with Adresses in Bytes
1139    not words but only 32Bit writes are allowed */
1140 
1141 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
1142 			       unsigned int val)
1143 {
1144 	writel(val, hdspm->iobase + reg);
1145 }
1146 
1147 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1148 {
1149 	return readl(hdspm->iobase + reg);
1150 }
1151 
1152 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1153    mixer is write only on hardware so we have to cache him for read
1154    each fader is a u32, but uses only the first 16 bit */
1155 
1156 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1157 				     unsigned int in)
1158 {
1159 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1160 		return 0;
1161 
1162 	return hdspm->mixer->ch[chan].in[in];
1163 }
1164 
1165 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1166 				     unsigned int pb)
1167 {
1168 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1169 		return 0;
1170 	return hdspm->mixer->ch[chan].pb[pb];
1171 }
1172 
1173 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1174 				      unsigned int in, unsigned short data)
1175 {
1176 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1177 		return -1;
1178 
1179 	hdspm_write(hdspm,
1180 		    HDSPM_MADI_mixerBase +
1181 		    ((in + 128 * chan) * sizeof(u32)),
1182 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1183 	return 0;
1184 }
1185 
1186 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1187 				      unsigned int pb, unsigned short data)
1188 {
1189 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1190 		return -1;
1191 
1192 	hdspm_write(hdspm,
1193 		    HDSPM_MADI_mixerBase +
1194 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1195 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1196 	return 0;
1197 }
1198 
1199 
1200 /* enable DMA for specific channels, now available for DSP-MADI */
1201 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1202 {
1203 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1204 }
1205 
1206 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1207 {
1208 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1209 }
1210 
1211 /* check if same process is writing and reading */
1212 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1213 {
1214 	unsigned long flags;
1215 	int ret = 1;
1216 
1217 	spin_lock_irqsave(&hdspm->lock, flags);
1218 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1219 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1220 		ret = 0;
1221 	}
1222 	spin_unlock_irqrestore(&hdspm->lock, flags);
1223 	return ret;
1224 }
1225 
1226 /* round arbitary sample rates to commonly known rates */
1227 static int hdspm_round_frequency(int rate)
1228 {
1229 	if (rate < 38050)
1230 		return 32000;
1231 	if (rate < 46008)
1232 		return 44100;
1233 	else
1234 		return 48000;
1235 }
1236 
1237 /* QS and DS rates normally can not be detected
1238  * automatically by the card. Only exception is MADI
1239  * in 96k frame mode.
1240  *
1241  * So if we read SS values (32 .. 48k), check for
1242  * user-provided DS/QS bits in the control register
1243  * and multiply the base frequency accordingly.
1244  */
1245 static int hdspm_rate_multiplier(struct hdspm *hdspm, int rate)
1246 {
1247 	if (rate <= 48000) {
1248 		if (hdspm->control_register & HDSPM_QuadSpeed)
1249 			return rate * 4;
1250 		else if (hdspm->control_register &
1251 				HDSPM_DoubleSpeed)
1252 			return rate * 2;
1253 	}
1254 	return rate;
1255 }
1256 
1257 /* check for external sample rate, returns the sample rate in Hz*/
1258 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1259 {
1260 	unsigned int status, status2;
1261 	int syncref, rate = 0, rate_bits;
1262 
1263 	switch (hdspm->io_type) {
1264 	case AES32:
1265 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1266 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1267 
1268 		syncref = hdspm_autosync_ref(hdspm);
1269 		switch (syncref) {
1270 		case HDSPM_AES32_AUTOSYNC_FROM_WORD:
1271 		/* Check WC sync and get sample rate */
1272 			if (hdspm_wc_sync_check(hdspm))
1273 				return HDSPM_bit2freq(hdspm_get_wc_sample_rate(hdspm));
1274 			break;
1275 
1276 		case HDSPM_AES32_AUTOSYNC_FROM_AES1:
1277 		case HDSPM_AES32_AUTOSYNC_FROM_AES2:
1278 		case HDSPM_AES32_AUTOSYNC_FROM_AES3:
1279 		case HDSPM_AES32_AUTOSYNC_FROM_AES4:
1280 		case HDSPM_AES32_AUTOSYNC_FROM_AES5:
1281 		case HDSPM_AES32_AUTOSYNC_FROM_AES6:
1282 		case HDSPM_AES32_AUTOSYNC_FROM_AES7:
1283 		case HDSPM_AES32_AUTOSYNC_FROM_AES8:
1284 		/* Check AES sync and get sample rate */
1285 			if (hdspm_aes_sync_check(hdspm, syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))
1286 				return HDSPM_bit2freq(hdspm_get_aes_sample_rate(hdspm,
1287 							syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1));
1288 			break;
1289 
1290 
1291 		case HDSPM_AES32_AUTOSYNC_FROM_TCO:
1292 		/* Check TCO sync and get sample rate */
1293 			if (hdspm_tco_sync_check(hdspm))
1294 				return HDSPM_bit2freq(hdspm_get_tco_sample_rate(hdspm));
1295 			break;
1296 		default:
1297 			return 0;
1298 		} /* end switch(syncref) */
1299 		break;
1300 
1301 	case MADIface:
1302 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1303 
1304 		if (!(status & HDSPM_madiLock)) {
1305 			rate = 0;  /* no lock */
1306 		} else {
1307 			switch (status & (HDSPM_status1_freqMask)) {
1308 			case HDSPM_status1_F_0*1:
1309 				rate = 32000; break;
1310 			case HDSPM_status1_F_0*2:
1311 				rate = 44100; break;
1312 			case HDSPM_status1_F_0*3:
1313 				rate = 48000; break;
1314 			case HDSPM_status1_F_0*4:
1315 				rate = 64000; break;
1316 			case HDSPM_status1_F_0*5:
1317 				rate = 88200; break;
1318 			case HDSPM_status1_F_0*6:
1319 				rate = 96000; break;
1320 			case HDSPM_status1_F_0*7:
1321 				rate = 128000; break;
1322 			case HDSPM_status1_F_0*8:
1323 				rate = 176400; break;
1324 			case HDSPM_status1_F_0*9:
1325 				rate = 192000; break;
1326 			default:
1327 				rate = 0; break;
1328 			}
1329 		}
1330 
1331 		break;
1332 
1333 	case MADI:
1334 	case AIO:
1335 	case RayDAT:
1336 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1337 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1338 		rate = 0;
1339 
1340 		/* if wordclock has synced freq and wordclock is valid */
1341 		if ((status2 & HDSPM_wcLock) != 0 &&
1342 				(status2 & HDSPM_SelSyncRef0) == 0) {
1343 
1344 			rate_bits = status2 & HDSPM_wcFreqMask;
1345 
1346 
1347 			switch (rate_bits) {
1348 			case HDSPM_wcFreq32:
1349 				rate = 32000;
1350 				break;
1351 			case HDSPM_wcFreq44_1:
1352 				rate = 44100;
1353 				break;
1354 			case HDSPM_wcFreq48:
1355 				rate = 48000;
1356 				break;
1357 			case HDSPM_wcFreq64:
1358 				rate = 64000;
1359 				break;
1360 			case HDSPM_wcFreq88_2:
1361 				rate = 88200;
1362 				break;
1363 			case HDSPM_wcFreq96:
1364 				rate = 96000;
1365 				break;
1366 			case HDSPM_wcFreq128:
1367 				rate = 128000;
1368 				break;
1369 			case HDSPM_wcFreq176_4:
1370 				rate = 176400;
1371 				break;
1372 			case HDSPM_wcFreq192:
1373 				rate = 192000;
1374 				break;
1375 			default:
1376 				rate = 0;
1377 				break;
1378 			}
1379 		}
1380 
1381 		/* if rate detected and Syncref is Word than have it,
1382 		 * word has priority to MADI
1383 		 */
1384 		if (rate != 0 &&
1385 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1386 			return hdspm_rate_multiplier(hdspm, rate);
1387 
1388 		/* maybe a madi input (which is taken if sel sync is madi) */
1389 		if (status & HDSPM_madiLock) {
1390 			rate_bits = status & HDSPM_madiFreqMask;
1391 
1392 			switch (rate_bits) {
1393 			case HDSPM_madiFreq32:
1394 				rate = 32000;
1395 				break;
1396 			case HDSPM_madiFreq44_1:
1397 				rate = 44100;
1398 				break;
1399 			case HDSPM_madiFreq48:
1400 				rate = 48000;
1401 				break;
1402 			case HDSPM_madiFreq64:
1403 				rate = 64000;
1404 				break;
1405 			case HDSPM_madiFreq88_2:
1406 				rate = 88200;
1407 				break;
1408 			case HDSPM_madiFreq96:
1409 				rate = 96000;
1410 				break;
1411 			case HDSPM_madiFreq128:
1412 				rate = 128000;
1413 				break;
1414 			case HDSPM_madiFreq176_4:
1415 				rate = 176400;
1416 				break;
1417 			case HDSPM_madiFreq192:
1418 				rate = 192000;
1419 				break;
1420 			default:
1421 				rate = 0;
1422 				break;
1423 			}
1424 
1425 		} /* endif HDSPM_madiLock */
1426 
1427 		/* check sample rate from TCO or SYNC_IN */
1428 		{
1429 			bool is_valid_input = 0;
1430 			bool has_sync = 0;
1431 
1432 			syncref = hdspm_autosync_ref(hdspm);
1433 			if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1434 				is_valid_input = 1;
1435 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1436 					hdspm_tco_sync_check(hdspm));
1437 			} else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1438 				is_valid_input = 1;
1439 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1440 					hdspm_sync_in_sync_check(hdspm));
1441 			}
1442 
1443 			if (is_valid_input && has_sync) {
1444 				rate = hdspm_round_frequency(
1445 					hdspm_get_pll_freq(hdspm));
1446 			}
1447 		}
1448 
1449 		rate = hdspm_rate_multiplier(hdspm, rate);
1450 
1451 		break;
1452 	}
1453 
1454 	return rate;
1455 }
1456 
1457 /* return latency in samples per period */
1458 static int hdspm_get_latency(struct hdspm *hdspm)
1459 {
1460 	int n;
1461 
1462 	n = hdspm_decode_latency(hdspm->control_register);
1463 
1464 	/* Special case for new RME cards with 32 samples period size.
1465 	 * The three latency bits in the control register
1466 	 * (HDSP_LatencyMask) encode latency values of 64 samples as
1467 	 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1468 	 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1469 	 * it corresponds to 32 samples.
1470 	 */
1471 	if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1472 		n = -1;
1473 
1474 	return 1 << (n + 6);
1475 }
1476 
1477 /* Latency function */
1478 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1479 {
1480 	hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1481 }
1482 
1483 
1484 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1485 {
1486 	int position;
1487 
1488 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1489 
1490 	switch (hdspm->io_type) {
1491 	case RayDAT:
1492 	case AIO:
1493 		position &= HDSPM_BufferPositionMask;
1494 		position /= 4; /* Bytes per sample */
1495 		break;
1496 	default:
1497 		position = (position & HDSPM_BufferID) ?
1498 			(hdspm->period_bytes / 4) : 0;
1499 	}
1500 
1501 	return position;
1502 }
1503 
1504 
1505 static inline void hdspm_start_audio(struct hdspm * s)
1506 {
1507 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1508 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1509 }
1510 
1511 static inline void hdspm_stop_audio(struct hdspm * s)
1512 {
1513 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1514 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1515 }
1516 
1517 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1518 static void hdspm_silence_playback(struct hdspm *hdspm)
1519 {
1520 	int i;
1521 	int n = hdspm->period_bytes;
1522 	void *buf = hdspm->playback_buffer;
1523 
1524 	if (buf == NULL)
1525 		return;
1526 
1527 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1528 		memset(buf, 0, n);
1529 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1530 	}
1531 }
1532 
1533 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1534 {
1535 	int n;
1536 
1537 	spin_lock_irq(&s->lock);
1538 
1539 	if (32 == frames) {
1540 		/* Special case for new RME cards like RayDAT/AIO which
1541 		 * support period sizes of 32 samples. Since latency is
1542 		 * encoded in the three bits of HDSP_LatencyMask, we can only
1543 		 * have values from 0 .. 7. While 0 still means 64 samples and
1544 		 * 6 represents 4096 samples on all cards, 7 represents 8192
1545 		 * on older cards and 32 samples on new cards.
1546 		 *
1547 		 * In other words, period size in samples is calculated by
1548 		 * 2^(n+6) with n ranging from 0 .. 7.
1549 		 */
1550 		n = 7;
1551 	} else {
1552 		frames >>= 7;
1553 		n = 0;
1554 		while (frames) {
1555 			n++;
1556 			frames >>= 1;
1557 		}
1558 	}
1559 
1560 	s->control_register &= ~HDSPM_LatencyMask;
1561 	s->control_register |= hdspm_encode_latency(n);
1562 
1563 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1564 
1565 	hdspm_compute_period_size(s);
1566 
1567 	spin_unlock_irq(&s->lock);
1568 
1569 	return 0;
1570 }
1571 
1572 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1573 {
1574 	u64 freq_const;
1575 
1576 	if (period == 0)
1577 		return 0;
1578 
1579 	switch (hdspm->io_type) {
1580 	case MADI:
1581 	case AES32:
1582 		freq_const = 110069313433624ULL;
1583 		break;
1584 	case RayDAT:
1585 	case AIO:
1586 		freq_const = 104857600000000ULL;
1587 		break;
1588 	case MADIface:
1589 		freq_const = 131072000000000ULL;
1590 		break;
1591 	default:
1592 		snd_BUG();
1593 		return 0;
1594 	}
1595 
1596 	return div_u64(freq_const, period);
1597 }
1598 
1599 
1600 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1601 {
1602 	u64 n;
1603 
1604 	if (rate >= 112000)
1605 		rate /= 4;
1606 	else if (rate >= 56000)
1607 		rate /= 2;
1608 
1609 	switch (hdspm->io_type) {
1610 	case MADIface:
1611 		n = 131072000000000ULL;  /* 125 MHz */
1612 		break;
1613 	case MADI:
1614 	case AES32:
1615 		n = 110069313433624ULL;  /* 105 MHz */
1616 		break;
1617 	case RayDAT:
1618 	case AIO:
1619 		n = 104857600000000ULL;  /* 100 MHz */
1620 		break;
1621 	default:
1622 		snd_BUG();
1623 		return;
1624 	}
1625 
1626 	n = div_u64(n, rate);
1627 	/* n should be less than 2^32 for being written to FREQ register */
1628 	snd_BUG_ON(n >> 32);
1629 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1630 }
1631 
1632 /* dummy set rate lets see what happens */
1633 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1634 {
1635 	int current_rate;
1636 	int rate_bits;
1637 	int not_set = 0;
1638 	int current_speed, target_speed;
1639 
1640 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1641 	   it (e.g. during module initialization).
1642 	 */
1643 
1644 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1645 
1646 		/* SLAVE --- */
1647 		if (called_internally) {
1648 
1649 			/* request from ctl or card initialization
1650 			   just make a warning an remember setting
1651 			   for future master mode switching */
1652 
1653 			dev_warn(hdspm->card->dev,
1654 				 "Warning: device is not running as a clock master.\n");
1655 			not_set = 1;
1656 		} else {
1657 
1658 			/* hw_param request while in AutoSync mode */
1659 			int external_freq =
1660 			    hdspm_external_sample_rate(hdspm);
1661 
1662 			if (hdspm_autosync_ref(hdspm) ==
1663 			    HDSPM_AUTOSYNC_FROM_NONE) {
1664 
1665 				dev_warn(hdspm->card->dev,
1666 					 "Detected no Externel Sync\n");
1667 				not_set = 1;
1668 
1669 			} else if (rate != external_freq) {
1670 
1671 				dev_warn(hdspm->card->dev,
1672 					 "Warning: No AutoSync source for requested rate\n");
1673 				not_set = 1;
1674 			}
1675 		}
1676 	}
1677 
1678 	current_rate = hdspm->system_sample_rate;
1679 
1680 	/* Changing between Singe, Double and Quad speed is not
1681 	   allowed if any substreams are open. This is because such a change
1682 	   causes a shift in the location of the DMA buffers and a reduction
1683 	   in the number of available buffers.
1684 
1685 	   Note that a similar but essentially insoluble problem exists for
1686 	   externally-driven rate changes. All we can do is to flag rate
1687 	   changes in the read/write routines.
1688 	 */
1689 
1690 	if (current_rate <= 48000)
1691 		current_speed = HDSPM_SPEED_SINGLE;
1692 	else if (current_rate <= 96000)
1693 		current_speed = HDSPM_SPEED_DOUBLE;
1694 	else
1695 		current_speed = HDSPM_SPEED_QUAD;
1696 
1697 	if (rate <= 48000)
1698 		target_speed = HDSPM_SPEED_SINGLE;
1699 	else if (rate <= 96000)
1700 		target_speed = HDSPM_SPEED_DOUBLE;
1701 	else
1702 		target_speed = HDSPM_SPEED_QUAD;
1703 
1704 	switch (rate) {
1705 	case 32000:
1706 		rate_bits = HDSPM_Frequency32KHz;
1707 		break;
1708 	case 44100:
1709 		rate_bits = HDSPM_Frequency44_1KHz;
1710 		break;
1711 	case 48000:
1712 		rate_bits = HDSPM_Frequency48KHz;
1713 		break;
1714 	case 64000:
1715 		rate_bits = HDSPM_Frequency64KHz;
1716 		break;
1717 	case 88200:
1718 		rate_bits = HDSPM_Frequency88_2KHz;
1719 		break;
1720 	case 96000:
1721 		rate_bits = HDSPM_Frequency96KHz;
1722 		break;
1723 	case 128000:
1724 		rate_bits = HDSPM_Frequency128KHz;
1725 		break;
1726 	case 176400:
1727 		rate_bits = HDSPM_Frequency176_4KHz;
1728 		break;
1729 	case 192000:
1730 		rate_bits = HDSPM_Frequency192KHz;
1731 		break;
1732 	default:
1733 		return -EINVAL;
1734 	}
1735 
1736 	if (current_speed != target_speed
1737 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1738 		dev_err(hdspm->card->dev,
1739 			"cannot change from %s speed to %s speed mode (capture PID = %d, playback PID = %d)\n",
1740 			hdspm_speed_names[current_speed],
1741 			hdspm_speed_names[target_speed],
1742 			hdspm->capture_pid, hdspm->playback_pid);
1743 		return -EBUSY;
1744 	}
1745 
1746 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1747 	hdspm->control_register |= rate_bits;
1748 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1749 
1750 	/* For AES32, need to set DDS value in FREQ register
1751 	   For MADI, also apparently */
1752 	hdspm_set_dds_value(hdspm, rate);
1753 
1754 	if (AES32 == hdspm->io_type && rate != current_rate)
1755 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1756 
1757 	hdspm->system_sample_rate = rate;
1758 
1759 	if (rate <= 48000) {
1760 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1761 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1762 		hdspm->max_channels_in = hdspm->ss_in_channels;
1763 		hdspm->max_channels_out = hdspm->ss_out_channels;
1764 		hdspm->port_names_in = hdspm->port_names_in_ss;
1765 		hdspm->port_names_out = hdspm->port_names_out_ss;
1766 	} else if (rate <= 96000) {
1767 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1768 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1769 		hdspm->max_channels_in = hdspm->ds_in_channels;
1770 		hdspm->max_channels_out = hdspm->ds_out_channels;
1771 		hdspm->port_names_in = hdspm->port_names_in_ds;
1772 		hdspm->port_names_out = hdspm->port_names_out_ds;
1773 	} else {
1774 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1775 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1776 		hdspm->max_channels_in = hdspm->qs_in_channels;
1777 		hdspm->max_channels_out = hdspm->qs_out_channels;
1778 		hdspm->port_names_in = hdspm->port_names_in_qs;
1779 		hdspm->port_names_out = hdspm->port_names_out_qs;
1780 	}
1781 
1782 	if (not_set != 0)
1783 		return -1;
1784 
1785 	return 0;
1786 }
1787 
1788 /* mainly for init to 0 on load */
1789 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1790 {
1791 	int i, j;
1792 	unsigned int gain;
1793 
1794 	if (sgain > UNITY_GAIN)
1795 		gain = UNITY_GAIN;
1796 	else if (sgain < 0)
1797 		gain = 0;
1798 	else
1799 		gain = sgain;
1800 
1801 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1802 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1803 			hdspm_write_in_gain(hdspm, i, j, gain);
1804 			hdspm_write_pb_gain(hdspm, i, j, gain);
1805 		}
1806 }
1807 
1808 /*----------------------------------------------------------------------------
1809    MIDI
1810   ----------------------------------------------------------------------------*/
1811 
1812 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1813 						      int id)
1814 {
1815 	/* the hardware already does the relevant bit-mask with 0xff */
1816 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1817 }
1818 
1819 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1820 					      int val)
1821 {
1822 	/* the hardware already does the relevant bit-mask with 0xff */
1823 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1824 }
1825 
1826 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1827 {
1828 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1829 }
1830 
1831 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1832 {
1833 	int fifo_bytes_used;
1834 
1835 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1836 
1837 	if (fifo_bytes_used < 128)
1838 		return  128 - fifo_bytes_used;
1839 	else
1840 		return 0;
1841 }
1842 
1843 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1844 {
1845 	while (snd_hdspm_midi_input_available (hdspm, id))
1846 		snd_hdspm_midi_read_byte (hdspm, id);
1847 }
1848 
1849 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1850 {
1851 	unsigned long flags;
1852 	int n_pending;
1853 	int to_write;
1854 	int i;
1855 	unsigned char buf[128];
1856 
1857 	/* Output is not interrupt driven */
1858 
1859 	spin_lock_irqsave (&hmidi->lock, flags);
1860 	if (hmidi->output &&
1861 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1862 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1863 							    hmidi->id);
1864 		if (n_pending > 0) {
1865 			if (n_pending > (int)sizeof (buf))
1866 				n_pending = sizeof (buf);
1867 
1868 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1869 							 n_pending);
1870 			if (to_write > 0) {
1871 				for (i = 0; i < to_write; ++i)
1872 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1873 								   hmidi->id,
1874 								   buf[i]);
1875 			}
1876 		}
1877 	}
1878 	spin_unlock_irqrestore (&hmidi->lock, flags);
1879 	return 0;
1880 }
1881 
1882 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1883 {
1884 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1885 				 * input FIFO size
1886 				 */
1887 	unsigned long flags;
1888 	int n_pending;
1889 	int i;
1890 
1891 	spin_lock_irqsave (&hmidi->lock, flags);
1892 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1893 	if (n_pending > 0) {
1894 		if (hmidi->input) {
1895 			if (n_pending > (int)sizeof (buf))
1896 				n_pending = sizeof (buf);
1897 			for (i = 0; i < n_pending; ++i)
1898 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1899 								   hmidi->id);
1900 			if (n_pending)
1901 				snd_rawmidi_receive (hmidi->input, buf,
1902 						     n_pending);
1903 		} else {
1904 			/* flush the MIDI input FIFO */
1905 			while (n_pending--)
1906 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1907 							  hmidi->id);
1908 		}
1909 	}
1910 	hmidi->pending = 0;
1911 	spin_unlock_irqrestore(&hmidi->lock, flags);
1912 
1913 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1914 	hmidi->hdspm->control_register |= hmidi->ie;
1915 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1916 		    hmidi->hdspm->control_register);
1917 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1918 
1919 	return snd_hdspm_midi_output_write (hmidi);
1920 }
1921 
1922 static void
1923 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1924 {
1925 	struct hdspm *hdspm;
1926 	struct hdspm_midi *hmidi;
1927 	unsigned long flags;
1928 
1929 	hmidi = substream->rmidi->private_data;
1930 	hdspm = hmidi->hdspm;
1931 
1932 	spin_lock_irqsave (&hdspm->lock, flags);
1933 	if (up) {
1934 		if (!(hdspm->control_register & hmidi->ie)) {
1935 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1936 			hdspm->control_register |= hmidi->ie;
1937 		}
1938 	} else {
1939 		hdspm->control_register &= ~hmidi->ie;
1940 	}
1941 
1942 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1943 	spin_unlock_irqrestore (&hdspm->lock, flags);
1944 }
1945 
1946 static void snd_hdspm_midi_output_timer(unsigned long data)
1947 {
1948 	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1949 	unsigned long flags;
1950 
1951 	snd_hdspm_midi_output_write(hmidi);
1952 	spin_lock_irqsave (&hmidi->lock, flags);
1953 
1954 	/* this does not bump hmidi->istimer, because the
1955 	   kernel automatically removed the timer when it
1956 	   expired, and we are now adding it back, thus
1957 	   leaving istimer wherever it was set before.
