1 /* 2 * ALSA driver for RME Hammerfall DSP audio interface(s) 3 * 4 * Copyright (c) 2002 Paul Davis 5 * Marcus Andersson 6 * Thomas Charbonnel 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/init.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/pci.h> 28 #include <linux/firmware.h> 29 #include <linux/module.h> 30 #include <linux/math64.h> 31 #include <linux/vmalloc.h> 32 #include <linux/io.h> 33 34 #include <sound/core.h> 35 #include <sound/control.h> 36 #include <sound/pcm.h> 37 #include <sound/info.h> 38 #include <sound/asoundef.h> 39 #include <sound/rawmidi.h> 40 #include <sound/hwdep.h> 41 #include <sound/initval.h> 42 #include <sound/hdsp.h> 43 44 #include <asm/byteorder.h> 45 #include <asm/current.h> 46 47 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 48 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 49 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 50 51 module_param_array(index, int, NULL, 0444); 52 MODULE_PARM_DESC(index, "Index value for RME Hammerfall DSP interface."); 53 module_param_array(id, charp, NULL, 0444); 54 MODULE_PARM_DESC(id, "ID string for RME Hammerfall DSP interface."); 55 module_param_array(enable, bool, NULL, 0444); 56 MODULE_PARM_DESC(enable, "Enable/disable specific Hammerfall DSP soundcards."); 57 MODULE_AUTHOR("Paul Davis <paul@linuxaudiosystems.com>, Marcus Andersson, Thomas Charbonnel <thomas@undata.org>"); 58 MODULE_DESCRIPTION("RME Hammerfall DSP"); 59 MODULE_LICENSE("GPL"); 60 MODULE_SUPPORTED_DEVICE("{{RME Hammerfall-DSP}," 61 "{RME HDSP-9652}," 62 "{RME HDSP-9632}}"); 63 MODULE_FIRMWARE("rpm_firmware.bin"); 64 MODULE_FIRMWARE("multiface_firmware.bin"); 65 MODULE_FIRMWARE("multiface_firmware_rev11.bin"); 66 MODULE_FIRMWARE("digiface_firmware.bin"); 67 MODULE_FIRMWARE("digiface_firmware_rev11.bin"); 68 69 #define HDSP_MAX_CHANNELS 26 70 #define HDSP_MAX_DS_CHANNELS 14 71 #define HDSP_MAX_QS_CHANNELS 8 72 #define DIGIFACE_SS_CHANNELS 26 73 #define DIGIFACE_DS_CHANNELS 14 74 #define MULTIFACE_SS_CHANNELS 18 75 #define MULTIFACE_DS_CHANNELS 14 76 #define H9652_SS_CHANNELS 26 77 #define H9652_DS_CHANNELS 14 78 /* This does not include possible Analog Extension Boards 79 AEBs are detected at card initialization 80 */ 81 #define H9632_SS_CHANNELS 12 82 #define H9632_DS_CHANNELS 8 83 #define H9632_QS_CHANNELS 4 84 #define RPM_CHANNELS 6 85 86 /* Write registers. These are defined as byte-offsets from the iobase value. 87 */ 88 #define HDSP_resetPointer 0 89 #define HDSP_freqReg 0 90 #define HDSP_outputBufferAddress 32 91 #define HDSP_inputBufferAddress 36 92 #define HDSP_controlRegister 64 93 #define HDSP_interruptConfirmation 96 94 #define HDSP_outputEnable 128 95 #define HDSP_control2Reg 256 96 #define HDSP_midiDataOut0 352 97 #define HDSP_midiDataOut1 356 98 #define HDSP_fifoData 368 99 #define HDSP_inputEnable 384 100 101 /* Read registers. These are defined as byte-offsets from the iobase value 102 */ 103 104 #define HDSP_statusRegister 0 105 #define HDSP_timecode 128 106 #define HDSP_status2Register 192 107 #define HDSP_midiDataIn0 360 108 #define HDSP_midiDataIn1 364 109 #define HDSP_midiStatusOut0 384 110 #define HDSP_midiStatusOut1 388 111 #define HDSP_midiStatusIn0 392 112 #define HDSP_midiStatusIn1 396 113 #define HDSP_fifoStatus 400 114 115 /* the meters are regular i/o-mapped registers, but offset 116 considerably from the rest. the peak registers are reset 117 when read; the least-significant 4 bits are full-scale counters; 118 the actual peak value is in the most-significant 24 bits. 119 */ 120 121 #define HDSP_playbackPeakLevel 4096 /* 26 * 32 bit values */ 122 #define HDSP_inputPeakLevel 4224 /* 26 * 32 bit values */ 123 #define HDSP_outputPeakLevel 4352 /* (26+2) * 32 bit values */ 124 #define HDSP_playbackRmsLevel 4612 /* 26 * 64 bit values */ 125 #define HDSP_inputRmsLevel 4868 /* 26 * 64 bit values */ 126 127 128 /* This is for H9652 cards 129 Peak values are read downward from the base 130 Rms values are read upward 131 There are rms values for the outputs too 132 26*3 values are read in ss mode 133 14*3 in ds mode, with no gap between values 134 */ 135 #define HDSP_9652_peakBase 7164 136 #define HDSP_9652_rmsBase 4096 137 138 /* c.f. the hdsp_9632_meters_t struct */ 139 #define HDSP_9632_metersBase 4096 140 141 #define HDSP_IO_EXTENT 7168 142 143 /* control2 register bits */ 144 145 #define HDSP_TMS 0x01 146 #define HDSP_TCK 0x02 147 #define HDSP_TDI 0x04 148 #define HDSP_JTAG 0x08 149 #define HDSP_PWDN 0x10 150 #define HDSP_PROGRAM 0x020 151 #define HDSP_CONFIG_MODE_0 0x040 152 #define HDSP_CONFIG_MODE_1 0x080 153 #define HDSP_VERSION_BIT (0x100 | HDSP_S_LOAD) 154 #define HDSP_BIGENDIAN_MODE 0x200 155 #define HDSP_RD_MULTIPLE 0x400 156 #define HDSP_9652_ENABLE_MIXER 0x800 157 #define HDSP_S200 0x800 158 #define HDSP_S300 (0x100 | HDSP_S200) /* dummy, purpose of 0x100 unknown */ 159 #define HDSP_CYCLIC_MODE 0x1000 160 #define HDSP_TDO 0x10000000 161 162 #define HDSP_S_PROGRAM (HDSP_CYCLIC_MODE|HDSP_PROGRAM|HDSP_CONFIG_MODE_0) 163 #define HDSP_S_LOAD (HDSP_CYCLIC_MODE|HDSP_PROGRAM|HDSP_CONFIG_MODE_1) 164 165 /* Control Register bits */ 166 167 #define HDSP_Start (1<<0) /* start engine */ 168 #define HDSP_Latency0 (1<<1) /* buffer size = 2^n where n is defined by Latency{2,1,0} */ 169 #define HDSP_Latency1 (1<<2) /* [ see above ] */ 170 #define HDSP_Latency2 (1<<3) /* [ see above ] */ 171 #define HDSP_ClockModeMaster (1<<4) /* 1=Master, 0=Slave/Autosync */ 172 #define HDSP_AudioInterruptEnable (1<<5) /* what do you think ? */ 173 #define HDSP_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz/176.4kHz 1=48kHz/96kHz/192kHz */ 174 #define HDSP_Frequency1 (1<<7) /* 0=32kHz/64kHz/128kHz */ 175 #define HDSP_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 176 #define HDSP_SPDIFProfessional (1<<9) /* 0=consumer, 1=professional */ 177 #define HDSP_SPDIFEmphasis (1<<10) /* 0=none, 1=on */ 178 #define HDSP_SPDIFNonAudio (1<<11) /* 0=off, 1=on */ 179 #define HDSP_SPDIFOpticalOut (1<<12) /* 1=use 1st ADAT connector for SPDIF, 0=do not */ 180 #define HDSP_SyncRef2 (1<<13) 181 #define HDSP_SPDIFInputSelect0 (1<<14) 182 #define HDSP_SPDIFInputSelect1 (1<<15) 183 #define HDSP_SyncRef0 (1<<16) 184 #define HDSP_SyncRef1 (1<<17) 185 #define HDSP_AnalogExtensionBoard (1<<18) /* For H9632 cards */ 186 #define HDSP_XLRBreakoutCable (1<<20) /* For H9632 cards */ 187 #define HDSP_Midi0InterruptEnable (1<<22) 188 #define HDSP_Midi1InterruptEnable (1<<23) 189 #define HDSP_LineOut (1<<24) 190 #define HDSP_ADGain0 (1<<25) /* From here : H9632 specific */ 191 #define HDSP_ADGain1 (1<<26) 192 #define HDSP_DAGain0 (1<<27) 193 #define HDSP_DAGain1 (1<<28) 194 #define HDSP_PhoneGain0 (1<<29) 195 #define HDSP_PhoneGain1 (1<<30) 196 #define HDSP_QuadSpeed (1<<31) 197 198 /* RPM uses some of the registers for special purposes */ 199 #define HDSP_RPM_Inp12 0x04A00 200 #define HDSP_RPM_Inp12_Phon_6dB 0x00800 /* Dolby */ 201 #define HDSP_RPM_Inp12_Phon_0dB 0x00000 /* .. */ 202 #define HDSP_RPM_Inp12_Phon_n6dB 0x04000 /* inp_0 */ 203 #define HDSP_RPM_Inp12_Line_0dB 0x04200 /* Dolby+PRO */ 204 #define HDSP_RPM_Inp12_Line_n6dB 0x00200 /* PRO */ 205 206 #define HDSP_RPM_Inp34 0x32000 207 #define HDSP_RPM_Inp34_Phon_6dB 0x20000 /* SyncRef1 */ 208 #define HDSP_RPM_Inp34_Phon_0dB 0x00000 /* .. */ 209 #define HDSP_RPM_Inp34_Phon_n6dB 0x02000 /* SyncRef2 */ 210 #define HDSP_RPM_Inp34_Line_0dB 0x30000 /* SyncRef1+SyncRef0 */ 211 #define HDSP_RPM_Inp34_Line_n6dB 0x10000 /* SyncRef0 */ 212 213 #define HDSP_RPM_Bypass 0x01000 214 215 #define HDSP_RPM_Disconnect 0x00001 216 217 #define HDSP_ADGainMask (HDSP_ADGain0|HDSP_ADGain1) 218 #define HDSP_ADGainMinus10dBV HDSP_ADGainMask 219 #define HDSP_ADGainPlus4dBu (HDSP_ADGain0) 220 #define HDSP_ADGainLowGain 0 221 222 #define HDSP_DAGainMask (HDSP_DAGain0|HDSP_DAGain1) 223 #define HDSP_DAGainHighGain HDSP_DAGainMask 224 #define HDSP_DAGainPlus4dBu (HDSP_DAGain0) 225 #define HDSP_DAGainMinus10dBV 0 226 227 #define HDSP_PhoneGainMask (HDSP_PhoneGain0|HDSP_PhoneGain1) 228 #define HDSP_PhoneGain0dB HDSP_PhoneGainMask 229 #define HDSP_PhoneGainMinus6dB (HDSP_PhoneGain0) 230 #define HDSP_PhoneGainMinus12dB 0 231 232 #define HDSP_LatencyMask (HDSP_Latency0|HDSP_Latency1|HDSP_Latency2) 233 #define HDSP_FrequencyMask (HDSP_Frequency0|HDSP_Frequency1|HDSP_DoubleSpeed|HDSP_QuadSpeed) 234 235 #define HDSP_SPDIFInputMask (HDSP_SPDIFInputSelect0|HDSP_SPDIFInputSelect1) 236 #define HDSP_SPDIFInputADAT1 0 237 #define HDSP_SPDIFInputCoaxial (HDSP_SPDIFInputSelect0) 238 #define HDSP_SPDIFInputCdrom (HDSP_SPDIFInputSelect1) 239 #define HDSP_SPDIFInputAES (HDSP_SPDIFInputSelect0|HDSP_SPDIFInputSelect1) 240 241 #define HDSP_SyncRefMask (HDSP_SyncRef0|HDSP_SyncRef1|HDSP_SyncRef2) 242 #define HDSP_SyncRef_ADAT1 0 243 #define HDSP_SyncRef_ADAT2 (HDSP_SyncRef0) 244 #define HDSP_SyncRef_ADAT3 (HDSP_SyncRef1) 245 #define HDSP_SyncRef_SPDIF (HDSP_SyncRef0|HDSP_SyncRef1) 246 #define HDSP_SyncRef_WORD (HDSP_SyncRef2) 247 #define HDSP_SyncRef_ADAT_SYNC (HDSP_SyncRef0|HDSP_SyncRef2) 248 249 /* Sample Clock Sources */ 250 251 #define HDSP_CLOCK_SOURCE_AUTOSYNC 0 252 #define HDSP_CLOCK_SOURCE_INTERNAL_32KHZ 1 253 #define HDSP_CLOCK_SOURCE_INTERNAL_44_1KHZ 2 254 #define HDSP_CLOCK_SOURCE_INTERNAL_48KHZ 3 255 #define HDSP_CLOCK_SOURCE_INTERNAL_64KHZ 4 256 #define HDSP_CLOCK_SOURCE_INTERNAL_88_2KHZ 5 257 #define HDSP_CLOCK_SOURCE_INTERNAL_96KHZ 6 258 #define HDSP_CLOCK_SOURCE_INTERNAL_128KHZ 7 259 #define HDSP_CLOCK_SOURCE_INTERNAL_176_4KHZ 8 260 #define HDSP_CLOCK_SOURCE_INTERNAL_192KHZ 9 261 262 /* Preferred sync reference choices - used by "pref_sync_ref" control switch */ 263 264 #define HDSP_SYNC_FROM_WORD 0 265 #define HDSP_SYNC_FROM_SPDIF 1 266 #define HDSP_SYNC_FROM_ADAT1 2 267 #define HDSP_SYNC_FROM_ADAT_SYNC 3 268 #define HDSP_SYNC_FROM_ADAT2 4 269 #define HDSP_SYNC_FROM_ADAT3 5 270 271 /* SyncCheck status */ 272 273 #define HDSP_SYNC_CHECK_NO_LOCK 0 274 #define HDSP_SYNC_CHECK_LOCK 1 275 #define HDSP_SYNC_CHECK_SYNC 2 276 277 /* AutoSync references - used by "autosync_ref" control switch */ 278 279 #define HDSP_AUTOSYNC_FROM_WORD 0 280 #define HDSP_AUTOSYNC_FROM_ADAT_SYNC 1 281 #define HDSP_AUTOSYNC_FROM_SPDIF 2 282 #define HDSP_AUTOSYNC_FROM_NONE 3 283 #define HDSP_AUTOSYNC_FROM_ADAT1 4 284 #define HDSP_AUTOSYNC_FROM_ADAT2 5 285 #define HDSP_AUTOSYNC_FROM_ADAT3 6 286 287 /* Possible sources of S/PDIF input */ 288 289 #define HDSP_SPDIFIN_OPTICAL 0 /* optical (ADAT1) */ 290 #define HDSP_SPDIFIN_COAXIAL 1 /* coaxial (RCA) */ 291 #define HDSP_SPDIFIN_INTERNAL 2 /* internal (CDROM) */ 292 #define HDSP_SPDIFIN_AES 3 /* xlr for H9632 (AES)*/ 293 294 #define HDSP_Frequency32KHz HDSP_Frequency0 295 #define HDSP_Frequency44_1KHz HDSP_Frequency1 296 #define HDSP_Frequency48KHz (HDSP_Frequency1|HDSP_Frequency0) 297 #define HDSP_Frequency64KHz (HDSP_DoubleSpeed|HDSP_Frequency0) 298 #define HDSP_Frequency88_2KHz (HDSP_DoubleSpeed|HDSP_Frequency1) 299 #define HDSP_Frequency96KHz (HDSP_DoubleSpeed|HDSP_Frequency1|HDSP_Frequency0) 300 /* For H9632 cards */ 301 #define HDSP_Frequency128KHz (HDSP_QuadSpeed|HDSP_DoubleSpeed|HDSP_Frequency0) 302 #define HDSP_Frequency176_4KHz (HDSP_QuadSpeed|HDSP_DoubleSpeed|HDSP_Frequency1) 303 #define HDSP_Frequency192KHz (HDSP_QuadSpeed|HDSP_DoubleSpeed|HDSP_Frequency1|HDSP_Frequency0) 304 /* RME says n = 104857600000000, but in the windows MADI driver, I see: 305 return 104857600000000 / rate; // 100 MHz 306 return 110100480000000 / rate; // 105 MHz 307 */ 308 #define DDS_NUMERATOR 104857600000000ULL; /* = 2^20 * 10^8 */ 309 310 #define hdsp_encode_latency(x) (((x)<<1) & HDSP_LatencyMask) 311 #define hdsp_decode_latency(x) (((x) & HDSP_LatencyMask)>>1) 312 313 #define hdsp_encode_spdif_in(x) (((x)&0x3)<<14) 314 #define hdsp_decode_spdif_in(x) (((x)>>14)&0x3) 315 316 /* Status Register bits */ 317 318 #define HDSP_audioIRQPending (1<<0) 319 #define HDSP_Lock2 (1<<1) /* this is for Digiface and H9652 */ 320 #define HDSP_spdifFrequency3 HDSP_Lock2 /* this is for H9632 only */ 321 #define HDSP_Lock1 (1<<2) 322 #define HDSP_Lock0 (1<<3) 323 #define HDSP_SPDIFSync (1<<4) 324 #define HDSP_TimecodeLock (1<<5) 325 #define HDSP_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 326 #define HDSP_Sync2 (1<<16) 327 #define HDSP_Sync1 (1<<17) 328 #define HDSP_Sync0 (1<<18) 329 #define HDSP_DoubleSpeedStatus (1<<19) 330 #define HDSP_ConfigError (1<<20) 331 #define HDSP_DllError (1<<21) 332 #define HDSP_spdifFrequency0 (1<<22) 333 #define HDSP_spdifFrequency1 (1<<23) 334 #define HDSP_spdifFrequency2 (1<<24) 335 #define HDSP_SPDIFErrorFlag (1<<25) 336 #define HDSP_BufferID (1<<26) 337 #define HDSP_TimecodeSync (1<<27) 338 #define HDSP_AEBO (1<<28) /* H9632 specific Analog Extension Boards */ 339 #define HDSP_AEBI (1<<29) /* 0 = present, 1 = absent */ 340 #define HDSP_midi0IRQPending (1<<30) 341 #define HDSP_midi1IRQPending (1<<31) 342 343 #define HDSP_spdifFrequencyMask (HDSP_spdifFrequency0|HDSP_spdifFrequency1|HDSP_spdifFrequency2) 344 #define HDSP_spdifFrequencyMask_9632 (HDSP_spdifFrequency0|\ 345 HDSP_spdifFrequency1|\ 346 HDSP_spdifFrequency2|\ 347 HDSP_spdifFrequency3) 348 349 #define HDSP_spdifFrequency32KHz (HDSP_spdifFrequency0) 350 #define HDSP_spdifFrequency44_1KHz (HDSP_spdifFrequency1) 351 #define HDSP_spdifFrequency48KHz (HDSP_spdifFrequency0|HDSP_spdifFrequency1) 352 353 #define HDSP_spdifFrequency64KHz (HDSP_spdifFrequency2) 354 #define HDSP_spdifFrequency88_2KHz (HDSP_spdifFrequency0|HDSP_spdifFrequency2) 355 #define HDSP_spdifFrequency96KHz (HDSP_spdifFrequency2|HDSP_spdifFrequency1) 356 357 /* This is for H9632 cards */ 358 #define HDSP_spdifFrequency128KHz (HDSP_spdifFrequency0|\ 359 HDSP_spdifFrequency1|\ 360 HDSP_spdifFrequency2) 361 #define HDSP_spdifFrequency176_4KHz HDSP_spdifFrequency3 362 #define HDSP_spdifFrequency192KHz (HDSP_spdifFrequency3|HDSP_spdifFrequency0) 363 364 /* Status2 Register bits */ 365 366 #define HDSP_version0 (1<<0) 367 #define HDSP_version1 (1<<1) 368 #define HDSP_version2 (1<<2) 369 #define HDSP_wc_lock (1<<3) 370 #define HDSP_wc_sync (1<<4) 371 #define HDSP_inp_freq0 (1<<5) 372 #define HDSP_inp_freq1 (1<<6) 373 #define HDSP_inp_freq2 (1<<7) 374 #define HDSP_SelSyncRef0 (1<<8) 375 #define HDSP_SelSyncRef1 (1<<9) 376 #define HDSP_SelSyncRef2 (1<<10) 377 378 #define HDSP_wc_valid (HDSP_wc_lock|HDSP_wc_sync) 379 380 #define HDSP_systemFrequencyMask (HDSP_inp_freq0|HDSP_inp_freq1|HDSP_inp_freq2) 381 #define HDSP_systemFrequency32 (HDSP_inp_freq0) 382 #define HDSP_systemFrequency44_1 (HDSP_inp_freq1) 383 #define HDSP_systemFrequency48 (HDSP_inp_freq0|HDSP_inp_freq1) 384 #define HDSP_systemFrequency64 (HDSP_inp_freq2) 385 #define HDSP_systemFrequency88_2 (HDSP_inp_freq0|HDSP_inp_freq2) 386 #define HDSP_systemFrequency96 (HDSP_inp_freq1|HDSP_inp_freq2) 387 /* FIXME : more values for 9632 cards ? */ 388 389 #define HDSP_SelSyncRefMask (HDSP_SelSyncRef0|HDSP_SelSyncRef1|HDSP_SelSyncRef2) 390 #define HDSP_SelSyncRef_ADAT1 0 391 #define HDSP_SelSyncRef_ADAT2 (HDSP_SelSyncRef0) 392 #define HDSP_SelSyncRef_ADAT3 (HDSP_SelSyncRef1) 393 #define HDSP_SelSyncRef_SPDIF (HDSP_SelSyncRef0|HDSP_SelSyncRef1) 394 #define HDSP_SelSyncRef_WORD (HDSP_SelSyncRef2) 395 #define HDSP_SelSyncRef_ADAT_SYNC (HDSP_SelSyncRef0|HDSP_SelSyncRef2) 396 397 /* Card state flags */ 398 399 #define HDSP_InitializationComplete (1<<0) 400 #define HDSP_FirmwareLoaded (1<<1) 401 #define HDSP_FirmwareCached (1<<2) 402 403 /* FIFO wait times, defined in terms of 1/10ths of msecs */ 404 405 #define HDSP_LONG_WAIT 5000 406 #define HDSP_SHORT_WAIT 30 407 408 #define UNITY_GAIN 32768 409 #define MINUS_INFINITY_GAIN 0 410 411 /* the size of a substream (1 mono data stream) */ 412 413 #define HDSP_CHANNEL_BUFFER_SAMPLES (16*1024) 414 #define HDSP_CHANNEL_BUFFER_BYTES (4*HDSP_CHANNEL_BUFFER_SAMPLES) 415 416 /* the size of the area we need to allocate for DMA transfers. the 417 size is the same regardless of the number of channels - the 418 Multiface still uses the same memory area. 419 420 Note that we allocate 1 more channel than is apparently needed 421 because the h/w seems to write 1 byte beyond the end of the last 422 page. Sigh. 423 */ 424 425 #define HDSP_DMA_AREA_BYTES ((HDSP_MAX_CHANNELS+1) * HDSP_CHANNEL_BUFFER_BYTES) 426 #define HDSP_DMA_AREA_KILOBYTES (HDSP_DMA_AREA_BYTES/1024) 427 428 #define HDSP_FIRMWARE_SIZE (24413 * 4) 429 430 struct hdsp_9632_meters { 431 u32 input_peak[16]; 432 u32 playback_peak[16]; 433 u32 output_peak[16]; 434 u32 xxx_peak[16]; 435 u32 padding[64]; 436 u32 input_rms_low[16]; 437 u32 playback_rms_low[16]; 438 u32 output_rms_low[16]; 439 u32 xxx_rms_low[16]; 440 u32 input_rms_high[16]; 441 u32 playback_rms_high[16]; 442 u32 output_rms_high[16]; 443 u32 xxx_rms_high[16]; 444 }; 445 446 struct hdsp_midi { 447 struct hdsp *hdsp; 448 int id; 449 struct snd_rawmidi *rmidi; 450 struct snd_rawmidi_substream *input; 451 struct snd_rawmidi_substream *output; 452 char istimer; /* timer in use */ 453 struct timer_list timer; 454 spinlock_t lock; 455 int pending; 456 }; 457 458 struct hdsp { 459 spinlock_t lock; 460 struct snd_pcm_substream *capture_substream; 461 struct snd_pcm_substream *playback_substream; 462 struct hdsp_midi midi[2]; 463 struct tasklet_struct midi_tasklet; 464 int use_midi_tasklet; 465 int precise_ptr; 466 u32 control_register; /* cached value */ 467 u32 control2_register; /* cached value */ 468 u32 creg_spdif; 469 u32 creg_spdif_stream; 470 int clock_source_locked; 471 char *card_name; /* digiface/multiface/rpm */ 472 enum HDSP_IO_Type io_type; /* ditto, but for code use */ 473 unsigned short firmware_rev; 474 unsigned short state; /* stores state bits */ 475 const struct firmware *firmware; 476 u32 *fw_uploaded; 477 size_t period_bytes; /* guess what this is */ 478 unsigned char max_channels; 479 unsigned char qs_in_channels; /* quad speed mode for H9632 */ 480 unsigned char ds_in_channels; 481 unsigned char ss_in_channels; /* different for multiface/digiface */ 482 unsigned char qs_out_channels; 483 unsigned char ds_out_channels; 484 unsigned char ss_out_channels; 485 486 struct snd_dma_buffer capture_dma_buf; 487 struct snd_dma_buffer playback_dma_buf; 488 unsigned char *capture_buffer; /* suitably aligned address */ 489 unsigned char *playback_buffer; /* suitably aligned address */ 490 491 pid_t capture_pid; 492 pid_t playback_pid; 493 int running; 494 int system_sample_rate; 495 char *channel_map; 496 int dev; 497 int irq; 498 unsigned long port; 499 void __iomem *iobase; 500 struct snd_card *card; 501 struct snd_pcm *pcm; 502 struct snd_hwdep *hwdep; 503 struct pci_dev *pci; 504 struct snd_kcontrol *spdif_ctl; 505 unsigned short mixer_matrix[HDSP_MATRIX_MIXER_SIZE]; 506 unsigned int dds_value; /* last value written to freq register */ 507 }; 508 509 /* These tables map the ALSA channels 1..N to the channels that we 510 need to use in order to find the relevant channel buffer. RME 511 refer to this kind of mapping as between "the ADAT channel and 512 the DMA channel." We index it using the logical audio channel, 513 and the value is the DMA channel (i.e. channel buffer number) 514 where the data for that channel can be read/written from/to. 515 */ 516 517 static char channel_map_df_ss[HDSP_MAX_CHANNELS] = { 518 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 519 18, 19, 20, 21, 22, 23, 24, 25 520 }; 521 522 static char channel_map_mf_ss[HDSP_MAX_CHANNELS] = { /* Multiface */ 523 /* Analog */ 524 0, 1, 2, 3, 4, 5, 6, 7, 525 /* ADAT 2 */ 526 16, 17, 18, 19, 20, 21, 22, 23, 527 /* SPDIF */ 528 24, 25, 529 -1, -1, -1, -1, -1, -1, -1, -1 530 }; 531 532 static char channel_map_ds[HDSP_MAX_CHANNELS] = { 533 /* ADAT channels are remapped */ 534 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 535 /* channels 12 and 13 are S/PDIF */ 536 24, 25, 537 /* others don't exist */ 538 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 539 }; 540 541 static char channel_map_H9632_ss[HDSP_MAX_CHANNELS] = { 542 /* ADAT channels */ 543 0, 1, 2, 3, 4, 5, 6, 7, 544 /* SPDIF */ 545 8, 9, 546 /* Analog */ 547 10, 11, 548 /* AO4S-192 and AI4S-192 extension boards */ 549 12, 13, 14, 15, 550 /* others don't exist */ 551 -1, -1, -1, -1, -1, -1, -1, -1, 552 -1, -1 553 }; 554 555 static char channel_map_H9632_ds[HDSP_MAX_CHANNELS] = { 556 /* ADAT */ 557 1, 3, 5, 7, 558 /* SPDIF */ 559 8, 9, 560 /* Analog */ 561 10, 11, 562 /* AO4S-192 and AI4S-192 extension boards */ 563 12, 13, 14, 15, 564 /* others don't exist */ 565 -1, -1, -1, -1, -1, -1, -1, -1, 566 -1, -1, -1, -1, -1, -1 567 }; 568 569 static char channel_map_H9632_qs[HDSP_MAX_CHANNELS] = { 570 /* ADAT is disabled in this mode */ 571 /* SPDIF */ 572 8, 9, 573 /* Analog */ 574 10, 11, 575 /* AO4S-192 and AI4S-192 extension boards */ 576 12, 13, 14, 15, 577 /* others don't exist */ 578 -1, -1, -1, -1, -1, -1, -1, -1, 579 -1, -1, -1, -1, -1, -1, -1, -1, 580 -1, -1 581 }; 582 583 static int snd_hammerfall_get_buffer(struct pci_dev *pci, struct snd_dma_buffer *dmab, size_t size) 584 { 585 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 586 dmab->dev.dev = snd_dma_pci_data(pci); 587 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 588 size, dmab) < 0) 589 return -ENOMEM; 590 return 0; 591 } 592 593 static void snd_hammerfall_free_buffer(struct snd_dma_buffer *dmab, struct pci_dev *pci) 594 { 595 if (dmab->area) 596 snd_dma_free_pages(dmab); 597 } 598 599 600 static const struct pci_device_id snd_hdsp_ids[] = { 601 { 602 .vendor = PCI_VENDOR_ID_XILINX, 603 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP, 604 .subvendor = PCI_ANY_ID, 605 .subdevice = PCI_ANY_ID, 606 }, /* RME Hammerfall-DSP */ 607 { 0, }, 608 }; 609 610 MODULE_DEVICE_TABLE(pci, snd_hdsp_ids); 611 612 /* prototypes */ 613 static int snd_hdsp_create_alsa_devices(struct snd_card *card, struct hdsp *hdsp); 614 static int snd_hdsp_create_pcm(struct snd_card *card, struct hdsp *hdsp); 615 static int snd_hdsp_enable_io (struct hdsp *hdsp); 616 static void snd_hdsp_initialize_midi_flush (struct hdsp *hdsp); 617 static void snd_hdsp_initialize_channels (struct hdsp *hdsp); 618 static int hdsp_fifo_wait(struct hdsp *hdsp, int count, int timeout); 619 static int hdsp_autosync_ref(struct hdsp *hdsp); 620 static int snd_hdsp_set_defaults(struct hdsp *hdsp); 621 static void snd_hdsp_9652_enable_mixer (struct hdsp *hdsp); 622 623 static int hdsp_playback_to_output_key (struct hdsp *hdsp, int in, int out) 624 { 625 switch (hdsp->io_type) { 626 case Multiface: 627 case Digiface: 628 case RPM: 629 default: 630 if (hdsp->firmware_rev == 0xa) 631 return (64 * out) + (32 + (in)); 632 else 633 return (52 * out) + (26 + (in)); 634 case H9632: 635 return (32 * out) + (16 + (in)); 636 case H9652: 637 return (52 * out) + (26 + (in)); 638 } 639 } 640 641 static int hdsp_input_to_output_key (struct hdsp *hdsp, int in, int out) 642 { 643 switch (hdsp->io_type) { 644 case Multiface: 645 case Digiface: 646 case RPM: 647 default: 648 if (hdsp->firmware_rev == 0xa) 649 return (64 * out) + in; 650 else 651 return (52 * out) + in; 652 case H9632: 653 return (32 * out) + in; 654 case H9652: 655 return (52 * out) + in; 656 } 657 } 658 659 static void hdsp_write(struct hdsp *hdsp, int reg, int val) 660 { 661 writel(val, hdsp->iobase + reg); 662 } 663 664 static unsigned int hdsp_read(struct hdsp *hdsp, int reg) 665 { 666 return readl (hdsp->iobase + reg); 667 } 668 669 static int hdsp_check_for_iobox (struct hdsp *hdsp) 670 { 671 int i; 672 673 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) return 0; 674 for (i = 0; i < 500; i++) { 675 if (0 == (hdsp_read(hdsp, HDSP_statusRegister) & 676 HDSP_ConfigError)) { 677 if (i) { 678 dev_dbg(hdsp->card->dev, 679 "IO box found after %d ms\n", 680 (20 * i)); 681 } 682 return 0; 683 } 684 msleep(20); 685 } 686 dev_err(hdsp->card->dev, "no IO box connected!