xref: /openbmc/linux/sound/pci/rme32.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
4  *
5  *      Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
6  *                              Pilo Chambert <pilo.c@wanadoo.fr>
7  *
8  *      Thanks to :        Anders Torger <torger@ludd.luth.se>,
9  *                         Henk Hesselink <henk@anda.nl>
10  *                         for writing the digi96-driver
11  *                         and RME for all informations.
12  *
13  * ****************************************************************************
14  *
15  * Note #1 "Sek'd models" ................................... martin 2002-12-07
16  *
17  * Identical soundcards by Sek'd were labeled:
18  * RME Digi 32     = Sek'd Prodif 32
19  * RME Digi 32 Pro = Sek'd Prodif 96
20  * RME Digi 32/8   = Sek'd Prodif Gold
21  *
22  * ****************************************************************************
23  *
24  * Note #2 "full duplex mode" ............................... martin 2002-12-07
25  *
26  * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
27  * in this mode. Rec data and play data are using the same buffer therefore. At
28  * first you have got the playing bits in the buffer and then (after playing
29  * them) they were overwitten by the captured sound of the CS8412/14. Both
30  * modes (play/record) are running harmonically hand in hand in the same buffer
31  * and you have only one start bit plus one interrupt bit to control this
32  * paired action.
33  * This is opposite to the latter rme96 where playing and capturing is totally
34  * separated and so their full duplex mode is supported by alsa (using two
35  * start bits and two interrupts for two different buffers).
36  * But due to the wrong sequence of playing and capturing ALSA shows no solved
37  * full duplex support for the rme32 at the moment. That's bad, but I'm not
38  * able to solve it. Are you motivated enough to solve this problem now? Your
39  * patch would be welcome!
40  *
41  * ****************************************************************************
42  *
43  * "The story after the long seeking" -- tiwai
44  *
45  * Ok, the situation regarding the full duplex is now improved a bit.
46  * In the fullduplex mode (given by the module parameter), the hardware buffer
47  * is split to halves for read and write directions at the DMA pointer.
48  * That is, the half above the current DMA pointer is used for write, and
49  * the half below is used for read.  To mangle this strange behavior, an
50  * software intermediate buffer is introduced.  This is, of course, not good
51  * from the viewpoint of the data transfer efficiency.  However, this allows
52  * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
53  *
54  * ****************************************************************************
55  */
56 
57 
58 #include <linux/delay.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/module.h>
64 #include <linux/io.h>
65 
66 #include <sound/core.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/pcm.h>
70 #include <sound/pcm_params.h>
71 #include <sound/pcm-indirect.h>
72 #include <sound/asoundef.h>
73 #include <sound/initval.h>
74 
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
79 
80 module_param_array(index, int, NULL, 0444);
81 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
82 module_param_array(id, charp, NULL, 0444);
83 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
84 module_param_array(enable, bool, NULL, 0444);
85 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
86 module_param_array(fullduplex, bool, NULL, 0444);
87 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
88 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
89 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
90 MODULE_LICENSE("GPL");
91 
92 /* Defines for RME Digi32 series */
93 #define RME32_SPDIF_NCHANNELS 2
94 
95 /* Playback and capture buffer size */
96 #define RME32_BUFFER_SIZE 0x20000
97 
98 /* IO area size */
99 #define RME32_IO_SIZE 0x30000
100 
101 /* IO area offsets */
102 #define RME32_IO_DATA_BUFFER        0x0
103 #define RME32_IO_CONTROL_REGISTER   0x20000
104 #define RME32_IO_GET_POS            0x20000
105 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
106 #define RME32_IO_RESET_POS          0x20100
107 
108 /* Write control register bits */
109 #define RME32_WCR_START     (1 << 0)    /* startbit */
110 #define RME32_WCR_MONO      (1 << 1)    /* 0=stereo, 1=mono
111                                            Setting the whole card to mono
112                                            doesn't seem to be very useful.
113                                            A software-solution can handle
114                                            full-duplex with one direction in
115                                            stereo and the other way in mono.
116                                            So, the hardware should work all
117                                            the time in stereo! */
118 #define RME32_WCR_MODE24    (1 << 2)    /* 0=16bit, 1=32bit */
119 #define RME32_WCR_SEL       (1 << 3)    /* 0=input on output, 1=normal playback/capture */
120 #define RME32_WCR_FREQ_0    (1 << 4)    /* frequency (play) */
121 #define RME32_WCR_FREQ_1    (1 << 5)
122 #define RME32_WCR_INP_0     (1 << 6)    /* input switch */
123 #define RME32_WCR_INP_1     (1 << 7)
124 #define RME32_WCR_RESET     (1 << 8)    /* Reset address */
125 #define RME32_WCR_MUTE      (1 << 9)    /* digital mute for output */
126 #define RME32_WCR_PRO       (1 << 10)   /* 1=professional, 0=consumer */
127 #define RME32_WCR_DS_BM     (1 << 11)	/* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
128 #define RME32_WCR_ADAT      (1 << 12)	/* Adat Mode (only Adat-Version) */
129 #define RME32_WCR_AUTOSYNC  (1 << 13)   /* AutoSync */
130 #define RME32_WCR_PD        (1 << 14)	/* DAC Reset (only PRO-Version) */
131 #define RME32_WCR_EMP       (1 << 15)	/* 1=Emphasis on (only PRO-Version) */
132 
133 #define RME32_WCR_BITPOS_FREQ_0 4
134 #define RME32_WCR_BITPOS_FREQ_1 5
135 #define RME32_WCR_BITPOS_INP_0 6
136 #define RME32_WCR_BITPOS_INP_1 7
137 
138 /* Read control register bits */
139 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
140 #define RME32_RCR_LOCK      (1 << 23)   /* 1=locked, 0=not locked */
141 #define RME32_RCR_ERF       (1 << 26)   /* 1=Error, 0=no Error */
142 #define RME32_RCR_FREQ_0    (1 << 27)   /* CS841x frequency (record) */
143 #define RME32_RCR_FREQ_1    (1 << 28)
144 #define RME32_RCR_FREQ_2    (1 << 29)
145 #define RME32_RCR_KMODE     (1 << 30)   /* card mode: 1=PLL, 0=quartz */
146 #define RME32_RCR_IRQ       (1 << 31)   /* interrupt */
147 
148 #define RME32_RCR_BITPOS_F0 27
149 #define RME32_RCR_BITPOS_F1 28
150 #define RME32_RCR_BITPOS_F2 29
151 
152 /* Input types */
153 #define RME32_INPUT_OPTICAL 0
154 #define RME32_INPUT_COAXIAL 1
155 #define RME32_INPUT_INTERNAL 2
156 #define RME32_INPUT_XLR 3
157 
158 /* Clock modes */
159 #define RME32_CLOCKMODE_SLAVE 0
160 #define RME32_CLOCKMODE_MASTER_32 1
161 #define RME32_CLOCKMODE_MASTER_44 2
162 #define RME32_CLOCKMODE_MASTER_48 3
163 
164 /* Block sizes in bytes */
165 #define RME32_BLOCK_SIZE 8192
166 
167 /* Software intermediate buffer (max) size */
168 #define RME32_MID_BUFFER_SIZE (1024*1024)
169 
170 /* Hardware revisions */
171 #define RME32_32_REVISION 192
172 #define RME32_328_REVISION_OLD 100
173 #define RME32_328_REVISION_NEW 101
174 #define RME32_PRO_REVISION_WITH_8412 192
175 #define RME32_PRO_REVISION_WITH_8414 150
176 
177 
178 struct rme32 {
179 	spinlock_t lock;
180 	int irq;
181 	unsigned long port;
182 	void __iomem *iobase;
183 
184 	u32 wcreg;		/* cached write control register value */
185 	u32 wcreg_spdif;	/* S/PDIF setup */
186 	u32 wcreg_spdif_stream;	/* S/PDIF setup (temporary) */
187 	u32 rcreg;		/* cached read control register value */
