1 /* 2 * ALSA driver for RME Hammerfall DSP audio interface(s) 3 * 4 * Copyright (c) 2002 Paul Davis 5 * Marcus Andersson 6 * Thomas Charbonnel 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/init.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/pci.h> 28 #include <linux/firmware.h> 29 #include <linux/module.h> 30 #include <linux/math64.h> 31 #include <linux/vmalloc.h> 32 33 #include <sound/core.h> 34 #include <sound/control.h> 35 #include <sound/pcm.h> 36 #include <sound/info.h> 37 #include <sound/asoundef.h> 38 #include <sound/rawmidi.h> 39 #include <sound/hwdep.h> 40 #include <sound/initval.h> 41 #include <sound/hdsp.h> 42 43 #include <asm/byteorder.h> 44 #include <asm/current.h> 45 #include <asm/io.h> 46 47 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 48 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 49 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 50 51 module_param_array(index, int, NULL, 0444); 52 MODULE_PARM_DESC(index, "Index value for RME Hammerfall DSP interface."); 53 module_param_array(id, charp, NULL, 0444); 54 MODULE_PARM_DESC(id, "ID string for RME Hammerfall DSP interface."); 55 module_param_array(enable, bool, NULL, 0444); 56 MODULE_PARM_DESC(enable, "Enable/disable specific Hammerfall DSP soundcards."); 57 MODULE_AUTHOR("Paul Davis <paul@linuxaudiosystems.com>, Marcus Andersson, Thomas Charbonnel <thomas@undata.org>"); 58 MODULE_DESCRIPTION("RME Hammerfall DSP"); 59 MODULE_LICENSE("GPL"); 60 MODULE_SUPPORTED_DEVICE("{{RME Hammerfall-DSP}," 61 "{RME HDSP-9652}," 62 "{RME HDSP-9632}}"); 63 MODULE_FIRMWARE("rpm_firmware.bin"); 64 MODULE_FIRMWARE("multiface_firmware.bin"); 65 MODULE_FIRMWARE("multiface_firmware_rev11.bin"); 66 MODULE_FIRMWARE("digiface_firmware.bin"); 67 MODULE_FIRMWARE("digiface_firmware_rev11.bin"); 68 69 #define HDSP_MAX_CHANNELS 26 70 #define HDSP_MAX_DS_CHANNELS 14 71 #define HDSP_MAX_QS_CHANNELS 8 72 #define DIGIFACE_SS_CHANNELS 26 73 #define DIGIFACE_DS_CHANNELS 14 74 #define MULTIFACE_SS_CHANNELS 18 75 #define MULTIFACE_DS_CHANNELS 14 76 #define H9652_SS_CHANNELS 26 77 #define H9652_DS_CHANNELS 14 78 /* This does not include possible Analog Extension Boards 79 AEBs are detected at card initialization 80 */ 81 #define H9632_SS_CHANNELS 12 82 #define H9632_DS_CHANNELS 8 83 #define H9632_QS_CHANNELS 4 84 #define RPM_CHANNELS 6 85 86 /* Write registers. These are defined as byte-offsets from the iobase value. 87 */ 88 #define HDSP_resetPointer 0 89 #define HDSP_freqReg 0 90 #define HDSP_outputBufferAddress 32 91 #define HDSP_inputBufferAddress 36 92 #define HDSP_controlRegister 64 93 #define HDSP_interruptConfirmation 96 94 #define HDSP_outputEnable 128 95 #define HDSP_control2Reg 256 96 #define HDSP_midiDataOut0 352 97 #define HDSP_midiDataOut1 356 98 #define HDSP_fifoData 368 99 #define HDSP_inputEnable 384 100 101 /* Read registers. These are defined as byte-offsets from the iobase value 102 */ 103 104 #define HDSP_statusRegister 0 105 #define HDSP_timecode 128 106 #define HDSP_status2Register 192 107 #define HDSP_midiDataIn0 360 108 #define HDSP_midiDataIn1 364 109 #define HDSP_midiStatusOut0 384 110 #define HDSP_midiStatusOut1 388 111 #define HDSP_midiStatusIn0 392 112 #define HDSP_midiStatusIn1 396 113 #define HDSP_fifoStatus 400 114 115 /* the meters are regular i/o-mapped registers, but offset 116 considerably from the rest. the peak registers are reset 117 when read; the least-significant 4 bits are full-scale counters; 118 the actual peak value is in the most-significant 24 bits. 119 */ 120 121 #define HDSP_playbackPeakLevel 4096 /* 26 * 32 bit values */ 122 #define HDSP_inputPeakLevel 4224 /* 26 * 32 bit values */ 123 #define HDSP_outputPeakLevel 4352 /* (26+2) * 32 bit values */ 124 #define HDSP_playbackRmsLevel 4612 /* 26 * 64 bit values */ 125 #define HDSP_inputRmsLevel 4868 /* 26 * 64 bit values */ 126 127 128 /* This is for H9652 cards 129 Peak values are read downward from the base 130 Rms values are read upward 131 There are rms values for the outputs too 132 26*3 values are read in ss mode 133 14*3 in ds mode, with no gap between values 134 */ 135 #define HDSP_9652_peakBase 7164 136 #define HDSP_9652_rmsBase 4096 137 138 /* c.f. the hdsp_9632_meters_t struct */ 139 #define HDSP_9632_metersBase 4096 140 141 #define HDSP_IO_EXTENT 7168 142 143 /* control2 register bits */ 144 145 #define HDSP_TMS 0x01 146 #define HDSP_TCK 0x02 147 #define HDSP_TDI 0x04 148 #define HDSP_JTAG 0x08 149 #define HDSP_PWDN 0x10 150 #define HDSP_PROGRAM 0x020 151 #define HDSP_CONFIG_MODE_0 0x040 152 #define HDSP_CONFIG_MODE_1 0x080 153 #define HDSP_VERSION_BIT (0x100 | HDSP_S_LOAD) 154 #define HDSP_BIGENDIAN_MODE 0x200 155 #define HDSP_RD_MULTIPLE 0x400 156 #define HDSP_9652_ENABLE_MIXER 0x800 157 #define HDSP_S200 0x800 158 #define HDSP_S300 (0x100 | HDSP_S200) /* dummy, purpose of 0x100 unknown */ 159 #define HDSP_CYCLIC_MODE 0x1000 160 #define HDSP_TDO 0x10000000 161 162 #define HDSP_S_PROGRAM (HDSP_CYCLIC_MODE|HDSP_PROGRAM|HDSP_CONFIG_MODE_0) 163 #define HDSP_S_LOAD (HDSP_CYCLIC_MODE|HDSP_PROGRAM|HDSP_CONFIG_MODE_1) 164 165 /* Control Register bits */ 166 167 #define HDSP_Start (1<<0) /* start engine */ 168 #define HDSP_Latency0 (1<<1) /* buffer size = 2^n where n is defined by Latency{2,1,0} */ 169 #define HDSP_Latency1 (1<<2) /* [ see above ] */ 170 #define HDSP_Latency2 (1<<3) /* [ see above ] */ 171 #define HDSP_ClockModeMaster (1<<4) /* 1=Master, 0=Slave/Autosync */ 172 #define HDSP_AudioInterruptEnable (1<<5) /* what do you think ? */ 173 #define HDSP_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz/176.4kHz 1=48kHz/96kHz/192kHz */ 174 #define HDSP_Frequency1 (1<<7) /* 0=32kHz/64kHz/128kHz */ 175 #define HDSP_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 176 #define HDSP_SPDIFProfessional (1<<9) /* 0=consumer, 1=professional */ 177 #define HDSP_SPDIFEmphasis (1<<10) /* 0=none, 1=on */ 178 #define HDSP_SPDIFNonAudio (1<<11) /* 0=off, 1=on */ 179 #define HDSP_SPDIFOpticalOut (1<<12) /* 1=use 1st ADAT connector for SPDIF, 0=do not */ 180 #define HDSP_SyncRef2 (1<<13) 181 #define HDSP_SPDIFInputSelect0 (1<<14) 182 #define HDSP_SPDIFInputSelect1 (1<<15) 183 #define HDSP_SyncRef0 (1<<16) 184 #define HDSP_SyncRef1 (1<<17) 185 #define HDSP_AnalogExtensionBoard (1<<18) /* For H9632 cards */ 186 #define HDSP_XLRBreakoutCable (1<<20) /* For H9632 cards */ 187 #define HDSP_Midi0InterruptEnable (1<<22) 188 #define HDSP_Midi1InterruptEnable (1<<23) 189 #define HDSP_LineOut (1<<24) 190 #define HDSP_ADGain0 (1<<25) /* From here : H9632 specific */ 191 #define HDSP_ADGain1 (1<<26) 192 #define HDSP_DAGain0 (1<<27) 193 #define HDSP_DAGain1 (1<<28) 194 #define HDSP_PhoneGain0 (1<<29) 195 #define HDSP_PhoneGain1 (1<<30) 196 #define HDSP_QuadSpeed (1<<31) 197 198 /* RPM uses some of the registers for special purposes */ 199 #define HDSP_RPM_Inp12 0x04A00 200 #define HDSP_RPM_Inp12_Phon_6dB 0x00800 /* Dolby */ 201 #define HDSP_RPM_Inp12_Phon_0dB 0x00000 /* .. */ 202 #define HDSP_RPM_Inp12_Phon_n6dB 0x04000 /* inp_0 */ 203 #define HDSP_RPM_Inp12_Line_0dB 0x04200 /* Dolby+PRO */ 204 #define HDSP_RPM_Inp12_Line_n6dB 0x00200 /* PRO */ 205 206 #define HDSP_RPM_Inp34 0x32000 207 #define HDSP_RPM_Inp34_Phon_6dB 0x20000 /* SyncRef1 */ 208 #define HDSP_RPM_Inp34_Phon_0dB 0x00000 /* .. */ 209 #define HDSP_RPM_Inp34_Phon_n6dB 0x02000 /* SyncRef2 */ 210 #define HDSP_RPM_Inp34_Line_0dB 0x30000 /* SyncRef1+SyncRef0 */ 211 #define HDSP_RPM_Inp34_Line_n6dB 0x10000 /* SyncRef0 */ 212 213 #define HDSP_RPM_Bypass 0x01000 214 215 #define HDSP_RPM_Disconnect 0x00001 216 217 #define HDSP_ADGainMask (HDSP_ADGain0|HDSP_ADGain1) 218 #define HDSP_ADGainMinus10dBV HDSP_ADGainMask 219 #define HDSP_ADGainPlus4dBu (HDSP_ADGain0) 220 #define HDSP_ADGainLowGain 0 221 222 #define HDSP_DAGainMask (HDSP_DAGain0|HDSP_DAGain1) 223 #define HDSP_DAGainHighGain HDSP_DAGainMask 224 #define HDSP_DAGainPlus4dBu (HDSP_DAGain0) 225 #define HDSP_DAGainMinus10dBV 0 226 227 #define HDSP_PhoneGainMask (HDSP_PhoneGain0|HDSP_PhoneGain1) 228 #define HDSP_PhoneGain0dB HDSP_PhoneGainMask 229 #define HDSP_PhoneGainMinus6dB (HDSP_PhoneGain0) 230 #define HDSP_PhoneGainMinus12dB 0 231 232 #define HDSP_LatencyMask (HDSP_Latency0|HDSP_Latency1|HDSP_Latency2) 233 #define HDSP_FrequencyMask (HDSP_Frequency0|HDSP_Frequency1|HDSP_DoubleSpeed|HDSP_QuadSpeed) 234 235 #define HDSP_SPDIFInputMask (HDSP_SPDIFInputSelect0|HDSP_SPDIFInputSelect1) 236 #define HDSP_SPDIFInputADAT1 0 237 #define HDSP_SPDIFInputCoaxial (HDSP_SPDIFInputSelect0) 238 #define HDSP_SPDIFInputCdrom (HDSP_SPDIFInputSelect1) 239 #define HDSP_SPDIFInputAES (HDSP_SPDIFInputSelect0|HDSP_SPDIFInputSelect1) 240 241 #define HDSP_SyncRefMask (HDSP_SyncRef0|HDSP_SyncRef1|HDSP_SyncRef2) 242 #define HDSP_SyncRef_ADAT1 0 243 #define HDSP_SyncRef_ADAT2 (HDSP_SyncRef0) 244 #define HDSP_SyncRef_ADAT3 (HDSP_SyncRef1) 245 #define HDSP_SyncRef_SPDIF (HDSP_SyncRef0|HDSP_SyncRef1) 246 #define HDSP_SyncRef_WORD (HDSP_SyncRef2) 247 #define HDSP_SyncRef_ADAT_SYNC (HDSP_SyncRef0|HDSP_SyncRef2) 248 249 /* Sample Clock Sources */ 250 251 #define HDSP_CLOCK_SOURCE_AUTOSYNC 0 252 #define HDSP_CLOCK_SOURCE_INTERNAL_32KHZ 1 253 #define HDSP_CLOCK_SOURCE_INTERNAL_44_1KHZ 2 254 #define HDSP_CLOCK_SOURCE_INTERNAL_48KHZ 3 255 #define HDSP_CLOCK_SOURCE_INTERNAL_64KHZ 4 256 #define HDSP_CLOCK_SOURCE_INTERNAL_88_2KHZ 5 257 #define HDSP_CLOCK_SOURCE_INTERNAL_96KHZ 6 258 #define HDSP_CLOCK_SOURCE_INTERNAL_128KHZ 7 259 #define HDSP_CLOCK_SOURCE_INTERNAL_176_4KHZ 8 260 #define HDSP_CLOCK_SOURCE_INTERNAL_192KHZ 9 261 262 /* Preferred sync reference choices - used by "pref_sync_ref" control switch */ 263 264 #define HDSP_SYNC_FROM_WORD 0 265 #define HDSP_SYNC_FROM_SPDIF 1 266 #define HDSP_SYNC_FROM_ADAT1 2 267 #define HDSP_SYNC_FROM_ADAT_SYNC 3 268 #define HDSP_SYNC_FROM_ADAT2 4 269 #define HDSP_SYNC_FROM_ADAT3 5 270 271 /* SyncCheck status */ 272 273 #define HDSP_SYNC_CHECK_NO_LOCK 0 274 #define HDSP_SYNC_CHECK_LOCK 1 275 #define HDSP_SYNC_CHECK_SYNC 2 276 277 /* AutoSync references - used by "autosync_ref" control switch */ 278 279 #define HDSP_AUTOSYNC_FROM_WORD 0 280 #define HDSP_AUTOSYNC_FROM_ADAT_SYNC 1 281 #define HDSP_AUTOSYNC_FROM_SPDIF 2 282 #define HDSP_AUTOSYNC_FROM_NONE 3 283 #define HDSP_AUTOSYNC_FROM_ADAT1 4 284 #define HDSP_AUTOSYNC_FROM_ADAT2 5 285 #define HDSP_AUTOSYNC_FROM_ADAT3 6 286 287 /* Possible sources of S/PDIF input */ 288 289 #define HDSP_SPDIFIN_OPTICAL 0 /* optical (ADAT1) */ 290 #define HDSP_SPDIFIN_COAXIAL 1 /* coaxial (RCA) */ 291 #define HDSP_SPDIFIN_INTERNAL 2 /* internal (CDROM) */ 292 #define HDSP_SPDIFIN_AES 3 /* xlr for H9632 (AES)*/ 293 294 #define HDSP_Frequency32KHz HDSP_Frequency0 295 #define HDSP_Frequency44_1KHz HDSP_Frequency1 296 #define HDSP_Frequency48KHz (HDSP_Frequency1|HDSP_Frequency0) 297 #define HDSP_Frequency64KHz (HDSP_DoubleSpeed|HDSP_Frequency0) 298 #define HDSP_Frequency88_2KHz (HDSP_DoubleSpeed|HDSP_Frequency1) 299 #define HDSP_Frequency96KHz (HDSP_DoubleSpeed|HDSP_Frequency1|HDSP_Frequency0) 300 /* For H9632 cards */ 301 #define HDSP_Frequency128KHz (HDSP_QuadSpeed|HDSP_DoubleSpeed|HDSP_Frequency0) 302 #define HDSP_Frequency176_4KHz (HDSP_QuadSpeed|HDSP_DoubleSpeed|HDSP_Frequency1) 303 #define HDSP_Frequency192KHz (HDSP_QuadSpeed|HDSP_DoubleSpeed|HDSP_Frequency1|HDSP_Frequency0) 304 /* RME says n = 104857600000000, but in the windows MADI driver, I see: 305 return 104857600000000 / rate; // 100 MHz 306 return 110100480000000 / rate; // 105 MHz 307 */ 308 #define DDS_NUMERATOR 104857600000000ULL; /* = 2^20 * 10^8 */ 309 310 #define hdsp_encode_latency(x) (((x)<<1) & HDSP_LatencyMask) 311 #define hdsp_decode_latency(x) (((x) & HDSP_LatencyMask)>>1) 312 313 #define hdsp_encode_spdif_in(x) (((x)&0x3)<<14) 314 #define hdsp_decode_spdif_in(x) (((x)>>14)&0x3) 315 316 /* Status Register bits */ 317 318 #define HDSP_audioIRQPending (1<<0) 319 #define HDSP_Lock2 (1<<1) /* this is for Digiface and H9652 */ 320 #define HDSP_spdifFrequency3 HDSP_Lock2 /* this is for H9632 only */ 321 #define HDSP_Lock1 (1<<2) 322 #define HDSP_Lock0 (1<<3) 323 #define HDSP_SPDIFSync (1<<4) 324 #define HDSP_TimecodeLock (1<<5) 325 #define HDSP_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 326 #define HDSP_Sync2 (1<<16) 327 #define HDSP_Sync1 (1<<17) 328 #define HDSP_Sync0 (1<<18) 329 #define HDSP_DoubleSpeedStatus (1<<19) 330 #define HDSP_ConfigError (1<<20) 331 #define HDSP_DllError (1<<21) 332 #define HDSP_spdifFrequency0 (1<<22) 333 #define HDSP_spdifFrequency1 (1<<23) 334 #define HDSP_spdifFrequency2 (1<<24) 335 #define HDSP_SPDIFErrorFlag (1<<25) 336 #define HDSP_BufferID (1<<26) 337 #define HDSP_TimecodeSync (1<<27) 338 #define HDSP_AEBO (1<<28) /* H9632 specific Analog Extension Boards */ 339 #define HDSP_AEBI (1<<29) /* 0 = present, 1 = absent */ 340 #define HDSP_midi0IRQPending (1<<30) 341 #define HDSP_midi1IRQPending (1<<31) 342 343 #define HDSP_spdifFrequencyMask (HDSP_spdifFrequency0|HDSP_spdifFrequency1|HDSP_spdifFrequency2) 344 #define HDSP_spdifFrequencyMask_9632 (HDSP_spdifFrequency0|\ 345 HDSP_spdifFrequency1|\ 346 HDSP_spdifFrequency2|\ 347 HDSP_spdifFrequency3) 348 349 #define HDSP_spdifFrequency32KHz (HDSP_spdifFrequency0) 350 #define HDSP_spdifFrequency44_1KHz (HDSP_spdifFrequency1) 351 #define HDSP_spdifFrequency48KHz (HDSP_spdifFrequency0|HDSP_spdifFrequency1) 352 353 #define HDSP_spdifFrequency64KHz (HDSP_spdifFrequency2) 354 #define HDSP_spdifFrequency88_2KHz (HDSP_spdifFrequency0|HDSP_spdifFrequency2) 355 #define HDSP_spdifFrequency96KHz (HDSP_spdifFrequency2|HDSP_spdifFrequency1) 356 357 /* This is for H9632 cards */ 358 #define HDSP_spdifFrequency128KHz (HDSP_spdifFrequency0|\ 359 HDSP_spdifFrequency1|\ 360 HDSP_spdifFrequency2) 361 #define HDSP_spdifFrequency176_4KHz HDSP_spdifFrequency3 362 #define HDSP_spdifFrequency192KHz (HDSP_spdifFrequency3|HDSP_spdifFrequency0) 363 364 /* Status2 Register bits */ 365 366 #define HDSP_version0 (1<<0) 367 #define HDSP_version1 (1<<1) 368 #define HDSP_version2 (1<<2) 369 #define HDSP_wc_lock (1<<3) 370 #define HDSP_wc_sync (1<<4) 371 #define HDSP_inp_freq0 (1<<5) 372 #define HDSP_inp_freq1 (1<<6) 373 #define HDSP_inp_freq2 (1<<7) 374 #define HDSP_SelSyncRef0 (1<<8) 375 #define HDSP_SelSyncRef1 (1<<9) 376 #define HDSP_SelSyncRef2 (1<<10) 377 378 #define HDSP_wc_valid (HDSP_wc_lock|HDSP_wc_sync) 379 380 #define HDSP_systemFrequencyMask (HDSP_inp_freq0|HDSP_inp_freq1|HDSP_inp_freq2) 381 #define HDSP_systemFrequency32 (HDSP_inp_freq0) 382 #define HDSP_systemFrequency44_1 (HDSP_inp_freq1) 383 #define HDSP_systemFrequency48 (HDSP_inp_freq0|HDSP_inp_freq1) 384 #define HDSP_systemFrequency64 (HDSP_inp_freq2) 385 #define HDSP_systemFrequency88_2 (HDSP_inp_freq0|HDSP_inp_freq2) 386 #define HDSP_systemFrequency96 (HDSP_inp_freq1|HDSP_inp_freq2) 387 /* FIXME : more values for 9632 cards ? */ 388 389 #define HDSP_SelSyncRefMask (HDSP_SelSyncRef0|HDSP_SelSyncRef1|HDSP_SelSyncRef2) 390 #define HDSP_SelSyncRef_ADAT1 0 391 #define HDSP_SelSyncRef_ADAT2 (HDSP_SelSyncRef0) 392 #define HDSP_SelSyncRef_ADAT3 (HDSP_SelSyncRef1) 393 #define HDSP_SelSyncRef_SPDIF (HDSP_SelSyncRef0|HDSP_SelSyncRef1) 394 #define HDSP_SelSyncRef_WORD (HDSP_SelSyncRef2) 395 #define HDSP_SelSyncRef_ADAT_SYNC (HDSP_SelSyncRef0|HDSP_SelSyncRef2) 396 397 /* Card state flags */ 398 399 #define HDSP_InitializationComplete (1<<0) 400 #define HDSP_FirmwareLoaded (1<<1) 401 #define HDSP_FirmwareCached (1<<2) 402 403 /* FIFO wait times, defined in terms of 1/10ths of msecs */ 404 405 #define HDSP_LONG_WAIT 5000 406 #define HDSP_SHORT_WAIT 30 407 408 #define UNITY_GAIN 32768 409 #define MINUS_INFINITY_GAIN 0 410 411 /* the size of a substream (1 mono data stream) */ 412 413 #define HDSP_CHANNEL_BUFFER_SAMPLES (16*1024) 414 #define HDSP_CHANNEL_BUFFER_BYTES (4*HDSP_CHANNEL_BUFFER_SAMPLES) 415 416 /* the size of the area we need to allocate for DMA transfers. the 417 size is the same regardless of the number of channels - the 418 Multiface still uses the same memory area. 419 420 Note that we allocate 1 more channel than is apparently needed 421 because the h/w seems to write 1 byte beyond the end of the last 422 page. Sigh. 423 */ 424 425 #define HDSP_DMA_AREA_BYTES ((HDSP_MAX_CHANNELS+1) * HDSP_CHANNEL_BUFFER_BYTES) 426 #define HDSP_DMA_AREA_KILOBYTES (HDSP_DMA_AREA_BYTES/1024) 427 428 #define HDSP_FIRMWARE_SIZE (24413 * 4) 429 430 struct hdsp_9632_meters { 431 u32 input_peak[16]; 432 u32 playback_peak[16]; 433 u32 output_peak[16]; 434 u32 xxx_peak[16]; 435 u32 padding[64]; 436 u32 input_rms_low[16]; 437 u32 playback_rms_low[16]; 438 u32 output_rms_low[16]; 439 u32 xxx_rms_low[16]; 440 u32 input_rms_high[16]; 441 u32 playback_rms_high[16]; 442 u32 output_rms_high[16]; 443 u32 xxx_rms_high[16]; 444 }; 445 446 struct hdsp_midi { 447 struct hdsp *hdsp; 448 int id; 449 struct snd_rawmidi *rmidi; 450 struct snd_rawmidi_substream *input; 451 struct snd_rawmidi_substream *output; 452 char istimer; /* timer in use */ 453 struct timer_list timer; 454 spinlock_t lock; 455 int pending; 456 }; 457 458 struct hdsp { 459 spinlock_t lock; 460 struct snd_pcm_substream *capture_substream; 461 struct snd_pcm_substream *playback_substream; 462 struct hdsp_midi midi[2]; 463 struct tasklet_struct midi_tasklet; 464 int use_midi_tasklet; 465 int precise_ptr; 466 u32 control_register; /* cached value */ 467 u32 control2_register; /* cached value */ 468 u32 creg_spdif; 469 u32 creg_spdif_stream; 470 int clock_source_locked; 471 char *card_name; /* digiface/multiface/rpm */ 472 enum HDSP_IO_Type io_type; /* ditto, but for code use */ 473 unsigned short firmware_rev; 474 unsigned short state; /* stores state bits */ 475 const struct firmware *firmware; 476 u32 *fw_uploaded; 477 size_t period_bytes; /* guess what this is */ 478 unsigned char max_channels; 479 unsigned char qs_in_channels; /* quad speed mode for H9632 */ 480 unsigned char ds_in_channels; 481 unsigned char ss_in_channels; /* different for multiface/digiface */ 482 unsigned char qs_out_channels; 483 unsigned char ds_out_channels; 484 unsigned char ss_out_channels; 485 486 struct snd_dma_buffer capture_dma_buf; 487 struct snd_dma_buffer playback_dma_buf; 488 unsigned char *capture_buffer; /* suitably aligned address */ 489 unsigned char *playback_buffer; /* suitably aligned address */ 490 491 pid_t capture_pid; 492 pid_t playback_pid; 493 int running; 494 int system_sample_rate; 495 char *channel_map; 496 int dev; 497 int irq; 498 unsigned long port; 499 void __iomem *iobase; 500 struct snd_card *card; 501 struct snd_pcm *pcm; 502 struct snd_hwdep *hwdep; 503 struct pci_dev *pci; 504 struct snd_kcontrol *spdif_ctl; 505 unsigned short mixer_matrix[HDSP_MATRIX_MIXER_SIZE]; 506 unsigned int dds_value; /* last value written to freq register */ 507 }; 508 509 /* These tables map the ALSA channels 1..N to the channels that we 510 need to use in order to find the relevant channel buffer. RME 511 refer to this kind of mapping as between "the ADAT channel and 512 the DMA channel." We index it using the logical audio channel, 513 and the value is the DMA channel (i.e. channel buffer number) 514 where the data for that channel can be read/written from/to. 515 */ 516 517 static char channel_map_df_ss[HDSP_MAX_CHANNELS] = { 518 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 519 18, 19, 20, 21, 22, 23, 24, 25 520 }; 521 522 static char channel_map_mf_ss[HDSP_MAX_CHANNELS] = { /* Multiface */ 523 /* Analog */ 524 0, 1, 2, 3, 4, 5, 6, 7, 525 /* ADAT 2 */ 526 16, 17, 18, 19, 20, 21, 22, 23, 527 /* SPDIF */ 528 24, 25, 529 -1, -1, -1, -1, -1, -1, -1, -1 530 }; 531 532 static char channel_map_ds[HDSP_MAX_CHANNELS] = { 533 /* ADAT channels are remapped */ 534 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 535 /* channels 12 and 13 are S/PDIF */ 536 24, 25, 537 /* others don't exist */ 538 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 539 }; 540 541 static char channel_map_H9632_ss[HDSP_MAX_CHANNELS] = { 542 /* ADAT channels */ 543 0, 1, 2, 3, 4, 5, 6, 7, 544 /* SPDIF */ 545 8, 9, 546 /* Analog */ 547 10, 11, 548 /* AO4S-192 and AI4S-192 extension boards */ 549 12, 13, 14, 15, 550 /* others don't exist */ 551 -1, -1, -1, -1, -1, -1, -1, -1, 552 -1, -1 553 }; 554 555 static char channel_map_H9632_ds[HDSP_MAX_CHANNELS] = { 556 /* ADAT */ 557 1, 3, 5, 7, 558 /* SPDIF */ 559 8, 9, 560 /* Analog */ 561 10, 11, 562 /* AO4S-192 and AI4S-192 extension boards */ 563 12, 13, 14, 15, 564 /* others don't exist */ 565 -1, -1, -1, -1, -1, -1, -1, -1, 566 -1, -1, -1, -1, -1, -1 567 }; 568 569 static char channel_map_H9632_qs[HDSP_MAX_CHANNELS] = { 570 /* ADAT is disabled in this mode */ 571 /* SPDIF */ 572 8, 9, 573 /* Analog */ 574 10, 11, 575 /* AO4S-192 and AI4S-192 extension boards */ 576 12, 13, 14, 15, 577 /* others don't exist */ 578 -1, -1, -1, -1, -1, -1, -1, -1, 579 -1, -1, -1, -1, -1, -1, -1, -1, 580 -1, -1 581 }; 582 583 static int snd_hammerfall_get_buffer(struct pci_dev *pci, struct snd_dma_buffer *dmab, size_t size) 584 { 585 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 586 dmab->dev.dev = snd_dma_pci_data(pci); 587 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 588 size, dmab) < 0) 589 return -ENOMEM; 590 return 0; 591 } 592 593 static void snd_hammerfall_free_buffer(struct snd_dma_buffer *dmab, struct pci_dev *pci) 594 { 595 if (dmab->area) 596 snd_dma_free_pages(dmab); 597 } 598 599 600 static const struct pci_device_id snd_hdsp_ids[] = { 601 { 602 .vendor = PCI_VENDOR_ID_XILINX, 603 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP, 604 .subvendor = PCI_ANY_ID, 605 .subdevice = PCI_ANY_ID, 606 }, /* RME Hammerfall-DSP */ 607 { 0, }, 608 }; 609 610 MODULE_DEVICE_TABLE(pci, snd_hdsp_ids); 611 612 /* prototypes */ 613 static int snd_hdsp_create_alsa_devices(struct snd_card *card, struct hdsp *hdsp); 614 static int snd_hdsp_create_pcm(struct snd_card *card, struct hdsp *hdsp); 615 static int snd_hdsp_enable_io (struct hdsp *hdsp); 616 static void snd_hdsp_initialize_midi_flush (struct hdsp *hdsp); 617 static void snd_hdsp_initialize_channels (struct hdsp *hdsp); 618 static int hdsp_fifo_wait(struct hdsp *hdsp, int count, int timeout); 619 static int hdsp_autosync_ref(struct hdsp *hdsp); 620 static int snd_hdsp_set_defaults(struct hdsp *hdsp); 621 static void snd_hdsp_9652_enable_mixer (struct hdsp *hdsp); 622 623 static int hdsp_playback_to_output_key (struct hdsp *hdsp, int in, int out) 624 { 625 switch (hdsp->io_type) { 626 case Multiface: 627 case Digiface: 628 case RPM: 629 default: 630 if (hdsp->firmware_rev == 0xa) 631 return (64 * out) + (32 + (in)); 632 else 633 return (52 * out) + (26 + (in)); 634 case H9632: 635 return (32 * out) + (16 + (in)); 636 case H9652: 637 return (52 * out) + (26 + (in)); 638 } 639 } 640 641 static int hdsp_input_to_output_key (struct hdsp *hdsp, int in, int out) 642 { 643 switch (hdsp->io_type) { 644 case Multiface: 645 case Digiface: 646 case RPM: 647 default: 648 if (hdsp->firmware_rev == 0xa) 649 return (64 * out) + in; 650 else 651 return (52 * out) + in; 652 case H9632: 653 return (32 * out) + in; 654 case H9652: 655 return (52 * out) + in; 656 } 657 } 658 659 static void hdsp_write(struct hdsp *hdsp, int reg, int val) 660 { 661 writel(val, hdsp->iobase + reg); 662 } 663 664 static unsigned int hdsp_read(struct hdsp *hdsp, int reg) 665 { 666 return readl (hdsp->iobase + reg); 667 } 668 669 static int hdsp_check_for_iobox (struct hdsp *hdsp) 670 { 671 int i; 672 673 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) return 0; 674 for (i = 0; i < 500; i++) { 675 if (0 == (hdsp_read(hdsp, HDSP_statusRegister) & 676 HDSP_ConfigError)) { 677 if (i) { 678 dev_dbg(hdsp->card->dev, 679 "IO box found after %d ms\n", 680 (20 * i)); 681 } 682 return 0; 683 } 684 msleep(20); 685 } 686 dev_err(hdsp->card->dev, "no IO box connected!