\n"); 687 hdsp->state &= ~HDSP_FirmwareLoaded; 688 return -EIO; 689 } 690 691 static int hdsp_wait_for_iobox(struct hdsp *hdsp, unsigned int loops, 692 unsigned int delay) 693 { 694 unsigned int i; 695 696 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 697 return 0; 698 699 for (i = 0; i != loops; ++i) { 700 if (hdsp_read(hdsp, HDSP_statusRegister) & HDSP_ConfigError) 701 msleep(delay); 702 else { 703 dev_dbg(hdsp->card->dev, "iobox found after %ums!\n", 704 i * delay); 705 return 0; 706 } 707 } 708 709 dev_info(hdsp->card->dev, "no IO box connected!\n"); 710 hdsp->state &= ~HDSP_FirmwareLoaded; 711 return -EIO; 712 } 713 714 static int snd_hdsp_load_firmware_from_cache(struct hdsp *hdsp) { 715 716 int i; 717 unsigned long flags; 718 const u32 *cache; 719 720 if (hdsp->fw_uploaded) 721 cache = hdsp->fw_uploaded; 722 else { 723 if (!hdsp->firmware) 724 return -ENODEV; 725 cache = (u32 *)hdsp->firmware->data; 726 if (!cache) 727 return -ENODEV; 728 } 729 730 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 731 732 dev_info(hdsp->card->dev, "loading firmware\n"); 733 734 hdsp_write (hdsp, HDSP_control2Reg, HDSP_S_PROGRAM); 735 hdsp_write (hdsp, HDSP_fifoData, 0); 736 737 if (hdsp_fifo_wait (hdsp, 0, HDSP_LONG_WAIT)) { 738 dev_info(hdsp->card->dev, 739 "timeout waiting for download preparation\n"); 740 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200); 741 return -EIO; 742 } 743 744 hdsp_write (hdsp, HDSP_control2Reg, HDSP_S_LOAD); 745 746 for (i = 0; i < HDSP_FIRMWARE_SIZE / 4; ++i) { 747 hdsp_write(hdsp, HDSP_fifoData, cache[i]); 748 if (hdsp_fifo_wait (hdsp, 127, HDSP_LONG_WAIT)) { 749 dev_info(hdsp->card->dev, 750 "timeout during firmware loading\n"); 751 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200); 752 return -EIO; 753 } 754 } 755 756 hdsp_fifo_wait(hdsp, 3, HDSP_LONG_WAIT); 757 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200); 758 759 ssleep(3); 760 #ifdef SNDRV_BIG_ENDIAN 761 hdsp->control2_register = HDSP_BIGENDIAN_MODE; 762 #else 763 hdsp->control2_register = 0; 764 #endif 765 hdsp_write (hdsp, HDSP_control2Reg, hdsp->control2_register); 766 dev_info(hdsp->card->dev, "finished firmware loading\n"); 767 768 } 769 if (hdsp->state & HDSP_InitializationComplete) { 770 dev_info(hdsp->card->dev, 771 "firmware loaded from cache, restoring defaults\n"); 772 spin_lock_irqsave(&hdsp->lock, flags); 773 snd_hdsp_set_defaults(hdsp); 774 spin_unlock_irqrestore(&hdsp->lock, flags); 775 } 776 777 hdsp->state |= HDSP_FirmwareLoaded; 778 779 return 0; 780 } 781 782 static int hdsp_get_iobox_version (struct hdsp *hdsp) 783 { 784 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 785 786 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 787 hdsp_write(hdsp, HDSP_fifoData, 0); 788 789 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) < 0) { 790 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S300); 791 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 792 } 793 794 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200 | HDSP_PROGRAM); 795 hdsp_write (hdsp, HDSP_fifoData, 0); 796 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) < 0) { 797 hdsp->io_type = Multiface; 798 dev_info(hdsp->card->dev, "Multiface found\n"); 799 return 0; 800 } 801 802 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 803 hdsp_write(hdsp, HDSP_fifoData, 0); 804 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) == 0) { 805 hdsp->io_type = Digiface; 806 dev_info(hdsp->card->dev, "Digiface found\n"); 807 return 0; 808 } 809 810 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S300); 811 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 812 hdsp_write(hdsp, HDSP_fifoData, 0); 813 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) == 0) { 814 hdsp->io_type = Multiface; 815 dev_info(hdsp->card->dev, "Multiface found\n"); 816 return 0; 817 } 818 819 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S300); 820 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 821 hdsp_write(hdsp, HDSP_fifoData, 0); 822 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) < 0) { 823 hdsp->io_type = Multiface; 824 dev_info(hdsp->card->dev, "Multiface found\n"); 825 return 0; 826 } 827 828 hdsp->io_type = RPM; 829 dev_info(hdsp->card->dev, "RPM found\n"); 830 return 0; 831 } else { 832 /* firmware was already loaded, get iobox type */ 833 if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version2) 834 hdsp->io_type = RPM; 835 else if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version1) 836 hdsp->io_type = Multiface; 837 else 838 hdsp->io_type = Digiface; 839 } 840 return 0; 841 } 842 843 844 static int hdsp_request_fw_loader(struct hdsp *hdsp); 845 846 static int hdsp_check_for_firmware (struct hdsp *hdsp, int load_on_demand) 847 { 848 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 849 return 0; 850 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 851 hdsp->state &= ~HDSP_FirmwareLoaded; 852 if (! load_on_demand) 853 return -EIO; 854 dev_err(hdsp->card->dev, "firmware not present.\n"); 855 /* try to load firmware */ 856 if (! (hdsp->state & HDSP_FirmwareCached)) { 857 if (! hdsp_request_fw_loader(hdsp)) 858 return 0; 859 dev_err(hdsp->card->dev, 860 "No firmware loaded nor cached, please upload firmware.\n"); 861 return -EIO; 862 } 863 if (snd_hdsp_load_firmware_from_cache(hdsp) != 0) { 864 dev_err(hdsp->card->dev, 865 "Firmware loading from cache failed, please upload manually.\n"); 866 return -EIO; 867 } 868 } 869 return 0; 870 } 871 872 873 static int hdsp_fifo_wait(struct hdsp *hdsp, int count, int timeout) 874 { 875 int i; 876 877 /* the fifoStatus registers reports on how many words 878 are available in the command FIFO. 879 */ 880 881 for (i = 0; i < timeout; i++) { 882 883 if ((int)(hdsp_read (hdsp, HDSP_fifoStatus) & 0xff) <= count) 884 return 0; 885 886 /* not very friendly, but we only do this during a firmware 887 load and changing the mixer, so we just put up with it. 888 */ 889 890 udelay (100); 891 } 892 893 dev_warn(hdsp->card->dev, 894 "wait for FIFO status <= %d failed after %d iterations\n", 895 count, timeout); 896 return -1; 897 } 898 899 static int hdsp_read_gain (struct hdsp *hdsp, unsigned int addr) 900 { 901 if (addr >= HDSP_MATRIX_MIXER_SIZE) 902 return 0; 903 904 return hdsp->mixer_matrix[addr]; 905 } 906 907 static int hdsp_write_gain(struct hdsp *hdsp, unsigned int addr, unsigned short data) 908 { 909 unsigned int ad; 910 911 if (addr >= HDSP_MATRIX_MIXER_SIZE) 912 return -1; 913 914 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) { 915 916 /* from martin bjornsen: 917 918 "You can only write dwords to the 919 mixer memory which contain two 920 mixer values in the low and high 921 word. So if you want to change 922 value 0 you have to read value 1 923 from the cache and write both to 924 the first dword in the mixer 925 memory." 926 */ 927 928 if (hdsp->io_type == H9632 && addr >= 512) 929 return 0; 930 931 if (hdsp->io_type == H9652 && addr >= 1352) 932 return 0; 933 934 hdsp->mixer_matrix[addr] = data; 935 936 937 /* `addr' addresses a 16-bit wide address, but 938 the address space accessed via hdsp_write 939 uses byte offsets. put another way, addr 940 varies from 0 to 1351, but to access the 941 corresponding memory location, we need 942 to access 0 to 2703 ... 943 */ 944 ad = addr/2; 945 946 hdsp_write (hdsp, 4096 + (ad*4), 947 (hdsp->mixer_matrix[(addr&0x7fe)+1] << 16) + 948 hdsp->mixer_matrix[addr&0x7fe]); 949 950 return 0; 951 952 } else { 953 954 ad = (addr << 16) + data; 955 956 if (hdsp_fifo_wait(hdsp, 127, HDSP_LONG_WAIT)) 957 return -1; 958 959 hdsp_write (hdsp, HDSP_fifoData, ad); 960 hdsp->mixer_matrix[addr] = data; 961 962 } 963 964 return 0; 965 } 966 967 static int snd_hdsp_use_is_exclusive(struct hdsp *hdsp) 968 { 969 unsigned long flags; 970 int ret = 1; 971 972 spin_lock_irqsave(&hdsp->lock, flags); 973 if ((hdsp->playback_pid != hdsp->capture_pid) && 974 (hdsp->playback_pid >= 0) && (hdsp->capture_pid >= 0)) 975 ret = 0; 976 spin_unlock_irqrestore(&hdsp->lock, flags); 977 return ret; 978 } 979 980 static int hdsp_spdif_sample_rate(struct hdsp *hdsp) 981 { 982 unsigned int status = hdsp_read(hdsp, HDSP_statusRegister); 983 unsigned int rate_bits = (status & HDSP_spdifFrequencyMask); 984 985 /* For the 9632, the mask is different */ 986 if (hdsp->io_type == H9632) 987 rate_bits = (status & HDSP_spdifFrequencyMask_9632); 988 989 if (status & HDSP_SPDIFErrorFlag) 990 return 0; 991 992 switch (rate_bits) { 993 case HDSP_spdifFrequency32KHz: return 32000; 994 case HDSP_spdifFrequency44_1KHz: return 44100; 995 case HDSP_spdifFrequency48KHz: return 48000; 996 case HDSP_spdifFrequency64KHz: return 64000; 997 case HDSP_spdifFrequency88_2KHz: return 88200; 998 case HDSP_spdifFrequency96KHz: return 96000; 999 case HDSP_spdifFrequency128KHz: 1000 if (hdsp->io_type == H9632) return 128000; 1001 break; 1002 case HDSP_spdifFrequency176_4KHz: 1003 if (hdsp->io_type == H9632) return 176400; 1004 break; 1005 case HDSP_spdifFrequency192KHz: 1006 if (hdsp->io_type == H9632) return 192000; 1007 break; 1008 default: 1009 break; 1010 } 1011 dev_warn(hdsp->card->dev, 1012 "unknown spdif frequency status; bits = 0x%x, status = 0x%x\n", 1013 rate_bits, status); 1014 return 0; 1015 } 1016 1017 static int hdsp_external_sample_rate(struct hdsp *hdsp) 1018 { 1019 unsigned int status2 = hdsp_read(hdsp, HDSP_status2Register); 1020 unsigned int rate_bits = status2 & HDSP_systemFrequencyMask; 1021 1022 /* For the 9632 card, there seems to be no bit for indicating external 1023 * sample rate greater than 96kHz. The card reports the corresponding 1024 * single speed. So the best means seems to get spdif rate when 1025 * autosync reference is spdif */ 1026 if (hdsp->io_type == H9632 && 1027 hdsp_autosync_ref(hdsp) == HDSP_AUTOSYNC_FROM_SPDIF) 1028 return hdsp_spdif_sample_rate(hdsp); 1029 1030 switch (rate_bits) { 1031 case HDSP_systemFrequency32: return 32000; 1032 case HDSP_systemFrequency44_1: return 44100; 1033 case HDSP_systemFrequency48: return 48000; 1034 case HDSP_systemFrequency64: return 64000; 1035 case HDSP_systemFrequency88_2: return 88200; 1036 case HDSP_systemFrequency96: return 96000; 1037 default: 1038 return 0; 1039 } 1040 } 1041 1042 static void hdsp_compute_period_size(struct hdsp *hdsp) 1043 { 1044 hdsp->period_bytes = 1 << ((hdsp_decode_latency(hdsp->control_register) + 8)); 1045 } 1046 1047 static snd_pcm_uframes_t hdsp_hw_pointer(struct hdsp *hdsp) 1048 { 1049 int position; 1050 1051 position = hdsp_read(hdsp, HDSP_statusRegister); 1052 1053 if (!hdsp->precise_ptr) 1054 return (position & HDSP_BufferID) ? (hdsp->period_bytes / 4) : 0; 1055 1056 position &= HDSP_BufferPositionMask; 1057 position /= 4; 1058 position &= (hdsp->period_bytes/2) - 1; 1059 return position; 1060 } 1061 1062 static void hdsp_reset_hw_pointer(struct hdsp *hdsp) 1063 { 1064 hdsp_write (hdsp, HDSP_resetPointer, 0); 1065 if (hdsp->io_type == H9632 && hdsp->firmware_rev >= 152) 1066 /* HDSP_resetPointer = HDSP_freqReg, which is strange and 1067 * requires (?) to write again DDS value after a reset pointer 1068 * (at least, it works like this) */ 1069 hdsp_write (hdsp, HDSP_freqReg, hdsp->dds_value); 1070 } 1071 1072 static void hdsp_start_audio(struct hdsp *s) 1073 { 1074 s->control_register |= (HDSP_AudioInterruptEnable | HDSP_Start); 1075 hdsp_write(s, HDSP_controlRegister, s->control_register); 1076 } 1077 1078 static void hdsp_stop_audio(struct hdsp *s) 1079 { 1080 s->control_register &= ~(HDSP_Start | HDSP_AudioInterruptEnable); 1081 hdsp_write(s, HDSP_controlRegister, s->control_register); 1082 } 1083 1084 static void hdsp_silence_playback(struct hdsp *hdsp) 1085 { 1086 memset(hdsp->playback_buffer, 0, HDSP_DMA_AREA_BYTES); 1087 } 1088 1089 static int hdsp_set_interrupt_interval(struct hdsp *s, unsigned int frames) 1090 { 1091 int n; 1092 1093 spin_lock_irq(&s->lock); 1094 1095 frames >>= 7; 1096 n = 0; 1097 while (frames) { 1098 n++; 1099 frames >>= 1; 1100 } 1101 1102 s->control_register &= ~HDSP_LatencyMask; 1103 s->control_register |= hdsp_encode_latency(n); 1104 1105 hdsp_write(s, HDSP_controlRegister, s->control_register); 1106 1107 hdsp_compute_period_size(s); 1108 1109 spin_unlock_irq(&s->lock); 1110 1111 return 0; 1112 } 1113 1114 static void hdsp_set_dds_value(struct hdsp *hdsp, int rate) 1115 { 1116 u64 n; 1117 1118 if (rate >= 112000) 1119 rate /= 4; 1120 else if (rate >= 56000) 1121 rate /= 2; 1122 1123 n = DDS_NUMERATOR; 1124 n = div_u64(n, rate); 1125 /* n should be less than 2^32 for being written to FREQ register */ 1126 snd_BUG_ON(n >> 32); 1127 /* HDSP_freqReg and HDSP_resetPointer are the same, so keep the DDS 1128 value to write it after a reset */ 1129 hdsp->dds_value = n; 1130 hdsp_write(hdsp, HDSP_freqReg, hdsp->dds_value); 1131 } 1132 1133 static int hdsp_set_rate(struct hdsp *hdsp, int rate, int called_internally) 1134 { 1135 int reject_if_open = 0; 1136 int current_rate; 1137 int rate_bits; 1138 1139 /* ASSUMPTION: hdsp->lock is either held, or 1140 there is no need for it (e.g. during module 1141 initialization). 1142 */ 1143 1144 if (!(hdsp->control_register & HDSP_ClockModeMaster)) { 1145 if (called_internally) { 1146 /* request from ctl or card initialization */ 1147 dev_err(hdsp->card->dev, 1148 "device is not running as a clock master: cannot set sample rate.\n"); 1149 return -1; 1150 } else { 1151 /* hw_param request while in AutoSync mode */ 1152 int external_freq = hdsp_external_sample_rate(hdsp); 1153 int spdif_freq = hdsp_spdif_sample_rate(hdsp); 1154 1155 if ((spdif_freq == external_freq*2) && (hdsp_autosync_ref(hdsp) >= HDSP_AUTOSYNC_FROM_ADAT1)) 1156 dev_info(hdsp->card->dev, 1157 "Detected ADAT in double speed mode\n"); 1158 else if (hdsp->io_type == H9632 && (spdif_freq == external_freq*4) && (hdsp_autosync_ref(hdsp) >= HDSP_AUTOSYNC_FROM_ADAT1)) 1159 dev_info(hdsp->card->dev, 1160 "Detected ADAT in quad speed mode\n"); 1161 else if (rate != external_freq) { 1162 dev_info(hdsp->card->dev, 1163 "No AutoSync source for requested rate\n"); 1164 return -1; 1165 } 1166 } 1167 } 1168 1169 current_rate = hdsp->system_sample_rate; 1170 1171 /* Changing from a "single speed" to a "double speed" rate is 1172 not allowed if any substreams are open. This is because 1173 such a change causes a shift in the location of 1174 the DMA buffers and a reduction in the number of available 1175 buffers. 1176 1177 Note that a similar but essentially insoluble problem 1178 exists for externally-driven rate changes. All we can do 1179 is to flag rate changes in the read/write routines. */ 1180 1181 if (rate > 96000 && hdsp->io_type != H9632) 1182 return -EINVAL; 1183 1184 switch (rate) { 1185 case 32000: 1186 if (current_rate > 48000) 1187 reject_if_open = 1; 1188 rate_bits = HDSP_Frequency32KHz; 1189 break; 1190 case 44100: 1191 if (current_rate > 48000) 1192 reject_if_open = 1; 1193 rate_bits = HDSP_Frequency44_1KHz; 1194 break; 1195 case 48000: 1196 if (current_rate > 48000) 1197 reject_if_open = 1; 1198 rate_bits = HDSP_Frequency48KHz; 1199 break; 1200 case 64000: 1201 if (current_rate <= 48000 || current_rate > 96000) 1202 reject_if_open = 1; 1203 rate_bits = HDSP_Frequency64KHz; 1204 break; 1205 case 88200: 1206 if (current_rate <= 48000 || current_rate > 96000) 1207 reject_if_open = 1; 1208 rate_bits = HDSP_Frequency88_2KHz; 1209 break; 1210 case 96000: 1211 if (current_rate <= 48000 || current_rate > 96000) 1212 reject_if_open = 1; 1213 rate_bits = HDSP_Frequency96KHz; 1214 break; 1215 case 128000: 1216 if (current_rate < 128000) 1217 reject_if_open = 1; 1218 rate_bits = HDSP_Frequency128KHz; 1219 break; 1220 case 176400: 1221 if (current_rate < 128000) 1222 reject_if_open = 1; 1223 rate_bits = HDSP_Frequency176_4KHz; 1224 break; 1225 case 192000: 1226 if (current_rate < 128000) 1227 reject_if_open = 1; 1228 rate_bits = HDSP_Frequency192KHz; 1229 break; 1230 default: 1231 return -EINVAL; 1232 } 1233 1234 if (reject_if_open && (hdsp->capture_pid >= 0 || hdsp->playback_pid >= 0)) { 1235 dev_warn(hdsp->card->dev, 1236 "cannot change speed mode (capture PID = %d, playback PID = %d)\n", 1237 hdsp->capture_pid, 1238 hdsp->playback_pid); 1239 return -EBUSY; 1240 } 1241 1242 hdsp->control_register &= ~HDSP_FrequencyMask; 1243 hdsp->control_register |= rate_bits; 1244 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1245 1246 /* For HDSP9632 rev 152, need to set DDS value in FREQ register */ 1247 if (hdsp->io_type == H9632 && hdsp->firmware_rev >= 152) 1248 hdsp_set_dds_value(hdsp, rate); 1249 1250 if (rate >= 128000) { 1251 hdsp->channel_map = channel_map_H9632_qs; 1252 } else if (rate > 48000) { 1253 if (hdsp->io_type == H9632) 1254 hdsp->channel_map = channel_map_H9632_ds; 1255 else 1256 hdsp->channel_map = channel_map_ds; 1257 } else { 1258 switch (hdsp->io_type) { 1259 case RPM: 1260 case Multiface: 1261 hdsp->channel_map = channel_map_mf_ss; 1262 break; 1263 case Digiface: 1264 case H9652: 1265 hdsp->channel_map = channel_map_df_ss; 1266 break; 1267 case H9632: 1268 hdsp->channel_map = channel_map_H9632_ss; 1269 break; 1270 default: 1271 /* should never happen */ 1272 break; 1273 } 1274 } 1275 1276 hdsp->system_sample_rate = rate; 1277 1278 return 0; 1279 } 1280 1281 /*---------------------------------------------------------------------------- 1282 MIDI 1283 ----------------------------------------------------------------------------*/ 1284 1285 static unsigned char snd_hdsp_midi_read_byte (struct hdsp *hdsp, int id) 1286 { 1287 /* the hardware already does the relevant bit-mask with 0xff */ 1288 if (id) 1289 return hdsp_read(hdsp, HDSP_midiDataIn1); 