188 
189 	u8 rev;			/* card revision number */
190 
191 	struct snd_pcm_substream *playback_substream;
192 	struct snd_pcm_substream *capture_substream;
193 
194 	int playback_frlog;	/* log2 of framesize */
195 	int capture_frlog;
196 
197 	size_t playback_periodsize;	/* in bytes, zero if not used */
198 	size_t capture_periodsize;	/* in bytes, zero if not used */
199 
200 	unsigned int fullduplex_mode;
201 	int running;
202 
203 	struct snd_pcm_indirect playback_pcm;
204 	struct snd_pcm_indirect capture_pcm;
205 
206 	struct snd_card *card;
207 	struct snd_pcm *spdif_pcm;
208 	struct snd_pcm *adat_pcm;
209 	struct pci_dev *pci;
210 	struct snd_kcontrol *spdif_ctl;
211 };
212 
213 static const struct pci_device_id snd_rme32_ids[] = {
214 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
215 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
216 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
217 	{0,}
218 };
219 
220 MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
221 
222 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
223 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
224 
225 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
226 
227 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
228 
229 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
230 
231 static void snd_rme32_proc_init(struct rme32 * rme32);
232 
233 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
234 
235 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
236 {
237 	return (readl(rme32->iobase + RME32_IO_GET_POS)
238 		& RME32_RCR_AUDIO_ADDR_MASK);
239 }
240 
241 /* silence callback for halfduplex mode */
242 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
243 				      int channel, unsigned long pos,
244 				      unsigned long count)
245 {
246 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
247 
248 	memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
249 	return 0;
250 }
251 
252 /* copy callback for halfduplex mode */
253 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
254 				   int channel, unsigned long pos,
255 				   void __user *src, unsigned long count)
256 {
257 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
258 
259 	if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
260 				src, count))
261 		return -EFAULT;
262 	return 0;
263 }
264 
265 static int snd_rme32_playback_copy_kernel(struct snd_pcm_substream *substream,
266 					  int channel, unsigned long pos,
267 					  void *src, unsigned long count)
268 {
269 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
270 
271 	memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count);
272 	return 0;
273 }
274 
275 /* copy callback for halfduplex mode */
276 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
277 				  int channel, unsigned long pos,
278 				  void __user *dst, unsigned long count)
279 {
280 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
281 
282 	if (copy_to_user_fromio(dst,
283 			    rme32->iobase + RME32_IO_DATA_BUFFER + pos,
284 			    count))
285 		return -EFAULT;
286 	return 0;
287 }
288 
289 static int snd_rme32_capture_copy_kernel(struct snd_pcm_substream *substream,
290 					 int channel, unsigned long pos,
291 					 void *dst, unsigned long count)
292 {
293 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
294 
295 	memcpy_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count);
296 	return 0;
297 }
298 
299 /*
300  * SPDIF I/O capabilities (half-duplex mode)
301  */
302 static const struct snd_pcm_hardware snd_rme32_spdif_info = {
303 	.info =		(SNDRV_PCM_INFO_MMAP_IOMEM |
304 			 SNDRV_PCM_INFO_MMAP_VALID |
305 			 SNDRV_PCM_INFO_INTERLEAVED |
306 			 SNDRV_PCM_INFO_PAUSE |
307 			 SNDRV_PCM_INFO_SYNC_START |
308 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
309 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
310 			 SNDRV_PCM_FMTBIT_S32_LE),
311 	.rates =	(SNDRV_PCM_RATE_32000 |
312 			 SNDRV_PCM_RATE_44100 |
313 			 SNDRV_PCM_RATE_48000),
314 	.rate_min =	32000,
315 	.rate_max =	48000,
316 	.channels_min =	2,
317 	.channels_max =	2,
318 	.buffer_bytes_max = RME32_BUFFER_SIZE,
319 	.period_bytes_min = RME32_BLOCK_SIZE,
320 	.period_bytes_max = RME32_BLOCK_SIZE,
321 	.periods_min =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
322 	.periods_max =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
323 	.fifo_size =	0,
324 };
325 
326 /*
327  * ADAT I/O capabilities (half-duplex mode)
328  */
329 static const struct snd_pcm_hardware snd_rme32_adat_info =
330 {
331 	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
332 			      SNDRV_PCM_INFO_MMAP_VALID |
333 			      SNDRV_PCM_INFO_INTERLEAVED |
334 			      SNDRV_PCM_INFO_PAUSE |
335 			      SNDRV_PCM_INFO_SYNC_START |
336 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
337 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
338 	.rates =             (SNDRV_PCM_RATE_44100 |
339 			      SNDRV_PCM_RATE_48000),
340 	.rate_min =          44100,
341 	.rate_max =          48000,
342 	.channels_min =      8,
343 	.channels_max =	     8,
344 	.buffer_bytes_max =  RME32_BUFFER_SIZE,
345 	.period_bytes_min =  RME32_BLOCK_SIZE,
346 	.period_bytes_max =  RME32_BLOCK_SIZE,
347 	.periods_min =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
348 	.periods_max =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
349 	.fifo_size =	    0,
350 };
351 
352 /*
353  * SPDIF I/O capabilities (full-duplex mode)
354  */
355 static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
356 	.info =		(SNDRV_PCM_INFO_MMAP |
357 			 SNDRV_PCM_INFO_MMAP_VALID |
358 			 SNDRV_PCM_INFO_INTERLEAVED |
359 			 SNDRV_PCM_INFO_PAUSE |
360 			 SNDRV_PCM_INFO_SYNC_START |
361 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
362 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
363 			 SNDRV_PCM_FMTBIT_S32_LE),
364 	.rates =	(SNDRV_PCM_RATE_32000 |
365 			 SNDRV_PCM_RATE_44100 |
366 			 SNDRV_PCM_RATE_48000),
367 	.rate_min =	32000,
368 	.rate_max =	48000,
369 	.channels_min =	2,
370 	.channels_max =	2,
371 	.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
372 	.period_bytes_min = RME32_BLOCK_SIZE,
373 	.period_bytes_max = RME32_BLOCK_SIZE,
374 	.periods_min =	2,
375 	.periods_max =	RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
376 	.fifo_size =	0,
377 };
378 
379 /*
380  * ADAT I/O capabilities (full-duplex mode)
381  */
382 static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
383 {
384 	.info =		     (SNDRV_PCM_INFO_MMAP |
385 			      SNDRV_PCM_INFO_MMAP_VALID |
386 			      SNDRV_PCM_INFO_INTERLEAVED |
387 			      SNDRV_PCM_INFO_PAUSE |
388 			      SNDRV_PCM_INFO_SYNC_START |
389 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
390 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
391 	.rates =             (SNDRV_PCM_RATE_44100 |
392 			      SNDRV_PCM_RATE_48000),
393 	.rate_min =          44100,
394 	.rate_max =          48000,
395 	.channels_min =      8,
396 	.channels_max =	     8,
397 	.buffer_bytes_max =  RME32_MID_BUFFER_SIZE,
398 	.period_bytes_min =  RME32_BLOCK_SIZE,
399 	.period_bytes_max =  RME32_BLOCK_SIZE,
400 	.periods_min =	    2,
401 	.periods_max =	    RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
402 	.fifo_size =	    0,
403 };
404 
405 static void snd_rme32_reset_dac(struct rme32 *rme32)
406 {
407         writel(rme32->wcreg | RME32_WCR_PD,
408                rme32->iobase + RME32_IO_CONTROL_REGISTER);
409         writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
410 }
411 
412 static int snd_rme32_playback_getrate(struct rme32 * rme32)
413 {
414 	int rate;
415 
416 	rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
417 	       (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
418 	switch (rate) {
419 	case 1:
420 		rate = 32000;
421 		break;
422 	case 2:
423 		rate = 44100;
424 		break;
425 	case 3:
426 		rate = 48000;
427 		break;