\n"); 687 hdsp->state &= ~HDSP_FirmwareLoaded; 688 return -EIO; 689 } 690 691 static int hdsp_wait_for_iobox(struct hdsp *hdsp, unsigned int loops, 692 unsigned int delay) 693 { 694 unsigned int i; 695 696 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 697 return 0; 698 699 for (i = 0; i != loops; ++i) { 700 if (hdsp_read(hdsp, HDSP_statusRegister) & HDSP_ConfigError) 701 msleep(delay); 702 else { 703 dev_dbg(hdsp->card->dev, "iobox found after %ums!\n", 704 i * delay); 705 return 0; 706 } 707 } 708 709 dev_info(hdsp->card->dev, "no IO box connected!\n"); 710 hdsp->state &= ~HDSP_FirmwareLoaded; 711 return -EIO; 712 } 713 714 static int snd_hdsp_load_firmware_from_cache(struct hdsp *hdsp) { 715 716 int i; 717 unsigned long flags; 718 const u32 *cache; 719 720 if (hdsp->fw_uploaded) 721 cache = hdsp->fw_uploaded; 722 else { 723 if (!hdsp->firmware) 724 return -ENODEV; 725 cache = (u32 *)hdsp->firmware->data; 726 if (!cache) 727 return -ENODEV; 728 } 729 730 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 731 732 dev_info(hdsp->card->dev, "loading firmware\n"); 733 734 hdsp_write (hdsp, HDSP_control2Reg, HDSP_S_PROGRAM); 735 hdsp_write (hdsp, HDSP_fifoData, 0); 736 737 if (hdsp_fifo_wait (hdsp, 0, HDSP_LONG_WAIT)) { 738 dev_info(hdsp->card->dev, 739 "timeout waiting for download preparation\n"); 740 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200); 741 return -EIO; 742 } 743 744 hdsp_write (hdsp, HDSP_control2Reg, HDSP_S_LOAD); 745 746 for (i = 0; i < HDSP_FIRMWARE_SIZE / 4; ++i) { 747 hdsp_write(hdsp, HDSP_fifoData, cache[i]); 748 if (hdsp_fifo_wait (hdsp, 127, HDSP_LONG_WAIT)) { 749 dev_info(hdsp->card->dev, 750 "timeout during firmware loading\n"); 751 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200); 752 return -EIO; 753 } 754 } 755 756 hdsp_fifo_wait(hdsp, 3, HDSP_LONG_WAIT); 757 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200); 758 759 ssleep(3); 760 #ifdef SNDRV_BIG_ENDIAN 761 hdsp->control2_register = HDSP_BIGENDIAN_MODE; 762 #else 763 hdsp->control2_register = 0; 764 #endif 765 hdsp_write (hdsp, HDSP_control2Reg, hdsp->control2_register); 766 dev_info(hdsp->card->dev, "finished firmware loading\n"); 767 768 } 769 if (hdsp->state & HDSP_InitializationComplete) { 770 dev_info(hdsp->card->dev, 771 "firmware loaded from cache, restoring defaults\n"); 772 spin_lock_irqsave(&hdsp->lock, flags); 773 snd_hdsp_set_defaults(hdsp); 774 spin_unlock_irqrestore(&hdsp->lock, flags); 775 } 776 777 hdsp->state |= HDSP_FirmwareLoaded; 778 779 return 0; 780 } 781 782 static int hdsp_get_iobox_version (struct hdsp *hdsp) 783 { 784 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 785 786 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 787 hdsp_write(hdsp, HDSP_fifoData, 0); 788 789 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) < 0) { 790 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S300); 791 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 792 } 793 794 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S200 | HDSP_PROGRAM); 795 hdsp_write (hdsp, HDSP_fifoData, 0); 796 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) < 0) { 797 hdsp->io_type = Multiface; 798 dev_info(hdsp->card->dev, "Multiface found\n"); 799 return 0; 800 } 801 802 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 803 hdsp_write(hdsp, HDSP_fifoData, 0); 804 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) == 0) { 805 hdsp->io_type = Digiface; 806 dev_info(hdsp->card->dev, "Digiface found\n"); 807 return 0; 808 } 809 810 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S300); 811 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 812 hdsp_write(hdsp, HDSP_fifoData, 0); 813 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) == 0) { 814 hdsp->io_type = Multiface; 815 dev_info(hdsp->card->dev, "Multiface found\n"); 816 return 0; 817 } 818 819 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S300); 820 hdsp_write(hdsp, HDSP_control2Reg, HDSP_S_LOAD); 821 hdsp_write(hdsp, HDSP_fifoData, 0); 822 if (hdsp_fifo_wait(hdsp, 0, HDSP_SHORT_WAIT) < 0) { 823 hdsp->io_type = Multiface; 824 dev_info(hdsp->card->dev, "Multiface found\n"); 825 return 0; 826 } 827 828 hdsp->io_type = RPM; 829 dev_info(hdsp->card->dev, "RPM found\n"); 830 return 0; 831 } else { 832 /* firmware was already loaded, get iobox type */ 833 if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version2) 834 hdsp->io_type = RPM; 835 else if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version1) 836 hdsp->io_type = Multiface; 837 else 838 hdsp->io_type = Digiface; 839 } 840 return 0; 841 } 842 843 844 static int hdsp_request_fw_loader(struct hdsp *hdsp); 845 846 static int hdsp_check_for_firmware (struct hdsp *hdsp, int load_on_demand) 847 { 848 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 849 return 0; 850 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 851 hdsp->state &= ~HDSP_FirmwareLoaded; 852 if (! load_on_demand) 853 return -EIO; 854 dev_err(hdsp->card->dev, "firmware not present.\n"); 855 /* try to load firmware */ 856 if (! (hdsp->state & HDSP_FirmwareCached)) { 857 if (! hdsp_request_fw_loader(hdsp)) 858 return 0; 859 dev_err(hdsp->card->dev, 860 "No firmware loaded nor cached, please upload firmware.\n"); 861 return -EIO; 862 } 863 if (snd_hdsp_load_firmware_from_cache(hdsp) != 0) { 864 dev_err(hdsp->card->dev, 865 "Firmware loading from cache failed, please upload manually.\n"); 866 return -EIO; 867 } 868 } 869 return 0; 870 } 871 872 873 static int hdsp_fifo_wait(struct hdsp *hdsp, int count, int timeout) 874 { 875 int i; 876 877 /* the fifoStatus registers reports on how many words 878 are available in the command FIFO. 879 */ 880 881 for (i = 0; i < timeout; i++) { 882 883 if ((int)(hdsp_read (hdsp, HDSP_fifoStatus) & 0xff) <= count) 884 return 0; 885 886 /* not very friendly, but we only do this during a firmware 887 load and changing the mixer, so we just put up with it. 888 */ 889 890 udelay (100); 891 } 892 893 dev_warn(hdsp->card->dev, 894 "wait for FIFO status <= %d failed after %d iterations\n", 895 count, timeout); 896 return -1; 897 } 898 899 static int hdsp_read_gain (struct hdsp *hdsp, unsigned int addr) 900 { 901 if (addr >= HDSP_MATRIX_MIXER_SIZE) 902 return 0; 903 904 return hdsp->mixer_matrix[addr]; 905 } 906 907 static int hdsp_write_gain(struct hdsp *hdsp, unsigned int addr, unsigned short data) 908 { 909 unsigned int ad; 910 911 if (addr >= HDSP_MATRIX_MIXER_SIZE) 912 return -1; 913 914 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) { 915 916 /* from martin bjornsen: 917 918 "You can only write dwords to the 919 mixer memory which contain two 920 mixer values in the low and high 921 word. So if you want to change 922 value 0 you have to read value 1 923 from the cache and write both to 924 the first dword in the mixer 925 memory." 926 */ 927 928 if (hdsp->io_type == H9632 && addr >= 512) 929 return 0; 930 931 if (hdsp->io_type == H9652 && addr >= 1352) 932 return 0; 933 934 hdsp->mixer_matrix[addr] = data; 935 936 937 /* `addr' addresses a 16-bit wide address, but 938 the address space accessed via hdsp_write 939 uses byte offsets. put another way, addr 940 varies from 0 to 1351, but to access the 941 corresponding memory location, we need 942 to access 0 to 2703 ... 943 */ 944 ad = addr/2; 945 946 hdsp_write (hdsp, 4096 + (ad*4), 947 (hdsp->mixer_matrix[(addr&0x7fe)+1] << 16) + 948 hdsp->mixer_matrix[addr&0x7fe]); 949 950 return 0; 951 952 } else { 953 954 ad = (addr << 16) + data; 955 956 if (hdsp_fifo_wait(hdsp, 127, HDSP_LONG_WAIT)) 957 return -1; 958 959 hdsp_write (hdsp, HDSP_fifoData, ad); 960 hdsp->mixer_matrix[addr] = data; 961 962 } 963 964 return 0; 965 } 966 967 static int snd_hdsp_use_is_exclusive(struct hdsp *hdsp) 968 { 969 unsigned long flags; 970 int ret = 1; 971 972 spin_lock_irqsave(&hdsp->lock, flags); 973 if ((hdsp->playback_pid != hdsp->capture_pid) && 974 (hdsp->playback_pid >= 0) && (hdsp->capture_pid >= 0)) 975 ret = 0; 976 spin_unlock_irqrestore(&hdsp->lock, flags); 977 return ret; 978 } 979 980 static int hdsp_spdif_sample_rate(struct hdsp *hdsp) 981 { 982 unsigned int status = hdsp_read(hdsp, HDSP_statusRegister); 983 unsigned int rate_bits = (status & HDSP_spdifFrequencyMask); 984 985 /* For the 9632, the mask is different */ 986 if (hdsp->io_type == H9632) 987 rate_bits = (status & HDSP_spdifFrequencyMask_9632); 988 989 if (status & HDSP_SPDIFErrorFlag) 990 return 0; 991 992 switch (rate_bits) { 993 case HDSP_spdifFrequency32KHz: return 32000; 994 case HDSP_spdifFrequency44_1KHz: return 44100; 995 case HDSP_spdifFrequency48KHz: return 48000; 996 case HDSP_spdifFrequency64KHz: return 64000; 997 case HDSP_spdifFrequency88_2KHz: return 88200; 998 case HDSP_spdifFrequency96KHz: return 96000; 999 case HDSP_spdifFrequency128KHz: 1000 if (hdsp->io_type == H9632) return 128000; 1001 break; 1002 case HDSP_spdifFrequency176_4KHz: 1003 if (hdsp->io_type == H9632) return 176400; 1004 break; 1005 case HDSP_spdifFrequency192KHz: 1006 if (hdsp->io_type == H9632) return 192000; 1007 break; 1008 default: 1009 break; 1010 } 1011 dev_warn(hdsp->card->dev, 1012 "unknown spdif frequency status; bits = 0x%x, status = 0x%x\n", 1013 rate_bits, status); 1014 return 0; 1015 } 1016 1017 static int hdsp_external_sample_rate(struct hdsp *hdsp) 1018 { 1019 unsigned int status2 = hdsp_read(hdsp, HDSP_status2Register); 1020 unsigned int rate_bits = status2 & HDSP_systemFrequencyMask; 1021 1022 /* For the 9632 card, there seems to be no bit for indicating external 1023 * sample rate greater than 96kHz. The card reports the corresponding 1024 * single speed. So the best means seems to get spdif rate when 1025 * autosync reference is spdif */ 1026 if (hdsp->io_type == H9632 && 1027 hdsp_autosync_ref(hdsp) == HDSP_AUTOSYNC_FROM_SPDIF) 1028 return hdsp_spdif_sample_rate(hdsp); 1029 1030 switch (rate_bits) { 1031 case HDSP_systemFrequency32: return 32000; 1032 case HDSP_systemFrequency44_1: return 44100; 1033 case HDSP_systemFrequency48: return 48000; 1034 case HDSP_systemFrequency64: return 64000; 1035 case HDSP_systemFrequency88_2: return 88200; 1036 case HDSP_systemFrequency96: return 96000; 1037 default: 1038 return 0; 1039 } 1040 } 1041 1042 static void hdsp_compute_period_size(struct hdsp *hdsp) 1043 { 1044 hdsp->period_bytes = 1 << ((hdsp_decode_latency(hdsp->control_register) + 8)); 1045 } 1046 1047 static snd_pcm_uframes_t hdsp_hw_pointer(struct hdsp *hdsp) 1048 { 1049 int position; 1050 1051 position = hdsp_read(hdsp, HDSP_statusRegister); 1052 1053 if (!hdsp->precise_ptr) 1054 return (position & HDSP_BufferID) ? (hdsp->period_bytes / 4) : 0; 1055 1056 position &= HDSP_BufferPositionMask; 1057 position /= 4; 1058 position &= (hdsp->period_bytes/2) - 1; 1059 return position; 1060 } 1061 1062 static void hdsp_reset_hw_pointer(struct hdsp *hdsp) 1063 { 1064 hdsp_write (hdsp, HDSP_resetPointer, 0); 1065 if (hdsp->io_type == H9632 && hdsp->firmware_rev >= 152) 1066 /* HDSP_resetPointer = HDSP_freqReg, which is strange and 1067 * requires (?) to write again DDS value after a reset pointer 1068 * (at least, it works like this) */ 1069 hdsp_write (hdsp, HDSP_freqReg, hdsp->dds_value); 1070 } 1071 1072 static void hdsp_start_audio(struct hdsp *s) 1073 { 1074 s->control_register |= (HDSP_AudioInterruptEnable | HDSP_Start); 1075 hdsp_write(s, HDSP_controlRegister, s->control_register); 1076 } 1077 1078 static void hdsp_stop_audio(struct hdsp *s) 1079 { 1080 s->control_register &= ~(HDSP_Start | HDSP_AudioInterruptEnable); 1081 hdsp_write(s, HDSP_controlRegister, s->control_register); 1082 } 1083 1084 static void hdsp_silence_playback(struct hdsp *hdsp) 1085 { 1086 memset(hdsp->playback_buffer, 0, HDSP_DMA_AREA_BYTES); 1087 } 1088 1089 static int hdsp_set_interrupt_interval(struct hdsp *s, unsigned int frames) 1090 { 1091 int n; 1092 1093 spin_lock_irq(&s->lock); 1094 1095 frames >>= 7; 1096 n = 0; 1097 while (frames) { 1098 n++; 1099 frames >>= 1; 1100 } 1101 1102 s->control_register &= ~HDSP_LatencyMask; 1103 s->control_register |= hdsp_encode_latency(n); 1104 1105 hdsp_write(s, HDSP_controlRegister, s->control_register); 1106 1107 hdsp_compute_period_size(s); 1108 1109 spin_unlock_irq(&s->lock); 1110 1111 return 0; 1112 } 1113 1114 static void hdsp_set_dds_value(struct hdsp *hdsp, int rate) 1115 { 1116 u64 n; 1117 1118 if (rate >= 112000) 1119 rate /= 4; 1120 else if (rate >= 56000) 1121 rate /= 2; 1122 1123 n = DDS_NUMERATOR; 1124 n = div_u64(n, rate); 1125 /* n should be less than 2^32 for being written to FREQ register */ 1126 snd_BUG_ON(n >> 32); 1127 /* HDSP_freqReg and HDSP_resetPointer are the same, so keep the DDS 1128 value to write it after a reset */ 1129 hdsp->dds_value = n; 1130 hdsp_write(hdsp, HDSP_freqReg, hdsp->dds_value); 1131 } 1132 1133 static int hdsp_set_rate(struct hdsp *hdsp, int rate, int called_internally) 1134 { 1135 int reject_if_open = 0; 1136 int current_rate; 1137 int rate_bits; 1138 1139 /* ASSUMPTION: hdsp->lock is either held, or 1140 there is no need for it (e.g. during module 1141 initialization). 1142 */ 1143 1144 if (!(hdsp->control_register & HDSP_ClockModeMaster)) { 1145 if (called_internally) { 1146 /* request from ctl or card initialization */ 1147 dev_err(hdsp->card->dev, 1148 "device is not running as a clock master: cannot set sample rate.\n"); 1149 return -1; 1150 } else { 1151 /* hw_param request while in AutoSync mode */ 1152 int external_freq = hdsp_external_sample_rate(hdsp); 1153 int spdif_freq = hdsp_spdif_sample_rate(hdsp); 1154 1155 if ((spdif_freq == external_freq*2) && (hdsp_autosync_ref(hdsp) >= HDSP_AUTOSYNC_FROM_ADAT1)) 1156 dev_info(hdsp->card->dev, 1157 "Detected ADAT in double speed mode\n"); 1158 else if (hdsp->io_type == H9632 && (spdif_freq == external_freq*4) && (hdsp_autosync_ref(hdsp) >= HDSP_AUTOSYNC_FROM_ADAT1)) 1159 dev_info(hdsp->card->dev, 1160 "Detected ADAT in quad speed mode\n"); 1161 else if (rate != external_freq) { 1162 dev_info(hdsp->card->dev, 1163 "No AutoSync source for requested rate\n"); 1164 return -1; 1165 } 1166 } 1167 } 1168 1169 current_rate = hdsp->system_sample_rate; 1170 1171 /* Changing from a "single speed" to a "double speed" rate is 1172 not allowed if any substreams are open. This is because 1173 such a change causes a shift in the location of 1174 the DMA buffers and a reduction in the number of available 1175 buffers. 1176 1177 Note that a similar but essentially insoluble problem 1178 exists for externally-driven rate changes. All we can do 1179 is to flag rate changes in the read/write routines. */ 1180 1181 if (rate > 96000 && hdsp->io_type != H9632) 1182 return -EINVAL; 1183 1184 switch (rate) { 1185 case 32000: 1186 if (current_rate > 48000) 1187 reject_if_open = 1; 1188 rate_bits = HDSP_Frequency32KHz; 1189 break; 1190 case 44100: 1191 if (current_rate > 48000) 1192 reject_if_open = 1; 1193 rate_bits = HDSP_Frequency44_1KHz; 1194 break; 1195 case 48000: 1196 if (current_rate > 48000) 1197 reject_if_open = 1; 1198 rate_bits = HDSP_Frequency48KHz; 1199 break; 1200 case 64000: 1201 if (current_rate <= 48000 || current_rate > 96000) 1202 reject_if_open = 1; 1203 rate_bits = HDSP_Frequency64KHz; 1204 break; 1205 case 88200: 1206 if (current_rate <= 48000 || current_rate > 96000) 1207 reject_if_open = 1; 1208 rate_bits = HDSP_Frequency88_2KHz; 1209 break; 1210 case 96000: 1211 if (current_rate <= 48000 || current_rate > 96000) 1212 reject_if_open = 1; 1213 rate_bits = HDSP_Frequency96KHz; 1214 break; 1215 case 128000: 1216 if (current_rate < 128000) 1217 reject_if_open = 1; 1218 rate_bits = HDSP_Frequency128KHz; 1219 break; 1220 case 176400: 1221 if (current_rate < 128000) 1222 reject_if_open = 1; 1223 rate_bits = HDSP_Frequency176_4KHz; 1224 break; 1225 case 192000: 1226 if (current_rate < 128000) 1227 reject_if_open = 1; 1228 rate_bits = HDSP_Frequency192KHz; 1229 break; 1230 default: 1231 return -EINVAL; 1232 } 1233 1234 if (reject_if_open && (hdsp->capture_pid >= 0 || hdsp->playback_pid >= 0)) { 1235 dev_warn(hdsp->card->dev, 1236 "cannot change speed mode (capture PID = %d, playback PID = %d)\n", 1237 hdsp->capture_pid, 1238 hdsp->playback_pid); 1239 return -EBUSY; 1240 } 1241 1242 hdsp->control_register &= ~HDSP_FrequencyMask; 1243 hdsp->control_register |= rate_bits; 1244 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1245 1246 /* For HDSP9632 rev 152, need to set DDS value in FREQ register */ 1247 if (hdsp->io_type == H9632 && hdsp->firmware_rev >= 152) 1248 hdsp_set_dds_value(hdsp, rate); 1249 1250 if (rate >= 128000) { 1251 hdsp->channel_map = channel_map_H9632_qs; 1252 } else if (rate > 48000) { 1253 if (hdsp->io_type == H9632) 1254 hdsp->channel_map = channel_map_H9632_ds; 1255 else 1256 hdsp->channel_map = channel_map_ds; 1257 } else { 1258 switch (hdsp->io_type) { 1259 case RPM: 1260 case Multiface: 1261 hdsp->channel_map = channel_map_mf_ss; 1262 break; 1263 case Digiface: 1264 case H9652: 1265 hdsp->channel_map = channel_map_df_ss; 1266 break; 1267 case H9632: 1268 hdsp->channel_map = channel_map_H9632_ss; 1269 break; 1270 default: 1271 /* should never happen */ 1272 break; 1273 } 1274 } 1275 1276 hdsp->system_sample_rate = rate; 1277 1278 return 0; 1279 } 1280 1281 /*---------------------------------------------------------------------------- 1282 MIDI 1283 ----------------------------------------------------------------------------*/ 1284 1285 static unsigned char snd_hdsp_midi_read_byte (struct hdsp *hdsp, int id) 1286 { 1287 /* the hardware already does the relevant bit-mask with 0xff */ 1288 if (id) 1289 return hdsp_read(hdsp, HDSP_midiDataIn1); 1290 else 1291 return hdsp_read(hdsp, HDSP_midiDataIn0); 