1958 	*/
1959 
1960 	if (hmidi->istimer) {
1961 		hmidi->timer.expires = 1 + jiffies;
1962 		add_timer(&hmidi->timer);
1963 	}
1964 
1965 	spin_unlock_irqrestore (&hmidi->lock, flags);
1966 }
1967 
1968 static void
1969 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1970 {
1971 	struct hdspm_midi *hmidi;
1972 	unsigned long flags;
1973 
1974 	hmidi = substream->rmidi->private_data;
1975 	spin_lock_irqsave (&hmidi->lock, flags);
1976 	if (up) {
1977 		if (!hmidi->istimer) {
1978 			init_timer(&hmidi->timer);
1979 			hmidi->timer.function = snd_hdspm_midi_output_timer;
1980 			hmidi->timer.data = (unsigned long) hmidi;
1981 			hmidi->timer.expires = 1 + jiffies;
1982 			add_timer(&hmidi->timer);
1983 			hmidi->istimer++;
1984 		}
1985 	} else {
1986 		if (hmidi->istimer && --hmidi->istimer <= 0)
1987 			del_timer (&hmidi->timer);
1988 	}
1989 	spin_unlock_irqrestore (&hmidi->lock, flags);
1990 	if (up)
1991 		snd_hdspm_midi_output_write(hmidi);
1992 }
1993 
1994 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1995 {
1996 	struct hdspm_midi *hmidi;
1997 
1998 	hmidi = substream->rmidi->private_data;
1999 	spin_lock_irq (&hmidi->lock);
2000 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
2001 	hmidi->input = substream;
2002 	spin_unlock_irq (&hmidi->lock);
2003 
2004 	return 0;
2005 }
2006 
2007 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
2008 {
2009 	struct hdspm_midi *hmidi;
2010 
2011 	hmidi = substream->rmidi->private_data;
2012 	spin_lock_irq (&hmidi->lock);
2013 	hmidi->output = substream;
2014 	spin_unlock_irq (&hmidi->lock);
2015 
2016 	return 0;
2017 }
2018 
2019 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
2020 {
2021 	struct hdspm_midi *hmidi;
2022 
2023 	snd_hdspm_midi_input_trigger (substream, 0);
2024 
2025 	hmidi = substream->rmidi->private_data;
2026 	spin_lock_irq (&hmidi->lock);
2027 	hmidi->input = NULL;
2028 	spin_unlock_irq (&hmidi->lock);
2029 
2030 	return 0;
2031 }
2032 
2033 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
2034 {
2035 	struct hdspm_midi *hmidi;
2036 
2037 	snd_hdspm_midi_output_trigger (substream, 0);
2038 
2039 	hmidi = substream->rmidi->private_data;
2040 	spin_lock_irq (&hmidi->lock);
2041 	hmidi->output = NULL;
2042 	spin_unlock_irq (&hmidi->lock);
2043 
2044 	return 0;
2045 }
2046 
2047 static struct snd_rawmidi_ops snd_hdspm_midi_output =
2048 {
2049 	.open =		snd_hdspm_midi_output_open,
2050 	.close =	snd_hdspm_midi_output_close,
2051 	.trigger =	snd_hdspm_midi_output_trigger,
2052 };
2053 
2054 static struct snd_rawmidi_ops snd_hdspm_midi_input =
2055 {
2056 	.open =		snd_hdspm_midi_input_open,
2057 	.close =	snd_hdspm_midi_input_close,
2058 	.trigger =	snd_hdspm_midi_input_trigger,
2059 };
2060 
2061 static int snd_hdspm_create_midi(struct snd_card *card,
2062 				 struct hdspm *hdspm, int id)
2063 {
2064 	int err;
2065 	char buf[32];
2066 
2067 	hdspm->midi[id].id = id;
2068 	hdspm->midi[id].hdspm = hdspm;
2069 	spin_lock_init (&hdspm->midi[id].lock);
2070 
2071 	if (0 == id) {
2072 		if (MADIface == hdspm->io_type) {
2073 			/* MIDI-over-MADI on HDSPe MADIface */
2074 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
2075 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
2076 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
2077 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
2078 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
2079 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
2080 		} else {
2081 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
2082 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
2083 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
2084 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
2085 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
2086 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
2087 		}
2088 	} else if (1 == id) {
2089 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
2090 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
2091 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
2092 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
2093 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
2094 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
2095 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
2096 		/* MIDI-over-MADI on HDSPe MADI */
2097 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2098 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2099 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
2100 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
2101 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2102 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
2103 	} else if (2 == id) {
2104 		/* TCO MTC, read only */
2105 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
2106 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
2107 		hdspm->midi[2].dataOut = -1;
2108 		hdspm->midi[2].statusOut = -1;
2109 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
2110 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
2111 	} else if (3 == id) {
2112 		/* TCO MTC on HDSPe MADI */
2113 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
2114 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
2115 		hdspm->midi[3].dataOut = -1;
2116 		hdspm->midi[3].statusOut = -1;
2117 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
2118 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
2119 	}
2120 
2121 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
2122 					(MADIface == hdspm->io_type)))) {
2123 		if ((id == 0) && (MADIface == hdspm->io_type)) {
2124 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
2125 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
2126 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
2127 		} else {
2128 			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
2129 		}
2130 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2131 				&hdspm->midi[id].rmidi);
2132 		if (err < 0)
2133 			return err;
2134 
2135 		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
2136 				card->id, id+1);
2137 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2138 
2139 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2140 				SNDRV_RAWMIDI_STREAM_OUTPUT,
2141 				&snd_hdspm_midi_output);
2142 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2143 				SNDRV_RAWMIDI_STREAM_INPUT,
2144 				&snd_hdspm_midi_input);
2145 
2146 		hdspm->midi[id].rmidi->info_flags |=
2147 			SNDRV_RAWMIDI_INFO_OUTPUT |
2148 			SNDRV_RAWMIDI_INFO_INPUT |
2149 			SNDRV_RAWMIDI_INFO_DUPLEX;
2150 	} else {
2151 		/* TCO MTC, read only */
2152 		sprintf(buf, "%s MTC %d", card->shortname, id+1);
2153 		err = snd_rawmidi_new(card, buf, id, 1, 1,
2154 				&hdspm->midi[id].rmidi);
2155 		if (err < 0)
2156 			return err;
2157 
2158 		sprintf(hdspm->midi[id].rmidi->name,
2159 				"%s MTC %d", card->id, id+1);
2160 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
2161 
2162 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
2163 				SNDRV_RAWMIDI_STREAM_INPUT,
2164 				&snd_hdspm_midi_input);
2165 
2166 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 
2173 static void hdspm_midi_tasklet(unsigned long arg)
2174 {
2175 	struct hdspm *hdspm = (struct hdspm *)arg;
2176 	int i = 0;
2177 
2178 	while (i < hdspm->midiPorts) {
2179 		if (hdspm->midi[i].pending)
2180 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
2181 
2182 		i++;
2183 	}
2184 }
2185 
2186 
2187 /*-----------------------------------------------------------------------------
2188   Status Interface
2189   ----------------------------------------------------------------------------*/
2190 
2191 /* get the system sample rate which is set */
2192 
2193 
2194 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2195 {
2196 	unsigned int period, rate;
2197 
2198 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2199 	rate = hdspm_calc_dds_value(hdspm, period);
2200 
2201 	return rate;
2202 }
2203 
2204 /*
2205  * Calculate the real sample rate from the
2206  * current DDS value.
2207  */
2208 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2209 {
2210 	unsigned int rate;
2211 
2212 	rate = hdspm_get_pll_freq(hdspm);
2213 
2214 	if (rate > 207000) {
2215 		/* Unreasonable high sample rate as seen on PCI MADI cards. */
2216 		if (0 == hdspm_system_clock_mode(hdspm)) {
2217 			/* master mode, return internal sample rate */
2218 			rate = hdspm->system_sample_rate;
2219 		} else {
2220 			/* slave mode, return external sample rate */
2221 			rate = hdspm_external_sample_rate(hdspm);
2222 		}
2223 	}
2224 
2225 	return rate;
2226 }
2227 
2228 
2229 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2230 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2231 	.name = xname, \
2232 	.index = xindex, \
2233 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2234 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2235 	.info = snd_hdspm_info_system_sample_rate, \
2236 	.put = snd_hdspm_put_system_sample_rate, \
2237 	.get = snd_hdspm_get_system_sample_rate \
2238 }
2239 
2240 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2241 					     struct snd_ctl_elem_info *uinfo)
2242 {
2243 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2244 	uinfo->count = 1;
2245 	uinfo->value.integer.min = 27000;
2246 	uinfo->value.integer.max = 207000;
2247 	uinfo->value.integer.step = 1;
2248 	return 0;
2249 }
2250 
2251 
2252 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2253 					    struct snd_ctl_elem_value *
2254 					    ucontrol)
2255 {
2256 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2257 
2258 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2259 	return 0;
2260 }
2261 
2262 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2263 					    struct snd_ctl_elem_value *
2264 					    ucontrol)
2265 {
2266 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2267 
2268 	hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]);
2269 	return 0;
2270 }
2271 
2272 
2273 /*
2274  * Returns the WordClock sample rate class for the given card.
2275  */
2276 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2277 {
2278 	int status;
2279 
2280 	switch (hdspm->io_type) {
2281 	case RayDAT:
2282 	case AIO:
2283 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2284 		return (status >> 16) & 0xF;
2285 		break;
2286 	case AES32:
2287 		status = hdspm_read(hdspm, HDSPM_statusRegister);
2288 		return (status >> HDSPM_AES32_wcFreq_bit) & 0xF;
2289 	default:
2290 		break;
2291 	}
2292 
2293 
2294 	return 0;
2295 }
2296 
2297 
2298 /*
2299  * Returns the TCO sample rate class for the given card.
2300  */
2301 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2302 {
2303 	int status;
2304 
2305 	if (hdspm->tco) {
2306 		switch (hdspm->io_type) {
2307 		case RayDAT:
2308 		case AIO:
2309 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2310 			return (status >> 20) & 0xF;
2311 			break;
2312 		case AES32:
2313 			status = hdspm_read(hdspm, HDSPM_statusRegister);
2314 			return (status >> 1) & 0xF;
2315 		default:
2316 			break;
2317 		}
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 
2324 /*
2325  * Returns the SYNC_IN sample rate class for the given card.
2326  */
2327 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2328 {
2329 	int status;
2330 
2331 	if (hdspm->tco) {
2332 		switch (hdspm->io_type) {
2333 		case RayDAT:
2334 		case AIO:
2335 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2336 			return (status >> 12) & 0xF;
2337 			break;
2338 		default:
2339 			break;
2340 		}
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 /*
2347  * Returns the AES sample rate class for the given card.
2348  */
2349 static int hdspm_get_aes_sample_rate(struct hdspm *hdspm, int index)
2350 {
2351 	int timecode;
2352 
2353 	switch (hdspm->io_type) {
2354 	case AES32:
2355 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
2356 		return (timecode >> (4*index)) & 0xF;
2357 		break;
2358 	default:
2359 		break;
2360 	}
2361 	return 0;
2362 }
2363 
2364 /*
2365  * Returns the sample rate class for input source <idx> for
2366  * 'new style' cards like the AIO and RayDAT.
2367  */
2368 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2369 {
2370 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2371 
2372 	return (status >> (idx*4)) & 0xF;
2373 }
2374 
2375 #define ENUMERATED_CTL_INFO(info, texts) \
2376 	snd_ctl_enum_info(info, 1, ARRAY_SIZE(texts), texts)
2377 
2378 
2379 /* Helper function to query the external sample rate and return the
2380  * corresponding enum to be returned to userspace.
2381  */
2382 static int hdspm_external_rate_to_enum(struct hdspm *hdspm)
2383 {
2384 	int rate = hdspm_external_sample_rate(hdspm);
2385 	int i, selected_rate = 0;
2386 	for (i = 1; i < 10; i++)
2387 		if (HDSPM_bit2freq(i) == rate) {
2388 			selected_rate = i;
2389 			break;
2390 		}
2391 	return selected_rate;
2392 }
2393 
2394 
2395 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2396 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2397 	.name = xname, \
2398 	.private_value = xindex, \
2399 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2400 	.info = snd_hdspm_info_autosync_sample_rate, \
2401 	.get = snd_hdspm_get_autosync_sample_rate \
2402 }
2403 
2404 
2405 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2406 					       struct snd_ctl_elem_info *uinfo)
2407 {
2408 	ENUMERATED_CTL_INFO(uinfo, texts_freq);
2409 	return 0;
2410 }
2411 
2412 
2413 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2414 					      struct snd_ctl_elem_value *
2415 					      ucontrol)
2416 {
2417 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2418 
2419 	switch (hdspm->io_type) {
2420 	case RayDAT:
2421 		switch (kcontrol->private_value) {
2422 		case 0:
2423 			ucontrol->value.enumerated.item[0] =
2424 				hdspm_get_wc_sample_rate(hdspm);
2425 			break;
2426 		case 7:
2427 			ucontrol->value.enumerated.item[0] =
2428 				hdspm_get_tco_sample_rate(hdspm);
2429 			break;
2430 		case 8:
2431 			ucontrol->value.enumerated.item[0] =
2432 				hdspm_get_sync_in_sample_rate(hdspm);
2433 			break;
2434 		default:
2435 			ucontrol->value.enumerated.item[0] =
2436 				hdspm_get_s1_sample_rate(hdspm,
2437 						kcontrol->private_value-1);
2438 		}
2439 		break;
2440 
2441 	case AIO:
2442 		switch (kcontrol->private_value) {
2443 		case 0: /* WC */
2444 			ucontrol->value.enumerated.item[0] =
2445 				hdspm_get_wc_sample_rate(hdspm);
2446 			break;
2447 		case 4: /* TCO */
2448 			ucontrol->value.enumerated.item[0] =
2449 				hdspm_get_tco_sample_rate(hdspm);
2450 			break;
2451 		case 5: /* SYNC_IN */
2452 			ucontrol->value.enumerated.item[0] =
2453 				hdspm_get_sync_in_sample_rate(hdspm);
2454 			break;
2455 		default:
2456 			ucontrol->value.enumerated.item[0] =
2457 				hdspm_get_s1_sample_rate(hdspm,
2458 						kcontrol->private_value-1);
2459 		}
2460 		break;
2461 
2462 	case AES32:
2463 
2464 		switch (kcontrol->private_value) {
2465 		case 0: /* WC */
2466 			ucontrol->value.enumerated.item[0] =
2467 				hdspm_get_wc_sample_rate(hdspm);
2468 			break;
2469 		case 9: /* TCO */
2470 			ucontrol->value.enumerated.item[0] =
2471 				hdspm_get_tco_sample_rate(hdspm);
2472 			break;
2473 		case 10: /* SYNC_IN */
2474 			ucontrol->value.enumerated.item[0] =
2475 				hdspm_get_sync_in_sample_rate(hdspm);
2476 			break;
2477 		case 11: /* External Rate */
2478 			ucontrol->value.enumerated.item[0] =
2479 				hdspm_external_rate_to_enum(hdspm);
2480 			break;
2481 		default: /* AES1 to AES8 */
2482 			ucontrol->value.enumerated.item[0] =
2483 				hdspm_get_aes_sample_rate(hdspm,
2484 						kcontrol->private_value -
2485 						HDSPM_AES32_AUTOSYNC_FROM_AES1);
2486 			break;
2487 		}
2488 		break;
2489 
2490 	case MADI:
2491 	case MADIface:
2492 		ucontrol->value.enumerated.item[0] =
2493 			hdspm_external_rate_to_enum(hdspm);
2494 		break;
2495 	default:
2496 		break;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 
2503 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2504 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2505 	.name = xname, \
2506 	.index = xindex, \
2507 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2508 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2509 	.info = snd_hdspm_info_system_clock_mode, \
2510 	.get = snd_hdspm_get_system_clock_mode, \
2511 	.put = snd_hdspm_put_system_clock_mode, \
2512 }
2513 
2514 
2515 /*
2516  * Returns the system clock mode for the given card.
2517  * @returns 0 - master, 1 - slave
2518  */
2519 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2520 {
2521 	switch (hdspm->io_type) {
2522 	case AIO:
2523 	case RayDAT:
2524 		if (hdspm->settings_register & HDSPM_c0Master)
2525 			return 0;
2526 		break;
2527 
2528 	default:
2529 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2530 			return 0;
2531 	}
2532 
2533 	return 1;
2534 }
2535 
2536 
2537 /*
2538  * Sets the system clock mode.
2539  * @param mode 0 - master, 1 - slave
2540  */
2541 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2542 {
2543 	hdspm_set_toggle_setting(hdspm,
2544 			(hdspm_is_raydat_or_aio(hdspm)) ?
2545 			HDSPM_c0Master : HDSPM_ClockModeMaster,
2546 			(0 == mode));
2547 }
2548 
2549 
2550 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2551 					    struct snd_ctl_elem_info *uinfo)
2552 {
2553 	static const char *const texts[] = { "Master", "AutoSync" };
2554 	ENUMERATED_CTL_INFO(uinfo, texts);
2555 	return 0;
2556 }
2557 
2558 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2559 					   struct snd_ctl_elem_value *ucontrol)
2560 {
2561 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2562 
2563 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2564 	return 0;
2565 }
2566 
2567 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2568 					   struct snd_ctl_elem_value *ucontrol)
2569 {
2570 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2571 	int val;
2572 
2573 	if (!snd_hdspm_use_is_exclusive(hdspm))
2574 		return -EBUSY;
2575 
2576 	val = ucontrol->value.enumerated.item[0];
2577 	if (val < 0)
2578 		val = 0;
2579 	else if (val > 1)
2580 		val = 1;
2581 
2582 	hdspm_set_system_clock_mode(hdspm, val);
2583 
2584 	return 0;
2585 }
2586 
2587 
2588 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2589 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2590 	.name = xname, \
2591 	.index = xindex, \
2592 	.info = snd_hdspm_info_clock_source, \
2593 	.get = snd_hdspm_get_clock_source, \
2594 	.put = snd_hdspm_put_clock_source \
2595 }
2596 
2597 
2598 static int hdspm_clock_source(struct hdspm * hdspm)
2599 {
2600 	switch (hdspm->system_sample_rate) {
2601 	case 32000: return 0;
2602 	case 44100: return 1;
2603 	case 48000: return 2;
2604 	case 64000: return 3;
2605 	case 88200: return 4;
2606 	case 96000: return 5;
2607 	case 128000: return 6;
2608 	case 176400: return 7;
2609 	case 192000: return 8;
2610 	}
2611 
2612 	return -1;
2613 }
2614 
2615 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2616 {
2617 	int rate;
2618 	switch (mode) {
2619 	case 0:
2620 		rate = 32000; break;
2621 	case 1:
2622 		rate = 44100; break;
2623 	case 2:
2624 		rate = 48000; break;
2625 	case 3:
2626 		rate = 64000; break;
2627 	case 4:
2628 		rate = 88200; break;
2629 	case 5:
2630 		rate = 96000; break;
2631 	case 6:
2632 		rate = 128000; break;
2633 	case 7:
2634 		rate = 176400; break;
2635 	case 8:
2636 		rate = 192000; break;
2637 	default:
2638 		rate = 48000;
2639 	}
2640 	hdspm_set_rate(hdspm, rate, 1);
2641 	return 0;
2642 }
2643 
2644 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2645 				       struct snd_ctl_elem_info *uinfo)
2646 {
2647 	return snd_ctl_enum_info(uinfo, 1, 9, texts_freq + 1);
2648 }
2649 
2650 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2651 				      struct snd_ctl_elem_value *ucontrol)
2652 {
2653 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2654 
2655 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2656 	return 0;
2657 }
2658 
2659 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2660 				      struct snd_ctl_elem_value *ucontrol)
2661 {
2662 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2663 	int change;
2664 	int val;
2665 
2666 	if (!snd_hdspm_use_is_exclusive(hdspm))
2667 		return -EBUSY;
2668 	val = ucontrol->value.enumerated.item[0];
2669 	if (val < 0)
2670 		val = 0;
2671 	if (val > 9)
2672 		val = 9;
2673 	spin_lock_irq(&hdspm->lock);
2674 	if (val != hdspm_clock_source(hdspm))
2675 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2676 	else
2677 		change = 0;
2678 	spin_unlock_irq(&hdspm->lock);
2679 	return change;
2680 }
2681 
2682 
2683 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2684 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2685 	.name = xname, \
2686 	.index = xindex, \
2687 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2688 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2689 	.info = snd_hdspm_info_pref_sync_ref, \
2690 	.get = snd_hdspm_get_pref_sync_ref, \
2691 	.put = snd_hdspm_put_pref_sync_ref \
2692 }
2693 
2694 
2695 /*
2696  * Returns the current preferred sync reference setting.
