xref: /openbmc/linux/sound/pci/rme9652/hdspm.c (revision 34542213)
1 /*
2  *   ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3  *
4  *      Copyright (c) 2003 Winfried Ritsch (IEM)
5  *      code based on hdsp.c   Paul Davis
6  *                             Marcus Andersson
7  *                             Thomas Charbonnel
8  *      Modified 2006-06-01 for AES32 support by Remy Bruno
9  *                                               <remy.bruno@trinnov.com>
10  *
11  *      Modified 2009-04-13 for proper metering by Florian Faber
12  *                                               <faber@faberman.de>
13  *
14  *      Modified 2009-04-14 for native float support by Florian Faber
15  *                                               <faber@faberman.de>
16  *
17  *      Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18  *                                               <faber@faberman.de>
19  *
20  *      Modified 2009-04-30 added hw serial number support by Florian Faber
21  *
22  *      Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23  *
24  *	Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25  *
26  *   This program is free software; you can redistribute it and/or modify
27  *   it under the terms of the GNU General Public License as published by
28  *   the Free Software Foundation; either version 2 of the License, or
29  *   (at your option) any later version.
30  *
31  *   This program is distributed in the hope that it will be useful,
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *   GNU General Public License for more details.
35  *
36  *   You should have received a copy of the GNU General Public License
37  *   along with this program; if not, write to the Free Software
38  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
39  *
40  */
41 #include <linux/init.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 #include <linux/pci.h>
47 #include <linux/math64.h>
48 #include <asm/io.h>
49 
50 #include <sound/core.h>
51 #include <sound/control.h>
52 #include <sound/pcm.h>
53 #include <sound/pcm_params.h>
54 #include <sound/info.h>
55 #include <sound/asoundef.h>
56 #include <sound/rawmidi.h>
57 #include <sound/hwdep.h>
58 #include <sound/initval.h>
59 
60 #include <sound/hdspm.h>
61 
62 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	  /* Index 0-MAX */
63 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	  /* ID for this card */
64 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
65 
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
68 
69 module_param_array(id, charp, NULL, 0444);
70 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
71 
72 module_param_array(enable, bool, NULL, 0444);
73 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
74 
75 
76 MODULE_AUTHOR
77 (
78 	"Winfried Ritsch <ritsch_AT_iem.at>, "
79 	"Paul Davis <paul@linuxaudiosystems.com>, "
80 	"Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
81 	"Remy Bruno <remy.bruno@trinnov.com>, "
82 	"Florian Faber <faberman@linuxproaudio.org>, "
83 	"Adrian Knoth <adi@drcomp.erfurt.thur.de>"
84 );
85 MODULE_DESCRIPTION("RME HDSPM");
86 MODULE_LICENSE("GPL");
87 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88 
89 /* --- Write registers. ---
90   These are defined as byte-offsets from the iobase value.  */
91 
92 #define HDSPM_WR_SETTINGS             0
93 #define HDSPM_outputBufferAddress    32
94 #define HDSPM_inputBufferAddress     36
95 #define HDSPM_controlRegister	     64
96 #define HDSPM_interruptConfirmation  96
97 #define HDSPM_control2Reg	     256  /* not in specs ???????? */
98 #define HDSPM_freqReg                256  /* for AES32 */
99 #define HDSPM_midiDataOut0	     352  /* just believe in old code */
100 #define HDSPM_midiDataOut1	     356
101 #define HDSPM_eeprom_wr		     384  /* for AES32 */
102 
103 /* DMA enable for 64 channels, only Bit 0 is relevant */
104 #define HDSPM_outputEnableBase       512  /* 512-767  input  DMA */
105 #define HDSPM_inputEnableBase        768  /* 768-1023 output DMA */
106 
107 /* 16 page addresses for each of the 64 channels DMA buffer in and out
108    (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
109 #define HDSPM_pageAddressBufferOut       8192
110 #define HDSPM_pageAddressBufferIn        (HDSPM_pageAddressBufferOut+64*16*4)
111 
112 #define HDSPM_MADI_mixerBase    32768	/* 32768-65535 for 2x64x64 Fader */
113 
114 #define HDSPM_MATRIX_MIXER_SIZE  8192	/* = 2*64*64 * 4 Byte => 32kB */
115 
116 /* --- Read registers. ---
117    These are defined as byte-offsets from the iobase value */
118 #define HDSPM_statusRegister    0
119 /*#define HDSPM_statusRegister2  96 */
120 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
121  * offset 192, for AES32 *and* MADI
122  * => need to check that offset 192 is working on MADI */
123 #define HDSPM_statusRegister2  192
124 #define HDSPM_timecodeRegister 128
125 
126 /* AIO, RayDAT */
127 #define HDSPM_RD_STATUS_0 0
128 #define HDSPM_RD_STATUS_1 64
129 #define HDSPM_RD_STATUS_2 128
130 #define HDSPM_RD_STATUS_3 192
131 
132 #define HDSPM_RD_TCO           256
133 #define HDSPM_RD_PLL_FREQ      512
134 #define HDSPM_WR_TCO           128
135 
136 #define HDSPM_TCO1_TCO_lock			0x00000001
137 #define HDSPM_TCO1_WCK_Input_Range_LSB		0x00000002
138 #define HDSPM_TCO1_WCK_Input_Range_MSB		0x00000004
139 #define HDSPM_TCO1_LTC_Input_valid		0x00000008
140 #define HDSPM_TCO1_WCK_Input_valid		0x00000010
141 #define HDSPM_TCO1_Video_Input_Format_NTSC	0x00000020
142 #define HDSPM_TCO1_Video_Input_Format_PAL	0x00000040
143 
144 #define HDSPM_TCO1_set_TC			0x00000100
145 #define HDSPM_TCO1_set_drop_frame_flag		0x00000200
146 #define HDSPM_TCO1_LTC_Format_LSB		0x00000400
147 #define HDSPM_TCO1_LTC_Format_MSB		0x00000800
148 
149 #define HDSPM_TCO2_TC_run			0x00010000
150 #define HDSPM_TCO2_WCK_IO_ratio_LSB		0x00020000
151 #define HDSPM_TCO2_WCK_IO_ratio_MSB		0x00040000
152 #define HDSPM_TCO2_set_num_drop_frames_LSB	0x00080000
153 #define HDSPM_TCO2_set_num_drop_frames_MSB	0x00100000
154 #define HDSPM_TCO2_set_jam_sync			0x00200000
155 #define HDSPM_TCO2_set_flywheel			0x00400000
156 
157 #define HDSPM_TCO2_set_01_4			0x01000000
158 #define HDSPM_TCO2_set_pull_down		0x02000000
159 #define HDSPM_TCO2_set_pull_up			0x04000000
160 #define HDSPM_TCO2_set_freq			0x08000000
161 #define HDSPM_TCO2_set_term_75R			0x10000000
162 #define HDSPM_TCO2_set_input_LSB		0x20000000
163 #define HDSPM_TCO2_set_input_MSB		0x40000000
164 #define HDSPM_TCO2_set_freq_from_app		0x80000000
165 
166 
167 #define HDSPM_midiDataOut0    352
168 #define HDSPM_midiDataOut1    356
169 #define HDSPM_midiDataOut2    368
170 
171 #define HDSPM_midiDataIn0     360
172 #define HDSPM_midiDataIn1     364
173 #define HDSPM_midiDataIn2     372
174 #define HDSPM_midiDataIn3     376
175 
176 /* status is data bytes in MIDI-FIFO (0-128) */
177 #define HDSPM_midiStatusOut0  384
178 #define HDSPM_midiStatusOut1  388
179 #define HDSPM_midiStatusOut2  400
180 
181 #define HDSPM_midiStatusIn0   392
182 #define HDSPM_midiStatusIn1   396
183 #define HDSPM_midiStatusIn2   404
184 #define HDSPM_midiStatusIn3   408
185 
186 
187 /* the meters are regular i/o-mapped registers, but offset
188    considerably from the rest. the peak registers are reset
189    when read; the least-significant 4 bits are full-scale counters;
190    the actual peak value is in the most-significant 24 bits.
191 */
192 
193 #define HDSPM_MADI_INPUT_PEAK		4096
194 #define HDSPM_MADI_PLAYBACK_PEAK	4352
195 #define HDSPM_MADI_OUTPUT_PEAK		4608
196 
197 #define HDSPM_MADI_INPUT_RMS_L		6144
198 #define HDSPM_MADI_PLAYBACK_RMS_L	6400
199 #define HDSPM_MADI_OUTPUT_RMS_L		6656
200 
201 #define HDSPM_MADI_INPUT_RMS_H		7168
202 #define HDSPM_MADI_PLAYBACK_RMS_H	7424
203 #define HDSPM_MADI_OUTPUT_RMS_H		7680
204 
205 /* --- Control Register bits --------- */
206 #define HDSPM_Start                (1<<0) /* start engine */
207 
208 #define HDSPM_Latency0             (1<<1) /* buffer size = 2^n */
209 #define HDSPM_Latency1             (1<<2) /* where n is defined */
210 #define HDSPM_Latency2             (1<<3) /* by Latency{2,1,0} */
211 
212 #define HDSPM_ClockModeMaster      (1<<4) /* 1=Master, 0=Autosync */
213 #define HDSPM_c0Master		0x1    /* Master clock bit in settings
214 					  register [RayDAT, AIO] */
215 
216 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
217 
218 #define HDSPM_Frequency0  (1<<6)  /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
219 #define HDSPM_Frequency1  (1<<7)  /* 0=32kHz/64kHz */
220 #define HDSPM_DoubleSpeed (1<<8)  /* 0=normal speed, 1=double speed */
221 #define HDSPM_QuadSpeed   (1<<31) /* quad speed bit */
222 
223 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
224 #define HDSPM_TX_64ch     (1<<10) /* Output 64channel MODE=1,
225 				     56channelMODE=0 */ /* MADI ONLY*/
226 #define HDSPM_Emphasis    (1<<10) /* Emphasis */ /* AES32 ONLY */
227 
228 #define HDSPM_AutoInp     (1<<11) /* Auto Input (takeover) == Safe Mode,
229                                      0=off, 1=on  */ /* MADI ONLY */
230 #define HDSPM_Dolby       (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
231 
232 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
233 				    * -- MADI ONLY
234 				    */
235 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */
236 
237 #define HDSPM_SyncRef2     (1<<13)
238 #define HDSPM_SyncRef3     (1<<25)
239 
240 #define HDSPM_SMUX         (1<<18) /* Frame ??? */ /* MADI ONY */
241 #define HDSPM_clr_tms      (1<<19) /* clear track marker, do not use
242                                       AES additional bits in
243 				      lower 5 Audiodatabits ??? */
244 #define HDSPM_taxi_reset   (1<<20) /* ??? */ /* MADI ONLY ? */
245 #define HDSPM_WCK48        (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
246 
247 #define HDSPM_Midi0InterruptEnable 0x0400000
248 #define HDSPM_Midi1InterruptEnable 0x0800000
249 #define HDSPM_Midi2InterruptEnable 0x0200000
250 #define HDSPM_Midi3InterruptEnable 0x4000000
251 
252 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
253 #define HDSPe_FLOAT_FORMAT         0x2000000
254 
255 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
256 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
257 #define HDSPM_QS_QuadWire   (1<<28) /* AES32 ONLY */
258 
259 #define HDSPM_wclk_sel (1<<30)
260 
261 /* --- bit helper defines */
262 #define HDSPM_LatencyMask    (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
263 #define HDSPM_FrequencyMask  (HDSPM_Frequency0|HDSPM_Frequency1|\
264 			      HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
265 #define HDSPM_InputMask      (HDSPM_InputSelect0|HDSPM_InputSelect1)
266 #define HDSPM_InputOptical   0
267 #define HDSPM_InputCoaxial   (HDSPM_InputSelect0)
268 #define HDSPM_SyncRefMask    (HDSPM_SyncRef0|HDSPM_SyncRef1|\
269 			      HDSPM_SyncRef2|HDSPM_SyncRef3)
270 
271 #define HDSPM_c0_SyncRef0      0x2
272 #define HDSPM_c0_SyncRef1      0x4
273 #define HDSPM_c0_SyncRef2      0x8
274 #define HDSPM_c0_SyncRef3      0x10
275 #define HDSPM_c0_SyncRefMask   (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
276 				HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
277 
278 #define HDSPM_SYNC_FROM_WORD    0	/* Preferred sync reference */
279 #define HDSPM_SYNC_FROM_MADI    1	/* choices - used by "pref_sync_ref" */
280 #define HDSPM_SYNC_FROM_TCO     2
281 #define HDSPM_SYNC_FROM_SYNC_IN 3
282 
283 #define HDSPM_Frequency32KHz    HDSPM_Frequency0
284 #define HDSPM_Frequency44_1KHz  HDSPM_Frequency1
285 #define HDSPM_Frequency48KHz   (HDSPM_Frequency1|HDSPM_Frequency0)
286 #define HDSPM_Frequency64KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency0)
287 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
288 #define HDSPM_Frequency96KHz   (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
289 				HDSPM_Frequency0)
290 #define HDSPM_Frequency128KHz   (HDSPM_QuadSpeed|HDSPM_Frequency0)
291 #define HDSPM_Frequency176_4KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1)
292 #define HDSPM_Frequency192KHz   (HDSPM_QuadSpeed|HDSPM_Frequency1|\
293 				 HDSPM_Frequency0)
294 
295 
296 /* Synccheck Status */
297 #define HDSPM_SYNC_CHECK_NO_LOCK 0
298 #define HDSPM_SYNC_CHECK_LOCK    1
299 #define HDSPM_SYNC_CHECK_SYNC	 2
300 
301 /* AutoSync References - used by "autosync_ref" control switch */
302 #define HDSPM_AUTOSYNC_FROM_WORD      0
303 #define HDSPM_AUTOSYNC_FROM_MADI      1
304 #define HDSPM_AUTOSYNC_FROM_TCO       2
305 #define HDSPM_AUTOSYNC_FROM_SYNC_IN   3
306 #define HDSPM_AUTOSYNC_FROM_NONE      4
307 
308 /* Possible sources of MADI input */
309 #define HDSPM_OPTICAL 0		/* optical   */
310 #define HDSPM_COAXIAL 1		/* BNC */
311 
312 #define hdspm_encode_latency(x)       (((x)<<1) & HDSPM_LatencyMask)
313 #define hdspm_decode_latency(x)       ((((x) & HDSPM_LatencyMask)>>1))
314 
315 #define hdspm_encode_in(x) (((x)&0x3)<<14)
316 #define hdspm_decode_in(x) (((x)>>14)&0x3)
317 
318 /* --- control2 register bits --- */
319 #define HDSPM_TMS             (1<<0)
320 #define HDSPM_TCK             (1<<1)
321 #define HDSPM_TDI             (1<<2)
322 #define HDSPM_JTAG            (1<<3)
323 #define HDSPM_PWDN            (1<<4)
324 #define HDSPM_PROGRAM	      (1<<5)
325 #define HDSPM_CONFIG_MODE_0   (1<<6)
326 #define HDSPM_CONFIG_MODE_1   (1<<7)
327 /*#define HDSPM_VERSION_BIT     (1<<8) not defined any more*/
328 #define HDSPM_BIGENDIAN_MODE  (1<<9)
329 #define HDSPM_RD_MULTIPLE     (1<<10)
330 
331 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
332      that do not conflict with specific bits for AES32 seem to be valid also
333      for the AES32
334  */
335 #define HDSPM_audioIRQPending    (1<<0)	/* IRQ is high and pending */
336 #define HDSPM_RX_64ch            (1<<1)	/* Input 64chan. MODE=1, 56chn MODE=0 */
337 #define HDSPM_AB_int             (1<<2)	/* InputChannel Opt=0, Coax=1
338 					 * (like inp0)
339 					 */
340 
341 #define HDSPM_madiLock           (1<<3)	/* MADI Locked =1, no=0 */
342 #define HDSPM_madiSync          (1<<18) /* MADI is in sync */
343 
344 #define HDSPM_tcoLock    0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
345 #define HDSPM_tcoSync    0x10000000 /* Optional TCO sync status */
346 
347 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
348 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */
349 
350 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
351 			/* since 64byte accurate, last 6 bits are not used */
352 
353 
354 
355 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
356 
357 #define HDSPM_madiFreq0         (1<<22)	/* system freq 0=error */
358 #define HDSPM_madiFreq1         (1<<23)	/* 1=32, 2=44.1 3=48 */
359 #define HDSPM_madiFreq2         (1<<24)	/* 4=64, 5=88.2 6=96 */
360 #define HDSPM_madiFreq3         (1<<25)	/* 7=128, 8=176.4 9=192 */
361 
362 #define HDSPM_BufferID          (1<<26)	/* (Double)Buffer ID toggles with
363 					 * Interrupt
364 					 */
365 #define HDSPM_tco_detect         0x08000000
366 #define HDSPM_tco_lock	         0x20000000
367 
368 #define HDSPM_s2_tco_detect      0x00000040
369 #define HDSPM_s2_AEBO_D          0x00000080
370 #define HDSPM_s2_AEBI_D          0x00000100
371 
372 
373 #define HDSPM_midi0IRQPending    0x40000000
374 #define HDSPM_midi1IRQPending    0x80000000
375 #define HDSPM_midi2IRQPending    0x20000000
376 #define HDSPM_midi2IRQPendingAES 0x00000020
377 #define HDSPM_midi3IRQPending    0x00200000
378 
379 /* --- status bit helpers */
380 #define HDSPM_madiFreqMask  (HDSPM_madiFreq0|HDSPM_madiFreq1|\
381 			     HDSPM_madiFreq2|HDSPM_madiFreq3)
382 #define HDSPM_madiFreq32    (HDSPM_madiFreq0)
383 #define HDSPM_madiFreq44_1  (HDSPM_madiFreq1)
384 #define HDSPM_madiFreq48    (HDSPM_madiFreq0|HDSPM_madiFreq1)
385 #define HDSPM_madiFreq64    (HDSPM_madiFreq2)
386 #define HDSPM_madiFreq88_2  (HDSPM_madiFreq0|HDSPM_madiFreq2)
387 #define HDSPM_madiFreq96    (HDSPM_madiFreq1|HDSPM_madiFreq2)
388 #define HDSPM_madiFreq128   (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
389 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
390 #define HDSPM_madiFreq192   (HDSPM_madiFreq3|HDSPM_madiFreq0)
391 
392 /* Status2 Register bits */ /* MADI ONLY */
393 
394 #define HDSPM_version0 (1<<0)	/* not really defined but I guess */
395 #define HDSPM_version1 (1<<1)	/* in former cards it was ??? */
396 #define HDSPM_version2 (1<<2)
397 
398 #define HDSPM_wcLock (1<<3)	/* Wordclock is detected and locked */
399 #define HDSPM_wcSync (1<<4)	/* Wordclock is in sync with systemclock */
400 
401 #define HDSPM_wc_freq0 (1<<5)	/* input freq detected via autosync  */
402 #define HDSPM_wc_freq1 (1<<6)	/* 001=32, 010==44.1, 011=48, */
403 #define HDSPM_wc_freq2 (1<<7)	/* 100=64, 101=88.2, 110=96, */
404 /* missing Bit   for               111=128, 1000=176.4, 1001=192 */
405 
406 #define HDSPM_SyncRef0 0x10000  /* Sync Reference */
407 #define HDSPM_SyncRef1 0x20000
408 
409 #define HDSPM_SelSyncRef0 (1<<8)	/* AutoSync Source */
410 #define HDSPM_SelSyncRef1 (1<<9)	/* 000=word, 001=MADI, */
411 #define HDSPM_SelSyncRef2 (1<<10)	/* 111=no valid signal */
412 
413 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
414 
415 #define HDSPM_wcFreqMask  (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
416 #define HDSPM_wcFreq32    (HDSPM_wc_freq0)
417 #define HDSPM_wcFreq44_1  (HDSPM_wc_freq1)
418 #define HDSPM_wcFreq48    (HDSPM_wc_freq0|HDSPM_wc_freq1)
419 #define HDSPM_wcFreq64    (HDSPM_wc_freq2)
420 #define HDSPM_wcFreq88_2  (HDSPM_wc_freq0|HDSPM_wc_freq2)
421 #define HDSPM_wcFreq96    (HDSPM_wc_freq1|HDSPM_wc_freq2)
422 
423 #define HDSPM_status1_F_0 0x0400000
424 #define HDSPM_status1_F_1 0x0800000
425 #define HDSPM_status1_F_2 0x1000000
426 #define HDSPM_status1_F_3 0x2000000
427 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
428 
429 
430 #define HDSPM_SelSyncRefMask       (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
431 				    HDSPM_SelSyncRef2)
432 #define HDSPM_SelSyncRef_WORD      0
433 #define HDSPM_SelSyncRef_MADI      (HDSPM_SelSyncRef0)
434 #define HDSPM_SelSyncRef_TCO       (HDSPM_SelSyncRef1)
435 #define HDSPM_SelSyncRef_SyncIn    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
436 #define HDSPM_SelSyncRef_NVALID    (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
437 				    HDSPM_SelSyncRef2)
438 
439 /*
440    For AES32, bits for status, status2 and timecode are different
441 */
442 /* status */
443 #define HDSPM_AES32_wcLock	0x0200000
444 #define HDSPM_AES32_wcSync	0x0100000
445 #define HDSPM_AES32_wcFreq_bit  22
446 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
447   HDSPM_bit2freq */
448 #define HDSPM_AES32_syncref_bit  16
449 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
450 
451 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
452 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
453 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
454 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
455 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
456 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
457 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
458 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
459 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
460 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
461 
462 /*  status2 */
463 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
464 #define HDSPM_LockAES   0x80
465 #define HDSPM_LockAES1  0x80
466 #define HDSPM_LockAES2  0x40
467 #define HDSPM_LockAES3  0x20
468 #define HDSPM_LockAES4  0x10
469 #define HDSPM_LockAES5  0x8
470 #define HDSPM_LockAES6  0x4
471 #define HDSPM_LockAES7  0x2
472 #define HDSPM_LockAES8  0x1
473 /*
474    Timecode
475    After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
476    AES i+1
477  bits 3210
478       0001  32kHz
479       0010  44.1kHz
480       0011  48kHz
481       0100  64kHz
482       0101  88.2kHz
483       0110  96kHz
484       0111  128kHz
485       1000  176.4kHz
486       1001  192kHz
487   NB: Timecode register doesn't seem to work on AES32 card revision 230
488 */
489 
490 /* Mixer Values */
491 #define UNITY_GAIN          32768	/* = 65536/2 */
492 #define MINUS_INFINITY_GAIN 0
493 
494 /* Number of channels for different Speed Modes */
495 #define MADI_SS_CHANNELS       64
496 #define MADI_DS_CHANNELS       32
497 #define MADI_QS_CHANNELS       16
498 
499 #define RAYDAT_SS_CHANNELS     36
500 #define RAYDAT_DS_CHANNELS     20
501 #define RAYDAT_QS_CHANNELS     12
502 
503 #define AIO_IN_SS_CHANNELS        14
504 #define AIO_IN_DS_CHANNELS        10
505 #define AIO_IN_QS_CHANNELS        8
506 #define AIO_OUT_SS_CHANNELS        16
507 #define AIO_OUT_DS_CHANNELS        12
508 #define AIO_OUT_QS_CHANNELS        10
509 
510 #define AES32_CHANNELS		16
511 
512 /* the size of a substream (1 mono data stream) */
513 #define HDSPM_CHANNEL_BUFFER_SAMPLES  (16*1024)
514 #define HDSPM_CHANNEL_BUFFER_BYTES    (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
515 
516 /* the size of the area we need to allocate for DMA transfers. the
517    size is the same regardless of the number of channels, and
518    also the latency to use.
519    for one direction !!!
520 */
521 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
522 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
523 
524 #define HDSPM_RAYDAT_REV	211
525 #define HDSPM_AIO_REV		212
526 #define HDSPM_MADIFACE_REV	213
527 
528 /* speed factor modes */
529 #define HDSPM_SPEED_SINGLE 0
530 #define HDSPM_SPEED_DOUBLE 1
531 #define HDSPM_SPEED_QUAD   2
532 
533 /* names for speed modes */
534 static char *hdspm_speed_names[] = { "single", "double", "quad" };
535 
536 static char *texts_autosync_aes_tco[] = { "Word Clock",
537 					  "AES1", "AES2", "AES3", "AES4",
538 					  "AES5", "AES6", "AES7", "AES8",
539 					  "TCO" };
540 static char *texts_autosync_aes[] = { "Word Clock",
541 				      "AES1", "AES2", "AES3", "AES4",
542 				      "AES5", "AES6", "AES7", "AES8" };
543 static char *texts_autosync_madi_tco[] = { "Word Clock",
544 					   "MADI", "TCO", "Sync In" };
545 static char *texts_autosync_madi[] = { "Word Clock",
546 				       "MADI", "Sync In" };
547 
548 static char *texts_autosync_raydat_tco[] = {
549 	"Word Clock",
550 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
551 	"AES", "SPDIF", "TCO", "Sync In"
552 };
553 static char *texts_autosync_raydat[] = {
554 	"Word Clock",
555 	"ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
556 	"AES", "SPDIF", "Sync In"
557 };
558 static char *texts_autosync_aio_tco[] = {
559 	"Word Clock",
560 	"ADAT", "AES", "SPDIF", "TCO", "Sync In"
561 };
562 static char *texts_autosync_aio[] = { "Word Clock",
563 				      "ADAT", "AES", "SPDIF", "Sync In" };
564 
565 static char *texts_freq[] = {
566 	"No Lock",
567 	"32 kHz",
568 	"44.1 kHz",
569 	"48 kHz",
570 	"64 kHz",
571 	"88.2 kHz",
572 	"96 kHz",
573 	"128 kHz",
574 	"176.4 kHz",
575 	"192 kHz"
576 };
577 
578 static char *texts_ports_madi[] = {
579 	"MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
580 	"MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
581 	"MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
582 	"MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
583 	"MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
584 	"MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
585 	"MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
586 	"MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
587 	"MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
588 	"MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
589 	"MADI.61", "MADI.62", "MADI.63", "MADI.64",
590 };
591 
592 
593 static char *texts_ports_raydat_ss[] = {
594 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
595 	"ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
596 	"ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
597 	"ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
598 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
599 	"ADAT4.7", "ADAT4.8",
600 	"AES.L", "AES.R",
601 	"SPDIF.L", "SPDIF.R"
602 };
603 
604 static char *texts_ports_raydat_ds[] = {
605 	"ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
606 	"ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
607 	"ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
608 	"ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
609 	"AES.L", "AES.R",
610 	"SPDIF.L", "SPDIF.R"
611 };
612 
613 static char *texts_ports_raydat_qs[] = {
614 	"ADAT1.1", "ADAT1.2",
615 	"ADAT2.1", "ADAT2.2",
616 	"ADAT3.1", "ADAT3.2",
617 	"ADAT4.1", "ADAT4.2",
618 	"AES.L", "AES.R",
619 	"SPDIF.L", "SPDIF.R"
620 };
621 
622 
623 static char *texts_ports_aio_in_ss[] = {
624 	"Analogue.L", "Analogue.R",
625 	"AES.L", "AES.R",
626 	"SPDIF.L", "SPDIF.R",
627 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
628 	"ADAT.7", "ADAT.8"
629 };
630 
631 static char *texts_ports_aio_out_ss[] = {
632 	"Analogue.L", "Analogue.R",
633 	"AES.L", "AES.R",
634 	"SPDIF.L", "SPDIF.R",
635 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
636 	"ADAT.7", "ADAT.8",
637 	"Phone.L", "Phone.R"
638 };
639 
640 static char *texts_ports_aio_in_ds[] = {
641 	"Analogue.L", "Analogue.R",
642 	"AES.L", "AES.R",
643 	"SPDIF.L", "SPDIF.R",
644 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
645 };
646 
647 static char *texts_ports_aio_out_ds[] = {
648 	"Analogue.L", "Analogue.R",
649 	"AES.L", "AES.R",
650 	"SPDIF.L", "SPDIF.R",
651 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
652 	"Phone.L", "Phone.R"
653 };
654 
655 static char *texts_ports_aio_in_qs[] = {
656 	"Analogue.L", "Analogue.R",
657 	"AES.L", "AES.R",
658 	"SPDIF.L", "SPDIF.R",
659 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
660 };
661 
662 static char *texts_ports_aio_out_qs[] = {
663 	"Analogue.L", "Analogue.R",
664 	"AES.L", "AES.R",
665 	"SPDIF.L", "SPDIF.R",
666 	"ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
667 	"Phone.L", "Phone.R"
668 };
669 
670 static char *texts_ports_aes32[] = {
671 	"AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
672 	"AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
673 	"AES.15", "AES.16"
674 };
675 
676 /* These tables map the ALSA channels 1..N to the channels that we
677    need to use in order to find the relevant channel buffer. RME
678    refers to this kind of mapping as between "the ADAT channel and
679    the DMA channel." We index it using the logical audio channel,
680    and the value is the DMA channel (i.e. channel buffer number)
681    where the data for that channel can be read/written from/to.