1292 } 1293 1294 static void snd_hdsp_midi_write_byte (struct hdsp *hdsp, int id, int val) 1295 { 1296 /* the hardware already does the relevant bit-mask with 0xff */ 1297 if (id) 1298 hdsp_write(hdsp, HDSP_midiDataOut1, val); 1299 else 1300 hdsp_write(hdsp, HDSP_midiDataOut0, val); 1301 } 1302 1303 static int snd_hdsp_midi_input_available (struct hdsp *hdsp, int id) 1304 { 1305 if (id) 1306 return (hdsp_read(hdsp, HDSP_midiStatusIn1) & 0xff); 1307 else 1308 return (hdsp_read(hdsp, HDSP_midiStatusIn0) & 0xff); 1309 } 1310 1311 static int snd_hdsp_midi_output_possible (struct hdsp *hdsp, int id) 1312 { 1313 int fifo_bytes_used; 1314 1315 if (id) 1316 fifo_bytes_used = hdsp_read(hdsp, HDSP_midiStatusOut1) & 0xff; 1317 else 1318 fifo_bytes_used = hdsp_read(hdsp, HDSP_midiStatusOut0) & 0xff; 1319 1320 if (fifo_bytes_used < 128) 1321 return 128 - fifo_bytes_used; 1322 else 1323 return 0; 1324 } 1325 1326 static void snd_hdsp_flush_midi_input (struct hdsp *hdsp, int id) 1327 { 1328 while (snd_hdsp_midi_input_available (hdsp, id)) 1329 snd_hdsp_midi_read_byte (hdsp, id); 1330 } 1331 1332 static int snd_hdsp_midi_output_write (struct hdsp_midi *hmidi) 1333 { 1334 unsigned long flags; 1335 int n_pending; 1336 int to_write; 1337 int i; 1338 unsigned char buf[128]; 1339 1340 /* Output is not interrupt driven */ 1341 1342 spin_lock_irqsave (&hmidi->lock, flags); 1343 if (hmidi->output) { 1344 if (!snd_rawmidi_transmit_empty (hmidi->output)) { 1345 if ((n_pending = snd_hdsp_midi_output_possible (hmidi->hdsp, hmidi->id)) > 0) { 1346 if (n_pending > (int)sizeof (buf)) 1347 n_pending = sizeof (buf); 1348 1349 if ((to_write = snd_rawmidi_transmit (hmidi->output, buf, n_pending)) > 0) { 1350 for (i = 0; i < to_write; ++i) 1351 snd_hdsp_midi_write_byte (hmidi->hdsp, hmidi->id, buf[i]); 1352 } 1353 } 1354 } 1355 } 1356 spin_unlock_irqrestore (&hmidi->lock, flags); 1357 return 0; 1358 } 1359 1360 static int snd_hdsp_midi_input_read (struct hdsp_midi *hmidi) 1361 { 1362 unsigned char buf[128]; /* this buffer is designed to match the MIDI input FIFO size */ 1363 unsigned long flags; 1364 int n_pending; 1365 int i; 1366 1367 spin_lock_irqsave (&hmidi->lock, flags); 1368 if ((n_pending = snd_hdsp_midi_input_available (hmidi->hdsp, hmidi->id)) > 0) { 1369 if (hmidi->input) { 1370 if (n_pending > (int)sizeof (buf)) 1371 n_pending = sizeof (buf); 1372 for (i = 0; i < n_pending; ++i) 1373 buf[i] = snd_hdsp_midi_read_byte (hmidi->hdsp, hmidi->id); 1374 if (n_pending) 1375 snd_rawmidi_receive (hmidi->input, buf, n_pending); 1376 } else { 1377 /* flush the MIDI input FIFO */ 1378 while (--n_pending) 1379 snd_hdsp_midi_read_byte (hmidi->hdsp, hmidi->id); 1380 } 1381 } 1382 hmidi->pending = 0; 1383 if (hmidi->id) 1384 hmidi->hdsp->control_register |= HDSP_Midi1InterruptEnable; 1385 else 1386 hmidi->hdsp->control_register |= HDSP_Midi0InterruptEnable; 1387 hdsp_write(hmidi->hdsp, HDSP_controlRegister, hmidi->hdsp->control_register); 1388 spin_unlock_irqrestore (&hmidi->lock, flags); 1389 return snd_hdsp_midi_output_write (hmidi); 1390 } 1391 1392 static void snd_hdsp_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1393 { 1394 struct hdsp *hdsp; 1395 struct hdsp_midi *hmidi; 1396 unsigned long flags; 1397 u32 ie; 1398 1399 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1400 hdsp = hmidi->hdsp; 1401 ie = hmidi->id ? HDSP_Midi1InterruptEnable : HDSP_Midi0InterruptEnable; 1402 spin_lock_irqsave (&hdsp->lock, flags); 1403 if (up) { 1404 if (!(hdsp->control_register & ie)) { 1405 snd_hdsp_flush_midi_input (hdsp, hmidi->id); 1406 hdsp->control_register |= ie; 1407 } 1408 } else { 1409 hdsp->control_register &= ~ie; 1410 tasklet_kill(&hdsp->midi_tasklet); 1411 } 1412 1413 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1414 spin_unlock_irqrestore (&hdsp->lock, flags); 1415 } 1416 1417 static void snd_hdsp_midi_output_timer(unsigned long data) 1418 { 1419 struct hdsp_midi *hmidi = (struct hdsp_midi *) data; 1420 unsigned long flags; 1421 1422 snd_hdsp_midi_output_write(hmidi); 1423 spin_lock_irqsave (&hmidi->lock, flags); 1424 1425 /* this does not bump hmidi->istimer, because the 1426 kernel automatically removed the timer when it 1427 expired, and we are now adding it back, thus 1428 leaving istimer wherever it was set before. 1429 */ 1430 1431 if (hmidi->istimer) { 1432 hmidi->timer.expires = 1 + jiffies; 1433 add_timer(&hmidi->timer); 1434 } 1435 1436 spin_unlock_irqrestore (&hmidi->lock, flags); 1437 } 1438 1439 static void snd_hdsp_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1440 { 1441 struct hdsp_midi *hmidi; 1442 unsigned long flags; 1443 1444 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1445 spin_lock_irqsave (&hmidi->lock, flags); 1446 if (up) { 1447 if (!hmidi->istimer) { 1448 init_timer(&hmidi->timer); 1449 hmidi->timer.function = snd_hdsp_midi_output_timer; 1450 hmidi->timer.data = (unsigned long) hmidi; 1451 hmidi->timer.expires = 1 + jiffies; 1452 add_timer(&hmidi->timer); 1453 hmidi->istimer++; 1454 } 1455 } else { 1456 if (hmidi->istimer && --hmidi->istimer <= 0) 1457 del_timer (&hmidi->timer); 1458 } 1459 spin_unlock_irqrestore (&hmidi->lock, flags); 1460 if (up) 1461 snd_hdsp_midi_output_write(hmidi); 1462 } 1463 1464 static int snd_hdsp_midi_input_open(struct snd_rawmidi_substream *substream) 1465 { 1466 struct hdsp_midi *hmidi; 1467 1468 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1469 spin_lock_irq (&hmidi->lock); 1470 snd_hdsp_flush_midi_input (hmidi->hdsp, hmidi->id); 1471 hmidi->input = substream; 1472 spin_unlock_irq (&hmidi->lock); 1473 1474 return 0; 1475 } 1476 1477 static int snd_hdsp_midi_output_open(struct snd_rawmidi_substream *substream) 1478 { 1479 struct hdsp_midi *hmidi; 1480 1481 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1482 spin_lock_irq (&hmidi->lock); 1483 hmidi->output = substream; 1484 spin_unlock_irq (&hmidi->lock); 1485 1486 return 0; 1487 } 1488 1489 static int snd_hdsp_midi_input_close(struct snd_rawmidi_substream *substream) 1490 { 1491 struct hdsp_midi *hmidi; 1492 1493 snd_hdsp_midi_input_trigger (substream, 0); 1494 1495 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1496 spin_lock_irq (&hmidi->lock); 1497 hmidi->input = NULL; 1498 spin_unlock_irq (&hmidi->lock); 1499 1500 return 0; 1501 } 1502 1503 static int snd_hdsp_midi_output_close(struct snd_rawmidi_substream *substream) 1504 { 1505 struct hdsp_midi *hmidi; 1506 1507 snd_hdsp_midi_output_trigger (substream, 0); 1508 1509 hmidi = (struct hdsp_midi *) substream->rmidi->private_data; 1510 spin_lock_irq (&hmidi->lock); 1511 hmidi->output = NULL; 1512 spin_unlock_irq (&hmidi->lock); 1513 1514 return 0; 1515 } 1516 1517 static struct snd_rawmidi_ops snd_hdsp_midi_output = 1518 { 1519 .open = snd_hdsp_midi_output_open, 1520 .close = snd_hdsp_midi_output_close, 1521 .trigger = snd_hdsp_midi_output_trigger, 1522 }; 1523 1524 static struct snd_rawmidi_ops snd_hdsp_midi_input = 1525 { 1526 .open = snd_hdsp_midi_input_open, 1527 .close = snd_hdsp_midi_input_close, 1528 .trigger = snd_hdsp_midi_input_trigger, 1529 }; 1530 1531 static int snd_hdsp_create_midi (struct snd_card *card, struct hdsp *hdsp, int id) 1532 { 1533 char buf[32]; 1534 1535 hdsp->midi[id].id = id; 1536 hdsp->midi[id].rmidi = NULL; 1537 hdsp->midi[id].input = NULL; 1538 hdsp->midi[id].output = NULL; 1539 hdsp->midi[id].hdsp = hdsp; 1540 hdsp->midi[id].istimer = 0; 1541 hdsp->midi[id].pending = 0; 1542 spin_lock_init (&hdsp->midi[id].lock); 1543 1544 sprintf (buf, "%s MIDI %d", card->shortname, id+1); 1545 if (snd_rawmidi_new (card, buf, id, 1, 1, &hdsp->midi[id].rmidi) < 0) 1546 return -1; 1547 1548 sprintf(hdsp->midi[id].rmidi->name, "HDSP MIDI %d", id+1); 1549 hdsp->midi[id].rmidi->private_data = &hdsp->midi[id]; 1550 1551 snd_rawmidi_set_ops (hdsp->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_hdsp_midi_output); 1552 snd_rawmidi_set_ops (hdsp->midi[id].rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_hdsp_midi_input); 1553 1554 hdsp->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | 1555 SNDRV_RAWMIDI_INFO_INPUT | 1556 SNDRV_RAWMIDI_INFO_DUPLEX; 1557 1558 return 0; 1559 } 1560 1561 /*----------------------------------------------------------------------------- 1562 Control Interface 1563 ----------------------------------------------------------------------------*/ 1564 1565 static u32 snd_hdsp_convert_from_aes(struct snd_aes_iec958 *aes) 1566 { 1567 u32 val = 0; 1568 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? HDSP_SPDIFProfessional : 0; 1569 val |= (aes->status[0] & IEC958_AES0_NONAUDIO) ? HDSP_SPDIFNonAudio : 0; 1570 if (val & HDSP_SPDIFProfessional) 1571 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? HDSP_SPDIFEmphasis : 0; 1572 else 1573 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? HDSP_SPDIFEmphasis : 0; 1574 return val; 1575 } 1576 1577 static void snd_hdsp_convert_to_aes(struct snd_aes_iec958 *aes, u32 val) 1578 { 1579 aes->status[0] = ((val & HDSP_SPDIFProfessional) ? IEC958_AES0_PROFESSIONAL : 0) | 1580 ((val & HDSP_SPDIFNonAudio) ? IEC958_AES0_NONAUDIO : 0); 1581 if (val & HDSP_SPDIFProfessional) 1582 aes->status[0] |= (val & HDSP_SPDIFEmphasis) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; 1583 else 1584 aes->status[0] |= (val & HDSP_SPDIFEmphasis) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; 1585 } 1586 1587 static int snd_hdsp_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1588 { 1589 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1590 uinfo->count = 1; 1591 return 0; 1592 } 1593 1594 static int snd_hdsp_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1595 { 1596 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1597 1598 snd_hdsp_convert_to_aes(&ucontrol->value.iec958, hdsp->creg_spdif); 1599 return 0; 1600 } 1601 1602 static int snd_hdsp_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1603 { 1604 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1605 int change; 1606 u32 val; 1607 1608 val = snd_hdsp_convert_from_aes(&ucontrol->value.iec958); 1609 spin_lock_irq(&hdsp->lock); 1610 change = val != hdsp->creg_spdif; 1611 hdsp->creg_spdif = val; 1612 spin_unlock_irq(&hdsp->lock); 1613 return change; 1614 } 1615 1616 static int snd_hdsp_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1617 { 1618 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1619 uinfo->count = 1; 1620 return 0; 1621 } 1622 1623 static int snd_hdsp_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1624 { 1625 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1626 1627 snd_hdsp_convert_to_aes(&ucontrol->value.iec958, hdsp->creg_spdif_stream); 1628 return 0; 1629 } 1630 1631 static int snd_hdsp_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1632 { 1633 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1634 int change; 1635 u32 val; 1636 1637 val = snd_hdsp_convert_from_aes(&ucontrol->value.iec958); 1638 spin_lock_irq(&hdsp->lock); 1639 change = val != hdsp->creg_spdif_stream; 1640 hdsp->creg_spdif_stream = val; 1641 hdsp->control_register &= ~(HDSP_SPDIFProfessional | HDSP_SPDIFNonAudio | HDSP_SPDIFEmphasis); 1642 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register |= val); 1643 spin_unlock_irq(&hdsp->lock); 1644 return change; 1645 } 1646 1647 static int snd_hdsp_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1648 { 1649 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1650 uinfo->count = 1; 1651 return 0; 1652 } 1653 1654 static int snd_hdsp_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1655 { 1656 ucontrol->value.iec958.status[0] = kcontrol->private_value; 1657 return 0; 1658 } 1659 1660 #define HDSP_SPDIF_IN(xname, xindex) \ 1661 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1662 .name = xname, \ 1663 .index = xindex, \ 1664 .info = snd_hdsp_info_spdif_in, \ 1665 .get = snd_hdsp_get_spdif_in, \ 1666 .put = snd_hdsp_put_spdif_in } 1667 1668 static unsigned int hdsp_spdif_in(struct hdsp *hdsp) 1669 { 1670 return hdsp_decode_spdif_in(hdsp->control_register & HDSP_SPDIFInputMask); 1671 } 1672 1673 static int hdsp_set_spdif_input(struct hdsp *hdsp, int in) 1674 { 1675 hdsp->control_register &= ~HDSP_SPDIFInputMask; 1676 hdsp->control_register |= hdsp_encode_spdif_in(in); 1677 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1678 return 0; 1679 } 1680 1681 static int snd_hdsp_info_spdif_in(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1682 { 1683 static const char * const texts[4] = { 1684 "Optical", "Coaxial", "Internal", "AES" 1685 }; 1686 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1687 1688 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 4 : 3, 1689 texts); 1690 } 1691 1692 static int snd_hdsp_get_spdif_in(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1693 { 1694 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1695 1696 ucontrol->value.enumerated.item[0] = hdsp_spdif_in(hdsp); 1697 return 0; 1698 } 1699 1700 static int snd_hdsp_put_spdif_in(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1701 { 1702 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1703 int change; 1704 unsigned int val; 1705 1706 if (!snd_hdsp_use_is_exclusive(hdsp)) 1707 return -EBUSY; 1708 val = ucontrol->value.enumerated.item[0] % ((hdsp->io_type == H9632) ? 4 : 3); 1709 spin_lock_irq(&hdsp->lock); 1710 change = val != hdsp_spdif_in(hdsp); 1711 if (change) 1712 hdsp_set_spdif_input(hdsp, val); 1713 spin_unlock_irq(&hdsp->lock); 1714 return change; 1715 } 1716 1717 #define HDSP_TOGGLE_SETTING(xname, xindex) \ 1718 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1719 .name = xname, \ 1720 .private_value = xindex, \ 1721 .info = snd_hdsp_info_toggle_setting, \ 1722 .get = snd_hdsp_get_toggle_setting, \ 1723 .put = snd_hdsp_put_toggle_setting \ 1724 } 1725 1726 static int hdsp_toggle_setting(struct hdsp *hdsp, u32 regmask) 1727 { 1728 return (hdsp->control_register & regmask) ? 1 : 0; 1729 } 1730 1731 static int hdsp_set_toggle_setting(struct hdsp *hdsp, u32 regmask, int out) 1732 { 1733 if (out) 1734 hdsp->control_register |= regmask; 1735 else 1736 hdsp->control_register &= ~regmask; 1737 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1738 1739 return 0; 1740 } 1741 1742 #define snd_hdsp_info_toggle_setting snd_ctl_boolean_mono_info 1743 1744 static int snd_hdsp_get_toggle_setting(struct snd_kcontrol *kcontrol, 1745 struct snd_ctl_elem_value *ucontrol) 1746 { 1747 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1748 u32 regmask = kcontrol->private_value; 1749 1750 spin_lock_irq(&hdsp->lock); 1751 ucontrol->value.integer.value[0] = hdsp_toggle_setting(hdsp, regmask); 1752 spin_unlock_irq(&hdsp->lock); 1753 return 0; 1754 } 1755 1756 static int snd_hdsp_put_toggle_setting(struct snd_kcontrol *kcontrol, 1757 struct snd_ctl_elem_value *ucontrol) 1758 { 1759 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1760 u32 regmask = kcontrol->private_value; 1761 int change; 1762 unsigned int val; 1763 1764 if (!snd_hdsp_use_is_exclusive(hdsp)) 1765 return -EBUSY; 1766 val = ucontrol->value.integer.value[0] & 1; 1767 spin_lock_irq(&hdsp->lock); 1768 change = (int) val != hdsp_toggle_setting(hdsp, regmask); 1769 if (change) 1770 hdsp_set_toggle_setting(hdsp, regmask, val); 1771 spin_unlock_irq(&hdsp->lock); 1772 return change; 1773 } 1774 1775 #define HDSP_SPDIF_SAMPLE_RATE(xname, xindex) \ 1776 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1777 .name = xname, \ 1778 .index = xindex, \ 1779 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1780 .info = snd_hdsp_info_spdif_sample_rate, \ 1781 .get = snd_hdsp_get_spdif_sample_rate \ 1782 } 1783 1784 static int snd_hdsp_info_spdif_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1785 { 1786 static const char * const texts[] = { 1787 "32000", "44100", "48000", "64000", "88200", "96000", 1788 "None", "128000", "176400", "192000" 1789 }; 1790 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1791 1792 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 10 : 7, 1793 texts); 1794 } 1795 1796 static int snd_hdsp_get_spdif_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1797 { 1798 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1799 1800 switch (hdsp_spdif_sample_rate(hdsp)) { 1801 case 32000: 1802 ucontrol->value.enumerated.item[0] = 0; 1803 break; 1804 case 44100: 1805 ucontrol->value.enumerated.item[0] = 1; 1806 break; 1807 case 48000: 1808 ucontrol->value.enumerated.item[0] = 2; 1809 break; 1810 case 64000: 1811 ucontrol->value.enumerated.item[0] = 3; 1812 break; 1813 case 88200: 1814 ucontrol->value.enumerated.item[0] = 4; 1815 break; 1816 case 96000: 1817 ucontrol->value.enumerated.item[0] = 5; 1818 break; 1819 case 128000: 1820 ucontrol->value.enumerated.item[0] = 7; 1821 break; 1822 case 176400: 1823 ucontrol->value.enumerated.item[0] = 8; 1824 break; 1825 case 192000: 1826 ucontrol->value.enumerated.item[0] = 9; 1827 break; 1828 default: 1829 ucontrol->value.enumerated.item[0] = 6; 1830 } 1831 return 0; 1832 } 1833 1834 #define HDSP_SYSTEM_SAMPLE_RATE(xname, xindex) \ 1835 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1836 .name = xname, \ 1837 .index = xindex, \ 1838 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1839 .info = snd_hdsp_info_system_sample_rate, \ 1840 .get = snd_hdsp_get_system_sample_rate \ 1841 } 1842 1843 static int snd_hdsp_info_system_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1844 { 1845 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1846 uinfo->count = 1; 1847 return 0; 1848 } 1849 1850 static int snd_hdsp_get_system_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1851 { 1852 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1853 1854 ucontrol->value.enumerated.item[0] = hdsp->system_sample_rate; 1855 return 0; 1856 } 1857 1858 #define HDSP_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 1859 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1860 .name = xname, \ 1861 .index = xindex, \ 1862 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1863 .info = snd_hdsp_info_autosync_sample_rate, \ 1864 .get = snd_hdsp_get_autosync_sample_rate \ 1865 } 1866 1867 static int snd_hdsp_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1868 { 1869 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1870 static const char * const texts[] = { 1871 "32000", "44100", "48000", "64000", "88200", "96000", 1872 "None", "128000", "176400", "192000" 1873 }; 1874 1875 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 10 : 7, 1876 texts); 1877 } 1878 1879 static int snd_hdsp_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1880 { 1881 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1882 1883 switch (hdsp_external_sample_rate(hdsp)) { 1884 case 32000: 1885 ucontrol->value.enumerated.item[0] = 0; 1886 break; 1887 case 44100: 1888 ucontrol->value.enumerated.item[0] = 1; 1889 break; 1890 case 48000: 1891 ucontrol->value.enumerated.item[0] = 2; 1892 break; 1893 case 64000: 1894 ucontrol->value.enumerated.item[0] = 3; 1895 break; 1896 case 88200: 1897 ucontrol->value.enumerated.item[0] = 4; 1898 break; 1899 case 96000: 1900 ucontrol->value.enumerated.item[0] = 5; 1901 break; 1902 case 128000: 1903 ucontrol->value.enumerated.item[0] = 7; 1904 break; 1905 case 176400: 1906 ucontrol->value.enumerated.item[0] = 8; 1907 break; 1908 case 192000: 1909 ucontrol->value.enumerated.item[0] = 9; 1910 break; 1911 default: 1912 ucontrol->value.enumerated.item[0] = 6; 1913 } 1914 return 0; 1915 } 1916 1917 #define HDSP_SYSTEM_CLOCK_MODE(xname, xindex) \ 1918 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1919 .name = xname, \ 1920 .index = xindex, \ 1921 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 1922 .info = snd_hdsp_info_system_clock_mode, \ 1923 .get = snd_hdsp_get_system_clock_mode \ 1924 } 1925 1926 static int hdsp_system_clock_mode(struct hdsp *hdsp) 1927 { 1928 if (hdsp->control_register & HDSP_ClockModeMaster) 1929 return 0; 1930 else if (hdsp_external_sample_rate(hdsp) != hdsp->system_sample_rate) 1931 return 0; 1932 return 1; 1933 } 1934 1935 static int snd_hdsp_info_system_clock_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1936 { 1937 static const char * const texts[] = {"Master", "Slave" }; 1938 1939 return snd_ctl_enum_info(uinfo, 1, 2, texts); 1940 } 1941 1942 static int snd_hdsp_get_system_clock_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1943 { 1944 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 1945 1946 ucontrol->value.enumerated.item[0] = hdsp_system_clock_mode(hdsp); 1947 return 0; 1948 } 1949 1950 #define HDSP_CLOCK_SOURCE(xname, xindex) \ 1951 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1952 .name = xname, \ 1953 .index = xindex, \ 1954 .info = snd_hdsp_info_clock_source, \ 1955 .get = snd_hdsp_get_clock_source, \ 1956 .put = snd_hdsp_put_clock_source \ 1957 } 1958 1959 static int hdsp_clock_source(struct hdsp *hdsp) 1960 { 1961 if (hdsp->control_register & HDSP_ClockModeMaster) { 1962 switch (hdsp->system_sample_rate) { 1963 case 32000: 1964 return 1; 1965 case 44100: 1966 return 2; 1967 case 48000: 1968 return 3; 1969 case 64000: 1970 return 4; 1971 case 88200: 1972 return 5; 1973 case 96000: 1974 return 6; 1975 case 128000: 1976 return 7; 1977 case 176400: 1978 return 8; 1979 case 192000: 1980 return 9; 1981 default: 1982 return 3; 1983 } 1984 } else { 1985 return 0; 1986 } 1987 } 1988 1989 static int hdsp_set_clock_source(struct hdsp *hdsp, int mode) 1990 { 1991 int rate; 1992 switch (mode) { 1993 case HDSP_CLOCK_SOURCE_AUTOSYNC: 1994 if (hdsp_external_sample_rate(hdsp) != 0) { 1995 if (!hdsp_set_rate(hdsp, hdsp_external_sample_rate(hdsp), 1)) { 1996 hdsp->control_register &= ~HDSP_ClockModeMaster; 1997 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 1998 return 0; 1999 } 2000 } 2001 return -1; 2002 case HDSP_CLOCK_SOURCE_INTERNAL_32KHZ: 2003 rate = 32000; 2004 break; 2005 case HDSP_CLOCK_SOURCE_INTERNAL_44_1KHZ: 2006 rate = 44100; 2007 break; 2008 case HDSP_CLOCK_SOURCE_INTERNAL_48KHZ: 2009 rate = 48000; 2010 break; 2011 case HDSP_CLOCK_SOURCE_INTERNAL_64KHZ: 2012 rate = 64000; 2013 break; 2014 case HDSP_CLOCK_SOURCE_INTERNAL_88_2KHZ: 2015 rate = 88200; 2016 break; 2017 case HDSP_CLOCK_SOURCE_INTERNAL_96KHZ: 2018 rate = 96000; 2019 break; 2020 case HDSP_CLOCK_SOURCE_INTERNAL_128KHZ: 2021 rate = 128000; 2022 break; 2023 case HDSP_CLOCK_SOURCE_INTERNAL_176_4KHZ: 2024 rate = 176400; 2025 break; 2026 case HDSP_CLOCK_SOURCE_INTERNAL_192KHZ: 2027 rate = 192000; 2028 break; 2029 default: 2030 rate = 48000; 2031 } 2032 hdsp->control_register |= HDSP_ClockModeMaster; 2033 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2034 hdsp_set_rate(hdsp, rate, 1); 2035 return 0; 2036 } 2037 2038 static int snd_hdsp_info_clock_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2039 { 2040 static const char * const texts[] = { 2041 "AutoSync", "Internal 32.0 kHz", "Internal 44.1 kHz", 2042 "Internal 48.0 kHz", "Internal 64.0 kHz", "Internal 88.2 kHz", 2043 "Internal 96.0 kHz", "Internal 128 kHz", "Internal 176.4 kHz", 2044 "Internal 192.0 KHz" 2045 }; 2046 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2047 2048 return snd_ctl_enum_info(uinfo, 1, (hdsp->io_type == H9632) ? 