2697  * The semantics of the return value are depending on the
2698  * card, please see the comments for clarification.
2699  */
2700 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2701 {
2702 	switch (hdspm->io_type) {
2703 	case AES32:
2704 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2705 		case 0: return 0;  /* WC */
2706 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2707 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2708 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2709 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2710 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2711 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2712 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2713 						    return 7; /* AES 7 */
2714 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2715 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2716 		}
2717 		break;
2718 
2719 	case MADI:
2720 	case MADIface:
2721 		if (hdspm->tco) {
2722 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2723 			case 0: return 0;  /* WC */
2724 			case HDSPM_SyncRef0: return 1;  /* MADI */
2725 			case HDSPM_SyncRef1: return 2;  /* TCO */
2726 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2727 					     return 3;  /* SYNC_IN */
2728 			}
2729 		} else {
2730 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2731 			case 0: return 0;  /* WC */
2732 			case HDSPM_SyncRef0: return 1;  /* MADI */
2733 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2734 					     return 2;  /* SYNC_IN */
2735 			}
2736 		}
2737 		break;
2738 
2739 	case RayDAT:
2740 		if (hdspm->tco) {
2741 			switch ((hdspm->settings_register &
2742 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2743 			case 0: return 0;  /* WC */
2744 			case 3: return 1;  /* ADAT 1 */
2745 			case 4: return 2;  /* ADAT 2 */
2746 			case 5: return 3;  /* ADAT 3 */
2747 			case 6: return 4;  /* ADAT 4 */
2748 			case 1: return 5;  /* AES */
2749 			case 2: return 6;  /* SPDIF */
2750 			case 9: return 7;  /* TCO */
2751 			case 10: return 8; /* SYNC_IN */
2752 			}
2753 		} else {
2754 			switch ((hdspm->settings_register &
2755 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2756 			case 0: return 0;  /* WC */
2757 			case 3: return 1;  /* ADAT 1 */
2758 			case 4: return 2;  /* ADAT 2 */
2759 			case 5: return 3;  /* ADAT 3 */
2760 			case 6: return 4;  /* ADAT 4 */
2761 			case 1: return 5;  /* AES */
2762 			case 2: return 6;  /* SPDIF */
2763 			case 10: return 7; /* SYNC_IN */
2764 			}
2765 		}
2766 
2767 		break;
2768 
2769 	case AIO:
2770 		if (hdspm->tco) {
2771 			switch ((hdspm->settings_register &
2772 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2773 			case 0: return 0;  /* WC */
2774 			case 3: return 1;  /* ADAT */
2775 			case 1: return 2;  /* AES */
2776 			case 2: return 3;  /* SPDIF */
2777 			case 9: return 4;  /* TCO */
2778 			case 10: return 5; /* SYNC_IN */
2779 			}
2780 		} else {
2781 			switch ((hdspm->settings_register &
2782 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2783 			case 0: return 0;  /* WC */
2784 			case 3: return 1;  /* ADAT */
2785 			case 1: return 2;  /* AES */
2786 			case 2: return 3;  /* SPDIF */
2787 			case 10: return 4; /* SYNC_IN */
2788 			}
2789 		}
2790 
2791 		break;
2792 	}
2793 
2794 	return -1;
2795 }
2796 
2797 
2798 /*
2799  * Set the preferred sync reference to <pref>. The semantics
2800  * of <pref> are depending on the card type, see the comments
2801  * for clarification.
2802  */
2803 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2804 {
2805 	int p = 0;
2806 
2807 	switch (hdspm->io_type) {
2808 	case AES32:
2809 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2810 		switch (pref) {
2811 		case 0: /* WC  */
2812 			break;
2813 		case 1: /* AES 1 */
2814 			hdspm->control_register |= HDSPM_SyncRef0;
2815 			break;
2816 		case 2: /* AES 2 */
2817 			hdspm->control_register |= HDSPM_SyncRef1;
2818 			break;
2819 		case 3: /* AES 3 */
2820 			hdspm->control_register |=
2821 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2822 			break;
2823 		case 4: /* AES 4 */
2824 			hdspm->control_register |= HDSPM_SyncRef2;
2825 			break;
2826 		case 5: /* AES 5 */
2827 			hdspm->control_register |=
2828 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2829 			break;
2830 		case 6: /* AES 6 */
2831 			hdspm->control_register |=
2832 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2833 			break;
2834 		case 7: /* AES 7 */
2835 			hdspm->control_register |=
2836 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2837 			break;
2838 		case 8: /* AES 8 */
2839 			hdspm->control_register |= HDSPM_SyncRef3;
2840 			break;
2841 		case 9: /* TCO */
2842 			hdspm->control_register |=
2843 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2844 			break;
2845 		default:
2846 			return -1;
2847 		}
2848 
2849 		break;
2850 
2851 	case MADI:
2852 	case MADIface:
2853 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2854 		if (hdspm->tco) {
2855 			switch (pref) {
2856 			case 0: /* WC */
2857 				break;
2858 			case 1: /* MADI */
2859 				hdspm->control_register |= HDSPM_SyncRef0;
2860 				break;
2861 			case 2: /* TCO */
2862 				hdspm->control_register |= HDSPM_SyncRef1;
2863 				break;
2864 			case 3: /* SYNC_IN */
2865 				hdspm->control_register |=
2866 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2867 				break;
2868 			default:
2869 				return -1;
2870 			}
2871 		} else {
2872 			switch (pref) {
2873 			case 0: /* WC */
2874 				break;
2875 			case 1: /* MADI */
2876 				hdspm->control_register |= HDSPM_SyncRef0;
2877 				break;
2878 			case 2: /* SYNC_IN */
2879 				hdspm->control_register |=
2880 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2881 				break;
2882 			default:
2883 				return -1;
2884 			}
2885 		}
2886 
2887 		break;
2888 
2889 	case RayDAT:
2890 		if (hdspm->tco) {
2891 			switch (pref) {
2892 			case 0: p = 0; break;  /* WC */
2893 			case 1: p = 3; break;  /* ADAT 1 */
2894 			case 2: p = 4; break;  /* ADAT 2 */
2895 			case 3: p = 5; break;  /* ADAT 3 */
2896 			case 4: p = 6; break;  /* ADAT 4 */
2897 			case 5: p = 1; break;  /* AES */
2898 			case 6: p = 2; break;  /* SPDIF */
2899 			case 7: p = 9; break;  /* TCO */
2900 			case 8: p = 10; break; /* SYNC_IN */
2901 			default: return -1;
2902 			}
2903 		} else {
2904 			switch (pref) {
2905 			case 0: p = 0; break;  /* WC */
2906 			case 1: p = 3; break;  /* ADAT 1 */
2907 			case 2: p = 4; break;  /* ADAT 2 */
2908 			case 3: p = 5; break;  /* ADAT 3 */
2909 			case 4: p = 6; break;  /* ADAT 4 */
2910 			case 5: p = 1; break;  /* AES */
2911 			case 6: p = 2; break;  /* SPDIF */
2912 			case 7: p = 10; break; /* SYNC_IN */
2913 			default: return -1;
2914 			}
2915 		}
2916 		break;
2917 
2918 	case AIO:
2919 		if (hdspm->tco) {
2920 			switch (pref) {
2921 			case 0: p = 0; break;  /* WC */
2922 			case 1: p = 3; break;  /* ADAT */
2923 			case 2: p = 1; break;  /* AES */
2924 			case 3: p = 2; break;  /* SPDIF */
2925 			case 4: p = 9; break;  /* TCO */
2926 			case 5: p = 10; break; /* SYNC_IN */
2927 			default: return -1;
2928 			}
2929 		} else {
2930 			switch (pref) {
2931 			case 0: p = 0; break;  /* WC */
2932 			case 1: p = 3; break;  /* ADAT */
2933 			case 2: p = 1; break;  /* AES */
2934 			case 3: p = 2; break;  /* SPDIF */
2935 			case 4: p = 10; break; /* SYNC_IN */
2936 			default: return -1;
2937 			}
2938 		}
2939 		break;
2940 	}
2941 
2942 	switch (hdspm->io_type) {
2943 	case RayDAT:
2944 	case AIO:
2945 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2946 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2947 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2948 		break;
2949 
2950 	case MADI:
2951 	case MADIface:
2952 	case AES32:
2953 		hdspm_write(hdspm, HDSPM_controlRegister,
2954 				hdspm->control_register);
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 
2961 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2962 					struct snd_ctl_elem_info *uinfo)
2963 {
2964 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2965 
2966 	snd_ctl_enum_info(uinfo, 1, hdspm->texts_autosync_items, hdspm->texts_autosync);
2967 
2968 	return 0;
2969 }
2970 
2971 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2972 				       struct snd_ctl_elem_value *ucontrol)
2973 {
2974 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2975 	int psf = hdspm_pref_sync_ref(hdspm);
2976 
2977 	if (psf >= 0) {
2978 		ucontrol->value.enumerated.item[0] = psf;
2979 		return 0;
2980 	}
2981 
2982 	return -1;
2983 }
2984 
2985 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2986 				       struct snd_ctl_elem_value *ucontrol)
2987 {
2988 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2989 	int val, change = 0;
2990 
2991 	if (!snd_hdspm_use_is_exclusive(hdspm))
2992 		return -EBUSY;
2993 
2994 	val = ucontrol->value.enumerated.item[0];
2995 
2996 	if (val < 0)
2997 		val = 0;
2998 	else if (val >= hdspm->texts_autosync_items)
2999 		val = hdspm->texts_autosync_items-1;
3000 
3001 	spin_lock_irq(&hdspm->lock);
3002 	if (val != hdspm_pref_sync_ref(hdspm))
3003 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
3004 
3005 	spin_unlock_irq(&hdspm->lock);
3006 	return change;
3007 }
3008 
3009 
3010 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
3011 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3012 	.name = xname, \
3013 	.index = xindex, \
3014 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
3015 	.info = snd_hdspm_info_autosync_ref, \
3016 	.get = snd_hdspm_get_autosync_ref, \
3017 }
3018 
3019 static int hdspm_autosync_ref(struct hdspm *hdspm)
3020 {
3021 	/* This looks at the autosync selected sync reference */
3022 	if (AES32 == hdspm->io_type) {
3023 
3024 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
3025 		unsigned int syncref = (status >> HDSPM_AES32_syncref_bit) & 0xF;
3026 		if ((syncref >= HDSPM_AES32_AUTOSYNC_FROM_WORD) &&
3027 				(syncref <= HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN)) {
3028 			return syncref;
3029 		}
3030 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
3031 
3032 	} else if (MADI == hdspm->io_type) {
3033 
3034 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3035 		switch (status2 & HDSPM_SelSyncRefMask) {
3036 		case HDSPM_SelSyncRef_WORD:
3037 			return HDSPM_AUTOSYNC_FROM_WORD;
3038 		case HDSPM_SelSyncRef_MADI:
3039 			return HDSPM_AUTOSYNC_FROM_MADI;
3040 		case HDSPM_SelSyncRef_TCO:
3041 			return HDSPM_AUTOSYNC_FROM_TCO;
3042 		case HDSPM_SelSyncRef_SyncIn:
3043 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3044 		case HDSPM_SelSyncRef_NVALID:
3045 			return HDSPM_AUTOSYNC_FROM_NONE;
3046 		default:
3047 			return HDSPM_AUTOSYNC_FROM_NONE;
3048 		}
3049 
3050 	}
3051 	return 0;
3052 }
3053 
3054 
3055 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
3056 				       struct snd_ctl_elem_info *uinfo)
3057 {
3058 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3059 
3060 	if (AES32 == hdspm->io_type) {
3061 		static const char *const texts[] = { "WordClock", "AES1", "AES2", "AES3",
3062 			"AES4",	"AES5", "AES6", "AES7", "AES8", "TCO", "Sync In", "None"};
3063 
3064 		ENUMERATED_CTL_INFO(uinfo, texts);
3065 	} else if (MADI == hdspm->io_type) {
3066 		static const char *const texts[] = {"Word Clock", "MADI", "TCO",
3067 			"Sync In", "None" };
3068 
3069 		ENUMERATED_CTL_INFO(uinfo, texts);
3070 	}
3071 	return 0;
3072 }
3073 
3074 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
3075 				      struct snd_ctl_elem_value *ucontrol)
3076 {
3077 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3078 
3079 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
3080 	return 0;
3081 }
3082 
3083 
3084 
3085 #define HDSPM_TCO_VIDEO_INPUT_FORMAT(xname, xindex) \
3086 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3087 	.name = xname, \
3088 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3089 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3090 	.info = snd_hdspm_info_tco_video_input_format, \
3091 	.get = snd_hdspm_get_tco_video_input_format, \
3092 }
3093 
3094 static int snd_hdspm_info_tco_video_input_format(struct snd_kcontrol *kcontrol,
3095 				       struct snd_ctl_elem_info *uinfo)
3096 {
3097 	static const char *const texts[] = {"No video", "NTSC", "PAL"};
3098 	ENUMERATED_CTL_INFO(uinfo, texts);
3099 	return 0;
3100 }
3101 
3102 static int snd_hdspm_get_tco_video_input_format(struct snd_kcontrol *kcontrol,
3103 				      struct snd_ctl_elem_value *ucontrol)
3104 {
3105 	u32 status;
3106 	int ret = 0;
3107 
3108 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3109 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3110 	switch (status & (HDSPM_TCO1_Video_Input_Format_NTSC |
3111 			HDSPM_TCO1_Video_Input_Format_PAL)) {
3112 	case HDSPM_TCO1_Video_Input_Format_NTSC:
3113 		/* ntsc */
3114 		ret = 1;
3115 		break;
3116 	case HDSPM_TCO1_Video_Input_Format_PAL:
3117 		/* pal */
3118 		ret = 2;
3119 		break;
3120 	default:
3121 		/* no video */
3122 		ret = 0;
3123 		break;
3124 	}
3125 	ucontrol->value.enumerated.item[0] = ret;
3126 	return 0;
3127 }
3128 
3129 
3130 
3131 #define HDSPM_TCO_LTC_FRAMES(xname, xindex) \
3132 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3133 	.name = xname, \
3134 	.access = SNDRV_CTL_ELEM_ACCESS_READ |\
3135 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3136 	.info = snd_hdspm_info_tco_ltc_frames, \
3137 	.get = snd_hdspm_get_tco_ltc_frames, \
3138 }
3139 
3140 static int snd_hdspm_info_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3141 				       struct snd_ctl_elem_info *uinfo)
3142 {
3143 	static const char *const texts[] = {"No lock", "24 fps", "25 fps", "29.97 fps",
3144 				"30 fps"};
3145 	ENUMERATED_CTL_INFO(uinfo, texts);
3146 	return 0;
3147 }
3148 
3149 static int hdspm_tco_ltc_frames(struct hdspm *hdspm)
3150 {
3151 	u32 status;
3152 	int ret = 0;
3153 
3154 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3155 	if (status & HDSPM_TCO1_LTC_Input_valid) {
3156 		switch (status & (HDSPM_TCO1_LTC_Format_LSB |
3157 					HDSPM_TCO1_LTC_Format_MSB)) {
3158 		case 0:
3159 			/* 24 fps */
3160 			ret = fps_24;
3161 			break;
3162 		case HDSPM_TCO1_LTC_Format_LSB:
3163 			/* 25 fps */
3164 			ret = fps_25;
3165 			break;
3166 		case HDSPM_TCO1_LTC_Format_MSB:
3167 			/* 29.97 fps */
3168 			ret = fps_2997;
3169 			break;
3170 		default:
3171 			/* 30 fps */
3172 			ret = fps_30;
3173 			break;
3174 		}
3175 	}
3176 
3177 	return ret;
3178 }
3179 
3180 static int snd_hdspm_get_tco_ltc_frames(struct snd_kcontrol *kcontrol,
3181 				      struct snd_ctl_elem_value *ucontrol)
3182 {
3183 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3184 
3185 	ucontrol->value.enumerated.item[0] = hdspm_tco_ltc_frames(hdspm);
3186 	return 0;
3187 }
3188 
3189 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
3190 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3191 	.name = xname, \
3192 	.private_value = xindex, \
3193 	.info = snd_hdspm_info_toggle_setting, \
3194 	.get = snd_hdspm_get_toggle_setting, \
3195 	.put = snd_hdspm_put_toggle_setting \
3196 }
3197 
3198 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
3199 {
3200 	u32 reg;
3201 
3202 	if (hdspm_is_raydat_or_aio(hdspm))
3203 		reg = hdspm->settings_register;
3204 	else
3205 		reg = hdspm->control_register;
3206 
3207 	return (reg & regmask) ? 1 : 0;
3208 }
3209 
3210 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
3211 {
3212 	u32 *reg;
3213 	u32 target_reg;
3214 
3215 	if (hdspm_is_raydat_or_aio(hdspm)) {
3216 		reg = &(hdspm->settings_register);
3217 		target_reg = HDSPM_WR_SETTINGS;
3218 	} else {
3219 		reg = &(hdspm->control_register);
3220 		target_reg = HDSPM_controlRegister;
3221 	}
3222 
3223 	if (out)
3224 		*reg |= regmask;
3225 	else
3226 		*reg &= ~regmask;
3227 
3228 	hdspm_write(hdspm, target_reg, *reg);
3229 
3230 	return 0;
3231 }
3232 
3233 #define snd_hdspm_info_toggle_setting		snd_ctl_boolean_mono_info
3234 
3235 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
3236 			       struct snd_ctl_elem_value *ucontrol)
3237 {
3238 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3239 	u32 regmask = kcontrol->private_value;
3240 
3241 	spin_lock_irq(&hdspm->lock);
3242 	ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
3243 	spin_unlock_irq(&hdspm->lock);
3244 	return 0;
3245 }
3246 
3247 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
3248 			       struct snd_ctl_elem_value *ucontrol)
3249 {
3250 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3251 	u32 regmask = kcontrol->private_value;
3252 	int change;
3253 	unsigned int val;
3254 
3255 	if (!snd_hdspm_use_is_exclusive(hdspm))
3256 		return -EBUSY;
3257 	val = ucontrol->value.integer.value[0] & 1;
3258 	spin_lock_irq(&hdspm->lock);
3259 	change = (int) val != hdspm_toggle_setting(hdspm, regmask);
3260 	hdspm_set_toggle_setting(hdspm, regmask, val);
3261 	spin_unlock_irq(&hdspm->lock);
3262 	return change;
3263 }
3264 
3265 #define HDSPM_INPUT_SELECT(xname, xindex) \
3266 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3267 	.name = xname, \
3268 	.index = xindex, \
3269 	.info = snd_hdspm_info_input_select, \
3270 	.get = snd_hdspm_get_input_select, \
3271 	.put = snd_hdspm_put_input_select \
3272 }
3273 
3274 static int hdspm_input_select(struct hdspm * hdspm)
3275 {
3276 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3277 }
3278 
3279 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3280 {
3281 	if (out)
3282 		hdspm->control_register |= HDSPM_InputSelect0;
3283 	else
3284 		hdspm->control_register &= ~HDSPM_InputSelect0;
3285 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3286 
3287 	return 0;
3288 }
3289 
3290 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3291 				       struct snd_ctl_elem_info *uinfo)
3292 {
3293 	static const char *const texts[] = { "optical", "coaxial" };
3294 	ENUMERATED_CTL_INFO(uinfo, texts);
3295 	return 0;
3296 }
3297 
3298 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3299 				      struct snd_ctl_elem_value *ucontrol)
3300 {
3301 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3302 
3303 	spin_lock_irq(&hdspm->lock);
3304 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3305 	spin_unlock_irq(&hdspm->lock);
3306 	return 0;
3307 }
3308 
3309 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3310 				      struct snd_ctl_elem_value *ucontrol)
3311 {
3312 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3313 	int change;
3314 	unsigned int val;
3315 
3316 	if (!snd_hdspm_use_is_exclusive(hdspm))
3317 		return -EBUSY;
3318 	val = ucontrol->value.integer.value[0] & 1;
3319 	spin_lock_irq(&hdspm->lock);
3320 	change = (int) val != hdspm_input_select(hdspm);
3321 	hdspm_set_input_select(hdspm, val);
3322 	spin_unlock_irq(&hdspm->lock);
3323 	return change;
3324 }
3325 
3326 
3327 #define HDSPM_DS_WIRE(xname, xindex) \
3328 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3329 	.name = xname, \
3330 	.index = xindex, \
3331 	.info = snd_hdspm_info_ds_wire, \
3332 	.get = snd_hdspm_get_ds_wire, \
3333 	.put = snd_hdspm_put_ds_wire \
3334 }
3335 
3336 static int hdspm_ds_wire(struct hdspm * hdspm)
3337 {
3338 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3339 }
3340 
3341 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3342 {
3343 	if (ds)
3344 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3345 	else
3346 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3347 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3348 
3349 	return 0;
3350 }
3351 
3352 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3353 				  struct snd_ctl_elem_info *uinfo)
3354 {
3355 	static const char *const texts[] = { "Single", "Double" };
3356 	ENUMERATED_CTL_INFO(uinfo, texts);
3357 	return 0;
3358 }
3359 
3360 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3361 				 struct snd_ctl_elem_value *ucontrol)
3362 {
3363 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3364 
3365 	spin_lock_irq(&hdspm->lock);
3366 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3367 	spin_unlock_irq(&hdspm->lock);
3368 	return 0;
3369 }
3370 
3371 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3372 				 struct snd_ctl_elem_value *ucontrol)
3373 {
3374 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3375 	int change;
3376 	unsigned int val;
3377 
3378 	if (!snd_hdspm_use_is_exclusive(hdspm))
3379 		return -EBUSY;
3380 	val = ucontrol->value.integer.value[0] & 1;
3381 	spin_lock_irq(&hdspm->lock);
3382 	change = (int) val != hdspm_ds_wire(hdspm);
3383 	hdspm_set_ds_wire(hdspm, val);
3384 	spin_unlock_irq(&hdspm->lock);
3385 	return change;
3386 }
3387 
3388 
3389 #define HDSPM_QS_WIRE(xname, xindex) \
3390 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3391 	.name = xname, \
3392 	.index = xindex, \
3393 	.info = snd_hdspm_info_qs_wire, \
3394 	.get = snd_hdspm_get_qs_wire, \
3395 	.put = snd_hdspm_put_qs_wire \
3396 }
3397 
3398 static int hdspm_qs_wire(struct hdspm * hdspm)
3399 {
3400 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3401 		return 1;
3402 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3403 		return 2;
3404 	return 0;
3405 }
3406 
3407 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3408 {
3409 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3410 	switch (mode) {
3411 	case 0:
3412 		break;
3413 	case 1:
3414 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3415 		break;
3416 	case 2:
3417 		hdspm->control_register |= HDSPM_QS_QuadWire;
3418 		break;
3419 	}
3420 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3421 
3422 	return 0;
3423 }
3424 
3425 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3426 				       struct snd_ctl_elem_info *uinfo)
3427 {
3428 	static const char *const texts[] = { "Single", "Double", "Quad" };
3429 	ENUMERATED_CTL_INFO(uinfo, texts);
3430 	return 0;
3431 }
3432 
3433 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3434 				      struct snd_ctl_elem_value *ucontrol)
3435 {
3436 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3437 
3438 	spin_lock_irq(&hdspm->lock);
3439 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3440 	spin_unlock_irq(&hdspm->lock);
3441 	return 0;
3442 }
3443 
3444 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3445 				      struct snd_ctl_elem_value *ucontrol)
3446 {
3447 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3448 	int change;
3449 	int val;
3450 
3451 	if (!snd_hdspm_use_is_exclusive(hdspm))
3452 		return -EBUSY;
3453 	val = ucontrol->value.integer.value[0];
3454 	if (val < 0)
3455 		val = 0;
3456 	if (val > 2)
3457 		val = 2;
3458 	spin_lock_irq(&hdspm->lock);
3459 	change = val != hdspm_qs_wire(hdspm);
3460 	hdspm_set_qs_wire(hdspm, val);
3461 	spin_unlock_irq(&hdspm->lock);
3462 	return change;
3463 }
3464 
3465 #define HDSPM_CONTROL_TRISTATE(xname, xindex) \
3466 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3467 	.name = xname, \
3468 	.private_value = xindex, \
3469 	.info = snd_hdspm_info_tristate, \
3470 	.get = snd_hdspm_get_tristate, \
3471 	.put = snd_hdspm_put_tristate \
3472 }
3473 
3474 static int hdspm_tristate(struct hdspm *hdspm, u32 regmask)
3475 {
3476 	u32 reg = hdspm->settings_register & (regmask * 3);
3477 	return reg / regmask;
3478 }
3479 
3480 static int hdspm_set_tristate(struct hdspm *hdspm, int mode, u32 regmask)
3481 {
3482 	hdspm->settings_register &= ~(regmask * 3);
3483 	hdspm->settings_register |= (regmask * mode);
3484 	hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
3485 
3486 	return 0;
3487 }
3488 
3489 static int snd_hdspm_info_tristate(struct snd_kcontrol *kcontrol,
3490 				       struct snd_ctl_elem_info *uinfo)
3491 {
3492 	u32 regmask = kcontrol->private_value;
3493 
3494 	static const char *const texts_spdif[] = { "Optical", "Coaxial", "Internal" };
3495 	static const char *const texts_levels[] = { "Hi Gain", "+4 dBu", "-10 dBV" };
3496 
3497 	switch (regmask) {
3498 	case HDSPM_c0_Input0:
3499 		ENUMERATED_CTL_INFO(uinfo, texts_spdif);
3500 		break;
3501 	default:
3502 		ENUMERATED_CTL_INFO(uinfo, texts_levels);
3503 		break;
3504 	}
3505 	return 0;
3506 }
3507 
3508 static int snd_hdspm_get_tristate(struct snd_kcontrol *kcontrol,
3509 				      struct snd_ctl_elem_value *ucontrol)
3510 {
3511 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3512 	u32 regmask = kcontrol->private_value;
3513 
3514 	spin_lock_irq(&hdspm->lock);
3515 	ucontrol->value.enumerated.item[0] = hdspm_tristate(hdspm, regmask);
3516 	spin_unlock_irq(&hdspm->lock);
3517 	return 0;
3518 }
3519 
3520 static int snd_hdspm_put_tristate(struct snd_kcontrol *kcontrol,
3521 				      struct snd_ctl_elem_value *ucontrol)
3522 {
3523 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3524 	u32 regmask = kcontrol->private_value;
3525 	int change;
3526 	int val;
3527 
3528 	if (!snd_hdspm_use_is_exclusive(hdspm))