682 */
683 
684 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
685 	0, 1, 2, 3, 4, 5, 6, 7,
686 	8, 9, 10, 11, 12, 13, 14, 15,
687 	16, 17, 18, 19, 20, 21, 22, 23,
688 	24, 25, 26, 27, 28, 29, 30, 31,
689 	32, 33, 34, 35, 36, 37, 38, 39,
690 	40, 41, 42, 43, 44, 45, 46, 47,
691 	48, 49, 50, 51, 52, 53, 54, 55,
692 	56, 57, 58, 59, 60, 61, 62, 63
693 };
694 
695 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
696 	4, 5, 6, 7, 8, 9, 10, 11,	/* ADAT 1 */
697 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT 2 */
698 	20, 21, 22, 23, 24, 25, 26, 27,	/* ADAT 3 */
699 	28, 29, 30, 31, 32, 33, 34, 35,	/* ADAT 4 */
700 	0, 1,			/* AES */
701 	2, 3,			/* SPDIF */
702 	-1, -1, -1, -1,
703 	-1, -1, -1, -1, -1, -1, -1, -1,
704 	-1, -1, -1, -1, -1, -1, -1, -1,
705 	-1, -1, -1, -1, -1, -1, -1, -1,
706 };
707 
708 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
709 	4, 5, 6, 7,		/* ADAT 1 */
710 	8, 9, 10, 11,		/* ADAT 2 */
711 	12, 13, 14, 15,		/* ADAT 3 */
712 	16, 17, 18, 19,		/* ADAT 4 */
713 	0, 1,			/* AES */
714 	2, 3,			/* SPDIF */
715 	-1, -1, -1, -1,
716 	-1, -1, -1, -1, -1, -1, -1, -1,
717 	-1, -1, -1, -1, -1, -1, -1, -1,
718 	-1, -1, -1, -1, -1, -1, -1, -1,
719 	-1, -1, -1, -1, -1, -1, -1, -1,
720 	-1, -1, -1, -1, -1, -1, -1, -1,
721 };
722 
723 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
724 	4, 5,			/* ADAT 1 */
725 	6, 7,			/* ADAT 2 */
726 	8, 9,			/* ADAT 3 */
727 	10, 11,			/* ADAT 4 */
728 	0, 1,			/* AES */
729 	2, 3,			/* SPDIF */
730 	-1, -1, -1, -1,
731 	-1, -1, -1, -1, -1, -1, -1, -1,
732 	-1, -1, -1, -1, -1, -1, -1, -1,
733 	-1, -1, -1, -1, -1, -1, -1, -1,
734 	-1, -1, -1, -1, -1, -1, -1, -1,
735 	-1, -1, -1, -1, -1, -1, -1, -1,
736 	-1, -1, -1, -1, -1, -1, -1, -1,
737 };
738 
739 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
740 	0, 1,			/* line in */
741 	8, 9,			/* aes in, */
742 	10, 11,			/* spdif in */
743 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT in */
744 	-1, -1,
745 	-1, -1, -1, -1, -1, -1, -1, -1,
746 	-1, -1, -1, -1, -1, -1, -1, -1,
747 	-1, -1, -1, -1, -1, -1, -1, -1,
748 	-1, -1, -1, -1, -1, -1, -1, -1,
749 	-1, -1, -1, -1, -1, -1, -1, -1,
750 	-1, -1, -1, -1, -1, -1, -1, -1,
751 };
752 
753 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
754 	0, 1,			/* line out */
755 	8, 9,			/* aes out */
756 	10, 11,			/* spdif out */
757 	12, 13, 14, 15, 16, 17, 18, 19,	/* ADAT out */
758 	6, 7,			/* phone out */
759 	-1, -1, -1, -1, -1, -1, -1, -1,
760 	-1, -1, -1, -1, -1, -1, -1, -1,
761 	-1, -1, -1, -1, -1, -1, -1, -1,
762 	-1, -1, -1, -1, -1, -1, -1, -1,
763 	-1, -1, -1, -1, -1, -1, -1, -1,
764 	-1, -1, -1, -1, -1, -1, -1, -1,
765 };
766 
767 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
768 	0, 1,			/* line in */
769 	8, 9,			/* aes in */
770 	10, 11,			/* spdif in */
771 	12, 14, 16, 18,		/* adat in */
772 	-1, -1, -1, -1, -1, -1,
773 	-1, -1, -1, -1, -1, -1, -1, -1,
774 	-1, -1, -1, -1, -1, -1, -1, -1,
775 	-1, -1, -1, -1, -1, -1, -1, -1,
776 	-1, -1, -1, -1, -1, -1, -1, -1,
777 	-1, -1, -1, -1, -1, -1, -1, -1,
778 	-1, -1, -1, -1, -1, -1, -1, -1
779 };
780 
781 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
782 	0, 1,			/* line out */
783 	8, 9,			/* aes out */
784 	10, 11,			/* spdif out */
785 	12, 14, 16, 18,		/* adat out */
786 	6, 7,			/* phone out */
787 	-1, -1, -1, -1,
788 	-1, -1, -1, -1, -1, -1, -1, -1,
789 	-1, -1, -1, -1, -1, -1, -1, -1,
790 	-1, -1, -1, -1, -1, -1, -1, -1,
791 	-1, -1, -1, -1, -1, -1, -1, -1,
792 	-1, -1, -1, -1, -1, -1, -1, -1,
793 	-1, -1, -1, -1, -1, -1, -1, -1
794 };
795 
796 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
797 	0, 1,			/* line in */
798 	8, 9,			/* aes in */
799 	10, 11,			/* spdif in */
800 	12, 16,			/* adat in */
801 	-1, -1, -1, -1, -1, -1, -1, -1,
802 	-1, -1, -1, -1, -1, -1, -1, -1,
803 	-1, -1, -1, -1, -1, -1, -1, -1,
804 	-1, -1, -1, -1, -1, -1, -1, -1,
805 	-1, -1, -1, -1, -1, -1, -1, -1,
806 	-1, -1, -1, -1, -1, -1, -1, -1,
807 	-1, -1, -1, -1, -1, -1, -1, -1
808 };
809 
810 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
811 	0, 1,			/* line out */
812 	8, 9,			/* aes out */
813 	10, 11,			/* spdif out */
814 	12, 16,			/* adat out */
815 	6, 7,			/* phone out */
816 	-1, -1, -1, -1, -1, -1,
817 	-1, -1, -1, -1, -1, -1, -1, -1,
818 	-1, -1, -1, -1, -1, -1, -1, -1,
819 	-1, -1, -1, -1, -1, -1, -1, -1,
820 	-1, -1, -1, -1, -1, -1, -1, -1,
821 	-1, -1, -1, -1, -1, -1, -1, -1,
822 	-1, -1, -1, -1, -1, -1, -1, -1
823 };
824 
825 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
826 	0, 1, 2, 3, 4, 5, 6, 7,
827 	8, 9, 10, 11, 12, 13, 14, 15,
828 	-1, -1, -1, -1, -1, -1, -1, -1,
829 	-1, -1, -1, -1, -1, -1, -1, -1,
830 	-1, -1, -1, -1, -1, -1, -1, -1,
831 	-1, -1, -1, -1, -1, -1, -1, -1,
832 	-1, -1, -1, -1, -1, -1, -1, -1,
833 	-1, -1, -1, -1, -1, -1, -1, -1
834 };
835 
836 struct hdspm_midi {
837 	struct hdspm *hdspm;
838 	int id;
839 	struct snd_rawmidi *rmidi;
840 	struct snd_rawmidi_substream *input;
841 	struct snd_rawmidi_substream *output;
842 	char istimer;		/* timer in use */
843 	struct timer_list timer;
844 	spinlock_t lock;
845 	int pending;
846 	int dataIn;
847 	int statusIn;
848 	int dataOut;
849 	int statusOut;
850 	int ie;
851 	int irq;
852 };
853 
854 struct hdspm_tco {
855 	int input;
856 	int framerate;
857 	int wordclock;
858 	int samplerate;
859 	int pull;
860 	int term; /* 0 = off, 1 = on */
861 };
862 
863 struct hdspm {
864         spinlock_t lock;
865 	/* only one playback and/or capture stream */
866         struct snd_pcm_substream *capture_substream;
867         struct snd_pcm_substream *playback_substream;
868 
869 	char *card_name;	     /* for procinfo */
870 	unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
871 
872 	uint8_t io_type;
873 
874 	int monitor_outs;	/* set up monitoring outs init flag */
875 
876 	u32 control_register;	/* cached value */
877 	u32 control2_register;	/* cached value */
878 	u32 settings_register;
879 
880 	struct hdspm_midi midi[4];
881 	struct tasklet_struct midi_tasklet;
882 
883 	size_t period_bytes;
884 	unsigned char ss_in_channels;
885 	unsigned char ds_in_channels;
886 	unsigned char qs_in_channels;
887 	unsigned char ss_out_channels;
888 	unsigned char ds_out_channels;
889 	unsigned char qs_out_channels;
890 
891 	unsigned char max_channels_in;
892 	unsigned char max_channels_out;
893 
894 	signed char *channel_map_in;
895 	signed char *channel_map_out;
896 
897 	signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
898 	signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
899 
900 	char **port_names_in;
901 	char **port_names_out;
902 
903 	char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
904 	char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
905 
906 	unsigned char *playback_buffer;	/* suitably aligned address */
907 	unsigned char *capture_buffer;	/* suitably aligned address */
908 
909 	pid_t capture_pid;	/* process id which uses capture */
910 	pid_t playback_pid;	/* process id which uses capture */
911 	int running;		/* running status */
912 
913 	int last_external_sample_rate;	/* samplerate mystic ... */
914 	int last_internal_sample_rate;
915 	int system_sample_rate;
916 
917 	int dev;		/* Hardware vars... */
918 	int irq;
919 	unsigned long port;
920 	void __iomem *iobase;
921 
922 	int irq_count;		/* for debug */
923 	int midiPorts;
924 
925 	struct snd_card *card;	/* one card */
926 	struct snd_pcm *pcm;		/* has one pcm */
927 	struct snd_hwdep *hwdep;	/* and a hwdep for additional ioctl */
928 	struct pci_dev *pci;	/* and an pci info */
929 
930 	/* Mixer vars */
931 	/* fast alsa mixer */
932 	struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
933 	/* but input to much, so not used */
934 	struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
935 	/* full mixer accessible over mixer ioctl or hwdep-device */
936 	struct hdspm_mixer *mixer;
937 
938 	struct hdspm_tco *tco;  /* NULL if no TCO detected */
939 
940 	char **texts_autosync;
941 	int texts_autosync_items;
942 
943 	cycles_t last_interrupt;
944 
945 	unsigned int serial;
946 
947 	struct hdspm_peak_rms peak_rms;
948 };
949 
950 
951 static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
952 	{
953 	 .vendor = PCI_VENDOR_ID_XILINX,
954 	 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
955 	 .subvendor = PCI_ANY_ID,
956 	 .subdevice = PCI_ANY_ID,
957 	 .class = 0,
958 	 .class_mask = 0,
959 	 .driver_data = 0},
960 	{0,}
961 };
962 
963 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
964 
965 /* prototypes */
966 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
967 					 struct hdspm *hdspm);
968 static int snd_hdspm_create_pcm(struct snd_card *card,
969 				struct hdspm *hdspm);
970 
971 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
972 static inline int hdspm_get_pll_freq(struct hdspm *hdspm);
973 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
974 static int hdspm_autosync_ref(struct hdspm *hdspm);
975 static int snd_hdspm_set_defaults(struct hdspm *hdspm);
976 static int hdspm_system_clock_mode(struct hdspm *hdspm);
977 static void hdspm_set_sgbuf(struct hdspm *hdspm,
978 			    struct snd_pcm_substream *substream,
979 			     unsigned int reg, int channels);
980 
981 static inline int HDSPM_bit2freq(int n)
982 {
983 	static const int bit2freq_tab[] = {
984 		0, 32000, 44100, 48000, 64000, 88200,
985 		96000, 128000, 176400, 192000 };
986 	if (n < 1 || n > 9)
987 		return 0;
988 	return bit2freq_tab[n];
989 }
990 
991 /* Write/read to/from HDSPM with Adresses in Bytes
992    not words but only 32Bit writes are allowed */
993 
994 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
995 			       unsigned int val)
996 {
997 	writel(val, hdspm->iobase + reg);
998 }
999 
1000 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
1001 {
1002 	return readl(hdspm->iobase + reg);
1003 }
1004 
1005 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1006    mixer is write only on hardware so we have to cache him for read
1007    each fader is a u32, but uses only the first 16 bit */
1008 
1009 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
1010 				     unsigned int in)
1011 {
1012 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1013 		return 0;
1014 
1015 	return hdspm->mixer->ch[chan].in[in];
1016 }
1017 
1018 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
1019 				     unsigned int pb)
1020 {
1021 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1022 		return 0;
1023 	return hdspm->mixer->ch[chan].pb[pb];
1024 }
1025 
1026 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
1027 				      unsigned int in, unsigned short data)
1028 {
1029 	if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1030 		return -1;
1031 
1032 	hdspm_write(hdspm,
1033 		    HDSPM_MADI_mixerBase +
1034 		    ((in + 128 * chan) * sizeof(u32)),
1035 		    (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1036 	return 0;
1037 }
1038 
1039 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
1040 				      unsigned int pb, unsigned short data)
1041 {
1042 	if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1043 		return -1;
1044 
1045 	hdspm_write(hdspm,
1046 		    HDSPM_MADI_mixerBase +
1047 		    ((64 + pb + 128 * chan) * sizeof(u32)),
1048 		    (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1049 	return 0;
1050 }
1051 
1052 
1053 /* enable DMA for specific channels, now available for DSP-MADI */
1054 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
1055 {
1056 	hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1057 }
1058 
1059 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
1060 {
1061 	hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1062 }
1063 
1064 /* check if same process is writing and reading */
1065 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
1066 {
1067 	unsigned long flags;
1068 	int ret = 1;
1069 
1070 	spin_lock_irqsave(&hdspm->lock, flags);
1071 	if ((hdspm->playback_pid != hdspm->capture_pid) &&
1072 	    (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1073 		ret = 0;
1074 	}
1075 	spin_unlock_irqrestore(&hdspm->lock, flags);
1076 	return ret;
1077 }
1078 
1079 /* round arbitary sample rates to commonly known rates */
1080 static int hdspm_round_frequency(int rate)
1081 {
1082 	if (rate < 38050)
1083 		return 32000;
1084 	if (rate < 46008)
1085 		return 44100;
1086 	else
1087 		return 48000;
1088 }
1089 
1090 static int hdspm_tco_sync_check(struct hdspm *hdspm);
1091 static int hdspm_sync_in_sync_check(struct hdspm *hdspm);
1092 
1093 /* check for external sample rate */
1094 static int hdspm_external_sample_rate(struct hdspm *hdspm)
1095 {
1096 	unsigned int status, status2, timecode;
1097 	int syncref, rate = 0, rate_bits;
1098 
1099 	switch (hdspm->io_type) {
1100 	case AES32:
1101 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1102 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1103 		timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
1104 
1105 		syncref = hdspm_autosync_ref(hdspm);
1106 
1107 		if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
1108 				status & HDSPM_AES32_wcLock)
1109 			return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
1110 
1111 		if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
1112 				syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
1113 				status2 & (HDSPM_LockAES >>
1114 				(syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
1115 			return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
1116 		return 0;
1117 		break;
1118 
1119 	case MADIface:
1120 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1121 
1122 		if (!(status & HDSPM_madiLock)) {
1123 			rate = 0;  /* no lock */
1124 		} else {
1125 			switch (status & (HDSPM_status1_freqMask)) {
1126 			case HDSPM_status1_F_0*1:
1127 				rate = 32000; break;
1128 			case HDSPM_status1_F_0*2:
1129 				rate = 44100; break;
1130 			case HDSPM_status1_F_0*3:
1131 				rate = 48000; break;
1132 			case HDSPM_status1_F_0*4:
1133 				rate = 64000; break;
1134 			case HDSPM_status1_F_0*5:
1135 				rate = 88200; break;
1136 			case HDSPM_status1_F_0*6:
1137 				rate = 96000; break;
1138 			case HDSPM_status1_F_0*7:
1139 				rate = 128000; break;
1140 			case HDSPM_status1_F_0*8:
1141 				rate = 176400; break;
1142 			case HDSPM_status1_F_0*9:
1143 				rate = 192000; break;
1144 			default:
1145 				rate = 0; break;
1146 			}
1147 		}
1148 
1149 		break;
1150 
1151 	case MADI:
1152 	case AIO:
1153 	case RayDAT:
1154 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1155 		status = hdspm_read(hdspm, HDSPM_statusRegister);
1156 		rate = 0;
1157 
1158 		/* if wordclock has synced freq and wordclock is valid */
1159 		if ((status2 & HDSPM_wcLock) != 0 &&
1160 				(status2 & HDSPM_SelSyncRef0) == 0) {
1161 
1162 			rate_bits = status2 & HDSPM_wcFreqMask;
1163 
1164 
1165 			switch (rate_bits) {
1166 			case HDSPM_wcFreq32:
1167 				rate = 32000;
1168 				break;
1169 			case HDSPM_wcFreq44_1:
1170 				rate = 44100;
1171 				break;
1172 			case HDSPM_wcFreq48:
1173 				rate = 48000;
1174 				break;
1175 			case HDSPM_wcFreq64:
1176 				rate = 64000;
1177 				break;
1178 			case HDSPM_wcFreq88_2:
1179 				rate = 88200;
1180 				break;
1181 			case HDSPM_wcFreq96:
1182 				rate = 96000;
1183 				break;
1184 			default:
1185 				rate = 0;
1186 				break;
1187 			}
1188 		}
1189 
1190 		/* if rate detected and Syncref is Word than have it,
1191 		 * word has priority to MADI
1192 		 */
1193 		if (rate != 0 &&
1194 		(status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
1195 			return rate;
1196 
1197 		/* maybe a madi input (which is taken if sel sync is madi) */
1198 		if (status & HDSPM_madiLock) {
1199 			rate_bits = status & HDSPM_madiFreqMask;
1200 
1201 			switch (rate_bits) {
1202 			case HDSPM_madiFreq32:
1203 				rate = 32000;
1204 				break;
1205 			case HDSPM_madiFreq44_1:
1206 				rate = 44100;
1207 				break;
1208 			case HDSPM_madiFreq48:
1209 				rate = 48000;
1210 				break;
1211 			case HDSPM_madiFreq64:
1212 				rate = 64000;
1213 				break;
1214 			case HDSPM_madiFreq88_2:
1215 				rate = 88200;
1216 				break;
1217 			case HDSPM_madiFreq96:
1218 				rate = 96000;
1219 				break;
1220 			case HDSPM_madiFreq128:
1221 				rate = 128000;
1222 				break;
1223 			case HDSPM_madiFreq176_4:
1224 				rate = 176400;
1225 				break;
1226 			case HDSPM_madiFreq192:
1227 				rate = 192000;
1228 				break;
1229 			default:
1230 				rate = 0;
1231 				break;
1232 			}
1233 
1234 		} /* endif HDSPM_madiLock */
1235 
1236 		/* check sample rate from TCO or SYNC_IN */
1237 		{
1238 			bool is_valid_input = 0;
1239 			bool has_sync = 0;
1240 
1241 			syncref = hdspm_autosync_ref(hdspm);
1242 			if (HDSPM_AUTOSYNC_FROM_TCO == syncref) {
1243 				is_valid_input = 1;
1244 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1245 					hdspm_tco_sync_check(hdspm));
1246 			} else if (HDSPM_AUTOSYNC_FROM_SYNC_IN == syncref) {
1247 				is_valid_input = 1;
1248 				has_sync = (HDSPM_SYNC_CHECK_SYNC ==
1249 					hdspm_sync_in_sync_check(hdspm));
1250 			}
1251 
1252 			if (is_valid_input && has_sync) {
1253 				rate = hdspm_round_frequency(
1254 					hdspm_get_pll_freq(hdspm));
1255 			}
1256 		}
1257 
1258 		/* QS and DS rates normally can not be detected
1259 		 * automatically by the card. Only exception is MADI
1260 		 * in 96k frame mode.
1261 		 *
1262 		 * So if we read SS values (32 .. 48k), check for
1263 		 * user-provided DS/QS bits in the control register
1264 		 * and multiply the base frequency accordingly.
1265 		 */
1266 		if (rate <= 48000) {
1267 			if (hdspm->control_register & HDSPM_QuadSpeed)
1268 				rate *= 4;
1269 			else if (hdspm->control_register &
1270 					HDSPM_DoubleSpeed)
1271 				rate *= 2;
1272 		}
1273 		break;
1274 	}
1275 
1276 	return rate;
1277 }
1278 
1279 /* return latency in samples per period */
1280 static int hdspm_get_latency(struct hdspm *hdspm)
1281 {
1282 	int n;
1283 
1284 	n = hdspm_decode_latency(hdspm->control_register);
1285 
1286 	/* Special case for new RME cards with 32 samples period size.
1287 	 * The three latency bits in the control register
1288 	 * (HDSP_LatencyMask) encode latency values of 64 samples as
1289 	 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1290 	 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1291 	 * it corresponds to 32 samples.
1292 	 */
1293 	if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1294 		n = -1;
1295 
1296 	return 1 << (n + 6);
1297 }
1298 
1299 /* Latency function */
1300 static inline void hdspm_compute_period_size(struct hdspm *hdspm)
1301 {
1302 	hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
1303 }
1304 
1305 
1306 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
1307 {
1308 	int position;
1309 
1310 	position = hdspm_read(hdspm, HDSPM_statusRegister);
1311 
1312 	switch (hdspm->io_type) {
1313 	case RayDAT:
1314 	case AIO:
1315 		position &= HDSPM_BufferPositionMask;
1316 		position /= 4; /* Bytes per sample */
1317 		break;
1318 	default:
1319 		position = (position & HDSPM_BufferID) ?
1320 			(hdspm->period_bytes / 4) : 0;
1321 	}
1322 
1323 	return position;
1324 }
1325 
1326 
1327 static inline void hdspm_start_audio(struct hdspm * s)
1328 {
1329 	s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1330 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1331 }
1332 
1333 static inline void hdspm_stop_audio(struct hdspm * s)
1334 {
1335 	s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1336 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1337 }
1338 
1339 /* should I silence all or only opened ones ? doit all for first even is 4MB*/
1340 static void hdspm_silence_playback(struct hdspm *hdspm)
1341 {
1342 	int i;
1343 	int n = hdspm->period_bytes;
1344 	void *buf = hdspm->playback_buffer;
1345 
1346 	if (buf == NULL)
1347 		return;
1348 
1349 	for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1350 		memset(buf, 0, n);
1351 		buf += HDSPM_CHANNEL_BUFFER_BYTES;
1352 	}
1353 }
1354 
1355 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
1356 {
1357 	int n;
1358 
1359 	spin_lock_irq(&s->lock);
1360 
1361 	if (32 == frames) {
1362 		/* Special case for new RME cards like RayDAT/AIO which
1363 		 * support period sizes of 32 samples. Since latency is
1364 		 * encoded in the three bits of HDSP_LatencyMask, we can only
1365 		 * have values from 0 .. 7. While 0 still means 64 samples and
1366 		 * 6 represents 4096 samples on all cards, 7 represents 8192
1367 		 * on older cards and 32 samples on new cards.
1368 		 *
1369 		 * In other words, period size in samples is calculated by
1370 		 * 2^(n+6) with n ranging from 0 .. 7.
1371 		 */
1372 		n = 7;
1373 	} else {
1374 		frames >>= 7;
1375 		n = 0;
1376 		while (frames) {
1377 			n++;
1378 			frames >>= 1;
1379 		}
1380 	}
1381 
1382 	s->control_register &= ~HDSPM_LatencyMask;
1383 	s->control_register |= hdspm_encode_latency(n);
1384 
1385 	hdspm_write(s, HDSPM_controlRegister, s->control_register);
1386 
1387 	hdspm_compute_period_size(s);
1388 
1389 	spin_unlock_irq(&s->lock);
1390 
1391 	return 0;
1392 }
1393 
1394 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1395 {
1396 	u64 freq_const;
1397 
1398 	if (period == 0)
1399 		return 0;
1400 
1401 	switch (hdspm->io_type) {
1402 	case MADI:
1403 	case AES32:
1404 		freq_const = 110069313433624ULL;
1405 		break;
1406 	case RayDAT:
1407 	case AIO:
1408 		freq_const = 104857600000000ULL;
1409 		break;
1410 	case MADIface:
1411 		freq_const = 131072000000000ULL;
1412 		break;
1413 	default:
1414 		snd_BUG();
1415 		return 0;
1416 	}
1417 
1418 	return div_u64(freq_const, period);
1419 }
1420 
1421 
1422 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1423 {
1424 	u64 n;
1425 
1426 	if (rate >= 112000)
1427 		rate /= 4;
1428 	else if (rate >= 56000)
1429 		rate /= 2;
1430 
1431 	switch (hdspm->io_type) {
1432 	case MADIface:
1433 		n = 131072000000000ULL;  /* 125 MHz */
1434 		break;
1435 	case MADI:
1436 	case AES32:
1437 		n = 110069313433624ULL;  /* 105 MHz */
1438 		break;
1439 	case RayDAT:
1440 	case AIO:
1441 		n = 104857600000000ULL;  /* 100 MHz */
1442 		break;
1443 	default:
1444 		snd_BUG();
1445 		return;
1446 	}
1447 
1448 	n = div_u64(n, rate);
1449 	/* n should be less than 2^32 for being written to FREQ register */
1450 	snd_BUG_ON(n >> 32);
1451 	hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1452 }
1453 
1454 /* dummy set rate lets see what happens */
1455 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
1456 {
1457 	int current_rate;
1458 	int rate_bits;
1459 	int not_set = 0;
1460 	int current_speed, target_speed;
1461 
1462 	/* ASSUMPTION: hdspm->lock is either set, or there is no need for
1463 	   it (e.g. during module initialization).