10 : 7, 2049 texts); 2050 } 2051 2052 static int snd_hdsp_get_clock_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2053 { 2054 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2055 2056 ucontrol->value.enumerated.item[0] = hdsp_clock_source(hdsp); 2057 return 0; 2058 } 2059 2060 static int snd_hdsp_put_clock_source(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2061 { 2062 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2063 int change; 2064 int val; 2065 2066 if (!snd_hdsp_use_is_exclusive(hdsp)) 2067 return -EBUSY; 2068 val = ucontrol->value.enumerated.item[0]; 2069 if (val < 0) val = 0; 2070 if (hdsp->io_type == H9632) { 2071 if (val > 9) 2072 val = 9; 2073 } else { 2074 if (val > 6) 2075 val = 6; 2076 } 2077 spin_lock_irq(&hdsp->lock); 2078 if (val != hdsp_clock_source(hdsp)) 2079 change = (hdsp_set_clock_source(hdsp, val) == 0) ? 1 : 0; 2080 else 2081 change = 0; 2082 spin_unlock_irq(&hdsp->lock); 2083 return change; 2084 } 2085 2086 #define snd_hdsp_info_clock_source_lock snd_ctl_boolean_mono_info 2087 2088 static int snd_hdsp_get_clock_source_lock(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2089 { 2090 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2091 2092 ucontrol->value.integer.value[0] = hdsp->clock_source_locked; 2093 return 0; 2094 } 2095 2096 static int snd_hdsp_put_clock_source_lock(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2097 { 2098 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2099 int change; 2100 2101 change = (int)ucontrol->value.integer.value[0] != hdsp->clock_source_locked; 2102 if (change) 2103 hdsp->clock_source_locked = !!ucontrol->value.integer.value[0]; 2104 return change; 2105 } 2106 2107 #define HDSP_DA_GAIN(xname, xindex) \ 2108 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2109 .name = xname, \ 2110 .index = xindex, \ 2111 .info = snd_hdsp_info_da_gain, \ 2112 .get = snd_hdsp_get_da_gain, \ 2113 .put = snd_hdsp_put_da_gain \ 2114 } 2115 2116 static int hdsp_da_gain(struct hdsp *hdsp) 2117 { 2118 switch (hdsp->control_register & HDSP_DAGainMask) { 2119 case HDSP_DAGainHighGain: 2120 return 0; 2121 case HDSP_DAGainPlus4dBu: 2122 return 1; 2123 case HDSP_DAGainMinus10dBV: 2124 return 2; 2125 default: 2126 return 1; 2127 } 2128 } 2129 2130 static int hdsp_set_da_gain(struct hdsp *hdsp, int mode) 2131 { 2132 hdsp->control_register &= ~HDSP_DAGainMask; 2133 switch (mode) { 2134 case 0: 2135 hdsp->control_register |= HDSP_DAGainHighGain; 2136 break; 2137 case 1: 2138 hdsp->control_register |= HDSP_DAGainPlus4dBu; 2139 break; 2140 case 2: 2141 hdsp->control_register |= HDSP_DAGainMinus10dBV; 2142 break; 2143 default: 2144 return -1; 2145 2146 } 2147 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2148 return 0; 2149 } 2150 2151 static int snd_hdsp_info_da_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2152 { 2153 static const char * const texts[] = {"Hi Gain", "+4 dBu", "-10 dbV"}; 2154 2155 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2156 } 2157 2158 static int snd_hdsp_get_da_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2159 { 2160 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2161 2162 ucontrol->value.enumerated.item[0] = hdsp_da_gain(hdsp); 2163 return 0; 2164 } 2165 2166 static int snd_hdsp_put_da_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2167 { 2168 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2169 int change; 2170 int val; 2171 2172 if (!snd_hdsp_use_is_exclusive(hdsp)) 2173 return -EBUSY; 2174 val = ucontrol->value.enumerated.item[0]; 2175 if (val < 0) val = 0; 2176 if (val > 2) val = 2; 2177 spin_lock_irq(&hdsp->lock); 2178 if (val != hdsp_da_gain(hdsp)) 2179 change = (hdsp_set_da_gain(hdsp, val) == 0) ? 1 : 0; 2180 else 2181 change = 0; 2182 spin_unlock_irq(&hdsp->lock); 2183 return change; 2184 } 2185 2186 #define HDSP_AD_GAIN(xname, xindex) \ 2187 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2188 .name = xname, \ 2189 .index = xindex, \ 2190 .info = snd_hdsp_info_ad_gain, \ 2191 .get = snd_hdsp_get_ad_gain, \ 2192 .put = snd_hdsp_put_ad_gain \ 2193 } 2194 2195 static int hdsp_ad_gain(struct hdsp *hdsp) 2196 { 2197 switch (hdsp->control_register & HDSP_ADGainMask) { 2198 case HDSP_ADGainMinus10dBV: 2199 return 0; 2200 case HDSP_ADGainPlus4dBu: 2201 return 1; 2202 case HDSP_ADGainLowGain: 2203 return 2; 2204 default: 2205 return 1; 2206 } 2207 } 2208 2209 static int hdsp_set_ad_gain(struct hdsp *hdsp, int mode) 2210 { 2211 hdsp->control_register &= ~HDSP_ADGainMask; 2212 switch (mode) { 2213 case 0: 2214 hdsp->control_register |= HDSP_ADGainMinus10dBV; 2215 break; 2216 case 1: 2217 hdsp->control_register |= HDSP_ADGainPlus4dBu; 2218 break; 2219 case 2: 2220 hdsp->control_register |= HDSP_ADGainLowGain; 2221 break; 2222 default: 2223 return -1; 2224 2225 } 2226 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2227 return 0; 2228 } 2229 2230 static int snd_hdsp_info_ad_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2231 { 2232 static const char * const texts[] = {"-10 dBV", "+4 dBu", "Lo Gain"}; 2233 2234 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2235 } 2236 2237 static int snd_hdsp_get_ad_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2238 { 2239 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2240 2241 ucontrol->value.enumerated.item[0] = hdsp_ad_gain(hdsp); 2242 return 0; 2243 } 2244 2245 static int snd_hdsp_put_ad_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2246 { 2247 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2248 int change; 2249 int val; 2250 2251 if (!snd_hdsp_use_is_exclusive(hdsp)) 2252 return -EBUSY; 2253 val = ucontrol->value.enumerated.item[0]; 2254 if (val < 0) val = 0; 2255 if (val > 2) val = 2; 2256 spin_lock_irq(&hdsp->lock); 2257 if (val != hdsp_ad_gain(hdsp)) 2258 change = (hdsp_set_ad_gain(hdsp, val) == 0) ? 1 : 0; 2259 else 2260 change = 0; 2261 spin_unlock_irq(&hdsp->lock); 2262 return change; 2263 } 2264 2265 #define HDSP_PHONE_GAIN(xname, xindex) \ 2266 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2267 .name = xname, \ 2268 .index = xindex, \ 2269 .info = snd_hdsp_info_phone_gain, \ 2270 .get = snd_hdsp_get_phone_gain, \ 2271 .put = snd_hdsp_put_phone_gain \ 2272 } 2273 2274 static int hdsp_phone_gain(struct hdsp *hdsp) 2275 { 2276 switch (hdsp->control_register & HDSP_PhoneGainMask) { 2277 case HDSP_PhoneGain0dB: 2278 return 0; 2279 case HDSP_PhoneGainMinus6dB: 2280 return 1; 2281 case HDSP_PhoneGainMinus12dB: 2282 return 2; 2283 default: 2284 return 0; 2285 } 2286 } 2287 2288 static int hdsp_set_phone_gain(struct hdsp *hdsp, int mode) 2289 { 2290 hdsp->control_register &= ~HDSP_PhoneGainMask; 2291 switch (mode) { 2292 case 0: 2293 hdsp->control_register |= HDSP_PhoneGain0dB; 2294 break; 2295 case 1: 2296 hdsp->control_register |= HDSP_PhoneGainMinus6dB; 2297 break; 2298 case 2: 2299 hdsp->control_register |= HDSP_PhoneGainMinus12dB; 2300 break; 2301 default: 2302 return -1; 2303 2304 } 2305 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2306 return 0; 2307 } 2308 2309 static int snd_hdsp_info_phone_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2310 { 2311 static const char * const texts[] = {"0 dB", "-6 dB", "-12 dB"}; 2312 2313 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2314 } 2315 2316 static int snd_hdsp_get_phone_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2317 { 2318 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2319 2320 ucontrol->value.enumerated.item[0] = hdsp_phone_gain(hdsp); 2321 return 0; 2322 } 2323 2324 static int snd_hdsp_put_phone_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2325 { 2326 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2327 int change; 2328 int val; 2329 2330 if (!snd_hdsp_use_is_exclusive(hdsp)) 2331 return -EBUSY; 2332 val = ucontrol->value.enumerated.item[0]; 2333 if (val < 0) val = 0; 2334 if (val > 2) val = 2; 2335 spin_lock_irq(&hdsp->lock); 2336 if (val != hdsp_phone_gain(hdsp)) 2337 change = (hdsp_set_phone_gain(hdsp, val) == 0) ? 1 : 0; 2338 else 2339 change = 0; 2340 spin_unlock_irq(&hdsp->lock); 2341 return change; 2342 } 2343 2344 #define HDSP_PREF_SYNC_REF(xname, xindex) \ 2345 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2346 .name = xname, \ 2347 .index = xindex, \ 2348 .info = snd_hdsp_info_pref_sync_ref, \ 2349 .get = snd_hdsp_get_pref_sync_ref, \ 2350 .put = snd_hdsp_put_pref_sync_ref \ 2351 } 2352 2353 static int hdsp_pref_sync_ref(struct hdsp *hdsp) 2354 { 2355 /* Notice that this looks at the requested sync source, 2356 not the one actually in use. 2357 */ 2358 2359 switch (hdsp->control_register & HDSP_SyncRefMask) { 2360 case HDSP_SyncRef_ADAT1: 2361 return HDSP_SYNC_FROM_ADAT1; 2362 case HDSP_SyncRef_ADAT2: 2363 return HDSP_SYNC_FROM_ADAT2; 2364 case HDSP_SyncRef_ADAT3: 2365 return HDSP_SYNC_FROM_ADAT3; 2366 case HDSP_SyncRef_SPDIF: 2367 return HDSP_SYNC_FROM_SPDIF; 2368 case HDSP_SyncRef_WORD: 2369 return HDSP_SYNC_FROM_WORD; 2370 case HDSP_SyncRef_ADAT_SYNC: 2371 return HDSP_SYNC_FROM_ADAT_SYNC; 2372 default: 2373 return HDSP_SYNC_FROM_WORD; 2374 } 2375 return 0; 2376 } 2377 2378 static int hdsp_set_pref_sync_ref(struct hdsp *hdsp, int pref) 2379 { 2380 hdsp->control_register &= ~HDSP_SyncRefMask; 2381 switch (pref) { 2382 case HDSP_SYNC_FROM_ADAT1: 2383 hdsp->control_register &= ~HDSP_SyncRefMask; /* clear SyncRef bits */ 2384 break; 2385 case HDSP_SYNC_FROM_ADAT2: 2386 hdsp->control_register |= HDSP_SyncRef_ADAT2; 2387 break; 2388 case HDSP_SYNC_FROM_ADAT3: 2389 hdsp->control_register |= HDSP_SyncRef_ADAT3; 2390 break; 2391 case HDSP_SYNC_FROM_SPDIF: 2392 hdsp->control_register |= HDSP_SyncRef_SPDIF; 2393 break; 2394 case HDSP_SYNC_FROM_WORD: 2395 hdsp->control_register |= HDSP_SyncRef_WORD; 2396 break; 2397 case HDSP_SYNC_FROM_ADAT_SYNC: 2398 hdsp->control_register |= HDSP_SyncRef_ADAT_SYNC; 2399 break; 2400 default: 2401 return -1; 2402 } 2403 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 2404 return 0; 2405 } 2406 2407 static int snd_hdsp_info_pref_sync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2408 { 2409 static const char * const texts[] = { 2410 "Word", "IEC958", "ADAT1", "ADAT Sync", "ADAT2", "ADAT3" 2411 }; 2412 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2413 int num_items; 2414 2415 switch (hdsp->io_type) { 2416 case Digiface: 2417 case H9652: 2418 num_items = 6; 2419 break; 2420 case Multiface: 2421 num_items = 4; 2422 break; 2423 case H9632: 2424 num_items = 3; 2425 break; 2426 default: 2427 return -EINVAL; 2428 } 2429 2430 return snd_ctl_enum_info(uinfo, 1, num_items, texts); 2431 } 2432 2433 static int snd_hdsp_get_pref_sync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2434 { 2435 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2436 2437 ucontrol->value.enumerated.item[0] = hdsp_pref_sync_ref(hdsp); 2438 return 0; 2439 } 2440 2441 static int snd_hdsp_put_pref_sync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2442 { 2443 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2444 int change, max; 2445 unsigned int val; 2446 2447 if (!snd_hdsp_use_is_exclusive(hdsp)) 2448 return -EBUSY; 2449 2450 switch (hdsp->io_type) { 2451 case Digiface: 2452 case H9652: 2453 max = 6; 2454 break; 2455 case Multiface: 2456 max = 4; 2457 break; 2458 case H9632: 2459 max = 3; 2460 break; 2461 default: 2462 return -EIO; 2463 } 2464 2465 val = ucontrol->value.enumerated.item[0] % max; 2466 spin_lock_irq(&hdsp->lock); 2467 change = (int)val != hdsp_pref_sync_ref(hdsp); 2468 hdsp_set_pref_sync_ref(hdsp, val); 2469 spin_unlock_irq(&hdsp->lock); 2470 return change; 2471 } 2472 2473 #define HDSP_AUTOSYNC_REF(xname, xindex) \ 2474 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2475 .name = xname, \ 2476 .index = xindex, \ 2477 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2478 .info = snd_hdsp_info_autosync_ref, \ 2479 .get = snd_hdsp_get_autosync_ref, \ 2480 } 2481 2482 static int hdsp_autosync_ref(struct hdsp *hdsp) 2483 { 2484 /* This looks at the autosync selected sync reference */ 2485 unsigned int status2 = hdsp_read(hdsp, HDSP_status2Register); 2486 2487 switch (status2 & HDSP_SelSyncRefMask) { 2488 case HDSP_SelSyncRef_WORD: 2489 return HDSP_AUTOSYNC_FROM_WORD; 2490 case HDSP_SelSyncRef_ADAT_SYNC: 2491 return HDSP_AUTOSYNC_FROM_ADAT_SYNC; 2492 case HDSP_SelSyncRef_SPDIF: 2493 return HDSP_AUTOSYNC_FROM_SPDIF; 2494 case HDSP_SelSyncRefMask: 2495 return HDSP_AUTOSYNC_FROM_NONE; 2496 case HDSP_SelSyncRef_ADAT1: 2497 return HDSP_AUTOSYNC_FROM_ADAT1; 2498 case HDSP_SelSyncRef_ADAT2: 2499 return HDSP_AUTOSYNC_FROM_ADAT2; 2500 case HDSP_SelSyncRef_ADAT3: 2501 return HDSP_AUTOSYNC_FROM_ADAT3; 2502 default: 2503 return HDSP_AUTOSYNC_FROM_WORD; 2504 } 2505 return 0; 2506 } 2507 2508 static int snd_hdsp_info_autosync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2509 { 2510 static const char * const texts[] = { 2511 "Word", "ADAT Sync", "IEC958", "None", "ADAT1", "ADAT2", "ADAT3" 2512 }; 2513 2514 return snd_ctl_enum_info(uinfo, 1, 7, texts); 2515 } 2516 2517 static int snd_hdsp_get_autosync_ref(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2518 { 2519 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2520 2521 ucontrol->value.enumerated.item[0] = hdsp_autosync_ref(hdsp); 2522 return 0; 2523 } 2524 2525 #define HDSP_PRECISE_POINTER(xname, xindex) \ 2526 { .iface = SNDRV_CTL_ELEM_IFACE_CARD, \ 2527 .name = xname, \ 2528 .index = xindex, \ 2529 .info = snd_hdsp_info_precise_pointer, \ 2530 .get = snd_hdsp_get_precise_pointer, \ 2531 .put = snd_hdsp_put_precise_pointer \ 2532 } 2533 2534 static int hdsp_set_precise_pointer(struct hdsp *hdsp, int precise) 2535 { 2536 if (precise) 2537 hdsp->precise_ptr = 1; 2538 else 2539 hdsp->precise_ptr = 0; 2540 return 0; 2541 } 2542 2543 #define snd_hdsp_info_precise_pointer snd_ctl_boolean_mono_info 2544 2545 static int snd_hdsp_get_precise_pointer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2546 { 2547 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2548 2549 spin_lock_irq(&hdsp->lock); 2550 ucontrol->value.integer.value[0] = hdsp->precise_ptr; 2551 spin_unlock_irq(&hdsp->lock); 2552 return 0; 2553 } 2554 2555 static int snd_hdsp_put_precise_pointer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2556 { 2557 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2558 int change; 2559 unsigned int val; 2560 2561 if (!snd_hdsp_use_is_exclusive(hdsp)) 2562 return -EBUSY; 2563 val = ucontrol->value.integer.value[0] & 1; 2564 spin_lock_irq(&hdsp->lock); 2565 change = (int)val != hdsp->precise_ptr; 2566 hdsp_set_precise_pointer(hdsp, val); 2567 spin_unlock_irq(&hdsp->lock); 2568 return change; 2569 } 2570 2571 #define HDSP_USE_MIDI_TASKLET(xname, xindex) \ 2572 { .iface = SNDRV_CTL_ELEM_IFACE_CARD, \ 2573 .name = xname, \ 2574 .index = xindex, \ 2575 .info = snd_hdsp_info_use_midi_tasklet, \ 2576 .get = snd_hdsp_get_use_midi_tasklet, \ 2577 .put = snd_hdsp_put_use_midi_tasklet \ 2578 } 2579 2580 static int hdsp_set_use_midi_tasklet(struct hdsp *hdsp, int use_tasklet) 2581 { 2582 if (use_tasklet) 2583 hdsp->use_midi_tasklet = 1; 2584 else 2585 hdsp->use_midi_tasklet = 0; 2586 return 0; 2587 } 2588 2589 #define snd_hdsp_info_use_midi_tasklet snd_ctl_boolean_mono_info 2590 2591 static int snd_hdsp_get_use_midi_tasklet(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2592 { 2593 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2594 2595 spin_lock_irq(&hdsp->lock); 2596 ucontrol->value.integer.value[0] = hdsp->use_midi_tasklet; 2597 spin_unlock_irq(&hdsp->lock); 2598 return 0; 2599 } 2600 2601 static int snd_hdsp_put_use_midi_tasklet(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2602 { 2603 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2604 int change; 2605 unsigned int val; 2606 2607 if (!snd_hdsp_use_is_exclusive(hdsp)) 2608 return -EBUSY; 2609 val = ucontrol->value.integer.value[0] & 1; 2610 spin_lock_irq(&hdsp->lock); 2611 change = (int)val != hdsp->use_midi_tasklet; 2612 hdsp_set_use_midi_tasklet(hdsp, val); 2613 spin_unlock_irq(&hdsp->lock); 2614 return change; 2615 } 2616 2617 #define HDSP_MIXER(xname, xindex) \ 2618 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 2619 .name = xname, \ 2620 .index = xindex, \ 2621 .device = 0, \ 2622 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 2623 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2624 .info = snd_hdsp_info_mixer, \ 2625 .get = snd_hdsp_get_mixer, \ 2626 .put = snd_hdsp_put_mixer \ 2627 } 2628 2629 static int snd_hdsp_info_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2630 { 2631 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2632 uinfo->count = 3; 2633 uinfo->value.integer.min = 0; 2634 uinfo->value.integer.max = 65536; 2635 uinfo->value.integer.step = 1; 2636 return 0; 2637 } 2638 2639 static int snd_hdsp_get_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2640 { 2641 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2642 int source; 2643 int destination; 2644 int addr; 2645 2646 source = ucontrol->value.integer.value[0]; 2647 destination = ucontrol->value.integer.value[1]; 2648 2649 if (source >= hdsp->max_channels) 2650 addr = hdsp_playback_to_output_key(hdsp,source-hdsp->max_channels,destination); 2651 else 2652 addr = hdsp_input_to_output_key(hdsp,source, destination); 2653 2654 spin_lock_irq(&hdsp->lock); 2655 ucontrol->value.integer.value[2] = hdsp_read_gain (hdsp, addr); 2656 spin_unlock_irq(&hdsp->lock); 2657 return 0; 2658 } 2659 2660 static int snd_hdsp_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2661 { 2662 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2663 int change; 2664 int source; 2665 int destination; 2666 int gain; 2667 int addr; 2668 2669 if (!snd_hdsp_use_is_exclusive(hdsp)) 2670 return -EBUSY; 2671 2672 source = ucontrol->value.integer.value[0]; 2673 destination = ucontrol->value.integer.value[1]; 2674 2675 if (source >= hdsp->max_channels) 2676 addr = hdsp_playback_to_output_key(hdsp,source-hdsp->max_channels, destination); 2677 else 2678 addr = hdsp_input_to_output_key(hdsp,source, destination); 2679 2680 gain = ucontrol->value.integer.value[2]; 2681 2682 spin_lock_irq(&hdsp->lock); 2683 change = gain != hdsp_read_gain(hdsp, addr); 2684 if (change) 2685 