1290 else 1291 return hdsp_read(hdsp, HDSP_midiDataIn0); 1292 } 1293 1294 static void snd_hdsp_midi_write_byte (struct hdsp *hdsp, int id, int val) 1295 { 1296 /* the hardware already does the relevant bit-mask with 0xff */ 1297 if (id) 1298 hdsp_write(hdsp, HDSP_midiDataOut1, val); 1299 else 1300 hdsp_write(hdsp, HDSP_midiDataOut0, val); 1301 } 1302 1303 static int snd_hdsp_midi_input_available (struct hdsp *hdsp, int id) 1304 { 1305 if (id) 1306 return (hdsp_read(hdsp, HDSP_midiStatusIn1) & 0xff); 1307 else 1308 return (hdsp_read(hdsp, HDSP_midiStatusIn0) & 0xff); 1309 } 1310 1311 static int snd_hdsp_midi_output_possible (struct hdsp *hdsp, int id) 1312 { 1313 int fifo_bytes_used; 1314 1315 if (id) 1316 fifo_bytes_used = hdsp_read(hdsp, HDSP_midiStatusOut1) & 0xff; 1317 else 1318 fifo_bytes_used = hdsp_read(hdsp, HDSP_midiStatusOut0) & 0xff; 1319 1320 if (fifo_bytes_used < 128) 1321 return 128 - fifo_bytes_used; 1322 else 1323 return 0; 1324 } 1325 1326 static void snd_hdsp_flush_midi_input (struct hdsp *hdsp, int id) 1327 { 1328 while (snd_hdsp_midi_input_available (hdsp, id)) 1329 snd_hdsp_midi_read_byte (hdsp, id); 1330 } 1331 1332 static int snd_hdsp_midi_output_write (struct hdsp_midi *hmidi) 1333 { 1334 unsigned long flags; 1335 int n_pending; 1336 int to_write; 1337 int i; 1338 unsigned char buf[128]; 1339 1340 /* Output is not interrupt driven */ 1341 1342 spin_lock_irqsave (&hmidi->lock, flags); 1343 if (hmidi->output) { 1344 if (!snd_rawmidi_transmit_empty (hmidi->output)) { 1345 if ((n_pending = snd_hdsp_midi_output_possible (hmidi->hdsp, hmidi->id)) > 0) { 1346 if (n_pending > (int)sizeof (buf)) 1347 n_pending = sizeof (buf); 1348 1349 if ((to_write = snd_rawmidi_transmit (hmidi->output, buf, n_pending)) > 0) { 1350 for (i = 0; i < to_write; ++i) 1351 snd_hdsp_midi_write_byte (hmidi->hdsp, hmidi->id, buf[i]); 1352 } 1353 } 1354 } 1355 } 1356 spin_unlock_irqrestore (&hmidi->lock, flags); 1357 return 0; 1358 } 1359 1360 static int snd_hdsp_midi_input_read (struct hdsp_midi *hmidi) 1361 { 1362 unsigned char buf[128]; /* this buffer is designed to match the MIDI input FIFO size */ 1363 unsigned long flags; 1364 int n_pending; 1365 int i; 1366 1367 spin_lock_irqsave (&hmidi->lock, flags); 1368 if ((n_pending = snd_hdsp_midi_input_available (hmidi->hdsp, hmidi->id)) > 0) { 1369 if (hmidi->input) { 1370 if (n_pending > (int)sizeof (buf)) 1371 n_pending = sizeof (buf); 1372 for (i = 0; i < n_pending; ++i) 1373 buf[i] = snd_hdsp_midi_read_byte (hmidi->hdsp, hmidi->id); 1374 if (n_pending) 1375 snd_rawmidi_receive (hmidi->input, buf, n_pending); 1376 } else { 1377 /* flush the MIDI input FIFO */ 1378 while (--n_pending) 1379 snd_hdsp_midi_read_byte (hmidi->hdsp, hmidi->id); 1380 } 1381 } 1382 hmidi->pending = 0; 1383 if (hmidi->id) 1384 hmidi->hdsp->control_register |= HDSP_Midi1InterruptEnable; 1385 else 1386 hmidi->hdsp->control_register |= HDSP_Midi0InterruptEnable; 1387 hdsp_write(hmidi->hdsp, HDSP_controlRegister, hmidi->hdsp->control_register); 1388 spin_unlock_irqrestore (&hmidi->lock, flags); 1389 return snd_hdsp_midi_output_write (hmidi); 1390 } 1391 1392 static void snd_hdsp_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1393 { 1394 struct hdsp *hdsp; 1395 struct hdsp_midi *hmidi; 1396 unsigned long flags; 1397 u32 ie; 1398 1399 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1400 hdsp = hmidi->hdsp; 1401 ie = hmidi->id ? HDSP_Midi1InterruptEnable : HDSP_Midi0InterruptEnable; 1402 spin_lock_irqsave (&hdsp->lock, flags); 1403 if (up) { 1404 if (!(hdsp->control_register & ie)) { 1405 snd_hdsp_flush_midi_input (hdsp, hmidi->id); 1406 hdsp->control_register |= ie; 1407 } 1408 } else { 1409 hdsp->control_register &= ~ie; 1410 tasklet_kill(&hdsp->midi_tasklet); 1411 } 1412 1413 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1414 spin_unlock_irqrestore (&hdsp->lock, flags); 1415 } 1416 1417 static void snd_hdsp_midi_output_timer(unsigned long data) 1418 { 1419 struct hdsp_midi *hmidi = (struct hdsp_midi *) data; 1420 unsigned long flags; 1421 1422 snd_hdsp_midi_output_write(hmidi); 1423 spin_lock_irqsave (&hmidi->lock, flags); 1424 1425 /* this does not bump hmidi->istimer, because the 1426 kernel automatically removed the timer when it 1427 expired, and we are now adding it back, thus 1428 leaving istimer wherever it was set before. 1429 */ 1430 1431 if (hmidi->istimer) 1432 mod_timer(&hmidi->timer, 1 + jiffies); 1433 1434 spin_unlock_irqrestore (&hmidi->lock, flags); 1435 } 1436 1437 static void snd_hdsp_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1438 { 1439 struct hdsp_midi *hmidi; 1440 unsigned long flags; 1441 1442 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1443 spin_lock_irqsave (&hmidi->lock, flags); 1444 if (up) { 1445 if (!hmidi->istimer) { 1446 setup_timer(&hmidi->timer, snd_hdsp_midi_output_timer, 1447 (unsigned long) hmidi); 1448 mod_timer(&hmidi->timer, 1 + jiffies); 1449 hmidi->istimer++; 1450 } 1451 } else { 1452 if (hmidi->istimer && --hmidi->istimer <= 0) 1453 del_timer (&hmidi->timer); 1454 } 1455 spin_unlock_irqrestore (&hmidi->lock, flags); 1456 if (up) 1457 snd_hdsp_midi_output_write(hmidi); 1458 } 1459 1460 static int snd_hdsp_midi_input_open(struct snd_rawmidi_substream *substream) 1461 { 1462 struct hdsp_midi *hmidi; 1463 1464 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1465 spin_lock_irq (&hmidi->lock); 1466 snd_hdsp_flush_midi_input (hmidi->hdsp, hmidi->id); 1467 hmidi->input = substream; 1468 spin_unlock_irq (&hmidi->lock); 1469 1470 return 0; 1471 } 1472 1473 static int snd_hdsp_midi_output_open(struct snd_rawmidi_substream *substream) 1474 { 1475 struct hdsp_midi *hmidi; 1476 1477 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1478 spin_lock_irq (&hmidi->lock); 1479 hmidi->output = substream; 1480 spin_unlock_irq (&hmidi->lock); 1481 1482 return 0; 1483 } 1484 1485 static int snd_hdsp_midi_input_close(struct snd_rawmidi_substream *substream) 1486 { 1487 struct hdsp_midi *hmidi; 1488 1489 snd_hdsp_midi_input_trigger (substream, 0); 1490 1491 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1492 spin_lock_irq (&hmidi->lock); 1493 hmidi->input = NULL; 1494 spin_unlock_irq (&hmidi->lock); 1495 1496 return 0; 1497 } 1498 1499 static int snd_hdsp_midi_output_close(struct snd_rawmidi_substream *substream) 1500 { 1501 struct hdsp_midi *hmidi; 1502 1503 snd_hdsp_midi_output_trigger (substream, 0); 1504 1505 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1506 spin_lock_irq (&hmidi->lock); 1507 hmidi->output = NULL; 1508 spin_unlock_irq (&hmidi->lock); 1509 1510 return 0; 1511 } 1512 1513 static struct snd_rawmidi_ops snd_hdsp_midi_output = 1514 { 1515 .open = snd_hdsp_midi_output_open, 1516 .close = snd_hdsp_midi_output_close, 1517 .trigger = snd_hdsp_midi_output_trigger, 1518 }; 1519 1520 static struct snd_rawmidi_ops snd_hdsp_midi_input = 1521 { 1522 .open = snd_hdsp_midi_input_open, 1523 .close = snd_hdsp_midi_input_close, 1524 .trigger = snd_hdsp_midi_input_trigger, 1525 }; 1526 1527 static int snd_hdsp_create_midi (struct snd_card *card, struct hdsp *hdsp, int id) 1528 { 1529 char buf[32]; 1530 1531 hdsp->midi[id].id = id; 1532 hdsp->midi[id].rmidi = NULL; 1533 hdsp->midi[id].input = NULL; 1534 hdsp->midi[id].output = NULL; 1535 hdsp->midi[id].hdsp = hdsp; 1536 hdsp->midi[id].istimer = 0; 1537 hdsp->midi[id].pending = 0; 1538 spin_lock_init (&hdsp->midi[id].lock); 1539 1540 sprintf (buf, "%s MIDI %d", card->shortname, id+1); 1541 if (snd_rawmidi_new (card, buf, id, 1, 1, &hdsp->midi[id].rmidi) < 0) 1542 return -1; 1543 1544 sprintf(hdsp->midi[id].rmidi->name, "HDSP MIDI %d", id+1); 1545 hdsp->midi[id].rmidi->private_data = &hdsp->midi[id]; 1546 1547 snd_rawmidi_set_ops (hdsp->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_hdsp_midi_output); 1548 snd_rawmidi_set_ops (hdsp->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_hdsp_midi_input); 1549 1550 hdsp->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | 1551 SNDRV_RAWMIDI_INFO_INPUT | 1552 SNDRV_RAWMIDI_INFO_DUPLEX; 1553 1554 return 0; 1555 } 1556 1557 /*----------------------------------------------------------------------------- 1558 Control Interface 1559 ----------------------------------------------------------------------------*/ 1560 1561 static u32 snd_hdsp_convert_from_aes(struct snd_aes_iec958 *aes) 1562 { 1563 u32 val = 0; 1564 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? HDSP_SPDIFProfessional : 0; 1565 val |= (aes->status[0] & IEC958_AES0_NONAUDIO) ? HDSP_SPDIFNonAudio : 0; 1566 if (val & HDSP_SPDIFProfessional) 1567 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? HDSP_SPDIFEmphasis : 0; 1568 else 1569 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? HDSP_SPDIFEmphasis : 0; 1570 return val; 1571 } 1572 1573 static void snd_hdsp_convert_to_aes(struct snd_aes_iec958 *aes, u32 val) 1574 { 1575 aes->status[0] = ((val & HDSP_SPDIFProfessional) ? IEC958_AES0_PROFESSIONAL : 0) | 1576 ((val & HDSP_SPDIFNonAudio) ? IEC958_AES0_NONAUDIO : 0); 1577 if (val & HDSP_SPDIFProfessional) 1578 aes->status[0] |= (val & HDSP_SPDIFEmphasis) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; 1579 else 1580 aes->status[0] |= (val & HDSP_SPDIFEmphasis) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; 1581 } 1582 1583 static int snd_hdsp_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1584 { 1585 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1586 uinfo->count = 1; 1587 return 0; 1588 } 1589 1590 static int snd_hdsp_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1591 { 1592 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1593 1594 snd_hdsp_convert_to_aes(&ucontrol->value.iec958, hdsp->creg_spdif); 1595 return 0; 1596 } 1597 1598 static int snd_hdsp_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1599 { 1600 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1601 int change; 1602 u32 val; 1603 1604 val = snd_hdsp_convert_from_aes(&ucontrol->value.iec958); 1605 spin_lock_irq(&hdsp->lock); 1606 change = val != hdsp->creg_spdif; 1607 hdsp->creg_spdif = val; 1608 spin_unlock_irq(&hdsp->lock); 1609 return change; 1610 } 1611 1612 static int snd_hdsp_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1613 { 1614 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1615 uinfo->count = 1; 1616 return 0; 1617 } 1618 1619 static int snd_hdsp_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1620 { 1621 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1622 1623 snd_hdsp_convert_to_aes(&ucontrol->value.iec958, hdsp->creg_spdif_stream); 1624 return 0; 1625 } 1626 1627 static int snd_hdsp_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1628 { 1629 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1630 int change; 1631 u32 val; 1632 1633 val = snd_hdsp_convert_from_aes(&ucontrol->value.iec958); 1634 spin_lock_irq(&hdsp->lock); 1635 change = val != hdsp->creg_spdif_stream; 1636 hdsp->creg_spdif_stream = val; 1637 hdsp->control_register &= ~(HDSP_SPDIFProfessional | HDSP_SPDIFNonAudio | HDSP_SPDIFEmphasis); 1638 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register |= val); 1639 spin_unlock_irq(&hdsp->lock); 1640 return change; 1641 } 1642 1643 static int snd_hdsp_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1644 { 1645 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1646 uinfo->count = 1; 1647 return 0; 1648 } 1649 1650 static int snd_hdsp_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1651 { 1652 ucontrol->value.iec958.status[0] = kcontrol->private_value; 1653 return 0; 1654 } 1655 1656 #define HDSP_SPDIF_IN(xname, xindex) \ 1657 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1658 .name = xname, \ 1659 .index = xindex, \ 1660 .info = snd_hdsp_info_spdif_in, \ 1661 .get = snd_hdsp_get_spdif_in, \ 1662 .put = snd_hdsp_put_spdif_in } 1663 1664 static unsigned int hdsp_spdif_in(struct hdsp *hdsp) 1665 { 1666 return hdsp_decode_spdif_in(hdsp->control_register & HDSP_SPDIFInputMask); 1667 } 1668 1669 static int hdsp_set_spdif_input(struct hdsp *hdsp, int in) 1670 { 1671 hdsp->control_register &= ~HDSP_SPDIFInputMask; 1672 hdsp->control_register |= hdsp_encode_spdif_in(in); 1673 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1674 return 0; 1675 } 1676 1677 static int snd_hdsp_info_spdif_in(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1678 { 1679 static const char * const texts[4] = { 1680 "Optical", "Coaxial", "Internal", "AES" 1681 }; 1682 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1683 1684 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 4 : 3, 1685 texts); 1686 } 1687 1688 static int snd_hdsp_get_spdif_in(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1689 { 1690 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1691 1692 ucontrol->value.enumerated.item[0] = hdsp_spdif_in(hdsp); 1693 return 0; 1694 } 1695 1696 static int snd_hdsp_put_spdif_in(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1697 { 1698 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1699 int change; 1700 unsigned int val; 1701 1702 if (!snd_hdsp_use_is_exclusive(hdsp)) 1703 return -EBUSY; 1704 val = ucontrol->value.enumerated.item[0] % ((hdsp->io_type == H9632) ? 4 : 3); 1705 spin_lock_irq(&hdsp->lock); 1706 change = val != hdsp_spdif_in(hdsp); 1707 if (change) 1708 hdsp_set_spdif_input(hdsp, val); 1709 spin_unlock_irq(&hdsp->lock); 1710 return change; 1711 } 1712 1713 #define HDSP_TOGGLE_SETTING(xname, xindex) \ 1714 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1715 .name = xname, \ 1716 .private_value = xindex, \ 1717 .info = snd_hdsp_info_toggle_setting, \ 1718 .get = snd_hdsp_get_toggle_setting, \ 1719 .put = snd_hdsp_put_toggle_setting \ 1720 } 1721 1722 static int hdsp_toggle_setting(struct hdsp *hdsp, u32 regmask) 1723 { 1724 return (hdsp->control_register & regmask) ? 1 : 0; 1725 } 1726 1727 static int hdsp_set_toggle_setting(struct hdsp *hdsp, u32 regmask, int out) 1728 { 1729 if (out) 1730 hdsp->control_register |= regmask; 1731 else 1732 hdsp->control_register &= ~regmask; 1733 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1734 1735 return 0; 1736 } 1737 1738 #define snd_hdsp_info_toggle_setting snd_ctl_boolean_mono_info 1739 1740 static int snd_hdsp_get_toggle_setting(struct snd_kcontrol *kcontrol, 1741 struct snd_ctl_elem_value *ucontrol) 1742 { 1743 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1744 u32 regmask = kcontrol->private_value; 1745 1746 spin_lock_irq(&hdsp->lock); 1747 ucontrol->value.integer.value[0] = hdsp_toggle_setting(hdsp, regmask); 1748 spin_unlock_irq(&hdsp->lock); 1749 return 0; 1750 } 1751 1752 static int snd_hdsp_put_toggle_setting(struct snd_kcontrol *kcontrol, 1753 struct snd_ctl_elem_value *ucontrol) 1754 { 1755 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1756 u32 regmask = kcontrol->private_value; 1757 int change; 1758 unsigned int val; 1759 1760 if (!snd_hdsp_use_is_exclusive(hdsp)) 1761 return -EBUSY; 1762 val = ucontrol->value.integer.value[0] & 1; 1763 spin_lock_irq(&hdsp->lock); 1764 change = (int) val != hdsp_toggle_setting(hdsp, regmask); 1765 if (change) 1766 hdsp_set_toggle_setting(hdsp, regmask, val); 1767 spin_unlock_irq(&hdsp->lock); 1768 return change; 1769 } 1770 1771 #define HDSP_SPDIF_SAMPLE_RATE(xname, xindex) \ 1772 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1773 .name = xname, \ 1774 .index = xindex, \ 1775 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1776 .info = snd_hdsp_info_spdif_sample_rate, \ 1777 .get = snd_hdsp_get_spdif_sample_rate \ 1778 } 1779 1780 static int snd_hdsp_info_spdif_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1781 { 1782 static const char * const texts[] = { 1783 "32000", "44100", "48000", "64000", "88200", "96000", 1784 "None", "128000", "176400", "192000" 1785 }; 1786 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1787 1788 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 10 : 7, 1789 texts); 1790 } 1791 1792 static int snd_hdsp_get_spdif_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1793 { 1794 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1795 1796 switch (hdsp_spdif_sample_rate(hdsp)) { 1797 case 32000: 1798 ucontrol->value.enumerated.item[0] = 0; 1799 break; 1800 case 44100: 1801 ucontrol->value.enumerated.item[0] = 1; 1802 break; 1803 case 48000: 1804 ucontrol->value.enumerated.item[0] = 2; 1805 break; 1806 case 64000: 1807 ucontrol->value.enumerated.item[0] = 3; 1808 break; 1809 case 88200: 1810 ucontrol->value.enumerated.item[0] = 4; 1811 break; 1812 case 96000: 1813 ucontrol->value.enumerated.item[0] = 5; 1814 break; 1815 case 128000: 1816 ucontrol->value.enumerated.item[0] = 7; 1817 break; 1818 case 176400: 1819 ucontrol->value.enumerated.item[0] = 8; 1820 break; 1821 case 192000: 1822 ucontrol->value.enumerated.item[0] = 9; 1823 break; 1824 default: 1825 ucontrol->value.enumerated.item[0] = 6; 1826 } 1827 return 0; 1828 } 1829 1830 #define HDSP_SYSTEM_SAMPLE_RATE(xname, xindex) \ 1831 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1832 .name = xname, \ 1833 .index = xindex, \ 1834 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1835 .info = snd_hdsp_info_system_sample_rate, \ 1836 .get = snd_hdsp_get_system_sample_rate \ 1837 } 1838 1839 static int snd_hdsp_info_system_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1840 { 1841 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1842 uinfo->count = 1; 1843 return 0; 1844 } 1845 1846 static int snd_hdsp_get_system_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1847 { 1848 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1849 1850 ucontrol->value.enumerated.item[0] = hdsp->system_sample_rate; 1851 return 0; 1852 } 1853 1854 #define HDSP_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 1855 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1856 .name = xname, \ 1857 .index = xindex, \ 1858 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1859 .info = snd_hdsp_info_autosync_sample_rate, \ 1860 .get = snd_hdsp_get_autosync_sample_rate \ 1861 } 1862 1863 static int snd_hdsp_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1864 { 1865 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1866 static const char * const texts[] = { 1867 "32000", "44100", "48000", "64000", "88200", "96000", 1868 "None", "128000", "176400", "192000" 1869 }; 1870 1871 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 10 : 7, 1872 texts); 1873 } 1874 1875 static int snd_hdsp_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1876 { 1877 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1878 1879 switch (hdsp_external_sample_rate(hdsp)) { 1880 case 32000: 1881 ucontrol->value.enumerated.item[0] = 0; 1882 break; 1883 case 44100: 1884 ucontrol->value.enumerated.item[0] = 1; 1885 break; 1886 case 48000: 1887 ucontrol->value.enumerated.item[0] = 2; 1888 break; 1889 case 64000: 1890 ucontrol->value.enumerated.item[0] = 3; 1891 break; 1892 case 88200: 1893 ucontrol->value.enumerated.item[0] = 4; 1894 break; 1895 case 96000: 1896 ucontrol->value.enumerated.item[0] = 5; 1897 break; 1898 case 128000: 1899 ucontrol->value.enumerated.item[0] = 7; 1900 break; 1901 case 176400: 1902 ucontrol->value.enumerated.item[0] = 8; 1903 break; 1904 case 192000: 1905 ucontrol->value.enumerated.item[0] = 9; 1906 break; 1907 default: 1908 ucontrol->value.enumerated.item[0] = 6; 1909 } 1910 return 0; 1911 } 1912 1913 #define HDSP_SYSTEM_CLOCK_MODE(xname, xindex) \ 1914 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1915 .name = xname, \ 1916 .index = xindex, \ 1917 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1918 .info = snd_hdsp_info_system_clock_mode, \ 1919 .get = snd_hdsp_get_system_clock_mode \ 1920 } 1921 1922 static int hdsp_system_clock_mode(struct hdsp *hdsp) 1923 { 1924 if (hdsp->control_register & HDSP_ClockModeMaster) 1925 return 0; 1926 else if (hdsp_external_sample_rate(hdsp) != hdsp->system_sample_rate) 1927 return 0; 1928 return 1; 1929 } 1930 1931 static int snd_hdsp_info_system_clock_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1932 { 1933 static const char * const texts[] = {"Master", "Slave" }; 1934 1935 return snd_ctl_enum_info(uinfo, 1, 2, texts); 1936 } 1937 1938 static int snd_hdsp_get_system_clock_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1939 { 1940 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1941 1942 ucontrol->value.enumerated.item[0] = hdsp_system_clock_mode(hdsp); 1943 return 0; 1944 } 1945 1946 #define HDSP_CLOCK_SOURCE(xname, xindex) \ 1947 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1948 .name = xname, \ 1949 .index = xindex, \ 1950 .info = snd_hdsp_info_clock_source, \ 1951 .get = snd_hdsp_get_clock_source, \ 