1464 	 */
1465 
1466 	if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1467 
1468 		/* SLAVE --- */
1469 		if (called_internally) {
1470 
1471 			/* request from ctl or card initialization
1472 			   just make a warning an remember setting
1473 			   for future master mode switching */
1474 
1475 			snd_printk(KERN_WARNING "HDSPM: "
1476 				   "Warning: device is not running "
1477 				   "as a clock master.\n");
1478 			not_set = 1;
1479 		} else {
1480 
1481 			/* hw_param request while in AutoSync mode */
1482 			int external_freq =
1483 			    hdspm_external_sample_rate(hdspm);
1484 
1485 			if (hdspm_autosync_ref(hdspm) ==
1486 			    HDSPM_AUTOSYNC_FROM_NONE) {
1487 
1488 				snd_printk(KERN_WARNING "HDSPM: "
1489 					   "Detected no Externel Sync \n");
1490 				not_set = 1;
1491 
1492 			} else if (rate != external_freq) {
1493 
1494 				snd_printk(KERN_WARNING "HDSPM: "
1495 					   "Warning: No AutoSync source for "
1496 					   "requested rate\n");
1497 				not_set = 1;
1498 			}
1499 		}
1500 	}
1501 
1502 	current_rate = hdspm->system_sample_rate;
1503 
1504 	/* Changing between Singe, Double and Quad speed is not
1505 	   allowed if any substreams are open. This is because such a change
1506 	   causes a shift in the location of the DMA buffers and a reduction
1507 	   in the number of available buffers.
1508 
1509 	   Note that a similar but essentially insoluble problem exists for
1510 	   externally-driven rate changes. All we can do is to flag rate
1511 	   changes in the read/write routines.
1512 	 */
1513 
1514 	if (current_rate <= 48000)
1515 		current_speed = HDSPM_SPEED_SINGLE;
1516 	else if (current_rate <= 96000)
1517 		current_speed = HDSPM_SPEED_DOUBLE;
1518 	else
1519 		current_speed = HDSPM_SPEED_QUAD;
1520 
1521 	if (rate <= 48000)
1522 		target_speed = HDSPM_SPEED_SINGLE;
1523 	else if (rate <= 96000)
1524 		target_speed = HDSPM_SPEED_DOUBLE;
1525 	else
1526 		target_speed = HDSPM_SPEED_QUAD;
1527 
1528 	switch (rate) {
1529 	case 32000:
1530 		rate_bits = HDSPM_Frequency32KHz;
1531 		break;
1532 	case 44100:
1533 		rate_bits = HDSPM_Frequency44_1KHz;
1534 		break;
1535 	case 48000:
1536 		rate_bits = HDSPM_Frequency48KHz;
1537 		break;
1538 	case 64000:
1539 		rate_bits = HDSPM_Frequency64KHz;
1540 		break;
1541 	case 88200:
1542 		rate_bits = HDSPM_Frequency88_2KHz;
1543 		break;
1544 	case 96000:
1545 		rate_bits = HDSPM_Frequency96KHz;
1546 		break;
1547 	case 128000:
1548 		rate_bits = HDSPM_Frequency128KHz;
1549 		break;
1550 	case 176400:
1551 		rate_bits = HDSPM_Frequency176_4KHz;
1552 		break;
1553 	case 192000:
1554 		rate_bits = HDSPM_Frequency192KHz;
1555 		break;
1556 	default:
1557 		return -EINVAL;
1558 	}
1559 
1560 	if (current_speed != target_speed
1561 	    && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1562 		snd_printk
1563 		    (KERN_ERR "HDSPM: "
1564 		     "cannot change from %s speed to %s speed mode "
1565 		     "(capture PID = %d, playback PID = %d)\n",
1566 		     hdspm_speed_names[current_speed],
1567 		     hdspm_speed_names[target_speed],
1568 		     hdspm->capture_pid, hdspm->playback_pid);
1569 		return -EBUSY;
1570 	}
1571 
1572 	hdspm->control_register &= ~HDSPM_FrequencyMask;
1573 	hdspm->control_register |= rate_bits;
1574 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1575 
1576 	/* For AES32, need to set DDS value in FREQ register
1577 	   For MADI, also apparently */
1578 	hdspm_set_dds_value(hdspm, rate);
1579 
1580 	if (AES32 == hdspm->io_type && rate != current_rate)
1581 		hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
1582 
1583 	hdspm->system_sample_rate = rate;
1584 
1585 	if (rate <= 48000) {
1586 		hdspm->channel_map_in = hdspm->channel_map_in_ss;
1587 		hdspm->channel_map_out = hdspm->channel_map_out_ss;
1588 		hdspm->max_channels_in = hdspm->ss_in_channels;
1589 		hdspm->max_channels_out = hdspm->ss_out_channels;
1590 		hdspm->port_names_in = hdspm->port_names_in_ss;
1591 		hdspm->port_names_out = hdspm->port_names_out_ss;
1592 	} else if (rate <= 96000) {
1593 		hdspm->channel_map_in = hdspm->channel_map_in_ds;
1594 		hdspm->channel_map_out = hdspm->channel_map_out_ds;
1595 		hdspm->max_channels_in = hdspm->ds_in_channels;
1596 		hdspm->max_channels_out = hdspm->ds_out_channels;
1597 		hdspm->port_names_in = hdspm->port_names_in_ds;
1598 		hdspm->port_names_out = hdspm->port_names_out_ds;
1599 	} else {
1600 		hdspm->channel_map_in = hdspm->channel_map_in_qs;
1601 		hdspm->channel_map_out = hdspm->channel_map_out_qs;
1602 		hdspm->max_channels_in = hdspm->qs_in_channels;
1603 		hdspm->max_channels_out = hdspm->qs_out_channels;
1604 		hdspm->port_names_in = hdspm->port_names_in_qs;
1605 		hdspm->port_names_out = hdspm->port_names_out_qs;
1606 	}
1607 
1608 	if (not_set != 0)
1609 		return -1;
1610 
1611 	return 0;
1612 }
1613 
1614 /* mainly for init to 0 on load */
1615 static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
1616 {
1617 	int i, j;
1618 	unsigned int gain;
1619 
1620 	if (sgain > UNITY_GAIN)
1621 		gain = UNITY_GAIN;
1622 	else if (sgain < 0)
1623 		gain = 0;
1624 	else
1625 		gain = sgain;
1626 
1627 	for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1628 		for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1629 			hdspm_write_in_gain(hdspm, i, j, gain);
1630 			hdspm_write_pb_gain(hdspm, i, j, gain);
1631 		}
1632 }
1633 
1634 /*----------------------------------------------------------------------------
1635    MIDI
1636   ----------------------------------------------------------------------------*/
1637 
1638 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1639 						      int id)
1640 {
1641 	/* the hardware already does the relevant bit-mask with 0xff */
1642 	return hdspm_read(hdspm, hdspm->midi[id].dataIn);
1643 }
1644 
1645 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1646 					      int val)
1647 {
1648 	/* the hardware already does the relevant bit-mask with 0xff */
1649 	return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
1650 }
1651 
1652 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
1653 {
1654 	return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
1655 }
1656 
1657 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
1658 {
1659 	int fifo_bytes_used;
1660 
1661 	fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
1662 
1663 	if (fifo_bytes_used < 128)
1664 		return  128 - fifo_bytes_used;
1665 	else
1666 		return 0;
1667 }
1668 
1669 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
1670 {
1671 	while (snd_hdspm_midi_input_available (hdspm, id))
1672 		snd_hdspm_midi_read_byte (hdspm, id);
1673 }
1674 
1675 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
1676 {
1677 	unsigned long flags;
1678 	int n_pending;
1679 	int to_write;
1680 	int i;
1681 	unsigned char buf[128];
1682 
1683 	/* Output is not interrupt driven */
1684 
1685 	spin_lock_irqsave (&hmidi->lock, flags);
1686 	if (hmidi->output &&
1687 	    !snd_rawmidi_transmit_empty (hmidi->output)) {
1688 		n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1689 							    hmidi->id);
1690 		if (n_pending > 0) {
1691 			if (n_pending > (int)sizeof (buf))
1692 				n_pending = sizeof (buf);
1693 
1694 			to_write = snd_rawmidi_transmit (hmidi->output, buf,
1695 							 n_pending);
1696 			if (to_write > 0) {
1697 				for (i = 0; i < to_write; ++i)
1698 					snd_hdspm_midi_write_byte (hmidi->hdspm,
1699 								   hmidi->id,
1700 								   buf[i]);
1701 			}
1702 		}
1703 	}
1704 	spin_unlock_irqrestore (&hmidi->lock, flags);
1705 	return 0;
1706 }
1707 
1708 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
1709 {
1710 	unsigned char buf[128]; /* this buffer is designed to match the MIDI
1711 				 * input FIFO size
1712 				 */
1713 	unsigned long flags;
1714 	int n_pending;
1715 	int i;
1716 
1717 	spin_lock_irqsave (&hmidi->lock, flags);
1718 	n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1719 	if (n_pending > 0) {
1720 		if (hmidi->input) {
1721 			if (n_pending > (int)sizeof (buf))
1722 				n_pending = sizeof (buf);
1723 			for (i = 0; i < n_pending; ++i)
1724 				buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1725 								   hmidi->id);
1726 			if (n_pending)
1727 				snd_rawmidi_receive (hmidi->input, buf,
1728 						     n_pending);
1729 		} else {
1730 			/* flush the MIDI input FIFO */
1731 			while (n_pending--)
1732 				snd_hdspm_midi_read_byte (hmidi->hdspm,
1733 							  hmidi->id);
1734 		}
1735 	}
1736 	hmidi->pending = 0;
1737 	spin_unlock_irqrestore(&hmidi->lock, flags);
1738 
1739 	spin_lock_irqsave(&hmidi->hdspm->lock, flags);
1740 	hmidi->hdspm->control_register |= hmidi->ie;
1741 	hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1742 		    hmidi->hdspm->control_register);
1743 	spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
1744 
1745 	return snd_hdspm_midi_output_write (hmidi);
1746 }
1747 
1748 static void
1749 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1750 {
1751 	struct hdspm *hdspm;
1752 	struct hdspm_midi *hmidi;
1753 	unsigned long flags;
1754 
1755 	hmidi = substream->rmidi->private_data;
1756 	hdspm = hmidi->hdspm;
1757 
1758 	spin_lock_irqsave (&hdspm->lock, flags);
1759 	if (up) {
1760 		if (!(hdspm->control_register & hmidi->ie)) {
1761 			snd_hdspm_flush_midi_input (hdspm, hmidi->id);
1762 			hdspm->control_register |= hmidi->ie;
1763 		}
1764 	} else {
1765 		hdspm->control_register &= ~hmidi->ie;
1766 	}
1767 
1768 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1769 	spin_unlock_irqrestore (&hdspm->lock, flags);
1770 }
1771 
1772 static void snd_hdspm_midi_output_timer(unsigned long data)
1773 {
1774 	struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
1775 	unsigned long flags;
1776 
1777 	snd_hdspm_midi_output_write(hmidi);
1778 	spin_lock_irqsave (&hmidi->lock, flags);
1779 
1780 	/* this does not bump hmidi->istimer, because the
1781 	   kernel automatically removed the timer when it
1782 	   expired, and we are now adding it back, thus
1783 	   leaving istimer wherever it was set before.
1784 	*/
1785 
1786 	if (hmidi->istimer) {
1787 		hmidi->timer.expires = 1 + jiffies;
1788 		add_timer(&hmidi->timer);
1789 	}
1790 
1791 	spin_unlock_irqrestore (&hmidi->lock, flags);
1792 }
1793 
1794 static void
1795 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1796 {
1797 	struct hdspm_midi *hmidi;
1798 	unsigned long flags;
1799 
1800 	hmidi = substream->rmidi->private_data;
1801 	spin_lock_irqsave (&hmidi->lock, flags);
1802 	if (up) {
1803 		if (!hmidi->istimer) {
1804 			init_timer(&hmidi->timer);
1805 			hmidi->timer.function = snd_hdspm_midi_output_timer;
1806 			hmidi->timer.data = (unsigned long) hmidi;
1807 			hmidi->timer.expires = 1 + jiffies;
1808 			add_timer(&hmidi->timer);
1809 			hmidi->istimer++;
1810 		}
1811 	} else {
1812 		if (hmidi->istimer && --hmidi->istimer <= 0)
1813 			del_timer (&hmidi->timer);
1814 	}
1815 	spin_unlock_irqrestore (&hmidi->lock, flags);
1816 	if (up)
1817 		snd_hdspm_midi_output_write(hmidi);
1818 }
1819 
1820 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
1821 {
1822 	struct hdspm_midi *hmidi;
1823 
1824 	hmidi = substream->rmidi->private_data;
1825 	spin_lock_irq (&hmidi->lock);
1826 	snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1827 	hmidi->input = substream;
1828 	spin_unlock_irq (&hmidi->lock);
1829 
1830 	return 0;
1831 }
1832 
1833 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
1834 {
1835 	struct hdspm_midi *hmidi;
1836 
1837 	hmidi = substream->rmidi->private_data;
1838 	spin_lock_irq (&hmidi->lock);
1839 	hmidi->output = substream;
1840 	spin_unlock_irq (&hmidi->lock);
1841 
1842 	return 0;
1843 }
1844 
1845 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
1846 {
1847 	struct hdspm_midi *hmidi;
1848 
1849 	snd_hdspm_midi_input_trigger (substream, 0);
1850 
1851 	hmidi = substream->rmidi->private_data;
1852 	spin_lock_irq (&hmidi->lock);
1853 	hmidi->input = NULL;
1854 	spin_unlock_irq (&hmidi->lock);
1855 
1856 	return 0;
1857 }
1858 
1859 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
1860 {
1861 	struct hdspm_midi *hmidi;
1862 
1863 	snd_hdspm_midi_output_trigger (substream, 0);
1864 
1865 	hmidi = substream->rmidi->private_data;
1866 	spin_lock_irq (&hmidi->lock);
1867 	hmidi->output = NULL;
1868 	spin_unlock_irq (&hmidi->lock);
1869 
1870 	return 0;
1871 }
1872 
1873 static struct snd_rawmidi_ops snd_hdspm_midi_output =
1874 {
1875 	.open =		snd_hdspm_midi_output_open,
1876 	.close =	snd_hdspm_midi_output_close,
1877 	.trigger =	snd_hdspm_midi_output_trigger,
1878 };
1879 
1880 static struct snd_rawmidi_ops snd_hdspm_midi_input =
1881 {
1882 	.open =		snd_hdspm_midi_input_open,
1883 	.close =	snd_hdspm_midi_input_close,
1884 	.trigger =	snd_hdspm_midi_input_trigger,
1885 };
1886 
1887 static int snd_hdspm_create_midi(struct snd_card *card,
1888 				 struct hdspm *hdspm, int id)
1889 {
1890 	int err;
1891 	char buf[32];
1892 
1893 	hdspm->midi[id].id = id;
1894 	hdspm->midi[id].hdspm = hdspm;
1895 	spin_lock_init (&hdspm->midi[id].lock);
1896 
1897 	if (0 == id) {
1898 		if (MADIface == hdspm->io_type) {
1899 			/* MIDI-over-MADI on HDSPe MADIface */
1900 			hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
1901 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
1902 			hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
1903 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
1904 			hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
1905 			hdspm->midi[0].irq = HDSPM_midi2IRQPending;
1906 		} else {
1907 			hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
1908 			hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
1909 			hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
1910 			hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
1911 			hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
1912 			hdspm->midi[0].irq = HDSPM_midi0IRQPending;
1913 		}
1914 	} else if (1 == id) {
1915 		hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
1916 		hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
1917 		hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
1918 		hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
1919 		hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
1920 		hdspm->midi[1].irq = HDSPM_midi1IRQPending;
1921 	} else if ((2 == id) && (MADI == hdspm->io_type)) {
1922 		/* MIDI-over-MADI on HDSPe MADI */
1923 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1924 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1925 		hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
1926 		hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
1927 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1928 		hdspm->midi[2].irq = HDSPM_midi2IRQPending;
1929 	} else if (2 == id) {
1930 		/* TCO MTC, read only */
1931 		hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1932 		hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1933 		hdspm->midi[2].dataOut = -1;
1934 		hdspm->midi[2].statusOut = -1;
1935 		hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1936 		hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
1937 	} else if (3 == id) {
1938 		/* TCO MTC on HDSPe MADI */
1939 		hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
1940 		hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
1941 		hdspm->midi[3].dataOut = -1;
1942 		hdspm->midi[3].statusOut = -1;
1943 		hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
1944 		hdspm->midi[3].irq = HDSPM_midi3IRQPending;
1945 	}
1946 
1947 	if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
1948 					(MADIface == hdspm->io_type)))) {
1949 		if ((id == 0) && (MADIface == hdspm->io_type)) {
1950 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1951 		} else if ((id == 2) && (MADI == hdspm->io_type)) {
1952 			sprintf(buf, "%s MIDIoverMADI", card->shortname);
1953 		} else {
1954 			sprintf(buf, "%s MIDI %d", card->shortname, id+1);
1955 		}
1956 		err = snd_rawmidi_new(card, buf, id, 1, 1,
1957 				&hdspm->midi[id].rmidi);
1958 		if (err < 0)
1959 			return err;
1960 
1961 		sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
1962 				card->id, id+1);
1963 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1964 
1965 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1966 				SNDRV_RAWMIDI_STREAM_OUTPUT,
1967 				&snd_hdspm_midi_output);
1968 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1969 				SNDRV_RAWMIDI_STREAM_INPUT,
1970 				&snd_hdspm_midi_input);
1971 
1972 		hdspm->midi[id].rmidi->info_flags |=
1973 			SNDRV_RAWMIDI_INFO_OUTPUT |
1974 			SNDRV_RAWMIDI_INFO_INPUT |
1975 			SNDRV_RAWMIDI_INFO_DUPLEX;
1976 	} else {
1977 		/* TCO MTC, read only */
1978 		sprintf(buf, "%s MTC %d", card->shortname, id+1);
1979 		err = snd_rawmidi_new(card, buf, id, 1, 1,
1980 				&hdspm->midi[id].rmidi);
1981 		if (err < 0)
1982 			return err;
1983 
1984 		sprintf(hdspm->midi[id].rmidi->name,
1985 				"%s MTC %d", card->id, id+1);
1986 		hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1987 
1988 		snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1989 				SNDRV_RAWMIDI_STREAM_INPUT,
1990 				&snd_hdspm_midi_input);
1991 
1992 		hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 
1999 static void hdspm_midi_tasklet(unsigned long arg)
2000 {
2001 	struct hdspm *hdspm = (struct hdspm *)arg;
2002 	int i = 0;
2003 
2004 	while (i < hdspm->midiPorts) {
2005 		if (hdspm->midi[i].pending)
2006 			snd_hdspm_midi_input_read(&hdspm->midi[i]);
2007 
2008 		i++;
2009 	}
2010 }
2011 
2012 
2013 /*-----------------------------------------------------------------------------
2014   Status Interface
2015   ----------------------------------------------------------------------------*/
2016 
2017 /* get the system sample rate which is set */
2018 
2019 
2020 static inline int hdspm_get_pll_freq(struct hdspm *hdspm)
2021 {
2022 	unsigned int period, rate;
2023 
2024 	period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
2025 	rate = hdspm_calc_dds_value(hdspm, period);
2026 
2027 	return rate;
2028 }
2029 
2030 /**
2031  * Calculate the real sample rate from the
2032  * current DDS value.
2033  **/
2034 static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
2035 {
2036 	unsigned int rate;
2037 
2038 	rate = hdspm_get_pll_freq(hdspm);
2039 
2040 	if (rate > 207000) {
2041 		/* Unreasonable high sample rate as seen on PCI MADI cards. */
2042 		if (0 == hdspm_system_clock_mode(hdspm)) {
2043 			/* master mode, return internal sample rate */
2044 			rate = hdspm->system_sample_rate;
2045 		} else {
2046 			/* slave mode, return external sample rate */
2047 			rate = hdspm_external_sample_rate(hdspm);
2048 		}
2049 	}
2050 
2051 	return rate;
2052 }
2053 
2054 
2055 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
2056 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2057 	.name = xname, \
2058 	.index = xindex, \
2059 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2060 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2061 	.info = snd_hdspm_info_system_sample_rate, \
2062 	.put = snd_hdspm_put_system_sample_rate, \
2063 	.get = snd_hdspm_get_system_sample_rate \
2064 }
2065 
2066 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2067 					     struct snd_ctl_elem_info *uinfo)
2068 {
2069 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2070 	uinfo->count = 1;
2071 	uinfo->value.integer.min = 27000;
2072 	uinfo->value.integer.max = 207000;
2073 	uinfo->value.integer.step = 1;
2074 	return 0;
2075 }
2076 
2077 
2078 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2079 					    struct snd_ctl_elem_value *
2080 					    ucontrol)
2081 {
2082 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2083 
2084 	ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2085 	return 0;
2086 }
2087 
2088 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol,
2089 					    struct snd_ctl_elem_value *
2090 					    ucontrol)
2091 {
2092 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2093 
2094 	hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]);
2095 	return 0;
2096 }
2097 
2098 
2099 /**
2100  * Returns the WordClock sample rate class for the given card.
2101  **/
2102 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2103 {
2104 	int status;
2105 
2106 	switch (hdspm->io_type) {
2107 	case RayDAT:
2108 	case AIO:
2109 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2110 		return (status >> 16) & 0xF;
2111 		break;
2112 	default:
2113 		break;
2114 	}
2115 
2116 
2117 	return 0;
2118 }
2119 
2120 
2121 /**
2122  * Returns the TCO sample rate class for the given card.
2123  **/
2124 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2125 {
2126 	int status;
2127 
2128 	if (hdspm->tco) {
2129 		switch (hdspm->io_type) {
2130 		case RayDAT:
2131 		case AIO:
2132 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2133 			return (status >> 20) & 0xF;
2134 			break;
2135 		default:
2136 			break;
2137 		}
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 
2144 /**
2145  * Returns the SYNC_IN sample rate class for the given card.
2146  **/
2147 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2148 {
2149 	int status;
2150 
2151 	if (hdspm->tco) {
2152 		switch (hdspm->io_type) {
2153 		case RayDAT:
2154 		case AIO:
2155 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2156 			return (status >> 12) & 0xF;
2157 			break;
2158 		default:
2159 			break;
2160 		}
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 
2167 /**
2168  * Returns the sample rate class for input source <idx> for
2169  * 'new style' cards like the AIO and RayDAT.
2170  **/
2171 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2172 {
2173 	int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2174 
2175 	return (status >> (idx*4)) & 0xF;
2176 }
2177 
2178 #define ENUMERATED_CTL_INFO(info, texts) \
2179 { \
2180 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; \
2181 	uinfo->count = 1; \
2182 	uinfo->value.enumerated.items = ARRAY_SIZE(texts); \
2183 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) \
2184 		uinfo->value.enumerated.item =	uinfo->value.enumerated.items - 1; \
2185 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); \
2186 }
2187 
2188 
2189 
2190 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
2191 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2192 	.name = xname, \
2193 	.private_value = xindex, \
2194 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2195 	.info = snd_hdspm_info_autosync_sample_rate, \
2196 	.get = snd_hdspm_get_autosync_sample_rate \
2197 }
2198 
2199 
2200 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2201 					       struct snd_ctl_elem_info *uinfo)
2202 {
2203 	ENUMERATED_CTL_INFO(uinfo, texts_freq);
2204 	return 0;
2205 }
2206 
2207 
2208 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2209 					      struct snd_ctl_elem_value *
2210 					      ucontrol)
2211 {
2212 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2213 
2214 	switch (hdspm->io_type) {
2215 	case RayDAT:
2216 		switch (kcontrol->private_value) {
2217 		case 0:
2218 			ucontrol->value.enumerated.item[0] =
2219 				hdspm_get_wc_sample_rate(hdspm);
2220 			break;
2221 		case 7:
2222 			ucontrol->value.enumerated.item[0] =
2223 				hdspm_get_tco_sample_rate(hdspm);
2224 			break;
2225 		case 8:
2226 			ucontrol->value.enumerated.item[0] =
2227 				hdspm_get_sync_in_sample_rate(hdspm);
2228 			break;
2229 		default:
2230 			ucontrol->value.enumerated.item[0] =
2231 				hdspm_get_s1_sample_rate(hdspm,
2232 						kcontrol->private_value-1);
2233 		}
2234 		break;
2235 
2236 	case AIO:
2237 		switch (kcontrol->private_value) {
2238 		case 0: /* WC */
2239 			ucontrol->value.enumerated.item[0] =
2240 				hdspm_get_wc_sample_rate(hdspm);
2241 			break;
2242 		case 4: /* TCO */
2243 			ucontrol->value.enumerated.item[0] =
2244 				hdspm_get_tco_sample_rate(hdspm);
2245 			break;
2246 		case 5: /* SYNC_IN */
2247 			ucontrol->value.enumerated.item[0] =
2248 				hdspm_get_sync_in_sample_rate(hdspm);
2249 			break;
2250 		default:
2251 			ucontrol->value.enumerated.item[0] =
2252 				hdspm_get_s1_sample_rate(hdspm,
2253 						ucontrol->id.index-1);
2254 		}
2255 		break;
2256 
2257 	case AES32:
2258 
2259 		switch (kcontrol->private_value) {
2260 		case 0: /* WC */
2261 			ucontrol->value.enumerated.item[0] =
2262 				hdspm_get_wc_sample_rate(hdspm);
2263 			break;
2264 		case 9: /* TCO */
2265 			ucontrol->value.enumerated.item[0] =
2266 				hdspm_get_tco_sample_rate(hdspm);
2267 			break;
2268 		case 10: /* SYNC_IN */
2269 			ucontrol->value.enumerated.item[0] =
2270 				hdspm_get_sync_in_sample_rate(hdspm);
2271 			break;
2272 		default: /* AES1 to AES8 */
2273 			ucontrol->value.enumerated.item[0] =
2274 				hdspm_get_s1_sample_rate(hdspm,
2275 						kcontrol->private_value-1);
2276 			break;
2277 		}
2278 		break;
2279 
2280 	case MADI:
2281 	case MADIface:
2282 		{
2283 			int rate = hdspm_external_sample_rate(hdspm);
2284 			int i, selected_rate = 0;
2285 			for (i = 1; i < 10; i++)
2286 				if (HDSPM_bit2freq(i) == rate) {
2287 					selected_rate = i;
2288 					break;
2289 				}
2290 			ucontrol->value.enumerated.item[0] = selected_rate;
2291 		}
2292 		break;
2293 
2294 	default:
2295 		break;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 
2302 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2303 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2304 	.name = xname, \
2305 	.index = xindex, \
2306 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2307 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2308 	.info = snd_hdspm_info_system_clock_mode, \
2309 	.get = snd_hdspm_get_system_clock_mode, \
2310 	.put = snd_hdspm_put_system_clock_mode, \
2311 }
2312 
2313 
2314 /**
2315  * Returns the system clock mode for the given card.