3529 		return -EBUSY;
3530 	val = ucontrol->value.integer.value[0];
3531 	if (val < 0)
3532 		val = 0;
3533 	if (val > 2)
3534 		val = 2;
3535 
3536 	spin_lock_irq(&hdspm->lock);
3537 	change = val != hdspm_tristate(hdspm, regmask);
3538 	hdspm_set_tristate(hdspm, val, regmask);
3539 	spin_unlock_irq(&hdspm->lock);
3540 	return change;
3541 }
3542 
3543 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3544 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3545 	.name = xname, \
3546 	.index = xindex, \
3547 	.info = snd_hdspm_info_madi_speedmode, \
3548 	.get = snd_hdspm_get_madi_speedmode, \
3549 	.put = snd_hdspm_put_madi_speedmode \
3550 }
3551 
3552 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3553 {
3554 	if (hdspm->control_register & HDSPM_QuadSpeed)
3555 		return 2;
3556 	if (hdspm->control_register & HDSPM_DoubleSpeed)
3557 		return 1;
3558 	return 0;
3559 }
3560 
3561 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3562 {
3563 	hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3564 	switch (mode) {
3565 	case 0:
3566 		break;
3567 	case 1:
3568 		hdspm->control_register |= HDSPM_DoubleSpeed;
3569 		break;
3570 	case 2:
3571 		hdspm->control_register |= HDSPM_QuadSpeed;
3572 		break;
3573 	}
3574 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3575 
3576 	return 0;
3577 }
3578 
3579 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3580 				       struct snd_ctl_elem_info *uinfo)
3581 {
3582 	static const char *const texts[] = { "Single", "Double", "Quad" };
3583 	ENUMERATED_CTL_INFO(uinfo, texts);
3584 	return 0;
3585 }
3586 
3587 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3588 				      struct snd_ctl_elem_value *ucontrol)
3589 {
3590 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3591 
3592 	spin_lock_irq(&hdspm->lock);
3593 	ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3594 	spin_unlock_irq(&hdspm->lock);
3595 	return 0;
3596 }
3597 
3598 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3599 				      struct snd_ctl_elem_value *ucontrol)
3600 {
3601 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3602 	int change;
3603 	int val;
3604 
3605 	if (!snd_hdspm_use_is_exclusive(hdspm))
3606 		return -EBUSY;
3607 	val = ucontrol->value.integer.value[0];
3608 	if (val < 0)
3609 		val = 0;
3610 	if (val > 2)
3611 		val = 2;
3612 	spin_lock_irq(&hdspm->lock);
3613 	change = val != hdspm_madi_speedmode(hdspm);
3614 	hdspm_set_madi_speedmode(hdspm, val);
3615 	spin_unlock_irq(&hdspm->lock);
3616 	return change;
3617 }
3618 
3619 #define HDSPM_MIXER(xname, xindex) \
3620 {	.iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3621 	.name = xname, \
3622 	.index = xindex, \
3623 	.device = 0, \
3624 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3625 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3626 	.info = snd_hdspm_info_mixer, \
3627 	.get = snd_hdspm_get_mixer, \
3628 	.put = snd_hdspm_put_mixer \
3629 }
3630 
3631 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3632 				struct snd_ctl_elem_info *uinfo)
3633 {
3634 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3635 	uinfo->count = 3;
3636 	uinfo->value.integer.min = 0;
3637 	uinfo->value.integer.max = 65535;
3638 	uinfo->value.integer.step = 1;
3639 	return 0;
3640 }
3641 
3642 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3643 			       struct snd_ctl_elem_value *ucontrol)
3644 {
3645 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3646 	int source;
3647 	int destination;
3648 
3649 	source = ucontrol->value.integer.value[0];
3650 	if (source < 0)
3651 		source = 0;
3652 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3653 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3654 
3655 	destination = ucontrol->value.integer.value[1];
3656 	if (destination < 0)
3657 		destination = 0;
3658 	else if (destination >= HDSPM_MAX_CHANNELS)
3659 		destination = HDSPM_MAX_CHANNELS - 1;
3660 
3661 	spin_lock_irq(&hdspm->lock);
3662 	if (source >= HDSPM_MAX_CHANNELS)
3663 		ucontrol->value.integer.value[2] =
3664 		    hdspm_read_pb_gain(hdspm, destination,
3665 				       source - HDSPM_MAX_CHANNELS);
3666 	else
3667 		ucontrol->value.integer.value[2] =
3668 		    hdspm_read_in_gain(hdspm, destination, source);
3669 
3670 	spin_unlock_irq(&hdspm->lock);
3671 
3672 	return 0;
3673 }
3674 
3675 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3676 			       struct snd_ctl_elem_value *ucontrol)
3677 {
3678 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3679 	int change;
3680 	int source;
3681 	int destination;
3682 	int gain;
3683 
3684 	if (!snd_hdspm_use_is_exclusive(hdspm))
3685 		return -EBUSY;
3686 
3687 	source = ucontrol->value.integer.value[0];
3688 	destination = ucontrol->value.integer.value[1];
3689 
3690 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3691 		return -1;
3692 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3693 		return -1;
3694 
3695 	gain = ucontrol->value.integer.value[2];
3696 
3697 	spin_lock_irq(&hdspm->lock);
3698 
3699 	if (source >= HDSPM_MAX_CHANNELS)
3700 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3701 						    source -
3702 						    HDSPM_MAX_CHANNELS);
3703 	else
3704 		change = gain != hdspm_read_in_gain(hdspm, destination,
3705 						    source);
3706 
3707 	if (change) {
3708 		if (source >= HDSPM_MAX_CHANNELS)
3709 			hdspm_write_pb_gain(hdspm, destination,
3710 					    source - HDSPM_MAX_CHANNELS,
3711 					    gain);
3712 		else
3713 			hdspm_write_in_gain(hdspm, destination, source,
3714 					    gain);
3715 	}
3716 	spin_unlock_irq(&hdspm->lock);
3717 
3718 	return change;
3719 }
3720 
3721 /* The simple mixer control(s) provide gain control for the
3722    basic 1:1 mappings of playback streams to output
3723    streams.
3724 */
3725 
3726 #define HDSPM_PLAYBACK_MIXER \
3727 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3728 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3729 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3730 	.info = snd_hdspm_info_playback_mixer, \
3731 	.get = snd_hdspm_get_playback_mixer, \
3732 	.put = snd_hdspm_put_playback_mixer \
3733 }
3734 
3735 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3736 					 struct snd_ctl_elem_info *uinfo)
3737 {
3738 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3739 	uinfo->count = 1;
3740 	uinfo->value.integer.min = 0;
3741 	uinfo->value.integer.max = 64;
3742 	uinfo->value.integer.step = 1;
3743 	return 0;
3744 }
3745 
3746 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3747 					struct snd_ctl_elem_value *ucontrol)
3748 {
3749 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3750 	int channel;
3751 
3752 	channel = ucontrol->id.index - 1;
3753 
3754 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3755 		return -EINVAL;
3756 
3757 	spin_lock_irq(&hdspm->lock);
3758 	ucontrol->value.integer.value[0] =
3759 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3760 	spin_unlock_irq(&hdspm->lock);
3761 
3762 	return 0;
3763 }
3764 
3765 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3766 					struct snd_ctl_elem_value *ucontrol)
3767 {
3768 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3769 	int change;
3770 	int channel;
3771 	int gain;
3772 
3773 	if (!snd_hdspm_use_is_exclusive(hdspm))
3774 		return -EBUSY;
3775 
3776 	channel = ucontrol->id.index - 1;
3777 
3778 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3779 		return -EINVAL;
3780 
3781 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3782 
3783 	spin_lock_irq(&hdspm->lock);
3784 	change =
3785 	    gain != hdspm_read_pb_gain(hdspm, channel,
3786 				       channel);
3787 	if (change)
3788 		hdspm_write_pb_gain(hdspm, channel, channel,
3789 				    gain);
3790 	spin_unlock_irq(&hdspm->lock);
3791 	return change;
3792 }
3793 
3794 #define HDSPM_SYNC_CHECK(xname, xindex) \
3795 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3796 	.name = xname, \
3797 	.private_value = xindex, \
3798 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3799 	.info = snd_hdspm_info_sync_check, \
3800 	.get = snd_hdspm_get_sync_check \
3801 }
3802 
3803 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3804 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3805 	.name = xname, \
3806 	.private_value = xindex, \
3807 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3808 	.info = snd_hdspm_tco_info_lock_check, \
3809 	.get = snd_hdspm_get_sync_check \
3810 }
3811 
3812 
3813 
3814 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3815 				     struct snd_ctl_elem_info *uinfo)
3816 {
3817 	static const char *const texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3818 	ENUMERATED_CTL_INFO(uinfo, texts);
3819 	return 0;
3820 }
3821 
3822 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3823 				     struct snd_ctl_elem_info *uinfo)
3824 {
3825 	static const char *const texts[] = { "No Lock", "Lock" };
3826 	ENUMERATED_CTL_INFO(uinfo, texts);
3827 	return 0;
3828 }
3829 
3830 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3831 {
3832 	int status, status2;
3833 
3834 	switch (hdspm->io_type) {
3835 	case AES32:
3836 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3837 		if (status & HDSPM_AES32_wcLock) {
3838 			if (status & HDSPM_AES32_wcSync)
3839 				return 2;
3840 			else
3841 				return 1;
3842 		}
3843 		return 0;
3844 		break;
3845 
3846 	case MADI:
3847 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3848 		if (status2 & HDSPM_wcLock) {
3849 			if (status2 & HDSPM_wcSync)
3850 				return 2;
3851 			else
3852 				return 1;
3853 		}
3854 		return 0;
3855 		break;
3856 
3857 	case RayDAT:
3858 	case AIO:
3859 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3860 
3861 		if (status & 0x2000000)
3862 			return 2;
3863 		else if (status & 0x1000000)
3864 			return 1;
3865 		return 0;
3866 
3867 		break;
3868 
3869 	case MADIface:
3870 		break;
3871 	}
3872 
3873 
3874 	return 3;
3875 }
3876 
3877 
3878 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3879 {
3880 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3881 	if (status & HDSPM_madiLock) {
3882 		if (status & HDSPM_madiSync)
3883 			return 2;
3884 		else
3885 			return 1;
3886 	}
3887 	return 0;
3888 }
3889 
3890 
3891 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3892 {
3893 	int status, lock, sync;
3894 
3895 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3896 
3897 	lock = (status & (0x1<<idx)) ? 1 : 0;
3898 	sync = (status & (0x100<<idx)) ? 1 : 0;
3899 
3900 	if (lock && sync)
3901 		return 2;
3902 	else if (lock)
3903 		return 1;
3904 	return 0;
3905 }
3906 
3907 
3908 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3909 {
3910 	int status, lock = 0, sync = 0;
3911 
3912 	switch (hdspm->io_type) {
3913 	case RayDAT:
3914 	case AIO:
3915 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3916 		lock = (status & 0x400) ? 1 : 0;
3917 		sync = (status & 0x800) ? 1 : 0;
3918 		break;
3919 
3920 	case MADI:
3921 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3922 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3923 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3924 		break;
3925 
3926 	case AES32:
3927 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3928 		lock = (status & 0x100000) ? 1 : 0;
3929 		sync = (status & 0x200000) ? 1 : 0;
3930 		break;
3931 
3932 	case MADIface:
3933 		break;
3934 	}
3935 
3936 	if (lock && sync)
3937 		return 2;
3938 	else if (lock)
3939 		return 1;
3940 
3941 	return 0;
3942 }
3943 
3944 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3945 {
3946 	int status2, lock, sync;
3947 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3948 
3949 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3950 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3951 
3952 	if (sync)
3953 		return 2;
3954 	else if (lock)
3955 		return 1;
3956 	return 0;
3957 }
3958 
3959 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3960 {
3961 	u32 status;
3962 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3963 
3964 	return (status & mask) ? 1 : 0;
3965 }
3966 
3967 
3968 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3969 {
3970 	int status;
3971 
3972 	if (hdspm->tco) {
3973 		switch (hdspm->io_type) {
3974 		case MADI:
3975 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3976 			if (status & HDSPM_tcoLockMadi) {
3977 				if (status & HDSPM_tcoSync)
3978 					return 2;
3979 				else
3980 					return 1;
3981 			}
3982 			return 0;
3983 		case AES32:
3984 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3985 			if (status & HDSPM_tcoLockAes) {
3986 				if (status & HDSPM_tcoSync)
3987 					return 2;
3988 				else
3989 					return 1;
3990 			}
3991 			return 0;
3992 		case RayDAT:
3993 		case AIO:
3994 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3995 
3996 			if (status & 0x8000000)
3997 				return 2; /* Sync */
3998 			if (status & 0x4000000)
3999 				return 1; /* Lock */
4000 			return 0; /* No signal */
4001 
4002 		default:
4003 			break;
4004 		}
4005 	}
4006 
4007 	return 3; /* N/A */
4008 }
4009 
4010 
4011 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
4012 				    struct snd_ctl_elem_value *ucontrol)
4013 {
4014 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4015 	int val = -1;
4016 
4017 	switch (hdspm->io_type) {
4018 	case RayDAT:
4019 		switch (kcontrol->private_value) {
4020 		case 0: /* WC */
4021 			val = hdspm_wc_sync_check(hdspm); break;
4022 		case 7: /* TCO */
4023 			val = hdspm_tco_sync_check(hdspm); break;
4024 		case 8: /* SYNC IN */
4025 			val = hdspm_sync_in_sync_check(hdspm); break;
4026 		default:
4027 			val = hdspm_s1_sync_check(hdspm,
4028 					kcontrol->private_value-1);
4029 		}
4030 		break;
4031 
4032 	case AIO:
4033 		switch (kcontrol->private_value) {
4034 		case 0: /* WC */
4035 			val = hdspm_wc_sync_check(hdspm); break;
4036 		case 4: /* TCO */
4037 			val = hdspm_tco_sync_check(hdspm); break;
4038 		case 5: /* SYNC IN */
4039 			val = hdspm_sync_in_sync_check(hdspm); break;
4040 		default:
4041 			val = hdspm_s1_sync_check(hdspm,
4042 					kcontrol->private_value-1);
4043 		}
4044 		break;
4045 
4046 	case MADI:
4047 		switch (kcontrol->private_value) {
4048 		case 0: /* WC */
4049 			val = hdspm_wc_sync_check(hdspm); break;
4050 		case 1: /* MADI */
4051 			val = hdspm_madi_sync_check(hdspm); break;
4052 		case 2: /* TCO */
4053 			val = hdspm_tco_sync_check(hdspm); break;
4054 		case 3: /* SYNC_IN */
4055 			val = hdspm_sync_in_sync_check(hdspm); break;
4056 		}
4057 		break;
4058 
4059 	case MADIface:
4060 		val = hdspm_madi_sync_check(hdspm); /* MADI */
4061 		break;
4062 
4063 	case AES32:
4064 		switch (kcontrol->private_value) {
4065 		case 0: /* WC */
4066 			val = hdspm_wc_sync_check(hdspm); break;
4067 		case 9: /* TCO */
4068 			val = hdspm_tco_sync_check(hdspm); break;
4069 		case 10 /* SYNC IN */:
4070 			val = hdspm_sync_in_sync_check(hdspm); break;
4071 		default: /* AES1 to AES8 */
4072 			 val = hdspm_aes_sync_check(hdspm,
4073 					 kcontrol->private_value-1);
4074 		}
4075 		break;
4076 
4077 	}
4078 
4079 	if (hdspm->tco) {
4080 		switch (kcontrol->private_value) {
4081 		case 11:
4082 			/* Check TCO for lock state of its current input */
4083 			val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
4084 			break;
4085 		case 12:
4086 			/* Check TCO for valid time code on LTC input. */
4087 			val = hdspm_tco_input_check(hdspm,
4088 				HDSPM_TCO1_LTC_Input_valid);
4089 			break;
4090 		default:
4091 			break;
4092 		}
4093 	}
4094 
4095 	if (-1 == val)
4096 		val = 3;
4097 
4098 	ucontrol->value.enumerated.item[0] = val;
4099 	return 0;
4100 }
4101 
4102 
4103 
4104 /*
4105  * TCO controls
4106  */
4107 static void hdspm_tco_write(struct hdspm *hdspm)
4108 {
4109 	unsigned int tc[4] = { 0, 0, 0, 0};
4110 
4111 	switch (hdspm->tco->input) {
4112 	case 0:
4113 		tc[2] |= HDSPM_TCO2_set_input_MSB;
4114 		break;
4115 	case 1:
4116 		tc[2] |= HDSPM_TCO2_set_input_LSB;
4117 		break;
4118 	default:
4119 		break;
4120 	}
4121 
4122 	switch (hdspm->tco->framerate) {
4123 	case 1:
4124 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4125 		break;
4126 	case 2:
4127 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4128 		break;
4129 	case 3:
4130 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4131 			HDSPM_TCO1_set_drop_frame_flag;
4132 		break;
4133 	case 4:
4134 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4135 			HDSPM_TCO1_LTC_Format_MSB;
4136 		break;
4137 	case 5:
4138 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4139 			HDSPM_TCO1_LTC_Format_MSB +
4140 			HDSPM_TCO1_set_drop_frame_flag;
4141 		break;
4142 	default:
4143 		break;
4144 	}
4145 
4146 	switch (hdspm->tco->wordclock) {
4147 	case 1:
4148 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4149 		break;
4150 	case 2:
4151 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4152 		break;
4153 	default:
4154 		break;
4155 	}
4156 
4157 	switch (hdspm->tco->samplerate) {
4158 	case 1:
4159 		tc[2] |= HDSPM_TCO2_set_freq;
4160 		break;
4161 	case 2:
4162 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
4163 		break;
4164 	default:
4165 		break;
4166 	}
4167 
4168 	switch (hdspm->tco->pull) {
4169 	case 1:
4170 		tc[2] |= HDSPM_TCO2_set_pull_up;
4171 		break;
4172 	case 2:
4173 		tc[2] |= HDSPM_TCO2_set_pull_down;
4174 		break;
4175 	case 3:
4176 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4177 		break;
4178 	case 4:
4179 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4180 		break;
4181 	default:
4182 		break;
4183 	}
4184 
4185 	if (1 == hdspm->tco->term) {
4186 		tc[2] |= HDSPM_TCO2_set_term_75R;
4187 	}
4188 
4189 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4190 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4191 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4192 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4193 }
4194 
4195 
4196 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4197 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4198 	.name = xname, \
4199 	.index = xindex, \
4200 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4201 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4202 	.info = snd_hdspm_info_tco_sample_rate, \
4203 	.get = snd_hdspm_get_tco_sample_rate, \
4204 	.put = snd_hdspm_put_tco_sample_rate \
4205 }
4206 
4207 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4208 					  struct snd_ctl_elem_info *uinfo)
4209 {
4210 	/* TODO freq from app could be supported here, see tco->samplerate */
4211 	static const char *const texts[] = { "44.1 kHz", "48 kHz" };
4212 	ENUMERATED_CTL_INFO(uinfo, texts);
4213 	return 0;
4214 }
4215 
4216 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4217 				      struct snd_ctl_elem_value *ucontrol)
4218 {
4219 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4220 
4221 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4222 
4223 	return 0;
4224 }
4225 
4226 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4227 					 struct snd_ctl_elem_value *ucontrol)
4228 {
4229 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4230 
4231 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4232 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4233 
4234 		hdspm_tco_write(hdspm);
4235 
4236 		return 1;
4237 	}
4238 
4239 	return 0;
4240 }
4241 
4242 
4243 #define HDSPM_TCO_PULL(xname, xindex) \
4244 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4245 	.name = xname, \
4246 	.index = xindex, \
4247 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4248 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4249 	.info = snd_hdspm_info_tco_pull, \
4250 	.get = snd_hdspm_get_tco_pull, \
4251 	.put = snd_hdspm_put_tco_pull \
4252 }
4253 
4254 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4255 				   struct snd_ctl_elem_info *uinfo)
4256 {
4257 	static const char *const texts[] = { "0", "+ 0.1 %", "- 0.1 %",
4258 		"+ 4 %", "- 4 %" };
4259 	ENUMERATED_CTL_INFO(uinfo, texts);
4260 	return 0;
4261 }
4262 
4263 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4264 				  struct snd_ctl_elem_value *ucontrol)
4265 {
4266 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4267 
4268 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4269 
4270 	return 0;
4271 }
4272 
4273 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4274 				  struct snd_ctl_elem_value *ucontrol)
4275 {
4276 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4277 
4278 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4279 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4280 
4281 		hdspm_tco_write(hdspm);
4282 
4283 		return 1;
4284 	}
4285 
4286 	return 0;
4287 }
4288 
4289 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4290 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4291 	.name = xname, \
4292 	.index = xindex, \
4293 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4294 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4295 	.info = snd_hdspm_info_tco_wck_conversion, \
4296 	.get = snd_hdspm_get_tco_wck_conversion, \
4297 	.put = snd_hdspm_put_tco_wck_conversion \
4298 }
4299 
4300 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4301 					     struct snd_ctl_elem_info *uinfo)
4302 {
4303 	static const char *const texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4304 	ENUMERATED_CTL_INFO(uinfo, texts);
4305 	return 0;
4306 }
4307 
4308 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4309 					    struct snd_ctl_elem_value *ucontrol)
4310 {
4311 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4312 
4313 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4314 
4315 	return 0;
4316 }
4317 
4318 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4319 					    struct snd_ctl_elem_value *ucontrol)
4320 {
4321 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4322 
4323 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4324 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4325 
4326 		hdspm_tco_write(hdspm);
4327 
4328 		return 1;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 
4335 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4336 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4337 	.name = xname, \
4338 	.index = xindex, \
4339 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4340 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4341 	.info = snd_hdspm_info_tco_frame_rate, \
4342 	.get = snd_hdspm_get_tco_frame_rate, \
4343 	.put = snd_hdspm_put_tco_frame_rate \
4344 }
4345 
4346 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4347 					  struct snd_ctl_elem_info *uinfo)
4348 {
4349 	static const char *const texts[] = { "24 fps", "25 fps", "29.97fps",
4350 		"29.97 dfps", "30 fps", "30 dfps" };
4351 	ENUMERATED_CTL_INFO(uinfo, texts);
4352 	return 0;
4353 }
4354 
4355 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
4356 					struct snd_ctl_elem_value *ucontrol)
4357 {
4358 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4359 
4360 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4361 
4362 	return 0;
4363 }
4364 
4365 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4366 					struct snd_ctl_elem_value *ucontrol)
4367 {
4368 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4369 
4370 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4371 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4372 
4373 		hdspm_tco_write(hdspm);
4374 
4375 		return 1;
4376 	}
4377 
4378 	return 0;
4379 }
4380 
4381 
4382 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4383 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4384 	.name = xname, \
4385 	.index = xindex, \
4386 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4387 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4388 	.info = snd_hdspm_info_tco_sync_source, \
4389 	.get = snd_hdspm_get_tco_sync_source, \
4390 	.put = snd_hdspm_put_tco_sync_source \
4391 }
4392 
4393 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4394 					  struct snd_ctl_elem_info *uinfo)
4395 {
4396 	static const char *const texts[] = { "LTC", "Video", "WCK" };
4397 	ENUMERATED_CTL_INFO(uinfo, texts);
4398 	return 0;
4399 }
4400 
4401 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4402 					 struct snd_ctl_elem_value *ucontrol)
4403 {
4404 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4405 
4406 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4407 
4408 	return 0;
4409 }
4410 
4411 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4412 					 struct snd_ctl_elem_value *ucontrol)
4413 {
4414 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4415 
4416 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4417 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4418 
4419 		hdspm_tco_write(hdspm);
4420 
4421 		return 1;
4422 	}
4423 
4424 	return 0;
4425 }
4426 
4427 
4428 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4429 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4430 	.name = xname, \