1952 .put = snd_hdsp_put_clock_source \ 1953 } 1954 1955 static int hdsp_clock_source(struct hdsp *hdsp) 1956 { 1957 if (hdsp->control_register & HDSP_ClockModeMaster) { 1958 switch (hdsp->system_sample_rate) { 1959 case 32000: 1960 return 1; 1961 case 44100: 1962 return 2; 1963 case 48000: 1964 return 3; 1965 case 64000: 1966 return 4; 1967 case 88200: 1968 return 5; 1969 case 96000: 1970 return 6; 1971 case 128000: 1972 return 7; 1973 case 176400: 1974 return 8; 1975 case 192000: 1976 return 9; 1977 default: 1978 return 3; 1979 } 1980 } else { 1981 return 0; 1982 } 1983 } 1984 1985 static int hdsp_set_clock_source(struct hdsp *hdsp, int mode) 1986 { 1987 int rate; 1988 switch (mode) { 1989 case HDSP_CLOCK_SOURCE_AUTOSYNC: 1990 if (hdsp_external_sample_rate(hdsp) != 0) { 1991 if (!hdsp_set_rate(hdsp, hdsp_external_sample_rate(hdsp), 1)) { 1992 hdsp->control_register &= ~HDSP_ClockModeMaster; 1993 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1994 return 0; 1995 } 1996 } 1997 return -1; 1998 case HDSP_CLOCK_SOURCE_INTERNAL_32KHZ: 1999 rate = 32000; 2000 break; 2001 case HDSP_CLOCK_SOURCE_INTERNAL_44_1KHZ: 2002 rate = 44100; 2003 break; 2004 case HDSP_CLOCK_SOURCE_INTERNAL_48KHZ: 2005 rate = 48000; 2006 break; 2007 case HDSP_CLOCK_SOURCE_INTERNAL_64KHZ: 2008 rate = 64000; 2009 break; 2010 case HDSP_CLOCK_SOURCE_INTERNAL_88_2KHZ: 2011 rate = 88200; 2012 break; 2013 case HDSP_CLOCK_SOURCE_INTERNAL_96KHZ: 2014 rate = 96000; 2015 break; 2016 case HDSP_CLOCK_SOURCE_INTERNAL_128KHZ: 2017 rate = 128000; 2018 break; 2019 case HDSP_CLOCK_SOURCE_INTERNAL_176_4KHZ: 2020 rate = 176400; 2021 break; 2022 case HDSP_CLOCK_SOURCE_INTERNAL_192KHZ: 2023 rate = 192000; 2024 break; 2025 default: 2026 rate = 48000; 2027 } 2028 hdsp->control_register |= HDSP_ClockModeMaster; 2029 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2030 hdsp_set_rate(hdsp, rate, 1); 2031 return 0; 2032 } 2033 2034 static int snd_hdsp_info_clock_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2035 { 2036 static const char * const texts[] = { 2037 "AutoSync", "Internal 32.0 kHz", "Internal 44.1 kHz", 2038 "Internal 48.0 kHz", "Internal 64.0 kHz", "Internal 88.2 kHz", 2039 "Internal 96.0 kHz", "Internal 128 kHz", "Internal 176.4 kHz", 2040 "Internal 192.0 KHz" 2041 }; 2042 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2043 2044 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 10 : 7, 2045 texts); 2046 } 2047 2048 static int snd_hdsp_get_clock_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2049 { 2050 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2051 2052 ucontrol->value.enumerated.item[0] = hdsp_clock_source(hdsp); 2053 return 0; 2054 } 2055 2056 static int snd_hdsp_put_clock_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2057 { 2058 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2059 int change; 2060 int val; 2061 2062 if (!snd_hdsp_use_is_exclusive(hdsp)) 2063 return -EBUSY; 2064 val = ucontrol->value.enumerated.item[0]; 2065 if (val < 0) val = 0; 2066 if (hdsp->io_type == H9632) { 2067 if (val > 9) 2068 val = 9; 2069 } else { 2070 if (val > 6) 2071 val = 6; 2072 } 2073 spin_lock_irq(&hdsp->lock); 2074 if (val != hdsp_clock_source(hdsp)) 2075 change = (hdsp_set_clock_source(hdsp, val) == 0) ? 1 : 0; 2076 else 2077 change = 0; 2078 spin_unlock_irq(&hdsp->lock); 2079 return change; 2080 } 2081 2082 #define snd_hdsp_info_clock_source_lock snd_ctl_boolean_mono_info 2083 2084 static int snd_hdsp_get_clock_source_lock(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2085 { 2086 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2087 2088 ucontrol->value.integer.value[0] = hdsp->clock_source_locked; 2089 return 0; 2090 } 2091 2092 static int snd_hdsp_put_clock_source_lock(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2093 { 2094 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2095 int change; 2096 2097 change = (int)ucontrol->value.integer.value[0] != hdsp->clock_source_locked; 2098 if (change) 2099 hdsp->clock_source_locked = !!ucontrol->value.integer.value[0]; 2100 return change; 2101 } 2102 2103 #define HDSP_DA_GAIN(xname, xindex) \ 2104 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2105 .name = xname, \ 2106 .index = xindex, \ 2107 .info = snd_hdsp_info_da_gain, \ 2108 .get = snd_hdsp_get_da_gain, \ 2109 .put = snd_hdsp_put_da_gain \ 2110 } 2111 2112 static int hdsp_da_gain(struct hdsp *hdsp) 2113 { 2114 switch (hdsp->control_register & HDSP_DAGainMask) { 2115 case HDSP_DAGainHighGain: 2116 return 0; 2117 case HDSP_DAGainPlus4dBu: 2118 return 1; 2119 case HDSP_DAGainMinus10dBV: 2120 return 2; 2121 default: 2122 return 1; 2123 } 2124 } 2125 2126 static int hdsp_set_da_gain(struct hdsp *hdsp, int mode) 2127 { 2128 hdsp->control_register &= ~HDSP_DAGainMask; 2129 switch (mode) { 2130 case 0: 2131 hdsp->control_register |= HDSP_DAGainHighGain; 2132 break; 2133 case 1: 2134 hdsp->control_register |= HDSP_DAGainPlus4dBu; 2135 break; 2136 case 2: 2137 hdsp->control_register |= HDSP_DAGainMinus10dBV; 2138 break; 2139 default: 2140 return -1; 2141 2142 } 2143 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2144 return 0; 2145 } 2146 2147 static int snd_hdsp_info_da_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2148 { 2149 static const char * const texts[] = {"Hi Gain", "+4 dBu", "-10 dbV"}; 2150 2151 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2152 } 2153 2154 static int snd_hdsp_get_da_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2155 { 2156 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2157 2158 ucontrol->value.enumerated.item[0] = hdsp_da_gain(hdsp); 2159 return 0; 2160 } 2161 2162 static int snd_hdsp_put_da_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2163 { 2164 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2165 int change; 2166 int val; 2167 2168 if (!snd_hdsp_use_is_exclusive(hdsp)) 2169 return -EBUSY; 2170 val = ucontrol->value.enumerated.item[0]; 2171 if (val < 0) val = 0; 2172 if (val > 2) val = 2; 2173 spin_lock_irq(&hdsp->lock); 2174 if (val != hdsp_da_gain(hdsp)) 2175 change = (hdsp_set_da_gain(hdsp, val) == 0) ? 1 : 0; 2176 else 2177 change = 0; 2178 spin_unlock_irq(&hdsp->lock); 2179 return change; 2180 } 2181 2182 #define HDSP_AD_GAIN(xname, xindex) \ 2183 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2184 .name = xname, \ 2185 .index = xindex, \ 2186 .info = snd_hdsp_info_ad_gain, \ 2187 .get = snd_hdsp_get_ad_gain, \ 2188 .put = snd_hdsp_put_ad_gain \ 2189 } 2190 2191 static int hdsp_ad_gain(struct hdsp *hdsp) 2192 { 2193 switch (hdsp->control_register & HDSP_ADGainMask) { 2194 case HDSP_ADGainMinus10dBV: 2195 return 0; 2196 case HDSP_ADGainPlus4dBu: 2197 return 1; 2198 case HDSP_ADGainLowGain: 2199 return 2; 2200 default: 2201 return 1; 2202 } 2203 } 2204 2205 static int hdsp_set_ad_gain(struct hdsp *hdsp, int mode) 2206 { 2207 hdsp->control_register &= ~HDSP_ADGainMask; 2208 switch (mode) { 2209 case 0: 2210 hdsp->control_register |= HDSP_ADGainMinus10dBV; 2211 break; 2212 case 1: 2213 hdsp->control_register |= HDSP_ADGainPlus4dBu; 2214 break; 2215 case 2: 2216 hdsp->control_register |= HDSP_ADGainLowGain; 2217 break; 2218 default: 2219 return -1; 2220 2221 } 2222 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2223 return 0; 2224 } 2225 2226 static int snd_hdsp_info_ad_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2227 { 2228 static const char * const texts[] = {"-10 dBV", "+4 dBu", "Lo Gain"}; 2229 2230 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2231 } 2232 2233 static int snd_hdsp_get_ad_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2234 { 2235 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2236 2237 ucontrol->value.enumerated.item[0] = hdsp_ad_gain(hdsp); 2238 return 0; 2239 } 2240 2241 static int snd_hdsp_put_ad_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2242 { 2243 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2244 int change; 2245 int val; 2246 2247 if (!snd_hdsp_use_is_exclusive(hdsp)) 2248 return -EBUSY; 2249 val = ucontrol->value.enumerated.item[0]; 2250 if (val < 0) val = 0; 2251 if (val > 2) val = 2; 2252 spin_lock_irq(&hdsp->lock); 2253 if (val != hdsp_ad_gain(hdsp)) 2254 change = (hdsp_set_ad_gain(hdsp, val) == 0) ? 1 : 0; 2255 else 2256 change = 0; 2257 spin_unlock_irq(&hdsp->lock); 2258 return change; 2259 } 2260 2261 #define HDSP_PHONE_GAIN(xname, xindex) \ 2262 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2263 .name = xname, \ 2264 .index = xindex, \ 2265 .info = snd_hdsp_info_phone_gain, \ 2266 .get = snd_hdsp_get_phone_gain, \ 2267 .put = snd_hdsp_put_phone_gain \ 2268 } 2269 2270 static int hdsp_phone_gain(struct hdsp *hdsp) 2271 { 2272 switch (hdsp->control_register & HDSP_PhoneGainMask) { 2273 case HDSP_PhoneGain0dB: 2274 return 0; 2275 case HDSP_PhoneGainMinus6dB: 2276 return 1; 2277 case HDSP_PhoneGainMinus12dB: 2278 return 2; 2279 default: 2280 return 0; 2281 } 2282 } 2283 2284 static int hdsp_set_phone_gain(struct hdsp *hdsp, int mode) 2285 { 2286 hdsp->control_register &= ~HDSP_PhoneGainMask; 2287 switch (mode) { 2288 case 0: 2289 hdsp->control_register |= HDSP_PhoneGain0dB; 2290 break; 2291 case 1: 2292 hdsp->control_register |= HDSP_PhoneGainMinus6dB; 2293 break; 2294 case 2: 2295 hdsp->control_register |= HDSP_PhoneGainMinus12dB; 2296 break; 2297 default: 2298 return -1; 2299 2300 } 2301 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2302 return 0; 2303 } 2304 2305 static int snd_hdsp_info_phone_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2306 { 2307 static const char * const texts[] = {"0 dB", "-6 dB", "-12 dB"}; 2308 2309 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2310 } 2311 2312 static int snd_hdsp_get_phone_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2313 { 2314 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2315 2316 ucontrol->value.enumerated.item[0] = hdsp_phone_gain(hdsp); 2317 return 0; 2318 } 2319 2320 static int snd_hdsp_put_phone_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2321 { 2322 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2323 int change; 2324 int val; 2325 2326 if (!snd_hdsp_use_is_exclusive(hdsp)) 2327 return -EBUSY; 2328 val = ucontrol->value.enumerated.item[0]; 2329 if (val < 0) val = 0; 2330 if (val > 2) val = 2; 2331 spin_lock_irq(&hdsp->lock); 2332 if (val != hdsp_phone_gain(hdsp)) 2333 change = (hdsp_set_phone_gain(hdsp, val) == 0) ? 1 : 0; 2334 else 2335 change = 0; 2336 spin_unlock_irq(&hdsp->lock); 2337 return change; 2338 } 2339 2340 #define HDSP_PREF_SYNC_REF(xname, xindex) \ 2341 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2342 .name = xname, \ 2343 .index = xindex, \ 2344 .info = snd_hdsp_info_pref_sync_ref, \ 2345 .get = snd_hdsp_get_pref_sync_ref, \ 2346 .put = snd_hdsp_put_pref_sync_ref \ 2347 } 2348 2349 static int hdsp_pref_sync_ref(struct hdsp *hdsp) 2350 { 2351 /* Notice that this looks at the requested sync source, 2352 not the one actually in use. 2353 */ 2354 2355 switch (hdsp->control_register & HDSP_SyncRefMask) { 2356 case HDSP_SyncRef_ADAT1: 2357 return HDSP_SYNC_FROM_ADAT1; 2358 case HDSP_SyncRef_ADAT2: 2359 return HDSP_SYNC_FROM_ADAT2; 2360 case HDSP_SyncRef_ADAT3: 2361 return HDSP_SYNC_FROM_ADAT3; 2362 case HDSP_SyncRef_SPDIF: 2363 return HDSP_SYNC_FROM_SPDIF; 2364 case HDSP_SyncRef_WORD: 2365 return HDSP_SYNC_FROM_WORD; 2366 case HDSP_SyncRef_ADAT_SYNC: 2367 return HDSP_SYNC_FROM_ADAT_SYNC; 2368 default: 2369 return HDSP_SYNC_FROM_WORD; 2370 } 2371 return 0; 2372 } 2373 2374 static int hdsp_set_pref_sync_ref(struct hdsp *hdsp, int pref) 2375 { 2376 hdsp->control_register &= ~HDSP_SyncRefMask; 2377 switch (pref) { 2378 case HDSP_SYNC_FROM_ADAT1: 2379 hdsp->control_register &= ~HDSP_SyncRefMask; /* clear SyncRef bits */ 2380 break; 2381 case HDSP_SYNC_FROM_ADAT2: 2382 hdsp->control_register |= HDSP_SyncRef_ADAT2; 2383 break; 2384 case HDSP_SYNC_FROM_ADAT3: 2385 hdsp->control_register |= HDSP_SyncRef_ADAT3; 2386 break; 2387 case HDSP_SYNC_FROM_SPDIF: 2388 hdsp->control_register |= HDSP_SyncRef_SPDIF; 2389 break; 2390 case HDSP_SYNC_FROM_WORD: 2391 hdsp->control_register |= HDSP_SyncRef_WORD; 2392 break; 2393 case HDSP_SYNC_FROM_ADAT_SYNC: 2394 hdsp->control_register |= HDSP_SyncRef_ADAT_SYNC; 2395 break; 2396 default: 2397 return -1; 2398 } 2399 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2400 return 0; 2401 } 2402 2403 static int snd_hdsp_info_pref_sync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2404 { 2405 static const char * const texts[] = { 2406 "Word", "IEC958", "ADAT1", "ADAT Sync", "ADAT2", "ADAT3" 2407 }; 2408 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2409 int num_items; 2410 2411 switch (hdsp->io_type) { 2412 case Digiface: 2413 case H9652: 2414 num_items = 6; 2415 break; 2416 case Multiface: 2417 num_items = 4; 2418 break; 2419 case H9632: 2420 num_items = 3; 2421 break; 2422 default: 2423 return -EINVAL; 2424 } 2425 2426 return snd_ctl_enum_info(uinfo, 1, num_items, texts); 2427 } 2428 2429 static int snd_hdsp_get_pref_sync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2430 { 2431 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2432 2433 ucontrol->value.enumerated.item[0] = hdsp_pref_sync_ref(hdsp); 2434 return 0; 2435 } 2436 2437 static int snd_hdsp_put_pref_sync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2438 { 2439 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2440 int change, max; 2441 unsigned int val; 2442 2443 if (!snd_hdsp_use_is_exclusive(hdsp)) 2444 return -EBUSY; 2445 2446 switch (hdsp->io_type) { 2447 case Digiface: 2448 case H9652: 2449 max = 6; 2450 break; 2451 case Multiface: 2452 max = 4; 2453 break; 2454 case H9632: 2455 max = 3; 2456 break; 2457 default: 2458 return -EIO; 2459 } 2460 2461 val = ucontrol->value.enumerated.item[0] % max; 2462 spin_lock_irq(&hdsp->lock); 2463 change = (int)val != hdsp_pref_sync_ref(hdsp); 2464 hdsp_set_pref_sync_ref(hdsp, val); 2465 spin_unlock_irq(&hdsp->lock); 2466 return change; 2467 } 2468 2469 #define HDSP_AUTOSYNC_REF(xname, xindex) \ 2470 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2471 .name = xname, \ 2472 .index = xindex, \ 2473 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2474 .info = snd_hdsp_info_autosync_ref, \ 2475 .get = snd_hdsp_get_autosync_ref, \ 2476 } 2477 2478 static int hdsp_autosync_ref(struct hdsp *hdsp) 2479 { 2480 /* This looks at the autosync selected sync reference */ 2481 unsigned int status2 = hdsp_read(hdsp, HDSP_status2Register); 2482 2483 switch (status2 & HDSP_SelSyncRefMask) { 2484 case HDSP_SelSyncRef_WORD: 2485 return HDSP_AUTOSYNC_FROM_WORD; 2486 case HDSP_SelSyncRef_ADAT_SYNC: 2487 return HDSP_AUTOSYNC_FROM_ADAT_SYNC; 2488 case HDSP_SelSyncRef_SPDIF: 2489 return HDSP_AUTOSYNC_FROM_SPDIF; 2490 case HDSP_SelSyncRefMask: 2491 return HDSP_AUTOSYNC_FROM_NONE; 2492 case HDSP_SelSyncRef_ADAT1: 2493 return HDSP_AUTOSYNC_FROM_ADAT1; 2494 case HDSP_SelSyncRef_ADAT2: 2495 return HDSP_AUTOSYNC_FROM_ADAT2; 2496 case HDSP_SelSyncRef_ADAT3: 2497 return HDSP_AUTOSYNC_FROM_ADAT3; 2498 default: 2499 return HDSP_AUTOSYNC_FROM_WORD; 2500 } 2501 return 0; 2502 } 2503 2504 static int snd_hdsp_info_autosync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2505 { 2506 static const char * const texts[] = { 2507 "Word", "ADAT Sync", "IEC958", "None", "ADAT1", "ADAT2", "ADAT3" 2508 }; 2509 2510 return snd_ctl_enum_info(uinfo, 1, 7, texts); 2511 } 2512 2513 static int snd_hdsp_get_autosync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2514 { 2515 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2516 2517 ucontrol->value.enumerated.item[0] = hdsp_autosync_ref(hdsp); 2518 return 0; 2519 } 2520 2521 #define HDSP_PRECISE_POINTER(xname, xindex) \ 2522 { .iface = SNDRV_CTL_ELEM_IFACE_CARD, \ 2523 .name = xname, \ 2524 .index = xindex, \ 2525 .info = snd_hdsp_info_precise_pointer, \ 2526 .get = snd_hdsp_get_precise_pointer, \ 2527 .put = snd_hdsp_put_precise_pointer \ 2528 } 2529 2530 static int hdsp_set_precise_pointer(struct hdsp *hdsp, int precise) 2531 { 2532 if (precise) 2533 hdsp->precise_ptr = 1; 2534 else 2535 hdsp->precise_ptr = 0; 2536 return 0; 2537 } 2538 2539 #define snd_hdsp_info_precise_pointer snd_ctl_boolean_mono_info 2540 2541 static int snd_hdsp_get_precise_pointer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2542 { 2543 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2544 2545 spin_lock_irq(&hdsp->lock); 2546 ucontrol->value.integer.value[0] = hdsp->precise_ptr; 2547 spin_unlock_irq(&hdsp->lock); 2548 return 0; 2549 } 2550 2551 static int snd_hdsp_put_precise_pointer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2552 { 2553 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2554 int change; 2555 unsigned int val; 2556 2557 if (!snd_hdsp_use_is_exclusive(hdsp)) 2558 return -EBUSY; 2559 val = ucontrol->value.integer.value[0] & 1; 2560 spin_lock_irq(&hdsp->lock); 2561 change = (int)val != hdsp->precise_ptr; 2562 hdsp_set_precise_pointer(hdsp, val); 2563 spin_unlock_irq(&hdsp->lock); 2564 return change; 2565 } 2566 2567 #define HDSP_USE_MIDI_TASKLET(xname, xindex) \ 2568 { .iface = SNDRV_CTL_ELEM_IFACE_CARD, \ 2569 .name = xname, \ 2570 .index = xindex, \ 2571 .info = snd_hdsp_info_use_midi_tasklet, \ 2572 .get = snd_hdsp_get_use_midi_tasklet, \ 2573 .put = snd_hdsp_put_use_midi_tasklet \ 2574 } 2575 2576 static int hdsp_set_use_midi_tasklet(struct hdsp *hdsp, int use_tasklet) 2577 { 2578 if (use_tasklet) 2579 hdsp->use_midi_tasklet = 1; 2580 else 2581 hdsp->use_midi_tasklet = 0; 2582 return 0; 2583 } 2584 2585 #define snd_hdsp_info_use_midi_tasklet snd_ctl_boolean_mono_info 2586 2587 static int snd_hdsp_get_use_midi_tasklet(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2588 { 2589 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2590 2591 spin_lock_irq(&hdsp->lock); 2592 ucontrol->value.integer.value[0] = hdsp->use_midi_tasklet; 2593 spin_unlock_irq(&hdsp->lock); 2594 return 0; 2595 } 2596 2597 static int snd_hdsp_put_use_midi_tasklet(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2598 { 2599 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2600 int change; 2601 unsigned int val; 2602 2603 if (!snd_hdsp_use_is_exclusive(hdsp)) 2604 return -EBUSY; 2605 val = ucontrol->value.integer.value[0] & 1; 2606 spin_lock_irq(&hdsp->lock); 2607 change = (int)val != hdsp->use_midi_tasklet; 2608 hdsp_set_use_midi_tasklet(hdsp, val); 2609 spin_unlock_irq(&hdsp->lock); 2610 return change; 2611 } 2612 2613 #define HDSP_MIXER(xname, xindex) \ 2614 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 2615 .name = xname, \ 2616 .index = xindex, \ 2617 .device = 0, \ 2618 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 2619 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2620 .info = snd_hdsp_info_mixer, \ 2621 .get = snd_hdsp_get_mixer, \ 2622 .put = snd_hdsp_put_mixer \ 2623 } 2624 2625 static int snd_hdsp_info_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2626 { 2627 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2628 uinfo->count = 3; 2629 uinfo->value.integer.min = 0; 2630 uinfo->value.integer.max = 65536; 2631 uinfo->value.integer.step = 1; 2632 return 0; 2633 } 2634 2635 static int snd_hdsp_get_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2636 { 2637 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2638 int source; 2639 int destination; 2640 int addr; 2641 2642 source = ucontrol->value.integer.value[0]; 2643 destination = ucontrol->value.integer.value[1]; 2644 2645 if (source >= hdsp->max_channels) 2646 addr = hdsp_playback_to_output_key(hdsp,source-hdsp->max_channels,destination); 2647 else 2648 addr = hdsp_input_to_output_key(hdsp,source, destination); 2649 2650 spin_lock_irq(&hdsp->lock); 2651 ucontrol->value.integer.value[2] = hdsp_read_gain (hdsp, addr); 2652 spin_unlock_irq(&hdsp->lock); 2653 return 0; 2654 } 2655 2656 static int snd_hdsp_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2657 { 2658 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2659 int change; 2660 int source; 2661 int destination; 2662 int gain; 2663 int addr; 2664 2665 if (!snd_hdsp_use_is_exclusive(hdsp)) 2666 return -EBUSY; 2667 2668 source = ucontrol->value.integer.value[0]; 2669 destination = ucontrol->value.integer.value[1]; 2670 2671 if (source >= hdsp->max_channels) 2672 addr = hdsp_playback_to_output_key(hdsp,source-hdsp->max_channels, destination); 2673 else 2674 addr = hdsp_input_to_output_key(hdsp,source, destination); 2675 2676 gain = ucontrol->value.integer.value[2]; 2677 2678 spin_lock_irq(&hdsp->lock); 2679 change = gain != hdsp_read_gain(hdsp, addr); 2680 if (change) 2681 hdsp_write_gain(hdsp, addr, gain); 2682 spin_unlock_irq(&hdsp->lock); 