2316  * @returns 0 - master, 1 - slave
2317  **/
2318 static int hdspm_system_clock_mode(struct hdspm *hdspm)
2319 {
2320 	switch (hdspm->io_type) {
2321 	case AIO:
2322 	case RayDAT:
2323 		if (hdspm->settings_register & HDSPM_c0Master)
2324 			return 0;
2325 		break;
2326 
2327 	default:
2328 		if (hdspm->control_register & HDSPM_ClockModeMaster)
2329 			return 0;
2330 	}
2331 
2332 	return 1;
2333 }
2334 
2335 
2336 /**
2337  * Sets the system clock mode.
2338  * @param mode 0 - master, 1 - slave
2339  **/
2340 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2341 {
2342 	switch (hdspm->io_type) {
2343 	case AIO:
2344 	case RayDAT:
2345 		if (0 == mode)
2346 			hdspm->settings_register |= HDSPM_c0Master;
2347 		else
2348 			hdspm->settings_register &= ~HDSPM_c0Master;
2349 
2350 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2351 		break;
2352 
2353 	default:
2354 		if (0 == mode)
2355 			hdspm->control_register |= HDSPM_ClockModeMaster;
2356 		else
2357 			hdspm->control_register &= ~HDSPM_ClockModeMaster;
2358 
2359 		hdspm_write(hdspm, HDSPM_controlRegister,
2360 				hdspm->control_register);
2361 	}
2362 }
2363 
2364 
2365 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
2366 					    struct snd_ctl_elem_info *uinfo)
2367 {
2368 	static char *texts[] = { "Master", "AutoSync" };
2369 	ENUMERATED_CTL_INFO(uinfo, texts);
2370 	return 0;
2371 }
2372 
2373 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2374 					   struct snd_ctl_elem_value *ucontrol)
2375 {
2376 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2377 
2378 	ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
2379 	return 0;
2380 }
2381 
2382 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2383 					   struct snd_ctl_elem_value *ucontrol)
2384 {
2385 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2386 	int val;
2387 
2388 	if (!snd_hdspm_use_is_exclusive(hdspm))
2389 		return -EBUSY;
2390 
2391 	val = ucontrol->value.enumerated.item[0];
2392 	if (val < 0)
2393 		val = 0;
2394 	else if (val > 1)
2395 		val = 1;
2396 
2397 	hdspm_set_system_clock_mode(hdspm, val);
2398 
2399 	return 0;
2400 }
2401 
2402 
2403 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2404 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2405 	.name = xname, \
2406 	.index = xindex, \
2407 	.info = snd_hdspm_info_clock_source, \
2408 	.get = snd_hdspm_get_clock_source, \
2409 	.put = snd_hdspm_put_clock_source \
2410 }
2411 
2412 
2413 static int hdspm_clock_source(struct hdspm * hdspm)
2414 {
2415 	switch (hdspm->system_sample_rate) {
2416 	case 32000: return 0;
2417 	case 44100: return 1;
2418 	case 48000: return 2;
2419 	case 64000: return 3;
2420 	case 88200: return 4;
2421 	case 96000: return 5;
2422 	case 128000: return 6;
2423 	case 176400: return 7;
2424 	case 192000: return 8;
2425 	}
2426 
2427 	return -1;
2428 }
2429 
2430 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
2431 {
2432 	int rate;
2433 	switch (mode) {
2434 	case 0:
2435 		rate = 32000; break;
2436 	case 1:
2437 		rate = 44100; break;
2438 	case 2:
2439 		rate = 48000; break;
2440 	case 3:
2441 		rate = 64000; break;
2442 	case 4:
2443 		rate = 88200; break;
2444 	case 5:
2445 		rate = 96000; break;
2446 	case 6:
2447 		rate = 128000; break;
2448 	case 7:
2449 		rate = 176400; break;
2450 	case 8:
2451 		rate = 192000; break;
2452 	default:
2453 		rate = 48000;
2454 	}
2455 	hdspm_set_rate(hdspm, rate, 1);
2456 	return 0;
2457 }
2458 
2459 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2460 				       struct snd_ctl_elem_info *uinfo)
2461 {
2462 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2463 	uinfo->count = 1;
2464 	uinfo->value.enumerated.items = 9;
2465 
2466 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2467 		uinfo->value.enumerated.item =
2468 		    uinfo->value.enumerated.items - 1;
2469 
2470 	strcpy(uinfo->value.enumerated.name,
2471 	       texts_freq[uinfo->value.enumerated.item+1]);
2472 
2473 	return 0;
2474 }
2475 
2476 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2477 				      struct snd_ctl_elem_value *ucontrol)
2478 {
2479 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2480 
2481 	ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2482 	return 0;
2483 }
2484 
2485 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2486 				      struct snd_ctl_elem_value *ucontrol)
2487 {
2488 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2489 	int change;
2490 	int val;
2491 
2492 	if (!snd_hdspm_use_is_exclusive(hdspm))
2493 		return -EBUSY;
2494 	val = ucontrol->value.enumerated.item[0];
2495 	if (val < 0)
2496 		val = 0;
2497 	if (val > 9)
2498 		val = 9;
2499 	spin_lock_irq(&hdspm->lock);
2500 	if (val != hdspm_clock_source(hdspm))
2501 		change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2502 	else
2503 		change = 0;
2504 	spin_unlock_irq(&hdspm->lock);
2505 	return change;
2506 }
2507 
2508 
2509 #define HDSPM_PREF_SYNC_REF(xname, xindex) \
2510 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2511 	.name = xname, \
2512 	.index = xindex, \
2513 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2514 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2515 	.info = snd_hdspm_info_pref_sync_ref, \
2516 	.get = snd_hdspm_get_pref_sync_ref, \
2517 	.put = snd_hdspm_put_pref_sync_ref \
2518 }
2519 
2520 
2521 /**
2522  * Returns the current preferred sync reference setting.
2523  * The semantics of the return value are depending on the
2524  * card, please see the comments for clarification.
2525  **/
2526 static int hdspm_pref_sync_ref(struct hdspm * hdspm)
2527 {
2528 	switch (hdspm->io_type) {
2529 	case AES32:
2530 		switch (hdspm->control_register & HDSPM_SyncRefMask) {
2531 		case 0: return 0;  /* WC */
2532 		case HDSPM_SyncRef0: return 1; /* AES 1 */
2533 		case HDSPM_SyncRef1: return 2; /* AES 2 */
2534 		case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2535 		case HDSPM_SyncRef2: return 4; /* AES 4 */
2536 		case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2537 		case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2538 		case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2539 						    return 7; /* AES 7 */
2540 		case HDSPM_SyncRef3: return 8; /* AES 8 */
2541 		case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
2542 		}
2543 		break;
2544 
2545 	case MADI:
2546 	case MADIface:
2547 		if (hdspm->tco) {
2548 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2549 			case 0: return 0;  /* WC */
2550 			case HDSPM_SyncRef0: return 1;  /* MADI */
2551 			case HDSPM_SyncRef1: return 2;  /* TCO */
2552 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2553 					     return 3;  /* SYNC_IN */
2554 			}
2555 		} else {
2556 			switch (hdspm->control_register & HDSPM_SyncRefMask) {
2557 			case 0: return 0;  /* WC */
2558 			case HDSPM_SyncRef0: return 1;  /* MADI */
2559 			case HDSPM_SyncRef1+HDSPM_SyncRef0:
2560 					     return 2;  /* SYNC_IN */
2561 			}
2562 		}
2563 		break;
2564 
2565 	case RayDAT:
2566 		if (hdspm->tco) {
2567 			switch ((hdspm->settings_register &
2568 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2569 			case 0: return 0;  /* WC */
2570 			case 3: return 1;  /* ADAT 1 */
2571 			case 4: return 2;  /* ADAT 2 */
2572 			case 5: return 3;  /* ADAT 3 */
2573 			case 6: return 4;  /* ADAT 4 */
2574 			case 1: return 5;  /* AES */
2575 			case 2: return 6;  /* SPDIF */
2576 			case 9: return 7;  /* TCO */
2577 			case 10: return 8; /* SYNC_IN */
2578 			}
2579 		} else {
2580 			switch ((hdspm->settings_register &
2581 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2582 			case 0: return 0;  /* WC */
2583 			case 3: return 1;  /* ADAT 1 */
2584 			case 4: return 2;  /* ADAT 2 */
2585 			case 5: return 3;  /* ADAT 3 */
2586 			case 6: return 4;  /* ADAT 4 */
2587 			case 1: return 5;  /* AES */
2588 			case 2: return 6;  /* SPDIF */
2589 			case 10: return 7; /* SYNC_IN */
2590 			}
2591 		}
2592 
2593 		break;
2594 
2595 	case AIO:
2596 		if (hdspm->tco) {
2597 			switch ((hdspm->settings_register &
2598 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2599 			case 0: return 0;  /* WC */
2600 			case 3: return 1;  /* ADAT */
2601 			case 1: return 2;  /* AES */
2602 			case 2: return 3;  /* SPDIF */
2603 			case 9: return 4;  /* TCO */
2604 			case 10: return 5; /* SYNC_IN */
2605 			}
2606 		} else {
2607 			switch ((hdspm->settings_register &
2608 				HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2609 			case 0: return 0;  /* WC */
2610 			case 3: return 1;  /* ADAT */
2611 			case 1: return 2;  /* AES */
2612 			case 2: return 3;  /* SPDIF */
2613 			case 10: return 4; /* SYNC_IN */
2614 			}
2615 		}
2616 
2617 		break;
2618 	}
2619 
2620 	return -1;
2621 }
2622 
2623 
2624 /**
2625  * Set the preferred sync reference to <pref>. The semantics
2626  * of <pref> are depending on the card type, see the comments
2627  * for clarification.
2628  **/
2629 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
2630 {
2631 	int p = 0;
2632 
2633 	switch (hdspm->io_type) {
2634 	case AES32:
2635 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2636 		switch (pref) {
2637 		case 0: /* WC  */
2638 			break;
2639 		case 1: /* AES 1 */
2640 			hdspm->control_register |= HDSPM_SyncRef0;
2641 			break;
2642 		case 2: /* AES 2 */
2643 			hdspm->control_register |= HDSPM_SyncRef1;
2644 			break;
2645 		case 3: /* AES 3 */
2646 			hdspm->control_register |=
2647 				HDSPM_SyncRef1+HDSPM_SyncRef0;
2648 			break;
2649 		case 4: /* AES 4 */
2650 			hdspm->control_register |= HDSPM_SyncRef2;
2651 			break;
2652 		case 5: /* AES 5 */
2653 			hdspm->control_register |=
2654 				HDSPM_SyncRef2+HDSPM_SyncRef0;
2655 			break;
2656 		case 6: /* AES 6 */
2657 			hdspm->control_register |=
2658 				HDSPM_SyncRef2+HDSPM_SyncRef1;
2659 			break;
2660 		case 7: /* AES 7 */
2661 			hdspm->control_register |=
2662 				HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
2663 			break;
2664 		case 8: /* AES 8 */
2665 			hdspm->control_register |= HDSPM_SyncRef3;
2666 			break;
2667 		case 9: /* TCO */
2668 			hdspm->control_register |=
2669 				HDSPM_SyncRef3+HDSPM_SyncRef0;
2670 			break;
2671 		default:
2672 			return -1;
2673 		}
2674 
2675 		break;
2676 
2677 	case MADI:
2678 	case MADIface:
2679 		hdspm->control_register &= ~HDSPM_SyncRefMask;
2680 		if (hdspm->tco) {
2681 			switch (pref) {
2682 			case 0: /* WC */
2683 				break;
2684 			case 1: /* MADI */
2685 				hdspm->control_register |= HDSPM_SyncRef0;
2686 				break;
2687 			case 2: /* TCO */
2688 				hdspm->control_register |= HDSPM_SyncRef1;
2689 				break;
2690 			case 3: /* SYNC_IN */
2691 				hdspm->control_register |=
2692 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2693 				break;
2694 			default:
2695 				return -1;
2696 			}
2697 		} else {
2698 			switch (pref) {
2699 			case 0: /* WC */
2700 				break;
2701 			case 1: /* MADI */
2702 				hdspm->control_register |= HDSPM_SyncRef0;
2703 				break;
2704 			case 2: /* SYNC_IN */
2705 				hdspm->control_register |=
2706 					HDSPM_SyncRef0+HDSPM_SyncRef1;
2707 				break;
2708 			default:
2709 				return -1;
2710 			}
2711 		}
2712 
2713 		break;
2714 
2715 	case RayDAT:
2716 		if (hdspm->tco) {
2717 			switch (pref) {
2718 			case 0: p = 0; break;  /* WC */
2719 			case 1: p = 3; break;  /* ADAT 1 */
2720 			case 2: p = 4; break;  /* ADAT 2 */
2721 			case 3: p = 5; break;  /* ADAT 3 */
2722 			case 4: p = 6; break;  /* ADAT 4 */
2723 			case 5: p = 1; break;  /* AES */
2724 			case 6: p = 2; break;  /* SPDIF */
2725 			case 7: p = 9; break;  /* TCO */
2726 			case 8: p = 10; break; /* SYNC_IN */
2727 			default: return -1;
2728 			}
2729 		} else {
2730 			switch (pref) {
2731 			case 0: p = 0; break;  /* WC */
2732 			case 1: p = 3; break;  /* ADAT 1 */
2733 			case 2: p = 4; break;  /* ADAT 2 */
2734 			case 3: p = 5; break;  /* ADAT 3 */
2735 			case 4: p = 6; break;  /* ADAT 4 */
2736 			case 5: p = 1; break;  /* AES */
2737 			case 6: p = 2; break;  /* SPDIF */
2738 			case 7: p = 10; break; /* SYNC_IN */
2739 			default: return -1;
2740 			}
2741 		}
2742 		break;
2743 
2744 	case AIO:
2745 		if (hdspm->tco) {
2746 			switch (pref) {
2747 			case 0: p = 0; break;  /* WC */
2748 			case 1: p = 3; break;  /* ADAT */
2749 			case 2: p = 1; break;  /* AES */
2750 			case 3: p = 2; break;  /* SPDIF */
2751 			case 4: p = 9; break;  /* TCO */
2752 			case 5: p = 10; break; /* SYNC_IN */
2753 			default: return -1;
2754 			}
2755 		} else {
2756 			switch (pref) {
2757 			case 0: p = 0; break;  /* WC */
2758 			case 1: p = 3; break;  /* ADAT */
2759 			case 2: p = 1; break;  /* AES */
2760 			case 3: p = 2; break;  /* SPDIF */
2761 			case 4: p = 10; break; /* SYNC_IN */
2762 			default: return -1;
2763 			}
2764 		}
2765 		break;
2766 	}
2767 
2768 	switch (hdspm->io_type) {
2769 	case RayDAT:
2770 	case AIO:
2771 		hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2772 		hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2773 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2774 		break;
2775 
2776 	case MADI:
2777 	case MADIface:
2778 	case AES32:
2779 		hdspm_write(hdspm, HDSPM_controlRegister,
2780 				hdspm->control_register);
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 
2787 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2788 					struct snd_ctl_elem_info *uinfo)
2789 {
2790 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2791 
2792 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2793 	uinfo->count = 1;
2794 	uinfo->value.enumerated.items = hdspm->texts_autosync_items;
2795 
2796 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2797 		uinfo->value.enumerated.item =
2798 			uinfo->value.enumerated.items - 1;
2799 
2800 	strcpy(uinfo->value.enumerated.name,
2801 			hdspm->texts_autosync[uinfo->value.enumerated.item]);
2802 
2803 	return 0;
2804 }
2805 
2806 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2807 				       struct snd_ctl_elem_value *ucontrol)
2808 {
2809 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2810 	int psf = hdspm_pref_sync_ref(hdspm);
2811 
2812 	if (psf >= 0) {
2813 		ucontrol->value.enumerated.item[0] = psf;
2814 		return 0;
2815 	}
2816 
2817 	return -1;
2818 }
2819 
2820 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2821 				       struct snd_ctl_elem_value *ucontrol)
2822 {
2823 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2824 	int val, change = 0;
2825 
2826 	if (!snd_hdspm_use_is_exclusive(hdspm))
2827 		return -EBUSY;
2828 
2829 	val = ucontrol->value.enumerated.item[0];
2830 
2831 	if (val < 0)
2832 		val = 0;
2833 	else if (val >= hdspm->texts_autosync_items)
2834 		val = hdspm->texts_autosync_items-1;
2835 
2836 	spin_lock_irq(&hdspm->lock);
2837 	if (val != hdspm_pref_sync_ref(hdspm))
2838 		change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
2839 
2840 	spin_unlock_irq(&hdspm->lock);
2841 	return change;
2842 }
2843 
2844 
2845 #define HDSPM_AUTOSYNC_REF(xname, xindex) \
2846 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2847 	.name = xname, \
2848 	.index = xindex, \
2849 	.access = SNDRV_CTL_ELEM_ACCESS_READ, \
2850 	.info = snd_hdspm_info_autosync_ref, \
2851 	.get = snd_hdspm_get_autosync_ref, \
2852 }
2853 
2854 static int hdspm_autosync_ref(struct hdspm *hdspm)
2855 {
2856 	if (AES32 == hdspm->io_type) {
2857 		unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
2858 		unsigned int syncref =
2859 			(status >> HDSPM_AES32_syncref_bit) & 0xF;
2860 		if (syncref == 0)
2861 			return HDSPM_AES32_AUTOSYNC_FROM_WORD;
2862 		if (syncref <= 8)
2863 			return syncref;
2864 		return HDSPM_AES32_AUTOSYNC_FROM_NONE;
2865 	} else if (MADI == hdspm->io_type) {
2866 		/* This looks at the autosync selected sync reference */
2867 		unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2868 
2869 		switch (status2 & HDSPM_SelSyncRefMask) {
2870 		case HDSPM_SelSyncRef_WORD:
2871 			return HDSPM_AUTOSYNC_FROM_WORD;
2872 		case HDSPM_SelSyncRef_MADI:
2873 			return HDSPM_AUTOSYNC_FROM_MADI;
2874 		case HDSPM_SelSyncRef_TCO:
2875 			return HDSPM_AUTOSYNC_FROM_TCO;
2876 		case HDSPM_SelSyncRef_SyncIn:
2877 			return HDSPM_AUTOSYNC_FROM_SYNC_IN;
2878 		case HDSPM_SelSyncRef_NVALID:
2879 			return HDSPM_AUTOSYNC_FROM_NONE;
2880 		default:
2881 			return 0;
2882 		}
2883 
2884 	}
2885 	return 0;
2886 }
2887 
2888 
2889 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
2890 				       struct snd_ctl_elem_info *uinfo)
2891 {
2892 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2893 
2894 	if (AES32 == hdspm->io_type) {
2895 		static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
2896 			"AES4",	"AES5", "AES6", "AES7", "AES8", "None"};
2897 
2898 		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2899 		uinfo->count = 1;
2900 		uinfo->value.enumerated.items = 10;
2901 		if (uinfo->value.enumerated.item >=
2902 		    uinfo->value.enumerated.items)
2903 			uinfo->value.enumerated.item =
2904 				uinfo->value.enumerated.items - 1;
2905 		strcpy(uinfo->value.enumerated.name,
2906 				texts[uinfo->value.enumerated.item]);
2907 	} else if (MADI == hdspm->io_type) {
2908 		static char *texts[] = {"Word Clock", "MADI", "TCO",
2909 			"Sync In", "None" };
2910 
2911 		uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2912 		uinfo->count = 1;
2913 		uinfo->value.enumerated.items = 5;
2914 		if (uinfo->value.enumerated.item >=
2915 				uinfo->value.enumerated.items)
2916 			uinfo->value.enumerated.item =
2917 				uinfo->value.enumerated.items - 1;
2918 		strcpy(uinfo->value.enumerated.name,
2919 				texts[uinfo->value.enumerated.item]);
2920 	}
2921 	return 0;
2922 }
2923 
2924 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
2925 				      struct snd_ctl_elem_value *ucontrol)
2926 {
2927 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2928 
2929 	ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
2930 	return 0;
2931 }
2932 
2933 #define HDSPM_TOGGLE_SETTING(xname, xindex) \
2934 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2935 	.name = xname, \
2936 	.private_value = xindex, \
2937 	.info = snd_hdspm_info_toggle_setting, \
2938 	.get = snd_hdspm_get_toggle_setting, \
2939 	.put = snd_hdspm_put_toggle_setting \
2940 }
2941 
2942 static int hdspm_toggle_setting(struct hdspm *hdspm, u32 regmask)
2943 {
2944 	return (hdspm->control_register & regmask) ? 1 : 0;
2945 }
2946 
2947 static int hdspm_set_toggle_setting(struct hdspm *hdspm, u32 regmask, int out)
2948 {
2949 	if (out)
2950 		hdspm->control_register |= regmask;
2951 	else
2952 		hdspm->control_register &= ~regmask;
2953 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2954 
2955 	return 0;
2956 }
2957 
2958 #define snd_hdspm_info_toggle_setting		snd_ctl_boolean_mono_info
2959 
2960 static int snd_hdspm_get_toggle_setting(struct snd_kcontrol *kcontrol,
2961 			       struct snd_ctl_elem_value *ucontrol)
2962 {
2963 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2964 	u32 regmask = kcontrol->private_value;
2965 
2966 	spin_lock_irq(&hdspm->lock);
2967 	ucontrol->value.integer.value[0] = hdspm_toggle_setting(hdspm, regmask);
2968 	spin_unlock_irq(&hdspm->lock);
2969 	return 0;
2970 }
2971 
2972 static int snd_hdspm_put_toggle_setting(struct snd_kcontrol *kcontrol,
2973 			       struct snd_ctl_elem_value *ucontrol)
2974 {
2975 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2976 	u32 regmask = kcontrol->private_value;
2977 	int change;
2978 	unsigned int val;
2979 
2980 	if (!snd_hdspm_use_is_exclusive(hdspm))
2981 		return -EBUSY;
2982 	val = ucontrol->value.integer.value[0] & 1;
2983 	spin_lock_irq(&hdspm->lock);
2984 	change = (int) val != hdspm_toggle_setting(hdspm, regmask);
2985 	hdspm_set_toggle_setting(hdspm, regmask, val);
2986 	spin_unlock_irq(&hdspm->lock);
2987 	return change;
2988 }
2989 
2990 #define HDSPM_INPUT_SELECT(xname, xindex) \
2991 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2992 	.name = xname, \
2993 	.index = xindex, \
2994 	.info = snd_hdspm_info_input_select, \
2995 	.get = snd_hdspm_get_input_select, \
2996 	.put = snd_hdspm_put_input_select \
2997 }
2998 
2999 static int hdspm_input_select(struct hdspm * hdspm)
3000 {
3001 	return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3002 }
3003 
3004 static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3005 {
3006 	if (out)
3007 		hdspm->control_register |= HDSPM_InputSelect0;
3008 	else
3009 		hdspm->control_register &= ~HDSPM_InputSelect0;
3010 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3011 
3012 	return 0;
3013 }
3014 
3015 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3016 				       struct snd_ctl_elem_info *uinfo)
3017 {
3018 	static char *texts[] = { "optical", "coaxial" };
3019 	ENUMERATED_CTL_INFO(uinfo, texts);
3020 	return 0;
3021 }
3022 
3023 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3024 				      struct snd_ctl_elem_value *ucontrol)
3025 {
3026 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3027 
3028 	spin_lock_irq(&hdspm->lock);
3029 	ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3030 	spin_unlock_irq(&hdspm->lock);
3031 	return 0;
3032 }
3033 
3034 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3035 				      struct snd_ctl_elem_value *ucontrol)
3036 {
3037 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3038 	int change;
3039 	unsigned int val;
3040 
3041 	if (!snd_hdspm_use_is_exclusive(hdspm))
3042 		return -EBUSY;
3043 	val = ucontrol->value.integer.value[0] & 1;
3044 	spin_lock_irq(&hdspm->lock);
3045 	change = (int) val != hdspm_input_select(hdspm);
3046 	hdspm_set_input_select(hdspm, val);
3047 	spin_unlock_irq(&hdspm->lock);
3048 	return change;
3049 }
3050 
3051 
3052 #define HDSPM_DS_WIRE(xname, xindex) \
3053 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3054 	.name = xname, \
3055 	.index = xindex, \
3056 	.info = snd_hdspm_info_ds_wire, \
3057 	.get = snd_hdspm_get_ds_wire, \
3058 	.put = snd_hdspm_put_ds_wire \
3059 }
3060 
3061 static int hdspm_ds_wire(struct hdspm * hdspm)
3062 {
3063 	return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
3064 }
3065 
3066 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
3067 {
3068 	if (ds)
3069 		hdspm->control_register |= HDSPM_DS_DoubleWire;
3070 	else
3071 		hdspm->control_register &= ~HDSPM_DS_DoubleWire;
3072 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3073 
3074 	return 0;
3075 }
3076 
3077 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3078 				  struct snd_ctl_elem_info *uinfo)
3079 {
3080 	static char *texts[] = { "Single", "Double" };
3081 	ENUMERATED_CTL_INFO(uinfo, texts);
3082 	return 0;
3083 }
3084 
3085 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3086 				 struct snd_ctl_elem_value *ucontrol)
3087 {
3088 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3089 
3090 	spin_lock_irq(&hdspm->lock);
3091 	ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
3092 	spin_unlock_irq(&hdspm->lock);
3093 	return 0;
3094 }
3095 
3096 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3097 				 struct snd_ctl_elem_value *ucontrol)
3098 {
3099 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3100 	int change;
3101 	unsigned int val;
3102 
3103 	if (!snd_hdspm_use_is_exclusive(hdspm))
3104 		return -EBUSY;
3105 	val = ucontrol->value.integer.value[0] & 1;
3106 	spin_lock_irq(&hdspm->lock);
3107 	change = (int) val != hdspm_ds_wire(hdspm);
3108 	hdspm_set_ds_wire(hdspm, val);
3109 	spin_unlock_irq(&hdspm->lock);
3110 	return change;
3111 }
3112 
3113 
3114 #define HDSPM_QS_WIRE(xname, xindex) \
3115 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3116 	.name = xname, \
3117 	.index = xindex, \
3118 	.info = snd_hdspm_info_qs_wire, \
3119 	.get = snd_hdspm_get_qs_wire, \
3120 	.put = snd_hdspm_put_qs_wire \
3121 }
3122 
3123 static int hdspm_qs_wire(struct hdspm * hdspm)
3124 {
3125 	if (hdspm->control_register & HDSPM_QS_DoubleWire)
3126 		return 1;
3127 	if (hdspm->control_register & HDSPM_QS_QuadWire)
3128 		return 2;
3129 	return 0;
3130 }
3131 
3132 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
3133 {
3134 	hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3135 	switch (mode) {
3136 	case 0:
3137 		break;
3138 	case 1:
3139 		hdspm->control_register |= HDSPM_QS_DoubleWire;
3140 		break;
3141 	case 2:
3142 		hdspm->control_register |= HDSPM_QS_QuadWire;
3143 		break;
3144 	}
3145 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3146 
3147 	return 0;
3148 }
3149 
3150 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
3151 				       struct snd_ctl_elem_info *uinfo)
3152 {
3153 	static char *texts[] = { "Single", "Double", "Quad" };
3154 	ENUMERATED_CTL_INFO(uinfo, texts);
3155 	return 0;
3156 }
3157 
3158 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
3159 				      struct snd_ctl_elem_value *ucontrol)
3160 {
3161 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3162 
3163 	spin_lock_irq(&hdspm->lock);
3164 	ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
3165 	spin_unlock_irq(&hdspm->lock);
3166 	return 0;
3167 }
3168 
3169 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
3170 				      struct snd_ctl_elem_value *ucontrol)
3171 {
3172 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3173 	int change;
3174 	int val;
3175 
3176 	if (!snd_hdspm_use_is_exclusive(hdspm))
3177 		return -EBUSY;
3178 	val = ucontrol->value.integer.value[0];
3179 	if (val < 0)
3180 		val = 0;
3181 	if (val > 2)
3182 		val = 2;
3183 	spin_lock_irq(&hdspm->lock);
3184 	change = val != hdspm_qs_wire(hdspm);
3185 	hdspm_set_qs_wire(hdspm, val);
3186 	spin_unlock_irq(&hdspm->lock);
3187 	return change;
3188 }
3189 
3190 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3191 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3192 	.name = xname, \
3193 	.index = xindex, \
3194 	.info = snd_hdspm_info_madi_speedmode, \
3195 	.get = snd_hdspm_get_madi_speedmode, \
3196 	.put = snd_hdspm_put_madi_speedmode \
3197 }
3198 
3199 static int hdspm_madi_speedmode(struct hdspm *hdspm)
3200 {
3201 	if (hdspm->control_register & HDSPM_QuadSpeed)
3202 		return 2;
3203 	if (hdspm->control_register & HDSPM_DoubleSpeed)
3204 		return 1;
3205 	return 0;
3206 }
3207 
3208 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3209 {
3210 	hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3211 	switch (mode) {
3212 	case 0:
3213 		break;
3214 	case 1:
3215 		hdspm->control_register |= HDSPM_DoubleSpeed;
3216 		break;
3217 	case 2:
3218 		hdspm->control_register |= HDSPM_QuadSpeed;
3219 		break;
3220 	}
3221 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3222 
3223 	return 0;
3224 }
3225 
3226 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3227 				       struct snd_ctl_elem_info *uinfo)
3228 {
3229 	static char *texts[] = { "Single", "Double", "Quad" };
3230 	ENUMERATED_CTL_INFO(uinfo, texts);
3231 	return 0;
3232 }
3233 
3234 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3235 				      struct snd_ctl_elem_value *ucontrol)
3236 {
3237 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3238 
3239 	spin_lock_irq(&hdspm->lock);
3240 	ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3241 	spin_unlock_irq(&hdspm->lock);
3242 	return 0;
3243 }
3244 
3245 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3246 				      struct snd_ctl_elem_value *ucontrol)
3247 {
3248 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3249 	int change;
3250 	int val;
3251 
3252 	if (!snd_hdspm_use_is_exclusive(hdspm))
3253 		return -EBUSY;
3254 	val = ucontrol->value.integer.value[0];
3255 	if (val < 0)
3256 		val = 0;
3257 	if (val > 2)
3258 		val = 2;
3259 	spin_lock_irq(&hdspm->lock);
3260 	change = val != hdspm_madi_speedmode(hdspm);
3261 	hdspm_set_madi_speedmode(hdspm, val);
3262 	spin_unlock_irq(&hdspm->lock);
3263 	return change;
3264 }
3265 
3266 #define HDSPM_MIXER(xname, xindex) \
3267 {	.iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3268 	.name = xname, \
3269 	.index = xindex, \
3270 	.device = 0, \
3271 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3272 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3273 	.info = snd_hdspm_info_mixer, \
3274 	.get = snd_hdspm_get_mixer, \
3275 	.put = snd_hdspm_put_mixer \
3276 }
3277 
3278 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3279 				struct snd_ctl_elem_info *uinfo)
3280 {
3281 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3282 	uinfo->count = 3;
3283 	uinfo->value.integer.min = 0;
3284 	uinfo->value.integer.max = 65535;
3285 	uinfo->value.integer.step = 1;
3286 	return 0;
3287 }
3288 
3289 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3290 			       struct snd_ctl_elem_value *ucontrol)
3291 {
3292 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3293 	int source;
3294 	int destination;
3295 
3296 	source = ucontrol->value.integer.value[0];
3297 	if (source < 0)
3298 		source = 0;
3299 	else if (source >= 2 * HDSPM_MAX_CHANNELS)
3300 		source = 2 * HDSPM_MAX_CHANNELS - 1;
3301 
3302 	destination = ucontrol->value.integer.value[1];
3303 	if (destination < 0)
3304 		destination = 0;
3305 	else if (destination >= HDSPM_MAX_CHANNELS)
3306 		destination = HDSPM_MAX_CHANNELS - 1;
3307 
3308 	spin_lock_irq(&hdspm->lock);
3309 	if (source >= HDSPM_MAX_CHANNELS)
3310 		ucontrol->value.integer.value[2] =
3311 		    hdspm_read_pb_gain(hdspm, destination,
3312 				       source - HDSPM_MAX_CHANNELS);
3313 	else
3314 		ucontrol->value.integer.value[2] =
3315 		    hdspm_read_in_gain(hdspm, destination, source);
3316 
3317 	spin_unlock_irq(&hdspm->lock);
3318 
3319 	return 0;
3320 }
3321 
3322 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3323 			       struct snd_ctl_elem_value *ucontrol)
3324 {
3325 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3326 	int change;
3327 	int source;
3328 	int destination;
3329 	int gain;
3330 
3331 	if (!snd_hdspm_use_is_exclusive(hdspm))
3332 		return -EBUSY;
3333 
3334 	source = ucontrol->value.integer.value[0];
3335 	destination = ucontrol->value.integer.value[1];
3336 
3337 	if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3338 		return -1;
3339 	if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3340 		return -1;
3341 
3342 	gain = ucontrol->value.integer.value[2];
3343 
3344 	spin_lock_irq(&hdspm->lock);
3345 
3346 	if (source >= HDSPM_MAX_CHANNELS)
3347 		change = gain != hdspm_read_pb_gain(hdspm, destination,
3348 						    source -
3349 						    HDSPM_MAX_CHANNELS);
3350 	else
3351 		change = gain != hdspm_read_in_gain(hdspm, destination,
3352 						    source);
3353 
3354 	if (change) {
3355 		if (source >= HDSPM_MAX_CHANNELS)
3356 			hdspm_write_pb_gain(hdspm, destination,
3357 					    source - HDSPM_MAX_CHANNELS,
3358 					    gain);
3359 		else
3360 			hdspm_write_in_gain(hdspm, destination, source,
3361 					    gain);
3362 	}
3363 	spin_unlock_irq(&hdspm->lock);
3364 
3365 	return change;
3366 }
3367 
3368 /* The simple mixer control(s) provide gain control for the
3369    basic 1:1 mappings of playback streams to output
3370    streams.