428 	default:
429 		return -1;
430 	}
431 	return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
432 }
433 
434 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
435 {
436 	int n;
437 
438 	*is_adat = 0;
439 	if (rme32->rcreg & RME32_RCR_LOCK) {
440                 /* ADAT rate */
441                 *is_adat = 1;
442 	}
443 	if (rme32->rcreg & RME32_RCR_ERF) {
444 		return -1;
445 	}
446 
447         /* S/PDIF rate */
448 	n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
449 		(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
450 		(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
451 
452 	if (RME32_PRO_WITH_8414(rme32))
453 		switch (n) {	/* supporting the CS8414 */
454 		case 0:
455 		case 1:
456 		case 2:
457 			return -1;
458 		case 3:
459 			return 96000;
460 		case 4:
461 			return 88200;
462 		case 5:
463 			return 48000;
464 		case 6:
465 			return 44100;
466 		case 7:
467 			return 32000;
468 		default:
469 			return -1;
470 		}
471 	else
472 		switch (n) {	/* supporting the CS8412 */
473 		case 0:
474 			return -1;
475 		case 1:
476 			return 48000;
477 		case 2:
478 			return 44100;
479 		case 3:
480 			return 32000;
481 		case 4:
482 			return 48000;
483 		case 5:
484 			return 44100;
485 		case 6:
486 			return 44056;
487 		case 7:
488 			return 32000;
489 		default:
490 			break;
491 		}
492 	return -1;
493 }
494 
495 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
496 {
497         int ds;
498 
499         ds = rme32->wcreg & RME32_WCR_DS_BM;
500 	switch (rate) {
501 	case 32000:
502 		rme32->wcreg &= ~RME32_WCR_DS_BM;
503 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
504 			~RME32_WCR_FREQ_1;
505 		break;
506 	case 44100:
507 		rme32->wcreg &= ~RME32_WCR_DS_BM;
508 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
509 			~RME32_WCR_FREQ_0;
510 		break;
511 	case 48000:
512 		rme32->wcreg &= ~RME32_WCR_DS_BM;
513 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
514 			RME32_WCR_FREQ_1;
515 		break;
516 	case 64000:
517 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
518 			return -EINVAL;
519 		rme32->wcreg |= RME32_WCR_DS_BM;
520 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
521 			~RME32_WCR_FREQ_1;
522 		break;
523 	case 88200:
524 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
525 			return -EINVAL;
526 		rme32->wcreg |= RME32_WCR_DS_BM;
527 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
528 			~RME32_WCR_FREQ_0;
529 		break;
530 	case 96000:
531 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
532 			return -EINVAL;
533 		rme32->wcreg |= RME32_WCR_DS_BM;
534 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
535 			RME32_WCR_FREQ_1;
536 		break;
537 	default:
538 		return -EINVAL;
539 	}
540         if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
541             (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
542         {
543                 /* change to/from double-speed: reset the DAC (if available) */
544                 snd_rme32_reset_dac(rme32);
545         } else {
546                 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
547 	}
548 	return 0;
549 }
550 
551 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
552 {
553 	switch (mode) {
554 	case RME32_CLOCKMODE_SLAVE:
555 		/* AutoSync */
556 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
557 			~RME32_WCR_FREQ_1;
558 		break;
559 	case RME32_CLOCKMODE_MASTER_32:
560 		/* Internal 32.0kHz */
561 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
562 			~RME32_WCR_FREQ_1;
563 		break;
564 	case RME32_CLOCKMODE_MASTER_44:
565 		/* Internal 44.1kHz */
566 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
567 			RME32_WCR_FREQ_1;
568 		break;
569 	case RME32_CLOCKMODE_MASTER_48:
570 		/* Internal 48.0kHz */
571 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
572 			RME32_WCR_FREQ_1;
573 		break;
574 	default:
575 		return -EINVAL;
576 	}
577 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
578 	return 0;
579 }
580 
581 static int snd_rme32_getclockmode(struct rme32 * rme32)
582 {
583 	return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
584 	    (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
585 }
586 
587 static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
588 {
589 	switch (type) {
590 	case RME32_INPUT_OPTICAL:
591 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
592 			~RME32_WCR_INP_1;
593 		break;
594 	case RME32_INPUT_COAXIAL:
595 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
596 			~RME32_WCR_INP_1;
597 		break;
598 	case RME32_INPUT_INTERNAL:
599 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
600 			RME32_WCR_INP_1;
601 		break;
602 	case RME32_INPUT_XLR:
603 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
604 			RME32_WCR_INP_1;
605 		break;
606 	default:
607 		return -EINVAL;
608 	}
609 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
610 	return 0;
611 }
612 
613 static int snd_rme32_getinputtype(struct rme32 * rme32)
614 {
615 	return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
616 	    (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
617 }
618 
619 static void
620 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
621 {
622 	int frlog;
623 
624 	if (n_channels == 2) {
625 		frlog = 1;
626 	} else {
627 		/* assume 8 channels */
628 		frlog = 3;
629 	}
630 	if (is_playback) {
631 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
632 		rme32->playback_frlog = frlog;
633 	} else {
634 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
635 		rme32->capture_frlog = frlog;
636 	}
637 }
638 
639 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
640 {
641 	switch (format) {
642 	case SNDRV_PCM_FORMAT_S16_LE:
643 		rme32->wcreg &= ~RME32_WCR_MODE24;
644 		break;
645 	case SNDRV_PCM_FORMAT_S32_LE:
646 		rme32->wcreg |= RME32_WCR_MODE24;
647 		break;
648 	default:
649 		return -EINVAL;
650 	}
651 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
652 	return 0;
653 }
654 
655 static int
656 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
657 			     struct snd_pcm_hw_params *params)
658 {
659 	int err, rate, dummy;
660 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
661 	struct snd_pcm_runtime *runtime = substream->runtime;
662 
663 	if (!rme32->fullduplex_mode) {
664 		runtime->dma_area = (void __force *)(rme32->iobase +
665 						     RME32_IO_DATA_BUFFER);
666 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
667 		runtime->dma_bytes = RME32_BUFFER_SIZE;
668 	}
669 
670 	spin_lock_irq(&rme32->lock);
671 	rate = 0;
672 	if (rme32->rcreg & RME32_RCR_KMODE)
673 		rate = snd_rme32_capture_getrate(rme32, &dummy);
674 	if (rate > 0) {
675 		/* AutoSync */
676 		if ((int)params_rate(params) != rate) {
677 			spin_unlock_irq(&rme32->lock);
678 			return -EIO;
679 		}
680 	} else {
681 		err = snd_rme32_playback_setrate(rme32, params_rate(params));
682 		if (err < 0) {
683 			spin_unlock_irq(&rme32->lock);
684 			return err;
685 		}
686 	}
687 	err = snd_rme32_setformat(rme32, params_format(params));
688 	if (err < 0) {
689 		spin_unlock_irq(&rme32->lock);
690 		return err;
691 	}
692 
693 	snd_rme32_setframelog(rme32, params_channels(params), 1);
694 	if (rme32->capture_periodsize != 0) {
695 		if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
696 			spin_unlock_irq(&rme32->lock);
697 			return -EBUSY;
698 		}
699 	}
700 	rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
701 	/* S/PDIF setup */
702 	if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
703 		rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
704 		rme32->wcreg |= rme32->wcreg_spdif_stream;
705 		writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
706 	}
707 	spin_unlock_irq(&rme32->lock);
708 
709 	return 0;
710 }
711 
712 static int
713 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
714 			    struct snd_pcm_hw_params *params)
715 {