2683 return change; 2684 } 2685 2686 #define HDSP_WC_SYNC_CHECK(xname, xindex) \ 2687 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2688 .name = xname, \ 2689 .index = xindex, \ 2690 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2691 .info = snd_hdsp_info_sync_check, \ 2692 .get = snd_hdsp_get_wc_sync_check \ 2693 } 2694 2695 static int snd_hdsp_info_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2696 { 2697 static const char * const texts[] = {"No Lock", "Lock", "Sync" }; 2698 2699 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2700 } 2701 2702 static int hdsp_wc_sync_check(struct hdsp *hdsp) 2703 { 2704 int status2 = hdsp_read(hdsp, HDSP_status2Register); 2705 if (status2 & HDSP_wc_lock) { 2706 if (status2 & HDSP_wc_sync) 2707 return 2; 2708 else 2709 return 1; 2710 } else 2711 return 0; 2712 return 0; 2713 } 2714 2715 static int snd_hdsp_get_wc_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2716 { 2717 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2718 2719 ucontrol->value.enumerated.item[0] = hdsp_wc_sync_check(hdsp); 2720 return 0; 2721 } 2722 2723 #define HDSP_SPDIF_SYNC_CHECK(xname, xindex) \ 2724 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2725 .name = xname, \ 2726 .index = xindex, \ 2727 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2728 .info = snd_hdsp_info_sync_check, \ 2729 .get = snd_hdsp_get_spdif_sync_check \ 2730 } 2731 2732 static int hdsp_spdif_sync_check(struct hdsp *hdsp) 2733 { 2734 int status = hdsp_read(hdsp, HDSP_statusRegister); 2735 if (status & HDSP_SPDIFErrorFlag) 2736 return 0; 2737 else { 2738 if (status & HDSP_SPDIFSync) 2739 return 2; 2740 else 2741 return 1; 2742 } 2743 return 0; 2744 } 2745 2746 static int snd_hdsp_get_spdif_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2747 { 2748 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2749 2750 ucontrol->value.enumerated.item[0] = hdsp_spdif_sync_check(hdsp); 2751 return 0; 2752 } 2753 2754 #define HDSP_ADATSYNC_SYNC_CHECK(xname, xindex) \ 2755 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2756 .name = xname, \ 2757 .index = xindex, \ 2758 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2759 .info = snd_hdsp_info_sync_check, \ 2760 .get = snd_hdsp_get_adatsync_sync_check \ 2761 } 2762 2763 static int hdsp_adatsync_sync_check(struct hdsp *hdsp) 2764 { 2765 int status = hdsp_read(hdsp, HDSP_statusRegister); 2766 if (status & HDSP_TimecodeLock) { 2767 if (status & HDSP_TimecodeSync) 2768 return 2; 2769 else 2770 return 1; 2771 } else 2772 return 0; 2773 } 2774 2775 static int snd_hdsp_get_adatsync_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2776 { 2777 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2778 2779 ucontrol->value.enumerated.item[0] = hdsp_adatsync_sync_check(hdsp); 2780 return 0; 2781 } 2782 2783 #define HDSP_ADAT_SYNC_CHECK \ 2784 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2785 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2786 .info = snd_hdsp_info_sync_check, \ 2787 .get = snd_hdsp_get_adat_sync_check \ 2788 } 2789 2790 static int hdsp_adat_sync_check(struct hdsp *hdsp, int idx) 2791 { 2792 int status = hdsp_read(hdsp, HDSP_statusRegister); 2793 2794 if (status & (HDSP_Lock0>>idx)) { 2795 if (status & (HDSP_Sync0>>idx)) 2796 return 2; 2797 else 2798 return 1; 2799 } else 2800 return 0; 2801 } 2802 2803 static int snd_hdsp_get_adat_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2804 { 2805 int offset; 2806 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2807 2808 offset = ucontrol->id.index - 1; 2809 snd_BUG_ON(offset < 0); 2810 2811 switch (hdsp->io_type) { 2812 case Digiface: 2813 case H9652: 2814 if (offset >= 3) 2815 return -EINVAL; 2816 break; 2817 case Multiface: 2818 case H9632: 2819 if (offset >= 1) 2820 return -EINVAL; 2821 break; 2822 default: 2823 return -EIO; 2824 } 2825 2826 ucontrol->value.enumerated.item[0] = hdsp_adat_sync_check(hdsp, offset); 2827 return 0; 2828 } 2829 2830 #define HDSP_DDS_OFFSET(xname, xindex) \ 2831 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2832 .name = xname, \ 2833 .index = xindex, \ 2834 .info = snd_hdsp_info_dds_offset, \ 2835 .get = snd_hdsp_get_dds_offset, \ 2836 .put = snd_hdsp_put_dds_offset \ 2837 } 2838 2839 static int hdsp_dds_offset(struct hdsp *hdsp) 2840 { 2841 u64 n; 2842 unsigned int dds_value = hdsp->dds_value; 2843 int system_sample_rate = hdsp->system_sample_rate; 2844 2845 if (!dds_value) 2846 return 0; 2847 2848 n = DDS_NUMERATOR; 2849 /* 2850 * dds_value = n / rate 2851 * rate = n / dds_value 2852 */ 2853 n = div_u64(n, dds_value); 2854 if (system_sample_rate >= 112000) 2855 n *= 4; 2856 else if (system_sample_rate >= 56000) 2857 n *= 2; 2858 return ((int)n) - system_sample_rate; 2859 } 2860 2861 static int hdsp_set_dds_offset(struct hdsp *hdsp, int offset_hz) 2862 { 2863 int rate = hdsp->system_sample_rate + offset_hz; 2864 hdsp_set_dds_value(hdsp, rate); 2865 return 0; 2866 } 2867 2868 static int snd_hdsp_info_dds_offset(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2869 { 2870 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2871 uinfo->count = 1; 2872 uinfo->value.integer.min = -5000; 2873 uinfo->value.integer.max = 5000; 2874 return 0; 2875 } 2876 2877 static int snd_hdsp_get_dds_offset(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2878 { 2879 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2880 2881 ucontrol->value.enumerated.item[0] = hdsp_dds_offset(hdsp); 2882 return 0; 2883 } 2884 2885 static int snd_hdsp_put_dds_offset(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2886 { 2887 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2888 int change; 2889 int val; 2890 2891 if (!snd_hdsp_use_is_exclusive(hdsp)) 2892 return -EBUSY; 2893 val = ucontrol->value.enumerated.item[0]; 2894 spin_lock_irq(&hdsp->lock); 2895 if (val != hdsp_dds_offset(hdsp)) 2896 change = (hdsp_set_dds_offset(hdsp, val) == 0) ? 1 : 0; 2897 else 2898 change = 0; 2899 spin_unlock_irq(&hdsp->lock); 2900 return change; 2901 } 2902 2903 static struct snd_kcontrol_new snd_hdsp_9632_controls[] = { 2904 HDSP_DA_GAIN("DA Gain", 0), 2905 HDSP_AD_GAIN("AD Gain", 0), 2906 HDSP_PHONE_GAIN("Phones Gain", 0), 2907 HDSP_TOGGLE_SETTING("XLR Breakout Cable", HDSP_XLRBreakoutCable), 2908 HDSP_DDS_OFFSET("DDS Sample Rate Offset", 0) 2909 }; 2910 2911 static struct snd_kcontrol_new snd_hdsp_controls[] = { 2912 { 2913 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2914 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 2915 .info = snd_hdsp_control_spdif_info, 2916 .get = snd_hdsp_control_spdif_get, 2917 .put = snd_hdsp_control_spdif_put, 2918 }, 2919 { 2920 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 2921 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2922 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 2923 .info = snd_hdsp_control_spdif_stream_info, 2924 .get = snd_hdsp_control_spdif_stream_get, 2925 .put = snd_hdsp_control_spdif_stream_put, 2926 }, 2927 { 2928 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2929 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2930 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 2931 .info = snd_hdsp_control_spdif_mask_info, 2932 .get = snd_hdsp_control_spdif_mask_get, 2933 .private_value = IEC958_AES0_NONAUDIO | 2934 IEC958_AES0_PROFESSIONAL | 2935 IEC958_AES0_CON_EMPHASIS, 2936 }, 2937 { 2938 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2939 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2940 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK), 2941 .info = snd_hdsp_control_spdif_mask_info, 2942 .get = snd_hdsp_control_spdif_mask_get, 2943 .private_value = IEC958_AES0_NONAUDIO | 2944 IEC958_AES0_PROFESSIONAL | 2945 IEC958_AES0_PRO_EMPHASIS, 2946 }, 2947 HDSP_MIXER("Mixer", 0), 2948 HDSP_SPDIF_IN("IEC958 Input Connector", 0), 2949 HDSP_TOGGLE_SETTING("IEC958 Output also on ADAT1", HDSP_SPDIFOpticalOut), 2950 HDSP_TOGGLE_SETTING("IEC958 Professional Bit", HDSP_SPDIFProfessional), 2951 HDSP_TOGGLE_SETTING("IEC958 Emphasis Bit", HDSP_SPDIFEmphasis), 2952 HDSP_TOGGLE_SETTING("IEC958 Non-audio Bit", HDSP_SPDIFNonAudio), 2953 /* 'Sample Clock Source' complies with the alsa control naming scheme */ 2954 HDSP_CLOCK_SOURCE("Sample Clock Source", 0), 2955 { 2956 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2957 .name = "Sample Clock Source Locking", 2958 .info = snd_hdsp_info_clock_source_lock, 2959 .get = snd_hdsp_get_clock_source_lock, 2960 .put = snd_hdsp_put_clock_source_lock, 2961 }, 2962 HDSP_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 2963 HDSP_PREF_SYNC_REF("Preferred Sync Reference", 0), 2964 HDSP_AUTOSYNC_REF("AutoSync Reference", 0), 2965 HDSP_SPDIF_SAMPLE_RATE("SPDIF Sample Rate", 0), 2966 HDSP_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 2967 /* 'External Rate' complies with the alsa control naming scheme */ 2968 HDSP_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 2969 HDSP_WC_SYNC_CHECK("Word Clock Lock Status", 0), 2970 HDSP_SPDIF_SYNC_CHECK("SPDIF Lock Status", 0), 2971 HDSP_ADATSYNC_SYNC_CHECK("ADAT Sync Lock Status", 0), 2972 HDSP_TOGGLE_SETTING("Line Out", HDSP_LineOut), 2973 HDSP_PRECISE_POINTER("Precise Pointer", 0), 2974 HDSP_USE_MIDI_TASKLET("Use Midi Tasklet", 0), 2975 }; 2976 2977 2978 static int hdsp_rpm_input12(struct hdsp *hdsp) 2979 { 2980 switch (hdsp->control_register & HDSP_RPM_Inp12) { 2981 case HDSP_RPM_Inp12_Phon_6dB: 2982 return 0; 2983 case HDSP_RPM_Inp12_Phon_n6dB: 2984 return 2; 2985 case HDSP_RPM_Inp12_Line_0dB: 2986 return 3; 2987 case HDSP_RPM_Inp12_Line_n6dB: 2988 return 4; 2989 } 2990 return 1; 2991 } 2992 2993 2994 static int snd_hdsp_get_rpm_input12(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2995 { 2996 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2997 2998 ucontrol->value.enumerated.item[0] = hdsp_rpm_input12(hdsp); 2999 return 0; 3000 } 3001 3002 3003 static int hdsp_set_rpm_input12(struct hdsp *hdsp, int mode) 3004 { 3005 hdsp->control_register &= ~HDSP_RPM_Inp12; 3006 switch (mode) { 3007 case 0: 3008 hdsp->control_register |= HDSP_RPM_Inp12_Phon_6dB; 3009 break; 3010 case 1: 3011 break; 3012 case 2: 3013 hdsp->control_register |= HDSP_RPM_Inp12_Phon_n6dB; 3014 break; 3015 case 3: 3016 hdsp->control_register |= HDSP_RPM_Inp12_Line_0dB; 3017 break; 3018 case 4: 3019 hdsp->control_register |= HDSP_RPM_Inp12_Line_n6dB; 3020 break; 3021 default: 3022 return -1; 3023 } 3024 3025 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3026 return 0; 3027 } 3028 3029 3030 static int snd_hdsp_put_rpm_input12(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3031 { 3032 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3033 int change; 3034 int val; 3035 3036 if (!snd_hdsp_use_is_exclusive(hdsp)) 3037 return -EBUSY; 3038 val = ucontrol->value.enumerated.item[0]; 3039 if (val < 0) 3040 val = 0; 3041 if (val > 4) 3042 val = 4; 3043 spin_lock_irq(&hdsp->lock); 3044 if (val != hdsp_rpm_input12(hdsp)) 3045 change = (hdsp_set_rpm_input12(hdsp, val) == 0) ? 1 : 0; 3046 else 3047 change = 0; 3048 spin_unlock_irq(&hdsp->lock); 3049 return change; 3050 } 3051 3052 3053 static int snd_hdsp_info_rpm_input(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 3054 { 3055 static const char * const texts[] = { 3056 "Phono +6dB", "Phono 0dB", "Phono -6dB", "Line 0dB", "Line -6dB" 3057 }; 3058 3059 return snd_ctl_enum_info(uinfo, 1, 5, texts); 3060 } 3061 3062 3063 static int hdsp_rpm_input34(struct hdsp *hdsp) 3064 { 3065 switch (hdsp->control_register & HDSP_RPM_Inp34) { 3066 case HDSP_RPM_Inp34_Phon_6dB: 3067 return 0; 3068 case HDSP_RPM_Inp34_Phon_n6dB: 3069 return 2; 3070 case HDSP_RPM_Inp34_Line_0dB: 3071 return 3; 3072 case HDSP_RPM_Inp34_Line_n6dB: 3073 return 4; 3074 } 3075 return 1; 3076 } 3077 3078 3079 static int snd_hdsp_get_rpm_input34(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3080 { 3081 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3082 3083 ucontrol->value.enumerated.item[0] = hdsp_rpm_input34(hdsp); 3084 return 0; 3085 } 3086 3087 3088 static int hdsp_set_rpm_input34(struct hdsp *hdsp, int mode) 3089 { 3090 hdsp->control_register &= ~HDSP_RPM_Inp34; 3091 switch (mode) { 3092 case 0: 3093 hdsp->control_register |= HDSP_RPM_Inp34_Phon_6dB; 3094 break; 3095 case 1: 3096 break; 3097 case 2: 3098 hdsp->control_register |= HDSP_RPM_Inp34_Phon_n6dB; 3099 break; 3100 case 3: 3101 hdsp->control_register |= HDSP_RPM_Inp34_Line_0dB; 3102 break; 3103 case 4: 3104 hdsp->control_register |= HDSP_RPM_Inp34_Line_n6dB; 3105 break; 3106 default: 3107 return -1; 3108 } 3109 3110 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3111 return 0; 3112 } 3113 3114 3115 static int snd_hdsp_put_rpm_input34(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3116 { 3117 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3118 int change; 3119 int val; 3120 3121 if (!snd_hdsp_use_is_exclusive(hdsp)) 3122 return -EBUSY; 3123 val = ucontrol->value.enumerated.item[0]; 3124 if (val < 0) 3125 val = 0; 3126 if (val > 4) 3127 val = 4; 3128 spin_lock_irq(&hdsp->lock); 3129 if (val != hdsp_rpm_input34(hdsp)) 3130 change = (hdsp_set_rpm_input34(hdsp, val) == 0) ? 1 : 0; 3131 else 3132 change = 0; 3133 spin_unlock_irq(&hdsp->lock); 3134 return change; 3135 } 3136 3137 3138 /* RPM Bypass switch */ 3139 static int hdsp_rpm_bypass(struct hdsp *hdsp) 3140 { 3141 return (hdsp->control_register & HDSP_RPM_Bypass) ? 1 : 0; 3142 } 3143 3144 3145 static int snd_hdsp_get_rpm_bypass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3146 { 3147 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3148 3149 ucontrol->value.integer.value[0] = hdsp_rpm_bypass(hdsp); 3150 return 0; 3151 } 3152 3153 3154 static int hdsp_set_rpm_bypass(struct hdsp *hdsp, int on) 3155 { 3156 if (on) 3157 hdsp->control_register |= HDSP_RPM_Bypass; 3158 else 3159 hdsp->control_register &= ~HDSP_RPM_Bypass; 3160 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3161 return 0; 3162 } 3163 3164 3165 static int snd_hdsp_put_rpm_bypass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3166 { 3167 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3168 int change; 3169 unsigned int val; 3170 3171 if (!snd_hdsp_use_is_exclusive(hdsp)) 3172 return -EBUSY; 3173 val = ucontrol->value.integer.value[0] & 1; 3174 spin_lock_irq(&hdsp->lock); 3175 change = (int)val != hdsp_rpm_bypass(hdsp); 3176 hdsp_set_rpm_bypass(hdsp, val); 3177 spin_unlock_irq(&hdsp->lock); 3178 return change; 3179 } 3180 3181 3182 static int snd_hdsp_info_rpm_bypass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 3183 { 3184 static const char * const texts[] = {"On", "Off"}; 3185 3186 return snd_ctl_enum_info(uinfo, 1, 2, texts); 3187 } 3188 3189 3190 /* RPM Disconnect switch */ 3191 static int hdsp_rpm_disconnect(struct hdsp *hdsp) 3192 { 3193 return (hdsp->control_register & HDSP_RPM_Disconnect) ? 1 : 0; 3194 } 3195 3196 3197 static int snd_hdsp_get_rpm_disconnect(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3198 { 3199 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3200 3201 ucontrol->value.integer.value[0] = hdsp_rpm_disconnect(hdsp); 3202 return 0; 3203 } 3204 3205 3206 static int hdsp_set_rpm_disconnect(struct hdsp *hdsp, int on) 3207 { 3208 if (on) 3209 hdsp->control_register |= HDSP_RPM_Disconnect; 3210 else 3211 hdsp->control_register &= ~HDSP_RPM_Disconnect; 3212 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3213 return 0; 3214 } 3215 3216 3217 static int snd_hdsp_put_rpm_disconnect(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3218 { 3219 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3220 int change; 3221 unsigned int val; 3222 3223 if (!snd_hdsp_use_is_exclusive(hdsp)) 3224 return -EBUSY; 3225 val = ucontrol->value.integer.value[0] & 1; 3226 spin_lock_irq(&hdsp->lock); 3227 change = (int)val != hdsp_rpm_disconnect(hdsp); 3228 hdsp_set_rpm_disconnect(hdsp, val); 3229 spin_unlock_irq(&hdsp->lock); 3230 return change; 3231 } 3232 3233 static int snd_hdsp_info_rpm_disconnect(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 3234 { 3235 static const char * const texts[] = {"On", "Off"}; 3236 3237 return snd_ctl_enum_info(uinfo, 1, 2, texts); 3238 } 3239 3240 static struct snd_kcontrol_new snd_hdsp_rpm_controls[] = { 3241 { 3242 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3243 .name = "RPM Bypass", 3244 .get = snd_hdsp_get_rpm_bypass, 3245 .put = snd_hdsp_put_rpm_bypass, 3246 .info = snd_hdsp_info_rpm_bypass 3247 }, 3248 { 3249 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3250 .name = "RPM Disconnect", 3251 .get = snd_hdsp_get_rpm_disconnect, 3252 .put = snd_hdsp_put_rpm_disconnect, 3253 .info = snd_hdsp_info_rpm_disconnect 3254 }, 3255 { 3256 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3257 .name = "Input 1/2", 3258 .get = snd_hdsp_get_rpm_input12, 3259 .put = snd_hdsp_put_rpm_input12, 3260 .info = snd_hdsp_info_rpm_input 3261 }, 3262 { 3263 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3264 .name = "Input 3/4", 3265 .get = snd_hdsp_get_rpm_input34, 3266 .put = snd_hdsp_put_rpm_input34, 3267 .info = snd_hdsp_info_rpm_input 3268 }, 3269 HDSP_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 3270 HDSP_MIXER("Mixer", 0) 3271 }; 3272 3273 static struct snd_kcontrol_new snd_hdsp_96xx_aeb = 3274 HDSP_TOGGLE_SETTING("Analog Extension Board", 3275 HDSP_AnalogExtensionBoard); 3276 static struct snd_kcontrol_new snd_hdsp_adat_sync_check = HDSP_ADAT_SYNC_CHECK; 3277 3278 static int snd_hdsp_create_controls(struct snd_card *card, struct hdsp *hdsp) 3279 { 3280 unsigned int idx; 3281 int err; 3282 struct snd_kcontrol *kctl; 3283 3284 if (hdsp->io_type == RPM) { 3285 /* RPM Bypass, Disconnect and Input switches */ 3286 for (idx = 0; idx < ARRAY_SIZE(snd_hdsp_rpm_controls); idx++) { 3287 err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_rpm_controls[idx], hdsp)); 3288 if (err < 0) 3289 return err; 3290 } 3291 return 0; 3292 } 3293 3294 for (idx = 0; idx < ARRAY_SIZE(snd_hdsp_controls); idx++) { 3295 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_controls[idx], hdsp))) < 0) 3296 return err; 3297 if (idx == 1) /* IEC958 (S/PDIF) Stream */ 3298 hdsp->spdif_ctl = kctl; 3299 } 3300 3301 /* ADAT SyncCheck status */ 3302 snd_hdsp_adat_sync_check.name = "ADAT Lock Status"; 3303 snd_hdsp_adat_sync_check.index = 1; 3304 if ((err = snd_ctl_add (card, kctl = snd_ctl_new1(&snd_hdsp_adat_sync_check, hdsp)))) 3305 return err; 3306 if (hdsp->io_type == Digiface || hdsp->io_type == H9652) { 3307 for (idx = 1; idx < 3; ++idx) { 3308 snd_hdsp_adat_sync_check.index = idx+1; 3309 if ((err = snd_ctl_add (card, kctl = snd_ctl_new1(&snd_hdsp_adat_sync_check, hdsp)))) 3310 return err; 3311 } 3312 } 3313 3314 /* DA, AD and Phone gain and XLR breakout cable controls for H9632 cards */ 3315 if (hdsp->io_type == H9632) { 3316 for (idx = 0; idx < ARRAY_SIZE(snd_hdsp_9632_controls); idx++) { 3317 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_9632_controls[idx], hdsp))) < 0) 3318 return err; 3319 } 3320 } 3321 3322 /* AEB control for H96xx card */ 3323 if (hdsp->io_type == H9632 || hdsp->io_type == H9652) { 3324 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_96xx_aeb, hdsp))) < 0) 3325 return err; 3326 } 3327 3328 return 0; 3329 } 3330 3331 /*------------------------------------------------------------ 3332 /proc interface 3333 ------------------------------------------------------------*/ 3334 3335 static void 3336 snd_hdsp_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) 3337 { 3338 struct hdsp *hdsp = entry->private_data; 3339 unsigned int status; 3340 unsigned int status2; 3341 char *pref_sync_ref; 3342 char *autosync_ref; 3343 char *system_clock_mode; 3344 char *clock_source; 3345 int x; 3346 3347 status = hdsp_read(hdsp, HDSP_statusRegister); 3348 status2 = hdsp_read(hdsp, HDSP_status2Register); 3349 3350 snd_iprintf(buffer, "%s (Card #%d)\n", hdsp->card_name, 3351 hdsp->card->number + 1); 3352 snd_iprintf(buffer, "Buffers: capture %p playback %p\n", 3353 hdsp->capture_buffer, hdsp->playback_buffer); 3354 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 3355 hdsp->irq, hdsp->port, (unsigned long)hdsp->iobase); 3356 snd_iprintf(buffer, "Control register: 0x%x\n", hdsp->control_register); 3357 snd_iprintf(buffer, "Control2 register: 0x%x\n", 3358 hdsp->control2_register); 3359 snd_iprintf(buffer, "Status register: 0x%x\n", status); 3360 snd_iprintf(buffer, "Status2 register: 0x%x\n", status2); 3361 3362 if (hdsp_check_for_iobox(hdsp)) { 3363 snd_iprintf(buffer, "No I/O box connected.\n" 3364 "Please connect one and upload firmware.