3371 */
3372 
3373 #define HDSPM_PLAYBACK_MIXER \
3374 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3375 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3376 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3377 	.info = snd_hdspm_info_playback_mixer, \
3378 	.get = snd_hdspm_get_playback_mixer, \
3379 	.put = snd_hdspm_put_playback_mixer \
3380 }
3381 
3382 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3383 					 struct snd_ctl_elem_info *uinfo)
3384 {
3385 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3386 	uinfo->count = 1;
3387 	uinfo->value.integer.min = 0;
3388 	uinfo->value.integer.max = 64;
3389 	uinfo->value.integer.step = 1;
3390 	return 0;
3391 }
3392 
3393 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3394 					struct snd_ctl_elem_value *ucontrol)
3395 {
3396 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3397 	int channel;
3398 
3399 	channel = ucontrol->id.index - 1;
3400 
3401 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3402 		return -EINVAL;
3403 
3404 	spin_lock_irq(&hdspm->lock);
3405 	ucontrol->value.integer.value[0] =
3406 	  (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
3407 	spin_unlock_irq(&hdspm->lock);
3408 
3409 	return 0;
3410 }
3411 
3412 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3413 					struct snd_ctl_elem_value *ucontrol)
3414 {
3415 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3416 	int change;
3417 	int channel;
3418 	int gain;
3419 
3420 	if (!snd_hdspm_use_is_exclusive(hdspm))
3421 		return -EBUSY;
3422 
3423 	channel = ucontrol->id.index - 1;
3424 
3425 	if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3426 		return -EINVAL;
3427 
3428 	gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
3429 
3430 	spin_lock_irq(&hdspm->lock);
3431 	change =
3432 	    gain != hdspm_read_pb_gain(hdspm, channel,
3433 				       channel);
3434 	if (change)
3435 		hdspm_write_pb_gain(hdspm, channel, channel,
3436 				    gain);
3437 	spin_unlock_irq(&hdspm->lock);
3438 	return change;
3439 }
3440 
3441 #define HDSPM_SYNC_CHECK(xname, xindex) \
3442 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3443 	.name = xname, \
3444 	.private_value = xindex, \
3445 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3446 	.info = snd_hdspm_info_sync_check, \
3447 	.get = snd_hdspm_get_sync_check \
3448 }
3449 
3450 #define HDSPM_TCO_LOCK_CHECK(xname, xindex) \
3451 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3452 	.name = xname, \
3453 	.private_value = xindex, \
3454 	.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3455 	.info = snd_hdspm_tco_info_lock_check, \
3456 	.get = snd_hdspm_get_sync_check \
3457 }
3458 
3459 
3460 
3461 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3462 				     struct snd_ctl_elem_info *uinfo)
3463 {
3464 	static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
3465 	ENUMERATED_CTL_INFO(uinfo, texts);
3466 	return 0;
3467 }
3468 
3469 static int snd_hdspm_tco_info_lock_check(struct snd_kcontrol *kcontrol,
3470 				     struct snd_ctl_elem_info *uinfo)
3471 {
3472 	static char *texts[] = { "No Lock", "Lock" };
3473 	ENUMERATED_CTL_INFO(uinfo, texts);
3474 	return 0;
3475 }
3476 
3477 static int hdspm_wc_sync_check(struct hdspm *hdspm)
3478 {
3479 	int status, status2;
3480 
3481 	switch (hdspm->io_type) {
3482 	case AES32:
3483 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3484 		if (status & HDSPM_AES32_wcLock) {
3485 			if (status & HDSPM_AES32_wcSync)
3486 				return 2;
3487 			else
3488 				return 1;
3489 		}
3490 		return 0;
3491 		break;
3492 
3493 	case MADI:
3494 		status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3495 		if (status2 & HDSPM_wcLock) {
3496 			if (status2 & HDSPM_wcSync)
3497 				return 2;
3498 			else
3499 				return 1;
3500 		}
3501 		return 0;
3502 		break;
3503 
3504 	case RayDAT:
3505 	case AIO:
3506 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3507 
3508 		if (status & 0x2000000)
3509 			return 2;
3510 		else if (status & 0x1000000)
3511 			return 1;
3512 		return 0;
3513 
3514 		break;
3515 
3516 	case MADIface:
3517 		break;
3518 	}
3519 
3520 
3521 	return 3;
3522 }
3523 
3524 
3525 static int hdspm_madi_sync_check(struct hdspm *hdspm)
3526 {
3527 	int status = hdspm_read(hdspm, HDSPM_statusRegister);
3528 	if (status & HDSPM_madiLock) {
3529 		if (status & HDSPM_madiSync)
3530 			return 2;
3531 		else
3532 			return 1;
3533 	}
3534 	return 0;
3535 }
3536 
3537 
3538 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3539 {
3540 	int status, lock, sync;
3541 
3542 	status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3543 
3544 	lock = (status & (0x1<<idx)) ? 1 : 0;
3545 	sync = (status & (0x100<<idx)) ? 1 : 0;
3546 
3547 	if (lock && sync)
3548 		return 2;
3549 	else if (lock)
3550 		return 1;
3551 	return 0;
3552 }
3553 
3554 
3555 static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3556 {
3557 	int status, lock = 0, sync = 0;
3558 
3559 	switch (hdspm->io_type) {
3560 	case RayDAT:
3561 	case AIO:
3562 		status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3563 		lock = (status & 0x400) ? 1 : 0;
3564 		sync = (status & 0x800) ? 1 : 0;
3565 		break;
3566 
3567 	case MADI:
3568 		status = hdspm_read(hdspm, HDSPM_statusRegister);
3569 		lock = (status & HDSPM_syncInLock) ? 1 : 0;
3570 		sync = (status & HDSPM_syncInSync) ? 1 : 0;
3571 		break;
3572 
3573 	case AES32:
3574 		status = hdspm_read(hdspm, HDSPM_statusRegister2);
3575 		lock = (status & 0x100000) ? 1 : 0;
3576 		sync = (status & 0x200000) ? 1 : 0;
3577 		break;
3578 
3579 	case MADIface:
3580 		break;
3581 	}
3582 
3583 	if (lock && sync)
3584 		return 2;
3585 	else if (lock)
3586 		return 1;
3587 
3588 	return 0;
3589 }
3590 
3591 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3592 {
3593 	int status2, lock, sync;
3594 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3595 
3596 	lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3597 	sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3598 
3599 	if (sync)
3600 		return 2;
3601 	else if (lock)
3602 		return 1;
3603 	return 0;
3604 }
3605 
3606 static int hdspm_tco_input_check(struct hdspm *hdspm, u32 mask)
3607 {
3608 	u32 status;
3609 	status = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
3610 
3611 	return (status & mask) ? 1 : 0;
3612 }
3613 
3614 
3615 static int hdspm_tco_sync_check(struct hdspm *hdspm)
3616 {
3617 	int status;
3618 
3619 	if (hdspm->tco) {
3620 		switch (hdspm->io_type) {
3621 		case MADI:
3622 		case AES32:
3623 			status = hdspm_read(hdspm, HDSPM_statusRegister);
3624 			if (status & HDSPM_tcoLock) {
3625 				if (status & HDSPM_tcoSync)
3626 					return 2;
3627 				else
3628 					return 1;
3629 			}
3630 			return 0;
3631 
3632 			break;
3633 
3634 		case RayDAT:
3635 		case AIO:
3636 			status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3637 
3638 			if (status & 0x8000000)
3639 				return 2; /* Sync */
3640 			if (status & 0x4000000)
3641 				return 1; /* Lock */
3642 			return 0; /* No signal */
3643 			break;
3644 
3645 		default:
3646 			break;
3647 		}
3648 	}
3649 
3650 	return 3; /* N/A */
3651 }
3652 
3653 
3654 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
3655 				    struct snd_ctl_elem_value *ucontrol)
3656 {
3657 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3658 	int val = -1;
3659 
3660 	switch (hdspm->io_type) {
3661 	case RayDAT:
3662 		switch (kcontrol->private_value) {
3663 		case 0: /* WC */
3664 			val = hdspm_wc_sync_check(hdspm); break;
3665 		case 7: /* TCO */
3666 			val = hdspm_tco_sync_check(hdspm); break;
3667 		case 8: /* SYNC IN */
3668 			val = hdspm_sync_in_sync_check(hdspm); break;
3669 		default:
3670 			val = hdspm_s1_sync_check(hdspm,
3671 					kcontrol->private_value-1);
3672 		}
3673 		break;
3674 
3675 	case AIO:
3676 		switch (kcontrol->private_value) {
3677 		case 0: /* WC */
3678 			val = hdspm_wc_sync_check(hdspm); break;
3679 		case 4: /* TCO */
3680 			val = hdspm_tco_sync_check(hdspm); break;
3681 		case 5: /* SYNC IN */
3682 			val = hdspm_sync_in_sync_check(hdspm); break;
3683 		default:
3684 			val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3685 		}
3686 		break;
3687 
3688 	case MADI:
3689 		switch (kcontrol->private_value) {
3690 		case 0: /* WC */
3691 			val = hdspm_wc_sync_check(hdspm); break;
3692 		case 1: /* MADI */
3693 			val = hdspm_madi_sync_check(hdspm); break;
3694 		case 2: /* TCO */
3695 			val = hdspm_tco_sync_check(hdspm); break;
3696 		case 3: /* SYNC_IN */
3697 			val = hdspm_sync_in_sync_check(hdspm); break;
3698 		}
3699 		break;
3700 
3701 	case MADIface:
3702 		val = hdspm_madi_sync_check(hdspm); /* MADI */
3703 		break;
3704 
3705 	case AES32:
3706 		switch (kcontrol->private_value) {
3707 		case 0: /* WC */
3708 			val = hdspm_wc_sync_check(hdspm); break;
3709 		case 9: /* TCO */
3710 			val = hdspm_tco_sync_check(hdspm); break;
3711 		case 10 /* SYNC IN */:
3712 			val = hdspm_sync_in_sync_check(hdspm); break;
3713 		default: /* AES1 to AES8 */
3714 			 val = hdspm_aes_sync_check(hdspm,
3715 					 kcontrol->private_value-1);
3716 		}
3717 		break;
3718 
3719 	}
3720 
3721 	if (hdspm->tco) {
3722 		switch (kcontrol->private_value) {
3723 		case 11:
3724 			/* Check TCO for lock state of its current input */
3725 			val = hdspm_tco_input_check(hdspm, HDSPM_TCO1_TCO_lock);
3726 			break;
3727 		case 12:
3728 			/* Check TCO for valid time code on LTC input. */
3729 			val = hdspm_tco_input_check(hdspm,
3730 				HDSPM_TCO1_LTC_Input_valid);
3731 			break;
3732 		default:
3733 			break;
3734 		}
3735 	}
3736 
3737 	if (-1 == val)
3738 		val = 3;
3739 
3740 	ucontrol->value.enumerated.item[0] = val;
3741 	return 0;
3742 }
3743 
3744 
3745 
3746 /**
3747  * TCO controls
3748  **/
3749 static void hdspm_tco_write(struct hdspm *hdspm)
3750 {
3751 	unsigned int tc[4] = { 0, 0, 0, 0};
3752 
3753 	switch (hdspm->tco->input) {
3754 	case 0:
3755 		tc[2] |= HDSPM_TCO2_set_input_MSB;
3756 		break;
3757 	case 1:
3758 		tc[2] |= HDSPM_TCO2_set_input_LSB;
3759 		break;
3760 	default:
3761 		break;
3762 	}
3763 
3764 	switch (hdspm->tco->framerate) {
3765 	case 1:
3766 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
3767 		break;
3768 	case 2:
3769 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
3770 		break;
3771 	case 3:
3772 		tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
3773 			HDSPM_TCO1_set_drop_frame_flag;
3774 		break;
3775 	case 4:
3776 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3777 			HDSPM_TCO1_LTC_Format_MSB;
3778 		break;
3779 	case 5:
3780 		tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
3781 			HDSPM_TCO1_LTC_Format_MSB +
3782 			HDSPM_TCO1_set_drop_frame_flag;
3783 		break;
3784 	default:
3785 		break;
3786 	}
3787 
3788 	switch (hdspm->tco->wordclock) {
3789 	case 1:
3790 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
3791 		break;
3792 	case 2:
3793 		tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
3794 		break;
3795 	default:
3796 		break;
3797 	}
3798 
3799 	switch (hdspm->tco->samplerate) {
3800 	case 1:
3801 		tc[2] |= HDSPM_TCO2_set_freq;
3802 		break;
3803 	case 2:
3804 		tc[2] |= HDSPM_TCO2_set_freq_from_app;
3805 		break;
3806 	default:
3807 		break;
3808 	}
3809 
3810 	switch (hdspm->tco->pull) {
3811 	case 1:
3812 		tc[2] |= HDSPM_TCO2_set_pull_up;
3813 		break;
3814 	case 2:
3815 		tc[2] |= HDSPM_TCO2_set_pull_down;
3816 		break;
3817 	case 3:
3818 		tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
3819 		break;
3820 	case 4:
3821 		tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
3822 		break;
3823 	default:
3824 		break;
3825 	}
3826 
3827 	if (1 == hdspm->tco->term) {
3828 		tc[2] |= HDSPM_TCO2_set_term_75R;
3829 	}
3830 
3831 	hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
3832 	hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
3833 	hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
3834 	hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
3835 }
3836 
3837 
3838 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
3839 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3840 	.name = xname, \
3841 	.index = xindex, \
3842 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3843 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3844 	.info = snd_hdspm_info_tco_sample_rate, \
3845 	.get = snd_hdspm_get_tco_sample_rate, \
3846 	.put = snd_hdspm_put_tco_sample_rate \
3847 }
3848 
3849 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
3850 					  struct snd_ctl_elem_info *uinfo)
3851 {
3852 	static char *texts[] = { "44.1 kHz", "48 kHz" };
3853 	ENUMERATED_CTL_INFO(uinfo, texts);
3854 	return 0;
3855 }
3856 
3857 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
3858 				      struct snd_ctl_elem_value *ucontrol)
3859 {
3860 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3861 
3862 	ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
3863 
3864 	return 0;
3865 }
3866 
3867 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
3868 					 struct snd_ctl_elem_value *ucontrol)
3869 {
3870 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3871 
3872 	if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
3873 		hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
3874 
3875 		hdspm_tco_write(hdspm);
3876 
3877 		return 1;
3878 	}
3879 
3880 	return 0;
3881 }
3882 
3883 
3884 #define HDSPM_TCO_PULL(xname, xindex) \
3885 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3886 	.name = xname, \
3887 	.index = xindex, \
3888 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3889 		SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3890 	.info = snd_hdspm_info_tco_pull, \
3891 	.get = snd_hdspm_get_tco_pull, \
3892 	.put = snd_hdspm_put_tco_pull \
3893 }
3894 
3895 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
3896 				   struct snd_ctl_elem_info *uinfo)
3897 {
3898 	static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
3899 	ENUMERATED_CTL_INFO(uinfo, texts);
3900 	return 0;
3901 }
3902 
3903 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
3904 				  struct snd_ctl_elem_value *ucontrol)
3905 {
3906 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3907 
3908 	ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
3909 
3910 	return 0;
3911 }
3912 
3913 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
3914 				  struct snd_ctl_elem_value *ucontrol)
3915 {
3916 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3917 
3918 	if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
3919 		hdspm->tco->pull = ucontrol->value.enumerated.item[0];
3920 
3921 		hdspm_tco_write(hdspm);
3922 
3923 		return 1;
3924 	}
3925 
3926 	return 0;
3927 }
3928 
3929 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
3930 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3931 	.name = xname, \
3932 	.index = xindex, \
3933 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3934 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3935 	.info = snd_hdspm_info_tco_wck_conversion, \
3936 	.get = snd_hdspm_get_tco_wck_conversion, \
3937 	.put = snd_hdspm_put_tco_wck_conversion \
3938 }
3939 
3940 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
3941 					     struct snd_ctl_elem_info *uinfo)
3942 {
3943 	static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
3944 	ENUMERATED_CTL_INFO(uinfo, texts);
3945 	return 0;
3946 }
3947 
3948 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
3949 					    struct snd_ctl_elem_value *ucontrol)
3950 {
3951 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3952 
3953 	ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
3954 
3955 	return 0;
3956 }
3957 
3958 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
3959 					    struct snd_ctl_elem_value *ucontrol)
3960 {
3961 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3962 
3963 	if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
3964 		hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
3965 
3966 		hdspm_tco_write(hdspm);
3967 
3968 		return 1;
3969 	}
3970 
3971 	return 0;
3972 }
3973 
3974 
3975 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \
3976 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3977 	.name = xname, \
3978 	.index = xindex, \
3979 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
3980 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3981 	.info = snd_hdspm_info_tco_frame_rate, \
3982 	.get = snd_hdspm_get_tco_frame_rate, \
3983 	.put = snd_hdspm_put_tco_frame_rate \
3984 }
3985 
3986 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
3987 					  struct snd_ctl_elem_info *uinfo)
3988 {
3989 	static char *texts[] = { "24 fps", "25 fps", "29.97fps",
3990 		"29.97 dfps", "30 fps", "30 dfps" };
3991 	ENUMERATED_CTL_INFO(uinfo, texts);
3992 	return 0;
3993 }
3994 
3995 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
3996 					struct snd_ctl_elem_value *ucontrol)
3997 {
3998 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3999 
4000 	ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
4001 
4002 	return 0;
4003 }
4004 
4005 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4006 					struct snd_ctl_elem_value *ucontrol)
4007 {
4008 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4009 
4010 	if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4011 		hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
4012 
4013 		hdspm_tco_write(hdspm);
4014 
4015 		return 1;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 
4022 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4023 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4024 	.name = xname, \
4025 	.index = xindex, \
4026 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4027 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4028 	.info = snd_hdspm_info_tco_sync_source, \
4029 	.get = snd_hdspm_get_tco_sync_source, \
4030 	.put = snd_hdspm_put_tco_sync_source \
4031 }
4032 
4033 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4034 					  struct snd_ctl_elem_info *uinfo)
4035 {
4036 	static char *texts[] = { "LTC", "Video", "WCK" };
4037 	ENUMERATED_CTL_INFO(uinfo, texts);
4038 	return 0;
4039 }
4040 
4041 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4042 					 struct snd_ctl_elem_value *ucontrol)
4043 {
4044 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4045 
4046 	ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4047 
4048 	return 0;
4049 }
4050 
4051 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4052 					 struct snd_ctl_elem_value *ucontrol)
4053 {
4054 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4055 
4056 	if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4057 		hdspm->tco->input = ucontrol->value.enumerated.item[0];
4058 
4059 		hdspm_tco_write(hdspm);
4060 
4061 		return 1;
4062 	}
4063 
4064 	return 0;
4065 }
4066 
4067 
4068 #define HDSPM_TCO_WORD_TERM(xname, xindex) \
4069 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4070 	.name = xname, \
4071 	.index = xindex, \
4072 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4073 			SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4074 	.info = snd_hdspm_info_tco_word_term, \
4075 	.get = snd_hdspm_get_tco_word_term, \
4076 	.put = snd_hdspm_put_tco_word_term \
4077 }
4078 
4079 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4080 					struct snd_ctl_elem_info *uinfo)
4081 {
4082 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4083 	uinfo->count = 1;
4084 	uinfo->value.integer.min = 0;
4085 	uinfo->value.integer.max = 1;
4086 
4087 	return 0;
4088 }
4089 
4090 
4091 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4092 				       struct snd_ctl_elem_value *ucontrol)
4093 {
4094 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4095 
4096 	ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4097 
4098 	return 0;
4099 }
4100 
4101 
4102 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4103 				       struct snd_ctl_elem_value *ucontrol)
4104 {
4105 	struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4106 
4107 	if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4108 		hdspm->tco->term = ucontrol->value.enumerated.item[0];
4109 
4110 		hdspm_tco_write(hdspm);
4111 
4112 		return 1;
4113 	}
4114 
4115 	return 0;
4116 }
4117 
4118 
4119 
4120 
4121 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4122 	HDSPM_MIXER("Mixer", 0),
4123 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4124 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4125 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4126 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4127 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4128 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4129 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4130 	HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4131 	HDSPM_SYNC_CHECK("TCO SyncCheck", 2),
4132 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
4133 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4134 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4135 	HDSPM_TOGGLE_SETTING("Disable 96K frames", HDSPM_SMUX),
4136 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4137 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4138 	HDSPM_INPUT_SELECT("Input Select", 0),
4139 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4140 };
4141 
4142 
4143 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4144 	HDSPM_MIXER("Mixer", 0),
4145 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4146 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4147 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4148 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4149 	HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4150 	HDSPM_TOGGLE_SETTING("TX 64 channels mode", HDSPM_TX_64ch),
4151 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4152 	HDSPM_TOGGLE_SETTING("Safe Mode", HDSPM_AutoInp),
4153 	HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
4154 };
4155 
4156 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4157 	HDSPM_MIXER("Mixer", 0),
4158 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4159 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4160 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4161 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4162 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4163 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4164 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4165 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4166 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4167 	HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4168 	HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4169 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4170 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4171 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4172 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4173 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4174 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4175 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)
4176 
4177 		/*
4178 		   HDSPM_INPUT_SELECT("Input Select", 0),
4179 		   HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4180 		   HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4181 		   HDSPM_SPDIF_IN("SPDIF In", 0);
4182 		   HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4183 		   HDSPM_INPUT_LEVEL("Input Level", 0);
4184 		   HDSPM_OUTPUT_LEVEL("Output Level", 0);
4185 		   HDSPM_PHONES("Phones", 0);
4186 		   */
4187 };
4188 
4189 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4190 	HDSPM_MIXER("Mixer", 0),
4191 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4192 	HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4193 	HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4194 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4195 	HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4196 	HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4197 	HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4198 	HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4199 	HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4200 	HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4201 	HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4202 	HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4203 	HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4204 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4205 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4206 	HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4207 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4208 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4209 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4210 	HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4211 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4212 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