hdsp_write_gain(hdsp, addr, gain); 2686 spin_unlock_irq(&hdsp->lock); 2687 return change; 2688 } 2689 2690 #define HDSP_WC_SYNC_CHECK(xname, xindex) \ 2691 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2692 .name = xname, \ 2693 .index = xindex, \ 2694 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2695 .info = snd_hdsp_info_sync_check, \ 2696 .get = snd_hdsp_get_wc_sync_check \ 2697 } 2698 2699 static int snd_hdsp_info_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2700 { 2701 static const char * const texts[] = {"No Lock", "Lock", "Sync" }; 2702 2703 return snd_ctl_enum_info(uinfo, 1, 3, texts); 2704 } 2705 2706 static int hdsp_wc_sync_check(struct hdsp *hdsp) 2707 { 2708 int status2 = hdsp_read(hdsp, HDSP_status2Register); 2709 if (status2 & HDSP_wc_lock) { 2710 if (status2 & HDSP_wc_sync) 2711 return 2; 2712 else 2713 return 1; 2714 } else 2715 return 0; 2716 return 0; 2717 } 2718 2719 static int snd_hdsp_get_wc_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2720 { 2721 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2722 2723 ucontrol->value.enumerated.item[0] = hdsp_wc_sync_check(hdsp); 2724 return 0; 2725 } 2726 2727 #define HDSP_SPDIF_SYNC_CHECK(xname, xindex) \ 2728 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2729 .name = xname, \ 2730 .index = xindex, \ 2731 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2732 .info = snd_hdsp_info_sync_check, \ 2733 .get = snd_hdsp_get_spdif_sync_check \ 2734 } 2735 2736 static int hdsp_spdif_sync_check(struct hdsp *hdsp) 2737 { 2738 int status = hdsp_read(hdsp, HDSP_statusRegister); 2739 if (status & HDSP_SPDIFErrorFlag) 2740 return 0; 2741 else { 2742 if (status & HDSP_SPDIFSync) 2743 return 2; 2744 else 2745 return 1; 2746 } 2747 return 0; 2748 } 2749 2750 static int snd_hdsp_get_spdif_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2751 { 2752 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2753 2754 ucontrol->value.enumerated.item[0] = hdsp_spdif_sync_check(hdsp); 2755 return 0; 2756 } 2757 2758 #define HDSP_ADATSYNC_SYNC_CHECK(xname, xindex) \ 2759 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2760 .name = xname, \ 2761 .index = xindex, \ 2762 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2763 .info = snd_hdsp_info_sync_check, \ 2764 .get = snd_hdsp_get_adatsync_sync_check \ 2765 } 2766 2767 static int hdsp_adatsync_sync_check(struct hdsp *hdsp) 2768 { 2769 int status = hdsp_read(hdsp, HDSP_statusRegister); 2770 if (status & HDSP_TimecodeLock) { 2771 if (status & HDSP_TimecodeSync) 2772 return 2; 2773 else 2774 return 1; 2775 } else 2776 return 0; 2777 } 2778 2779 static int snd_hdsp_get_adatsync_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2780 { 2781 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2782 2783 ucontrol->value.enumerated.item[0] = hdsp_adatsync_sync_check(hdsp); 2784 return 0; 2785 } 2786 2787 #define HDSP_ADAT_SYNC_CHECK \ 2788 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2789 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2790 .info = snd_hdsp_info_sync_check, \ 2791 .get = snd_hdsp_get_adat_sync_check \ 2792 } 2793 2794 static int hdsp_adat_sync_check(struct hdsp *hdsp, int idx) 2795 { 2796 int status = hdsp_read(hdsp, HDSP_statusRegister); 2797 2798 if (status & (HDSP_Lock0>>idx)) { 2799 if (status & (HDSP_Sync0>>idx)) 2800 return 2; 2801 else 2802 return 1; 2803 } else 2804 return 0; 2805 } 2806 2807 static int snd_hdsp_get_adat_sync_check(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2808 { 2809 int offset; 2810 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2811 2812 offset = ucontrol->id.index - 1; 2813 snd_BUG_ON(offset < 0); 2814 2815 switch (hdsp->io_type) { 2816 case Digiface: 2817 case H9652: 2818 if (offset >= 3) 2819 return -EINVAL; 2820 break; 2821 case Multiface: 2822 case H9632: 2823 if (offset >= 1) 2824 return -EINVAL; 2825 break; 2826 default: 2827 return -EIO; 2828 } 2829 2830 ucontrol->value.enumerated.item[0] = hdsp_adat_sync_check(hdsp, offset); 2831 return 0; 2832 } 2833 2834 #define HDSP_DDS_OFFSET(xname, xindex) \ 2835 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2836 .name = xname, \ 2837 .index = xindex, \ 2838 .info = snd_hdsp_info_dds_offset, \ 2839 .get = snd_hdsp_get_dds_offset, \ 2840 .put = snd_hdsp_put_dds_offset \ 2841 } 2842 2843 static int hdsp_dds_offset(struct hdsp *hdsp) 2844 { 2845 u64 n; 2846 unsigned int dds_value = hdsp->dds_value; 2847 int system_sample_rate = hdsp->system_sample_rate; 2848 2849 if (!dds_value) 2850 return 0; 2851 2852 n = DDS_NUMERATOR; 2853 /* 2854 * dds_value = n / rate 2855 * rate = n / dds_value 2856 */ 2857 n = div_u64(n, dds_value); 2858 if (system_sample_rate >= 112000) 2859 n *= 4; 2860 else if (system_sample_rate >= 56000) 2861 n *= 2; 2862 return ((int)n) - system_sample_rate; 2863 } 2864 2865 static int hdsp_set_dds_offset(struct hdsp *hdsp, int offset_hz) 2866 { 2867 int rate = hdsp->system_sample_rate + offset_hz; 2868 hdsp_set_dds_value(hdsp, rate); 2869 return 0; 2870 } 2871 2872 static int snd_hdsp_info_dds_offset(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 2873 { 2874 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2875 uinfo->count = 1; 2876 uinfo->value.integer.min = -5000; 2877 uinfo->value.integer.max = 5000; 2878 return 0; 2879 } 2880 2881 static int snd_hdsp_get_dds_offset(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2882 { 2883 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2884 2885 ucontrol->value.enumerated.item[0] = hdsp_dds_offset(hdsp); 2886 return 0; 2887 } 2888 2889 static int snd_hdsp_put_dds_offset(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2890 { 2891 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 2892 int change; 2893 int val; 2894 2895 if (!snd_hdsp_use_is_exclusive(hdsp)) 2896 return -EBUSY; 2897 val = ucontrol->value.enumerated.item[0]; 2898 spin_lock_irq(&hdsp->lock); 2899 if (val != hdsp_dds_offset(hdsp)) 2900 change = (hdsp_set_dds_offset(hdsp, val) == 0) ? 1 : 0; 2901 else 2902 change = 0; 2903 spin_unlock_irq(&hdsp->lock); 2904 return change; 2905 } 2906 2907 static struct snd_kcontrol_new snd_hdsp_9632_controls[] = { 2908 HDSP_DA_GAIN("DA Gain", 0), 2909 HDSP_AD_GAIN("AD Gain", 0), 2910 HDSP_PHONE_GAIN("Phones Gain", 0), 2911 HDSP_TOGGLE_SETTING("XLR Breakout Cable", HDSP_XLRBreakoutCable), 2912 HDSP_DDS_OFFSET("DDS Sample Rate Offset", 0) 2913 }; 2914 2915 static struct snd_kcontrol_new snd_hdsp_controls[] = { 2916 { 2917 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2918 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 2919 .info = snd_hdsp_control_spdif_info, 2920 .get = snd_hdsp_control_spdif_get, 2921 .put = snd_hdsp_control_spdif_put, 2922 }, 2923 { 2924 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 2925 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2926 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 2927 .info = snd_hdsp_control_spdif_stream_info, 2928 .get = snd_hdsp_control_spdif_stream_get, 2929 .put = snd_hdsp_control_spdif_stream_put, 2930 }, 2931 { 2932 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2933 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2934 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 2935 .info = snd_hdsp_control_spdif_mask_info, 2936 .get = snd_hdsp_control_spdif_mask_get, 2937 .private_value = IEC958_AES0_NONAUDIO | 2938 IEC958_AES0_PROFESSIONAL | 2939 IEC958_AES0_CON_EMPHASIS, 2940 }, 2941 { 2942 .access = SNDRV_CTL_ELEM_ACCESS_READ, 2943 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2944 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK), 2945 .info = snd_hdsp_control_spdif_mask_info, 2946 .get = snd_hdsp_control_spdif_mask_get, 2947 .private_value = IEC958_AES0_NONAUDIO | 2948 IEC958_AES0_PROFESSIONAL | 2949 IEC958_AES0_PRO_EMPHASIS, 2950 }, 2951 HDSP_MIXER("Mixer", 0), 2952 HDSP_SPDIF_IN("IEC958 Input Connector", 0), 2953 HDSP_TOGGLE_SETTING("IEC958 Output also on ADAT1", HDSP_SPDIFOpticalOut), 2954 HDSP_TOGGLE_SETTING("IEC958 Professional Bit", HDSP_SPDIFProfessional), 2955 HDSP_TOGGLE_SETTING("IEC958 Emphasis Bit", HDSP_SPDIFEmphasis), 2956 HDSP_TOGGLE_SETTING("IEC958 Non-audio Bit", HDSP_SPDIFNonAudio), 2957 /* 'Sample Clock Source' complies with the alsa control naming scheme */ 2958 HDSP_CLOCK_SOURCE("Sample Clock Source", 0), 2959 { 2960 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2961 .name = "Sample Clock Source Locking", 2962 .info = snd_hdsp_info_clock_source_lock, 2963 .get = snd_hdsp_get_clock_source_lock, 2964 .put = snd_hdsp_put_clock_source_lock, 2965 }, 2966 HDSP_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 2967 HDSP_PREF_SYNC_REF("Preferred Sync Reference", 0), 2968 HDSP_AUTOSYNC_REF("AutoSync Reference", 0), 2969 HDSP_SPDIF_SAMPLE_RATE("SPDIF Sample Rate", 0), 2970 HDSP_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 2971 /* 'External Rate' complies with the alsa control naming scheme */ 2972 HDSP_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 2973 HDSP_WC_SYNC_CHECK("Word Clock Lock Status", 0), 2974 HDSP_SPDIF_SYNC_CHECK("SPDIF Lock Status", 0), 2975 HDSP_ADATSYNC_SYNC_CHECK("ADAT Sync Lock Status", 0), 2976 HDSP_TOGGLE_SETTING("Line Out", HDSP_LineOut), 2977 HDSP_PRECISE_POINTER("Precise Pointer", 0), 2978 HDSP_USE_MIDI_TASKLET("Use Midi Tasklet", 0), 2979 }; 2980 2981 2982 static int hdsp_rpm_input12(struct hdsp *hdsp) 2983 { 2984 switch (hdsp->control_register & HDSP_RPM_Inp12) { 2985 case HDSP_RPM_Inp12_Phon_6dB: 2986 return 0; 2987 case HDSP_RPM_Inp12_Phon_n6dB: 2988 return 2; 2989 case HDSP_RPM_Inp12_Line_0dB: 2990 return 3; 2991 case HDSP_RPM_Inp12_Line_n6dB: 2992 return 4; 2993 } 2994 return 1; 2995 } 2996 2997 2998 static int snd_hdsp_get_rpm_input12(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 2999 { 3000 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3001 3002 ucontrol->value.enumerated.item[0] = hdsp_rpm_input12(hdsp); 3003 return 0; 3004 } 3005 3006 3007 static int hdsp_set_rpm_input12(struct hdsp *hdsp, int mode) 3008 { 3009 hdsp->control_register &= ~HDSP_RPM_Inp12; 3010 switch (mode) { 3011 case 0: 3012 hdsp->control_register |= HDSP_RPM_Inp12_Phon_6dB; 3013 break; 3014 case 1: 3015 break; 3016 case 2: 3017 hdsp->control_register |= HDSP_RPM_Inp12_Phon_n6dB; 3018 break; 3019 case 3: 3020 hdsp->control_register |= HDSP_RPM_Inp12_Line_0dB; 3021 break; 3022 case 4: 3023 hdsp->control_register |= HDSP_RPM_Inp12_Line_n6dB; 3024 break; 3025 default: 3026 return -1; 3027 } 3028 3029 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3030 return 0; 3031 } 3032 3033 3034 static int snd_hdsp_put_rpm_input12(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3035 { 3036 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3037 int change; 3038 int val; 3039 3040 if (!snd_hdsp_use_is_exclusive(hdsp)) 3041 return -EBUSY; 3042 val = ucontrol->value.enumerated.item[0]; 3043 if (val < 0) 3044 val = 0; 3045 if (val > 4) 3046 val = 4; 3047 spin_lock_irq(&hdsp->lock); 3048 if (val != hdsp_rpm_input12(hdsp)) 3049 change = (hdsp_set_rpm_input12(hdsp, val) == 0) ? 1 : 0; 3050 else 3051 change = 0; 3052 spin_unlock_irq(&hdsp->lock); 3053 return change; 3054 } 3055 3056 3057 static int snd_hdsp_info_rpm_input(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 3058 { 3059 static const char * const texts[] = { 3060 "Phono +6dB", "Phono 0dB", "Phono -6dB", "Line 0dB", "Line -6dB" 3061 }; 3062 3063 return snd_ctl_enum_info(uinfo, 1, 5, texts); 3064 } 3065 3066 3067 static int hdsp_rpm_input34(struct hdsp *hdsp) 3068 { 3069 switch (hdsp->control_register & HDSP_RPM_Inp34) { 3070 case HDSP_RPM_Inp34_Phon_6dB: 3071 return 0; 3072 case HDSP_RPM_Inp34_Phon_n6dB: 3073 return 2; 3074 case HDSP_RPM_Inp34_Line_0dB: 3075 return 3; 3076 case HDSP_RPM_Inp34_Line_n6dB: 3077 return 4; 3078 } 3079 return 1; 3080 } 3081 3082 3083 static int snd_hdsp_get_rpm_input34(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3084 { 3085 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3086 3087 ucontrol->value.enumerated.item[0] = hdsp_rpm_input34(hdsp); 3088 return 0; 3089 } 3090 3091 3092 static int hdsp_set_rpm_input34(struct hdsp *hdsp, int mode) 3093 { 3094 hdsp->control_register &= ~HDSP_RPM_Inp34; 3095 switch (mode) { 3096 case 0: 3097 hdsp->control_register |= HDSP_RPM_Inp34_Phon_6dB; 3098 break; 3099 case 1: 3100 break; 3101 case 2: 3102 hdsp->control_register |= HDSP_RPM_Inp34_Phon_n6dB; 3103 break; 3104 case 3: 3105 hdsp->control_register |= HDSP_RPM_Inp34_Line_0dB; 3106 break; 3107 case 4: 3108 hdsp->control_register |= HDSP_RPM_Inp34_Line_n6dB; 3109 break; 3110 default: 3111 return -1; 3112 } 3113 3114 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3115 return 0; 3116 } 3117 3118 3119 static int snd_hdsp_put_rpm_input34(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3120 { 3121 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3122 int change; 3123 int val; 3124 3125 if (!snd_hdsp_use_is_exclusive(hdsp)) 3126 return -EBUSY; 3127 val = ucontrol->value.enumerated.item[0]; 3128 if (val < 0) 3129 val = 0; 3130 if (val > 4) 3131 val = 4; 3132 spin_lock_irq(&hdsp->lock); 3133 if (val != hdsp_rpm_input34(hdsp)) 3134 change = (hdsp_set_rpm_input34(hdsp, val) == 0) ? 1 : 0; 3135 else 3136 change = 0; 3137 spin_unlock_irq(&hdsp->lock); 3138 return change; 3139 } 3140 3141 3142 /* RPM Bypass switch */ 3143 static int hdsp_rpm_bypass(struct hdsp *hdsp) 3144 { 3145 return (hdsp->control_register & HDSP_RPM_Bypass) ? 1 : 0; 3146 } 3147 3148 3149 static int snd_hdsp_get_rpm_bypass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3150 { 3151 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3152 3153 ucontrol->value.integer.value[0] = hdsp_rpm_bypass(hdsp); 3154 return 0; 3155 } 3156 3157 3158 static int hdsp_set_rpm_bypass(struct hdsp *hdsp, int on) 3159 { 3160 if (on) 3161 hdsp->control_register |= HDSP_RPM_Bypass; 3162 else 3163 hdsp->control_register &= ~HDSP_RPM_Bypass; 3164 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3165 return 0; 3166 } 3167 3168 3169 static int snd_hdsp_put_rpm_bypass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3170 { 3171 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3172 int change; 3173 unsigned int val; 3174 3175 if (!snd_hdsp_use_is_exclusive(hdsp)) 3176 return -EBUSY; 3177 val = ucontrol->value.integer.value[0] & 1; 3178 spin_lock_irq(&hdsp->lock); 3179 change = (int)val != hdsp_rpm_bypass(hdsp); 3180 hdsp_set_rpm_bypass(hdsp, val); 3181 spin_unlock_irq(&hdsp->lock); 3182 return change; 3183 } 3184 3185 3186 static int snd_hdsp_info_rpm_bypass(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 3187 { 3188 static const char * const texts[] = {"On", "Off"}; 3189 3190 return snd_ctl_enum_info(uinfo, 1, 2, texts); 3191 } 3192 3193 3194 /* RPM Disconnect switch */ 3195 static int hdsp_rpm_disconnect(struct hdsp *hdsp) 3196 { 3197 return (hdsp->control_register & HDSP_RPM_Disconnect) ? 1 : 0; 3198 } 3199 3200 3201 static int snd_hdsp_get_rpm_disconnect(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3202 { 3203 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3204 3205 ucontrol->value.integer.value[0] = hdsp_rpm_disconnect(hdsp); 3206 return 0; 3207 } 3208 3209 3210 static int hdsp_set_rpm_disconnect(struct hdsp *hdsp, int on) 3211 { 3212 if (on) 3213 hdsp->control_register |= HDSP_RPM_Disconnect; 3214 else 3215 hdsp->control_register &= ~HDSP_RPM_Disconnect; 3216 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3217 return 0; 3218 } 3219 3220 3221 static int snd_hdsp_put_rpm_disconnect(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 3222 { 3223 struct hdsp *hdsp = snd_kcontrol_chip(kcontrol); 3224 int change; 3225 unsigned int val; 3226 3227 if (!snd_hdsp_use_is_exclusive(hdsp)) 3228 return -EBUSY; 3229 val = ucontrol->value.integer.value[0] & 1; 3230 spin_lock_irq(&hdsp->lock); 3231 change = (int)val != hdsp_rpm_disconnect(hdsp); 3232 hdsp_set_rpm_disconnect(hdsp, val); 3233 spin_unlock_irq(&hdsp->lock); 3234 return change; 3235 } 3236 3237 static int snd_hdsp_info_rpm_disconnect(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 3238 { 3239 static const char * const texts[] = {"On", "Off"}; 3240 3241 return snd_ctl_enum_info(uinfo, 1, 2, texts); 3242 } 3243 3244 static struct snd_kcontrol_new snd_hdsp_rpm_controls[] = { 3245 { 3246 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3247 .name = "RPM Bypass", 3248 .get = snd_hdsp_get_rpm_bypass, 3249 .put = snd_hdsp_put_rpm_bypass, 3250 .info = snd_hdsp_info_rpm_bypass 3251 }, 3252 { 3253 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3254 .name = "RPM Disconnect", 3255 .get = snd_hdsp_get_rpm_disconnect, 3256 .put = snd_hdsp_put_rpm_disconnect, 3257 .info = snd_hdsp_info_rpm_disconnect 3258 }, 3259 { 3260 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3261 .name = "Input 1/2", 3262 .get = snd_hdsp_get_rpm_input12, 3263 .put = snd_hdsp_put_rpm_input12, 3264 .info = snd_hdsp_info_rpm_input 3265 }, 3266 { 3267 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 3268 .name = "Input 3/4", 3269 .get = snd_hdsp_get_rpm_input34, 3270 .put = snd_hdsp_put_rpm_input34, 3271 .info = snd_hdsp_info_rpm_input 3272 }, 3273 HDSP_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 3274 HDSP_MIXER("Mixer", 0) 3275 }; 3276 3277 static struct snd_kcontrol_new snd_hdsp_96xx_aeb = 3278 HDSP_TOGGLE_SETTING("Analog Extension Board", 3279 HDSP_AnalogExtensionBoard); 3280 static struct snd_kcontrol_new snd_hdsp_adat_sync_check = HDSP_ADAT_SYNC_CHECK; 3281 3282 static int snd_hdsp_create_controls(struct snd_card *card, struct hdsp *hdsp) 3283 { 3284 unsigned int idx; 3285 int err; 3286 struct snd_kcontrol *kctl; 3287 3288 if (hdsp->io_type == RPM) { 3289 /* RPM Bypass, Disconnect and Input switches */ 3290 for (idx = 0; idx < ARRAY_SIZE(snd_hdsp_rpm_controls); idx++) { 3291 err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_rpm_controls[idx], hdsp)); 3292 if (err < 0) 3293 return err; 3294 } 3295 return 0; 3296 } 3297 3298 for (idx = 0; idx < ARRAY_SIZE(snd_hdsp_controls); idx++) { 3299 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_controls[idx], hdsp))) < 0) 3300 return err; 3301 if (idx == 1) /* IEC958 (S/PDIF) Stream */ 3302 hdsp->spdif_ctl = kctl; 3303 } 3304 3305 /* ADAT SyncCheck status */ 3306 snd_hdsp_adat_sync_check.name = "ADAT Lock Status"; 3307 snd_hdsp_adat_sync_check.index = 1; 3308 if ((err = snd_ctl_add (card, kctl = snd_ctl_new1(&snd_hdsp_adat_sync_check, hdsp)))) 3309 return err; 3310 if (hdsp->io_type == Digiface || hdsp->io_type == H9652) { 3311 for (idx = 1; idx < 3; ++idx) { 3312 snd_hdsp_adat_sync_check.index = idx+1; 3313 if ((err = snd_ctl_add (card, kctl = snd_ctl_new1(&snd_hdsp_adat_sync_check, hdsp)))) 3314 return err; 3315 } 3316 } 3317 3318 /* DA, AD and Phone gain and XLR breakout cable controls for H9632 cards */ 3319 if (hdsp->io_type == H9632) { 3320 for (idx = 0; idx < ARRAY_SIZE(snd_hdsp_9632_controls); idx++) { 3321 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_9632_controls[idx], hdsp))) < 0) 3322 return err; 3323 } 3324 } 3325 3326 /* AEB control for H96xx card */ 3327 if (hdsp->io_type == H9632 || hdsp->io_type == H9652) { 3328 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_hdsp_96xx_aeb, hdsp))) < 0) 3329 return err; 3330 } 3331 3332 return 0; 3333 } 3334 3335 /*------------------------------------------------------------ 3336 /proc interface 3337 ------------------------------------------------------------*/ 3338 3339 static void 3340 snd_hdsp_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) 3341 { 3342 struct hdsp *hdsp = entry->private_data; 3343 unsigned int status; 3344 unsigned int status2; 3345 char *pref_sync_ref; 3346 char *autosync_ref; 3347 char *system_clock_mode; 3348 char *clock_source; 3349 int x; 3350 3351 status = hdsp_read(hdsp, HDSP_statusRegister); 3352 status2 = hdsp_read(hdsp, HDSP_status2Register); 3353 3354 snd_iprintf(buffer, "%s (Card #%d)\n", hdsp->card_name, 3355 hdsp->card->number + 1); 3356 snd_iprintf(buffer, "Buffers: capture %p playback %p\n", 3357 hdsp->capture_buffer, hdsp->playback_buffer); 3358 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 3359 hdsp->irq, hdsp->port, (unsigned long)hdsp->iobase); 3360 snd_iprintf(buffer, "Control register: 0x%x\n", hdsp->control_register); 3361 snd_iprintf(buffer, "Control2 register: 0x%x\n", 3362 hdsp->control2_register); 3363 snd_iprintf(buffer, "Status register: 0x%x\n", status); 3364 snd_iprintf(buffer, "Status2 register: 0x%x\n", status2); 3365 3366 if (hdsp_check_for_iobox(hdsp)) { 3367 snd_iprintf(buffer, "No I/O box connected.\n" 3368 "Please connect one and upload firmware.