4431 	.index = xindex, \
4432 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4433 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4434 	.info = snd_hdspm_info_tco_word_term, \
4435 	.get = snd_hdspm_get_tco_word_term, \
4436 	.put = snd_hdspm_put_tco_word_term \
4437 }
4438 
4439 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4440 					struct snd_ctl_elem_info *uinfo)
4441 {
4442 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4443 	uinfo->count = 1;
4444 	uinfo->value.integer.min = 0;
4445 	uinfo->value.integer.max = 1;
4446 
4447 	return 0;
4448 }
4449 
4450 
4451 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4452 				       struct snd_ctl_elem_value *ucontrol)
4453 {
4454 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4455 
4456 	ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4457 
4458 	return 0;
4459 }
4460 
4461 
4462 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4463 				       struct snd_ctl_elem_value *ucontrol)
4464 {
4465 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4466 
4467 	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4468 		hdspm->tco->term = ucontrol->value.enumerated.item[0];
4469 
4470 		hdspm_tco_write(hdspm);
4471 
4472 		return 1;
4473 	}
4474 
4475 	return 0;
4476 }
4477 
4478 
4479 
4480 
4481 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4482 	HDSPM_MIXER("Mixer", 0),
4483 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4484 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4485 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4486 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4487 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4488 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4489 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4490 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4491 	HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4492 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4493 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4494 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4495 	HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4496 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4497 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4498 	HDSPM_INPUT_SELECT("Input Select", 0),
4499 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4500 };
4501 
4502 
4503 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4504 	HDSPM_MIXER("Mixer", 0),
4505 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4506 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4507 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4508 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4509 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4510 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4511 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4512 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4513 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4514 };
4515 
4516 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4517 	HDSPM_MIXER("Mixer", 0),
4518 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4519 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4520 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4521 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4522 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4523 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4524 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4525 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4526 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4527 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4528 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4529 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4530 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4531 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4532 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4533 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4534 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5),
4535 	HDSPM_CONTROL_TRISTATE("S/PDIF Input", HDSPM_c0_Input0),
4536 	HDSPM_TOGGLE_SETTING("S/PDIF Out Optical", HDSPM_c0_Spdif_Opt),
4537 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4538 	HDSPM_TOGGLE_SETTING("ADAT internal (AEB/TEB)", HDSPM_c0_AEB1),
4539 	HDSPM_TOGGLE_SETTING("XLR Breakout Cable", HDSPM_c0_Sym6db),
4540 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48),
4541 	HDSPM_CONTROL_TRISTATE("Input Level", HDSPM_c0_AD_GAIN0),
4542 	HDSPM_CONTROL_TRISTATE("Output Level", HDSPM_c0_DA_GAIN0),
4543 	HDSPM_CONTROL_TRISTATE("Phones Level", HDSPM_c0_PH_GAIN0)
4544 
4545 		/*
4546 		   HDSPM_INPUT_SELECT("Input Select", 0),
4547 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4548 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4549 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4550 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4551 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4552 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4553 		   HDSPM_PHONES("Phones", 0);
4554 		   */
4555 };
4556 
4557 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4558 	HDSPM_MIXER("Mixer", 0),
4559 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4560 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4561 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4562 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4563 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4564 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4565 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4566 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4567 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4568 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4569 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4570 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4571 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4572 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4573 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4574 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4575 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4576 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4577 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4578 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4579 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4580 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8),
4581 	HDSPM_TOGGLE_SETTING("S/PDIF Out Professional", HDSPM_c0_Pro),
4582 	HDSPM_TOGGLE_SETTING("Single Speed WordClock Out", HDSPM_c0_Wck48)
4583 };
4584 
4585 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4586 	HDSPM_MIXER("Mixer", 0),
4587 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4588 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4589 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4590 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4591 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4592 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 11),
4593 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4594 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4595 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4596 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4597 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4598 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4599 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4600 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4601 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4602 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4603 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4604 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4605 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4606 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4607 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4608 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4609 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4610 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4611 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4612 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4613 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4614 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4615 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4616 	HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4617 	HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4618 	HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4619 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4620 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4621 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4622 };
4623 
4624 
4625 
4626 /* Control elements for the optional TCO module */
4627 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4628 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4629 	HDSPM_TCO_PULL("TCO Pull", 0),
4630 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4631 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4632 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4633 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0),
4634 	HDSPM_TCO_LOCK_CHECK("TCO Input Check", 11),
4635 	HDSPM_TCO_LOCK_CHECK("TCO LTC Valid", 12),
4636 	HDSPM_TCO_LTC_FRAMES("TCO Detected Frame Rate", 0),
4637 	HDSPM_TCO_VIDEO_INPUT_FORMAT("Video Input Format", 0)
4638 };
4639 
4640 
4641 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4642 
4643 
4644 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4645 {
4646 	int i;
4647 
4648 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4649 		if (hdspm->system_sample_rate > 48000) {
4650 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4651 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4652 				SNDRV_CTL_ELEM_ACCESS_READ |
4653 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4654 		} else {
4655 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4656 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4657 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4658 		}
4659 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4660 				SNDRV_CTL_EVENT_MASK_INFO,
4661 				&hdspm->playback_mixer_ctls[i]->id);
4662 	}
4663 
4664 	return 0;
4665 }
4666 
4667 
4668 static int snd_hdspm_create_controls(struct snd_card *card,
4669 					struct hdspm *hdspm)
4670 {
4671 	unsigned int idx, limit;
4672 	int err;
4673 	struct snd_kcontrol *kctl;
4674 	struct snd_kcontrol_new *list = NULL;
4675 
4676 	switch (hdspm->io_type) {
4677 	case MADI:
4678 		list = snd_hdspm_controls_madi;
4679 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4680 		break;
4681 	case MADIface:
4682 		list = snd_hdspm_controls_madiface;
4683 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4684 		break;
4685 	case AIO:
4686 		list = snd_hdspm_controls_aio;
4687 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4688 		break;
4689 	case RayDAT:
4690 		list = snd_hdspm_controls_raydat;
4691 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4692 		break;
4693 	case AES32:
4694 		list = snd_hdspm_controls_aes32;
4695 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4696 		break;
4697 	}
4698 
4699 	if (NULL != list) {
4700 		for (idx = 0; idx < limit; idx++) {
4701 			err = snd_ctl_add(card,
4702 					snd_ctl_new1(&list[idx], hdspm));
4703 			if (err < 0)
4704 				return err;
4705 		}
4706 	}
4707 
4708 
4709 	/* create simple 1:1 playback mixer controls */
4710 	snd_hdspm_playback_mixer.name = "Chn";
4711 	if (hdspm->system_sample_rate >= 128000) {
4712 		limit = hdspm->qs_out_channels;
4713 	} else if (hdspm->system_sample_rate >= 64000) {
4714 		limit = hdspm->ds_out_channels;
4715 	} else {
4716 		limit = hdspm->ss_out_channels;
4717 	}
4718 	for (idx = 0; idx < limit; ++idx) {
4719 		snd_hdspm_playback_mixer.index = idx + 1;
4720 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4721 		err = snd_ctl_add(card, kctl);
4722 		if (err < 0)
4723 			return err;
4724 		hdspm->playback_mixer_ctls[idx] = kctl;
4725 	}
4726 
4727 
4728 	if (hdspm->tco) {
4729 		/* add tco control elements */
4730 		list = snd_hdspm_controls_tco;
4731 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4732 		for (idx = 0; idx < limit; idx++) {
4733 			err = snd_ctl_add(card,
4734 					snd_ctl_new1(&list[idx], hdspm));
4735 			if (err < 0)
4736 				return err;
4737 		}
4738 	}
4739 
4740 	return 0;
4741 }
4742 
4743 /*------------------------------------------------------------
4744    /proc interface
4745  ------------------------------------------------------------*/
4746 
4747 static void
4748 snd_hdspm_proc_read_tco(struct snd_info_entry *entry,
4749 					struct snd_info_buffer *buffer)
4750 {
4751 	struct hdspm *hdspm = entry->private_data;
4752 	unsigned int status, control;
4753 	int a, ltc, frames, seconds, minutes, hours;
4754 	unsigned int period;
4755 	u64 freq_const = 0;
4756 	u32 rate;
4757 
4758 	snd_iprintf(buffer, "--- TCO ---\n");
4759 
4760 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4761 	control = hdspm->control_register;
4762 
4763 
4764 	if (status & HDSPM_tco_detect) {
4765 		snd_iprintf(buffer, "TCO module detected.\n");
4766 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4767 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4768 			snd_iprintf(buffer, "  LTC valid, ");
4769 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4770 						HDSPM_TCO1_LTC_Format_MSB)) {
4771 			case 0:
4772 				snd_iprintf(buffer, "24 fps, ");
4773 				break;
4774 			case HDSPM_TCO1_LTC_Format_LSB:
4775 				snd_iprintf(buffer, "25 fps, ");
4776 				break;
4777 			case HDSPM_TCO1_LTC_Format_MSB:
4778 				snd_iprintf(buffer, "29.97 fps, ");
4779 				break;
4780 			default:
4781 				snd_iprintf(buffer, "30 fps, ");
4782 				break;
4783 			}
4784 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4785 				snd_iprintf(buffer, "drop frame\n");
4786 			} else {
4787 				snd_iprintf(buffer, "full frame\n");
4788 			}
4789 		} else {
4790 			snd_iprintf(buffer, "  no LTC\n");
4791 		}
4792 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4793 			snd_iprintf(buffer, "  Video: NTSC\n");
4794 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4795 			snd_iprintf(buffer, "  Video: PAL\n");
4796 		} else {
4797 			snd_iprintf(buffer, "  No video\n");
4798 		}
4799 		if (a & HDSPM_TCO1_TCO_lock) {
4800 			snd_iprintf(buffer, "  Sync: lock\n");
4801 		} else {
4802 			snd_iprintf(buffer, "  Sync: no lock\n");
4803 		}
4804 
4805 		switch (hdspm->io_type) {
4806 		case MADI:
4807 		case AES32:
4808 			freq_const = 110069313433624ULL;
4809 			break;
4810 		case RayDAT:
4811 		case AIO:
4812 			freq_const = 104857600000000ULL;
4813 			break;
4814 		case MADIface:
4815 			break; /* no TCO possible */
4816 		}
4817 
4818 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4819 		snd_iprintf(buffer, "    period: %u\n", period);
4820 
4821 
4822 		/* rate = freq_const/period; */
4823 		rate = div_u64(freq_const, period);
4824 
4825 		if (control & HDSPM_QuadSpeed) {
4826 			rate *= 4;
4827 		} else if (control & HDSPM_DoubleSpeed) {
4828 			rate *= 2;
4829 		}
4830 
4831 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4832 				(unsigned int) rate);
4833 
4834 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4835 		frames = ltc & 0xF;
4836 		ltc >>= 4;
4837 		frames += (ltc & 0x3) * 10;
4838 		ltc >>= 4;
4839 		seconds = ltc & 0xF;
4840 		ltc >>= 4;
4841 		seconds += (ltc & 0x7) * 10;
4842 		ltc >>= 4;
4843 		minutes = ltc & 0xF;
4844 		ltc >>= 4;
4845 		minutes += (ltc & 0x7) * 10;
4846 		ltc >>= 4;
4847 		hours = ltc & 0xF;
4848 		ltc >>= 4;
4849 		hours += (ltc & 0x3) * 10;
4850 		snd_iprintf(buffer,
4851 			"  LTC In: %02d:%02d:%02d:%02d\n",
4852 			hours, minutes, seconds, frames);
4853 
4854 	} else {
4855 		snd_iprintf(buffer, "No TCO module detected.\n");
4856 	}
4857 }
4858 
4859 static void
4860 snd_hdspm_proc_read_madi(struct snd_info_entry *entry,
4861 			 struct snd_info_buffer *buffer)
4862 {
4863 	struct hdspm *hdspm = entry->private_data;
4864 	unsigned int status, status2;
4865 
4866 	char *pref_sync_ref;
4867 	char *autosync_ref;
4868 	char *system_clock_mode;
4869 	int x, x2;
4870 
4871 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4872 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4873 
4874 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4875 			hdspm->card_name, hdspm->card->number + 1,
4876 			hdspm->firmware_rev,
4877 			(status2 & HDSPM_version0) |
4878 			(status2 & HDSPM_version1) | (status2 &
4879 				HDSPM_version2));
4880 
4881 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4882 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4883 			hdspm->serial);
4884 
4885 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4886 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4887 
4888 	snd_iprintf(buffer, "--- System ---\n");
4889 
4890 	snd_iprintf(buffer,
4891 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4892 		status & HDSPM_audioIRQPending,
4893 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4894 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4895 		hdspm->irq_count);
4896 	snd_iprintf(buffer,
4897 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4898 		"estimated= %ld (bytes)\n",
4899 		((status & HDSPM_BufferID) ? 1 : 0),
4900 		(status & HDSPM_BufferPositionMask),
4901 		(status & HDSPM_BufferPositionMask) %
4902 		(2 * (int)hdspm->period_bytes),
4903 		((status & HDSPM_BufferPositionMask) - 64) %
4904 		(2 * (int)hdspm->period_bytes),
4905 		(long) hdspm_hw_pointer(hdspm) * 4);
4906 
4907 	snd_iprintf(buffer,
4908 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4909 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4910 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4911 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4912 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4913 	snd_iprintf(buffer,
4914 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4915 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4916 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4917 	snd_iprintf(buffer,
4918 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4919 		"status2=0x%x\n",
4920 		hdspm->control_register, hdspm->control2_register,
4921 		status, status2);
4922 
4923 
4924 	snd_iprintf(buffer, "--- Settings ---\n");
4925 
4926 	x = hdspm_get_latency(hdspm);
4927 
4928 	snd_iprintf(buffer,
4929 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4930 		x, (unsigned long) hdspm->period_bytes);
4931 
4932 	snd_iprintf(buffer, "Line out: %s\n",
4933 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4934 
4935 	snd_iprintf(buffer,
4936 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4937 		"Auto Input %s\n",
4938 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4939 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4940 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4941 
4942 
4943 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4944 		system_clock_mode = "AutoSync";
4945 	else
4946 		system_clock_mode = "Master";
4947 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4948 
4949 	switch (hdspm_pref_sync_ref(hdspm)) {
4950 	case HDSPM_SYNC_FROM_WORD:
4951 		pref_sync_ref = "Word Clock";
4952 		break;
4953 	case HDSPM_SYNC_FROM_MADI:
4954 		pref_sync_ref = "MADI Sync";
4955 		break;
4956 	case HDSPM_SYNC_FROM_TCO:
4957 		pref_sync_ref = "TCO";
4958 		break;
4959 	case HDSPM_SYNC_FROM_SYNC_IN:
4960 		pref_sync_ref = "Sync In";
4961 		break;
4962 	default:
4963 		pref_sync_ref = "XXXX Clock";
4964 		break;
4965 	}
4966 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4967 			pref_sync_ref);
4968 
4969 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4970 			hdspm->system_sample_rate);
4971 
4972 
4973 	snd_iprintf(buffer, "--- Status:\n");
4974 
4975 	x = status & HDSPM_madiSync;
4976 	x2 = status2 & HDSPM_wcSync;
4977 
4978 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4979 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4980 			"NoLock",
4981 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4982 			"NoLock");
4983 
4984 	switch (hdspm_autosync_ref(hdspm)) {
4985 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4986 		autosync_ref = "Sync In";
4987 		break;
4988 	case HDSPM_AUTOSYNC_FROM_TCO:
4989 		autosync_ref = "TCO";
4990 		break;
4991 	case HDSPM_AUTOSYNC_FROM_WORD:
4992 		autosync_ref = "Word Clock";
4993 		break;
4994 	case HDSPM_AUTOSYNC_FROM_MADI:
4995 		autosync_ref = "MADI Sync";
4996 		break;
4997 	case HDSPM_AUTOSYNC_FROM_NONE:
4998 		autosync_ref = "Input not valid";
4999 		break;
5000 	default:
5001 		autosync_ref = "---";
5002 		break;
5003 	}
5004 	snd_iprintf(buffer,
5005 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
5006 		autosync_ref, hdspm_external_sample_rate(hdspm),
5007 		(status & HDSPM_madiFreqMask) >> 22,
5008 		(status2 & HDSPM_wcFreqMask) >> 5);
5009 
5010 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
5011 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
5012 		(status & HDSPM_RX_64ch) ? "64 channels" :
5013 		"56 channels");
5014 
5015 	/* call readout function for TCO specific status */
5016 	snd_hdspm_proc_read_tco(entry, buffer);
5017 
5018 	snd_iprintf(buffer, "\n");
5019 }
5020 
5021 static void
5022 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
5023 			  struct snd_info_buffer *buffer)
5024 {
5025 	struct hdspm *hdspm = entry->private_data;
5026 	unsigned int status;
5027 	unsigned int status2;
5028 	unsigned int timecode;
5029 	unsigned int wcLock, wcSync;
5030 	int pref_syncref;
5031 	char *autosync_ref;
5032 	int x;
5033 
5034 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5035 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5036 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
5037 
5038 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
5039 		    hdspm->card_name, hdspm->card->number + 1,
5040 		    hdspm->firmware_rev);
5041 
5042 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
5043 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
5044 
5045 	snd_iprintf(buffer, "--- System ---\n");
5046 
5047 	snd_iprintf(buffer,
5048 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
5049 		    status & HDSPM_audioIRQPending,
5050 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
5051 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
5052 		    hdspm->irq_count);
5053 	snd_iprintf(buffer,
5054 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
5055 		    "estimated= %ld (bytes)\n",
5056 		    ((status & HDSPM_BufferID) ? 1 : 0),
5057 		    (status & HDSPM_BufferPositionMask),
5058 		    (status & HDSPM_BufferPositionMask) %
5059 		    (2 * (int)hdspm->period_bytes),
5060 		    ((status & HDSPM_BufferPositionMask) - 64) %
5061 		    (2 * (int)hdspm->period_bytes),
5062 		    (long) hdspm_hw_pointer(hdspm) * 4);
5063 
5064 	snd_iprintf(buffer,
5065 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
5066 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
5067 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
5068 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
5069 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
5070 	snd_iprintf(buffer,
5071 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
5072 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
5073 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
5074 	snd_iprintf(buffer,
5075 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
5076 		    "status2=0x%x\n",
5077 		    hdspm->control_register, hdspm->control2_register,
5078 		    status, status2);
5079 
5080 	snd_iprintf(buffer, "--- Settings ---\n");
5081 
5082 	x = hdspm_get_latency(hdspm);
5083 
5084 	snd_iprintf(buffer,
5085 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
5086 		    x, (unsigned long) hdspm->period_bytes);
5087 
5088 	snd_iprintf(buffer, "Line out: %s\n",
5089 		    (hdspm->
5090 		     control_register & HDSPM_LineOut) ? "on " : "off");
5091 
5092 	snd_iprintf(buffer,
5093 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5094 		    (hdspm->
5095 		     control_register & HDSPM_clr_tms) ? "on" : "off",
5096 		    (hdspm->
5097 		     control_register & HDSPM_Emphasis) ? "on" : "off",
5098 		    (hdspm->
5099 		     control_register & HDSPM_Dolby) ? "on" : "off");
5100 
5101 
5102 	pref_syncref = hdspm_pref_sync_ref(hdspm);
5103 	if (pref_syncref == 0)
5104 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5105 	else
5106 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5107 				pref_syncref);
5108 
5109 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
5110 		    hdspm->system_sample_rate);
5111 
5112 	snd_iprintf(buffer, "Double speed: %s\n",
5113 			hdspm->control_register & HDSPM_DS_DoubleWire?