4213 };
4214 
4215 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
4216 	HDSPM_MIXER("Mixer", 0),
4217 	HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4218 	HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4219 	HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4220 	HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4221 	HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4222 	HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4223 	HDSPM_SYNC_CHECK("WC Sync Check", 0),
4224 	HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4225 	HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4226 	HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4227 	HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4228 	HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4229 	HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4230 	HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4231 	HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4232 	HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4233 	HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4234 	HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4235 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4236 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4237 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4238 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4239 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4240 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4241 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4242 	HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4243 	HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4244 	HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
4245 	HDSPM_TOGGLE_SETTING("Line Out", HDSPM_LineOut),
4246 	HDSPM_TOGGLE_SETTING("Emphasis", HDSPM_Emphasis),
4247 	HDSPM_TOGGLE_SETTING("Non Audio", HDSPM_Dolby),
4248 	HDSPM_TOGGLE_SETTING("Professional", HDSPM_Professional),
4249 	HDSPM_TOGGLE_SETTING("Clear Track Marker", HDSPM_clr_tms),
4250 	HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4251 	HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4252 };
4253 
4254 
4255 
4256 /* Control elements for the optional TCO module */
4257 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4258 	HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4259 	HDSPM_TCO_PULL("TCO Pull", 0),
4260 	HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4261 	HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4262 	HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4263 	HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
4264 };
4265 
4266 
4267 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
4268 
4269 
4270 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
4271 {
4272 	int i;
4273 
4274 	for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
4275 		if (hdspm->system_sample_rate > 48000) {
4276 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4277 				SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4278 				SNDRV_CTL_ELEM_ACCESS_READ |
4279 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4280 		} else {
4281 			hdspm->playback_mixer_ctls[i]->vd[0].access =
4282 				SNDRV_CTL_ELEM_ACCESS_READWRITE |
4283 				SNDRV_CTL_ELEM_ACCESS_VOLATILE;
4284 		}
4285 		snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
4286 				SNDRV_CTL_EVENT_MASK_INFO,
4287 				&hdspm->playback_mixer_ctls[i]->id);
4288 	}
4289 
4290 	return 0;
4291 }
4292 
4293 
4294 static int snd_hdspm_create_controls(struct snd_card *card,
4295 					struct hdspm *hdspm)
4296 {
4297 	unsigned int idx, limit;
4298 	int err;
4299 	struct snd_kcontrol *kctl;
4300 	struct snd_kcontrol_new *list = NULL;
4301 
4302 	switch (hdspm->io_type) {
4303 	case MADI:
4304 		list = snd_hdspm_controls_madi;
4305 		limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4306 		break;
4307 	case MADIface:
4308 		list = snd_hdspm_controls_madiface;
4309 		limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4310 		break;
4311 	case AIO:
4312 		list = snd_hdspm_controls_aio;
4313 		limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4314 		break;
4315 	case RayDAT:
4316 		list = snd_hdspm_controls_raydat;
4317 		limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4318 		break;
4319 	case AES32:
4320 		list = snd_hdspm_controls_aes32;
4321 		limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4322 		break;
4323 	}
4324 
4325 	if (NULL != list) {
4326 		for (idx = 0; idx < limit; idx++) {
4327 			err = snd_ctl_add(card,
4328 					snd_ctl_new1(&list[idx], hdspm));
4329 			if (err < 0)
4330 				return err;
4331 		}
4332 	}
4333 
4334 
4335 	/* create simple 1:1 playback mixer controls */
4336 	snd_hdspm_playback_mixer.name = "Chn";
4337 	if (hdspm->system_sample_rate >= 128000) {
4338 		limit = hdspm->qs_out_channels;
4339 	} else if (hdspm->system_sample_rate >= 64000) {
4340 		limit = hdspm->ds_out_channels;
4341 	} else {
4342 		limit = hdspm->ss_out_channels;
4343 	}
4344 	for (idx = 0; idx < limit; ++idx) {
4345 		snd_hdspm_playback_mixer.index = idx + 1;
4346 		kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4347 		err = snd_ctl_add(card, kctl);
4348 		if (err < 0)
4349 			return err;
4350 		hdspm->playback_mixer_ctls[idx] = kctl;
4351 	}
4352 
4353 
4354 	if (hdspm->tco) {
4355 		/* add tco control elements */
4356 		list = snd_hdspm_controls_tco;
4357 		limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4358 		for (idx = 0; idx < limit; idx++) {
4359 			err = snd_ctl_add(card,
4360 					snd_ctl_new1(&list[idx], hdspm));
4361 			if (err < 0)
4362 				return err;
4363 		}
4364 	}
4365 
4366 	return 0;
4367 }
4368 
4369 /*------------------------------------------------------------
4370    /proc interface
4371  ------------------------------------------------------------*/
4372 
4373 static void
4374 snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
4375 			 struct snd_info_buffer *buffer)
4376 {
4377 	struct hdspm *hdspm = entry->private_data;
4378 	unsigned int status, status2, control, freq;
4379 
4380 	char *pref_sync_ref;
4381 	char *autosync_ref;
4382 	char *system_clock_mode;
4383 	char *insel;
4384 	int x, x2;
4385 
4386 	/* TCO stuff */
4387 	int a, ltc, frames, seconds, minutes, hours;
4388 	unsigned int period;
4389 	u64 freq_const = 0;
4390 	u32 rate;
4391 
4392 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4393 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4394 	control = hdspm->control_register;
4395 	freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
4396 
4397 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
4398 			hdspm->card_name, hdspm->card->number + 1,
4399 			hdspm->firmware_rev,
4400 			(status2 & HDSPM_version0) |
4401 			(status2 & HDSPM_version1) | (status2 &
4402 				HDSPM_version2));
4403 
4404 	snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4405 			(hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4406 			hdspm->serial);
4407 
4408 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4409 			hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4410 
4411 	snd_iprintf(buffer, "--- System ---\n");
4412 
4413 	snd_iprintf(buffer,
4414 		"IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4415 		status & HDSPM_audioIRQPending,
4416 		(status & HDSPM_midi0IRQPending) ? 1 : 0,
4417 		(status & HDSPM_midi1IRQPending) ? 1 : 0,
4418 		hdspm->irq_count);
4419 	snd_iprintf(buffer,
4420 		"HW pointer: id = %d, rawptr = %d (%d->%d) "
4421 		"estimated= %ld (bytes)\n",
4422 		((status & HDSPM_BufferID) ? 1 : 0),
4423 		(status & HDSPM_BufferPositionMask),
4424 		(status & HDSPM_BufferPositionMask) %
4425 		(2 * (int)hdspm->period_bytes),
4426 		((status & HDSPM_BufferPositionMask) - 64) %
4427 		(2 * (int)hdspm->period_bytes),
4428 		(long) hdspm_hw_pointer(hdspm) * 4);
4429 
4430 	snd_iprintf(buffer,
4431 		"MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4432 		hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4433 		hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4434 		hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4435 		hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4436 	snd_iprintf(buffer,
4437 		"MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4438 		hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4439 		hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4440 	snd_iprintf(buffer,
4441 		"Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4442 		"status2=0x%x\n",
4443 		hdspm->control_register, hdspm->control2_register,
4444 		status, status2);
4445 	if (status & HDSPM_tco_detect) {
4446 		snd_iprintf(buffer, "TCO module detected.\n");
4447 		a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4448 		if (a & HDSPM_TCO1_LTC_Input_valid) {
4449 			snd_iprintf(buffer, "  LTC valid, ");
4450 			switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4451 						HDSPM_TCO1_LTC_Format_MSB)) {
4452 			case 0:
4453 				snd_iprintf(buffer, "24 fps, ");
4454 				break;
4455 			case HDSPM_TCO1_LTC_Format_LSB:
4456 				snd_iprintf(buffer, "25 fps, ");
4457 				break;
4458 			case HDSPM_TCO1_LTC_Format_MSB:
4459 				snd_iprintf(buffer, "29.97 fps, ");
4460 				break;
4461 			default:
4462 				snd_iprintf(buffer, "30 fps, ");
4463 				break;
4464 			}
4465 			if (a & HDSPM_TCO1_set_drop_frame_flag) {
4466 				snd_iprintf(buffer, "drop frame\n");
4467 			} else {
4468 				snd_iprintf(buffer, "full frame\n");
4469 			}
4470 		} else {
4471 			snd_iprintf(buffer, "  no LTC\n");
4472 		}
4473 		if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4474 			snd_iprintf(buffer, "  Video: NTSC\n");
4475 		} else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4476 			snd_iprintf(buffer, "  Video: PAL\n");
4477 		} else {
4478 			snd_iprintf(buffer, "  No video\n");
4479 		}
4480 		if (a & HDSPM_TCO1_TCO_lock) {
4481 			snd_iprintf(buffer, "  Sync: lock\n");
4482 		} else {
4483 			snd_iprintf(buffer, "  Sync: no lock\n");
4484 		}
4485 
4486 		switch (hdspm->io_type) {
4487 		case MADI:
4488 		case AES32:
4489 			freq_const = 110069313433624ULL;
4490 			break;
4491 		case RayDAT:
4492 		case AIO:
4493 			freq_const = 104857600000000ULL;
4494 			break;
4495 		case MADIface:
4496 			break; /* no TCO possible */
4497 		}
4498 
4499 		period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4500 		snd_iprintf(buffer, "    period: %u\n", period);
4501 
4502 
4503 		/* rate = freq_const/period; */
4504 		rate = div_u64(freq_const, period);
4505 
4506 		if (control & HDSPM_QuadSpeed) {
4507 			rate *= 4;
4508 		} else if (control & HDSPM_DoubleSpeed) {
4509 			rate *= 2;
4510 		}
4511 
4512 		snd_iprintf(buffer, "  Frequency: %u Hz\n",
4513 				(unsigned int) rate);
4514 
4515 		ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4516 		frames = ltc & 0xF;
4517 		ltc >>= 4;
4518 		frames += (ltc & 0x3) * 10;
4519 		ltc >>= 4;
4520 		seconds = ltc & 0xF;
4521 		ltc >>= 4;
4522 		seconds += (ltc & 0x7) * 10;
4523 		ltc >>= 4;
4524 		minutes = ltc & 0xF;
4525 		ltc >>= 4;
4526 		minutes += (ltc & 0x7) * 10;
4527 		ltc >>= 4;
4528 		hours = ltc & 0xF;
4529 		ltc >>= 4;
4530 		hours += (ltc & 0x3) * 10;
4531 		snd_iprintf(buffer,
4532 			"  LTC In: %02d:%02d:%02d:%02d\n",
4533 			hours, minutes, seconds, frames);
4534 
4535 	} else {
4536 		snd_iprintf(buffer, "No TCO module detected.\n");
4537 	}
4538 
4539 	snd_iprintf(buffer, "--- Settings ---\n");
4540 
4541 	x = hdspm_get_latency(hdspm);
4542 
4543 	snd_iprintf(buffer,
4544 		"Size (Latency): %d samples (2 periods of %lu bytes)\n",
4545 		x, (unsigned long) hdspm->period_bytes);
4546 
4547 	snd_iprintf(buffer, "Line out: %s\n",
4548 		(hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
4549 
4550 	switch (hdspm->control_register & HDSPM_InputMask) {
4551 	case HDSPM_InputOptical:
4552 		insel = "Optical";
4553 		break;
4554 	case HDSPM_InputCoaxial:
4555 		insel = "Coaxial";
4556 		break;
4557 	default:
4558 		insel = "Unknown";
4559 	}
4560 
4561 	snd_iprintf(buffer,
4562 		"ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4563 		"Auto Input %s\n",
4564 		(hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4565 		(hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4566 		(hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4567 
4568 
4569 	if (!(hdspm->control_register & HDSPM_ClockModeMaster))
4570 		system_clock_mode = "AutoSync";
4571 	else
4572 		system_clock_mode = "Master";
4573 	snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
4574 
4575 	switch (hdspm_pref_sync_ref(hdspm)) {
4576 	case HDSPM_SYNC_FROM_WORD:
4577 		pref_sync_ref = "Word Clock";
4578 		break;
4579 	case HDSPM_SYNC_FROM_MADI:
4580 		pref_sync_ref = "MADI Sync";
4581 		break;
4582 	case HDSPM_SYNC_FROM_TCO:
4583 		pref_sync_ref = "TCO";
4584 		break;
4585 	case HDSPM_SYNC_FROM_SYNC_IN:
4586 		pref_sync_ref = "Sync In";
4587 		break;
4588 	default:
4589 		pref_sync_ref = "XXXX Clock";
4590 		break;
4591 	}
4592 	snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
4593 			pref_sync_ref);
4594 
4595 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4596 			hdspm->system_sample_rate);
4597 
4598 
4599 	snd_iprintf(buffer, "--- Status:\n");
4600 
4601 	x = status & HDSPM_madiSync;
4602 	x2 = status2 & HDSPM_wcSync;
4603 
4604 	snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
4605 			(status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4606 			"NoLock",
4607 			(status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4608 			"NoLock");
4609 
4610 	switch (hdspm_autosync_ref(hdspm)) {
4611 	case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4612 		autosync_ref = "Sync In";
4613 		break;
4614 	case HDSPM_AUTOSYNC_FROM_TCO:
4615 		autosync_ref = "TCO";
4616 		break;
4617 	case HDSPM_AUTOSYNC_FROM_WORD:
4618 		autosync_ref = "Word Clock";
4619 		break;
4620 	case HDSPM_AUTOSYNC_FROM_MADI:
4621 		autosync_ref = "MADI Sync";
4622 		break;
4623 	case HDSPM_AUTOSYNC_FROM_NONE:
4624 		autosync_ref = "Input not valid";
4625 		break;
4626 	default:
4627 		autosync_ref = "---";
4628 		break;
4629 	}
4630 	snd_iprintf(buffer,
4631 		"AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
4632 		autosync_ref, hdspm_external_sample_rate(hdspm),
4633 		(status & HDSPM_madiFreqMask) >> 22,
4634 		(status2 & HDSPM_wcFreqMask) >> 5);
4635 
4636 	snd_iprintf(buffer, "Input: %s, Mode=%s\n",
4637 		(status & HDSPM_AB_int) ? "Coax" : "Optical",
4638 		(status & HDSPM_RX_64ch) ? "64 channels" :
4639 		"56 channels");
4640 
4641 	snd_iprintf(buffer, "\n");
4642 }
4643 
4644 static void
4645 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
4646 			  struct snd_info_buffer *buffer)
4647 {
4648 	struct hdspm *hdspm = entry->private_data;
4649 	unsigned int status;
4650 	unsigned int status2;
4651 	unsigned int timecode;
4652 	unsigned int wcLock, wcSync;
4653 	int pref_syncref;
4654 	char *autosync_ref;
4655 	int x;
4656 
4657 	status = hdspm_read(hdspm, HDSPM_statusRegister);
4658 	status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4659 	timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
4660 
4661 	snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
4662 		    hdspm->card_name, hdspm->card->number + 1,
4663 		    hdspm->firmware_rev);
4664 
4665 	snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4666 		    hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4667 
4668 	snd_iprintf(buffer, "--- System ---\n");
4669 
4670 	snd_iprintf(buffer,
4671 		    "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4672 		    status & HDSPM_audioIRQPending,
4673 		    (status & HDSPM_midi0IRQPending) ? 1 : 0,
4674 		    (status & HDSPM_midi1IRQPending) ? 1 : 0,
4675 		    hdspm->irq_count);
4676 	snd_iprintf(buffer,
4677 		    "HW pointer: id = %d, rawptr = %d (%d->%d) "
4678 		    "estimated= %ld (bytes)\n",
4679 		    ((status & HDSPM_BufferID) ? 1 : 0),
4680 		    (status & HDSPM_BufferPositionMask),
4681 		    (status & HDSPM_BufferPositionMask) %
4682 		    (2 * (int)hdspm->period_bytes),
4683 		    ((status & HDSPM_BufferPositionMask) - 64) %
4684 		    (2 * (int)hdspm->period_bytes),
4685 		    (long) hdspm_hw_pointer(hdspm) * 4);
4686 
4687 	snd_iprintf(buffer,
4688 		    "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4689 		    hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4690 		    hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4691 		    hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4692 		    hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4693 	snd_iprintf(buffer,
4694 		    "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4695 		    hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4696 		    hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4697 	snd_iprintf(buffer,
4698 		    "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4699 		    "status2=0x%x\n",
4700 		    hdspm->control_register, hdspm->control2_register,
4701 		    status, status2);
4702 
4703 	snd_iprintf(buffer, "--- Settings ---\n");
4704 
4705 	x = hdspm_get_latency(hdspm);
4706 
4707 	snd_iprintf(buffer,
4708 		    "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4709 		    x, (unsigned long) hdspm->period_bytes);
4710 
4711 	snd_iprintf(buffer, "Line out: %s\n",
4712 		    (hdspm->
4713 		     control_register & HDSPM_LineOut) ? "on " : "off");
4714 
4715 	snd_iprintf(buffer,
4716 		    "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
4717 		    (hdspm->
4718 		     control_register & HDSPM_clr_tms) ? "on" : "off",
4719 		    (hdspm->
4720 		     control_register & HDSPM_Emphasis) ? "on" : "off",
4721 		    (hdspm->
4722 		     control_register & HDSPM_Dolby) ? "on" : "off");
4723 
4724 
4725 	pref_syncref = hdspm_pref_sync_ref(hdspm);
4726 	if (pref_syncref == 0)
4727 		snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
4728 	else
4729 		snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
4730 				pref_syncref);
4731 
4732 	snd_iprintf(buffer, "System Clock Frequency: %d\n",
4733 		    hdspm->system_sample_rate);
4734 
4735 	snd_iprintf(buffer, "Double speed: %s\n",
4736 			hdspm->control_register & HDSPM_DS_DoubleWire?
4737 			"Double wire" : "Single wire");
4738 	snd_iprintf(buffer, "Quad speed: %s\n",
4739 			hdspm->control_register & HDSPM_QS_DoubleWire?
4740 			"Double wire" :
4741 			hdspm->control_register & HDSPM_QS_QuadWire?
4742 			"Quad wire" : "Single wire");
4743 
4744 	snd_iprintf(buffer, "--- Status:\n");
4745 
4746 	wcLock = status & HDSPM_AES32_wcLock;
4747 	wcSync = wcLock && (status & HDSPM_AES32_wcSync);
4748 
4749 	snd_iprintf(buffer, "Word: %s  Frequency: %d\n",
4750 		    (wcLock) ? (wcSync ? "Sync   " : "Lock   ") : "No Lock",
4751 		    HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
4752 
4753 	for (x = 0; x < 8; x++) {
4754 		snd_iprintf(buffer, "AES%d: %s  Frequency: %d\n",
4755 			    x+1,
4756 			    (status2 & (HDSPM_LockAES >> x)) ?
4757 			    "Sync   " : "No Lock",
4758 			    HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
4759 	}
4760 
4761 	switch (hdspm_autosync_ref(hdspm)) {
4762 	case HDSPM_AES32_AUTOSYNC_FROM_NONE:
4763 		autosync_ref = "None"; break;
4764 	case HDSPM_AES32_AUTOSYNC_FROM_WORD:
4765 		autosync_ref = "Word Clock"; break;
4766 	case HDSPM_AES32_AUTOSYNC_FROM_AES1:
4767 		autosync_ref = "AES1"; break;
4768 	case HDSPM_AES32_AUTOSYNC_FROM_AES2:
4769 		autosync_ref = "AES2"; break;
4770 	case HDSPM_AES32_AUTOSYNC_FROM_AES3:
4771 		autosync_ref = "AES3"; break;
4772 	case HDSPM_AES32_AUTOSYNC_FROM_AES4:
4773 		autosync_ref = "AES4"; break;
4774 	case HDSPM_AES32_AUTOSYNC_FROM_AES5:
4775 		autosync_ref = "AES5"; break;
4776 	case HDSPM_AES32_AUTOSYNC_FROM_AES6:
4777 		autosync_ref = "AES6"; break;
4778 	case HDSPM_AES32_AUTOSYNC_FROM_AES7:
4779 		autosync_ref = "AES7"; break;
4780 	case HDSPM_AES32_AUTOSYNC_FROM_AES8:
4781 		autosync_ref = "AES8"; break;
4782 	default:
4783 		autosync_ref = "---"; break;
4784 	}
4785 	snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
4786 
4787 	snd_iprintf(buffer, "\n");
4788 }
4789 
4790 static void
4791 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
4792 			 struct snd_info_buffer *buffer)
4793 {
4794 	struct hdspm *hdspm = entry->private_data;
4795 	unsigned int status1, status2, status3, control, i;
4796 	unsigned int lock, sync;
4797 
4798 	status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
4799 	status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
4800 	status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
4801 
4802 	control = hdspm->control_register;
4803 
4804 	snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
4805 	snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
4806 	snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
4807 
4808 
4809 	snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
4810 
4811 	snd_iprintf(buffer, "Clock mode      : %s\n",
4812 		(hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
4813 	snd_iprintf(buffer, "System frequency: %d Hz\n",
4814 		hdspm_get_system_sample_rate(hdspm));
4815 
4816 	snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
4817 
4818 	lock = 0x1;
4819 	sync = 0x100;
4820 
4821 	for (i = 0; i < 8; i++) {
4822 		snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
4823 				i,
4824 				(status1 & lock) ? 1 : 0,
4825 				(status1 & sync) ? 1 : 0,
4826 				texts_freq[(status2 >> (i * 4)) & 0xF]);
4827 
4828 		lock = lock<<1;
4829 		sync = sync<<1;
4830 	}
4831 
4832 	snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
4833 			(status1 & 0x1000000) ? 1 : 0,
4834 			(status1 & 0x2000000) ? 1 : 0,
4835 			texts_freq[(status1 >> 16) & 0xF]);
4836 
4837 	snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
4838 			(status1 & 0x4000000) ? 1 : 0,
4839 			(status1 & 0x8000000) ? 1 : 0,
4840 			texts_freq[(status1 >> 20) & 0xF]);
4841 
4842 	snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
4843 			(status3 & 0x400) ? 1 : 0,
4844 			(status3 & 0x800) ? 1 : 0,
4845 			texts_freq[(status2 >> 12) & 0xF]);
4846 
4847 }
4848 
4849 #ifdef CONFIG_SND_DEBUG
4850 static void
4851 snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
4852 			  struct snd_info_buffer *buffer)
4853 {
4854 	struct hdspm *hdspm = entry->private_data;
4855 
4856 	int j,i;
4857 
4858 	for (i = 0; i < 256 /* 1024*64 */; i += j) {
4859 		snd_iprintf(buffer, "0x%08X: ", i);
4860 		for (j = 0; j < 16; j += 4)
4861 			snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
4862 		snd_iprintf(buffer, "\n");
4863 	}
4864 }
4865 #endif
4866 
4867 
4868 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
4869 			  struct snd_info_buffer *buffer)
4870 {
4871 	struct hdspm *hdspm = entry->private_data;
4872 	int i;
4873 
4874 	snd_iprintf(buffer, "# generated by hdspm\n");
4875 
4876 	for (i = 0; i < hdspm->max_channels_in; i++) {
4877 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
4878 	}
4879 }
4880 
4881 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
4882 			  struct snd_info_buffer *buffer)
4883 {
4884 	struct hdspm *hdspm = entry->private_data;
4885 	int i;
4886 
4887 	snd_iprintf(buffer, "# generated by hdspm\n");
4888 
4889 	for (i = 0; i < hdspm->max_channels_out; i++) {
4890 		snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
4891 	}
4892 }
4893 
4894 
4895 static void snd_hdspm_proc_init(struct hdspm *hdspm)
4896 {
4897 	struct snd_info_entry *entry;
4898 
4899 	if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
4900 		switch (hdspm->io_type) {
4901 		case AES32:
4902 			snd_info_set_text_ops(entry, hdspm,
4903 					snd_hdspm_proc_read_aes32);
4904 			break;
4905 		case MADI:
4906 			snd_info_set_text_ops(entry, hdspm,
4907 					snd_hdspm_proc_read_madi);
4908 			break;
4909 		case MADIface:
4910 			/* snd_info_set_text_ops(entry, hdspm,
4911 			 snd_hdspm_proc_read_madiface); */
4912 			break;
4913 		case RayDAT:
4914 			snd_info_set_text_ops(entry, hdspm,
4915 					snd_hdspm_proc_read_raydat);
4916 			break;
4917 		case AIO:
4918 			break;
4919 		}
4920 	}
4921 
4922 	if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
4923 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
4924 	}
4925 
4926 	if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
4927 		snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
4928 	}
4929 
4930 #ifdef CONFIG_SND_DEBUG
4931 	/* debug file to read all hdspm registers */
4932 	if (!snd_card_proc_new(hdspm->card, "debug", &entry))
4933 		snd_info_set_text_ops(entry, hdspm,
4934 				snd_hdspm_proc_read_debug);
4935 #endif
4936 }
4937 
4938 /*------------------------------------------------------------
4939    hdspm intitialize
4940  ------------------------------------------------------------*/
4941 
4942 static int snd_hdspm_set_defaults(struct hdspm * hdspm)
4943 {
4944 	/* ASSUMPTION: hdspm->lock is either held, or there is no need to
4945 	   hold it (e.g. during module initialization).