\n"); 3369 return; 3370 } 3371 3372 if (hdsp_check_for_firmware(hdsp, 0)) { 3373 if (hdsp->state & HDSP_FirmwareCached) { 3374 if (snd_hdsp_load_firmware_from_cache(hdsp) != 0) { 3375 snd_iprintf(buffer, "Firmware loading from " 3376 "cache failed, " 3377 "please upload manually.\n"); 3378 return; 3379 } 3380 } else { 3381 int err = -EINVAL; 3382 err = hdsp_request_fw_loader(hdsp); 3383 if (err < 0) { 3384 snd_iprintf(buffer, 3385 "No firmware loaded nor cached, " 3386 "please upload firmware.\n"); 3387 return; 3388 } 3389 } 3390 } 3391 3392 snd_iprintf(buffer, "FIFO status: %d\n", hdsp_read(hdsp, HDSP_fifoStatus) & 0xff); 3393 snd_iprintf(buffer, "MIDI1 Output status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusOut0)); 3394 snd_iprintf(buffer, "MIDI1 Input status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusIn0)); 3395 snd_iprintf(buffer, "MIDI2 Output status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusOut1)); 3396 snd_iprintf(buffer, "MIDI2 Input status: 0x%x\n", hdsp_read(hdsp, HDSP_midiStatusIn1)); 3397 snd_iprintf(buffer, "Use Midi Tasklet: %s\n", hdsp->use_midi_tasklet ? "on" : "off"); 3398 3399 snd_iprintf(buffer, "\n"); 3400 3401 x = 1 << (6 + hdsp_decode_latency(hdsp->control_register & HDSP_LatencyMask)); 3402 3403 snd_iprintf(buffer, "Buffer Size (Latency): %d samples (2 periods of %lu bytes)\n", x, (unsigned long) hdsp->period_bytes); 3404 snd_iprintf(buffer, "Hardware pointer (frames): %ld\n", hdsp_hw_pointer(hdsp)); 3405 snd_iprintf(buffer, "Precise pointer: %s\n", hdsp->precise_ptr ? "on" : "off"); 3406 snd_iprintf(buffer, "Line out: %s\n", (hdsp->control_register & HDSP_LineOut) ? "on" : "off"); 3407 3408 snd_iprintf(buffer, "Firmware version: %d\n", (status2&HDSP_version0)|(status2&HDSP_version1)<<1|(status2&HDSP_version2)<<2); 3409 3410 snd_iprintf(buffer, "\n"); 3411 3412 switch (hdsp_clock_source(hdsp)) { 3413 case HDSP_CLOCK_SOURCE_AUTOSYNC: 3414 clock_source = "AutoSync"; 3415 break; 3416 case HDSP_CLOCK_SOURCE_INTERNAL_32KHZ: 3417 clock_source = "Internal 32 kHz"; 3418 break; 3419 case HDSP_CLOCK_SOURCE_INTERNAL_44_1KHZ: 3420 clock_source = "Internal 44.1 kHz"; 3421 break; 3422 case HDSP_CLOCK_SOURCE_INTERNAL_48KHZ: 3423 clock_source = "Internal 48 kHz"; 3424 break; 3425 case HDSP_CLOCK_SOURCE_INTERNAL_64KHZ: 3426 clock_source = "Internal 64 kHz"; 3427 break; 3428 case HDSP_CLOCK_SOURCE_INTERNAL_88_2KHZ: 3429 clock_source = "Internal 88.2 kHz"; 3430 break; 3431 case HDSP_CLOCK_SOURCE_INTERNAL_96KHZ: 3432 clock_source = "Internal 96 kHz"; 3433 break; 3434 case HDSP_CLOCK_SOURCE_INTERNAL_128KHZ: 3435 clock_source = "Internal 128 kHz"; 3436 break; 3437 case HDSP_CLOCK_SOURCE_INTERNAL_176_4KHZ: 3438 clock_source = "Internal 176.4 kHz"; 3439 break; 3440 case HDSP_CLOCK_SOURCE_INTERNAL_192KHZ: 3441 clock_source = "Internal 192 kHz"; 3442 break; 3443 default: 3444 clock_source = "Error"; 3445 } 3446 snd_iprintf (buffer, "Sample Clock Source: %s\n", clock_source); 3447 3448 if (hdsp_system_clock_mode(hdsp)) 3449 system_clock_mode = "Slave"; 3450 else 3451 system_clock_mode = "Master"; 3452 3453 switch (hdsp_pref_sync_ref (hdsp)) { 3454 case HDSP_SYNC_FROM_WORD: 3455 pref_sync_ref = "Word Clock"; 3456 break; 3457 case HDSP_SYNC_FROM_ADAT_SYNC: 3458 pref_sync_ref = "ADAT Sync"; 3459 break; 3460 case HDSP_SYNC_FROM_SPDIF: 3461 pref_sync_ref = "SPDIF"; 3462 break; 3463 case HDSP_SYNC_FROM_ADAT1: 3464 pref_sync_ref = "ADAT1"; 3465 break; 3466 case HDSP_SYNC_FROM_ADAT2: 3467 pref_sync_ref = "ADAT2"; 3468 break; 3469 case HDSP_SYNC_FROM_ADAT3: 3470 pref_sync_ref = "ADAT3"; 3471 break; 3472 default: 3473 pref_sync_ref = "Word Clock"; 3474 break; 3475 } 3476 snd_iprintf (buffer, "Preferred Sync Reference: %s\n", pref_sync_ref); 3477 3478 switch (hdsp_autosync_ref (hdsp)) { 3479 case HDSP_AUTOSYNC_FROM_WORD: 3480 autosync_ref = "Word Clock"; 3481 break; 3482 case HDSP_AUTOSYNC_FROM_ADAT_SYNC: 3483 autosync_ref = "ADAT Sync"; 3484 break; 3485 case HDSP_AUTOSYNC_FROM_SPDIF: 3486 autosync_ref = "SPDIF"; 3487 break; 3488 case HDSP_AUTOSYNC_FROM_NONE: 3489 autosync_ref = "None"; 3490 break; 3491 case HDSP_AUTOSYNC_FROM_ADAT1: 3492 autosync_ref = "ADAT1"; 3493 break; 3494 case HDSP_AUTOSYNC_FROM_ADAT2: 3495 autosync_ref = "ADAT2"; 3496 break; 3497 case HDSP_AUTOSYNC_FROM_ADAT3: 3498 autosync_ref = "ADAT3"; 3499 break; 3500 default: 3501 autosync_ref = "---"; 3502 break; 3503 } 3504 snd_iprintf (buffer, "AutoSync Reference: %s\n", autosync_ref); 3505 3506 snd_iprintf (buffer, "AutoSync Frequency: %d\n", hdsp_external_sample_rate(hdsp)); 3507 3508 snd_iprintf (buffer, "System Clock Mode: %s\n", system_clock_mode); 3509 3510 snd_iprintf (buffer, "System Clock Frequency: %d\n", hdsp->system_sample_rate); 3511 snd_iprintf (buffer, "System Clock Locked: %s\n", hdsp->clock_source_locked ? "Yes" : "No"); 3512 3513 snd_iprintf(buffer, "\n"); 3514 3515 if (hdsp->io_type != RPM) { 3516 switch (hdsp_spdif_in(hdsp)) { 3517 case HDSP_SPDIFIN_OPTICAL: 3518 snd_iprintf(buffer, "IEC958 input: Optical\n"); 3519 break; 3520 case HDSP_SPDIFIN_COAXIAL: 3521 snd_iprintf(buffer, "IEC958 input: Coaxial\n"); 3522 break; 3523 case HDSP_SPDIFIN_INTERNAL: 3524 snd_iprintf(buffer, "IEC958 input: Internal\n"); 3525 break; 3526 case HDSP_SPDIFIN_AES: 3527 snd_iprintf(buffer, "IEC958 input: AES\n"); 3528 break; 3529 default: 3530 snd_iprintf(buffer, "IEC958 input: ???\n"); 3531 break; 3532 } 3533 } 3534 3535 if (RPM == hdsp->io_type) { 3536 if (hdsp->control_register & HDSP_RPM_Bypass) 3537 snd_iprintf(buffer, "RPM Bypass: disabled\n"); 3538 else 3539 snd_iprintf(buffer, "RPM Bypass: enabled\n"); 3540 if (hdsp->control_register & HDSP_RPM_Disconnect) 3541 snd_iprintf(buffer, "RPM disconnected\n"); 3542 else 3543 snd_iprintf(buffer, "RPM connected\n"); 3544 3545 switch (hdsp->control_register & HDSP_RPM_Inp12) { 3546 case HDSP_RPM_Inp12_Phon_6dB: 3547 snd_iprintf(buffer, "Input 1/2: Phono, 6dB\n"); 3548 break; 3549 case HDSP_RPM_Inp12_Phon_0dB: 3550 snd_iprintf(buffer, "Input 1/2: Phono, 0dB\n"); 3551 break; 3552 case HDSP_RPM_Inp12_Phon_n6dB: 3553 snd_iprintf(buffer, "Input 1/2: Phono, -6dB\n"); 3554 break; 3555 case HDSP_RPM_Inp12_Line_0dB: 3556 snd_iprintf(buffer, "Input 1/2: Line, 0dB\n"); 3557 break; 3558 case HDSP_RPM_Inp12_Line_n6dB: 3559 snd_iprintf(buffer, "Input 1/2: Line, -6dB\n"); 3560 break; 3561 default: 3562 snd_iprintf(buffer, "Input 1/2: ???\n"); 3563 } 3564 3565 switch (hdsp->control_register & HDSP_RPM_Inp34) { 3566 case HDSP_RPM_Inp34_Phon_6dB: 3567 snd_iprintf(buffer, "Input 3/4: Phono, 6dB\n"); 3568 break; 3569 case HDSP_RPM_Inp34_Phon_0dB: 3570 snd_iprintf(buffer, "Input 3/4: Phono, 0dB\n"); 3571 break; 3572 case HDSP_RPM_Inp34_Phon_n6dB: 3573 snd_iprintf(buffer, "Input 3/4: Phono, -6dB\n"); 3574 break; 3575 case HDSP_RPM_Inp34_Line_0dB: 3576 snd_iprintf(buffer, "Input 3/4: Line, 0dB\n"); 3577 break; 3578 case HDSP_RPM_Inp34_Line_n6dB: 3579 snd_iprintf(buffer, "Input 3/4: Line, -6dB\n"); 3580 break; 3581 default: 3582 snd_iprintf(buffer, "Input 3/4: ???\n"); 3583 } 3584 3585 } else { 3586 if (hdsp->control_register & HDSP_SPDIFOpticalOut) 3587 snd_iprintf(buffer, "IEC958 output: Coaxial & ADAT1\n"); 3588 else 3589 snd_iprintf(buffer, "IEC958 output: Coaxial only\n"); 3590 3591 if (hdsp->control_register & HDSP_SPDIFProfessional) 3592 snd_iprintf(buffer, "IEC958 quality: Professional\n"); 3593 else 3594 snd_iprintf(buffer, "IEC958 quality: Consumer\n"); 3595 3596 if (hdsp->control_register & HDSP_SPDIFEmphasis) 3597 snd_iprintf(buffer, "IEC958 emphasis: on\n"); 3598 else 3599 snd_iprintf(buffer, "IEC958 emphasis: off\n"); 3600 3601 if (hdsp->control_register & HDSP_SPDIFNonAudio) 3602 snd_iprintf(buffer, "IEC958 NonAudio: on\n"); 3603 else 3604 snd_iprintf(buffer, "IEC958 NonAudio: off\n"); 3605 x = hdsp_spdif_sample_rate(hdsp); 3606 if (x != 0) 3607 snd_iprintf(buffer, "IEC958 sample rate: %d\n", x); 3608 else 3609 snd_iprintf(buffer, "IEC958 sample rate: Error flag set\n"); 3610 } 3611 snd_iprintf(buffer, "\n"); 3612 3613 /* Sync Check */ 3614 x = status & HDSP_Sync0; 3615 if (status & HDSP_Lock0) 3616 snd_iprintf(buffer, "ADAT1: %s\n", x ? "Sync" : "Lock"); 3617 else 3618 snd_iprintf(buffer, "ADAT1: No Lock\n"); 3619 3620 switch (hdsp->io_type) { 3621 case Digiface: 3622 case H9652: 3623 x = status & HDSP_Sync1; 3624 if (status & HDSP_Lock1) 3625 snd_iprintf(buffer, "ADAT2: %s\n", x ? "Sync" : "Lock"); 3626 else 3627 snd_iprintf(buffer, "ADAT2: No Lock\n"); 3628 x = status & HDSP_Sync2; 3629 if (status & HDSP_Lock2) 3630 snd_iprintf(buffer, "ADAT3: %s\n", x ? "Sync" : "Lock"); 3631 else 3632 snd_iprintf(buffer, "ADAT3: No Lock\n"); 3633 break; 3634 default: 3635 /* relax */ 3636 break; 3637 } 3638 3639 x = status & HDSP_SPDIFSync; 3640 if (status & HDSP_SPDIFErrorFlag) 3641 snd_iprintf (buffer, "SPDIF: No Lock\n"); 3642 else 3643 snd_iprintf (buffer, "SPDIF: %s\n", x ? "Sync" : "Lock"); 3644 3645 x = status2 & HDSP_wc_sync; 3646 if (status2 & HDSP_wc_lock) 3647 snd_iprintf (buffer, "Word Clock: %s\n", x ? "Sync" : "Lock"); 3648 else 3649 snd_iprintf (buffer, "Word Clock: No Lock\n"); 3650 3651 x = status & HDSP_TimecodeSync; 3652 if (status & HDSP_TimecodeLock) 3653 snd_iprintf(buffer, "ADAT Sync: %s\n", x ? "Sync" : "Lock"); 3654 else 3655 snd_iprintf(buffer, "ADAT Sync: No Lock\n"); 3656 3657 snd_iprintf(buffer, "\n"); 3658 3659 /* Informations about H9632 specific controls */ 3660 if (hdsp->io_type == H9632) { 3661 char *tmp; 3662 3663 switch (hdsp_ad_gain(hdsp)) { 3664 case 0: 3665 tmp = "-10 dBV"; 3666 break; 3667 case 1: 3668 tmp = "+4 dBu"; 3669 break; 3670 default: 3671 tmp = "Lo Gain"; 3672 break; 3673 } 3674 snd_iprintf(buffer, "AD Gain : %s\n", tmp); 3675 3676 switch (hdsp_da_gain(hdsp)) { 3677 case 0: 3678 tmp = "Hi Gain"; 3679 break; 3680 case 1: 3681 tmp = "+4 dBu"; 3682 break; 3683 default: 3684 tmp = "-10 dBV"; 3685 break; 3686 } 3687 snd_iprintf(buffer, "DA Gain : %s\n", tmp); 3688 3689 switch (hdsp_phone_gain(hdsp)) { 3690 case 0: 3691 tmp = "0 dB"; 3692 break; 3693 case 1: 3694 tmp = "-6 dB"; 3695 break; 3696 default: 3697 tmp = "-12 dB"; 3698 break; 3699 } 3700 snd_iprintf(buffer, "Phones Gain : %s\n", tmp); 3701 3702 snd_iprintf(buffer, "XLR Breakout Cable : %s\n", 3703 hdsp_toggle_setting(hdsp, HDSP_XLRBreakoutCable) ? 3704 "yes" : "no"); 3705 3706 if (hdsp->control_register & HDSP_AnalogExtensionBoard) 3707 snd_iprintf(buffer, "AEB : on (ADAT1 internal)\n"); 3708 else 3709 snd_iprintf(buffer, "AEB : off (ADAT1 external)\n"); 3710 snd_iprintf(buffer, "\n"); 3711 } 3712 3713 } 3714 3715 static void snd_hdsp_proc_init(struct hdsp *hdsp) 3716 { 3717 struct snd_info_entry *entry; 3718 3719 if (! snd_card_proc_new(hdsp->card, "hdsp", &entry)) 3720 snd_info_set_text_ops(entry, hdsp, snd_hdsp_proc_read); 3721 } 3722 3723 static void snd_hdsp_free_buffers(struct hdsp *hdsp) 3724 { 3725 snd_hammerfall_free_buffer(&hdsp->capture_dma_buf, hdsp->pci); 3726 snd_hammerfall_free_buffer(&hdsp->playback_dma_buf, hdsp->pci); 3727 } 3728 3729 static int snd_hdsp_initialize_memory(struct hdsp *hdsp) 3730 { 3731 unsigned long pb_bus, cb_bus; 3732 3733 if (snd_hammerfall_get_buffer(hdsp->pci, &hdsp->capture_dma_buf, HDSP_DMA_AREA_BYTES) < 0 || 3734 snd_hammerfall_get_buffer(hdsp->pci, &hdsp->playback_dma_buf, HDSP_DMA_AREA_BYTES) < 0) { 3735 if (hdsp->capture_dma_buf.area) 3736 snd_dma_free_pages(&hdsp->capture_dma_buf); 3737 dev_err(hdsp->card->dev, 3738 "%s: no buffers available\n", hdsp->card_name); 3739 return -ENOMEM; 3740 } 3741 3742 /* Align to bus-space 64K boundary */ 3743 3744 cb_bus = ALIGN(hdsp->capture_dma_buf.addr, 0x10000ul); 3745 pb_bus = ALIGN(hdsp->playback_dma_buf.addr, 0x10000ul); 3746 3747 /* Tell the card where it is */ 3748 3749 hdsp_write(hdsp, HDSP_inputBufferAddress, cb_bus); 3750 hdsp_write(hdsp, HDSP_outputBufferAddress, pb_bus); 3751 3752 hdsp->capture_buffer = hdsp->capture_dma_buf.area + (cb_bus - hdsp->capture_dma_buf.addr); 3753 hdsp->playback_buffer = hdsp->playback_dma_buf.area + (pb_bus - hdsp->playback_dma_buf.addr); 3754 3755 return 0; 3756 } 3757 3758 static int snd_hdsp_set_defaults(struct hdsp *hdsp) 3759 { 3760 unsigned int i; 3761 3762 /* ASSUMPTION: hdsp->lock is either held, or 3763 there is no need to hold it (e.g. during module 3764 initialization). 3765 */ 3766 3767 /* set defaults: 3768 3769 SPDIF Input via Coax 3770 Master clock mode 3771 maximum latency (7 => 2^7 = 8192 samples, 64Kbyte buffer, 3772 which implies 2 4096 sample, 32Kbyte periods). 3773 Enable line out. 3774 */ 3775 3776 hdsp->control_register = HDSP_ClockModeMaster | 3777 HDSP_SPDIFInputCoaxial | 3778 hdsp_encode_latency(7) | 3779 HDSP_LineOut; 3780 3781 3782 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3783 3784 #ifdef SNDRV_BIG_ENDIAN 3785 hdsp->control2_register = HDSP_BIGENDIAN_MODE; 3786 #else 3787 hdsp->control2_register = 0; 3788 #endif 3789 if (hdsp->io_type == H9652) 3790 snd_hdsp_9652_enable_mixer (hdsp); 3791 else 3792 hdsp_write (hdsp, HDSP_control2Reg, hdsp->control2_register); 3793 3794 hdsp_reset_hw_pointer(hdsp); 3795 hdsp_compute_period_size(hdsp); 3796 3797 /* silence everything */ 3798 3799 for (i = 0; i < HDSP_MATRIX_MIXER_SIZE; ++i) 3800 hdsp->mixer_matrix[i] = MINUS_INFINITY_GAIN; 3801 3802 for (i = 0; i < ((hdsp->io_type == H9652 || hdsp->io_type == H9632) ? 1352 : HDSP_MATRIX_MIXER_SIZE); ++i) { 3803 if (hdsp_write_gain (hdsp, i, MINUS_INFINITY_GAIN)) 3804 return -EIO; 3805 } 3806 3807 /* H9632 specific defaults */ 3808 if (hdsp->io_type == H9632) { 3809 hdsp->control_register |= (HDSP_DAGainPlus4dBu | HDSP_ADGainPlus4dBu | HDSP_PhoneGain0dB); 3810 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3811 } 3812 3813 /* set a default rate so that the channel map is set up. 3814 */ 3815 3816 hdsp_set_rate(hdsp, 48000, 1); 3817 3818 return 0; 3819 } 3820 3821 static void hdsp_midi_tasklet(unsigned long arg) 3822 { 3823 struct hdsp *hdsp = (struct hdsp *)arg; 3824 3825 if (hdsp->midi[0].pending) 3826 snd_hdsp_midi_input_read (&hdsp->midi[0]); 3827 if (hdsp->midi[1].pending) 3828 snd_hdsp_midi_input_read (&hdsp->midi[1]); 3829 } 3830 3831 static irqreturn_t snd_hdsp_interrupt(int irq, void *dev_id) 3832 { 3833 struct hdsp *hdsp = (struct hdsp *) dev_id; 3834 unsigned int status; 3835 int audio; 3836 int midi0; 3837 int midi1; 3838 unsigned int midi0status; 3839 unsigned int midi1status; 3840 int schedule = 0; 3841 3842 status = hdsp_read(hdsp, HDSP_statusRegister); 3843 3844 audio = status & HDSP_audioIRQPending; 3845 midi0 = status & HDSP_midi0IRQPending; 3846 midi1 = status & HDSP_midi1IRQPending; 3847 3848 if (!audio && !midi0 && !midi1) 3849 return IRQ_NONE; 3850 3851 hdsp_write(hdsp, HDSP_interruptConfirmation, 0); 3852 3853 midi0status = hdsp_read (hdsp, HDSP_midiStatusIn0) & 0xff; 3854 midi1status = hdsp_read (hdsp, HDSP_midiStatusIn1) & 0xff; 3855 3856 if (!(hdsp->state & HDSP_InitializationComplete)) 3857 return IRQ_HANDLED; 3858 3859 if (audio) { 3860 if (hdsp->capture_substream) 3861 snd_pcm_period_elapsed(hdsp->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); 3862 3863 if (hdsp->playback_substream) 3864 snd_pcm_period_elapsed(hdsp->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream); 3865 } 3866 3867 if (midi0 && midi0status) { 3868 if (hdsp->use_midi_tasklet) { 3869 /* we disable interrupts for this input until processing is done */ 3870 hdsp->control_register &= ~HDSP_Midi0InterruptEnable; 3871 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3872 hdsp->midi[0].pending = 1; 3873 schedule = 1; 3874 } else { 3875 snd_hdsp_midi_input_read (&hdsp->midi[0]); 3876 } 3877 } 3878 if (hdsp->io_type != Multiface && hdsp->io_type != RPM && hdsp->io_type != H9632 && midi1 && midi1status) { 3879 if (hdsp->use_midi_tasklet) { 3880 /* we disable interrupts for this input until processing is done */ 3881 hdsp->control_register &= ~HDSP_Midi1InterruptEnable; 3882 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register); 3883 hdsp->midi[1].pending = 1; 3884 schedule = 1; 3885 } else { 3886 snd_hdsp_midi_input_read (&hdsp->midi[1]); 3887 } 3888 } 3889 if (hdsp->use_midi_tasklet && schedule) 3890 tasklet_schedule(&hdsp->midi_tasklet); 3891 return IRQ_HANDLED; 3892 } 3893 3894 static snd_pcm_uframes_t snd_hdsp_hw_pointer(struct snd_pcm_substream *substream) 3895 { 3896 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3897 return hdsp_hw_pointer(hdsp); 3898 } 3899 3900 static char *hdsp_channel_buffer_location(struct hdsp *hdsp, 3901 int stream, 3902 int channel) 3903 3904 { 3905 int mapped_channel; 3906 3907 if (snd_BUG_ON(channel < 0 || channel >= hdsp->max_channels)) 3908 return NULL; 3909 3910 if ((mapped_channel = hdsp->channel_map[channel]) < 0) 3911 return NULL; 3912 3913 if (stream == SNDRV_PCM_STREAM_CAPTURE) 3914 return hdsp->capture_buffer + (mapped_channel * HDSP_CHANNEL_BUFFER_BYTES); 3915 else 3916 return hdsp->playback_buffer + (mapped_channel * HDSP_CHANNEL_BUFFER_BYTES); 3917 } 3918 3919 static int snd_hdsp_playback_copy(struct snd_pcm_substream *substream, int channel, 3920 snd_pcm_uframes_t pos, void __user *src, snd_pcm_uframes_t count) 3921 { 3922 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3923 char *channel_buf; 3924 3925 if (snd_BUG_ON(pos + count > HDSP_CHANNEL_BUFFER_BYTES / 4)) 3926 return -EINVAL; 3927 3928 channel_buf = hdsp_channel_buffer_location (hdsp, substream->pstr->stream, channel); 3929 if (snd_BUG_ON(!channel_buf)) 3930 return -EIO; 3931 if (copy_from_user(channel_buf + pos * 4, src, count * 4)) 3932 return -EFAULT; 3933 return count; 3934 } 3935 3936 static int snd_hdsp_capture_copy(struct snd_pcm_substream *substream, int channel, 3937 snd_pcm_uframes_t pos, void __user *dst, snd_pcm_uframes_t count) 3938 { 3939 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3940 char *channel_buf; 3941 3942 if (snd_BUG_ON(pos + count > HDSP_CHANNEL_BUFFER_BYTES / 4)) 3943 return -EINVAL; 3944 3945 channel_buf = hdsp_channel_buffer_location (hdsp, substream->pstr->stream, channel); 3946 if (snd_BUG_ON(!channel_buf)) 3947 return -EIO; 3948 if (copy_to_user(dst, channel_buf + pos * 4, count * 4)) 3949 return -EFAULT; 3950 return count; 3951 } 3952 3953 static int snd_hdsp_hw_silence(struct snd_pcm_substream *substream, int channel, 3954 snd_pcm_uframes_t pos, snd_pcm_uframes_t count) 3955 { 3956 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3957 char *channel_buf; 3958 3959 channel_buf = hdsp_channel_buffer_location (hdsp, substream->pstr->stream, channel); 3960 if (snd_BUG_ON(!channel_buf)) 3961 return -EIO; 3962 memset(channel_buf + pos * 4, 0, count * 4); 3963 return count; 3964 } 3965 3966 static int snd_hdsp_reset(struct snd_pcm_substream *substream) 3967 { 3968 struct snd_pcm_runtime *runtime = substream->runtime; 3969 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3970 struct snd_pcm_substream *other; 3971 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 3972 other = hdsp->capture_substream; 3973 else 3974 other = hdsp->playback_substream; 3975 if (hdsp->running) 3976 runtime->status->hw_ptr = hdsp_hw_pointer(hdsp); 3977 else 3978 runtime->status->hw_ptr = 0; 3979 if (other) { 3980 struct snd_pcm_substream *s; 3981 struct snd_pcm_runtime *oruntime = other->runtime; 3982 snd_pcm_group_for_each_entry(s, substream) { 3983 if (s == other) { 3984 oruntime->status->hw_ptr = runtime->status->hw_ptr; 3985 break; 3986 } 3987 } 3988 } 3989 return 0; 3990 } 3991 3992 static int snd_hdsp_hw_params(struct snd_pcm_substream *substream, 3993 struct snd_pcm_hw_params *params) 3994 { 3995 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 3996 int err; 3997 pid_t this_pid; 3998 pid_t other_pid; 3999 4000 if (hdsp_check_for_iobox (hdsp)) 4001 return -EIO; 4002 4003 if (hdsp_check_for_firmware(hdsp, 1)) 4004 return -EIO; 4005 4006 spin_lock_irq(&hdsp->lock); 4007 4008 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 4009 hdsp->control_register &= ~(HDSP_SPDIFProfessional | HDSP_SPDIFNonAudio | HDSP_SPDIFEmphasis); 4010 hdsp_write(hdsp, HDSP_controlRegister, hdsp->control_register |= hdsp->creg_spdif_stream); 4011 this_pid = hdsp->playback_pid; 4012 other_pid = hdsp->capture_pid; 4013 } else { 4014 this_pid = hdsp->capture_pid; 4015 other_pid = hdsp->playback_pid; 4016 } 4017 4018 if ((other_pid > 0) && (this_pid != other_pid)) { 4019 4020 /* The other stream is open, and not by the same 4021 task as this one. Make sure that the parameters 4022 that matter are the same. 4023 */ 4024 4025 if (params_rate(params) != hdsp->system_sample_rate) { 4026 spin_unlock_irq(&hdsp->lock); 4027 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_RATE); 4028 return -EBUSY; 4029 } 4030 4031 if (params_period_size(params) != hdsp->period_bytes / 4) { 4032 spin_unlock_irq(&hdsp->lock); 4033 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 4034 return -EBUSY; 4035 } 4036 4037 /* We're fine. */ 4038 4039 spin_unlock_irq(&hdsp->lock); 4040 return 0; 4041 4042 } else { 4043 spin_unlock_irq(&hdsp->lock); 4044 } 4045 4046 /* how to make sure that the rate matches an externally-set one ? 