716 	int err, isadat, rate;
717 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
718 	struct snd_pcm_runtime *runtime = substream->runtime;
719 
720 	if (!rme32->fullduplex_mode) {
721 		runtime->dma_area = (void __force *)rme32->iobase +
722 					RME32_IO_DATA_BUFFER;
723 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
724 		runtime->dma_bytes = RME32_BUFFER_SIZE;
725 	}
726 
727 	spin_lock_irq(&rme32->lock);
728 	/* enable AutoSync for record-preparing */
729 	rme32->wcreg |= RME32_WCR_AUTOSYNC;
730 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
731 
732 	err = snd_rme32_setformat(rme32, params_format(params));
733 	if (err < 0) {
734 		spin_unlock_irq(&rme32->lock);
735 		return err;
736 	}
737 	err = snd_rme32_playback_setrate(rme32, params_rate(params));
738 	if (err < 0) {
739 		spin_unlock_irq(&rme32->lock);
740 		return err;
741 	}
742 	rate = snd_rme32_capture_getrate(rme32, &isadat);
743 	if (rate > 0) {
744                 if ((int)params_rate(params) != rate) {
745 			spin_unlock_irq(&rme32->lock);
746                         return -EIO;
747                 }
748                 if ((isadat && runtime->hw.channels_min == 2) ||
749                     (!isadat && runtime->hw.channels_min == 8)) {
750 			spin_unlock_irq(&rme32->lock);
751                         return -EIO;
752                 }
753 	}
754 	/* AutoSync off for recording */
755 	rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
756 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
757 
758 	snd_rme32_setframelog(rme32, params_channels(params), 0);
759 	if (rme32->playback_periodsize != 0) {
760 		if (params_period_size(params) << rme32->capture_frlog !=
761 		    rme32->playback_periodsize) {
762 			spin_unlock_irq(&rme32->lock);
763 			return -EBUSY;
764 		}
765 	}
766 	rme32->capture_periodsize =
767 	    params_period_size(params) << rme32->capture_frlog;
768 	spin_unlock_irq(&rme32->lock);
769 
770 	return 0;
771 }
772 
773 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
774 {
775 	if (!from_pause) {
776 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
777 	}
778 
779 	rme32->wcreg |= RME32_WCR_START;
780 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
781 }
782 
783 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
784 {
785 	/*
786 	 * Check if there is an unconfirmed IRQ, if so confirm it, or else
787 	 * the hardware will not stop generating interrupts
788 	 */
789 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
790 	if (rme32->rcreg & RME32_RCR_IRQ) {
791 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
792 	}
793 	rme32->wcreg &= ~RME32_WCR_START;
794 	if (rme32->wcreg & RME32_WCR_SEL)
795 		rme32->wcreg |= RME32_WCR_MUTE;
796 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
797 	if (! to_pause)
798 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
799 }
800 
801 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
802 {
803 	struct rme32 *rme32 = (struct rme32 *) dev_id;
804 
805 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
806 	if (!(rme32->rcreg & RME32_RCR_IRQ)) {
807 		return IRQ_NONE;
808 	} else {
809 		if (rme32->capture_substream) {
810 			snd_pcm_period_elapsed(rme32->capture_substream);
811 		}
812 		if (rme32->playback_substream) {
813 			snd_pcm_period_elapsed(rme32->playback_substream);
814 		}
815 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
816 	}
817 	return IRQ_HANDLED;
818 }
819 
820 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
821 
822 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
823 	.count = ARRAY_SIZE(period_bytes),
824 	.list = period_bytes,
825 	.mask = 0
826 };
827 
828 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
829 {
830 	if (! rme32->fullduplex_mode) {
831 		snd_pcm_hw_constraint_single(runtime,
832 					     SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
833 					     RME32_BUFFER_SIZE);
834 		snd_pcm_hw_constraint_list(runtime, 0,
835 					   SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
836 					   &hw_constraints_period_bytes);
837 	}
838 }
839 
840 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
841 {
842 	int rate, dummy;
843 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
844 	struct snd_pcm_runtime *runtime = substream->runtime;
845 
846 	snd_pcm_set_sync(substream);
847 
848 	spin_lock_irq(&rme32->lock);
849 	if (rme32->playback_substream != NULL) {
850 		spin_unlock_irq(&rme32->lock);
851 		return -EBUSY;
852 	}
853 	rme32->wcreg &= ~RME32_WCR_ADAT;
854 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
855 	rme32->playback_substream = substream;
856 	spin_unlock_irq(&rme32->lock);
857 
858 	if (rme32->fullduplex_mode)
859 		runtime->hw = snd_rme32_spdif_fd_info;
860 	else
861 		runtime->hw = snd_rme32_spdif_info;
862 	if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
863 		runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
864 		runtime->hw.rate_max = 96000;
865 	}
866 	rate = 0;
867 	if (rme32->rcreg & RME32_RCR_KMODE)
868 		rate = snd_rme32_capture_getrate(rme32, &dummy);
869 	if (rate > 0) {
870 		/* AutoSync */
871 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
872 		runtime->hw.rate_min = rate;
873 		runtime->hw.rate_max = rate;
874 	}
875 
876 	snd_rme32_set_buffer_constraint(rme32, runtime);
877 
878 	rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
879 	rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
880 	snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
881 		       SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
882 	return 0;
883 }
884 
885 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
886 {
887 	int isadat, rate;
888 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
889 	struct snd_pcm_runtime *runtime = substream->runtime;
890 
891 	snd_pcm_set_sync(substream);
892 
893 	spin_lock_irq(&rme32->lock);
894         if (rme32->capture_substream != NULL) {
895 		spin_unlock_irq(&rme32->lock);
896                 return -EBUSY;
897         }
898 	rme32->capture_substream = substream;
899 	spin_unlock_irq(&rme32->lock);
900 
901 	if (rme32->fullduplex_mode)
902 		runtime->hw = snd_rme32_spdif_fd_info;
903 	else
904 		runtime->hw = snd_rme32_spdif_info;
905 	if (RME32_PRO_WITH_8414(rme32)) {
906 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
907 		runtime->hw.rate_max = 96000;
908 	}
909 	rate = snd_rme32_capture_getrate(rme32, &isadat);
910 	if (rate > 0) {
911 		if (isadat) {
912 			return -EIO;
913 		}
914 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
915 		runtime->hw.rate_min = rate;
916 		runtime->hw.rate_max = rate;
917 	}
918 
919 	snd_rme32_set_buffer_constraint(rme32, runtime);
920 
921 	return 0;
922 }
923 
924 static int
925 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
926 {
927 	int rate, dummy;
928 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
929 	struct snd_pcm_runtime *runtime = substream->runtime;
930 
931 	snd_pcm_set_sync(substream);
932 
933 	spin_lock_irq(&rme32->lock);
934         if (rme32->playback_substream != NULL) {
935 		spin_unlock_irq(&rme32->lock);
936                 return -EBUSY;
937         }
938 	rme32->wcreg |= RME32_WCR_ADAT;
939 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
940 	rme32->playback_substream = substream;
941 	spin_unlock_irq(&rme32->lock);
942 
943 	if (rme32->fullduplex_mode)
944 		runtime->hw = snd_rme32_adat_fd_info;
945 	else
946 		runtime->hw = snd_rme32_adat_info;
947 	rate = 0;
948 	if (rme32->rcreg & RME32_RCR_KMODE)
949 		rate = snd_rme32_capture_getrate(rme32, &dummy);
950 	if (rate > 0) {
951                 /* AutoSync */
952                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
953                 runtime->hw.rate_min = rate;
954                 runtime->hw.rate_max = rate;
955 	}
956 
957 	snd_rme32_set_buffer_constraint(rme32, runtime);
958 	return 0;
959 }
960 
961 static int