4946 	   */
4947 
4948 	/* set defaults:       */
4949 
4950 	hdspm->settings_register = 0;
4951 
4952 	switch (hdspm->io_type) {
4953 	case MADI:
4954 	case MADIface:
4955 		hdspm->control_register =
4956 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
4957 		break;
4958 
4959 	case RayDAT:
4960 	case AIO:
4961 		hdspm->settings_register = 0x1 + 0x1000;
4962 		/* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
4963 		 * line_out */
4964 		hdspm->control_register =
4965 			0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
4966 		break;
4967 
4968 	case AES32:
4969 		hdspm->control_register =
4970 			HDSPM_ClockModeMaster |	/* Master Cloack Mode on */
4971 			hdspm_encode_latency(7) | /* latency max=8192samples */
4972 			HDSPM_SyncRef0 |	/* AES1 is syncclock */
4973 			HDSPM_LineOut |	/* Analog output in */
4974 			HDSPM_Professional;  /* Professional mode */
4975 		break;
4976 	}
4977 
4978 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
4979 
4980 	if (AES32 == hdspm->io_type) {
4981 		/* No control2 register for AES32 */
4982 #ifdef SNDRV_BIG_ENDIAN
4983 		hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
4984 #else
4985 		hdspm->control2_register = 0;
4986 #endif
4987 
4988 		hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
4989 	}
4990 	hdspm_compute_period_size(hdspm);
4991 
4992 	/* silence everything */
4993 
4994 	all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
4995 
4996 	if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
4997 		hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
4998 	}
4999 
5000 	/* set a default rate so that the channel map is set up. */
5001 	hdspm_set_rate(hdspm, 48000, 1);
5002 
5003 	return 0;
5004 }
5005 
5006 
5007 /*------------------------------------------------------------
5008    interrupt
5009  ------------------------------------------------------------*/
5010 
5011 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
5012 {
5013 	struct hdspm *hdspm = (struct hdspm *) dev_id;
5014 	unsigned int status;
5015 	int i, audio, midi, schedule = 0;
5016 	/* cycles_t now; */
5017 
5018 	status = hdspm_read(hdspm, HDSPM_statusRegister);
5019 
5020 	audio = status & HDSPM_audioIRQPending;
5021 	midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5022 			HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5023 
5024 	/* now = get_cycles(); */
5025 	/**
5026 	 *   LAT_2..LAT_0 period  counter (win)  counter (mac)
5027 	 *          6       4096   ~256053425     ~514672358
5028 	 *          5       2048   ~128024983     ~257373821
5029 	 *          4       1024    ~64023706     ~128718089
5030 	 *          3        512    ~32005945      ~64385999
5031 	 *          2        256    ~16003039      ~32260176
5032 	 *          1        128     ~7998738      ~16194507
5033 	 *          0         64     ~3998231       ~8191558
5034 	 **/
5035 	/*
5036 	   snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
5037 	   now-hdspm->last_interrupt, status & 0xFFC0);
5038 	   hdspm->last_interrupt = now;
5039 	*/
5040 
5041 	if (!audio && !midi)
5042 		return IRQ_NONE;
5043 
5044 	hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5045 	hdspm->irq_count++;
5046 
5047 
5048 	if (audio) {
5049 		if (hdspm->capture_substream)
5050 			snd_pcm_period_elapsed(hdspm->capture_substream);
5051 
5052 		if (hdspm->playback_substream)
5053 			snd_pcm_period_elapsed(hdspm->playback_substream);
5054 	}
5055 
5056 	if (midi) {
5057 		i = 0;
5058 		while (i < hdspm->midiPorts) {
5059 			if ((hdspm_read(hdspm,
5060 				hdspm->midi[i].statusIn) & 0xff) &&
5061 					(status & hdspm->midi[i].irq)) {
5062 				/* we disable interrupts for this input until
5063 				 * processing is done
5064 				 */
5065 				hdspm->control_register &= ~hdspm->midi[i].ie;
5066 				hdspm_write(hdspm, HDSPM_controlRegister,
5067 						hdspm->control_register);
5068 				hdspm->midi[i].pending = 1;
5069 				schedule = 1;
5070 			}
5071 
5072 			i++;
5073 		}
5074 
5075 		if (schedule)
5076 			tasklet_hi_schedule(&hdspm->midi_tasklet);
5077 	}
5078 
5079 	return IRQ_HANDLED;
5080 }
5081 
5082 /*------------------------------------------------------------
5083    pcm interface
5084   ------------------------------------------------------------*/
5085 
5086 
5087 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5088 					      *substream)
5089 {
5090 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5091 	return hdspm_hw_pointer(hdspm);
5092 }
5093 
5094 
5095 static int snd_hdspm_reset(struct snd_pcm_substream *substream)
5096 {
5097 	struct snd_pcm_runtime *runtime = substream->runtime;
5098 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5099 	struct snd_pcm_substream *other;
5100 
5101 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5102 		other = hdspm->capture_substream;
5103 	else
5104 		other = hdspm->playback_substream;
5105 
5106 	if (hdspm->running)
5107 		runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5108 	else
5109 		runtime->status->hw_ptr = 0;
5110 	if (other) {
5111 		struct snd_pcm_substream *s;
5112 		struct snd_pcm_runtime *oruntime = other->runtime;
5113 		snd_pcm_group_for_each_entry(s, substream) {
5114 			if (s == other) {
5115 				oruntime->status->hw_ptr =
5116 					runtime->status->hw_ptr;
5117 				break;
5118 			}
5119 		}
5120 	}
5121 	return 0;
5122 }
5123 
5124 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5125 			       struct snd_pcm_hw_params *params)
5126 {
5127 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5128 	int err;
5129 	int i;
5130 	pid_t this_pid;
5131 	pid_t other_pid;
5132 
5133 	spin_lock_irq(&hdspm->lock);
5134 
5135 	if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5136 		this_pid = hdspm->playback_pid;
5137 		other_pid = hdspm->capture_pid;
5138 	} else {
5139 		this_pid = hdspm->capture_pid;
5140 		other_pid = hdspm->playback_pid;
5141 	}
5142 
5143 	if (other_pid > 0 && this_pid != other_pid) {
5144 
5145 		/* The other stream is open, and not by the same
5146 		   task as this one. Make sure that the parameters
5147 		   that matter are the same.
5148 		   */
5149 
5150 		if (params_rate(params) != hdspm->system_sample_rate) {
5151 			spin_unlock_irq(&hdspm->lock);
5152 			_snd_pcm_hw_param_setempty(params,
5153 					SNDRV_PCM_HW_PARAM_RATE);
5154 			return -EBUSY;
5155 		}
5156 
5157 		if (params_period_size(params) != hdspm->period_bytes / 4) {
5158 			spin_unlock_irq(&hdspm->lock);
5159 			_snd_pcm_hw_param_setempty(params,
5160 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5161 			return -EBUSY;
5162 		}
5163 
5164 	}
5165 	/* We're fine. */
5166 	spin_unlock_irq(&hdspm->lock);
5167 
5168 	/* how to make sure that the rate matches an externally-set one ?   */
5169 
5170 	spin_lock_irq(&hdspm->lock);
5171 	err = hdspm_set_rate(hdspm, params_rate(params), 0);
5172 	if (err < 0) {
5173 		snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
5174 		spin_unlock_irq(&hdspm->lock);
5175 		_snd_pcm_hw_param_setempty(params,
5176 				SNDRV_PCM_HW_PARAM_RATE);
5177 		return err;
5178 	}
5179 	spin_unlock_irq(&hdspm->lock);
5180 
5181 	err = hdspm_set_interrupt_interval(hdspm,
5182 			params_period_size(params));
5183 	if (err < 0) {
5184 		snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
5185 		_snd_pcm_hw_param_setempty(params,
5186 				SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5187 		return err;
5188 	}
5189 
5190 	/* Memory allocation, takashi's method, dont know if we should
5191 	 * spinlock
5192 	 */
5193 	/* malloc all buffer even if not enabled to get sure */
5194 	/* Update for MADI rev 204: we need to allocate for all channels,
5195 	 * otherwise it doesn't work at 96kHz */
5196 
5197 	err =
5198 		snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5199 	if (err < 0) {
5200 		snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
5201 		return err;
5202 	}
5203 
5204 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5205 
5206 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
5207 				params_channels(params));
5208 
5209 		for (i = 0; i < params_channels(params); ++i)
5210 			snd_hdspm_enable_out(hdspm, i, 1);
5211 
5212 		hdspm->playback_buffer =
5213 			(unsigned char *) substream->runtime->dma_area;
5214 		snd_printdd("Allocated sample buffer for playback at %p\n",
5215 				hdspm->playback_buffer);
5216 	} else {
5217 		hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
5218 				params_channels(params));
5219 
5220 		for (i = 0; i < params_channels(params); ++i)
5221 			snd_hdspm_enable_in(hdspm, i, 1);
5222 
5223 		hdspm->capture_buffer =
5224 			(unsigned char *) substream->runtime->dma_area;
5225 		snd_printdd("Allocated sample buffer for capture at %p\n",
5226 				hdspm->capture_buffer);
5227 	}
5228 
5229 	/*
5230 	   snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5231 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5232 	   "playback" : "capture",
5233 	   snd_pcm_sgbuf_get_addr(substream, 0));
5234 	   */
5235 	/*
5236 	   snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5237 	   substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5238 	   "playback" : "capture",
5239 	   params_rate(params), params_channels(params),
5240 	   params_buffer_size(params));
5241 	   */
5242 
5243 
5244 	/* Switch to native float format if requested */
5245 	if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5246 		if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5247 			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5248 
5249 		hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5250 	} else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5251 		if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5252 			snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5253 
5254 		hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5255 	}
5256 	hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5257 
5258 	return 0;
5259 }
5260 
5261 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
5262 {
5263 	int i;
5264 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5265 
5266 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5267 
5268 		/* params_channels(params) should be enough,
5269 		   but to get sure in case of error */
5270 		for (i = 0; i < hdspm->max_channels_out; ++i)
5271 			snd_hdspm_enable_out(hdspm, i, 0);
5272 
5273 		hdspm->playback_buffer = NULL;
5274 	} else {
5275 		for (i = 0; i < hdspm->max_channels_in; ++i)
5276 			snd_hdspm_enable_in(hdspm, i, 0);
5277 
5278 		hdspm->capture_buffer = NULL;
5279 
5280 	}
5281 
5282 	snd_pcm_lib_free_pages(substream);
5283 
5284 	return 0;
5285 }
5286 
5287 
5288 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
5289 		struct snd_pcm_channel_info *info)
5290 {
5291 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5292 
5293 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5294 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5295 			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5296 			return -EINVAL;
5297 		}
5298 
5299 		if (hdspm->channel_map_out[info->channel] < 0) {
5300 			snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5301 			return -EINVAL;
5302 		}
5303 
5304 		info->offset = hdspm->channel_map_out[info->channel] *
5305 			HDSPM_CHANNEL_BUFFER_BYTES;
5306 	} else {
5307 		if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5308 			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5309 			return -EINVAL;
5310 		}
5311 
5312 		if (hdspm->channel_map_in[info->channel] < 0) {
5313 			snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5314 			return -EINVAL;
5315 		}
5316 
5317 		info->offset = hdspm->channel_map_in[info->channel] *
5318 			HDSPM_CHANNEL_BUFFER_BYTES;
5319 	}
5320 
5321 	info->first = 0;
5322 	info->step = 32;
5323 	return 0;
5324 }
5325 
5326 
5327 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
5328 		unsigned int cmd, void *arg)
5329 {
5330 	switch (cmd) {
5331 	case SNDRV_PCM_IOCTL1_RESET:
5332 		return snd_hdspm_reset(substream);
5333 
5334 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
5335 		{
5336 			struct snd_pcm_channel_info *info = arg;
5337 			return snd_hdspm_channel_info(substream, info);
5338 		}
5339 	default:
5340 		break;
5341 	}
5342 
5343 	return snd_pcm_lib_ioctl(substream, cmd, arg);
5344 }
5345 
5346 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
5347 {
5348 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5349 	struct snd_pcm_substream *other;
5350 	int running;
5351 
5352 	spin_lock(&hdspm->lock);
5353 	running = hdspm->running;
5354 	switch (cmd) {
5355 	case SNDRV_PCM_TRIGGER_START:
5356 		running |= 1 << substream->stream;
5357 		break;
5358 	case SNDRV_PCM_TRIGGER_STOP:
5359 		running &= ~(1 << substream->stream);
5360 		break;
5361 	default:
5362 		snd_BUG();
5363 		spin_unlock(&hdspm->lock);
5364 		return -EINVAL;
5365 	}
5366 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5367 		other = hdspm->capture_substream;
5368 	else
5369 		other = hdspm->playback_substream;
5370 
5371 	if (other) {
5372 		struct snd_pcm_substream *s;
5373 		snd_pcm_group_for_each_entry(s, substream) {
5374 			if (s == other) {
5375 				snd_pcm_trigger_done(s, substream);
5376 				if (cmd == SNDRV_PCM_TRIGGER_START)
5377 					running |= 1 << s->stream;
5378 				else
5379 					running &= ~(1 << s->stream);
5380 				goto _ok;
5381 			}
5382 		}
5383 		if (cmd == SNDRV_PCM_TRIGGER_START) {
5384 			if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
5385 					&& substream->stream ==
5386 					SNDRV_PCM_STREAM_CAPTURE)
5387 				hdspm_silence_playback(hdspm);
5388 		} else {
5389 			if (running &&
5390 				substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5391 				hdspm_silence_playback(hdspm);
5392 		}
5393 	} else {
5394 		if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5395 			hdspm_silence_playback(hdspm);
5396 	}
5397 _ok:
5398 	snd_pcm_trigger_done(substream, substream);
5399 	if (!hdspm->running && running)
5400 		hdspm_start_audio(hdspm);
5401 	else if (hdspm->running && !running)
5402 		hdspm_stop_audio(hdspm);
5403 	hdspm->running = running;
5404 	spin_unlock(&hdspm->lock);
5405 
5406 	return 0;
5407 }
5408 
5409 static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
5410 {
5411 	return 0;
5412 }
5413 
5414 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
5415 	.info = (SNDRV_PCM_INFO_MMAP |
5416 		 SNDRV_PCM_INFO_MMAP_VALID |
5417 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5418 		 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5419 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5420 	.rates = (SNDRV_PCM_RATE_32000 |
5421 		  SNDRV_PCM_RATE_44100 |
5422 		  SNDRV_PCM_RATE_48000 |
5423 		  SNDRV_PCM_RATE_64000 |
5424 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5425 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
5426 	.rate_min = 32000,
5427 	.rate_max = 192000,
5428 	.channels_min = 1,
5429 	.channels_max = HDSPM_MAX_CHANNELS,
5430 	.buffer_bytes_max =
5431 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5432 	.period_bytes_min = (32 * 4),
5433 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5434 	.periods_min = 2,
5435 	.periods_max = 512,
5436 	.fifo_size = 0
5437 };
5438 
5439 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
5440 	.info = (SNDRV_PCM_INFO_MMAP |
5441 		 SNDRV_PCM_INFO_MMAP_VALID |
5442 		 SNDRV_PCM_INFO_NONINTERLEAVED |
5443 		 SNDRV_PCM_INFO_SYNC_START),
5444 	.formats = SNDRV_PCM_FMTBIT_S32_LE,
5445 	.rates = (SNDRV_PCM_RATE_32000 |
5446 		  SNDRV_PCM_RATE_44100 |
5447 		  SNDRV_PCM_RATE_48000 |
5448 		  SNDRV_PCM_RATE_64000 |
5449 		  SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5450 		  SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
5451 	.rate_min = 32000,
5452 	.rate_max = 192000,
5453 	.channels_min = 1,
5454 	.channels_max = HDSPM_MAX_CHANNELS,
5455 	.buffer_bytes_max =
5456 	    HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
5457 	.period_bytes_min = (32 * 4),
5458 	.period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
5459 	.periods_min = 2,
5460 	.periods_max = 512,
5461 	.fifo_size = 0
5462 };
5463 
5464 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5465 					   struct snd_pcm_hw_rule *rule)
5466 {
5467 	struct hdspm *hdspm = rule->private;
5468 	struct snd_interval *c =
5469 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5470 	struct snd_interval *r =
5471 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5472 
5473 	if (r->min > 96000 && r->max <= 192000) {
5474 		struct snd_interval t = {
5475 			.min = hdspm->qs_in_channels,
5476 			.max = hdspm->qs_in_channels,
5477 			.integer = 1,
5478 		};
5479 		return snd_interval_refine(c, &t);
5480 	} else if (r->min > 48000 && r->max <= 96000) {
5481 		struct snd_interval t = {
5482 			.min = hdspm->ds_in_channels,
5483 			.max = hdspm->ds_in_channels,
5484 			.integer = 1,
5485 		};
5486 		return snd_interval_refine(c, &t);
5487 	} else if (r->max < 64000) {
5488 		struct snd_interval t = {
5489 			.min = hdspm->ss_in_channels,
5490 			.max = hdspm->ss_in_channels,
5491 			.integer = 1,
5492 		};
5493 		return snd_interval_refine(c, &t);
5494 	}
5495 
5496 	return 0;
5497 }
5498 
5499 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
5500 					   struct snd_pcm_hw_rule * rule)
5501 {
5502 	struct hdspm *hdspm = rule->private;
5503 	struct snd_interval *c =
5504 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5505 	struct snd_interval *r =
5506 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5507 
5508 	if (r->min > 96000 && r->max <= 192000) {
5509 		struct snd_interval t = {
5510 			.min = hdspm->qs_out_channels,
5511 			.max = hdspm->qs_out_channels,
5512 			.integer = 1,
5513 		};
5514 		return snd_interval_refine(c, &t);
5515 	} else if (r->min > 48000 && r->max <= 96000) {
5516 		struct snd_interval t = {
5517 			.min = hdspm->ds_out_channels,
5518 			.max = hdspm->ds_out_channels,
5519 			.integer = 1,
5520 		};
5521 		return snd_interval_refine(c, &t);
5522 	} else if (r->max < 64000) {
5523 		struct snd_interval t = {
5524 			.min = hdspm->ss_out_channels,
5525 			.max = hdspm->ss_out_channels,
5526 			.integer = 1,
5527 		};
5528 		return snd_interval_refine(c, &t);
5529 	} else {
5530 	}
5531 	return 0;
5532 }
5533 
5534 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
5535 					   struct snd_pcm_hw_rule * rule)
5536 {
5537 	struct hdspm *hdspm = rule->private;
5538 	struct snd_interval *c =
5539 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5540 	struct snd_interval *r =
5541 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5542 
5543 	if (c->min >= hdspm->ss_in_channels) {
5544 		struct snd_interval t = {
5545 			.min = 32000,
5546 			.max = 48000,
5547 			.integer = 1,
5548 		};
5549 		return snd_interval_refine(r, &t);
5550 	} else if (c->max <= hdspm->qs_in_channels) {
5551 		struct snd_interval t = {
5552 			.min = 128000,
5553 			.max = 192000,
5554 			.integer = 1,
5555 		};
5556 		return snd_interval_refine(r, &t);
5557 	} else if (c->max <= hdspm->ds_in_channels) {
5558 		struct snd_interval t = {
5559 			.min = 64000,
5560 			.max = 96000,
5561 			.integer = 1,
5562 		};
5563 		return snd_interval_refine(r, &t);
5564 	}
5565 
5566 	return 0;
5567 }
5568 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5569 					   struct snd_pcm_hw_rule *rule)
5570 {
5571 	struct hdspm *hdspm = rule->private;
5572 	struct snd_interval *c =
5573 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5574 	struct snd_interval *r =
5575 	    hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5576 
5577 	if (c->min >= hdspm->ss_out_channels) {
5578 		struct snd_interval t = {
5579 			.min = 32000,
5580 			.max = 48000,
5581 			.integer = 1,
5582 		};
5583 		return snd_interval_refine(r, &t);
5584 	} else if (c->max <= hdspm->qs_out_channels) {
5585 		struct snd_interval t = {
5586 			.min = 128000,
5587 			.max = 192000,
5588 			.integer = 1,
5589 		};
5590 		return snd_interval_refine(r, &t);
5591 	} else if (c->max <= hdspm->ds_out_channels) {
5592 		struct snd_interval t = {
5593 			.min = 64000,
5594 			.max = 96000,
5595 			.integer = 1,
5596 		};
5597 		return snd_interval_refine(r, &t);
5598 	}
5599 
5600 	return 0;
5601 }
5602 
5603 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
5604 				      struct snd_pcm_hw_rule *rule)
5605 {
5606 	unsigned int list[3];
5607 	struct hdspm *hdspm = rule->private;
5608 	struct snd_interval *c = hw_param_interval(params,
5609 			SNDRV_PCM_HW_PARAM_CHANNELS);
5610 
5611 	list[0] = hdspm->qs_in_channels;
5612 	list[1] = hdspm->ds_in_channels;
5613 	list[2] = hdspm->ss_in_channels;
5614 	return snd_interval_list(c, 3, list, 0);
5615 }
5616 
5617 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
5618 				      struct snd_pcm_hw_rule *rule)
5619 {
5620 	unsigned int list[3];
5621 	struct hdspm *hdspm = rule->private;
5622 	struct snd_interval *c = hw_param_interval(params,
5623 			SNDRV_PCM_HW_PARAM_CHANNELS);
5624 
5625 	list[0] = hdspm->qs_out_channels;
5626 	list[1] = hdspm->ds_out_channels;
5627 	list[2] = hdspm->ss_out_channels;
5628 	return snd_interval_list(c, 3, list, 0);
5629 }
5630 
5631 
5632 static unsigned int hdspm_aes32_sample_rates[] = {
5633 	32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
5634 };
5635 
5636 static struct snd_pcm_hw_constraint_list
5637 hdspm_hw_constraints_aes32_sample_rates = {
5638 	.count = ARRAY_SIZE(hdspm_aes32_sample_rates),
5639 	.list = hdspm_aes32_sample_rates,
5640 	.mask = 0
5641 };
5642 
5643 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
5644 {
5645 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5646 	struct snd_pcm_runtime *runtime = substream->runtime;
5647 
5648 	spin_lock_irq(&hdspm->lock);
5649 
5650 	snd_pcm_set_sync(substream);
5651 
5652 
5653 	runtime->hw = snd_hdspm_playback_subinfo;
5654 
5655 	if (hdspm->capture_substream == NULL)
5656 		hdspm_stop_audio(hdspm);
5657 
5658 	hdspm->playback_pid = current->pid;
5659 	hdspm->playback_substream = substream;
5660 
5661 	spin_unlock_irq(&hdspm->lock);
5662 
5663 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5664 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5665 
5666 	switch (hdspm->io_type) {
5667 	case AIO:
5668 	case RayDAT:
5669 		snd_pcm_hw_constraint_minmax(runtime,
5670 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5671 					     32, 4096);
5672 		/* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
5673 		snd_pcm_hw_constraint_minmax(runtime,
5674 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5675 					     16384, 16384);
5676 		break;
5677 
5678 	default:
5679 		snd_pcm_hw_constraint_minmax(runtime,
5680 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5681 					     64, 8192);
5682 		break;
5683 	}
5684 
5685 	if (AES32 == hdspm->io_type) {
5686 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
5687 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5688 				&hdspm_hw_constraints_aes32_sample_rates);
5689 	} else {
5690 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5691 				snd_hdspm_hw_rule_rate_out_channels, hdspm,
5692 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5693 	}
5694 
5695 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5696 			snd_hdspm_hw_rule_out_channels, hdspm,
5697 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5698 
5699 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5700 			snd_hdspm_hw_rule_out_channels_rate, hdspm,
5701 			SNDRV_PCM_HW_PARAM_RATE, -1);
5702 
5703 	return 0;
5704 }
5705 
5706 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
5707 {
5708 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5709 
5710 	spin_lock_irq(&hdspm->lock);
5711 
5712 	hdspm->playback_pid = -1;
5713 	hdspm->playback_substream = NULL;
5714 
5715 	spin_unlock_irq(&hdspm->lock);
5716 
5717 	return 0;
5718 }
5719 
5720 
5721 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
5722 {
5723 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5724 	struct snd_pcm_runtime *runtime = substream->runtime;
5725 
5726 	spin_lock_irq(&hdspm->lock);
5727 	snd_pcm_set_sync(substream);
5728 	runtime->hw = snd_hdspm_capture_subinfo;
5729 
5730 	if (hdspm->playback_substream == NULL)
5731 		hdspm_stop_audio(hdspm);
5732 
5733 	hdspm->capture_pid = current->pid;
5734 	hdspm->capture_substream = substream;
5735 
5736 	spin_unlock_irq(&hdspm->lock);
5737 
5738 	snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
5739 	snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
5740 
5741 	switch (hdspm->io_type) {
5742 	case AIO:
5743 	case RayDAT:
5744 		snd_pcm_hw_constraint_minmax(runtime,
5745 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5746 					     32, 4096);
5747 		snd_pcm_hw_constraint_minmax(runtime,
5748 					     SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5749 					     16384, 16384);
5750 		break;
5751 
5752 	default:
5753 		snd_pcm_hw_constraint_minmax(runtime,
5754 					     SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5755 					     64, 8192);
5756 		break;
5757 	}
5758 
5759 	if (AES32 == hdspm->io_type) {
5760 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
5761 		snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5762 				&hdspm_hw_constraints_aes32_sample_rates);
5763 	} else {
5764 		snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5765 				snd_hdspm_hw_rule_rate_in_channels, hdspm,
5766 				SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5767 	}
5768 
5769 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5770 			snd_hdspm_hw_rule_in_channels, hdspm,
5771 			SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5772 
5773 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5774 			snd_hdspm_hw_rule_in_channels_rate, hdspm,
5775 			SNDRV_PCM_HW_PARAM_RATE, -1);
5776 
5777 	return 0;
5778 }
5779 