5114 			"Double wire" : "Single wire");
5115 	snd_iprintf(buffer, "Quad speed: %s\n",
5116 			hdspm->control_register & HDSPM_QS_DoubleWire?
5117 			"Double wire" :
5118 			hdspm->control_register & HDSPM_QS_QuadWire?
5119 			"Quad wire" : "Single wire");
5120 
5121 	snd_iprintf(buffer, "--- Status:\n");
5122 
5123 	wcLock = status & HDSPM_AES32_wcLock;
5124 	wcSync = wcLock && (status & HDSPM_AES32_wcSync);
5125 
5126 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
5127 		    (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
5128 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
5129 
5130 	for (x = 0; x < 8; x++) {
5131 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
5132 			    x+1,
5133 			    (status2 & (HDSPM_LockAES >> x)) ?
5134 			    "Sync   " : "No Lock",
5135 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
5136 	}
5137 
5138 	switch (hdspm_autosync_ref(hdspm)) {
5139 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5140 		autosync_ref = "None"; break;
5141 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5142 		autosync_ref = "Word Clock"; break;
5143 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5144 		autosync_ref = "AES1"; break;
5145 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5146 		autosync_ref = "AES2"; break;
5147 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5148 		autosync_ref = "AES3"; break;
5149 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5150 		autosync_ref = "AES4"; break;
5151 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5152 		autosync_ref = "AES5"; break;
5153 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5154 		autosync_ref = "AES6"; break;
5155 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5156 		autosync_ref = "AES7"; break;
5157 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5158 		autosync_ref = "AES8"; break;
5159 	case HDSPM_AES32_AUTOSYNC_FROM_TCO:
5160 		autosync_ref = "TCO"; break;
5161 	case HDSPM_AES32_AUTOSYNC_FROM_SYNC_IN:
5162 		autosync_ref = "Sync In"; break;
5163 	default:
5164 		autosync_ref = "---"; break;
5165 	}
5166 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5167 
5168 	/* call readout function for TCO specific status */
5169 	snd_hdspm_proc_read_tco(entry, buffer);
5170 
5171 	snd_iprintf(buffer, "\n");
5172 }
5173 
5174 static void
5175 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5176 			 struct snd_info_buffer *buffer)
5177 {
5178 	struct hdspm *hdspm = entry->private_data;
5179 	unsigned int status1, status2, status3, i;
5180 	unsigned int lock, sync;
5181 
5182 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5183 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5184 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5185 
5186 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5187 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5188 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5189 
5190 
5191 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5192 
5193 	snd_iprintf(buffer, "Clock mode      : %s\n",
5194 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5195 	snd_iprintf(buffer, "System frequency: %d Hz\n",
5196 		hdspm_get_system_sample_rate(hdspm));
5197 
5198 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5199 
5200 	lock = 0x1;
5201 	sync = 0x100;
5202 
5203 	for (i = 0; i < 8; i++) {
5204 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5205 				i,
5206 				(status1 & lock) ? 1 : 0,
5207 				(status1 & sync) ? 1 : 0,
5208 				texts_freq[(status2 >> (i * 4)) & 0xF]);
5209 
5210 		lock = lock<<1;
5211 		sync = sync<<1;
5212 	}
5213 
5214 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5215 			(status1 & 0x1000000) ? 1 : 0,
5216 			(status1 & 0x2000000) ? 1 : 0,
5217 			texts_freq[(status1 >> 16) & 0xF]);
5218 
5219 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5220 			(status1 & 0x4000000) ? 1 : 0,
5221 			(status1 & 0x8000000) ? 1 : 0,
5222 			texts_freq[(status1 >> 20) & 0xF]);
5223 
5224 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5225 			(status3 & 0x400) ? 1 : 0,
5226 			(status3 & 0x800) ? 1 : 0,
5227 			texts_freq[(status2 >> 12) & 0xF]);
5228 
5229 }
5230 
5231 #ifdef CONFIG_SND_DEBUG
5232 static void
5233 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
5234 			  struct snd_info_buffer *buffer)
5235 {
5236 	struct hdspm *hdspm = entry->private_data;
5237 
5238 	int j,i;
5239 
5240 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
5241 		snd_iprintf(buffer, "0x%08X: ", i);
5242 		for (j = 0; j < 16; j += 4)
5243 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5244 		snd_iprintf(buffer, "\n");
5245 	}
5246 }
5247 #endif
5248 
5249 
5250 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5251 			  struct snd_info_buffer *buffer)
5252 {
5253 	struct hdspm *hdspm = entry->private_data;
5254 	int i;
5255 
5256 	snd_iprintf(buffer, "# generated by hdspm\n");
5257 
5258 	for (i = 0; i < hdspm->max_channels_in; i++) {
5259 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5260 	}
5261 }
5262 
5263 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5264 			  struct snd_info_buffer *buffer)
5265 {
5266 	struct hdspm *hdspm = entry->private_data;
5267 	int i;
5268 
5269 	snd_iprintf(buffer, "# generated by hdspm\n");
5270 
5271 	for (i = 0; i < hdspm->max_channels_out; i++) {
5272 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5273 	}
5274 }
5275 
5276 
5277 static void snd_hdspm_proc_init(struct hdspm *hdspm)
5278 {
5279 	struct snd_info_entry *entry;
5280 
5281 	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5282 		switch (hdspm->io_type) {
5283 		case AES32:
5284 			snd_info_set_text_ops(entry, hdspm,
5285 					snd_hdspm_proc_read_aes32);
5286 			break;
5287 		case MADI:
5288 			snd_info_set_text_ops(entry, hdspm,
5289 					snd_hdspm_proc_read_madi);
5290 			break;
5291 		case MADIface:
5292 			/* snd_info_set_text_ops(entry, hdspm,
5293 			 snd_hdspm_proc_read_madiface); */
5294 			break;
5295 		case RayDAT:
5296 			snd_info_set_text_ops(entry, hdspm,
5297 					snd_hdspm_proc_read_raydat);
5298 			break;
5299 		case AIO:
5300 			break;
5301 		}
5302 	}
5303 
5304 	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5305 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5306 	}
5307 
5308 	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5309 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5310 	}
5311 
5312 #ifdef CONFIG_SND_DEBUG
5313 	/* debug file to read all hdspm registers */
5314 	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5315 		snd_info_set_text_ops(entry, hdspm,
5316 				snd_hdspm_proc_read_debug);
5317 #endif
5318 }
5319 
5320 /*------------------------------------------------------------
5321    hdspm intitialize
5322  ------------------------------------------------------------*/
5323 
5324 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
5325 {
5326 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
5327 	   hold it (e.g. during module initialization).
5328 	   */
5329 
5330 	/* set defaults:       */
5331 
5332 	hdspm->settings_register = 0;
5333 
5334 	switch (hdspm->io_type) {
5335 	case MADI:
5336 	case MADIface:
5337 		hdspm->control_register =
5338 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5339 		break;
5340 
5341 	case RayDAT:
5342 	case AIO:
5343 		hdspm->settings_register = 0x1 + 0x1000;
5344 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5345 		 * line_out */
5346 		hdspm->control_register =
5347 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5348 		break;
5349 
5350 	case AES32:
5351 		hdspm->control_register =
5352 			HDSPM_ClockModeMaster |	/* Master Clock Mode on */
5353 			hdspm_encode_latency(7) | /* latency max=8192samples */
5354 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
5355 			HDSPM_LineOut |	/* Analog output in */
5356 			HDSPM_Professional;  /* Professional mode */
5357 		break;
5358 	}
5359 
5360 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5361 
5362 	if (AES32 == hdspm->io_type) {
5363 		/* No control2 register for AES32 */
5364 #ifdef SNDRV_BIG_ENDIAN
5365 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
5366 #else
5367 		hdspm->control2_register = 0;
5368 #endif
5369 
5370 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5371 	}
5372 	hdspm_compute_period_size(hdspm);
5373 
5374 	/* silence everything */
5375 
5376 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5377 
5378 	if (hdspm_is_raydat_or_aio(hdspm))
5379 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
5380 
5381 	/* set a default rate so that the channel map is set up. */
5382 	hdspm_set_rate(hdspm, 48000, 1);
5383 
5384 	return 0;
5385 }
5386 
5387 
5388 /*------------------------------------------------------------
5389    interrupt
5390  ------------------------------------------------------------*/
5391 
5392 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5393 {
5394 	struct hdspm *hdspm = (struct hdspm *) dev_id;
5395 	unsigned int status;
5396 	int i, audio, midi, schedule = 0;
5397 	/* cycles_t now; */
5398 
5399 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5400 
5401 	audio = status & HDSPM_audioIRQPending;
5402 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5403 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5404 
5405 	/* now = get_cycles(); */
5406 	/*
5407 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5408 	 *          6       4096   ~256053425     ~514672358
5409 	 *          5       2048   ~128024983     ~257373821
5410 	 *          4       1024    ~64023706     ~128718089
5411 	 *          3        512    ~32005945      ~64385999
5412 	 *          2        256    ~16003039      ~32260176
5413 	 *          1        128     ~7998738      ~16194507
5414 	 *          0         64     ~3998231       ~8191558
5415 	 */
5416 	/*
5417 	  dev_info(hdspm->card->dev, "snd_hdspm_interrupt %llu @ %llx\n",
5418 	   now-hdspm->last_interrupt, status & 0xFFC0);
5419 	   hdspm->last_interrupt = now;
5420 	*/
5421 
5422 	if (!audio && !midi)
5423 		return IRQ_NONE;
5424 
5425 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5426 	hdspm->irq_count++;
5427 
5428 
5429 	if (audio) {
5430 		if (hdspm->capture_substream)
5431 			snd_pcm_period_elapsed(hdspm->capture_substream);
5432 
5433 		if (hdspm->playback_substream)
5434 			snd_pcm_period_elapsed(hdspm->playback_substream);
5435 	}
5436 
5437 	if (midi) {
5438 		i = 0;
5439 		while (i < hdspm->midiPorts) {
5440 			if ((hdspm_read(hdspm,
5441 				hdspm->midi[i].statusIn) & 0xff) &&
5442 					(status & hdspm->midi[i].irq)) {
5443 				/* we disable interrupts for this input until
5444 				 * processing is done
5445 				 */
5446 				hdspm->control_register &= ~hdspm->midi[i].ie;
5447 				hdspm_write(hdspm, HDSPM_controlRegister,
5448 						hdspm->control_register);
5449 				hdspm->midi[i].pending = 1;
5450 				schedule = 1;
5451 			}
5452 
5453 			i++;
5454 		}
5455 
5456 		if (schedule)
5457 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5458 	}
5459 
5460 	return IRQ_HANDLED;
5461 }
5462 
5463 /*------------------------------------------------------------
5464    pcm interface
5465   ------------------------------------------------------------*/
5466 
5467 
5468 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5469 					      *substream)
5470 {
5471 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5472 	return hdspm_hw_pointer(hdspm);
5473 }
5474 
5475 
5476 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5477 {
5478 	struct snd_pcm_runtime *runtime = substream->runtime;
5479 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5480 	struct snd_pcm_substream *other;
5481 
5482 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5483 		other = hdspm->capture_substream;
5484 	else
5485 		other = hdspm->playback_substream;
5486 
5487 	if (hdspm->running)
5488 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5489 	else
5490 		runtime->status->hw_ptr = 0;
5491 	if (other) {
5492 		struct snd_pcm_substream *s;
5493 		struct snd_pcm_runtime *oruntime = other->runtime;
5494 		snd_pcm_group_for_each_entry(s, substream) {
5495 			if (s == other) {
5496 				oruntime->status->hw_ptr =
5497 					runtime->status->hw_ptr;
5498 				break;
5499 			}
5500 		}
5501 	}
5502 	return 0;
5503 }
5504 
5505 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5506 			       struct snd_pcm_hw_params *params)
5507 {
5508 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5509 	int err;
5510 	int i;
5511 	pid_t this_pid;
5512 	pid_t other_pid;
5513 
5514 	spin_lock_irq(&hdspm->lock);
5515 
5516 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5517 		this_pid = hdspm->playback_pid;
5518 		other_pid = hdspm->capture_pid;
5519 	} else {
5520 		this_pid = hdspm->capture_pid;
5521 		other_pid = hdspm->playback_pid;
5522 	}
5523 
5524 	if (other_pid > 0 && this_pid != other_pid) {
5525 
5526 		/* The other stream is open, and not by the same
5527 		   task as this one. Make sure that the parameters
5528 		   that matter are the same.
5529 		   */
5530 
5531 		if (params_rate(params) != hdspm->system_sample_rate) {
5532 			spin_unlock_irq(&hdspm->lock);
5533 			_snd_pcm_hw_param_setempty(params,
5534 					SNDRV_PCM_HW_PARAM_RATE);
5535 			return -EBUSY;
5536 		}
5537 
5538 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5539 			spin_unlock_irq(&hdspm->lock);
5540 			_snd_pcm_hw_param_setempty(params,
5541 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5542 			return -EBUSY;
5543 		}
5544 
5545 	}
5546 	/* We're fine. */
5547 	spin_unlock_irq(&hdspm->lock);
5548 
5549 	/* how to make sure that the rate matches an externally-set one ?   */
5550 
5551 	spin_lock_irq(&hdspm->lock);
5552 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5553 	if (err < 0) {
5554 		dev_info(hdspm->card->dev, "err on hdspm_set_rate: %d\n", err);
5555 		spin_unlock_irq(&hdspm->lock);
5556 		_snd_pcm_hw_param_setempty(params,
5557 				SNDRV_PCM_HW_PARAM_RATE);
5558 		return err;
5559 	}
5560 	spin_unlock_irq(&hdspm->lock);
5561 
5562 	err = hdspm_set_interrupt_interval(hdspm,
5563 			params_period_size(params));
5564 	if (err < 0) {
5565 		dev_info(hdspm->card->dev,
5566 			 "err on hdspm_set_interrupt_interval: %d\n", err);
5567 		_snd_pcm_hw_param_setempty(params,
5568 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5569 		return err;
5570 	}
5571 
5572 	/* Memory allocation, takashi's method, dont know if we should
5573 	 * spinlock
5574 	 */
5575 	/* malloc all buffer even if not enabled to get sure */
5576 	/* Update for MADI rev 204: we need to allocate for all channels,
5577 	 * otherwise it doesn't work at 96kHz */
5578 
5579 	err =
5580 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5581 	if (err < 0) {
5582 		dev_info(hdspm->card->dev,
5583 			 "err on snd_pcm_lib_malloc_pages: %d\n", err);
5584 		return err;
5585 	}
5586 
5587 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5588 
5589 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5590 				params_channels(params));
5591 
5592 		for (i = 0; i < params_channels(params); ++i)
5593 			snd_hdspm_enable_out(hdspm, i, 1);
5594 
5595 		hdspm->playback_buffer =
5596 			(unsigned char *) substream->runtime->dma_area;
5597 		dev_dbg(hdspm->card->dev,
5598 			"Allocated sample buffer for playback at %p\n",
5599 				hdspm->playback_buffer);
5600 	} else {
5601 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5602 				params_channels(params));
5603 
5604 		for (i = 0; i < params_channels(params); ++i)
5605 			snd_hdspm_enable_in(hdspm, i, 1);
5606 
5607 		hdspm->capture_buffer =
5608 			(unsigned char *) substream->runtime->dma_area;
5609 		dev_dbg(hdspm->card->dev,
5610 			"Allocated sample buffer for capture at %p\n",
5611 				hdspm->capture_buffer);
5612 	}
5613 
5614 	/*
5615 	   dev_dbg(hdspm->card->dev,
5616 	   "Allocated sample buffer for %s at 0x%08X\n",
5617 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5618 	   "playback" : "capture",
5619 	   snd_pcm_sgbuf_get_addr(substream, 0));
5620 	   */
5621 	/*
5622 	   dev_dbg(hdspm->card->dev,
5623 	   "set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5624 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5625 	   "playback" : "capture",
5626 	   params_rate(params), params_channels(params),
5627 	   params_buffer_size(params));
5628 	   */
5629 
5630 
5631 	/*  For AES cards, the float format bit is the same as the
5632 	 *  preferred sync reference. Since we don't want to break
5633 	 *  sync settings, we have to skip the remaining part of this
5634 	 *  function.