962 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
963 {
964 	int isadat, rate;
965 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
966 	struct snd_pcm_runtime *runtime = substream->runtime;
967 
968 	if (rme32->fullduplex_mode)
969 		runtime->hw = snd_rme32_adat_fd_info;
970 	else
971 		runtime->hw = snd_rme32_adat_info;
972 	rate = snd_rme32_capture_getrate(rme32, &isadat);
973 	if (rate > 0) {
974 		if (!isadat) {
975 			return -EIO;
976 		}
977                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
978                 runtime->hw.rate_min = rate;
979                 runtime->hw.rate_max = rate;
980         }
981 
982 	snd_pcm_set_sync(substream);
983 
984 	spin_lock_irq(&rme32->lock);
985 	if (rme32->capture_substream != NULL) {
986 		spin_unlock_irq(&rme32->lock);
987 		return -EBUSY;
988         }
989 	rme32->capture_substream = substream;
990 	spin_unlock_irq(&rme32->lock);
991 
992 	snd_rme32_set_buffer_constraint(rme32, runtime);
993 	return 0;
994 }
995 
996 static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
997 {
998 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
999 	int spdif = 0;
1000 
1001 	spin_lock_irq(&rme32->lock);
1002 	rme32->playback_substream = NULL;
1003 	rme32->playback_periodsize = 0;
1004 	spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
1005 	spin_unlock_irq(&rme32->lock);
1006 	if (spdif) {
1007 		rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1008 		snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
1009 			       SNDRV_CTL_EVENT_MASK_INFO,
1010 			       &rme32->spdif_ctl->id);
1011 	}
1012 	return 0;
1013 }
1014 
1015 static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
1016 {
1017 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1018 
1019 	spin_lock_irq(&rme32->lock);
1020 	rme32->capture_substream = NULL;
1021 	rme32->capture_periodsize = 0;
1022 	spin_unlock_irq(&rme32->lock);
1023 	return 0;
1024 }
1025 
1026 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
1027 {
1028 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1029 
1030 	spin_lock_irq(&rme32->lock);
1031 	if (rme32->fullduplex_mode) {
1032 		memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
1033 		rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1034 		rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1035 	} else {
1036 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1037 	}
1038 	if (rme32->wcreg & RME32_WCR_SEL)
1039 		rme32->wcreg &= ~RME32_WCR_MUTE;
1040 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1041 	spin_unlock_irq(&rme32->lock);
1042 	return 0;
1043 }
1044 
1045 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
1046 {
1047 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1048 
1049 	spin_lock_irq(&rme32->lock);
1050 	if (rme32->fullduplex_mode) {
1051 		memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1052 		rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1053 		rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1054 		rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1055 	} else {
1056 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1057 	}
1058 	spin_unlock_irq(&rme32->lock);
1059 	return 0;
1060 }
1061 
1062 static int
1063 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1064 {
1065 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1066 	struct snd_pcm_substream *s;
1067 
1068 	spin_lock(&rme32->lock);
1069 	snd_pcm_group_for_each_entry(s, substream) {
1070 		if (s != rme32->playback_substream &&
1071 		    s != rme32->capture_substream)
1072 			continue;
1073 		switch (cmd) {
1074 		case SNDRV_PCM_TRIGGER_START:
1075 			rme32->running |= (1 << s->stream);
1076 			if (rme32->fullduplex_mode) {
1077 				/* remember the current DMA position */
1078 				if (s == rme32->playback_substream) {
1079 					rme32->playback_pcm.hw_io =
1080 					rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1081 				} else {
1082 					rme32->capture_pcm.hw_io =
1083 					rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1084 				}
1085 			}
1086 			break;
1087 		case SNDRV_PCM_TRIGGER_STOP:
1088 			rme32->running &= ~(1 << s->stream);
1089 			break;
1090 		}
1091 		snd_pcm_trigger_done(s, substream);
1092 	}
1093 
1094 	switch (cmd) {
1095 	case SNDRV_PCM_TRIGGER_START:
1096 		if (rme32->running && ! RME32_ISWORKING(rme32))
1097 			snd_rme32_pcm_start(rme32, 0);
1098 		break;
1099 	case SNDRV_PCM_TRIGGER_STOP:
1100 		if (! rme32->running && RME32_ISWORKING(rme32))
1101 			snd_rme32_pcm_stop(rme32, 0);
1102 		break;
1103 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1104 		if (rme32->running && RME32_ISWORKING(rme32))
1105 			snd_rme32_pcm_stop(rme32, 1);
1106 		break;
1107 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1108 		if (rme32->running && ! RME32_ISWORKING(rme32))
1109 			snd_rme32_pcm_start(rme32, 1);
1110 		break;
1111 	}
1112 	spin_unlock(&rme32->lock);
1113 	return 0;
1114 }
1115 
1116 /* pointer callback for halfduplex mode */
1117 static snd_pcm_uframes_t
1118 snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1119 {
1120 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1121 	return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1122 }
1123 
1124 static snd_pcm_uframes_t
1125 snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1126 {
1127 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1128 	return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1129 }
1130 
1131 
1132 /* ack and pointer callbacks for fullduplex mode */
1133 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1134 				    struct snd_pcm_indirect *rec, size_t bytes)
1135 {
1136 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1137 	memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1138 		    substream->runtime->dma_area + rec->sw_data, bytes);
1139 }
1140 
1141 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1142 {
1143 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1144 	struct snd_pcm_indirect *rec, *cprec;
1145 
1146 	rec = &rme32->playback_pcm;
1147 	cprec = &rme32->capture_pcm;
1148 	spin_lock(&rme32->lock);
1149 	rec->hw_queue_size = RME32_BUFFER_SIZE;
1150 	if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1151 		rec->hw_queue_size -= cprec->hw_ready;
1152 	spin_unlock(&rme32->lock);
1153 	return snd_pcm_indirect_playback_transfer(substream, rec,
1154 						  snd_rme32_pb_trans_copy);
1155 }
1156 
1157 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1158 				    struct snd_pcm_indirect *rec, size_t bytes)
1159 {
1160 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1161 	memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1162 		      rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1163 		      bytes);
1164 }
1165 
1166 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1167 {
1168 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1169 	return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1170 						 snd_rme32_cp_trans_copy);
1171 }
1172 
1173 static snd_pcm_uframes_t
1174 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1175 {
1176 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1177 	return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1178 						 snd_rme32_pcm_byteptr(rme32));
1179 }
1180 
1181 static snd_pcm_uframes_t
1182 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1183 {
1184 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1185 	return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1186 						snd_rme32_pcm_byteptr(rme32));
1187 }
1188 
1189 /* for halfduplex mode */
1190 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1191 	.open =		snd_rme32_playback_spdif_open,
1192 	.close =	snd_rme32_playback_close,
1193 	.hw_params =	snd_rme32_playback_hw_params,
1194 	.prepare =	snd_rme32_playback_prepare,
1195 	.trigger =	snd_rme32_pcm_trigger,
1196 	.pointer =	snd_rme32_playback_pointer,