\n"); 3365 return; 3366 } 3367 3368 if (hdsp_check_for_firmware(hdsp, 0)) { 3369 if (hdsp->state & HDSP_FirmwareCached) { 3370 if (snd_hdsp_load_firmware_from_cache(hdsp) != 0) { 3371 snd_iprintf(buffer, "Firmware loading from " 3372 "cache failed, " 3373 "please upload manually.\n"); 3374 return; 3375 } 3376 } else { 3377 int err = -EINVAL; 3378 err = hdsp_request_fw_loader(hdsp); 3379 if (err < 0) { 3380 snd_iprintf(buffer, 3381 "No firmware loaded nor cached, " 3382 "please upload firmware.\n"); 3383 return; 3384 } 3385 } 3386 } 3387 3388 snd_iprintf(buffer, "FIFO status: %d\n", hdsp_read(hdsp, HDSP_fifoStatus) & 0xff); 3389 snd_iprintf(buffer, "MIDI1 Output status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusOut0)); 3390 snd_iprintf(buffer, "MIDI1 Input status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusIn0)); 3391 snd_iprintf(buffer, "MIDI2 Output status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusOut1)); 3392 snd_iprintf(buffer, "MIDI2 Input status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusIn1)); 3393 snd_iprintf(buffer, "Use Midi Tasklet: %s\n", hdsp->use_midi_tasklet ? "on" : "off"); 3394 3395 snd_iprintf(buffer, "\n"); 3396 3397 x = 1 << (6 + hdsp_decode_latency(hdsp->control_register & HDSP_LatencyMask)); 3398 3399 snd_iprintf(buffer, "Buffer Size (Latency): %d samples (2 periods of %lu bytes)\n", x, (unsigned long) hdsp->period_bytes); 3400 snd_iprintf(buffer, "Hardware pointer (frames): %ld\n", hdsp_hw_pointer(hdsp)); 3401 snd_iprintf(buffer, "Precise pointer: %s\n", hdsp->precise_ptr ? "on" : "off"); 3402 snd_iprintf(buffer, "Line out: %s\n", (hdsp->control_register & HDSP_LineOut) ? "on" : "off"); 3403 3404 snd_iprintf(buffer, "Firmware version: %d\n", (status2&HDSP_version0)|(status2&HDSP_version1)<<1|(status2&HDSP_version2)<<2); 3405 3406 snd_iprintf(buffer, "\n"); 3407 3408 switch (hdsp_clock_source(hdsp)) { 3409 case HDSP_CLOCK_SOURCE_AUTOSYNC: 3410 clock_source = "AutoSync"; 3411 break; 3412 case HDSP_CLOCK_SOURCE_INTERNAL_32KHZ: 3413 clock_source = "Internal 32 kHz"; 3414 break; 3415 case HDSP_CLOCK_SOURCE_INTERNAL_44_1KHZ: 3416 clock_source = "Internal 44.1 kHz"; 3417 break; 3418 case HDSP_CLOCK_SOURCE_INTERNAL_48KHZ: 3419 clock_source = "Internal 48 kHz"; 3420 break; 3421 case HDSP_CLOCK_SOURCE_INTERNAL_64KHZ: 3422 clock_source = "Internal 64 kHz"; 3423 break; 3424 case HDSP_CLOCK_SOURCE_INTERNAL_88_2KHZ: 3425 clock_source = "Internal 88.2 kHz"; 3426 break; 3427 case HDSP_CLOCK_SOURCE_INTERNAL_96KHZ: 3428 clock_source = "Internal 96 kHz"; 3429 break; 3430 case HDSP_CLOCK_SOURCE_INTERNAL_128KHZ: 3431 clock_source = "Internal 128 kHz"; 3432 break; 3433 case HDSP_CLOCK_SOURCE_INTERNAL_176_4KHZ: 3434 clock_source = "Internal 176.4 kHz"; 3435 break; 3436 case HDSP_CLOCK_SOURCE_INTERNAL_192KHZ: 3437 clock_source = "Internal 192 kHz"; 3438 break; 3439 default: 3440 clock_source = "Error"; 3441 } 3442 snd_iprintf (buffer, "Sample Clock Source: %s\n", clock_source); 3443 3444 if (hdsp_system_clock_mode(hdsp)) 3445 system_clock_mode = "Slave"; 3446 else 3447 system_clock_mode = "Master"; 3448 3449 switch (hdsp_pref_sync_ref (hdsp)) { 3450 case HDSP_SYNC_FROM_WORD: 3451 pref_sync_ref = "Word Clock"; 3452 break; 3453 case HDSP_SYNC_FROM_ADAT_SYNC: 3454 pref_sync_ref = "ADAT Sync"; 3455 break; 3456 case HDSP_SYNC_FROM_SPDIF: 3457 pref_sync_ref = "SPDIF"; 3458 break; 3459 case HDSP_SYNC_FROM_ADAT1: 3460 pref_sync_ref = "ADAT1"; 3461 break; 3462 case HDSP_SYNC_FROM_ADAT2: 3463 pref_sync_ref = "ADAT2"; 3464 break; 3465 case HDSP_SYNC_FROM_ADAT3: 3466 pref_sync_ref = "ADAT3"; 3467 break; 3468 default: 3469 pref_sync_ref = "Word Clock"; 3470 break; 3471 } 3472 snd_iprintf (buffer, "Preferred Sync Reference: %s\n", pref_sync_ref); 3473 3474 switch (hdsp_autosync_ref (hdsp)) { 3475 case HDSP_AUTOSYNC_FROM_WORD: 3476 autosync_ref = "Word Clock"; 3477 break; 3478 case HDSP_AUTOSYNC_FROM_ADAT_SYNC: 3479 autosync_ref = "ADAT Sync"; 3480 break; 3481 case HDSP_AUTOSYNC_FROM_SPDIF: 3482 autosync_ref = "SPDIF"; 3483 break; 3484 case HDSP_AUTOSYNC_FROM_NONE: 3485 autosync_ref = "None"; 3486 break; 3487 case HDSP_AUTOSYNC_FROM_ADAT1: 3488 autosync_ref = "ADAT1"; 3489 break; 3490 case HDSP_AUTOSYNC_FROM_ADAT2: 3491 autosync_ref = "ADAT2"; 3492 break; 3493 case HDSP_AUTOSYNC_FROM_ADAT3: 3494 autosync_ref = "ADAT3"; 3495 break; 3496 default: 3497 autosync_ref = "---"; 3498 break; 3499 } 3500 snd_iprintf (buffer, "AutoSync Reference: %s\n", autosync_ref); 3501 3502 snd_iprintf (buffer, "AutoSync Frequency: %d\n", hdsp_external_sample_rate(hdsp)); 3503 3504 snd_iprintf (buffer, "System Clock Mode: %s\n", system_clock_mode); 3505 3506 snd_iprintf (buffer, "System Clock Frequency: %d\n", hdsp->system_sample_rate); 3507 snd_iprintf (buffer, "System Clock Locked: %s\n", hdsp->clock_source_locked ? "Yes" : "No"); 3508 3509 snd_iprintf(buffer, "\n"); 3510 3511 if (hdsp->io_type != RPM) { 3512 switch (hdsp_spdif_in(hdsp)) { 3513 case HDSP_SPDIFIN_OPTICAL: 3514 snd_iprintf(buffer, "IEC958 input: Optical\n"); 3515 break; 3516 case HDSP_SPDIFIN_COAXIAL: 3517 snd_iprintf(buffer, "IEC958 input: Coaxial\n"); 3518 break; 3519 case HDSP_SPDIFIN_INTERNAL: 3520 snd_iprintf(buffer, "IEC958 input: Internal\n"); 3521 break; 3522 case HDSP_SPDIFIN_AES: 3523 snd_iprintf(buffer, "IEC958 input: AES\n"); 3524 break; 3525 default: 3526 snd_iprintf(buffer, "IEC958 input: ???\n"); 3527 break; 3528 } 3529 } 3530 3531 if (RPM == hdsp->io_type) { 3532 if (hdsp->control_register & HDSP_RPM_Bypass) 3533 snd_iprintf(buffer, "RPM Bypass: disabled\n"); 3534 else 3535 snd_iprintf(buffer, "RPM Bypass: enabled\n"); 3536 if (hdsp->control_register & HDSP_RPM_Disconnect) 3537 snd_iprintf(buffer, "RPM disconnected\n"); 3538 else 3539 snd_iprintf(buffer, "RPM connected\n"); 3540 3541 switch (hdsp->control_register & HDSP_RPM_Inp12) { 3542 case HDSP_RPM_Inp12_Phon_6dB: 3543 snd_iprintf(buffer, "Input 1/2: Phono, 6dB\n"); 3544 break; 3545 case HDSP_RPM_Inp12_Phon_0dB: 3546 snd_iprintf(buffer, "Input 1/2: Phono, 0dB\n"); 3547 break; 3548 case HDSP_RPM_Inp12_Phon_n6dB: 3549 snd_iprintf(buffer, "Input 1/2: Phono, -6dB\n"); 3550 break; 3551 case HDSP_RPM_Inp12_Line_0dB: 3552 snd_iprintf(buffer, "Input 1/2: Line, 0dB\n"); 3553 break; 3554 case HDSP_RPM_Inp12_Line_n6dB: 3555 snd_iprintf(buffer, "Input 1/2: Line, -6dB\n"); 3556 break; 3557 default: 3558 snd_iprintf(buffer, "Input 1/2: ???\n"); 3559 } 3560 3561 switch (hdsp->control_register & HDSP_RPM_Inp34) { 3562 case HDSP_RPM_Inp34_Phon_6dB: 3563 snd_iprintf(buffer, "Input 3/4: Phono, 6dB\n"); 3564 break; 3565 case HDSP_RPM_Inp34_Phon_0dB: 3566 snd_iprintf(buffer, "Input 3/4: Phono, 0dB\n"); 3567 break; 3568 case HDSP_RPM_Inp34_Phon_n6dB: 3569 snd_iprintf(buffer, "Input 3/4: Phono, -6dB\n"); 3570 break; 3571 case HDSP_RPM_Inp34_Line_0dB: 3572 snd_iprintf(buffer, "Input 3/4: Line, 0dB\n"); 3573 break; 3574 case HDSP_RPM_Inp34_Line_n6dB: 3575 snd_iprintf(buffer, "Input 3/4: Line, -6dB\n"); 3576 break; 3577 default: 3578 snd_iprintf(buffer, "Input 3/4: ???\n"); 3579 } 3580 3581 } else { 3582 if (hdsp->control_register & HDSP_SPDIFOpticalOut) 3583 snd_iprintf(buffer, "IEC958 output: Coaxial & ADAT1\n"); 3584 else 3585 snd_iprintf(buffer, "IEC958 output: Coaxial only\n"); 3586 3587 if (hdsp->control_register & HDSP_SPDIFProfessional) 3588 snd_iprintf(buffer, "IEC958 quality: Professional\n"); 3589 else 3590 snd_iprintf(buffer, "IEC958 quality: Consumer\n"); 3591 3592 if (hdsp->control_register & HDSP_SPDIFEmphasis) 3593 snd_iprintf(buffer, "IEC958 emphasis: on\n"); 3594 else 3595 snd_iprintf(buffer, "IEC958 emphasis: off\n"); 3596 3597 if (hdsp->control_register & HDSP_SPDIFNonAudio) 3598 snd_iprintf(buffer, "IEC958 NonAudio: on\n"); 3599 else 3600 snd_iprintf(buffer, "IEC958 NonAudio: off\n"); 3601 x = hdsp_spdif_sample_rate(hdsp); 3602 if (x != 0) 3603 snd_iprintf(buffer, "IEC958 sample rate: %d\n", x); 3604 else 3605 snd_iprintf(buffer, "IEC958 sample rate: Error flag set\n"); 3606 } 3607 snd_iprintf(buffer, "\n"); 3608 3609 /* Sync Check */ 3610 x = status & HDSP_Sync0; 3611 if (status & HDSP_Lock0) 3612 snd_iprintf(buffer, "ADAT1: %s\n", x ? "Sync" : "Lock"); 3613 else 3614 snd_iprintf(buffer, "ADAT1: No Lock\n"); 3615 3616 switch (hdsp->io_type) { 3617 case Digiface: 3618 case H9652: 3619 x = status & HDSP_Sync1; 3620 if (status & HDSP_Lock1) 3621 snd_iprintf(buffer, "ADAT2: %s\n", x ? "Sync" : "Lock"); 3622 else 3623 snd_iprintf(buffer, "ADAT2: No Lock\n"); 3624 x = status & HDSP_Sync2; 3625 if (status & HDSP_Lock2) 3626 snd_iprintf(buffer, "ADAT3: %s\n", x ? "Sync" : "Lock"); 3627 else 3628 snd_iprintf(buffer, "ADAT3: No Lock\n"); 3629 break; 3630 default: 3631 /* relax */ 3632 break; 3633 } 3634 3635 x = status & HDSP_SPDIFSync; 3636 if (status & HDSP_SPDIFErrorFlag) 3637 snd_iprintf (buffer, "SPDIF: No Lock\n"); 3638 else 3639 snd_iprintf (buffer, "SPDIF: %s\n", x ? "Sync" : "Lock"); 3640 3641 x = status2 & HDSP_wc_sync; 3642 if (status2 & HDSP_wc_lock) 3643 snd_iprintf (buffer, "Word Clock: %s\n", x ? "Sync" : "Lock"); 3644 else 3645 snd_iprintf (buffer, "Word Clock: No Lock\n"); 3646 3647 x = status & HDSP_TimecodeSync; 3648 if (status & HDSP_TimecodeLock) 3649 snd_iprintf(buffer, "ADAT Sync: %s\n", x ? "Sync" : "Lock"); 3650 else 3651 snd_iprintf(buffer, "ADAT Sync: No Lock\n"); 3652 3653 snd_iprintf(buffer, "\n"); 3654 3655 /* Informations about H9632 specific controls */ 3656 if (hdsp->io_type == H9632) { 3657 char *tmp; 3658 3659 switch (hdsp_ad_gain(hdsp)) { 3660 case 0: 3661 tmp = "-10 dBV"; 3662 break; 3663 case 1: 3664 tmp = "+4 dBu"; 3665 break; 3666 default: 3667 tmp = "Lo Gain"; 3668 break; 3669 } 3670 snd_iprintf(buffer, "AD Gain : %s\n", tmp); 3671 3672 switch (hdsp_da_gain(hdsp)) { 3673 case 0: 3674 tmp = "Hi Gain"; 3675 break; 3676 case 1: 3677 tmp = "+4 dBu"; 3678 break; 3679 default: 3680 tmp = "-10 dBV"; 3681 break; 3682 } 3683 snd_iprintf(buffer, "DA Gain : %s\n", tmp); 3684 3685 switch (hdsp_phone_gain(hdsp)) { 3686 case 0: 3687 tmp = "0 dB"; 3688 break; 3689 case 1: 3690 tmp = "-6 dB"; 3691 break; 3692 default: 3693 tmp = "-12 dB"; 3694 break; 3695 } 3696 snd_iprintf(buffer, "Phones Gain : %s\n", tmp); 3697 3698 snd_iprintf(buffer, "XLR Breakout Cable : %s\n", 3699 hdsp_toggle_setting(hdsp, HDSP_XLRBreakoutCable) ? 3700 "yes" : "no"); 3701 3702 if (hdsp->control_register & HDSP_AnalogExtensionBoard) 3703 snd_iprintf(buffer, "AEB : on (ADAT1 internal)\n"); 3704 else 3705 snd_iprintf(buffer, "AEB : off (ADAT1 external)\n"); 3706 snd_iprintf(buffer, "\n"); 3707 } 3708 3709 } 3710 3711 static void snd_hdsp_proc_init(struct hdsp *hdsp) 3712 { 3713 struct snd_info_entry *entry; 3714 3715 if (! snd_card_proc_new(hdsp->card, "hdsp", &entry)) 3716 snd_info_set_text_ops(entry, hdsp, snd_hdsp_proc_read); 3717 } 3718 3719 static void snd_hdsp_free_buffers(struct hdsp *hdsp) 3720 { 3721 snd_hammerfall_free_buffer(&hdsp->capture_dma_buf, hdsp->pci); 3722 snd_hammerfall_free_buffer(&hdsp->playback_dma_buf, hdsp->pci); 3723 } 3724 3725 static int snd_hdsp_initialize_memory(struct hdsp *hdsp) 3726 { 3727 unsigned long pb_bus, cb_bus; 3728 3729 if (snd_hammerfall_get_buffer(hdsp->pci, &hdsp->capture_dma_buf, HDSP_DMA_AREA_BYTES) < 0 || 3730 snd_hammerfall_get_buffer(hdsp->pci, &hdsp->playback_dma_buf, HDSP_DMA_AREA_BYTES) < 0) { 3731 if (hdsp->capture_dma_buf.area) 3732 snd_dma_free_pages(&hdsp->capture_dma_buf); 3733 dev_err(hdsp->card->dev, 3734 "%s: no buffers available\n", hdsp->card_name); 3735 return -ENOMEM; 3736 } 3737 3738 /* Align to bus-space 64K boundary */ 3739 3740 cb_bus = ALIGN(hdsp->capture_dma_buf.addr, 0x10000ul); 3741 pb_bus = ALIGN(hdsp->playback_dma_buf.addr, 0x10000ul); 3742 3743 /* Tell the card where it is */ 3744 3745 hdsp_write(hdsp, HDSP_inputBufferAddress, cb_bus); 3746 hdsp_write(hdsp, HDSP_outputBufferAddress, pb_bus); 3747 3748 hdsp->capture_buffer = hdsp->capture_dma_buf.area + (cb_bus - hdsp->capture_dma_buf.addr); 3749 hdsp->playback_buffer = hdsp->playback_dma_buf.area + (pb_bus - hdsp->playback_dma_buf.addr); 3750 3751 return 0; 3752 } 3753 3754 static int snd_hdsp_set_defaults(struct hdsp *hdsp) 3755 { 3756 unsigned int i; 3757 3758 /* ASSUMPTION: hdsp->lock is either held, or 3759 there is no need to hold it (e.g. during module 3760 initialization). 3761 */ 3762 3763 /* set defaults: 3764 3765 SPDIF Input via Coax 3766 Master clock mode 3767 maximum latency (7 => 2^7 = 8192 samples, 64Kbyte buffer, 3768 which implies 2 4096 sample, 32Kbyte periods). 3769 Enable line out. 3770 */ 3771 3772 hdsp->control_register = HDSP_ClockModeMaster | 3773 HDSP_SPDIFInputCoaxial | 3774 hdsp_encode_latency(7) | 3775 HDSP_LineOut; 3776 3777 3778 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3779 3780 #ifdef SNDRV_BIG_ENDIAN 3781 hdsp->control2_register = HDSP_BIGENDIAN_MODE; 3782 #else 3783 hdsp->control2_register = 0; 3784 #endif 3785 if (hdsp->io_type == H9652) 3786 snd_hdsp_9652_enable_mixer (hdsp); 3787 else 3788 hdsp_write (hdsp, HDSP_control2Reg, hdsp->control2_register); 3789 3790 hdsp_reset_hw_pointer(hdsp); 3791 hdsp_compute_period_size(hdsp); 3792 3793 /* silence everything */ 3794 3795 for (i = 0; i < HDSP_MATRIX_MIXER_SIZE; ++i) 3796 hdsp->mixer_matrix[i] = MINUS_INFINITY_GAIN; 3797 3798 for (i = 0; i < ((hdsp->io_type == H9652 || hdsp->io_type == H9632) ? 1352 : HDSP_MATRIX_MIXER_SIZE); ++i) { 3799 if (hdsp_write_gain (hdsp, i, MINUS_INFINITY_GAIN)) 3800 return -EIO; 3801 } 3802 3803 /* H9632 specific defaults */ 3804 if (hdsp->io_type == H9632) { 3805 hdsp->control_register |= (HDSP_DAGainPlus4dBu | HDSP_ADGainPlus4dBu | HDSP_PhoneGain0dB); 3806 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3807 } 3808 3809 /* set a default rate so that the channel map is set up. 3810 */ 3811 3812 hdsp_set_rate(hdsp, 48000, 1); 3813 3814 return 0; 3815 } 3816 3817 static void hdsp_midi_tasklet(unsigned long arg) 3818 { 3819 struct hdsp *hdsp = (struct hdsp *)arg; 3820 3821 if (hdsp->midi[0].pending) 3822 snd_hdsp_midi_input_read (&hdsp->midi[0]); 3823 if (hdsp->midi[1].pending) 3824 snd_hdsp_midi_input_read (&hdsp->midi[1]); 3825 } 3826 3827 static irqreturn_t snd_hdsp_interrupt(int irq, void *dev_id) 3828 { 3829 struct hdsp *hdsp = (struct hdsp *) dev_id; 3830 unsigned int status; 3831 int audio; 3832 int midi0; 3833 int midi1; 3834 unsigned int midi0status; 3835 unsigned int midi1status; 3836 int schedule = 0; 3837 3838 status = hdsp_read(hdsp, HDSP_statusRegister); 3839 3840 audio = status & HDSP_audioIRQPending; 3841 midi0 = status & HDSP_midi0IRQPending; 3842 midi1 = status & HDSP_midi1IRQPending; 3843 3844 if (!audio && !midi0 && !midi1) 3845 return IRQ_NONE; 3846 3847 hdsp_write(hdsp, HDSP_interruptConfirmation, 0); 3848 3849 midi0status = hdsp_read (hdsp, HDSP_midiStatusIn0) & 0xff; 3850 midi1status = hdsp_read (hdsp, HDSP_midiStatusIn1) & 0xff; 3851 3852 if (!(hdsp->state & HDSP_InitializationComplete)) 3853 return IRQ_HANDLED; 3854 3855 if (audio) { 3856 if (hdsp->capture_substream) 3857 snd_pcm_period_elapsed(hdsp->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); 3858 3859 if (hdsp->playback_substream) 3860 snd_pcm_period_elapsed(hdsp->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream); 3861 } 3862 3863 if (midi0 && midi0status) { 3864 if (hdsp->use_midi_tasklet) { 3865 /* we disable interrupts for this input until processing is done */ 3866 hdsp->control_register &= ~HDSP_Midi0InterruptEnable; 3867 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3868 hdsp->midi[0].pending = 1; 3869 schedule = 1; 3870 } else { 3871 snd_hdsp_midi_input_read (&hdsp->midi[0]); 3872 } 3873 } 3874 if (hdsp->io_type != Multiface && hdsp->io_type != RPM && hdsp->io_type != H9632 && midi1 && midi1status) { 3875 if (hdsp->use_midi_tasklet) { 3876 /* we disable interrupts for this input until processing is done */ 3877 hdsp->control_register &= ~HDSP_Midi1InterruptEnable; 3878 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3879 hdsp->midi[1].pending = 1; 3880 schedule = 1; 3881 } else { 3882 snd_hdsp_midi_input_read (&hdsp->midi[1]); 3883 } 3884 } 3885 if (hdsp->use_midi_tasklet && schedule) 3886 tasklet_schedule(&hdsp->midi_tasklet); 3887 return IRQ_HANDLED; 3888 } 3889 3890 static snd_pcm_uframes_t snd_hdsp_hw_pointer(struct snd_pcm_substream *substream) 3891 { 3892 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3893 return hdsp_hw_pointer(hdsp); 3894 } 3895 3896 static char *hdsp_channel_buffer_location(struct hdsp *hdsp, 3897 int stream, 3898 int channel) 3899 3900 { 3901 int mapped_channel; 3902 3903 if (snd_BUG_ON(channel < 0 || channel >= hdsp->max_channels)) 3904 return NULL; 3905 3906 if ((mapped_channel = hdsp->channel_map[channel]) < 0) 3907 return NULL; 3908 3909 if (stream == SNDRV_PCM_STREAM_CAPTURE) 3910 return hdsp->capture_buffer + (mapped_channel * HDSP_CHANNEL_BUFFER_BYTES); 3911 else 3912 return hdsp->playback_buffer + (mapped_channel * HDSP_CHANNEL_BUFFER_BYTES); 3913 } 3914 3915 static int snd_hdsp_playback_copy(struct snd_pcm_substream *substream, int channel, 3916 snd_pcm_uframes_t pos, void __user *src, snd_pcm_uframes_t count) 3917 { 3918 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3919 char *channel_buf; 3920 3921 if (snd_BUG_ON(pos + count > HDSP_CHANNEL_BUFFER_BYTES / 4)) 3922 return -EINVAL; 3923 3924 channel_buf = hdsp_channel_buffer_location (hdsp, substream->pstr->stream, channel); 3925 if (snd_BUG_ON(!channel_buf)) 3926 return -EIO; 3927 if (copy_from_user(channel_buf + pos * 4, src, count * 4)) 3928 return -EFAULT; 3929 return count; 3930 } 3931 3932 static int snd_hdsp_capture_copy(struct snd_pcm_substream *substream, int channel, 3933 snd_pcm_uframes_t pos, void __user *dst, snd_pcm_uframes_t count) 3934 { 3935 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3936 char *channel_buf; 3937 3938 if (snd_BUG_ON(pos + count > HDSP_CHANNEL_BUFFER_BYTES / 4)) 3939 return -EINVAL; 3940 3941 channel_buf = hdsp_channel_buffer_location (hdsp, substream->pstr->stream, channel); 3942 if (snd_BUG_ON(!channel_buf)) 3943 return -EIO; 3944 if (copy_to_user(dst, channel_buf + pos * 4, count * 4)) 3945 return -EFAULT; 3946 return count; 3947 } 3948 3949 static int snd_hdsp_hw_silence(struct snd_pcm_substream *substream, int channel, 3950 snd_pcm_uframes_t pos, snd_pcm_uframes_t count) 3951 { 3952 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3953 char *channel_buf; 3954 3955 channel_buf = hdsp_channel_buffer_location (hdsp, substream->pstr->stream, channel); 3956 if (snd_BUG_ON(!channel_buf)) 3957 return -EIO; 3958 memset(channel_buf + pos * 4, 0, count * 4); 3959 return count; 3960 } 3961 3962 static int snd_hdsp_reset(struct snd_pcm_substream *substream) 3963 { 3964 struct snd_pcm_runtime *runtime = substream->runtime; 3965 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3966 struct snd_pcm_substream *other; 3967 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 3968 other = hdsp->capture_substream; 3969 else 3970 other = hdsp->playback_substream; 3971 if (hdsp->running) 3972 runtime->status->hw_ptr = hdsp_hw_pointer(hdsp); 3973 else 3974 runtime->status->hw_ptr = 0; 3975 if (other) { 3976 struct snd_pcm_substream *s; 3977 struct snd_pcm_runtime *oruntime = other->runtime; 3978 snd_pcm_group_for_each_entry(s, substream) { 3979 if (s == other) { 3980 oruntime->status->hw_ptr = runtime->status->hw_ptr; 3981 break; 3982 } 3983 } 3984 } 3985 return 0; 3986 } 3987 3988 static int snd_hdsp_hw_params(struct snd_pcm_substream *substream, 3989 struct snd_pcm_hw_params *params) 3990 { 3991 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3992 int err; 3993 pid_t this_pid; 3994 pid_t other_pid; 3995 3996 if (hdsp_check_for_iobox (hdsp)) 3997 return -EIO; 3998 3999 if (hdsp_check_for_firmware(hdsp, 1)) 4000 return -EIO; 4001 4002 spin_lock_irq(&hdsp->lock); 4003 4004 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 4005 hdsp->control_register &= ~(HDSP_SPDIFProfessional | HDSP_SPDIFNonAudio | HDSP_SPDIFEmphasis); 4006 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register |= hdsp->creg_spdif_stream); 4007 this_pid = hdsp->playback_pid; 4008 other_pid = hdsp->capture_pid; 4009 } else { 4010 this_pid = hdsp->capture_pid; 4011 other_pid = hdsp->playback_pid; 4012 } 4013 4014 if ((other_pid > 0) && (this_pid != other_pid)) { 4015 4016 /* The other stream is open, and not by the same 4017 task as this one. Make sure that the parameters 4018 that matter are the same. 4019 */ 4020 4021 if (params_rate(params) != hdsp->system_sample_rate) { 4022 spin_unlock_irq(&hdsp->lock); 4023 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_RATE); 4024 return -EBUSY; 4025 } 4026 4027 if (params_period_size(params) != hdsp->period_bytes / 4) { 4028 spin_unlock_irq(&hdsp->lock); 4029 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 4030 return -EBUSY; 4031 } 4032 4033 /* We're fine. */ 4034 4035 spin_unlock_irq(&hdsp->lock); 4036 return 0; 4037 4038 } else { 4039 spin_unlock_irq(&hdsp->lock); 4040 } 4041 4042 /* how to make sure that the rate matches an externally-set one ? 