5635 	 */
5636 	if (hdspm->io_type == AES32) {
5637 		return 0;
5638 	}
5639 
5640 
5641 	/* Switch to native float format if requested */
5642 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5643 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5644 			dev_info(hdspm->card->dev,
5645 				 "Switching to native 32bit LE float format.\n");
5646 
5647 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5648 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5649 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5650 			dev_info(hdspm->card->dev,
5651 				 "Switching to native 32bit LE integer format.\n");
5652 
5653 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5654 	}
5655 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5656 
5657 	return 0;
5658 }
5659 
5660 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5661 {
5662 	int i;
5663 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5664 
5665 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5666 
5667 		/* params_channels(params) should be enough,
5668 		   but to get sure in case of error */
5669 		for (i = 0; i < hdspm->max_channels_out; ++i)
5670 			snd_hdspm_enable_out(hdspm, i, 0);
5671 
5672 		hdspm->playback_buffer = NULL;
5673 	} else {
5674 		for (i = 0; i < hdspm->max_channels_in; ++i)
5675 			snd_hdspm_enable_in(hdspm, i, 0);
5676 
5677 		hdspm->capture_buffer = NULL;
5678 
5679 	}
5680 
5681 	snd_pcm_lib_free_pages(substream);
5682 
5683 	return 0;
5684 }
5685 
5686 
5687 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5688 		struct snd_pcm_channel_info *info)
5689 {
5690 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5691 
5692 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5693 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5694 			dev_info(hdspm->card->dev,
5695 				 "snd_hdspm_channel_info: output channel out of range (%d)\n",
5696 				 info->channel);
5697 			return -EINVAL;
5698 		}
5699 
5700 		if (hdspm->channel_map_out[info->channel] < 0) {
5701 			dev_info(hdspm->card->dev,
5702 				 "snd_hdspm_channel_info: output channel %d mapped out\n",
5703 				 info->channel);
5704 			return -EINVAL;
5705 		}
5706 
5707 		info->offset = hdspm->channel_map_out[info->channel] *
5708 			HDSPM_CHANNEL_BUFFER_BYTES;
5709 	} else {
5710 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5711 			dev_info(hdspm->card->dev,
5712 				 "snd_hdspm_channel_info: input channel out of range (%d)\n",
5713 				 info->channel);
5714 			return -EINVAL;
5715 		}
5716 
5717 		if (hdspm->channel_map_in[info->channel] < 0) {
5718 			dev_info(hdspm->card->dev,
5719 				 "snd_hdspm_channel_info: input channel %d mapped out\n",
5720 				 info->channel);
5721 			return -EINVAL;
5722 		}
5723 
5724 		info->offset = hdspm->channel_map_in[info->channel] *
5725 			HDSPM_CHANNEL_BUFFER_BYTES;
5726 	}
5727 
5728 	info->first = 0;
5729 	info->step = 32;
5730 	return 0;
5731 }
5732 
5733 
5734 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5735 		unsigned int cmd, void *arg)
5736 {
5737 	switch (cmd) {
5738 	case SNDRV_PCM_IOCTL1_RESET:
5739 		return snd_hdspm_reset(substream);
5740 
5741 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5742 		{
5743 			struct snd_pcm_channel_info *info = arg;
5744 			return snd_hdspm_channel_info(substream, info);
5745 		}
5746 	default:
5747 		break;
5748 	}
5749 
5750 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5751 }
5752 
5753 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5754 {
5755 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5756 	struct snd_pcm_substream *other;
5757 	int running;
5758 
5759 	spin_lock(&hdspm->lock);
5760 	running = hdspm->running;
5761 	switch (cmd) {
5762 	case SNDRV_PCM_TRIGGER_START:
5763 		running |= 1 << substream->stream;
5764 		break;
5765 	case SNDRV_PCM_TRIGGER_STOP:
5766 		running &= ~(1 << substream->stream);
5767 		break;
5768 	default:
5769 		snd_BUG();
5770 		spin_unlock(&hdspm->lock);
5771 		return -EINVAL;
5772 	}
5773 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5774 		other = hdspm->capture_substream;
5775 	else
5776 		other = hdspm->playback_substream;
5777 
5778 	if (other) {
5779 		struct snd_pcm_substream *s;
5780 		snd_pcm_group_for_each_entry(s, substream) {
5781 			if (s == other) {
5782 				snd_pcm_trigger_done(s, substream);
5783 				if (cmd == SNDRV_PCM_TRIGGER_START)
5784 					running |= 1 << s->stream;
5785 				else
5786 					running &= ~(1 << s->stream);
5787 				goto _ok;
5788 			}
5789 		}
5790 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5791 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5792 					&& substream->stream ==
5793 					SNDRV_PCM_STREAM_CAPTURE)
5794 				hdspm_silence_playback(hdspm);
5795 		} else {
5796 			if (running &&
5797 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5798 				hdspm_silence_playback(hdspm);
5799 		}
5800 	} else {
5801 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5802 			hdspm_silence_playback(hdspm);
5803 	}
5804 _ok:
5805 	snd_pcm_trigger_done(substream, substream);
5806 	if (!hdspm->running && running)
5807 		hdspm_start_audio(hdspm);
5808 	else if (hdspm->running && !running)
5809 		hdspm_stop_audio(hdspm);
5810 	hdspm->running = running;
5811 	spin_unlock(&hdspm->lock);
5812 
5813 	return 0;
5814 }
5815 
5816 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5817 {
5818 	return 0;
5819 }
5820 
5821 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5822 	.info = (SNDRV_PCM_INFO_MMAP |
5823 		 SNDRV_PCM_INFO_MMAP_VALID |
5824 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5825 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5826 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5827 	.rates = (SNDRV_PCM_RATE_32000 |
5828 		  SNDRV_PCM_RATE_44100 |
5829 		  SNDRV_PCM_RATE_48000 |
5830 		  SNDRV_PCM_RATE_64000 |
5831 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5832 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5833 	.rate_min = 32000,
5834 	.rate_max = 192000,
5835 	.channels_min = 1,
5836 	.channels_max = HDSPM_MAX_CHANNELS,
5837 	.buffer_bytes_max =
5838 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5839 	.period_bytes_min = (32 * 4),
5840 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5841 	.periods_min = 2,
5842 	.periods_max = 512,
5843 	.fifo_size = 0
5844 };
5845 
5846 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5847 	.info = (SNDRV_PCM_INFO_MMAP |
5848 		 SNDRV_PCM_INFO_MMAP_VALID |
5849 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5850 		 SNDRV_PCM_INFO_SYNC_START),
5851 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5852 	.rates = (SNDRV_PCM_RATE_32000 |
5853 		  SNDRV_PCM_RATE_44100 |
5854 		  SNDRV_PCM_RATE_48000 |
5855 		  SNDRV_PCM_RATE_64000 |
5856 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5857 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5858 	.rate_min = 32000,
5859 	.rate_max = 192000,
5860 	.channels_min = 1,
5861 	.channels_max = HDSPM_MAX_CHANNELS,
5862 	.buffer_bytes_max =
5863 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5864 	.period_bytes_min = (32 * 4),
5865 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5866 	.periods_min = 2,
5867 	.periods_max = 512,
5868 	.fifo_size = 0
5869 };
5870 
5871 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5872 					   struct snd_pcm_hw_rule *rule)
5873 {
5874 	struct hdspm *hdspm = rule->private;
5875 	struct snd_interval *c =
5876 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5877 	struct snd_interval *r =
5878 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5879 
5880 	if (r->min > 96000 && r->max <= 192000) {
5881 		struct snd_interval t = {
5882 			.min = hdspm->qs_in_channels,
5883 			.max = hdspm->qs_in_channels,
5884 			.integer = 1,
5885 		};
5886 		return snd_interval_refine(c, &t);
5887 	} else if (r->min > 48000 && r->max <= 96000) {
5888 		struct snd_interval t = {
5889 			.min = hdspm->ds_in_channels,
5890 			.max = hdspm->ds_in_channels,
5891 			.integer = 1,
5892 		};
5893 		return snd_interval_refine(c, &t);
5894 	} else if (r->max < 64000) {
5895 		struct snd_interval t = {
5896 			.min = hdspm->ss_in_channels,
5897 			.max = hdspm->ss_in_channels,
5898 			.integer = 1,
5899 		};
5900 		return snd_interval_refine(c, &t);
5901 	}
5902 
5903 	return 0;
5904 }
5905 
5906 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5907 					   struct snd_pcm_hw_rule * rule)
5908 {
5909 	struct hdspm *hdspm = rule->private;
5910 	struct snd_interval *c =
5911 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5912 	struct snd_interval *r =
5913 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5914 
5915 	if (r->min > 96000 && r->max <= 192000) {
5916 		struct snd_interval t = {
5917 			.min = hdspm->qs_out_channels,
5918 			.max = hdspm->qs_out_channels,
5919 			.integer = 1,
5920 		};
5921 		return snd_interval_refine(c, &t);
5922 	} else if (r->min > 48000 && r->max <= 96000) {
5923 		struct snd_interval t = {
5924 			.min = hdspm->ds_out_channels,
5925 			.max = hdspm->ds_out_channels,
5926 			.integer = 1,
5927 		};
5928 		return snd_interval_refine(c, &t);
5929 	} else if (r->max < 64000) {
5930 		struct snd_interval t = {
5931 			.min = hdspm->ss_out_channels,
5932 			.max = hdspm->ss_out_channels,
5933 			.integer = 1,
5934 		};
5935 		return snd_interval_refine(c, &t);
5936 	} else {
5937 	}
5938 	return 0;
5939 }
5940 
5941 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5942 					   struct snd_pcm_hw_rule * rule)
5943 {
5944 	struct hdspm *hdspm = rule->private;
5945 	struct snd_interval *c =
5946 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5947 	struct snd_interval *r =
5948 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5949 
5950 	if (c->min >= hdspm->ss_in_channels) {
5951 		struct snd_interval t = {
5952 			.min = 32000,
5953 			.max = 48000,
5954 			.integer = 1,
5955 		};
5956 		return snd_interval_refine(r, &t);
5957 	} else if (c->max <= hdspm->qs_in_channels) {
5958 		struct snd_interval t = {
5959 			.min = 128000,
5960 			.max = 192000,
5961 			.integer = 1,
5962 		};
5963 		return snd_interval_refine(r, &t);
5964 	} else if (c->max <= hdspm->ds_in_channels) {
5965 		struct snd_interval t = {
5966 			.min = 64000,
5967 			.max = 96000,
5968 			.integer = 1,
5969 		};
5970 		return snd_interval_refine(r, &t);
5971 	}
5972 
5973 	return 0;
5974 }
5975 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5976 					   struct snd_pcm_hw_rule *rule)
5977 {
5978 	struct hdspm *hdspm = rule->private;
5979 	struct snd_interval *c =
5980 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5981 	struct snd_interval *r =
5982 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5983 
5984 	if (c->min >= hdspm->ss_out_channels) {
5985 		struct snd_interval t = {
5986 			.min = 32000,
5987 			.max = 48000,
5988 			.integer = 1,
5989 		};
5990 		return snd_interval_refine(r, &t);
5991 	} else if (c->max <= hdspm->qs_out_channels) {
5992 		struct snd_interval t = {
5993 			.min = 128000,
5994 			.max = 192000,
5995 			.integer = 1,
5996 		};
5997 		return snd_interval_refine(r, &t);
5998 	} else if (c->max <= hdspm->ds_out_channels) {
5999 		struct snd_interval t = {
6000 			.min = 64000,
6001 			.max = 96000,
6002 			.integer = 1,
6003 		};
6004 		return snd_interval_refine(r, &t);
6005 	}
6006 
6007 	return 0;
6008 }
6009 
6010 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
6011 				      struct snd_pcm_hw_rule *rule)
6012 {
6013 	unsigned int list[3];
6014 	struct hdspm *hdspm = rule->private;
6015 	struct snd_interval *c = hw_param_interval(params,
6016 			SNDRV_PCM_HW_PARAM_CHANNELS);
6017 
6018 	list[0] = hdspm->qs_in_channels;
6019 	list[1] = hdspm->ds_in_channels;
6020 	list[2] = hdspm->ss_in_channels;
6021 	return snd_interval_list(c, 3, list, 0);
6022 }
6023 
6024 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
6025 				      struct snd_pcm_hw_rule *rule)
6026 {
6027 	unsigned int list[3];
6028 	struct hdspm *hdspm = rule->private;
6029 	struct snd_interval *c = hw_param_interval(params,
6030 			SNDRV_PCM_HW_PARAM_CHANNELS);
6031 
6032 	list[0] = hdspm->qs_out_channels;
6033 	list[1] = hdspm->ds_out_channels;
6034 	list[2] = hdspm->ss_out_channels;
6035 	return snd_interval_list(c, 3, list, 0);
6036 }
6037 
6038 
6039 static unsigned int hdspm_aes32_sample_rates[] = {
6040 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
6041 };
6042 
6043 static struct snd_pcm_hw_constraint_list
6044 hdspm_hw_constraints_aes32_sample_rates = {
6045 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
6046 	.list = hdspm_aes32_sample_rates,
6047 	.mask = 0
6048 };
6049 
6050 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
6051 {
6052 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6053 	struct snd_pcm_runtime *runtime = substream->runtime;
6054 
6055 	spin_lock_irq(&hdspm->lock);
6056 
6057 	snd_pcm_set_sync(substream);
6058 
6059 
6060 	runtime->hw = snd_hdspm_playback_subinfo;
6061 
6062 	if (hdspm->capture_substream == NULL)
6063 		hdspm_stop_audio(hdspm);
6064 
6065 	hdspm->playback_pid = current->pid;
6066 	hdspm->playback_substream = substream;
6067 
6068 	spin_unlock_irq(&hdspm->lock);
6069 
6070 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6071 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6072 
6073 	switch (hdspm->io_type) {
6074 	case AIO:
6075 	case RayDAT:
6076 		snd_pcm_hw_constraint_minmax(runtime,
6077 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6078 					     32, 4096);
6079 		/* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
6080 		snd_pcm_hw_constraint_minmax(runtime,
6081 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6082 					     16384, 16384);
6083 		break;
6084 
6085 	default:
6086 		snd_pcm_hw_constraint_minmax(runtime,
6087 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6088 					     64, 8192);
6089 		break;
6090 	}
6091 
6092 	if (AES32 == hdspm->io_type) {
6093 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6094 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6095 				&hdspm_hw_constraints_aes32_sample_rates);
6096 	} else {
6097 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6098 				snd_hdspm_hw_rule_rate_out_channels, hdspm,
6099 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6100 	}
6101 
6102 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6103 			snd_hdspm_hw_rule_out_channels, hdspm,
6104 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6105 
6106 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6107 			snd_hdspm_hw_rule_out_channels_rate, hdspm,
6108 			SNDRV_PCM_HW_PARAM_RATE, -1);
6109 
6110 	return 0;
6111 }
6112 
6113 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
6114 {
6115 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6116 
6117 	spin_lock_irq(&hdspm->lock);
6118 
6119 	hdspm->playback_pid = -1;
6120 	hdspm->playback_substream = NULL;
6121 
6122 	spin_unlock_irq(&hdspm->lock);
6123 
6124 	return 0;
6125 }
6126 
6127 
6128 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
6129 {
6130 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6131 	struct snd_pcm_runtime *runtime = substream->runtime;
6132 
6133 	spin_lock_irq(&hdspm->lock);
6134 	snd_pcm_set_sync(substream);
6135 	runtime->hw = snd_hdspm_capture_subinfo;
6136 
6137 	if (hdspm->playback_substream == NULL)
6138 		hdspm_stop_audio(hdspm);
6139 
6140 	hdspm->capture_pid = current->pid;
6141 	hdspm->capture_substream = substream;
6142 
6143 	spin_unlock_irq(&hdspm->lock);
6144 
6145 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
6146 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6147 
6148 	switch (hdspm->io_type) {
6149 	case AIO:
6150 	case RayDAT:
6151 		snd_pcm_hw_constraint_minmax(runtime,
6152 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6153 					     32, 4096);
6154 		snd_pcm_hw_constraint_minmax(runtime,
6155 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6156 					     16384, 16384);
6157 		break;
6158 
6159 	default:
6160 		snd_pcm_hw_constraint_minmax(runtime,
6161 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6162 					     64, 8192);
6163 		break;
6164 	}
6165 
6166 	if (AES32 == hdspm->io_type) {
6167 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
6168 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6169 				&hdspm_hw_constraints_aes32_sample_rates);
6170 	} else {
6171 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6172 				snd_hdspm_hw_rule_rate_in_channels, hdspm,
6173 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6174 	}
6175 
6176 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6177 			snd_hdspm_hw_rule_in_channels, hdspm,
6178 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6179 
6180 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6181 			snd_hdspm_hw_rule_in_channels_rate, hdspm,
6182 			SNDRV_PCM_HW_PARAM_RATE, -1);
6183 
6184 	return 0;
6185 }
6186 
6187 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
6188 {
6189 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6190 
6191 	spin_lock_irq(&hdspm->lock);
6192 
6193 	hdspm->capture_pid = -1;
6194 	hdspm->capture_substream = NULL;
6195 
6196 	spin_unlock_irq(&hdspm->lock);
6197 	return 0;
6198 }
6199 
6200 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6201 {
6202 	/* we have nothing to initialize but the call is required */
6203 	return 0;
6204 }
6205 
6206 static inline int copy_u32_le(void __user *dest, void __iomem *src)
6207 {
6208 	u32 val = readl(src);
6209 	return copy_to_user(dest, &val, 4);
6210 }
6211 
6212 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
6213 		unsigned int cmd, unsigned long arg)
6214 {
6215 	void __user *argp = (void __user *)arg;
6216 	struct hdspm *hdspm = hw->private_data;
6217 	struct hdspm_mixer_ioctl mixer;
6218 	struct hdspm_config info;
6219 	struct hdspm_status status;
6220 	struct hdspm_version hdspm_version;
6221 	struct hdspm_peak_rms *levels;
6222 	struct hdspm_ltc ltc;
6223 	unsigned int statusregister;
6224 	long unsigned int s;
6225 	int i = 0;
6226 
6227 	switch (cmd) {
6228 
6229 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
6230 		levels = &hdspm->peak_rms;
6231 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
6232 			levels->input_peaks[i] =
6233 				readl(hdspm->iobase +
6234 						HDSPM_MADI_INPUT_PEAK + i*4);
6235 			levels->playback_peaks[i] =
6236 				readl(hdspm->iobase +
6237 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
6238 			levels->output_peaks[i] =
6239 				readl(hdspm->iobase +
6240 						HDSPM_MADI_OUTPUT_PEAK + i*4);
6241 
6242 			levels->input_rms[i] =
6243 				((uint64_t) readl(hdspm->iobase +
6244 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6245 				(uint64_t) readl(hdspm->iobase +
6246 						HDSPM_MADI_INPUT_RMS_L + i*4);
6247 			levels->playback_rms[i] =
6248 				((uint64_t)readl(hdspm->iobase +
6249 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6250 				(uint64_t)readl(hdspm->iobase +
6251 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
6252 			levels->output_rms[i] =
6253 				((uint64_t)readl(hdspm->iobase +
6254 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6255 				(uint64_t)readl(hdspm->iobase +
6256 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
6257 		}
6258 
6259 		if (hdspm->system_sample_rate > 96000) {
6260 			levels->speed = qs;
6261 		} else if (hdspm->system_sample_rate > 48000) {
6262 			levels->speed = ds;
6263 		} else {
6264 			levels->speed = ss;
6265 		}
6266 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
6267 
6268 		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
6269 		if (0 != s) {
6270 			/* dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu
6271 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6272 			 */
6273 			return -EFAULT;
6274 		}
6275 		break;
6276 
6277 	case SNDRV_HDSPM_IOCTL_GET_LTC:
6278 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6279 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6280 		if (i & HDSPM_TCO1_LTC_Input_valid) {
6281 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6282 				HDSPM_TCO1_LTC_Format_MSB)) {
6283 			case 0:
6284 				ltc.format = fps_24;
6285 				break;
6286 			case HDSPM_TCO1_LTC_Format_LSB:
6287 				ltc.format = fps_25;
6288 				break;
6289 			case HDSPM_TCO1_LTC_Format_MSB:
6290 				ltc.format = fps_2997;
6291 				break;
6292 			default:
6293 				ltc.format = fps_30;
6294 				break;
6295 			}
6296 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
6297 				ltc.frame = drop_frame;
6298 			} else {
6299 				ltc.frame = full_frame;
6300 			}
6301 		} else {
6302 			ltc.format = format_invalid;
6303 			ltc.frame = frame_invalid;
6304 		}
6305 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6306 			ltc.input_format = ntsc;
6307 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6308 			ltc.input_format = pal;
6309 		} else {
6310 			ltc.input_format = no_video;
6311 		}
6312 
6313 		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6314 		if (0 != s) {
6315 			/*
6316 			  dev_err(hdspm->card->dev, "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
6317 			return -EFAULT;
6318 		}
6319 
6320 		break;
6321 
6322 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
6323 
6324 		memset(&info, 0, sizeof(info));
6325 		spin_lock_irq(&hdspm->lock);
6326 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6327 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
6328 
6329 		info.system_sample_rate = hdspm->system_sample_rate;
6330 		info.autosync_sample_rate =
6331 			hdspm_external_sample_rate(hdspm);