4047 */ 4048 4049 spin_lock_irq(&hdsp->lock); 4050 if (! hdsp->clock_source_locked) { 4051 if ((err = hdsp_set_rate(hdsp, params_rate(params), 0)) < 0) { 4052 spin_unlock_irq(&hdsp->lock); 4053 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_RATE); 4054 return err; 4055 } 4056 } 4057 spin_unlock_irq(&hdsp->lock); 4058 4059 if ((err = hdsp_set_interrupt_interval(hdsp, params_period_size(params))) < 0) { 4060 _snd_pcm_hw_param_setempty(params, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 4061 return err; 4062 } 4063 4064 return 0; 4065 } 4066 4067 static int snd_hdsp_channel_info(struct snd_pcm_substream *substream, 4068 struct snd_pcm_channel_info *info) 4069 { 4070 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4071 int mapped_channel; 4072 4073 if (snd_BUG_ON(info->channel >= hdsp->max_channels)) 4074 return -EINVAL; 4075 4076 if ((mapped_channel = hdsp->channel_map[info->channel]) < 0) 4077 return -EINVAL; 4078 4079 info->offset = mapped_channel * HDSP_CHANNEL_BUFFER_BYTES; 4080 info->first = 0; 4081 info->step = 32; 4082 return 0; 4083 } 4084 4085 static int snd_hdsp_ioctl(struct snd_pcm_substream *substream, 4086 unsigned int cmd, void *arg) 4087 { 4088 switch (cmd) { 4089 case SNDRV_PCM_IOCTL1_RESET: 4090 return snd_hdsp_reset(substream); 4091 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 4092 return snd_hdsp_channel_info(substream, arg); 4093 default: 4094 break; 4095 } 4096 4097 return snd_pcm_lib_ioctl(substream, cmd, arg); 4098 } 4099 4100 static int snd_hdsp_trigger(struct snd_pcm_substream *substream, int cmd) 4101 { 4102 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4103 struct snd_pcm_substream *other; 4104 int running; 4105 4106 if (hdsp_check_for_iobox (hdsp)) 4107 return -EIO; 4108 4109 if (hdsp_check_for_firmware(hdsp, 0)) /* no auto-loading in trigger */ 4110 return -EIO; 4111 4112 spin_lock(&hdsp->lock); 4113 running = hdsp->running; 4114 switch (cmd) { 4115 case SNDRV_PCM_TRIGGER_START: 4116 running |= 1 << substream->stream; 4117 break; 4118 case SNDRV_PCM_TRIGGER_STOP: 4119 running &= ~(1 << substream->stream); 4120 break; 4121 default: 4122 snd_BUG(); 4123 spin_unlock(&hdsp->lock); 4124 return -EINVAL; 4125 } 4126 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 4127 other = hdsp->capture_substream; 4128 else 4129 other = hdsp->playback_substream; 4130 4131 if (other) { 4132 struct snd_pcm_substream *s; 4133 snd_pcm_group_for_each_entry(s, substream) { 4134 if (s == other) { 4135 snd_pcm_trigger_done(s, substream); 4136 if (cmd == SNDRV_PCM_TRIGGER_START) 4137 running |= 1 << s->stream; 4138 else 4139 running &= ~(1 << s->stream); 4140 goto _ok; 4141 } 4142 } 4143 if (cmd == SNDRV_PCM_TRIGGER_START) { 4144 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) && 4145 substream->stream == SNDRV_PCM_STREAM_CAPTURE) 4146 hdsp_silence_playback(hdsp); 4147 } else { 4148 if (running && 4149 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 4150 hdsp_silence_playback(hdsp); 4151 } 4152 } else { 4153 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 4154 hdsp_silence_playback(hdsp); 4155 } 4156 _ok: 4157 snd_pcm_trigger_done(substream, substream); 4158 if (!hdsp->running && running) 4159 hdsp_start_audio(hdsp); 4160 else if (hdsp->running && !running) 4161 hdsp_stop_audio(hdsp); 4162 hdsp->running = running; 4163 spin_unlock(&hdsp->lock); 4164 4165 return 0; 4166 } 4167 4168 static int snd_hdsp_prepare(struct snd_pcm_substream *substream) 4169 { 4170 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4171 int result = 0; 4172 4173 if (hdsp_check_for_iobox (hdsp)) 4174 return -EIO; 4175 4176 if (hdsp_check_for_firmware(hdsp, 1)) 4177 return -EIO; 4178 4179 spin_lock_irq(&hdsp->lock); 4180 if (!hdsp->running) 4181 hdsp_reset_hw_pointer(hdsp); 4182 spin_unlock_irq(&hdsp->lock); 4183 return result; 4184 } 4185 4186 static struct snd_pcm_hardware snd_hdsp_playback_subinfo = 4187 { 4188 .info = (SNDRV_PCM_INFO_MMAP | 4189 SNDRV_PCM_INFO_MMAP_VALID | 4190 SNDRV_PCM_INFO_NONINTERLEAVED | 4191 SNDRV_PCM_INFO_SYNC_START | 4192 SNDRV_PCM_INFO_DOUBLE), 4193 #ifdef SNDRV_BIG_ENDIAN 4194 .formats = SNDRV_PCM_FMTBIT_S32_BE, 4195 #else 4196 .formats = SNDRV_PCM_FMTBIT_S32_LE, 4197 #endif 4198 .rates = (SNDRV_PCM_RATE_32000 | 4199 SNDRV_PCM_RATE_44100 | 4200 SNDRV_PCM_RATE_48000 | 4201 SNDRV_PCM_RATE_64000 | 4202 SNDRV_PCM_RATE_88200 | 4203 SNDRV_PCM_RATE_96000), 4204 .rate_min = 32000, 4205 .rate_max = 96000, 4206 .channels_min = 6, 4207 .channels_max = HDSP_MAX_CHANNELS, 4208 .buffer_bytes_max = HDSP_CHANNEL_BUFFER_BYTES * HDSP_MAX_CHANNELS, 4209 .period_bytes_min = (64 * 4) * 10, 4210 .period_bytes_max = (8192 * 4) * HDSP_MAX_CHANNELS, 4211 .periods_min = 2, 4212 .periods_max = 2, 4213 .fifo_size = 0 4214 }; 4215 4216 static struct snd_pcm_hardware snd_hdsp_capture_subinfo = 4217 { 4218 .info = (SNDRV_PCM_INFO_MMAP | 4219 SNDRV_PCM_INFO_MMAP_VALID | 4220 SNDRV_PCM_INFO_NONINTERLEAVED | 4221 SNDRV_PCM_INFO_SYNC_START), 4222 #ifdef SNDRV_BIG_ENDIAN 4223 .formats = SNDRV_PCM_FMTBIT_S32_BE, 4224 #else 4225 .formats = SNDRV_PCM_FMTBIT_S32_LE, 4226 #endif 4227 .rates = (SNDRV_PCM_RATE_32000 | 4228 SNDRV_PCM_RATE_44100 | 4229 SNDRV_PCM_RATE_48000 | 4230 SNDRV_PCM_RATE_64000 | 4231 SNDRV_PCM_RATE_88200 | 4232 SNDRV_PCM_RATE_96000), 4233 .rate_min = 32000, 4234 .rate_max = 96000, 4235 .channels_min = 5, 4236 .channels_max = HDSP_MAX_CHANNELS, 4237 .buffer_bytes_max = HDSP_CHANNEL_BUFFER_BYTES * HDSP_MAX_CHANNELS, 4238 .period_bytes_min = (64 * 4) * 10, 4239 .period_bytes_max = (8192 * 4) * HDSP_MAX_CHANNELS, 4240 .periods_min = 2, 4241 .periods_max = 2, 4242 .fifo_size = 0 4243 }; 4244 4245 static unsigned int hdsp_period_sizes[] = { 64, 128, 256, 512, 1024, 2048, 4096, 8192 }; 4246 4247 static struct snd_pcm_hw_constraint_list hdsp_hw_constraints_period_sizes = { 4248 .count = ARRAY_SIZE(hdsp_period_sizes), 4249 .list = hdsp_period_sizes, 4250 .mask = 0 4251 }; 4252 4253 static unsigned int hdsp_9632_sample_rates[] = { 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 }; 4254 4255 static struct snd_pcm_hw_constraint_list hdsp_hw_constraints_9632_sample_rates = { 4256 .count = ARRAY_SIZE(hdsp_9632_sample_rates), 4257 .list = hdsp_9632_sample_rates, 4258 .mask = 0 4259 }; 4260 4261 static int snd_hdsp_hw_rule_in_channels(struct snd_pcm_hw_params *params, 4262 struct snd_pcm_hw_rule *rule) 4263 { 4264 struct hdsp *hdsp = rule->private; 4265 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4266 if (hdsp->io_type == H9632) { 4267 unsigned int list[3]; 4268 list[0] = hdsp->qs_in_channels; 4269 list[1] = hdsp->ds_in_channels; 4270 list[2] = hdsp->ss_in_channels; 4271 return snd_interval_list(c, 3, list, 0); 4272 } else { 4273 unsigned int list[2]; 4274 list[0] = hdsp->ds_in_channels; 4275 list[1] = hdsp->ss_in_channels; 4276 return snd_interval_list(c, 2, list, 0); 4277 } 4278 } 4279 4280 static int snd_hdsp_hw_rule_out_channels(struct snd_pcm_hw_params *params, 4281 struct snd_pcm_hw_rule *rule) 4282 { 4283 unsigned int list[3]; 4284 struct hdsp *hdsp = rule->private; 4285 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4286 if (hdsp->io_type == H9632) { 4287 list[0] = hdsp->qs_out_channels; 4288 list[1] = hdsp->ds_out_channels; 4289 list[2] = hdsp->ss_out_channels; 4290 return snd_interval_list(c, 3, list, 0); 4291 } else { 4292 list[0] = hdsp->ds_out_channels; 4293 list[1] = hdsp->ss_out_channels; 4294 } 4295 return snd_interval_list(c, 2, list, 0); 4296 } 4297 4298 static int snd_hdsp_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 4299 struct snd_pcm_hw_rule *rule) 4300 { 4301 struct hdsp *hdsp = rule->private; 4302 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4303 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4304 if (r->min > 96000 && hdsp->io_type == H9632) { 4305 struct snd_interval t = { 4306 .min = hdsp->qs_in_channels, 4307 .max = hdsp->qs_in_channels, 4308 .integer = 1, 4309 }; 4310 return snd_interval_refine(c, &t); 4311 } else if (r->min > 48000 && r->max <= 96000) { 4312 struct snd_interval t = { 4313 .min = hdsp->ds_in_channels, 4314 .max = hdsp->ds_in_channels, 4315 .integer = 1, 4316 }; 4317 return snd_interval_refine(c, &t); 4318 } else if (r->max < 64000) { 4319 struct snd_interval t = { 4320 .min = hdsp->ss_in_channels, 4321 .max = hdsp->ss_in_channels, 4322 .integer = 1, 4323 }; 4324 return snd_interval_refine(c, &t); 4325 } 4326 return 0; 4327 } 4328 4329 static int snd_hdsp_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 4330 struct snd_pcm_hw_rule *rule) 4331 { 4332 struct hdsp *hdsp = rule->private; 4333 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4334 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4335 if (r->min > 96000 && hdsp->io_type == H9632) { 4336 struct snd_interval t = { 4337 .min = hdsp->qs_out_channels, 4338 .max = hdsp->qs_out_channels, 4339 .integer = 1, 4340 }; 4341 return snd_interval_refine(c, &t); 4342 } else if (r->min > 48000 && r->max <= 96000) { 4343 struct snd_interval t = { 4344 .min = hdsp->ds_out_channels, 4345 .max = hdsp->ds_out_channels, 4346 .integer = 1, 4347 }; 4348 return snd_interval_refine(c, &t); 4349 } else if (r->max < 64000) { 4350 struct snd_interval t = { 4351 .min = hdsp->ss_out_channels, 4352 .max = hdsp->ss_out_channels, 4353 .integer = 1, 4354 }; 4355 return snd_interval_refine(c, &t); 4356 } 4357 return 0; 4358 } 4359 4360 static int snd_hdsp_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 4361 struct snd_pcm_hw_rule *rule) 4362 { 4363 struct hdsp *hdsp = rule->private; 4364 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4365 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4366 if (c->min >= hdsp->ss_out_channels) { 4367 struct snd_interval t = { 4368 .min = 32000, 4369 .max = 48000, 4370 .integer = 1, 4371 }; 4372 return snd_interval_refine(r, &t); 4373 } else if (c->max <= hdsp->qs_out_channels && hdsp->io_type == H9632) { 4374 struct snd_interval t = { 4375 .min = 128000, 4376 .max = 192000, 4377 .integer = 1, 4378 }; 4379 return snd_interval_refine(r, &t); 4380 } else if (c->max <= hdsp->ds_out_channels) { 4381 struct snd_interval t = { 4382 .min = 64000, 4383 .max = 96000, 4384 .integer = 1, 4385 }; 4386 return snd_interval_refine(r, &t); 4387 } 4388 return 0; 4389 } 4390 4391 static int snd_hdsp_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 4392 struct snd_pcm_hw_rule *rule) 4393 { 4394 struct hdsp *hdsp = rule->private; 4395 struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 4396 struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 4397 if (c->min >= hdsp->ss_in_channels) { 4398 struct snd_interval t = { 4399 .min = 32000, 4400 .max = 48000, 4401 .integer = 1, 4402 }; 4403 return snd_interval_refine(r, &t); 4404 } else if (c->max <= hdsp->qs_in_channels && hdsp->io_type == H9632) { 4405 struct snd_interval t = { 4406 .min = 128000, 4407 .max = 192000, 4408 .integer = 1, 4409 }; 4410 return snd_interval_refine(r, &t); 4411 } else if (c->max <= hdsp->ds_in_channels) { 4412 struct snd_interval t = { 4413 .min = 64000, 4414 .max = 96000, 4415 .integer = 1, 4416 }; 4417 return snd_interval_refine(r, &t); 4418 } 4419 return 0; 4420 } 4421 4422 static int snd_hdsp_playback_open(struct snd_pcm_substream *substream) 4423 { 4424 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4425 struct snd_pcm_runtime *runtime = substream->runtime; 4426 4427 if (hdsp_check_for_iobox (hdsp)) 4428 return -EIO; 4429 4430 if (hdsp_check_for_firmware(hdsp, 1)) 4431 return -EIO; 4432 4433 spin_lock_irq(&hdsp->lock); 4434 4435 snd_pcm_set_sync(substream); 4436 4437 runtime->hw = snd_hdsp_playback_subinfo; 4438 runtime->dma_area = hdsp->playback_buffer; 4439 runtime->dma_bytes = HDSP_DMA_AREA_BYTES; 4440 4441 hdsp->playback_pid = current->pid; 4442 hdsp->playback_substream = substream; 4443 4444 spin_unlock_irq(&hdsp->lock); 4445 4446 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 4447 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hdsp_hw_constraints_period_sizes); 4448 if (hdsp->clock_source_locked) { 4449 runtime->hw.rate_min = runtime->hw.rate_max = hdsp->system_sample_rate; 4450 } else if (hdsp->io_type == H9632) { 4451 runtime->hw.rate_max = 192000; 4452 runtime->hw.rates = SNDRV_PCM_RATE_KNOT; 4453 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hdsp_hw_constraints_9632_sample_rates); 4454 } 4455 if (hdsp->io_type == H9632) { 4456 runtime->hw.channels_min = hdsp->qs_out_channels; 4457 runtime->hw.channels_max = hdsp->ss_out_channels; 4458 } 4459 4460 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4461 snd_hdsp_hw_rule_out_channels, hdsp, 4462 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4463 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4464 snd_hdsp_hw_rule_out_channels_rate, hdsp, 4465 SNDRV_PCM_HW_PARAM_RATE, -1); 4466 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4467 snd_hdsp_hw_rule_rate_out_channels, hdsp, 4468 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4469 4470 if (RPM != hdsp->io_type) { 4471 hdsp->creg_spdif_stream = hdsp->creg_spdif; 4472 hdsp->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 4473 snd_ctl_notify(hdsp->card, SNDRV_CTL_EVENT_MASK_VALUE | 4474 SNDRV_CTL_EVENT_MASK_INFO, &hdsp->spdif_ctl->id); 4475 } 4476 return 0; 4477 } 4478 4479 static int snd_hdsp_playback_release(struct snd_pcm_substream *substream) 4480 { 4481 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4482 4483 spin_lock_irq(&hdsp->lock); 4484 4485 hdsp->playback_pid = -1; 4486 hdsp->playback_substream = NULL; 4487 4488 spin_unlock_irq(&hdsp->lock); 4489 4490 if (RPM != hdsp->io_type) { 4491 hdsp->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 4492 snd_ctl_notify(hdsp->card, SNDRV_CTL_EVENT_MASK_VALUE | 4493 SNDRV_CTL_EVENT_MASK_INFO, &hdsp->spdif_ctl->id); 4494 } 4495 return 0; 4496 } 4497 4498 4499 static int snd_hdsp_capture_open(struct snd_pcm_substream *substream) 4500 { 4501 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4502 struct snd_pcm_runtime *runtime = substream->runtime; 4503 4504 if (hdsp_check_for_iobox (hdsp)) 4505 return -EIO; 4506 4507 if (hdsp_check_for_firmware(hdsp, 1)) 4508 return -EIO; 4509 4510 spin_lock_irq(&hdsp->lock); 4511 4512 snd_pcm_set_sync(substream); 4513 4514 runtime->hw = snd_hdsp_capture_subinfo; 4515 runtime->dma_area = hdsp->capture_buffer; 4516 runtime->dma_bytes = HDSP_DMA_AREA_BYTES; 4517 4518 hdsp->capture_pid = current->pid; 4519 hdsp->capture_substream = substream; 4520 4521 spin_unlock_irq(&hdsp->lock); 4522 4523 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 4524 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hdsp_hw_constraints_period_sizes); 4525 if (hdsp->io_type == H9632) { 4526 runtime->hw.channels_min = hdsp->qs_in_channels; 4527 runtime->hw.channels_max = hdsp->ss_in_channels; 4528 runtime->hw.rate_max = 192000; 4529 runtime->hw.rates = SNDRV_PCM_RATE_KNOT; 4530 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hdsp_hw_constraints_9632_sample_rates); 4531 } 4532 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4533 snd_hdsp_hw_rule_in_channels, hdsp, 4534 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4535 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 4536 snd_hdsp_hw_rule_in_channels_rate, hdsp, 4537 SNDRV_PCM_HW_PARAM_RATE, -1); 4538 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 4539 snd_hdsp_hw_rule_rate_in_channels, hdsp, 4540 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 4541 return 0; 4542 } 4543 4544 static int snd_hdsp_capture_release(struct snd_pcm_substream *substream) 4545 { 4546 struct hdsp *hdsp = snd_pcm_substream_chip(substream); 4547 4548 spin_lock_irq(&hdsp->lock); 4549 4550 hdsp->capture_pid = -1; 4551 hdsp->capture_substream = NULL; 4552 4553 spin_unlock_irq(&hdsp->lock); 4554 return 0; 4555 } 4556 4557 /* helper functions for copying meter values */ 4558 static inline int copy_u32_le(void __user *dest, void __iomem *src) 4559 { 4560 u32 val = readl(src); 4561 return copy_to_user(dest, &val, 4); 4562 } 4563 4564 static inline int copy_u64_le(void __user *dest, void __iomem *src_low, void __iomem *src_high) 4565 { 4566 u32 rms_low, rms_high; 4567 u64 rms; 4568 rms_low = readl(src_low); 4569 rms_high = readl(src_high); 4570 rms = ((u64)rms_high << 32) | rms_low; 4571 return copy_to_user(dest, &rms, 8); 4572 } 4573 4574 static inline int copy_u48_le(void __user *dest, void __iomem *src_low, void __iomem *src_high) 4575 { 4576 u32 rms_low, rms_high; 4577 u64 rms; 4578 rms_low = readl(src_low) & 0xffffff00; 4579 rms_high = readl(src_high) & 0xffffff00; 4580 rms = ((u64)rms_high << 32) | rms_low; 4581 return copy_to_user(dest, &rms, 8); 4582 } 4583 4584 static int hdsp_9652_get_peak(struct hdsp *hdsp, struct hdsp_peak_rms __user *peak_rms) 4585 { 4586 int doublespeed = 0; 4587 int i, j, channels, ofs; 4588 4589 if (hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DoubleSpeedStatus) 4590 doublespeed = 1; 4591 channels = doublespeed ? 14 : 26; 4592 for (i = 0, j = 0; i < 26; ++i) { 4593 if (doublespeed && (i & 4)) 4594 continue; 4595 ofs = HDSP_9652_peakBase - j * 4; 4596 if (copy_u32_le(&peak_rms->input_peaks[i], hdsp->iobase + ofs)) 4597 return -EFAULT; 4598 ofs -= channels * 4; 4599 if (copy_u32_le(&peak_rms->playback_peaks[i], hdsp->iobase + ofs)) 4600 return -EFAULT; 4601 ofs -= channels * 4; 4602 if (copy_u32_le(&peak_rms->output_peaks[i], hdsp->iobase + ofs)) 4603 return -EFAULT; 4604 ofs = HDSP_9652_rmsBase + j * 8; 4605 if (copy_u48_le(&peak_rms->input_rms[i], hdsp->iobase + ofs, 4606 hdsp->iobase + ofs + 4)) 4607 return -EFAULT; 4608 ofs += channels * 8; 4609 if (copy_u48_le(&peak_rms->playback_rms[i], hdsp->iobase + ofs, 4610 hdsp->iobase + ofs + 4)) 4611 return -EFAULT; 4612 ofs += channels * 8; 4613 if (copy_u48_le(&peak_rms->output_rms[i], hdsp->iobase + ofs, 4614 hdsp->iobase + ofs + 4)) 4615 return -EFAULT; 4616 j++; 4617 } 4618 return 0; 4619 } 4620 4621 static int hdsp_9632_get_peak(struct hdsp *hdsp, struct hdsp_peak_rms __user *peak_rms) 4622 { 4623 int i, j; 4624 struct hdsp_9632_meters __iomem *m; 4625 int doublespeed = 0; 4626 4627 if (hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DoubleSpeedStatus) 4628 doublespeed = 1; 4629 m = (struct hdsp_9632_meters __iomem *)(hdsp->iobase+HDSP_9632_metersBase); 4630 for (i = 0, j = 0; i < 16; ++i, ++j) { 4631 if (copy_u32_le(&peak_rms->input_peaks[i], &m->input_peak[j])) 4632 return -EFAULT; 4633 if (copy_u32_le(&peak_rms->playback_peaks[i], &m->playback_peak[j])) 4634 return -EFAULT; 4635 if (copy_u32_le(&peak_rms->output_peaks[i], &m->output_peak[j])) 4636 return -EFAULT; 4637 if (copy_u64_le(&peak_rms->input_rms[i], &m->input_rms_low[j], 4638 &m->input_rms_high[j])) 4639 return -EFAULT; 4640 if (copy_u64_le(&peak_rms->playback_rms[i], &m->playback_rms_low[j], 4641 &m->playback_rms_high[j])) 4642 return -EFAULT; 4643 if (copy_u64_le(&peak_rms->output_rms[i], &m->output_rms_low[j], 4644 &m->output_rms_high[j])) 4645 return -EFAULT; 4646 if (doublespeed && i == 3) i += 4; 4647 } 4648 return 0; 4649 } 4650 4651 static int hdsp_get_peak(struct hdsp *hdsp, struct hdsp_peak_rms __user *peak_rms) 4652 { 4653 int i; 4654 4655 for (i = 0; i < 26; i++) { 4656 if (copy_u32_le(&peak_rms->playback_peaks[i], 4657 hdsp->iobase + HDSP_playbackPeakLevel + i * 4)) 4658 return -EFAULT; 4659 if (copy_u32_le(&peak_rms->input_peaks[i], 4660 hdsp->iobase + HDSP_inputPeakLevel + i * 4)) 4661 return -EFAULT; 4662 } 4663 for (i = 0; i < 28; i++) { 4664 if (copy_u32_le(&peak_rms->output_peaks[i], 4665 hdsp->iobase + HDSP_outputPeakLevel + i * 4)) 4666 return -EFAULT; 4667 } 4668 for (i = 0; i < 26; ++i) { 4669 if (copy_u64_le(&peak_rms->playback_rms[i], 4670 hdsp->iobase + HDSP_playbackRmsLevel + i * 8 + 4, 4671 hdsp->iobase + HDSP_playbackRmsLevel + i * 8)) 4672 return -EFAULT; 4673 if (copy_u64_le(&peak_rms->input_rms[i], 4674 hdsp->iobase + HDSP_inputRmsLevel + i * 8 + 4, 4675 hdsp->iobase + HDSP_inputRmsLevel + i * 8)) 4676 return -EFAULT; 4677 } 4678 return 0; 4679 } 4680 4681 static int snd_hdsp_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, unsigned int cmd, unsigned long arg) 4682 { 4683 struct hdsp *hdsp = hw->private_data; 4684 void __user *argp = (void __user *)arg; 4685 int err; 4686 4687 switch (cmd) { 4688 case SNDRV_HDSP_IOCTL_GET_PEAK_RMS: { 4689 struct hdsp_peak_rms __user *peak_rms = (struct hdsp_peak_rms __user *)arg; 4690 4691 err = hdsp_check_for_iobox(hdsp); 4692 if (err < 0) 4693 return err; 4694 4695 err = hdsp_check_for_firmware(hdsp, 1); 4696 if (err < 0) 4697 return err; 4698 4699 if (!