xref: /openbmc/linux/sound/pci/rme32.c (revision 6d21fb7d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
4  *
5  *      Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
6  *                              Pilo Chambert <pilo.c@wanadoo.fr>
7  *
8  *      Thanks to :        Anders Torger <torger@ludd.luth.se>,
9  *                         Henk Hesselink <henk@anda.nl>
10  *                         for writing the digi96-driver
11  *                         and RME for all informations.
12  *
13  * ****************************************************************************
14  *
15  * Note #1 "Sek'd models" ................................... martin 2002-12-07
16  *
17  * Identical soundcards by Sek'd were labeled:
18  * RME Digi 32     = Sek'd Prodif 32
19  * RME Digi 32 Pro = Sek'd Prodif 96
20  * RME Digi 32/8   = Sek'd Prodif Gold
21  *
22  * ****************************************************************************
23  *
24  * Note #2 "full duplex mode" ............................... martin 2002-12-07
25  *
26  * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
27  * in this mode. Rec data and play data are using the same buffer therefore. At
28  * first you have got the playing bits in the buffer and then (after playing
29  * them) they were overwitten by the captured sound of the CS8412/14. Both
30  * modes (play/record) are running harmonically hand in hand in the same buffer
31  * and you have only one start bit plus one interrupt bit to control this
32  * paired action.
33  * This is opposite to the latter rme96 where playing and capturing is totally
34  * separated and so their full duplex mode is supported by alsa (using two
35  * start bits and two interrupts for two different buffers).
36  * But due to the wrong sequence of playing and capturing ALSA shows no solved
37  * full duplex support for the rme32 at the moment. That's bad, but I'm not
38  * able to solve it. Are you motivated enough to solve this problem now? Your
39  * patch would be welcome!
40  *
41  * ****************************************************************************
42  *
43  * "The story after the long seeking" -- tiwai
44  *
45  * Ok, the situation regarding the full duplex is now improved a bit.
46  * In the fullduplex mode (given by the module parameter), the hardware buffer
47  * is split to halves for read and write directions at the DMA pointer.
48  * That is, the half above the current DMA pointer is used for write, and
49  * the half below is used for read.  To mangle this strange behavior, an
50  * software intermediate buffer is introduced.  This is, of course, not good
51  * from the viewpoint of the data transfer efficiency.  However, this allows
52  * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
53  *
54  * ****************************************************************************
55  */
56 
57 
58 #include <linux/delay.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/module.h>
64 #include <linux/io.h>
65 
66 #include <sound/core.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/pcm.h>
70 #include <sound/pcm_params.h>
71 #include <sound/pcm-indirect.h>
72 #include <sound/asoundef.h>
73 #include <sound/initval.h>
74 
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
79 
80 module_param_array(index, int, NULL, 0444);
81 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
82 module_param_array(id, charp, NULL, 0444);
83 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
84 module_param_array(enable, bool, NULL, 0444);
85 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
86 module_param_array(fullduplex, bool, NULL, 0444);
87 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
88 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
89 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
90 MODULE_LICENSE("GPL");
91 
92 /* Defines for RME Digi32 series */
93 #define RME32_SPDIF_NCHANNELS 2
94 
95 /* Playback and capture buffer size */
96 #define RME32_BUFFER_SIZE 0x20000
97 
98 /* IO area size */
99 #define RME32_IO_SIZE 0x30000
100 
101 /* IO area offsets */
102 #define RME32_IO_DATA_BUFFER        0x0
103 #define RME32_IO_CONTROL_REGISTER   0x20000
104 #define RME32_IO_GET_POS            0x20000
105 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
106 #define RME32_IO_RESET_POS          0x20100
107 
108 /* Write control register bits */
109 #define RME32_WCR_START     (1 << 0)    /* startbit */
110 #define RME32_WCR_MONO      (1 << 1)    /* 0=stereo, 1=mono
111                                            Setting the whole card to mono
112                                            doesn't seem to be very useful.
113                                            A software-solution can handle
114                                            full-duplex with one direction in
115                                            stereo and the other way in mono.