4043 */ 4044 4045 spin_lock_irq(&hdsp->lock); 4046 if (! hdsp->clock_source_locked) { 4047 if ((err = hdsp_set_rate(hdsp, params_rate(params), 0)) < 0) { 4048 spin_unlock_irq(&hdsp->lock); 4049 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_RATE); 4050 return err; 4051 } 4052 } 4053 spin_unlock_irq(&hdsp->lock); 4054 4055 if ((err = hdsp_set_interrupt_interval(hdsp, params_period_size(params))) < 0) { 4056 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 4057 return err; 4058 } 4059 4060 return 0; 4061 } 4062 4063 static int snd_hdsp_channel_info(struct snd_pcm_substream *substream, 4064 struct snd_pcm_channel_info *info) 4065 { 4066 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4067 int mapped_channel; 4068 4069 if (snd_BUG_ON(info->channel >= hdsp->max_channels)) 4070 return -EINVAL; 4071 4072 if ((mapped_channel = hdsp->channel_map[info->channel]) < 0) 4073 return -EINVAL; 4074 4075 info->offset = mapped_channel * HDSP_CHANNEL_BUFFER_BYTES; 4076 info->first = 0; 4077 info->step = 32; 4078 return 0; 4079 } 4080 4081 static int snd_hdsp_ioctl(struct snd_pcm_substream *substream, 4082 unsigned int cmd, void *arg) 4083 { 4084 switch (cmd) { 4085 case SNDRV_PCM_IOCTL1_RESET: 4086 return snd_hdsp_reset(substream); 4087 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 4088 return snd_hdsp_channel_info(substream, arg); 4089 default: 4090 break; 4091 } 4092 4093 return snd_pcm_lib_ioctl(substream, cmd, arg); 4094 } 4095 4096 static int snd_hdsp_trigger(struct snd_pcm_substream *substream, int cmd) 4097 { 4098 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4099 struct snd_pcm_substream *other; 4100 int running; 4101 4102 if (hdsp_check_for_iobox (hdsp)) 4103 return -EIO; 4104 4105 if (hdsp_check_for_firmware(hdsp, 0)) /* no auto-loading in trigger */ 4106 return -EIO; 4107 4108 spin_lock(&hdsp->lock); 4109 running = hdsp->running; 4110 switch (cmd) { 4111 case SNDRV_PCM_TRIGGER_START: 4112 running |= 1 << substream->stream; 4113 break; 4114 case SNDRV_PCM_TRIGGER_STOP: 4115 running &= ~(1 << substream->stream); 4116 break; 4117 default: 4118 snd_BUG(); 4119 spin_unlock(&hdsp->lock); 4120 return -EINVAL; 4121 } 4122 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 4123 other = hdsp->capture_substream; 4124 else 4125 other = hdsp->playback_substream; 4126 4127 if (other) { 4128 struct snd_pcm_substream *s; 4129 snd_pcm_group_for_each_entry(s, substream) { 4130 if (s == other) { 4131 snd_pcm_trigger_done(s, substream); 4132 if (cmd == SNDRV_PCM_TRIGGER_START) 4133 running |= 1 << s->stream; 4134 else 4135 running &= ~(1 << s->stream); 4136 goto _ok; 4137 } 4138 } 4139 if (cmd == SNDRV_PCM_TRIGGER_START) { 4140 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) && 4141 substream->stream == SNDRV_PCM_STREAM_CAPTURE) 4142 hdsp_silence_playback(hdsp); 4143 } else { 4144 if (running && 4145 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 4146 hdsp_silence_playback(hdsp); 4147 } 4148 } else { 4149 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 4150 hdsp_silence_playback(hdsp); 4151 } 4152 _ok: 4153 snd_pcm_trigger_done(substream, substream); 4154 if (!hdsp->running && running) 4155 hdsp_start_audio(hdsp); 4156 else if (hdsp->running && !running) 4157 hdsp_stop_audio(hdsp); 4158 hdsp->running = running; 4159 spin_unlock(&hdsp->lock); 4160 4161 return 0; 4162 } 4163 4164 static int snd_hdsp_prepare(struct snd_pcm_substream *substream) 4165 { 4166 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4167 int result = 0; 4168 4169 if (hdsp_check_for_iobox (hdsp)) 4170 return -EIO; 4171 4172 if (hdsp_check_for_firmware(hdsp, 1)) 4173 return -EIO; 4174 4175 spin_lock_irq(&hdsp->lock); 4176 if (!hdsp->running) 4177 hdsp_reset_hw_pointer(hdsp); 4178 spin_unlock_irq(&hdsp->lock); 4179 return result; 4180 } 4181 4182 static struct snd_pcm_hardware snd_hdsp_playback_subinfo = 4183 { 4184 .info = (SNDRV_PCM_INFO_MMAP | 4185 SNDRV_PCM_INFO_MMAP_VALID | 4186 SNDRV_PCM_INFO_NONINTERLEAVED | 4187 SNDRV_PCM_INFO_SYNC_START | 4188 SNDRV_PCM_INFO_DOUBLE), 4189 #ifdef SNDRV_BIG_ENDIAN 4190 .formats = SNDRV_PCM_FMTBIT_S32_BE, 4191 #else 4192 .formats = SNDRV_PCM_FMTBIT_S32_LE, 4193 #endif 4194 .rates = (SNDRV_PCM_RATE_32000 | 4195 SNDRV_PCM_RATE_44100 | 4196 SNDRV_PCM_RATE_48000 | 4197 SNDRV_PCM_RATE_64000 | 4198 SNDRV_PCM_RATE_88200 | 4199 SNDRV_PCM_RATE_96000), 4200 .rate_min = 32000, 4201 .rate_max = 96000, 4202 .channels_min = 6, 4203 .channels_max = HDSP_MAX_CHANNELS, 4204 .buffer_bytes_max = HDSP_CHANNEL_BUFFER_BYTES * HDSP_MAX_CHANNELS, 4205 .period_bytes_min = (64 * 4) * 10, 4206 .period_bytes_max = (8192 * 4) * HDSP_MAX_CHANNELS, 4207 .periods_min = 2, 4208 .periods_max = 2, 4209 .fifo_size = 0 4210 }; 4211 4212 static struct snd_pcm_hardware snd_hdsp_capture_subinfo = 4213 { 4214 .info = (SNDRV_PCM_INFO_MMAP | 4215 SNDRV_PCM_INFO_MMAP_VALID | 4216 SNDRV_PCM_INFO_NONINTERLEAVED | 4217 SNDRV_PCM_INFO_SYNC_START), 4218 #ifdef SNDRV_BIG_ENDIAN 4219 .formats = SNDRV_PCM_FMTBIT_S32_BE, 4220 #else 4221 .formats = SNDRV_PCM_FMTBIT_S32_LE, 4222 #endif 4223 .rates = (SNDRV_PCM_RATE_32000 | 4224 SNDRV_PCM_RATE_44100 | 4225 SNDRV_PCM_RATE_48000 | 4226 SNDRV_PCM_RATE_64000 | 4227 SNDRV_PCM_RATE_88200 | 4228 SNDRV_PCM_RATE_96000), 4229 .rate_min = 32000, 4230 .rate_max = 96000, 4231 .channels_min = 5, 4232 .channels_max = HDSP_MAX_CHANNELS, 4233 .buffer_bytes_max = HDSP_CHANNEL_BUFFER_BYTES * HDSP_MAX_CHANNELS, 4234 .period_bytes_min = (64 * 4) * 10, 4235 .period_bytes_max = (8192 * 4) * HDSP_MAX_CHANNELS, 4236 .periods_min = 2, 4237 .periods_max = 2, 4238 .fifo_size = 0 4239 }; 4240 4241 static unsigned int hdsp_period_sizes[] = { 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; 4242 4243 static struct snd_pcm_hw_constraint_list hdsp_hw_constraints_period_sizes = { 4244 .count = ARRAY_SIZE(hdsp_period_sizes), 4245 .list = hdsp_period_sizes, 4246 .mask = 0 4247 }; 4248 4249 static unsigned int hdsp_9632_sample_rates[] = { 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 }; 4250 4251 static struct snd_pcm_hw_constraint_list hdsp_hw_constraints_9632_sample_rates = { 4252 .count = ARRAY_SIZE(hdsp_9632_sample_rates), 4253 .list = hdsp_9632_sample_rates, 4254 .mask = 0 4255 }; 4256 4257 static int snd_hdsp_hw_rule_in_channels(struct snd_pcm_hw_params *params, 4258 struct snd_pcm_hw_rule *rule) 4259 { 4260 struct hdsp *hdsp = rule->private; 4261 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4262 if (hdsp->io_type == H9632) { 4263 unsigned int list[3]; 4264 list[0] = hdsp->qs_in_channels; 4265 list[1] = hdsp->ds_in_channels; 4266 list[2] = hdsp->ss_in_channels; 4267 return snd_interval_list(c, 3, list, 0); 4268 } else { 4269 unsigned int list[2]; 4270 list[0] = hdsp->ds_in_channels; 4271 list[1] = hdsp->ss_in_channels; 4272 return snd_interval_list(c, 2, list, 0); 4273 } 4274 } 4275 4276 static int snd_hdsp_hw_rule_out_channels(struct snd_pcm_hw_params *params, 4277 struct snd_pcm_hw_rule *rule) 4278 { 4279 unsigned int list[3]; 4280 struct hdsp *hdsp = rule->private; 4281 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4282 if (hdsp->io_type == H9632) { 4283 list[0] = hdsp->qs_out_channels; 4284 list[1] = hdsp->ds_out_channels; 4285 list[2] = hdsp->ss_out_channels; 4286 return snd_interval_list(c, 3, list, 0); 4287 } else { 4288 list[0] = hdsp->ds_out_channels; 4289 list[1] = hdsp->ss_out_channels; 4290 } 4291 return snd_interval_list(c, 2, list, 0); 4292 } 4293 4294 static int snd_hdsp_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 4295 struct snd_pcm_hw_rule *rule) 4296 { 4297 struct hdsp *hdsp = rule->private; 4298 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4299 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4300 if (r->min > 96000 && hdsp->io_type == H9632) { 4301 struct snd_interval t = { 4302 .min = hdsp->qs_in_channels, 4303 .max = hdsp->qs_in_channels, 4304 .integer = 1, 4305 }; 4306 return snd_interval_refine(c, &t); 4307 } else if (r->min > 48000 && r->max <= 96000) { 4308 struct snd_interval t = { 4309 .min = hdsp->ds_in_channels, 4310 .max = hdsp->ds_in_channels, 4311 .integer = 1, 4312 }; 4313 return snd_interval_refine(c, &t); 4314 } else if (r->max < 64000) { 4315 struct snd_interval t = { 4316 .min = hdsp->ss_in_channels, 4317 .max = hdsp->ss_in_channels, 4318 .integer = 1, 4319 }; 4320 return snd_interval_refine(c, &t); 4321 } 4322 return 0; 4323 } 4324 4325 static int snd_hdsp_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 4326 struct snd_pcm_hw_rule *rule) 4327 { 4328 struct hdsp *hdsp = rule->private; 4329 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4330 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4331 if (r->min > 96000 && hdsp->io_type == H9632) { 4332 struct snd_interval t = { 4333 .min = hdsp->qs_out_channels, 4334 .max = hdsp->qs_out_channels, 4335 .integer = 1, 4336 }; 4337 return snd_interval_refine(c, &t); 4338 } else if (r->min > 48000 && r->max <= 96000) { 4339 struct snd_interval t = { 4340 .min = hdsp->ds_out_channels, 4341 .max = hdsp->ds_out_channels, 4342 .integer = 1, 4343 }; 4344 return snd_interval_refine(c, &t); 4345 } else if (r->max < 64000) { 4346 struct snd_interval t = { 4347 .min = hdsp->ss_out_channels, 4348 .max = hdsp->ss_out_channels, 4349 .integer = 1, 4350 }; 4351 return snd_interval_refine(c, &t); 4352 } 4353 return 0; 4354 } 4355 4356 static int snd_hdsp_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 4357 struct snd_pcm_hw_rule *rule) 4358 { 4359 struct hdsp *hdsp = rule->private; 4360 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4361 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4362 if (c->min >= hdsp->ss_out_channels) { 4363 struct snd_interval t = { 4364 .min = 32000, 4365 .max = 48000, 4366 .integer = 1, 4367 }; 4368 return snd_interval_refine(r, &t); 4369 } else if (c->max <= hdsp->qs_out_channels && hdsp->io_type == H9632) { 4370 struct snd_interval t = { 4371 .min = 128000, 4372 .max = 192000, 4373 .integer = 1, 4374 }; 4375 return snd_interval_refine(r, &t); 4376 } else if (c->max <= hdsp->ds_out_channels) { 4377 struct snd_interval t = { 4378 .min = 64000, 4379 .max = 96000, 4380 .integer = 1, 4381 }; 4382 return snd_interval_refine(r, &t); 4383 } 4384 return 0; 4385 } 4386 4387 static int snd_hdsp_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 4388 struct snd_pcm_hw_rule *rule) 4389 { 4390 struct hdsp *hdsp = rule->private; 4391 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4392 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4393 if (c->min >= hdsp->ss_in_channels) { 4394 struct snd_interval t = { 4395 .min = 32000, 4396 .max = 48000, 4397 .integer = 1, 4398 }; 4399 return snd_interval_refine(r, &t); 4400 } else if (c->max <= hdsp->qs_in_channels && hdsp->io_type == H9632) { 4401 struct snd_interval t = { 4402 .min = 128000, 4403 .max = 192000, 4404 .integer = 1, 4405 }; 4406 return snd_interval_refine(r, &t); 4407 } else if (c->max <= hdsp->ds_in_channels) { 4408 struct snd_interval t = { 4409 .min = 64000, 4410 .max = 96000, 4411 .integer = 1, 4412 }; 4413 return snd_interval_refine(r, &t); 4414 } 4415 return 0; 4416 } 4417 4418 static int snd_hdsp_playback_open(struct snd_pcm_substream *substream) 4419 { 4420 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4421 struct snd_pcm_runtime *runtime = substream->runtime; 4422 4423 if (hdsp_check_for_iobox (hdsp)) 4424 return -EIO; 4425 4426 if (hdsp_check_for_firmware(hdsp, 1)) 4427 return -EIO; 4428 4429 spin_lock_irq(&hdsp->lock); 4430 4431 snd_pcm_set_sync(substream); 4432 4433 runtime->hw = snd_hdsp_playback_subinfo; 4434 runtime->dma_area = hdsp->playback_buffer; 4435 runtime->dma_bytes = HDSP_DMA_AREA_BYTES; 4436 4437 hdsp->playback_pid = current->pid; 4438 hdsp->playback_substream = substream; 4439 4440 spin_unlock_irq(&hdsp->lock); 4441 4442 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 4443 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hdsp_hw_constraints_period_sizes); 4444 if (hdsp->clock_source_locked) { 4445 runtime->hw.rate_min = runtime->hw.rate_max = hdsp->system_sample_rate; 4446 } else if (hdsp->io_type == H9632) { 4447 runtime->hw.rate_max = 192000; 4448 runtime->hw.rates = SNDRV_PCM_RATE_KNOT; 4449 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hdsp_hw_constraints_9632_sample_rates); 4450 } 4451 if (hdsp->io_type == H9632) { 4452 runtime->hw.channels_min = hdsp->qs_out_channels; 4453 runtime->hw.channels_max = hdsp->ss_out_channels; 4454 } 4455 4456 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4457 snd_hdsp_hw_rule_out_channels, hdsp, 4458 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4459 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4460 snd_hdsp_hw_rule_out_channels_rate, hdsp, 4461 SNDRV_PCM_HW_PARAM_RATE, -1); 4462 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4463 snd_hdsp_hw_rule_rate_out_channels, hdsp, 4464 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4465 4466 if (RPM != hdsp->io_type) { 4467 hdsp->creg_spdif_stream = hdsp->creg_spdif; 4468 hdsp->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 4469 snd_ctl_notify(hdsp->card, SNDRV_CTL_EVENT_MASK_VALUE | 4470 SNDRV_CTL_EVENT_MASK_INFO, &hdsp->spdif_ctl->id); 4471 } 4472 return 0; 4473 } 4474 4475 static int snd_hdsp_playback_release(struct snd_pcm_substream *substream) 4476 { 4477 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4478 4479 spin_lock_irq(&hdsp->lock); 4480 4481 hdsp->playback_pid = -1; 4482 hdsp->playback_substream = NULL; 4483 4484 spin_unlock_irq(&hdsp->lock); 4485 4486 if (RPM != hdsp->io_type) { 4487 hdsp->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 4488 snd_ctl_notify(hdsp->card, SNDRV_CTL_EVENT_MASK_VALUE | 4489 SNDRV_CTL_EVENT_MASK_INFO, &hdsp->spdif_ctl->id); 4490 } 4491 return 0; 4492 } 4493 4494 4495 static int snd_hdsp_capture_open(struct snd_pcm_substream *substream) 4496 { 4497 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4498 struct snd_pcm_runtime *runtime = substream->runtime; 4499 4500 if (hdsp_check_for_iobox (hdsp)) 4501 return -EIO; 4502 4503 if (hdsp_check_for_firmware(hdsp, 1)) 4504 return -EIO; 4505 4506 spin_lock_irq(&hdsp->lock); 4507 4508 snd_pcm_set_sync(substream); 4509 4510 runtime->hw = snd_hdsp_capture_subinfo; 4511 runtime->dma_area = hdsp->capture_buffer; 4512 runtime->dma_bytes = HDSP_DMA_AREA_BYTES; 4513 4514 hdsp->capture_pid = current->pid; 4515 hdsp->capture_substream = substream; 4516 4517 spin_unlock_irq(&hdsp->lock); 4518 4519 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 4520 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hdsp_hw_constraints_period_sizes); 4521 if (hdsp->io_type == H9632) { 4522 runtime->hw.channels_min = hdsp->qs_in_channels; 4523 runtime->hw.channels_max = hdsp->ss_in_channels; 4524 runtime->hw.rate_max = 192000; 4525 runtime->hw.rates = SNDRV_PCM_RATE_KNOT; 4526 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hdsp_hw_constraints_9632_sample_rates); 4527 } 4528 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4529 snd_hdsp_hw_rule_in_channels, hdsp, 4530 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4531 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4532 snd_hdsp_hw_rule_in_channels_rate, hdsp, 4533 SNDRV_PCM_HW_PARAM_RATE, -1); 4534 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4535 snd_hdsp_hw_rule_rate_in_channels, hdsp, 4536 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4537 return 0; 4538 } 4539 4540 static int snd_hdsp_capture_release(struct snd_pcm_substream *substream) 4541 { 4542 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4543 4544 spin_lock_irq(&hdsp->lock); 4545 4546 hdsp->capture_pid = -1; 4547 hdsp->capture_substream = NULL; 4548 4549 spin_unlock_irq(&hdsp->lock); 4550 return 0; 4551 } 4552 4553 /* helper functions for copying meter values */ 4554 static inline int copy_u32_le(void __user *dest, void __iomem *src) 4555 { 4556 u32 val = readl(src); 4557 return copy_to_user(dest, &val, 4); 4558 } 4559 4560 static inline int copy_u64_le(void __user *dest, void __iomem *src_low, void __iomem *src_high) 4561 { 4562 u32 rms_low, rms_high; 4563 u64 rms; 4564 rms_low = readl(src_low); 4565 rms_high = readl(src_high); 4566 rms = ((u64)rms_high << 32) | rms_low; 4567 return copy_to_user(dest, &rms, 8); 4568 } 4569 4570 static inline int copy_u48_le(void __user *dest, void __iomem *src_low, void __iomem *src_high) 4571 { 4572 u32 rms_low, rms_high; 4573 u64 rms; 4574 rms_low = readl(src_low) & 0xffffff00; 4575 rms_high = readl(src_high) & 0xffffff00; 4576 rms = ((u64)rms_high << 32) | rms_low; 4577 return copy_to_user(dest, &rms, 8); 4578 } 4579 4580 static int hdsp_9652_get_peak(struct hdsp *hdsp, struct hdsp_peak_rms __user *peak_rms) 4581 { 4582 int doublespeed = 0; 4583 int i, j, channels, ofs; 4584 4585 if (hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DoubleSpeedStatus) 4586 doublespeed = 1; 4587 channels = doublespeed ? 14 : 26; 4588 for (i = 0, j = 0; i < 26; ++i) { 4589 if (doublespeed && (i & 4)) 4590 continue; 4591 ofs = HDSP_9652_peakBase - j * 4; 4592 if (copy_u32_le(&peak_rms->input_peaks[i], hdsp->iobase + ofs)) 4593 return -EFAULT; 4594 ofs -= channels * 4; 4595 if (copy_u32_le(&peak_rms->playback_peaks[i], hdsp->iobase + ofs)) 4596 return -EFAULT; 4597 ofs -= channels * 4; 4598 if (copy_u32_le(&peak_rms->output_peaks[i], hdsp->iobase + ofs)) 4599 return -EFAULT; 4600 ofs = HDSP_9652_rmsBase + j * 8; 4601 if (copy_u48_le(&peak_rms->input_rms[i], hdsp->iobase + ofs, 4602 hdsp->iobase + ofs + 4)) 4603 return -EFAULT; 4604 ofs += channels * 8; 4605 if (copy_u48_le(&peak_rms->playback_rms[i], hdsp->iobase + ofs, 4606 hdsp->iobase + ofs + 4)) 4607 return -EFAULT; 4608 ofs += channels * 8; 4609 if (copy_u48_le(&peak_rms->output_rms[i], hdsp->iobase + ofs, 4610 hdsp->iobase + ofs + 4)) 4611 return -EFAULT; 4612 j++; 4613 } 4614 return 0; 4615 } 4616 4617 static int hdsp_9632_get_peak(struct hdsp *hdsp, struct hdsp_peak_rms __user *peak_rms) 4618 { 4619 int i, j; 4620 struct hdsp_9632_meters __iomem *m; 4621 int doublespeed = 0; 4622 4623 if (hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DoubleSpeedStatus) 4624 doublespeed = 1; 4625 m = (struct hdsp_9632_meters __iomem *)(hdsp->iobase+HDSP_9632_metersBase); 4626 for (i = 0, j = 0; i < 16; ++i, ++j) { 4627 if (copy_u32_le(&peak_rms->input_peaks[i], &m->input_peak[j])) 4628 return -EFAULT; 4629 if (copy_u32_le(&peak_rms->playback_peaks[i], &m->playback_peak[j])) 4630 return -EFAULT; 4631 if (copy_u32_le(&peak_rms->output_peaks[i], &m->output_peak[j])) 4632 return -EFAULT; 4633 if (copy_u64_le(&peak_rms->input_rms[i], &m->input_rms_low[j], 4634 &m->input_rms_high[j])) 4635 return -EFAULT; 4636 if (copy_u64_le(&peak_rms->playback_rms[i], &m->playback_rms_low[j], 4637 &m->playback_rms_high[j])) 4638 return -EFAULT; 4639 if (copy_u64_le(&peak_rms->output_rms[i], &m->output_rms_low[j], 4640 &m->output_rms_high[j])) 4641 return -EFAULT; 4642 if (doublespeed && i == 3) i += 4; 4643 } 4644 return 0; 4645 } 4646 4647 static int hdsp_get_peak(struct hdsp *hdsp, struct hdsp_peak_rms __user *peak_rms) 4648 { 4649 int i; 4650 4651 for (i = 0; i < 26; i++) { 4652 if (copy_u32_le(&peak_rms->playback_peaks[i], 4653 hdsp->iobase + HDSP_playbackPeakLevel + i * 4)) 4654 return -EFAULT; 4655 if (copy_u32_le(&peak_rms->input_peaks[i], 4656 hdsp->iobase + HDSP_inputPeakLevel + i * 4)) 4657 return -EFAULT; 4658 } 4659 for (i = 0; i < 28; i++) { 4660 if (copy_u32_le(&peak_rms->output_peaks[i], 4661 hdsp->iobase + HDSP_outputPeakLevel + i * 4)) 4662 return -EFAULT; 4663 } 4664 for (i = 0; i < 26; ++i) { 4665 if (copy_u64_le(&peak_rms->playback_rms[i], 4666 hdsp->iobase + HDSP_playbackRmsLevel + i * 8 + 4, 4667 hdsp->iobase + HDSP_playbackRmsLevel + i * 8)) 4668 return -EFAULT; 4669 if (copy_u64_le(&peak_rms->input_rms[i], 4670 hdsp->iobase + HDSP_inputRmsLevel + i * 8 + 4, 4671 hdsp->iobase + HDSP_inputRmsLevel + i * 8)) 4672 return -EFAULT; 4673 } 4674 return 0; 4675 } 4676 4677 static int snd_hdsp_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, unsigned int cmd, unsigned long arg) 4678 { 4679 struct hdsp *hdsp = hw->private_data; 4680 void __user *argp = (void __user *)arg; 4681 int err; 4682 4683 switch (cmd) { 4684 case SNDRV_HDSP_IOCTL_GET_PEAK_RMS: { 4685 struct hdsp_peak_rms __user *peak_rms = (struct hdsp_peak_rms __user *)arg; 4686 4687 err = hdsp_check_for_iobox(hdsp); 4688 if (err < 0) 4689 return err; 4690 4691 err = hdsp_check_for_firmware(hdsp, 1); 4692 if (err < 0) 4693 return err; 4694 4695 if (!