1197 	.copy_user =	snd_rme32_playback_copy,
1198 	.copy_kernel =	snd_rme32_playback_copy_kernel,
1199 	.fill_silence =	snd_rme32_playback_silence,
1200 	.mmap =		snd_pcm_lib_mmap_iomem,
1201 };
1202 
1203 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1204 	.open =		snd_rme32_capture_spdif_open,
1205 	.close =	snd_rme32_capture_close,
1206 	.hw_params =	snd_rme32_capture_hw_params,
1207 	.prepare =	snd_rme32_capture_prepare,
1208 	.trigger =	snd_rme32_pcm_trigger,
1209 	.pointer =	snd_rme32_capture_pointer,
1210 	.copy_user =	snd_rme32_capture_copy,
1211 	.copy_kernel =	snd_rme32_capture_copy_kernel,
1212 	.mmap =		snd_pcm_lib_mmap_iomem,
1213 };
1214 
1215 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1216 	.open =		snd_rme32_playback_adat_open,
1217 	.close =	snd_rme32_playback_close,
1218 	.hw_params =	snd_rme32_playback_hw_params,
1219 	.prepare =	snd_rme32_playback_prepare,
1220 	.trigger =	snd_rme32_pcm_trigger,
1221 	.pointer =	snd_rme32_playback_pointer,
1222 	.copy_user =	snd_rme32_playback_copy,
1223 	.copy_kernel =	snd_rme32_playback_copy_kernel,
1224 	.fill_silence =	snd_rme32_playback_silence,
1225 	.mmap =		snd_pcm_lib_mmap_iomem,
1226 };
1227 
1228 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1229 	.open =		snd_rme32_capture_adat_open,
1230 	.close =	snd_rme32_capture_close,
1231 	.hw_params =	snd_rme32_capture_hw_params,
1232 	.prepare =	snd_rme32_capture_prepare,
1233 	.trigger =	snd_rme32_pcm_trigger,
1234 	.pointer =	snd_rme32_capture_pointer,
1235 	.copy_user =	snd_rme32_capture_copy,
1236 	.copy_kernel =	snd_rme32_capture_copy_kernel,
1237 	.mmap =		snd_pcm_lib_mmap_iomem,
1238 };
1239 
1240 /* for fullduplex mode */
1241 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1242 	.open =		snd_rme32_playback_spdif_open,
1243 	.close =	snd_rme32_playback_close,
1244 	.hw_params =	snd_rme32_playback_hw_params,
1245 	.prepare =	snd_rme32_playback_prepare,
1246 	.trigger =	snd_rme32_pcm_trigger,
1247 	.pointer =	snd_rme32_playback_fd_pointer,
1248 	.ack =		snd_rme32_playback_fd_ack,
1249 };
1250 
1251 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1252 	.open =		snd_rme32_capture_spdif_open,
1253 	.close =	snd_rme32_capture_close,
1254 	.hw_params =	snd_rme32_capture_hw_params,
1255 	.prepare =	snd_rme32_capture_prepare,
1256 	.trigger =	snd_rme32_pcm_trigger,
1257 	.pointer =	snd_rme32_capture_fd_pointer,
1258 	.ack =		snd_rme32_capture_fd_ack,
1259 };
1260 
1261 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1262 	.open =		snd_rme32_playback_adat_open,
1263 	.close =	snd_rme32_playback_close,
1264 	.hw_params =	snd_rme32_playback_hw_params,
1265 	.prepare =	snd_rme32_playback_prepare,
1266 	.trigger =	snd_rme32_pcm_trigger,
1267 	.pointer =	snd_rme32_playback_fd_pointer,
1268 	.ack =		snd_rme32_playback_fd_ack,
1269 };
1270 
1271 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1272 	.open =		snd_rme32_capture_adat_open,
1273 	.close =	snd_rme32_capture_close,
1274 	.hw_params =	snd_rme32_capture_hw_params,
1275 	.prepare =	snd_rme32_capture_prepare,
1276 	.trigger =	snd_rme32_pcm_trigger,
1277 	.pointer =	snd_rme32_capture_fd_pointer,
1278 	.ack =		snd_rme32_capture_fd_ack,
1279 };
1280 
1281 static void snd_rme32_free(struct rme32 *rme32)
1282 {
1283 	if (rme32->irq >= 0)
1284 		snd_rme32_pcm_stop(rme32, 0);
1285 }
1286 
1287 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1288 {
1289 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1290 	rme32->spdif_pcm = NULL;
1291 }
1292 
1293 static void
1294 snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1295 {
1296 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1297 	rme32->adat_pcm = NULL;
1298 }
1299 
1300 static int snd_rme32_create(struct rme32 *rme32)
1301 {
1302 	struct pci_dev *pci = rme32->pci;
1303 	int err;
1304 
1305 	rme32->irq = -1;
1306 	spin_lock_init(&rme32->lock);
1307 
1308 	err = pcim_enable_device(pci);
1309 	if (err < 0)
1310 		return err;
1311 
1312 	err = pci_request_regions(pci, "RME32");
1313 	if (err < 0)
1314 		return err;
1315 	rme32->port = pci_resource_start(rme32->pci, 0);
1316 
1317 	rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
1318 	if (!rme32->iobase) {
1319 		dev_err(rme32->card->dev,
1320 			"unable to remap memory region 0x%lx-0x%lx\n",
1321 			rme32->port, rme32->port + RME32_IO_SIZE - 1);
1322 		return -ENOMEM;
1323 	}
1324 
1325 	if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
1326 			     IRQF_SHARED, KBUILD_MODNAME, rme32)) {
1327 		dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1328 		return -EBUSY;
1329 	}
1330 	rme32->irq = pci->irq;
1331 	rme32->card->sync_irq = rme32->irq;
1332 
1333 	/* read the card's revision number */
1334 	pci_read_config_byte(pci, 8, &rme32->rev);
1335 
1336 	/* set up ALSA pcm device for S/PDIF */
1337 	err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
1338 	if (err < 0)
1339 		return err;
1340 	rme32->spdif_pcm->private_data = rme32;
1341 	rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1342 	strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1343 	if (rme32->fullduplex_mode) {
1344 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1345 				&snd_rme32_playback_spdif_fd_ops);
1346 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1347 				&snd_rme32_capture_spdif_fd_ops);
1348 		snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1349 					       NULL, 0, RME32_MID_BUFFER_SIZE);
1350 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1351 	} else {
1352 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1353 				&snd_rme32_playback_spdif_ops);
1354 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1355 				&snd_rme32_capture_spdif_ops);
1356 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1357 	}
1358 
1359 	/* set up ALSA pcm device for ADAT */
1360 	if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1361 	    (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1362 		/* ADAT is not available on DIGI32 and DIGI32 Pro */
1363 		rme32->adat_pcm = NULL;
1364 	}
1365 	else {
1366 		err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1367 				  1, 1, &rme32->adat_pcm);
1368 		if (err < 0)
1369 			return err;
1370 		rme32->adat_pcm->private_data = rme32;
1371 		rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1372 		strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
1373 		if (rme32->fullduplex_mode) {
1374 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1375 					&snd_rme32_playback_adat_fd_ops);
1376 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1377 					&snd_rme32_capture_adat_fd_ops);
1378 			snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1379 						       NULL,
1380 						       0, RME32_MID_BUFFER_SIZE);
1381 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1382 		} else {
1383 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1384 					&snd_rme32_playback_adat_ops);
1385 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1386 					&snd_rme32_capture_adat_ops);
1387 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1388 		}
1389 	}
1390 
1391 
1392 	rme32->playback_periodsize = 0;
1393 	rme32->capture_periodsize = 0;
1394 
1395 	/* make sure playback/capture is stopped, if by some reason active */
1396 	snd_rme32_pcm_stop(rme32, 0);
1397 
1398         /* reset DAC */
1399         snd_rme32_reset_dac(rme32);
1400 
1401 	/* reset buffer pointer */
1402 	writel(0, rme32->iobase + RME32_IO_RESET_POS);
1403 
1404 	/* set default values in registers */
1405 	rme32->wcreg = RME32_WCR_SEL |	 /* normal playback */
1406 		RME32_WCR_INP_0 | /* input select */
1407 		RME32_WCR_MUTE;	 /* muting on */
1408 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1409 
1410 
1411 	/* init switch interface */
1412 	err = snd_rme32_create_switches(rme32->card, rme32);
1413 	if (err < 0)
1414 		return err;
1415 
1416 	/* init proc interface */
1417 	snd_rme32_proc_init(rme32);