(hdsp->state & HDSP_FirmwareLoaded)) { 4700 dev_err(hdsp->card->dev, 4701 "firmware needs to be uploaded to the card.\n"); 4702 return -EINVAL; 4703 } 4704 4705 switch (hdsp->io_type) { 4706 case H9652: 4707 return hdsp_9652_get_peak(hdsp, peak_rms); 4708 case H9632: 4709 return hdsp_9632_get_peak(hdsp, peak_rms); 4710 default: 4711 return hdsp_get_peak(hdsp, peak_rms); 4712 } 4713 } 4714 case SNDRV_HDSP_IOCTL_GET_CONFIG_INFO: { 4715 struct hdsp_config_info info; 4716 unsigned long flags; 4717 int i; 4718 4719 err = hdsp_check_for_iobox(hdsp); 4720 if (err < 0) 4721 return err; 4722 4723 err = hdsp_check_for_firmware(hdsp, 1); 4724 if (err < 0) 4725 return err; 4726 4727 memset(&info, 0, sizeof(info)); 4728 spin_lock_irqsave(&hdsp->lock, flags); 4729 info.pref_sync_ref = (unsigned char)hdsp_pref_sync_ref(hdsp); 4730 info.wordclock_sync_check = (unsigned char)hdsp_wc_sync_check(hdsp); 4731 if (hdsp->io_type != H9632) 4732 info.adatsync_sync_check = (unsigned char)hdsp_adatsync_sync_check(hdsp); 4733 info.spdif_sync_check = (unsigned char)hdsp_spdif_sync_check(hdsp); 4734 for (i = 0; i < ((hdsp->io_type != Multiface && hdsp->io_type != RPM && hdsp->io_type != H9632) ? 3 : 1); ++i) 4735 info.adat_sync_check[i] = (unsigned char)hdsp_adat_sync_check(hdsp, i); 4736 info.spdif_in = (unsigned char)hdsp_spdif_in(hdsp); 4737 info.spdif_out = (unsigned char)hdsp_toggle_setting(hdsp, 4738 HDSP_SPDIFOpticalOut); 4739 info.spdif_professional = (unsigned char) 4740 hdsp_toggle_setting(hdsp, HDSP_SPDIFProfessional); 4741 info.spdif_emphasis = (unsigned char) 4742 hdsp_toggle_setting(hdsp, HDSP_SPDIFEmphasis); 4743 info.spdif_nonaudio = (unsigned char) 4744 hdsp_toggle_setting(hdsp, HDSP_SPDIFNonAudio); 4745 info.spdif_sample_rate = hdsp_spdif_sample_rate(hdsp); 4746 info.system_sample_rate = hdsp->system_sample_rate; 4747 info.autosync_sample_rate = hdsp_external_sample_rate(hdsp); 4748 info.system_clock_mode = (unsigned char)hdsp_system_clock_mode(hdsp); 4749 info.clock_source = (unsigned char)hdsp_clock_source(hdsp); 4750 info.autosync_ref = (unsigned char)hdsp_autosync_ref(hdsp); 4751 info.line_out = (unsigned char) 4752 hdsp_toggle_setting(hdsp, HDSP_LineOut); 4753 if (hdsp->io_type == H9632) { 4754 info.da_gain = (unsigned char)hdsp_da_gain(hdsp); 4755 info.ad_gain = (unsigned char)hdsp_ad_gain(hdsp); 4756 info.phone_gain = (unsigned char)hdsp_phone_gain(hdsp); 4757 info.xlr_breakout_cable = 4758 (unsigned char)hdsp_toggle_setting(hdsp, 4759 HDSP_XLRBreakoutCable); 4760 4761 } else if (hdsp->io_type == RPM) { 4762 info.da_gain = (unsigned char) hdsp_rpm_input12(hdsp); 4763 info.ad_gain = (unsigned char) hdsp_rpm_input34(hdsp); 4764 } 4765 if (hdsp->io_type == H9632 || hdsp->io_type == H9652) 4766 info.analog_extension_board = 4767 (unsigned char)hdsp_toggle_setting(hdsp, 4768 HDSP_AnalogExtensionBoard); 4769 spin_unlock_irqrestore(&hdsp->lock, flags); 4770 if (copy_to_user(argp, &info, sizeof(info))) 4771 return -EFAULT; 4772 break; 4773 } 4774 case SNDRV_HDSP_IOCTL_GET_9632_AEB: { 4775 struct hdsp_9632_aeb h9632_aeb; 4776 4777 if (hdsp->io_type != H9632) return -EINVAL; 4778 h9632_aeb.aebi = hdsp->ss_in_channels - H9632_SS_CHANNELS; 4779 h9632_aeb.aebo = hdsp->ss_out_channels - H9632_SS_CHANNELS; 4780 if (copy_to_user(argp, &h9632_aeb, sizeof(h9632_aeb))) 4781 return -EFAULT; 4782 break; 4783 } 4784 case SNDRV_HDSP_IOCTL_GET_VERSION: { 4785 struct hdsp_version hdsp_version; 4786 int err; 4787 4788 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) return -EINVAL; 4789 if (hdsp->io_type == Undefined) { 4790 if ((err = hdsp_get_iobox_version(hdsp)) < 0) 4791 return err; 4792 } 4793 memset(&hdsp_version, 0, sizeof(hdsp_version)); 4794 hdsp_version.io_type = hdsp->io_type; 4795 hdsp_version.firmware_rev = hdsp->firmware_rev; 4796 if ((err = copy_to_user(argp, &hdsp_version, sizeof(hdsp_version)))) 4797 return -EFAULT; 4798 break; 4799 } 4800 case SNDRV_HDSP_IOCTL_UPLOAD_FIRMWARE: { 4801 struct hdsp_firmware __user *firmware; 4802 u32 __user *firmware_data; 4803 int err; 4804 4805 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) return -EINVAL; 4806 /* SNDRV_HDSP_IOCTL_GET_VERSION must have been called */ 4807 if (hdsp->io_type == Undefined) return -EINVAL; 4808 4809 if (hdsp->state & (HDSP_FirmwareCached | HDSP_FirmwareLoaded)) 4810 return -EBUSY; 4811 4812 dev_info(hdsp->card->dev, 4813 "initializing firmware upload\n"); 4814 firmware = (struct hdsp_firmware __user *)argp; 4815 4816 if (get_user(firmware_data, &firmware->firmware_data)) 4817 return -EFAULT; 4818 4819 if (hdsp_check_for_iobox (hdsp)) 4820 return -EIO; 4821 4822 if (!hdsp->fw_uploaded) { 4823 hdsp->fw_uploaded = vmalloc(HDSP_FIRMWARE_SIZE); 4824 if (!hdsp->fw_uploaded) 4825 return -ENOMEM; 4826 } 4827 4828 if (copy_from_user(hdsp->fw_uploaded, firmware_data, 4829 HDSP_FIRMWARE_SIZE)) { 4830 vfree(hdsp->fw_uploaded); 4831 hdsp->fw_uploaded = NULL; 4832 return -EFAULT; 4833 } 4834 4835 hdsp->state |= HDSP_FirmwareCached; 4836 4837 if ((err = snd_hdsp_load_firmware_from_cache(hdsp)) < 0) 4838 return err; 4839 4840 if (!(hdsp->state & HDSP_InitializationComplete)) { 4841 if ((err = snd_hdsp_enable_io(hdsp)) < 0) 4842 return err; 4843 4844 snd_hdsp_initialize_channels(hdsp); 4845 snd_hdsp_initialize_midi_flush(hdsp); 4846 4847 if ((err = snd_hdsp_create_alsa_devices(hdsp->card, hdsp)) < 0) { 4848 dev_err(hdsp->card->dev, 4849 "error creating alsa devices\n"); 4850 return err; 4851 } 4852 } 4853 break; 4854 } 4855 case SNDRV_HDSP_IOCTL_GET_MIXER: { 4856 struct hdsp_mixer __user *mixer = (struct hdsp_mixer __user *)argp; 4857 if (copy_to_user(mixer->matrix, hdsp->mixer_matrix, sizeof(unsigned short)*HDSP_MATRIX_MIXER_SIZE)) 4858 return -EFAULT; 4859 break; 4860 } 4861 default: 4862 return -EINVAL; 4863 } 4864 return 0; 4865 } 4866 4867 static struct snd_pcm_ops snd_hdsp_playback_ops = { 4868 .open = snd_hdsp_playback_open, 4869 .close = snd_hdsp_playback_release, 4870 .ioctl = snd_hdsp_ioctl, 4871 .hw_params = snd_hdsp_hw_params, 4872 .prepare = snd_hdsp_prepare, 4873 .trigger = snd_hdsp_trigger, 4874 .pointer = snd_hdsp_hw_pointer, 4875 .copy = snd_hdsp_playback_copy, 4876 .silence = snd_hdsp_hw_silence, 4877 }; 4878 4879 static struct snd_pcm_ops snd_hdsp_capture_ops = { 4880 .open = snd_hdsp_capture_open, 4881 .close = snd_hdsp_capture_release, 4882 .ioctl = snd_hdsp_ioctl, 4883 .hw_params = snd_hdsp_hw_params, 4884 .prepare = snd_hdsp_prepare, 4885 .trigger = snd_hdsp_trigger, 4886 .pointer = snd_hdsp_hw_pointer, 4887 .copy = snd_hdsp_capture_copy, 4888 }; 4889 4890 static int snd_hdsp_create_hwdep(struct snd_card *card, struct hdsp *hdsp) 4891 { 4892 struct snd_hwdep *hw; 4893 int err; 4894 4895 if ((err = snd_hwdep_new(card, "HDSP hwdep", 0, &hw)) < 0) 4896 return err; 4897 4898 hdsp->hwdep = hw; 4899 hw->private_data = hdsp; 4900 strcpy(hw->name, "HDSP hwdep interface"); 4901 4902 hw->ops.ioctl = snd_hdsp_hwdep_ioctl; 4903 hw->ops.ioctl_compat = snd_hdsp_hwdep_ioctl; 4904 4905 return 0; 4906 } 4907 4908 static int snd_hdsp_create_pcm(struct snd_card *card, struct hdsp *hdsp) 4909 { 4910 struct snd_pcm *pcm; 4911 int err; 4912 4913 if ((err = snd_pcm_new(card, hdsp->card_name, 0, 1, 1, &pcm)) < 0) 4914 return err; 4915 4916 hdsp->pcm = pcm; 4917 pcm->private_data = hdsp; 4918 strcpy(pcm->name, hdsp->card_name); 4919 4920 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_hdsp_playback_ops); 4921 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_hdsp_capture_ops); 4922 4923 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 4924 4925 return 0; 4926 } 4927 4928 static void snd_hdsp_9652_enable_mixer (struct hdsp *hdsp) 4929 { 4930 hdsp->control2_register |= HDSP_9652_ENABLE_MIXER; 4931 hdsp_write (hdsp, HDSP_control2Reg, hdsp->control2_register); 4932 } 4933 4934 static int snd_hdsp_enable_io (struct hdsp *hdsp) 4935 { 4936 int i; 4937 4938 if (hdsp_fifo_wait (hdsp, 0, 100)) { 4939 dev_err(hdsp->card->dev, 4940 "enable_io fifo_wait failed\n"); 4941 return -EIO; 4942 } 4943 4944 for (i = 0; i < hdsp->max_channels; ++i) { 4945 hdsp_write (hdsp, HDSP_inputEnable + (4 * i), 1); 4946 hdsp_write (hdsp, HDSP_outputEnable + (4 * i), 1); 4947 } 4948 4949 return 0; 4950 } 4951 4952 static void snd_hdsp_initialize_channels(struct hdsp *hdsp) 4953 { 4954 int status, aebi_channels, aebo_channels; 4955 4956 switch (hdsp->io_type) { 4957 case Digiface: 4958 hdsp->card_name = "RME Hammerfall DSP + Digiface"; 4959 hdsp->ss_in_channels = hdsp->ss_out_channels = DIGIFACE_SS_CHANNELS; 4960 hdsp->ds_in_channels = hdsp->ds_out_channels = DIGIFACE_DS_CHANNELS; 4961 break; 4962 4963 case H9652: 4964 hdsp->card_name = "RME Hammerfall HDSP 9652"; 4965 hdsp->ss_in_channels = hdsp->ss_out_channels = H9652_SS_CHANNELS; 4966 hdsp->ds_in_channels = hdsp->ds_out_channels = H9652_DS_CHANNELS; 4967 break; 4968 4969 case H9632: 4970 status = hdsp_read(hdsp, HDSP_statusRegister); 4971 /* HDSP_AEBx bits are low when AEB are connected */ 4972 aebi_channels = (status & HDSP_AEBI) ? 0 : 4; 4973 aebo_channels = (status & HDSP_AEBO) ? 0 : 4; 4974 hdsp->card_name = "RME Hammerfall HDSP 9632"; 4975 hdsp->ss_in_channels = H9632_SS_CHANNELS+aebi_channels; 4976 hdsp->ds_in_channels = H9632_DS_CHANNELS+aebi_channels; 4977 hdsp->qs_in_channels = H9632_QS_CHANNELS+aebi_channels; 4978 hdsp->ss_out_channels = H9632_SS_CHANNELS+aebo_channels; 4979 hdsp->ds_out_channels = H9632_DS_CHANNELS+aebo_channels; 4980 hdsp->qs_out_channels = H9632_QS_CHANNELS+aebo_channels; 4981 break; 4982 4983 case Multiface: 4984 hdsp->card_name = "RME Hammerfall DSP + Multiface"; 4985 hdsp->ss_in_channels = hdsp->ss_out_channels = MULTIFACE_SS_CHANNELS; 4986 hdsp->ds_in_channels = hdsp->ds_out_channels = MULTIFACE_DS_CHANNELS; 4987 break; 4988 4989 case RPM: 4990 hdsp->card_name = "RME Hammerfall DSP + RPM"; 4991 hdsp->ss_in_channels = RPM_CHANNELS-1; 4992 hdsp->ss_out_channels = RPM_CHANNELS; 4993 hdsp->ds_in_channels = RPM_CHANNELS-1; 4994 hdsp->ds_out_channels = RPM_CHANNELS; 4995 break; 4996 4997 default: 4998 /* should never get here */ 4999 break; 5000 } 5001 } 5002 5003 static void snd_hdsp_initialize_midi_flush (struct hdsp *hdsp) 5004 { 5005 snd_hdsp_flush_midi_input (hdsp, 0); 5006 snd_hdsp_flush_midi_input (hdsp, 1); 5007 } 5008 5009 static int snd_hdsp_create_alsa_devices(struct snd_card *card, struct hdsp *hdsp) 5010 { 5011 int err; 5012 5013 if ((err = snd_hdsp_create_pcm(card, hdsp)) < 0) { 5014 dev_err(card->dev, 5015 "Error creating pcm interface\n"); 5016 return err; 5017 } 5018 5019 5020 if ((err = snd_hdsp_create_midi(card, hdsp, 0)) < 0) { 5021 dev_err(card->dev, 5022 "Error creating first midi interface\n"); 5023 return err; 5024 } 5025 5026 if (hdsp->io_type == Digiface || hdsp->io_type == H9652) { 5027 if ((err = snd_hdsp_create_midi(card, hdsp, 1)) < 0) { 5028 dev_err(card->dev, 5029 "Error creating second midi interface\n"); 5030 return err; 5031 } 5032 } 5033 5034 if ((err = snd_hdsp_create_controls(card, hdsp)) < 0) { 5035 dev_err(card->dev, 5036 "Error creating ctl interface\n"); 5037 return err; 5038 } 5039 5040 snd_hdsp_proc_init(hdsp); 5041 5042 hdsp->system_sample_rate = -1; 5043 hdsp->playback_pid = -1; 5044 hdsp->capture_pid = -1; 5045 hdsp->capture_substream = NULL; 5046 hdsp->playback_substream = NULL; 5047 5048 if ((err = snd_hdsp_set_defaults(hdsp)) < 0) { 5049 dev_err(card->dev, 5050 "Error setting default values\n"); 5051 return err; 5052 } 5053 5054 if (!(hdsp->state & HDSP_InitializationComplete)) { 5055 strcpy(card->shortname, "Hammerfall DSP"); 5056 sprintf(card->longname, "%s at 0x%lx, irq %d", hdsp->card_name, 5057 hdsp->port, hdsp->irq); 5058 5059 if ((err = snd_card_register(card)) < 0) { 5060 dev_err(card->dev, 5061 "error registering card\n"); 5062 return err; 5063 } 5064 hdsp->state |= HDSP_InitializationComplete; 5065 } 5066 5067 return 0; 5068 } 5069 5070 /* load firmware via hotplug fw loader */ 5071 static int hdsp_request_fw_loader(struct hdsp *hdsp) 5072 { 5073 const char *fwfile; 5074 const struct firmware *fw; 5075 int err; 5076 5077 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 5078 return 0; 5079 if (hdsp->io_type == Undefined) { 5080 if ((err = hdsp_get_iobox_version(hdsp)) < 0) 5081 return err; 5082 if (hdsp->io_type == H9652 || hdsp->io_type == H9632) 5083 return 0; 5084 } 5085 5086 /* caution: max length of firmware filename is 30! */ 5087 switch (hdsp->io_type) { 5088 case RPM: 5089 fwfile = "rpm_firmware.bin"; 5090 break; 5091 case Multiface: 5092 if (hdsp->firmware_rev == 0xa) 5093 fwfile = "multiface_firmware.bin"; 5094 else 5095 fwfile = "multiface_firmware_rev11.bin"; 5096 break; 5097 case Digiface: 5098 if (hdsp->firmware_rev == 0xa) 5099 fwfile = "digiface_firmware.bin"; 5100 else 5101 fwfile = "digiface_firmware_rev11.bin"; 5102 break; 5103 default: 5104 dev_err(hdsp->card->dev, 5105 "invalid io_type %d\n", hdsp->io_type); 5106 return -EINVAL; 5107 } 5108 5109 if (request_firmware(&fw, fwfile, &hdsp->pci->dev)) { 5110 dev_err(hdsp->card->dev, 5111 "cannot load firmware %s\n", fwfile); 5112 return -ENOENT; 5113 } 5114 if (fw->size < HDSP_FIRMWARE_SIZE) { 5115 dev_err(hdsp->card->dev, 5116 "too short firmware size %d (expected %d)\n", 5117 (int)fw->size, HDSP_FIRMWARE_SIZE); 5118 return -EINVAL; 5119 } 5120 5121 hdsp->firmware = fw; 5122 5123 hdsp->state |= HDSP_FirmwareCached; 5124 5125 if ((err = snd_hdsp_load_firmware_from_cache(hdsp)) < 0) 5126 return err; 5127 5128 if (!(hdsp->state & HDSP_InitializationComplete)) { 5129 if ((err = snd_hdsp_enable_io(hdsp)) < 0) 5130 return err; 5131 5132 if ((err = snd_hdsp_create_hwdep(hdsp->card, hdsp)) < 0) { 5133 dev_err(hdsp->card->dev, 5134 "error creating hwdep device\n"); 5135 return err; 5136 } 5137 snd_hdsp_initialize_channels(hdsp); 5138 snd_hdsp_initialize_midi_flush(hdsp); 5139 if ((err = snd_hdsp_create_alsa_devices(hdsp->card, hdsp)) < 0) { 5140 dev_err(hdsp->card->dev, 5141 "error creating alsa devices\n"); 5142 return err; 5143 } 5144 } 5145 return 0; 5146 } 5147 5148 static int snd_hdsp_create(struct snd_card *card, 5149 struct hdsp *hdsp) 5150 { 5151 struct pci_dev *pci = hdsp->pci; 5152 int err; 5153 int is_9652 = 0; 5154 int is_9632 = 0; 5155 5156 hdsp->irq = -1; 5157 hdsp->state = 0; 5158 hdsp->midi[0].rmidi = NULL; 5159 hdsp->midi[1].rmidi = NULL; 5160 hdsp->midi[0].input = NULL; 5161 hdsp->midi[1].input = NULL; 5162 hdsp->midi[0].output = NULL; 5163 hdsp->midi[1].output = NULL; 5164 hdsp->midi[0].pending = 0; 5165 hdsp->midi[1].pending = 0; 5166 spin_lock_init(&hdsp->midi[0].lock); 5167 spin_lock_init(&hdsp->midi[1].lock); 5168 hdsp->iobase = NULL; 5169 hdsp->control_register = 0; 5170 hdsp->control2_register = 0; 5171 hdsp->io_type = Undefined; 5172 hdsp->max_channels = 26; 5173 5174 hdsp->card = card; 5175 5176 spin_lock_init(&hdsp->lock); 5177 5178 tasklet_init(&hdsp->midi_tasklet, hdsp_midi_tasklet, (unsigned long)hdsp); 5179 5180 pci_read_config_word(hdsp->pci, PCI_CLASS_REVISION, &hdsp->firmware_rev); 5181 hdsp->firmware_rev &= 0xff; 5182 5183 /* From Martin Bjoernsen : 5184 "It is important that the card's latency timer register in 5185 the PCI configuration space is set to a value much larger 5186 than 0 by the computer's BIOS or the driver. 5187 The windows driver always sets this 8 bit register [...] 5188 to its maximum 255 to avoid problems with some computers." 5189 */ 5190 pci_write_config_byte(hdsp->pci, PCI_LATENCY_TIMER, 0xFF); 5191 5192 strcpy(card->driver, "H-DSP"); 5193 strcpy(card->mixername, "Xilinx FPGA"); 5194 5195 if (hdsp->firmware_rev < 0xa) 5196 return -ENODEV; 5197 else if (hdsp->firmware_rev < 0x64) 5198 hdsp->card_name = "RME Hammerfall DSP"; 5199 else if (hdsp->firmware_rev < 0x96) { 5200 hdsp->card_name = "RME HDSP 9652"; 5201 is_9652 = 1; 5202 } else { 5203 hdsp->card_name = "RME HDSP 9632"; 5204 hdsp->max_channels = 16; 5205 is_9632 = 1; 5206 } 5207 5208 if ((err = pci_enable_device(pci)) < 0) 5209 return err; 5210 5211 pci_set_master(hdsp->pci); 5212 5213 if ((err = pci_request_regions(pci, "hdsp")) < 0) 5214 return err; 5215 hdsp->port = pci_resource_start(pci, 0); 5216 if ((hdsp->iobase = ioremap_nocache(hdsp->port, HDSP_IO_EXTENT)) == NULL) { 5217 dev_err(hdsp->card->dev, "unable to remap region 0x%lx-0x%lx\n", 5218 hdsp->port, hdsp->port + HDSP_IO_EXTENT - 1); 5219 return -EBUSY; 5220 } 5221 5222 if (request_irq(pci->irq, snd_hdsp_interrupt, IRQF_SHARED, 5223 KBUILD_MODNAME, hdsp)) { 5224 dev_err(hdsp->card->dev, "unable to use IRQ %d\n", pci->irq); 5225 return -EBUSY; 5226 } 5227 5228 hdsp->irq = pci->irq; 5229 hdsp->precise_ptr = 0; 5230 hdsp->use_midi_tasklet = 1; 5231 hdsp->dds_value = 0; 5232 5233 if ((err = snd_hdsp_initialize_memory(hdsp)) < 0) 5234 return err; 5235 5236 if (!is_9652 && !is_9632) { 5237 /* we wait a maximum of 10 seconds to let freshly 5238 * inserted cardbus cards do their hardware init */ 5239 err = hdsp_wait_for_iobox(hdsp, 1000, 10); 5240 5241 if (err < 0) 5242 return err; 5243 5244 if ((hdsp_read (hdsp, HDSP_statusRegister) & HDSP_DllError) != 0) { 5245 if ((err = hdsp_request_fw_loader(hdsp)) < 0) 5246 /* we don't fail as this can happen 5247 if userspace is not ready for 5248 firmware upload 5249 */ 5250 dev_err(hdsp->card->dev, 5251 "couldn't get firmware from userspace. try using hdsploader\n"); 5252 else 5253 /* init is complete, we return */ 5254 return 0; 5255 /* we defer initialization */ 5256 dev_info(hdsp->card->dev, 5257 "card initialization pending : waiting for firmware\n"); 5258 if ((err = snd_hdsp_create_hwdep(card, hdsp)) < 0) 5259 return err; 5260 return 0; 5261 } else { 5262 dev_info(hdsp->card->dev, 5263 "Firmware already present, initializing card.\n"); 5264 if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version2) 5265 hdsp->io_type = RPM; 5266 else if (hdsp_read(hdsp, HDSP_status2Register) & HDSP_version1) 5267 hdsp->io_type = Multiface; 5268 else 5269 hdsp->io_type = Digiface; 5270 } 5271 } 5272 5273 if ((err = snd_hdsp_enable_io(hdsp)) != 0) 5274 return err; 5275 5276 if (is_9652) 5277 hdsp->io_type = H9652; 5278 5279 if (is_9632) 5280 hdsp->io_type = H9632; 5281 5282 if ((err = snd_hdsp_create_hwdep(card, hdsp)) < 0) 5283 return err; 5284 5285 snd_hdsp_initialize_channels(hdsp); 5286 snd_hdsp_initialize_midi_flush(hdsp); 5287 5288 hdsp->state |= HDSP_FirmwareLoaded; 5289 5290 if ((err = snd_hdsp_create_alsa_devices(card, hdsp)) < 0) 5291 return err; 5292 5293 return 0; 5294 } 5295 5296 static int snd_hdsp_free(struct hdsp *hdsp) 5297 { 5298 if (hdsp->port) { 5299 /* stop the audio, and cancel all interrupts */ 5300 tasklet_kill(&hdsp->midi_tasklet); 5301 hdsp->control_register &= ~(HDSP_Start|HDSP_AudioInterruptEnable|HDSP_Midi0InterruptEnable|HDSP_Midi1InterruptEnable); 5302 hdsp_write (hdsp, HDSP_controlRegister, hdsp->control_register); 5303 } 5304 5305 if (hdsp->irq >= 0) 5306 free_irq(hdsp->irq, (void *)hdsp); 5307 5308 snd_hdsp_free_buffers(hdsp); 5309 5310 release_firmware(hdsp->firmware); 5311 vfree(hdsp->fw_uploaded); 5312 iounmap(hdsp->iobase); 5313 5314 if (hdsp->port) 5315 pci_release_regions(hdsp->pci); 5316 5317 pci_disable_device(hdsp->pci); 5318 return 0; 5319 } 5320 5321 static void snd_hdsp_card_free(struct snd_card *card) 5322 { 5323 struct hdsp *hdsp = card->private_data; 5324 5325 if (hdsp) 5326 snd_hdsp_free(hdsp); 5327 } 5328 5329 static int snd_hdsp_probe(struct pci_dev *pci, 5330 const struct pci_device_id *pci_id) 5331 { 5332 static int dev; 5333 struct hdsp *hdsp; 5334 struct snd_card *card; 5335 int err; 5336 5337 if (dev >= SNDRV_CARDS) 5338 return -ENODEV; 5339 if (!enable[dev]) { 5340 dev++; 5341 return -ENOENT; 5342 } 5343 5344 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 5345 sizeof(struct hdsp), &card); 5346 if (err < 0) 5347 return err; 5348 5349 hdsp = card->private_data; 5350 card->private_free = snd_hdsp_card_free; 5351 hdsp->dev = dev; 5352 hdsp->pci = pci; 5353 5354 if ((err = snd_hdsp_create(card, hdsp)) < 0) { 5355 snd_card_free(card); 5356 return err; 5357 } 5358 5359 strcpy(card->shortname, "Hammerfall DSP"); 5360 sprintf(card->longname, "%s at 0x%lx, irq %d", hdsp->card_name, 5361 hdsp->port, hdsp->irq); 5362 5363 if ((err = snd_card_register(card)) < 0) { 5364 snd_card_free(card); 5365 return err; 5366 } 5367 pci_set_drvdata(pci, card); 5368 dev++; 5369 return 0; 5370 } 5371 5372 static void snd_hdsp_remove(struct pci_dev *pci) 5373 { 5374 snd_card_free(pci_get_drvdata(pci)); 5375 } 5376 5377 static struct pci_driver hdsp_driver = { 5378 .name = KBUILD_MODNAME, 5379 .id_table = snd_hdsp_ids, 5380 .probe = snd_hdsp_probe, 5381 .remove = snd_hdsp_remove, 5382 }; 5383 5384 module_pci_driver(hdsp_driver); 5385