5780 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
5781 {
5782 	struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5783 
5784 	spin_lock_irq(&hdspm->lock);
5785 
5786 	hdspm->capture_pid = -1;
5787 	hdspm->capture_substream = NULL;
5788 
5789 	spin_unlock_irq(&hdspm->lock);
5790 	return 0;
5791 }
5792 
5793 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
5794 {
5795 	/* we have nothing to initialize but the call is required */
5796 	return 0;
5797 }
5798 
5799 static inline int copy_u32_le(void __user *dest, void __iomem *src)
5800 {
5801 	u32 val = readl(src);
5802 	return copy_to_user(dest, &val, 4);
5803 }
5804 
5805 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
5806 		unsigned int cmd, unsigned long arg)
5807 {
5808 	void __user *argp = (void __user *)arg;
5809 	struct hdspm *hdspm = hw->private_data;
5810 	struct hdspm_mixer_ioctl mixer;
5811 	struct hdspm_config info;
5812 	struct hdspm_status status;
5813 	struct hdspm_version hdspm_version;
5814 	struct hdspm_peak_rms *levels;
5815 	struct hdspm_ltc ltc;
5816 	unsigned int statusregister;
5817 	long unsigned int s;
5818 	int i = 0;
5819 
5820 	switch (cmd) {
5821 
5822 	case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
5823 		levels = &hdspm->peak_rms;
5824 		for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
5825 			levels->input_peaks[i] =
5826 				readl(hdspm->iobase +
5827 						HDSPM_MADI_INPUT_PEAK + i*4);
5828 			levels->playback_peaks[i] =
5829 				readl(hdspm->iobase +
5830 						HDSPM_MADI_PLAYBACK_PEAK + i*4);
5831 			levels->output_peaks[i] =
5832 				readl(hdspm->iobase +
5833 						HDSPM_MADI_OUTPUT_PEAK + i*4);
5834 
5835 			levels->input_rms[i] =
5836 				((uint64_t) readl(hdspm->iobase +
5837 					HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
5838 				(uint64_t) readl(hdspm->iobase +
5839 						HDSPM_MADI_INPUT_RMS_L + i*4);
5840 			levels->playback_rms[i] =
5841 				((uint64_t)readl(hdspm->iobase +
5842 					HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
5843 				(uint64_t)readl(hdspm->iobase +
5844 					HDSPM_MADI_PLAYBACK_RMS_L + i*4);
5845 			levels->output_rms[i] =
5846 				((uint64_t)readl(hdspm->iobase +
5847 					HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
5848 				(uint64_t)readl(hdspm->iobase +
5849 						HDSPM_MADI_OUTPUT_RMS_L + i*4);
5850 		}
5851 
5852 		if (hdspm->system_sample_rate > 96000) {
5853 			levels->speed = qs;
5854 		} else if (hdspm->system_sample_rate > 48000) {
5855 			levels->speed = ds;
5856 		} else {
5857 			levels->speed = ss;
5858 		}
5859 		levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
5860 
5861 		s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
5862 		if (0 != s) {
5863 			/* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
5864 			 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
5865 			 */
5866 			return -EFAULT;
5867 		}
5868 		break;
5869 
5870 	case SNDRV_HDSPM_IOCTL_GET_LTC:
5871 		ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
5872 		i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
5873 		if (i & HDSPM_TCO1_LTC_Input_valid) {
5874 			switch (i & (HDSPM_TCO1_LTC_Format_LSB |
5875 				HDSPM_TCO1_LTC_Format_MSB)) {
5876 			case 0:
5877 				ltc.format = fps_24;
5878 				break;
5879 			case HDSPM_TCO1_LTC_Format_LSB:
5880 				ltc.format = fps_25;
5881 				break;
5882 			case HDSPM_TCO1_LTC_Format_MSB:
5883 				ltc.format = fps_2997;
5884 				break;
5885 			default:
5886 				ltc.format = 30;
5887 				break;
5888 			}
5889 			if (i & HDSPM_TCO1_set_drop_frame_flag) {
5890 				ltc.frame = drop_frame;
5891 			} else {
5892 				ltc.frame = full_frame;
5893 			}
5894 		} else {
5895 			ltc.format = format_invalid;
5896 			ltc.frame = frame_invalid;
5897 		}
5898 		if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
5899 			ltc.input_format = ntsc;
5900 		} else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
5901 			ltc.input_format = pal;
5902 		} else {
5903 			ltc.input_format = no_video;
5904 		}
5905 
5906 		s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
5907 		if (0 != s) {
5908 			/*
5909 			 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
5910 			return -EFAULT;
5911 		}
5912 
5913 		break;
5914 
5915 	case SNDRV_HDSPM_IOCTL_GET_CONFIG:
5916 
5917 		memset(&info, 0, sizeof(info));
5918 		spin_lock_irq(&hdspm->lock);
5919 		info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
5920 		info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
5921 
5922 		info.system_sample_rate = hdspm->system_sample_rate;
5923 		info.autosync_sample_rate =
5924 			hdspm_external_sample_rate(hdspm);
5925 		info.system_clock_mode = hdspm_system_clock_mode(hdspm);
5926 		info.clock_source = hdspm_clock_source(hdspm);
5927 		info.autosync_ref = hdspm_autosync_ref(hdspm);
5928 		info.line_out = hdspm_toggle_setting(hdspm, HDSPM_LineOut);
5929 		info.passthru = 0;
5930 		spin_unlock_irq(&hdspm->lock);
5931 		if (copy_to_user(argp, &info, sizeof(info)))
5932 			return -EFAULT;
5933 		break;
5934 
5935 	case SNDRV_HDSPM_IOCTL_GET_STATUS:
5936 		memset(&status, 0, sizeof(status));
5937 
5938 		status.card_type = hdspm->io_type;
5939 
5940 		status.autosync_source = hdspm_autosync_ref(hdspm);
5941 
5942 		status.card_clock = 110069313433624ULL;
5943 		status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
5944 
5945 		switch (hdspm->io_type) {
5946 		case MADI:
5947 		case MADIface:
5948 			status.card_specific.madi.sync_wc =
5949 				hdspm_wc_sync_check(hdspm);
5950 			status.card_specific.madi.sync_madi =
5951 				hdspm_madi_sync_check(hdspm);
5952 			status.card_specific.madi.sync_tco =
5953 				hdspm_tco_sync_check(hdspm);
5954 			status.card_specific.madi.sync_in =
5955 				hdspm_sync_in_sync_check(hdspm);
5956 
5957 			statusregister =
5958 				hdspm_read(hdspm, HDSPM_statusRegister);
5959 			status.card_specific.madi.madi_input =
5960 				(statusregister & HDSPM_AB_int) ? 1 : 0;
5961 			status.card_specific.madi.channel_format =
5962 				(statusregister & HDSPM_RX_64ch) ? 1 : 0;
5963 			/* TODO: Mac driver sets it when f_s>48kHz */
5964 			status.card_specific.madi.frame_format = 0;
5965 
5966 		default:
5967 			break;
5968 		}
5969 
5970 		if (copy_to_user(argp, &status, sizeof(status)))
5971 			return -EFAULT;
5972 
5973 
5974 		break;
5975 
5976 	case SNDRV_HDSPM_IOCTL_GET_VERSION:
5977 		memset(&hdspm_version, 0, sizeof(hdspm_version));
5978 
5979 		hdspm_version.card_type = hdspm->io_type;
5980 		strncpy(hdspm_version.cardname, hdspm->card_name,
5981 				sizeof(hdspm_version.cardname));
5982 		hdspm_version.serial = hdspm->serial;
5983 		hdspm_version.firmware_rev = hdspm->firmware_rev;
5984 		hdspm_version.addons = 0;
5985 		if (hdspm->tco)
5986 			hdspm_version.addons |= HDSPM_ADDON_TCO;
5987 
5988 		if (copy_to_user(argp, &hdspm_version,
5989 					sizeof(hdspm_version)))
5990 			return -EFAULT;
5991 		break;
5992 
5993 	case SNDRV_HDSPM_IOCTL_GET_MIXER:
5994 		if (copy_from_user(&mixer, argp, sizeof(mixer)))
5995 			return -EFAULT;
5996 		if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
5997 					sizeof(struct hdspm_mixer)))
5998 			return -EFAULT;
5999 		break;
6000 
6001 	default:
6002 		return -EINVAL;
6003 	}
6004 	return 0;
6005 }
6006 
6007 static struct snd_pcm_ops snd_hdspm_playback_ops = {
6008 	.open = snd_hdspm_playback_open,
6009 	.close = snd_hdspm_playback_release,
6010 	.ioctl = snd_hdspm_ioctl,
6011 	.hw_params = snd_hdspm_hw_params,
6012 	.hw_free = snd_hdspm_hw_free,
6013 	.prepare = snd_hdspm_prepare,
6014 	.trigger = snd_hdspm_trigger,
6015 	.pointer = snd_hdspm_hw_pointer,
6016 	.page = snd_pcm_sgbuf_ops_page,
6017 };
6018 
6019 static struct snd_pcm_ops snd_hdspm_capture_ops = {
6020 	.open = snd_hdspm_capture_open,
6021 	.close = snd_hdspm_capture_release,
6022 	.ioctl = snd_hdspm_ioctl,
6023 	.hw_params = snd_hdspm_hw_params,
6024 	.hw_free = snd_hdspm_hw_free,
6025 	.prepare = snd_hdspm_prepare,
6026 	.trigger = snd_hdspm_trigger,
6027 	.pointer = snd_hdspm_hw_pointer,
6028 	.page = snd_pcm_sgbuf_ops_page,
6029 };
6030 
6031 static int snd_hdspm_create_hwdep(struct snd_card *card,
6032 				  struct hdspm *hdspm)
6033 {
6034 	struct snd_hwdep *hw;
6035 	int err;
6036 
6037 	err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6038 	if (err < 0)
6039 		return err;
6040 
6041 	hdspm->hwdep = hw;
6042 	hw->private_data = hdspm;
6043 	strcpy(hw->name, "HDSPM hwdep interface");
6044 
6045 	hw->ops.open = snd_hdspm_hwdep_dummy_op;
6046 	hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
6047 	hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl;
6048 	hw->ops.release = snd_hdspm_hwdep_dummy_op;
6049 
6050 	return 0;
6051 }
6052 
6053 
6054 /*------------------------------------------------------------
6055    memory interface
6056  ------------------------------------------------------------*/
6057 static int snd_hdspm_preallocate_memory(struct hdspm *hdspm)
6058 {
6059 	int err;
6060 	struct snd_pcm *pcm;
6061 	size_t wanted;
6062 
6063 	pcm = hdspm->pcm;
6064 
6065 	wanted = HDSPM_DMA_AREA_BYTES;
6066 
6067 	err =
6068 	     snd_pcm_lib_preallocate_pages_for_all(pcm,
6069 						   SNDRV_DMA_TYPE_DEV_SG,
6070 						   snd_dma_pci_data(hdspm->pci),
6071 						   wanted,
6072 						   wanted);
6073 	if (err < 0) {
6074 		snd_printdd("Could not preallocate %zd Bytes\n", wanted);
6075 
6076 		return err;
6077 	} else
6078 		snd_printdd(" Preallocated %zd Bytes\n", wanted);
6079 
6080 	return 0;
6081 }
6082 
6083 
6084 static void hdspm_set_sgbuf(struct hdspm *hdspm,
6085 			    struct snd_pcm_substream *substream,
6086 			     unsigned int reg, int channels)
6087 {
6088 	int i;
6089 
6090 	/* continuous memory segment */
6091 	for (i = 0; i < (channels * 16); i++)
6092 		hdspm_write(hdspm, reg + 4 * i,
6093 				snd_pcm_sgbuf_get_addr(substream, 4096 * i));
6094 }
6095 
6096 
6097 /* ------------- ALSA Devices ---------------------------- */
6098 static int snd_hdspm_create_pcm(struct snd_card *card,
6099 				struct hdspm *hdspm)
6100 {
6101 	struct snd_pcm *pcm;
6102 	int err;
6103 
6104 	err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6105 	if (err < 0)
6106 		return err;
6107 
6108 	hdspm->pcm = pcm;
6109 	pcm->private_data = hdspm;
6110 	strcpy(pcm->name, hdspm->card_name);
6111 
6112 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6113 			&snd_hdspm_playback_ops);
6114 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6115 			&snd_hdspm_capture_ops);
6116 
6117 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6118 
6119 	err = snd_hdspm_preallocate_memory(hdspm);
6120 	if (err < 0)
6121 		return err;
6122 
6123 	return 0;
6124 }
6125 
6126 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
6127 {
6128 	int i;
6129 
6130 	for (i = 0; i < hdspm->midiPorts; i++)
6131 		snd_hdspm_flush_midi_input(hdspm, i);
6132 }
6133 
6134 static int snd_hdspm_create_alsa_devices(struct snd_card *card,
6135 					 struct hdspm *hdspm)
6136 {
6137 	int err, i;
6138 
6139 	snd_printdd("Create card...\n");
6140 	err = snd_hdspm_create_pcm(card, hdspm);
6141 	if (err < 0)
6142 		return err;
6143 
6144 	i = 0;
6145 	while (i < hdspm->midiPorts) {
6146 		err = snd_hdspm_create_midi(card, hdspm, i);
6147 		if (err < 0) {
6148 			return err;
6149 		}
6150 		i++;
6151 	}
6152 
6153 	err = snd_hdspm_create_controls(card, hdspm);
6154 	if (err < 0)
6155 		return err;
6156 
6157 	err = snd_hdspm_create_hwdep(card, hdspm);
6158 	if (err < 0)
6159 		return err;
6160 
6161 	snd_printdd("proc init...\n");
6162 	snd_hdspm_proc_init(hdspm);
6163 
6164 	hdspm->system_sample_rate = -1;
6165 	hdspm->last_external_sample_rate = -1;
6166 	hdspm->last_internal_sample_rate = -1;
6167 	hdspm->playback_pid = -1;
6168 	hdspm->capture_pid = -1;
6169 	hdspm->capture_substream = NULL;
6170 	hdspm->playback_substream = NULL;
6171 
6172 	snd_printdd("Set defaults...\n");
6173 	err = snd_hdspm_set_defaults(hdspm);
6174 	if (err < 0)
6175 		return err;
6176 
6177 	snd_printdd("Update mixer controls...\n");
6178 	hdspm_update_simple_mixer_controls(hdspm);
6179 
6180 	snd_printdd("Initializeing complete ???\n");
6181 
6182 	err = snd_card_register(card);
6183 	if (err < 0) {
6184 		snd_printk(KERN_ERR "HDSPM: error registering card\n");
6185 		return err;
6186 	}
6187 
6188 	snd_printdd("... yes now\n");
6189 
6190 	return 0;
6191 }
6192 
6193 static int snd_hdspm_create(struct snd_card *card,
6194 			    struct hdspm *hdspm)
6195 {
6196 
6197 	struct pci_dev *pci = hdspm->pci;
6198 	int err;
6199 	unsigned long io_extent;
6200 
6201 	hdspm->irq = -1;
6202 	hdspm->card = card;
6203 
6204 	spin_lock_init(&hdspm->lock);
6205 
6206 	pci_read_config_word(hdspm->pci,
6207 			PCI_CLASS_REVISION, &hdspm->firmware_rev);
6208 
6209 	strcpy(card->mixername, "Xilinx FPGA");
6210 	strcpy(card->driver, "HDSPM");
6211 
6212 	switch (hdspm->firmware_rev) {
6213 	case HDSPM_RAYDAT_REV:
6214 		hdspm->io_type = RayDAT;
6215 		hdspm->card_name = "RME RayDAT";
6216 		hdspm->midiPorts = 2;
6217 		break;
6218 	case HDSPM_AIO_REV:
6219 		hdspm->io_type = AIO;
6220 		hdspm->card_name = "RME AIO";
6221 		hdspm->midiPorts = 1;
6222 		break;
6223 	case HDSPM_MADIFACE_REV:
6224 		hdspm->io_type = MADIface;
6225 		hdspm->card_name = "RME MADIface";
6226 		hdspm->midiPorts = 1;
6227 		break;
6228 	default:
6229 		if ((hdspm->firmware_rev == 0xf0) ||
6230 			((hdspm->firmware_rev >= 0xe6) &&
6231 					(hdspm->firmware_rev <= 0xea))) {
6232 			hdspm->io_type = AES32;
6233 			hdspm->card_name = "RME AES32";
6234 			hdspm->midiPorts = 2;
6235 		} else if ((hdspm->firmware_rev == 0xd2) ||
6236 			((hdspm->firmware_rev >= 0xc8)  &&
6237 				(hdspm->firmware_rev <= 0xcf))) {
6238 			hdspm->io_type = MADI;
6239 			hdspm->card_name = "RME MADI";
6240 			hdspm->midiPorts = 3;
6241 		} else {
6242 			snd_printk(KERN_ERR
6243 				"HDSPM: unknown firmware revision %x\n",
6244 				hdspm->firmware_rev);
6245 			return -ENODEV;
6246 		}
6247 	}
6248 
6249 	err = pci_enable_device(pci);
6250 	if (err < 0)
6251 		return err;
6252 
6253 	pci_set_master(hdspm->pci);
6254 
6255 	err = pci_request_regions(pci, "hdspm");
6256 	if (err < 0)
6257 		return err;
6258 
6259 	hdspm->port = pci_resource_start(pci, 0);
6260 	io_extent = pci_resource_len(pci, 0);
6261 
6262 	snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
6263 			hdspm->port, hdspm->port + io_extent - 1);
6264 
6265 	hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6266 	if (!hdspm->iobase) {
6267 		snd_printk(KERN_ERR "HDSPM: "
6268 				"unable to remap region 0x%lx-0x%lx\n",
6269 				hdspm->port, hdspm->port + io_extent - 1);
6270 		return -EBUSY;
6271 	}
6272 	snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
6273 			(unsigned long)hdspm->iobase, hdspm->port,
6274 			hdspm->port + io_extent - 1);
6275 
6276 	if (request_irq(pci->irq, snd_hdspm_interrupt,
6277 			IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
6278 		snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6279 		return -EBUSY;
6280 	}
6281 
6282 	snd_printdd("use IRQ %d\n", pci->irq);
6283 
6284 	hdspm->irq = pci->irq;
6285 
6286 	snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
6287 			sizeof(struct hdspm_mixer));
6288 	hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6289 	if (!hdspm->mixer) {
6290 		snd_printk(KERN_ERR "HDSPM: "
6291 				"unable to kmalloc Mixer memory of %d Bytes\n",
6292 				(int)sizeof(struct hdspm_mixer));
6293 		return -ENOMEM;
6294 	}
6295 
6296 	hdspm->port_names_in = NULL;
6297 	hdspm->port_names_out = NULL;
6298 
6299 	switch (hdspm->io_type) {
6300 	case AES32:
6301 		hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6302 		hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6303 		hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
6304 
6305 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6306 			channel_map_aes32;
6307 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6308 			channel_map_aes32;
6309 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6310 			channel_map_aes32;
6311 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6312 			texts_ports_aes32;
6313 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6314 			texts_ports_aes32;
6315 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6316 			texts_ports_aes32;
6317 
6318 		hdspm->max_channels_out = hdspm->max_channels_in =
6319 			AES32_CHANNELS;
6320 		hdspm->port_names_in = hdspm->port_names_out =
6321 			texts_ports_aes32;
6322 		hdspm->channel_map_in = hdspm->channel_map_out =
6323 			channel_map_aes32;
6324 
6325 		break;
6326 
6327 	case MADI:
6328 	case MADIface:
6329 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6330 			MADI_SS_CHANNELS;
6331 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6332 			MADI_DS_CHANNELS;
6333 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6334 			MADI_QS_CHANNELS;
6335 
6336 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6337 			channel_map_unity_ss;
6338 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6339 			channel_map_unity_ss;
6340 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6341 			channel_map_unity_ss;
6342 
6343 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6344 			texts_ports_madi;
6345 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6346 			texts_ports_madi;
6347 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6348 			texts_ports_madi;
6349 		break;
6350 
6351 	case AIO:
6352 		if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6353 			snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
6354 		}
6355 
6356 		hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6357 		hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6358 		hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6359 		hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6360 		hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6361 		hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6362 
6363 		hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6364 		hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6365 		hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6366 
6367 		hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6368 		hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6369 		hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6370 
6371 		hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6372 		hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6373 		hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6374 		hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6375 		hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6376 		hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6377 
6378 		break;
6379 
6380 	case RayDAT:
6381 		hdspm->ss_in_channels = hdspm->ss_out_channels =
6382 			RAYDAT_SS_CHANNELS;
6383 		hdspm->ds_in_channels = hdspm->ds_out_channels =
6384 			RAYDAT_DS_CHANNELS;
6385 		hdspm->qs_in_channels = hdspm->qs_out_channels =
6386 			RAYDAT_QS_CHANNELS;
6387 
6388 		hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6389 		hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6390 
6391 		hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6392 			channel_map_raydat_ss;
6393 		hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6394 			channel_map_raydat_ds;
6395 		hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6396 			channel_map_raydat_qs;
6397 		hdspm->channel_map_in = hdspm->channel_map_out =
6398 			channel_map_raydat_ss;
6399 
6400 		hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6401 			texts_ports_raydat_ss;
6402 		hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6403 			texts_ports_raydat_ds;
6404 		hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6405 			texts_ports_raydat_qs;
6406 
6407 
6408 		break;
6409 
6410 	}
6411 
6412 	/* TCO detection */
6413 	switch (hdspm->io_type) {
6414 	case AIO:
6415 	case RayDAT:
6416 		if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6417 				HDSPM_s2_tco_detect) {
6418 			hdspm->midiPorts++;
6419 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6420 					GFP_KERNEL);
6421 			if (NULL != hdspm->tco) {
6422 				hdspm_tco_write(hdspm);
6423 			}
6424 			snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6425 		} else {
6426 			hdspm->tco = NULL;
6427 		}
6428 		break;
6429 
6430 	case MADI:
6431 		if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6432 			hdspm->midiPorts++;
6433 			hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6434 					GFP_KERNEL);
6435 			if (NULL != hdspm->tco) {
6436 				hdspm_tco_write(hdspm);
6437 			}
6438 			snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
6439 		} else {
6440 			hdspm->tco = NULL;
6441 		}
6442 		break;
6443 
6444 	default:
6445 		hdspm->tco = NULL;
6446 	}
6447 
6448 	/* texts */
6449 	switch (hdspm->io_type) {
6450 	case AES32:
6451 		if (hdspm->tco) {
6452 			hdspm->texts_autosync = texts_autosync_aes_tco;
6453 			hdspm->texts_autosync_items = 10;
6454 		} else {
6455 			hdspm->texts_autosync = texts_autosync_aes;
6456 			hdspm->texts_autosync_items = 9;
6457 		}
6458 		break;
6459 
6460 	case MADI:
6461 		if (hdspm->tco) {
6462 			hdspm->texts_autosync = texts_autosync_madi_tco;
6463 			hdspm->texts_autosync_items = 4;
6464 		} else {
6465 			hdspm->texts_autosync = texts_autosync_madi;
6466 			hdspm->texts_autosync_items = 3;
6467 		}
6468 		break;
6469 
6470 	case MADIface:
6471 
6472 		break;
6473 
6474 	case RayDAT:
6475 		if (hdspm->tco) {
6476 			hdspm->texts_autosync = texts_autosync_raydat_tco;
6477 			hdspm->texts_autosync_items = 9;
6478 		} else {
6479 			hdspm->texts_autosync = texts_autosync_raydat;
6480 			hdspm->texts_autosync_items = 8;
6481 		}
6482 		break;
6483 
6484 	case AIO:
6485 		if (hdspm->tco) {
6486 			hdspm->texts_autosync = texts_autosync_aio_tco;
6487 			hdspm->texts_autosync_items = 6;
6488 		} else {
6489 			hdspm->texts_autosync = texts_autosync_aio;
6490 			hdspm->texts_autosync_items = 5;
6491 		}
6492 		break;
6493 
6494 	}
6495 
6496 	tasklet_init(&hdspm->midi_tasklet,
6497 			hdspm_midi_tasklet, (unsigned long) hdspm);
6498 
6499 
6500 	if (hdspm->io_type != MADIface) {
6501 		hdspm->serial = (hdspm_read(hdspm,
6502 				HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
6503 		/* id contains either a user-provided value or the default
6504 		 * NULL. If it's the default, we're safe to
6505 		 * fill card->id with the serial number.
6506 		 *
6507 		 * If the serial number is 0xFFFFFF, then we're dealing with
6508 		 * an old PCI revision that comes without a sane number. In
6509 		 * this case, we don't set card->id to avoid collisions
6510 		 * when running with multiple cards.
6511 		 */
6512 		if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) {
6513 			sprintf(card->id, "HDSPMx%06x", hdspm->serial);
6514 			snd_card_set_id(card, card->id);
6515 		}
6516 	}
6517 
6518 	snd_printdd("create alsa devices.\n");
6519 	err = snd_hdspm_create_alsa_devices(card, hdspm);
6520 	if (err < 0)
6521 		return err;
6522 
6523 	snd_hdspm_initialize_midi_flush(hdspm);
6524 
6525 	return 0;
6526 }
6527 
6528 
6529 static int snd_hdspm_free(struct hdspm * hdspm)
6530 {
6531 
6532 	if (hdspm->port) {
6533 
6534 		/* stop th audio, and cancel all interrupts */
6535 		hdspm->control_register &=
6536 		    ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
6537 		      HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6538 		      HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
6539 		hdspm_write(hdspm, HDSPM_controlRegister,
6540 			    hdspm->control_register);
6541 	}
6542 
6543 	if (hdspm->irq >= 0)
6544 		free_irq(hdspm->irq, (void *) hdspm);
6545 
6546 	kfree(hdspm->mixer);
6547 
6548 	if (hdspm->iobase)
6549 		iounmap(hdspm->iobase);
6550 
6551 	if (hdspm->port)
6552 		pci_release_regions(hdspm->pci);
6553 
6554 	pci_disable_device(hdspm->pci);
6555 	return 0;
6556 }
6557 
6558 
6559 static void snd_hdspm_card_free(struct snd_card *card)
6560 {
6561 	struct hdspm *hdspm = card->private_data;
6562 
6563 	if (hdspm)
6564 		snd_hdspm_free(hdspm);
6565 }
6566 
6567 
6568 static int snd_hdspm_probe(struct pci_dev *pci,
6569 			   const struct pci_device_id *pci_id)
6570 {
6571 	static int dev;
6572 	struct hdspm *hdspm;
6573 	struct snd_card *card;
6574 	int err;
6575 
6576 	if (dev >= SNDRV_CARDS)
6577 		return -ENODEV;
6578 	if (!enable[dev]) {
6579 		dev++;
6580 		return -ENOENT;
6581 	}
6582 
6583 	err = snd_card_create(index[dev], id[dev],
6584 			THIS_MODULE, sizeof(struct hdspm), &card);
6585 	if (err < 0)
6586 		return err;
6587 
6588 	hdspm = card->private_data;
6589 	card->private_free = snd_hdspm_card_free;
6590 	hdspm->dev = dev;
6591 	hdspm->pci = pci;
6592 
6593 	snd_card_set_dev(card, &pci->dev);
6594 
6595 	err = snd_hdspm_create(card, hdspm);
6596 	if (err < 0) {
6597 		snd_card_free(card);
6598 		return err;
6599 	}
6600 
6601 	if (hdspm->io_type != MADIface) {
6602 		sprintf(card->shortname, "%s_%x",
6603 			hdspm->card_name,
6604 			hdspm->serial);
6605 		sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6606 			hdspm->card_name,
6607 			hdspm->serial,
6608 			hdspm->port, hdspm->irq);
6609 	} else {
6610 		sprintf(card->shortname, "%s", hdspm->card_name);
6611 		sprintf(card->longname, "%s at 0x%lx, irq %d",
6612 				hdspm->card_name, hdspm->port, hdspm->irq);
6613 	}
6614 
6615 	err = snd_card_register(card);
6616 	if (err < 0) {
6617 		snd_card_free(card);
6618 		return err;
6619 	}
6620 
6621 	pci_set_drvdata(pci, card);
6622 
6623 	dev++;
6624 	return 0;
6625 }
6626 
6627 static void snd_hdspm_remove(struct pci_dev *pci)
6628 {
6629 	snd_card_free(pci_get_drvdata(pci));
6630 	pci_set_drvdata(pci, NULL);
6631 }
6632 
6633 static struct pci_driver hdspm_driver = {
6634 	.name = KBUILD_MODNAME,
6635 	.id_table = snd_hdspm_ids,
6636 	.probe = snd_hdspm_probe,
6637 	.remove = snd_hdspm_remove,
6638 };
6639 
6640 module_pci_driver(hdspm_driver);
6641