1418 
1419 	rme32->capture_substream = NULL;
1420 	rme32->playback_substream = NULL;
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * proc interface
1427  */
1428 
1429 static void
1430 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1431 {
1432 	int n;
1433 	struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1434 
1435 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1436 
1437 	snd_iprintf(buffer, rme32->card->longname);
1438 	snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1439 
1440 	snd_iprintf(buffer, "\nGeneral settings\n");
1441 	if (rme32->fullduplex_mode)
1442 		snd_iprintf(buffer, "  Full-duplex mode\n");
1443 	else
1444 		snd_iprintf(buffer, "  Half-duplex mode\n");
1445 	if (RME32_PRO_WITH_8414(rme32)) {
1446 		snd_iprintf(buffer, "  receiver: CS8414\n");
1447 	} else {
1448 		snd_iprintf(buffer, "  receiver: CS8412\n");
1449 	}
1450 	if (rme32->wcreg & RME32_WCR_MODE24) {
1451 		snd_iprintf(buffer, "  format: 24 bit");
1452 	} else {
1453 		snd_iprintf(buffer, "  format: 16 bit");
1454 	}
1455 	if (rme32->wcreg & RME32_WCR_MONO) {
1456 		snd_iprintf(buffer, ", Mono\n");
1457 	} else {
1458 		snd_iprintf(buffer, ", Stereo\n");
1459 	}
1460 
1461 	snd_iprintf(buffer, "\nInput settings\n");
1462 	switch (snd_rme32_getinputtype(rme32)) {
1463 	case RME32_INPUT_OPTICAL:
1464 		snd_iprintf(buffer, "  input: optical");
1465 		break;
1466 	case RME32_INPUT_COAXIAL:
1467 		snd_iprintf(buffer, "  input: coaxial");
1468 		break;
1469 	case RME32_INPUT_INTERNAL:
1470 		snd_iprintf(buffer, "  input: internal");
1471 		break;
1472 	case RME32_INPUT_XLR:
1473 		snd_iprintf(buffer, "  input: XLR");
1474 		break;
1475 	}
1476 	if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1477 		snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
1478 	} else {
1479 		if (n) {
1480 			snd_iprintf(buffer, " (8 channels)\n");
1481 		} else {
1482 			snd_iprintf(buffer, " (2 channels)\n");
1483 		}
1484 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1485 			    snd_rme32_capture_getrate(rme32, &n));
1486 	}
1487 
1488 	snd_iprintf(buffer, "\nOutput settings\n");
1489 	if (rme32->wcreg & RME32_WCR_SEL) {
1490 		snd_iprintf(buffer, "  output signal: normal playback");
1491 	} else {
1492 		snd_iprintf(buffer, "  output signal: same as input");
1493 	}
1494 	if (rme32->wcreg & RME32_WCR_MUTE) {
1495 		snd_iprintf(buffer, " (muted)\n");
1496 	} else {
1497 		snd_iprintf(buffer, "\n");
1498 	}
1499 
1500 	/* master output frequency */
1501 	if (!
1502 	    ((!(rme32->wcreg & RME32_WCR_FREQ_0))
1503 	     && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1504 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1505 			    snd_rme32_playback_getrate(rme32));
1506 	}
1507 	if (rme32->rcreg & RME32_RCR_KMODE) {
1508 		snd_iprintf(buffer, "  sample clock source: AutoSync\n");
1509 	} else {
1510 		snd_iprintf(buffer, "  sample clock source: Internal\n");
1511 	}
1512 	if (rme32->wcreg & RME32_WCR_PRO) {
1513 		snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
1514 	} else {
1515 		snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
1516 	}
1517 	if (rme32->wcreg & RME32_WCR_EMP) {
1518 		snd_iprintf(buffer, "  emphasis: on\n");
1519 	} else {
1520 		snd_iprintf(buffer, "  emphasis: off\n");
1521 	}
1522 }
1523 
1524 static void snd_rme32_proc_init(struct rme32 *rme32)
1525 {
1526 	snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
1527 }
1528 
1529 /*
1530  * control interface
1531  */
1532 
1533 #define snd_rme32_info_loopback_control		snd_ctl_boolean_mono_info
1534 
1535 static int
1536 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1537 			       struct snd_ctl_elem_value *ucontrol)
1538 {
1539 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1540 
1541 	spin_lock_irq(&rme32->lock);
1542 	ucontrol->value.integer.value[0] =
1543 	    rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1544 	spin_unlock_irq(&rme32->lock);
1545 	return 0;
1546 }
1547 static int
1548 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1549 			       struct snd_ctl_elem_value *ucontrol)
1550 {
1551 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1552 	unsigned int val;
1553 	int change;
1554 
1555 	val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1556 	spin_lock_irq(&rme32->lock);
1557 	val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1558 	change = val != rme32->wcreg;
1559 	if (ucontrol->value.integer.value[0])
1560 		val &= ~RME32_WCR_MUTE;
1561 	else
1562 		val |= RME32_WCR_MUTE;
1563 	rme32->wcreg = val;
1564 	writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1565 	spin_unlock_irq(&rme32->lock);
1566 	return change;
1567 }
1568 
1569 static int
1570 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1571 				 struct snd_ctl_elem_info *uinfo)
1572 {
1573 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1574 	static const char * const texts[4] = {
1575 		"Optical", "Coaxial", "Internal", "XLR"
1576 	};
1577 	int num_items;
1578 
1579 	switch (rme32->pci->device) {
1580 	case PCI_DEVICE_ID_RME_DIGI32:
1581 	case PCI_DEVICE_ID_RME_DIGI32_8:
1582 		num_items = 3;
1583 		break;
1584 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1585 		num_items = 4;
1586 		break;
1587 	default:
1588 		snd_BUG();
1589 		return -EINVAL;
1590 	}
1591 	return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1592 }
1593 static int
1594 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1595 				struct snd_ctl_elem_value *ucontrol)
1596 {
1597 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1598 	unsigned int items = 3;
1599 
1600 	spin_lock_irq(&rme32->lock);
1601 	ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1602 
1603 	switch (rme32->pci->device) {
1604 	case PCI_DEVICE_ID_RME_DIGI32:
1605 	case PCI_DEVICE_ID_RME_DIGI32_8:
1606 		items = 3;
1607 		break;
1608 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1609 		items = 4;
1610 		break;
1611 	default:
1612 		snd_BUG();
1613 		break;
1614 	}
1615 	if (ucontrol->value.enumerated.item[0] >= items) {
1616 		ucontrol->value.enumerated.item[0] = items - 1;
1617 	}
1618 
1619 	spin_unlock_irq(&rme32->lock);
1620 	return 0;
1621 }
1622 static int
1623 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1624 				struct snd_ctl_elem_value *ucontrol)
1625 {
1626 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1627 	unsigned int val;
1628 	int change, items = 3;
1629 
1630 	switch (rme32->pci->device) {
1631 	case PCI_DEVICE_ID_RME_DIGI32:
1632 	case PCI_DEVICE_ID_RME_DIGI32_8:
1633 		items = 3;
1634 		break;
1635 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1636 		items = 4;
1637 		break;
1638 	default:
1639 		snd_BUG();
1640 		break;
1641 	}
1642 	val = ucontrol->value.enumerated.item[0] % items;
1643 
1644 	spin_lock_irq(&rme32->lock);
1645 	change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1646 	snd_rme32_setinputtype(rme32, val);
1647 	spin_unlock_irq(&rme32->lock);
1648 	return change;
1649 }
1650 
1651 static int
1652 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1653 				 struct snd_ctl_elem_info *uinfo)
1654 {
1655 	static const char * const texts[4] = { "AutoSync",
1656 				  "Internal 32.0kHz",
1657 				  "Internal 44.1kHz",
1658 				  "Internal 48.0kHz" };
1659 
1660 	return snd_ctl_enum_info(uinfo, 1, 4, texts);
1661 }
1662 static int
1663 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1664 				struct snd_ctl_elem_value *ucontrol)
1665 {
1666 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1667 
1668 	spin_lock_irq(&rme32->lock);
1669 	ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1670 	spin_unlock_irq(&rme32->lock);
1671 	return 0;
1672 }
1673 static int
1674 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1675 				struct snd_ctl_elem_value *ucontrol)
1676 {
1677 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1678 	unsigned int val;
1679 	int change;
1680 