6332 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6333 		info.clock_source = hdspm_clock_source(hdspm);
6334 		info.autosync_ref = hdspm_autosync_ref(hdspm);
6335 		info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
6336 		info.passthru = 0;
6337 		spin_unlock_irq(&hdspm->lock);
6338 		if (copy_to_user(argp, &info, sizeof(info)))
6339 			return -EFAULT;
6340 		break;
6341 
6342 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
6343 		memset(&status, 0, sizeof(status));
6344 
6345 		status.card_type = hdspm->io_type;
6346 
6347 		status.autosync_source = hdspm_autosync_ref(hdspm);
6348 
6349 		status.card_clock = 110069313433624ULL;
6350 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6351 
6352 		switch (hdspm->io_type) {
6353 		case MADI:
6354 		case MADIface:
6355 			status.card_specific.madi.sync_wc =
6356 				hdspm_wc_sync_check(hdspm);
6357 			status.card_specific.madi.sync_madi =
6358 				hdspm_madi_sync_check(hdspm);
6359 			status.card_specific.madi.sync_tco =
6360 				hdspm_tco_sync_check(hdspm);
6361 			status.card_specific.madi.sync_in =
6362 				hdspm_sync_in_sync_check(hdspm);
6363 
6364 			statusregister =
6365 				hdspm_read(hdspm, HDSPM_statusRegister);
6366 			status.card_specific.madi.madi_input =
6367 				(statusregister & HDSPM_AB_int) ? 1 : 0;
6368 			status.card_specific.madi.channel_format =
6369 				(statusregister & HDSPM_RX_64ch) ? 1 : 0;
6370 			/* TODO: Mac driver sets it when f_s>48kHz */
6371 			status.card_specific.madi.frame_format = 0;
6372 
6373 		default:
6374 			break;
6375 		}
6376 
6377 		if (copy_to_user(argp, &status, sizeof(status)))
6378 			return -EFAULT;
6379 
6380 
6381 		break;
6382 
6383 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
6384 		memset(&hdspm_version, 0, sizeof(hdspm_version));
6385 
6386 		hdspm_version.card_type = hdspm->io_type;
6387 		strlcpy(hdspm_version.cardname, hdspm->card_name,
6388 				sizeof(hdspm_version.cardname));
6389 		hdspm_version.serial = hdspm->serial;
6390 		hdspm_version.firmware_rev = hdspm->firmware_rev;
6391 		hdspm_version.addons = 0;
6392 		if (hdspm->tco)
6393 			hdspm_version.addons |= HDSPM_ADDON_TCO;
6394 
6395 		if (copy_to_user(argp, &hdspm_version,
6396 					sizeof(hdspm_version)))
6397 			return -EFAULT;
6398 		break;
6399 
6400 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
6401 		if (copy_from_user(&mixer, argp, sizeof(mixer)))
6402 			return -EFAULT;
6403 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
6404 					sizeof(struct hdspm_mixer)))
6405 			return -EFAULT;
6406 		break;
6407 
6408 	default:
6409 		return -EINVAL;
6410 	}
6411 	return 0;
6412 }
6413 
6414 static struct snd_pcm_ops snd_hdspm_playback_ops = {
6415 	.open = snd_hdspm_playback_open,
6416 	.close = snd_hdspm_playback_release,
6417 	.ioctl = snd_hdspm_ioctl,
6418 	.hw_params = snd_hdspm_hw_params,
6419 	.hw_free = snd_hdspm_hw_free,
6420 	.prepare = snd_hdspm_prepare,
6421 	.trigger = snd_hdspm_trigger,
6422 	.pointer = snd_hdspm_hw_pointer,
6423 	.page = snd_pcm_sgbuf_ops_page,
6424 };
6425 
6426 static struct snd_pcm_ops snd_hdspm_capture_ops = {
6427 	.open = snd_hdspm_capture_open,
6428 	.close = snd_hdspm_capture_release,
6429 	.ioctl = snd_hdspm_ioctl,
6430 	.hw_params = snd_hdspm_hw_params,
6431 	.hw_free = snd_hdspm_hw_free,
6432 	.prepare = snd_hdspm_prepare,
6433 	.trigger = snd_hdspm_trigger,
6434 	.pointer = snd_hdspm_hw_pointer,
6435 	.page = snd_pcm_sgbuf_ops_page,
6436 };
6437 
6438 static int snd_hdspm_create_hwdep(struct snd_card *card,
6439 				  struct hdspm *hdspm)
6440 {
6441 	struct snd_hwdep *hw;
6442 	int err;
6443 
6444 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6445 	if (err < 0)
6446 		return err;
6447 
6448 	hdspm->hwdep = hw;
6449 	hw->private_data = hdspm;
6450 	strcpy(hw->name, "HDSPM hwdep interface");
6451 
6452 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6453 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6454 	hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6455 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6456 
6457 	return 0;
6458 }
6459 
6460 
6461 /*------------------------------------------------------------
6462    memory interface
6463  ------------------------------------------------------------*/
6464 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6465 {
6466 	int err;
6467 	struct snd_pcm *pcm;
6468 	size_t wanted;
6469 
6470 	pcm = hdspm->pcm;
6471 
6472 	wanted = HDSPM_DMA_AREA_BYTES;
6473 
6474 	err =
6475 	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6476 						   SNDRV_DMA_TYPE_DEV_SG,
6477 						   snd_dma_pci_data(hdspm->pci),
6478 						   wanted,
6479 						   wanted);
6480 	if (err < 0) {
6481 		dev_dbg(hdspm->card->dev,
6482 			"Could not preallocate %zd Bytes\n", wanted);
6483 
6484 		return err;
6485 	} else
6486 		dev_dbg(hdspm->card->dev,
6487 			" Preallocated %zd Bytes\n", wanted);
6488 
6489 	return 0;
6490 }
6491 
6492 
6493 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6494 			    struct snd_pcm_substream *substream,
6495 			     unsigned int reg, int channels)
6496 {
6497 	int i;
6498 
6499 	/* continuous memory segment */
6500 	for (i = 0; i < (channels * 16); i++)
6501 		hdspm_write(hdspm, reg + 4 * i,
6502 				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6503 }
6504 
6505 
6506 /* ------------- ALSA Devices ---------------------------- */
6507 static int snd_hdspm_create_pcm(struct snd_card *card,
6508 				struct hdspm *hdspm)
6509 {
6510 	struct snd_pcm *pcm;
6511 	int err;
6512 
6513 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6514 	if (err < 0)
6515 		return err;
6516 
6517 	hdspm->pcm = pcm;
6518 	pcm->private_data = hdspm;
6519 	strcpy(pcm->name, hdspm->card_name);
6520 
6521 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6522 			&snd_hdspm_playback_ops);
6523 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6524 			&snd_hdspm_capture_ops);
6525 
6526 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6527 
6528 	err = snd_hdspm_preallocate_memory(hdspm);
6529 	if (err < 0)
6530 		return err;
6531 
6532 	return 0;
6533 }
6534 
6535 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6536 {
6537 	int i;
6538 
6539 	for (i = 0; i < hdspm->midiPorts; i++)
6540 		snd_hdspm_flush_midi_input(hdspm, i);
6541 }
6542 
6543 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6544 					 struct hdspm *hdspm)
6545 {
6546 	int err, i;
6547 
6548 	dev_dbg(card->dev, "Create card...\n");
6549 	err = snd_hdspm_create_pcm(card, hdspm);
6550 	if (err < 0)
6551 		return err;
6552 
6553 	i = 0;
6554 	while (i < hdspm->midiPorts) {
6555 		err = snd_hdspm_create_midi(card, hdspm, i);
6556 		if (err < 0) {
6557 			return err;
6558 		}
6559 		i++;
6560 	}
6561 
6562 	err = snd_hdspm_create_controls(card, hdspm);
6563 	if (err < 0)
6564 		return err;
6565 
6566 	err = snd_hdspm_create_hwdep(card, hdspm);
6567 	if (err < 0)
6568 		return err;
6569 
6570 	dev_dbg(card->dev, "proc init...\n");
6571 	snd_hdspm_proc_init(hdspm);
6572 
6573 	hdspm->system_sample_rate = -1;
6574 	hdspm->last_external_sample_rate = -1;
6575 	hdspm->last_internal_sample_rate = -1;
6576 	hdspm->playback_pid = -1;
6577 	hdspm->capture_pid = -1;
6578 	hdspm->capture_substream = NULL;
6579 	hdspm->playback_substream = NULL;
6580 
6581 	dev_dbg(card->dev, "Set defaults...\n");
6582 	err = snd_hdspm_set_defaults(hdspm);
6583 	if (err < 0)
6584 		return err;
6585 
6586 	dev_dbg(card->dev, "Update mixer controls...\n");
6587 	hdspm_update_simple_mixer_controls(hdspm);
6588 
6589 	dev_dbg(card->dev, "Initializeing complete ???\n");
6590 
6591 	err = snd_card_register(card);
6592 	if (err < 0) {
6593 		dev_err(card->dev, "error registering card\n");
6594 		return err;
6595 	}
6596 
6597 	dev_dbg(card->dev, "... yes now\n");
6598 
6599 	return 0;
6600 }
6601 
6602 static int snd_hdspm_create(struct snd_card *card,
6603 			    struct hdspm *hdspm)
6604 {
6605 
6606 	struct pci_dev *pci = hdspm->pci;
6607 	int err;
6608 	unsigned long io_extent;
6609 
6610 	hdspm->irq = -1;
6611 	hdspm->card = card;
6612 
6613 	spin_lock_init(&hdspm->lock);
6614 
6615 	pci_read_config_word(hdspm->pci,
6616 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6617 
6618 	strcpy(card->mixername, "Xilinx FPGA");
6619 	strcpy(card->driver, "HDSPM");
6620 
6621 	switch (hdspm->firmware_rev) {
6622 	case HDSPM_RAYDAT_REV:
6623 		hdspm->io_type = RayDAT;
6624 		hdspm->card_name = "RME RayDAT";
6625 		hdspm->midiPorts = 2;
6626 		break;
6627 	case HDSPM_AIO_REV:
6628 		hdspm->io_type = AIO;
6629 		hdspm->card_name = "RME AIO";
6630 		hdspm->midiPorts = 1;
6631 		break;
6632 	case HDSPM_MADIFACE_REV:
6633 		hdspm->io_type = MADIface;
6634 		hdspm->card_name = "RME MADIface";
6635 		hdspm->midiPorts = 1;
6636 		break;
6637 	default:
6638 		if ((hdspm->firmware_rev == 0xf0) ||
6639 			((hdspm->firmware_rev >= 0xe6) &&
6640 					(hdspm->firmware_rev <= 0xea))) {
6641 			hdspm->io_type = AES32;
6642 			hdspm->card_name = "RME AES32";
6643 			hdspm->midiPorts = 2;
6644 		} else if ((hdspm->firmware_rev == 0xd2) ||
6645 			((hdspm->firmware_rev >= 0xc8)  &&
6646 				(hdspm->firmware_rev <= 0xcf))) {
6647 			hdspm->io_type = MADI;
6648 			hdspm->card_name = "RME MADI";
6649 			hdspm->midiPorts = 3;
6650 		} else {
6651 			dev_err(card->dev,
6652 				"unknown firmware revision %x\n",
6653 				hdspm->firmware_rev);
6654 			return -ENODEV;
6655 		}
6656 	}
6657 
6658 	err = pci_enable_device(pci);
6659 	if (err < 0)
6660 		return err;
6661 
6662 	pci_set_master(hdspm->pci);
6663 
6664 	err = pci_request_regions(pci, "hdspm");
6665 	if (err < 0)
6666 		return err;
6667 
6668 	hdspm->port = pci_resource_start(pci, 0);
6669 	io_extent = pci_resource_len(pci, 0);
6670 
6671 	dev_dbg(card->dev, "grabbed memory region 0x%lx-0x%lx\n",
6672 			hdspm->port, hdspm->port + io_extent - 1);
6673 
6674 	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6675 	if (!hdspm->iobase) {
6676 		dev_err(card->dev, "unable to remap region 0x%lx-0x%lx\n",
6677 				hdspm->port, hdspm->port + io_extent - 1);
6678 		return -EBUSY;
6679 	}
6680 	dev_dbg(card->dev, "remapped region (0x%lx) 0x%lx-0x%lx\n",
6681 			(unsigned long)hdspm->iobase, hdspm->port,
6682 			hdspm->port + io_extent - 1);
6683 
6684 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6685 			IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6686 		dev_err(card->dev, "unable to use IRQ %d\n", pci->irq);
6687 		return -EBUSY;
6688 	}
6689 
6690 	dev_dbg(card->dev, "use IRQ %d\n", pci->irq);
6691 
6692 	hdspm->irq = pci->irq;
6693 
6694 	dev_dbg(card->dev, "kmalloc Mixer memory of %zd Bytes\n",
6695 			sizeof(struct hdspm_mixer));
6696 	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6697 	if (!hdspm->mixer) {
6698 		dev_err(card->dev,
6699 			"unable to kmalloc Mixer memory of %d Bytes\n",
6700 				(int)sizeof(struct hdspm_mixer));
6701 		return -ENOMEM;
6702 	}
6703 
6704 	hdspm->port_names_in = NULL;
6705 	hdspm->port_names_out = NULL;
6706 
6707 	switch (hdspm->io_type) {
6708 	case AES32:
6709 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6710 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6711 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6712 
6713 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6714 			channel_map_aes32;
6715 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6716 			channel_map_aes32;
6717 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6718 			channel_map_aes32;
6719 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6720 			texts_ports_aes32;
6721 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6722 			texts_ports_aes32;
6723 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6724 			texts_ports_aes32;
6725 
6726 		hdspm->max_channels_out = hdspm->max_channels_in =
6727 			AES32_CHANNELS;
6728 		hdspm->port_names_in = hdspm->port_names_out =
6729 			texts_ports_aes32;
6730 		hdspm->channel_map_in = hdspm->channel_map_out =
6731 			channel_map_aes32;
6732 
6733 		break;
6734 
6735 	case MADI:
6736 	case MADIface:
6737 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6738 			MADI_SS_CHANNELS;
6739 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6740 			MADI_DS_CHANNELS;
6741 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6742 			MADI_QS_CHANNELS;
6743 
6744 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6745 			channel_map_unity_ss;
6746 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6747 			channel_map_unity_ss;
6748 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6749 			channel_map_unity_ss;
6750 
6751 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6752 			texts_ports_madi;
6753 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6754 			texts_ports_madi;
6755 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6756 			texts_ports_madi;
6757 		break;
6758 
6759 	case AIO:
6760 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6761 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6762 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6763 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6764 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6765 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6766 
6767 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6768 			dev_info(card->dev, "AEB input board found\n");
6769 			hdspm->ss_in_channels += 4;
6770 			hdspm->ds_in_channels += 4;
6771 			hdspm->qs_in_channels += 4;
6772 		}
6773 
6774 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBO_D)) {
6775 			dev_info(card->dev, "AEB output board found\n");
6776 			hdspm->ss_out_channels += 4;
6777 			hdspm->ds_out_channels += 4;
6778 			hdspm->qs_out_channels += 4;
6779 		}
6780 
6781 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6782 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6783 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6784 
6785 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6786 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6787 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6788 
6789 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6790 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6791 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6792 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6793 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6794 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6795 
6796 		break;
6797 
6798 	case RayDAT:
6799 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6800 			RAYDAT_SS_CHANNELS;
6801 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6802 			RAYDAT_DS_CHANNELS;
6803 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6804 			RAYDAT_QS_CHANNELS;
6805 
6806 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6807 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6808 
6809 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6810 			channel_map_raydat_ss;
6811 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6812 			channel_map_raydat_ds;
6813 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6814 			channel_map_raydat_qs;
6815 		hdspm->channel_map_in = hdspm->channel_map_out =
6816 			channel_map_raydat_ss;
6817 
6818 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6819 			texts_ports_raydat_ss;
6820 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6821 			texts_ports_raydat_ds;
6822 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6823 			texts_ports_raydat_qs;
6824 
6825 
6826 		break;
6827 
6828 	}
6829 
6830 	/* TCO detection */
6831 	switch (hdspm->io_type) {
6832 	case AIO:
6833 	case RayDAT:
6834 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6835 				HDSPM_s2_tco_detect) {
6836 			hdspm->midiPorts++;
6837 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6838 					GFP_KERNEL);
6839 			if (NULL != hdspm->tco) {
6840 				hdspm_tco_write(hdspm);
6841 			}
6842 			dev_info(card->dev, "AIO/RayDAT TCO module found\n");
6843 		} else {
6844 			hdspm->tco = NULL;
6845 		}
6846 		break;
6847 
6848 	case MADI:
6849 	case AES32:
6850 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6851 			hdspm->midiPorts++;
6852 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6853 					GFP_KERNEL);
6854 			if (NULL != hdspm->tco) {
6855 				hdspm_tco_write(hdspm);
6856 			}
6857 			dev_info(card->dev, "MADI/AES TCO module found\n");
6858 		} else {
6859 			hdspm->tco = NULL;
6860 		}
6861 		break;
6862 
6863 	default:
6864 		hdspm->tco = NULL;
6865 	}
6866 
6867 	/* texts */
6868 	switch (hdspm->io_type) {
6869 	case AES32:
6870 		if (hdspm->tco) {
6871 			hdspm->texts_autosync = texts_autosync_aes_tco;
6872 			hdspm->texts_autosync_items =
6873 				ARRAY_SIZE(texts_autosync_aes_tco);
6874 		} else {
6875 			hdspm->texts_autosync = texts_autosync_aes;
6876 			hdspm->texts_autosync_items =
6877 				ARRAY_SIZE(texts_autosync_aes);
6878 		}
6879 		break;
6880 
6881 	case MADI:
6882 		if (hdspm->tco) {
6883 			hdspm->texts_autosync = texts_autosync_madi_tco;
6884 			hdspm->texts_autosync_items = 4;
6885 		} else {
6886 			hdspm->texts_autosync = texts_autosync_madi;
6887 			hdspm->texts_autosync_items = 3;
6888 		}
6889 		break;
6890 
6891 	case MADIface:
6892 
6893 		break;
6894 
6895 	case RayDAT:
6896 		if (hdspm->tco) {
6897 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6898 			hdspm->texts_autosync_items = 9;
6899 		} else {
6900 			hdspm->texts_autosync = texts_autosync_raydat;
6901 			hdspm->texts_autosync_items = 8;
6902 		}
6903 		break;
6904 
6905 	case AIO:
6906 		if (hdspm->tco) {
6907 			hdspm->texts_autosync = texts_autosync_aio_tco;
6908 			hdspm->texts_autosync_items = 6;
6909 		} else {
6910 			hdspm->texts_autosync = texts_autosync_aio;
6911 			hdspm->texts_autosync_items = 5;
6912 		}
6913 		break;
6914 
6915 	}
6916 
6917 	tasklet_init(&hdspm->midi_tasklet,
6918 			hdspm_midi_tasklet, (unsigned long) hdspm);
6919 
6920 
6921 	if (hdspm->io_type != MADIface) {
6922 		hdspm->serial = (hdspm_read(hdspm,
6923 				HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6924 		/* id contains either a user-provided value or the default
6925 		 * NULL. If it's the default, we're safe to
6926 		 * fill card->id with the serial number.
6927 		 *
6928 		 * If the serial number is 0xFFFFFF, then we're dealing with
6929 		 * an old PCI revision that comes without a sane number. In
6930 		 * this case, we don't set card->id to avoid collisions
6931 		 * when running with multiple cards.
6932 		 */
6933 		if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6934 			sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6935 			snd_card_set_id(card, card->id);
6936 		}
6937 	}
6938 
6939 	dev_dbg(card->dev, "create alsa devices.\n");
6940 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6941 	if (err < 0)
6942 		return err;
6943 
6944 	snd_hdspm_initialize_midi_flush(hdspm);
6945 
6946 	return 0;
6947 }
6948 
6949 
6950 static int snd_hdspm_free(struct hdspm * hdspm)
6951 {
6952 
6953 	if (hdspm->port) {
6954 
6955 		/* stop th audio, and cancel all interrupts */
6956 		hdspm->control_register &=
6957 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6958 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6959 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6960 		hdspm_write(hdspm, HDSPM_controlRegister,
6961 			    hdspm->control_register);
6962 	}
6963 
6964 	if (hdspm->irq >= 0)
6965 		free_irq(hdspm->irq, (void *) hdspm);
6966 
6967 	kfree(hdspm->mixer);
6968 
6969 	if (hdspm->iobase)
6970 		iounmap(hdspm->iobase);
6971 
6972 	if (hdspm->port)
6973 		pci_release_regions(hdspm->pci);
6974 
6975 	pci_disable_device(hdspm->pci);
6976 	return 0;
6977 }
6978 
6979 
6980 static void snd_hdspm_card_free(struct snd_card *card)
6981 {
6982 	struct hdspm *hdspm = card->private_data;
6983 
6984 	if (hdspm)
6985 		snd_hdspm_free(hdspm);
6986 }
6987 
6988 
6989 static int snd_hdspm_probe(struct pci_dev *pci,
6990 			   const struct pci_device_id *pci_id)
6991 {
6992 	static int dev;
6993 	struct hdspm *hdspm;
6994 	struct snd_card *card;
6995 	int err;
6996 
6997 	if (dev >= SNDRV_CARDS)
6998 		return -ENODEV;
6999 	if (!enable[dev]) {
7000 		dev++;
7001 		return -ENOENT;
7002 	}
7003 
7004 	err = snd_card_new(&pci->dev, index[dev], id[dev],
7005 			   THIS_MODULE, sizeof(struct hdspm), &card);
7006 	if (err < 0)
7007 		return err;
7008 
7009 	hdspm = card->private_data;
7010 	card->private_free = snd_hdspm_card_free;
7011 	hdspm->dev = dev;
7012 	hdspm->pci = pci;
7013 
7014 	err = snd_hdspm_create(card, hdspm);
7015 	if (err < 0) {
7016 		snd_card_free(card);
7017 		return err;
7018 	}
7019 
7020 	if (hdspm->io_type != MADIface) {
7021 		sprintf(card->shortname, "%s_%x",
7022 			hdspm->card_name,
7023 			hdspm->serial);
7024 		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
7025 			hdspm->card_name,
7026 			hdspm->serial,
7027 			hdspm->port, hdspm->irq);
7028 	} else {
7029 		sprintf(card->shortname, "%s", hdspm->card_name);
7030 		sprintf(card->longname, "%s at 0x%lx, irq %d",
7031 				hdspm->card_name, hdspm->port, hdspm->irq);
7032 	}
7033 
7034 	err = snd_card_register(card);
7035 	if (err < 0) {
7036 		snd_card_free(card);
7037 		return err;
7038 	}
7039 
7040 	pci_set_drvdata(pci, card);
7041 
7042 	dev++;
7043 	return 0;
7044 }
7045 
7046 static void snd_hdspm_remove(struct pci_dev *pci)
7047 {
7048 	snd_card_free(pci_get_drvdata(pci));
7049 }
7050 
7051 static struct pci_driver hdspm_driver = {
7052 	.name = KBUILD_MODNAME,
7053 	.id_table = snd_hdspm_ids,
7054 	.probe = snd_hdspm_probe,
7055 	.remove = snd_hdspm_remove,
7056 };
7057 
7058 module_pci_driver(hdspm_driver);
7059