(hdsp->state & HDSP_FirmwareLoaded)) { 4696 dev_err(hdsp->card->dev, 4697 "firmware needs to be uploaded to the card.\n"); 4698 return -EINVAL; 4699 } 4700 4701 switch (hdsp->io_type) { 4702 case H9652: 4703 return hdsp_9652_get_peak(hdsp, peak_rms); 4704 case H9632: 4705 return hdsp_9632_get_peak(hdsp, peak_rms); 4706 default: 4707 return hdsp_get_peak(hdsp, peak_rms); 4708 } 4709 } 4710 case SNDRV_HDSP_IOCTL_GET_CONFIG_INFO: { 4711 struct hdsp_config_info info; 4712 unsigned long flags; 4713 int i; 4714 4715 err = hdsp_check_for_iobox(hdsp); 4716 if (err < 0) 4717 return err; 4718 4719 err = hdsp_check_for_firmware(hdsp, 1); 4720 if (err < 0) 4721 return err; 4722 4723 memset(&info, 0, sizeof(info)); 4724 spin_lock_irqsave(&hdsp->lock, flags); 4725 info.pref_sync_ref = (unsigned char)hdsp_pref_sync_ref(hdsp); 4726 info.wordclock_sync_check = (unsigned char)hdsp_wc_sync_check(hdsp); 4727 if (hdsp->io_type != H9632) 4728 info.adatsync_sync_check = (unsigned char)hdsp_adatsync_sync_check(hdsp); 4729 info.spdif_sync_check = (unsigned char)hdsp_spdif_sync_check(hdsp); 4730 for (i = 0; i < ((hdsp->io_type != Multiface && hdsp->io_type != RPM && hdsp->io_type != H9632) ? 3 : 1); ++i) 4731 info.adat_sync_check[i] = (unsigned char)hdsp_adat_sync_check(hdsp, i); 4732 info.spdif_in = (unsigned char)hdsp_spdif_in(hdsp); 4733 info.spdif_out = (unsigned char)hdsp_toggle_setting(hdsp, 4734 HDSP_SPDIFOpticalOut); 4735 info.spdif_professional = (unsigned char) 4736 hdsp_toggle_setting(hdsp, HDSP_SPDIFProfessional); 4737 info.spdif_emphasis = (unsigned char) 4738 hdsp_toggle_setting(hdsp, HDSP_SPDIFEmphasis); 4739 info.spdif_nonaudio = (unsigned char) 4740 hdsp_toggle_setting(hdsp, HDSP_SPDIFNonAudio); 4741 info.spdif_sample_rate = hdsp_spdif_sample_rate(hdsp); 4742 info.system_sample_rate = hdsp->system_sample_rate; 4743 info.autosync_sample_rate = hdsp_external_sample_rate(hdsp); 4744 info.system_clock_mode = (unsigned char)hdsp_system_clock_mode(hdsp); 4745 info.clock_source = (unsigned char)hdsp_clock_source(hdsp); 4746 info.autosync_ref = (unsigned char)hdsp_autosync_ref(hdsp); 4747 info.line_out = (unsigned char) 4748 hdsp_toggle_setting(hdsp, HDSP_LineOut); 4749 if (hdsp->io_type == H9632) { 4750 info.da_gain = (unsigned char)hdsp_da_gain(hdsp); 4751 info.ad_gain = (unsigned char)hdsp_ad_gain(hdsp); 4752 info.phone_gain = (unsigned char)hdsp_phone_gain(hdsp); 4753 info.xlr_breakout_cable = 4754 (unsigned char)hdsp_toggle_setting(hdsp, 4755 HDSP_XLRBreakoutCable); 4756 4757 } else if (hdsp->io_type == RPM) { 4758 info.da_gain = (unsigned char) hdsp_rpm_input12(hdsp); 4759 info.ad_gain = (unsigned char) hdsp_rpm_input34(hdsp); 4760 } 4761 if (hdsp->io_type == H9632 || hdsp->io_type == H9652) 4762 info.analog_extension_board = 4763 (unsigned char)hdsp_toggle_setting(hdsp, 4764 HDSP_AnalogExtensionBoard); 4765 spin_unlock_irqrestore(&hdsp->lock, flags); 4766 if (copy_to_user(argp, &info, sizeof(info))) 4767 return -EFAULT; 4768 break; 4769 } 4770 case SNDRV_HDSP_IOCTL_GET_9632_AEB: { 4771 struct hdsp_9632_aeb h9632_aeb; 4772 4773 if (hdsp->io_type != H9632) return -EINVAL; 4774 h9632_aeb.aebi = hdsp->ss_in_channels - H9632_SS_CHANNELS; 4775 h9632_aeb.aebo = hdsp->ss_out_channels - H9632_SS_CHANNELS; 4776 if (copy_to_user(argp, &h9632_aeb, sizeof(h9632_aeb))) 4777 return -EFAULT; 4778 break; 4779 } 4780 case SNDRV_HDSP_IOCTL_GET_VERSION: { 4781 struct hdsp_version hdsp_version; 4782 int err; 4783 4784 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) return -EINVAL; 4785 if (hdsp->io_type == Undefined) { 4786 if ((err = hdsp_get_iobox_version(hdsp)) < 0) 4787 return err; 4788 } 4789 memset(&hdsp_version, 0, sizeof(hdsp_version)); 4790 hdsp_version.io_type = hdsp->io_type; 4791 hdsp_version.firmware_rev = hdsp->firmware_rev; 4792 if ((err = copy_to_user(argp, &hdsp_version, sizeof(hdsp_version)))) 4793 return -EFAULT; 4794 break; 4795 } 4796 case SNDRV_HDSP_IOCTL_UPLOAD_FIRMWARE: { 4797 struct hdsp_firmware __user *firmware; 4798 u32 __user *firmware_data; 4799 int err; 4800 4801 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) return -EINVAL; 4802 /* SNDRV_HDSP_IOCTL_GET_VERSION must have been called */ 4803 if (hdsp->io_type == Undefined) return -EINVAL; 4804 4805 if (hdsp->state & (HDSP_FirmwareCached | HDSP_FirmwareLoaded)) 4806 return -EBUSY; 4807 4808 dev_info(hdsp->card->dev, 4809 "initializing firmware upload\n"); 4810 firmware = (struct hdsp_firmware __user *)argp; 4811 4812 if (get_user(firmware_data, &firmware->firmware_data)) 4813 return -EFAULT; 4814 4815 if (hdsp_check_for_iobox (hdsp)) 4816 return -EIO; 4817 4818 if (!hdsp->fw_uploaded) { 4819 hdsp->fw_uploaded = vmalloc(HDSP_FIRMWARE_SIZE); 4820 if (!hdsp->fw_uploaded) 4821 return -ENOMEM; 4822 } 4823 4824 if (copy_from_user(hdsp->fw_uploaded, firmware_data, 4825 HDSP_FIRMWARE_SIZE)) { 4826 vfree(hdsp->fw_uploaded); 4827 hdsp->fw_uploaded = NULL; 4828 return -EFAULT; 4829 } 4830 4831 hdsp->state |= HDSP_FirmwareCached; 4832 4833 if ((err = snd_hdsp_load_firmware_from_cache(hdsp)) < 0) 4834 return err; 4835 4836 if (!(hdsp->state & HDSP_InitializationComplete)) { 4837 if ((err = snd_hdsp_enable_io(hdsp)) < 0) 4838 return err; 4839 4840 snd_hdsp_initialize_channels(hdsp); 4841 snd_hdsp_initialize_midi_flush(hdsp); 4842 4843 if ((err = snd_hdsp_create_alsa_devices(hdsp->card, hdsp)) < 0) { 4844 dev_err(hdsp->card->dev, 4845 "error creating alsa devices\n"); 4846 return err; 4847 } 4848 } 4849 break; 4850 } 4851 case SNDRV_HDSP_IOCTL_GET_MIXER: { 4852 struct hdsp_mixer __user *mixer = (struct hdsp_mixer __user *)argp; 4853 if (copy_to_user(mixer->matrix, hdsp->mixer_matrix, sizeof(unsigned short)*HDSP_MATRIX_MIXER_SIZE)) 4854 return -EFAULT; 4855 break; 4856 } 4857 default: 4858 return -EINVAL; 4859 } 4860 return 0; 4861 } 4862 4863 static struct snd_pcm_ops snd_hdsp_playback_ops = { 4864 .open = snd_hdsp_playback_open, 4865 .close = snd_hdsp_playback_release, 4866 .ioctl = snd_hdsp_ioctl, 4867 .hw_params = snd_hdsp_hw_params, 4868 .prepare = snd_hdsp_prepare, 4869 .trigger = snd_hdsp_trigger, 4870 .pointer = snd_hdsp_hw_pointer, 4871 .copy = snd_hdsp_playback_copy, 4872 .silence = snd_hdsp_hw_silence, 4873 }; 4874 4875 static struct snd_pcm_ops snd_hdsp_capture_ops = { 4876 .open = snd_hdsp_capture_open, 4877 .close = snd_hdsp_capture_release, 4878 .ioctl = snd_hdsp_ioctl, 4879 .hw_params = snd_hdsp_hw_params, 4880 .prepare = snd_hdsp_prepare, 4881 .trigger = snd_hdsp_trigger, 4882 .pointer = snd_hdsp_hw_pointer, 4883 .copy = snd_hdsp_capture_copy, 4884 }; 4885 4886 static int snd_hdsp_create_hwdep(struct snd_card *card, struct hdsp *hdsp) 4887 { 4888 struct snd_hwdep *hw; 4889 int err; 4890 4891 if ((err = snd_hwdep_new(card, "HDSP hwdep", 0, &hw)) < 0) 4892 return err; 4893 4894 hdsp->hwdep = hw; 4895 hw->private_data = hdsp; 4896 strcpy(hw->name, "HDSP hwdep interface"); 4897 4898 hw->ops.ioctl = snd_hdsp_hwdep_ioctl; 4899 hw->ops.ioctl_compat = snd_hdsp_hwdep_ioctl; 4900 4901 return 0; 4902 } 4903 4904 static int snd_hdsp_create_pcm(struct snd_card *card, struct hdsp *hdsp) 4905 { 4906 struct snd_pcm *pcm; 4907 int err; 4908 4909 if ((err = snd_pcm_new(card, hdsp->card_name, 0, 1, 1, &pcm)) < 0) 4910 return err; 4911 4912 hdsp->pcm = pcm; 4913 pcm->private_data = hdsp; 4914 strcpy(pcm->name, hdsp->card_name); 4915 4916 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_hdsp_playback_ops); 4917 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_hdsp_capture_ops); 4918 4919 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 4920 4921 return 0; 4922 } 4923 4924 static void snd_hdsp_9652_enable_mixer (struct hdsp *hdsp) 4925 { 4926 hdsp->control2_register |= HDSP_9652_ENABLE_MIXER; 4927 hdsp_write (hdsp, HDSP_control2Reg, hdsp->control2_register); 4928 } 4929 4930 static int snd_hdsp_enable_io (struct hdsp *hdsp) 4931 { 4932 int i; 4933 4934 if (hdsp_fifo_wait (hdsp, 0, 100)) { 4935 dev_err(hdsp->card->dev, 4936 "enable_io fifo_wait failed\n"); 4937 return -EIO; 4938 } 4939 4940 for (i = 0; i < hdsp->max_channels; ++i) { 4941 hdsp_write (hdsp, HDSP_inputEnable + (4 * i), 1); 4942 hdsp_write (hdsp, HDSP_outputEnable + (4 * i), 1); 4943 } 4944 4945 return 0; 4946 } 4947 4948 static void snd_hdsp_initialize_channels(struct hdsp *hdsp) 4949 { 4950 int status, aebi_channels, aebo_channels; 4951 4952 switch (hdsp->io_type) { 4953 case Digiface: 4954 hdsp->card_name = "RME Hammerfall DSP + Digiface"; 4955 hdsp->ss_in_channels = hdsp->ss_out_channels = DIGIFACE_SS_CHANNELS; 4956 hdsp->ds_in_channels = hdsp->ds_out_channels = DIGIFACE_DS_CHANNELS; 4957 break; 4958 4959 case H9652: 4960 hdsp->card_name = "RME Hammerfall HDSP 9652"; 4961 hdsp->ss_in_channels = hdsp->ss_out_channels = H9652_SS_CHANNELS; 4962 hdsp->ds_in_channels = hdsp->ds_out_channels = H9652_DS_CHANNELS; 4963 break; 4964 4965 case H9632: 4966 status = hdsp_read(hdsp, HDSP_statusRegister); 4967 /* HDSP_AEBx bits are low when AEB are connected */ 4968 aebi_channels = (status & HDSP_AEBI) ? 0 : 4; 4969 aebo_channels = (status & HDSP_AEBO) ? 0 : 4; 4970 hdsp->card_name = "RME Hammerfall HDSP 9632"; 4971 hdsp->ss_in_channels = H9632_SS_CHANNELS+aebi_channels; 4972 hdsp->ds_in_channels = H9632_DS_CHANNELS+aebi_channels; 4973 hdsp->qs_in_channels = H9632_QS_CHANNELS+aebi_channels; 4974 hdsp->ss_out_channels = H9632_SS_CHANNELS+aebo_channels; 4975 hdsp->ds_out_channels = H9632_DS_CHANNELS+aebo_channels; 4976 hdsp->qs_out_channels = H9632_QS_CHANNELS+aebo_channels; 4977 break; 4978 4979 case Multiface: 4980 hdsp->card_name = "RME Hammerfall DSP + Multiface"; 4981 hdsp->ss_in_channels = hdsp->ss_out_channels = MULTIFACE_SS_CHANNELS; 4982 hdsp->ds_in_channels = hdsp->ds_out_channels = MULTIFACE_DS_CHANNELS; 4983 break; 4984 4985 case RPM: 4986 hdsp->card_name = "RME Hammerfall DSP + RPM"; 4987 hdsp->ss_in_channels = RPM_CHANNELS-1; 4988 hdsp->ss_out_channels = RPM_CHANNELS; 4989 hdsp->ds_in_channels = RPM_CHANNELS-1; 4990 hdsp->ds_out_channels = RPM_CHANNELS; 4991 break; 4992 4993 default: 4994 /* should never get here */ 4995 break; 4996 } 4997 } 4998 4999 static void snd_hdsp_initialize_midi_flush (struct hdsp *hdsp) 5000 { 5001 snd_hdsp_flush_midi_input (hdsp, 0); 5002 snd_hdsp_flush_midi_input (hdsp, 1); 5003 } 5004 5005 static int snd_hdsp_create_alsa_devices(struct snd_card *card, struct hdsp *hdsp) 5006 { 5007 int err; 5008 5009 if ((err = snd_hdsp_create_pcm(card, hdsp)) < 0) { 5010 dev_err(card->dev, 5011 "Error creating pcm interface\n"); 5012 return err; 5013 } 5014 5015 5016 if ((err = snd_hdsp_create_midi(card, hdsp, 0)) < 0) { 5017 dev_err(card->dev, 5018 "Error creating first midi interface\n"); 5019 return err; 5020 } 5021 5022 if (hdsp->io_type == Digiface || hdsp->io_type == H9652) { 5023 if ((err = snd_hdsp_create_midi(card, hdsp, 1)) < 0) { 5024 dev_err(card->dev, 5025 "Error creating second midi interface\n"); 5026 return err; 5027 } 5028 } 5029 5030 if ((err = snd_hdsp_create_controls(card, hdsp)) < 0) { 5031 dev_err(card->dev, 5032 "Error creating ctl interface\n"); 5033 return err; 5034 } 5035 5036 snd_hdsp_proc_init(hdsp); 5037 5038 hdsp->system_sample_rate = -1; 5039 hdsp->playback_pid = -1; 5040 hdsp->capture_pid = -1; 5041 hdsp->capture_substream = NULL; 5042 hdsp->playback_substream = NULL; 5043 5044 if ((err = snd_hdsp_set_defaults(hdsp)) < 0) { 5045 dev_err(card->dev, 5046 "Error setting default values\n"); 5047 return err; 5048 } 5049 5050 if (!(hdsp->state & HDSP_InitializationComplete)) { 5051 strcpy(card->shortname, "Hammerfall DSP"); 5052 sprintf(card->longname, "%s at 0x%lx, irq %d", hdsp->card_name, 5053 hdsp->port, hdsp->irq); 5054 5055 if ((err = snd_card_register(card)) < 0) { 5056 dev_err(card->dev, 5057 "error registering card\n"); 5058 return err; 5059 } 5060 hdsp->state |= HDSP_InitializationComplete; 5061 } 5062 5063 return 0; 5064 } 5065 5066 /* load firmware via hotplug fw loader */ 5067 static int hdsp_request_fw_loader(struct hdsp *hdsp) 5068 { 5069 const char *fwfile; 5070 const struct firmware *fw; 5071 int err; 5072 5073 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 5074 return 0; 5075 if (hdsp->io_type == Undefined) { 5076 if ((err = hdsp_get_iobox_version(hdsp)) < 0) 5077 return err; 5078 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 5079 return 0; 5080 } 5081 5082 /* caution: max length of firmware filename is 30! */ 5083 switch (hdsp->io_type) { 5084 case RPM: 5085 fwfile = "rpm_firmware.bin"; 5086 break; 5087 case Multiface: 5088 if (hdsp->firmware_rev == 0xa) 5089 fwfile = "multiface_firmware.bin"; 5090 else 5091 fwfile = "multiface_firmware_rev11.bin"; 5092 break; 5093 case Digiface: 5094 if (hdsp->firmware_rev == 0xa) 5095 fwfile = "digiface_firmware.bin"; 5096 else 5097 fwfile = "digiface_firmware_rev11.bin"; 5098 break; 5099 default: 5100 dev_err(hdsp->card->dev, 5101 "invalid io_type %d\n", hdsp->io_type); 5102 return -EINVAL; 5103 } 5104 5105 if (request_firmware(&fw, fwfile, &hdsp->pci->dev)) { 5106 dev_err(hdsp->card->dev, 5107 "cannot load firmware %s\n", fwfile); 5108 return -ENOENT; 5109 } 5110 if (fw->size < HDSP_FIRMWARE_SIZE) { 5111 dev_err(hdsp->card->dev, 5112 "too short firmware size %d (expected %d)\n", 5113 (int)fw->size, HDSP_FIRMWARE_SIZE); 5114 return -EINVAL; 5115 } 5116 5117 hdsp->firmware = fw; 5118 5119 hdsp->state |= HDSP_FirmwareCached; 5120 5121 if ((err = snd_hdsp_load_firmware_from_cache(hdsp)) < 0) 5122 return err; 5123 5124 if (!(hdsp->state & HDSP_InitializationComplete)) { 5125 if ((err = snd_hdsp_enable_io(hdsp)) < 0) 5126 return err; 5127 5128 if ((err = snd_hdsp_create_hwdep(hdsp->card, hdsp)) < 0) { 5129 dev_err(hdsp->card->dev, 5130 "error creating hwdep device\n"); 5131 return err; 5132 } 5133 snd_hdsp_initialize_channels(hdsp); 5134 snd_hdsp_initialize_midi_flush(hdsp); 5135 if ((err = snd_hdsp_create_alsa_devices(hdsp->card, hdsp)) < 0) { 5136 dev_err(hdsp->card->dev, 5137 "error creating alsa devices\n"); 5138 return err; 5139 } 5140 } 5141 return 0; 5142 } 5143 5144 static int snd_hdsp_create(struct snd_card *card, 5145 struct hdsp *hdsp) 5146 { 5147 struct pci_dev *pci = hdsp->pci; 5148 int err; 5149 int is_9652 = 0; 5150 int is_9632 = 0; 5151 5152 hdsp->irq = -1; 5153 hdsp->state = 0; 5154 hdsp->midi[0].rmidi = NULL; 5155 hdsp->midi[1].rmidi = NULL; 5156 hdsp->midi[0].input = NULL; 5157 hdsp->midi[1].input = NULL; 5158 hdsp->midi[0].output = NULL; 5159 hdsp->midi[1].output = NULL; 5160 hdsp->midi[0].pending = 0; 5161 hdsp->midi[1].pending = 0; 5162 spin_lock_init(&hdsp->midi[0].lock); 5163 spin_lock_init(&hdsp->midi[1].lock); 5164 hdsp->iobase = NULL; 5165 hdsp->control_register = 0; 5166 hdsp->control2_register = 0; 5167 hdsp->io_type = Undefined; 5168 hdsp->max_channels = 26; 5169 5170 hdsp->card = card; 5171 5172 spin_lock_init(&hdsp->lock); 5173 5174 tasklet_init(&hdsp->midi_tasklet, hdsp_midi_tasklet, (unsigned long)hdsp); 5175 5176 pci_read_config_word(hdsp->pci, PCI_CLASS_REVISION, &hdsp->firmware_rev); 5177 hdsp->firmware_rev &= 0xff; 5178 5179 /* From Martin Bjoernsen : 5180 "It is important that the card's latency timer register in 5181 the PCI configuration space is set to a value much larger 5182 than 0 by the computer's BIOS or the driver. 5183 The windows driver always sets this 8 bit register [...] 5184 to its maximum 255 to avoid problems with some computers." 5185 */ 5186 pci_write_config_byte(hdsp->pci, PCI_LATENCY_TIMER, 0xFF); 5187 5188 strcpy(card->driver, "H-DSP"); 5189 strcpy(card->mixername, "Xilinx FPGA"); 5190 5191 if (hdsp->firmware_rev < 0xa) 5192 return -ENODEV; 5193 else if (hdsp->firmware_rev < 0x64) 5194 hdsp->card_name = "RME Hammerfall DSP"; 5195 else if (hdsp->firmware_rev < 0x96) { 5196 hdsp->card_name = "RME HDSP 9652"; 5197 is_9652 = 1; 5198 } else { 5199 hdsp->card_name = "RME HDSP 9632"; 5200 hdsp->max_channels = 16; 5201 is_9632 = 1; 5202 } 5203 5204 if ((err = pci_enable_device(pci)) < 0) 5205 return err; 5206 5207 pci_set_master(hdsp->pci); 5208 5209 if ((err = pci_request_regions(pci, "hdsp")) < 0) 5210 return err; 5211 hdsp->port = pci_resource_start(pci, 0); 5212 if ((hdsp->iobase = ioremap_nocache(hdsp->port, HDSP_IO_EXTENT)) == NULL) { 5213 dev_err(hdsp->card->dev, "unable to remap region 0x%lx-0x%lx\n", 5214 hdsp->port, hdsp->port + HDSP_IO_EXTENT - 1); 5215 return -EBUSY; 5216 } 5217 5218 if (request_irq(pci->irq, snd_hdsp_interrupt, IRQF_SHARED, 5219 KBUILD_MODNAME, hdsp)) { 5220 dev_err(hdsp->card->dev, "unable to use IRQ %d\n", pci->irq); 5221 return -EBUSY; 5222 } 5223 5224 hdsp->irq = pci->irq; 5225 hdsp->precise_ptr = 0; 5226 hdsp->use_midi_tasklet = 1; 5227 hdsp->dds_value = 0; 5228 5229 if ((err = snd_hdsp_initialize_memory(hdsp)) < 0) 5230 return err; 5231 5232 if (!is_9652 && !is_9632) { 5233 /* we wait a maximum of 10 seconds to let freshly 5234 * inserted cardbus cards do their hardware init */ 5235 err = hdsp_wait_for_iobox(hdsp, 1000, 10); 5236 5237 if (err < 0) 5238 return err; 5239 5240 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 5241 if ((err = hdsp_request_fw_loader(hdsp)) < 0) 5242 /* we don't fail as this can happen 5243 if userspace is not ready for 5244 firmware upload 5245 */ 5246 dev_err(hdsp->card->dev, 5247 "couldn't get firmware from userspace. try using hdsploader\n"); 5248 else 5249 /* init is complete, we return */ 5250 return 0; 5251 /* we defer initialization */ 5252 dev_info(hdsp->card->dev, 5253 "card initialization pending : waiting for firmware\n"); 5254 if ((err = snd_hdsp_create_hwdep(card, hdsp)) < 0) 5255 return err; 5256 return 0; 5257 } else { 5258 dev_info(hdsp->card->dev, 5259 "Firmware already present, initializing card.\n"); 5260 if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version2) 5261 hdsp->io_type = RPM; 5262 else if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version1) 5263 hdsp->io_type = Multiface; 5264 else 5265 hdsp->io_type = Digiface; 5266 } 5267 } 5268 5269 if ((err = snd_hdsp_enable_io(hdsp)) != 0) 5270 return err; 5271 5272 if (is_9652) 5273 hdsp->io_type = H9652; 5274 5275 if (is_9632) 5276 hdsp->io_type = H9632; 5277 5278 if ((err = snd_hdsp_create_hwdep(card, hdsp)) < 0) 5279 return err; 5280 5281 snd_hdsp_initialize_channels(hdsp); 5282 snd_hdsp_initialize_midi_flush(hdsp); 5283 5284 hdsp->state |= HDSP_FirmwareLoaded; 5285 5286 if ((err = snd_hdsp_create_alsa_devices(card, hdsp)) < 0) 5287 return err; 5288 5289 return 0; 5290 } 5291 5292 static int snd_hdsp_free(struct hdsp *hdsp) 5293 { 5294 if (hdsp->port) { 5295 /* stop the audio, and cancel all interrupts */ 5296 tasklet_kill(&hdsp->midi_tasklet); 5297 hdsp->control_register &= ~(HDSP_Start|HDSP_AudioInterruptEnable|HDSP_Midi0InterruptEnable|HDSP_Midi1InterruptEnable); 5298 hdsp_write (hdsp, HDSP_controlRegister, hdsp->control_register); 5299 } 5300 5301 if (hdsp->irq >= 0) 5302 free_irq(hdsp->irq, (void *)hdsp); 5303 5304 snd_hdsp_free_buffers(hdsp); 5305 5306 release_firmware(hdsp->firmware); 5307 vfree(hdsp->fw_uploaded); 5308 iounmap(hdsp->iobase); 5309 5310 if (hdsp->port) 5311 pci_release_regions(hdsp->pci); 5312 5313 pci_disable_device(hdsp->pci); 5314 return 0; 5315 } 5316 5317 static void snd_hdsp_card_free(struct snd_card *card) 5318 { 5319 struct hdsp *hdsp = card->private_data; 5320 5321 if (hdsp) 5322 snd_hdsp_free(hdsp); 5323 } 5324 5325 static int snd_hdsp_probe(struct pci_dev *pci, 5326 const struct pci_device_id *pci_id) 5327 { 5328 static int dev; 5329 struct hdsp *hdsp; 5330 struct snd_card *card; 5331 int err; 5332 5333 if (dev >= SNDRV_CARDS) 5334 return -ENODEV; 5335 if (!enable[dev]) { 5336 dev++; 5337 return -ENOENT; 5338 } 5339 5340 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 5341 sizeof(struct hdsp), &card); 5342 if (err < 0) 5343 return err; 5344 5345 hdsp = card->private_data; 5346 card->private_free = snd_hdsp_card_free; 5347 hdsp->dev = dev; 5348 hdsp->pci = pci; 5349 5350 if ((err = snd_hdsp_create(card, hdsp)) < 0) { 5351 snd_card_free(card); 5352 return err; 5353 } 5354 5355 strcpy(card->shortname, "Hammerfall DSP"); 5356 sprintf(card->longname, "%s at 0x%lx, irq %d", hdsp->card_name, 5357 hdsp->port, hdsp->irq); 5358 5359 if ((err = snd_card_register(card)) < 0) { 5360 snd_card_free(card); 5361 return err; 5362 } 5363 pci_set_drvdata(pci, card); 5364 dev++; 5365 return 0; 5366 } 5367 5368 static void snd_hdsp_remove(struct pci_dev *pci) 5369 { 5370 snd_card_free(pci_get_drvdata(pci)); 5371 } 5372 5373 static struct pci_driver hdsp_driver = { 5374 .name = KBUILD_MODNAME, 5375 .id_table = snd_hdsp_ids, 5376 .probe = snd_hdsp_probe, 5377 .remove = snd_hdsp_remove, 5378 }; 5379 5380 module_pci_driver(hdsp_driver); 5381