1681 	val = ucontrol->value.enumerated.item[0] % 3;
1682 	spin_lock_irq(&rme32->lock);
1683 	change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1684 	snd_rme32_setclockmode(rme32, val);
1685 	spin_unlock_irq(&rme32->lock);
1686 	return change;
1687 }
1688 
1689 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1690 {
1691 	u32 val = 0;
1692 	val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1693 	if (val & RME32_WCR_PRO)
1694 		val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1695 	else
1696 		val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1697 	return val;
1698 }
1699 
1700 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1701 {
1702 	aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1703 	if (val & RME32_WCR_PRO)
1704 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1705 	else
1706 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1707 }
1708 
1709 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1710 					struct snd_ctl_elem_info *uinfo)
1711 {
1712 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1713 	uinfo->count = 1;
1714 	return 0;
1715 }
1716 
1717 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1718 				       struct snd_ctl_elem_value *ucontrol)
1719 {
1720 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1721 
1722 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1723 				 rme32->wcreg_spdif);
1724 	return 0;
1725 }
1726 
1727 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1728 				       struct snd_ctl_elem_value *ucontrol)
1729 {
1730 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1731 	int change;
1732 	u32 val;
1733 
1734 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1735 	spin_lock_irq(&rme32->lock);
1736 	change = val != rme32->wcreg_spdif;
1737 	rme32->wcreg_spdif = val;
1738 	spin_unlock_irq(&rme32->lock);
1739 	return change;
1740 }
1741 
1742 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1743 					       struct snd_ctl_elem_info *uinfo)
1744 {
1745 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1746 	uinfo->count = 1;
1747 	return 0;
1748 }
1749 
1750 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1751 					      struct snd_ctl_elem_value *
1752 					      ucontrol)
1753 {
1754 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1755 
1756 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1757 				 rme32->wcreg_spdif_stream);
1758 	return 0;
1759 }
1760 
1761 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1762 					      struct snd_ctl_elem_value *
1763 					      ucontrol)
1764 {
1765 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1766 	int change;
1767 	u32 val;
1768 
1769 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1770 	spin_lock_irq(&rme32->lock);
1771 	change = val != rme32->wcreg_spdif_stream;
1772 	rme32->wcreg_spdif_stream = val;
1773 	rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1774 	rme32->wcreg |= val;
1775 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1776 	spin_unlock_irq(&rme32->lock);
1777 	return change;
1778 }
1779 
1780 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1781 					     struct snd_ctl_elem_info *uinfo)
1782 {
1783 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1784 	uinfo->count = 1;
1785 	return 0;
1786 }
1787 
1788 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1789 					    struct snd_ctl_elem_value *
1790 					    ucontrol)
1791 {
1792 	ucontrol->value.iec958.status[0] = kcontrol->private_value;
1793 	return 0;
1794 }
1795 
1796 static const struct snd_kcontrol_new snd_rme32_controls[] = {
1797 	{
1798 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1799 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1800 		.info =	snd_rme32_control_spdif_info,
1801 		.get =	snd_rme32_control_spdif_get,
1802 		.put =	snd_rme32_control_spdif_put
1803 	},
1804 	{
1805 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1806 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1807 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1808 		.info =	snd_rme32_control_spdif_stream_info,
1809 		.get =	snd_rme32_control_spdif_stream_get,
1810 		.put =	snd_rme32_control_spdif_stream_put
1811 	},
1812 	{
1813 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1814 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1815 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1816 		.info =	snd_rme32_control_spdif_mask_info,
1817 		.get =	snd_rme32_control_spdif_mask_get,
1818 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1819 	},
1820 	{
1821 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1822 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1823 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1824 		.info =	snd_rme32_control_spdif_mask_info,
1825 		.get =	snd_rme32_control_spdif_mask_get,
1826 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1827 	},
1828 	{
1829 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1830 		.name =	"Input Connector",
1831 		.info =	snd_rme32_info_inputtype_control,
1832 		.get =	snd_rme32_get_inputtype_control,
1833 		.put =	snd_rme32_put_inputtype_control
1834 	},
1835 	{
1836 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1837 		.name =	"Loopback Input",
1838 		.info =	snd_rme32_info_loopback_control,
1839 		.get =	snd_rme32_get_loopback_control,
1840 		.put =	snd_rme32_put_loopback_control
1841 	},
1842 	{
1843 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1844 		.name =	"Sample Clock Source",
1845 		.info =	snd_rme32_info_clockmode_control,
1846 		.get =	snd_rme32_get_clockmode_control,
1847 		.put =	snd_rme32_put_clockmode_control
1848 	}
1849 };
1850 
1851 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1852 {
1853 	int idx, err;
1854 	struct snd_kcontrol *kctl;
1855 
1856 	for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1857 		kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
1858 		err = snd_ctl_add(card, kctl);
1859 		if (err < 0)
1860 			return err;
1861 		if (idx == 1)	/* IEC958 (S/PDIF) Stream */
1862 			rme32->spdif_ctl = kctl;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 /*
1869  * Card initialisation
1870  */
1871 
1872 static void snd_rme32_card_free(struct snd_card *card)
1873 {
1874 	snd_rme32_free(card->private_data);
1875 }
1876 
1877 static int
1878 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1879 {
1880 	static int dev;
1881 	struct rme32 *rme32;
1882 	struct snd_card *card;
1883 	int err;
1884 
1885 	if (dev >= SNDRV_CARDS) {
1886 		return -ENODEV;
1887 	}
1888 	if (!enable[dev]) {
1889 		dev++;
1890 		return -ENOENT;
1891 	}
1892 
1893 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1894 				sizeof(*rme32), &card);
1895 	if (err < 0)
1896 		return err;
1897 	card->private_free = snd_rme32_card_free;
1898 	rme32 = (struct rme32 *) card->private_data;
1899 	rme32->card = card;
1900 	rme32->pci = pci;
1901         if (fullduplex[dev])
1902 		rme32->fullduplex_mode = 1;
1903 	err = snd_rme32_create(rme32);
1904 	if (err < 0)
1905 		return err;
1906 
1907 	strcpy(card->driver, "Digi32");
1908 	switch (rme32->pci->device) {
1909 	case PCI_DEVICE_ID_RME_DIGI32:
1910 		strcpy(card->shortname, "RME Digi32");
1911 		break;
1912 	case PCI_DEVICE_ID_RME_DIGI32_8:
1913 		strcpy(card->shortname, "RME Digi32/8");
1914 		break;
1915 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1916 		strcpy(card->shortname, "RME Digi32 PRO");
1917 		break;
1918 	}
1919 	sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1920 		card->shortname, rme32->rev, rme32->port, rme32->irq);
1921 
1922 	err = snd_card_register(card);
1923 	if (err < 0)
1924 		return err;
1925 	pci_set_drvdata(pci, card);
1926 	dev++;
1927 	return 0;
1928 }
1929 
1930 static struct pci_driver rme32_driver = {
1931 	.name =		KBUILD_MODNAME,
1932 	.id_table =	snd_rme32_ids,
1933 	.probe =	snd_rme32_probe,
1934 };
1935 
1936 module_pci_driver(rme32_driver);
1937