116                                            So, the hardware should work all
117                                            the time in stereo! */
118 #define RME32_WCR_MODE24    (1 << 2)    /* 0=16bit, 1=32bit */
119 #define RME32_WCR_SEL       (1 << 3)    /* 0=input on output, 1=normal playback/capture */
120 #define RME32_WCR_FREQ_0    (1 << 4)    /* frequency (play) */
121 #define RME32_WCR_FREQ_1    (1 << 5)
122 #define RME32_WCR_INP_0     (1 << 6)    /* input switch */
123 #define RME32_WCR_INP_1     (1 << 7)
124 #define RME32_WCR_RESET     (1 << 8)    /* Reset address */
125 #define RME32_WCR_MUTE      (1 << 9)    /* digital mute for output */
126 #define RME32_WCR_PRO       (1 << 10)   /* 1=professional, 0=consumer */
127 #define RME32_WCR_DS_BM     (1 << 11)	/* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
128 #define RME32_WCR_ADAT      (1 << 12)	/* Adat Mode (only Adat-Version) */
129 #define RME32_WCR_AUTOSYNC  (1 << 13)   /* AutoSync */
130 #define RME32_WCR_PD        (1 << 14)	/* DAC Reset (only PRO-Version) */
131 #define RME32_WCR_EMP       (1 << 15)	/* 1=Emphasis on (only PRO-Version) */
132 
133 #define RME32_WCR_BITPOS_FREQ_0 4
134 #define RME32_WCR_BITPOS_FREQ_1 5
135 #define RME32_WCR_BITPOS_INP_0 6
136 #define RME32_WCR_BITPOS_INP_1 7
137 
138 /* Read control register bits */
139 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
140 #define RME32_RCR_LOCK      (1 << 23)   /* 1=locked, 0=not locked */
141 #define RME32_RCR_ERF       (1 << 26)   /* 1=Error, 0=no Error */
142 #define RME32_RCR_FREQ_0    (1 << 27)   /* CS841x frequency (record) */
143 #define RME32_RCR_FREQ_1    (1 << 28)
144 #define RME32_RCR_FREQ_2    (1 << 29)
145 #define RME32_RCR_KMODE     (1 << 30)   /* card mode: 1=PLL, 0=quartz */
146 #define RME32_RCR_IRQ       (1 << 31)   /* interrupt */
147 
148 #define RME32_RCR_BITPOS_F0 27
149 #define RME32_RCR_BITPOS_F1 28
150 #define RME32_RCR_BITPOS_F2 29
151 
152 /* Input types */
153 #define RME32_INPUT_OPTICAL 0
154 #define RME32_INPUT_COAXIAL 1
155 #define RME32_INPUT_INTERNAL 2
156 #define RME32_INPUT_XLR 3
157 
158 /* Clock modes */
159 #define RME32_CLOCKMODE_SLAVE 0
160 #define RME32_CLOCKMODE_MASTER_32 1
161 #define RME32_CLOCKMODE_MASTER_44 2
162 #define RME32_CLOCKMODE_MASTER_48 3
163 
164 /* Block sizes in bytes */
165 #define RME32_BLOCK_SIZE 8192
166 
167 /* Software intermediate buffer (max) size */
168 #define RME32_MID_BUFFER_SIZE (1024*1024)
169 
170 /* Hardware revisions */
171 #define RME32_32_REVISION 192
172 #define RME32_328_REVISION_OLD 100
173 #define RME32_328_REVISION_NEW 101
174 #define RME32_PRO_REVISION_WITH_8412 192
175 #define RME32_PRO_REVISION_WITH_8414 150
176 
177 
178 struct rme32 {
179 	spinlock_t lock;
180 	int irq;
181 	unsigned long port;
182 	void __iomem *iobase;
183 
184 	u32 wcreg;		/* cached write control register value */
185 	u32 wcreg_spdif;	/* S/PDIF setup */
186 	u32 wcreg_spdif_stream;	/* S/PDIF setup (temporary) */
187 	u32 rcreg;		/* cached read control register value */
188 
189 	u8 rev;			/* card revision number */
190 
191 	struct snd_pcm_substream *playback_substream;
192 	struct snd_pcm_substream *capture_substream;
193 
194 	int playback_frlog;	/* log2 of framesize */
195 	int capture_frlog;
196 
197 	size_t playback_periodsize;	/* in bytes, zero if not used */
198 	size_t capture_periodsize;	/* in bytes, zero if not used */
199 
200 	unsigned int fullduplex_mode;
201 	int running;
202 
203 	struct snd_pcm_indirect playback_pcm;
204 	struct snd_pcm_indirect capture_pcm;
205 
206 	struct snd_card *card;
207 	struct snd_pcm *spdif_pcm;
208 	struct snd_pcm *adat_pcm;
209 	struct pci_dev *pci;
210 	struct snd_kcontrol *spdif_ctl;
211 };
212 
213 static const struct pci_device_id snd_rme32_ids[] = {
214 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
215 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
216 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
217 	{0,}
218 };
219 
220 MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
221 
222 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
223 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
224 
225 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
226 
227 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
228 
229 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
230 
231 static void snd_rme32_proc_init(struct rme32 * rme32);
232 
233 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
234 
235 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
236 {
237 	return (readl(rme32->iobase + RME32_IO_GET_POS)
238 		& RME32_RCR_AUDIO_ADDR_MASK);
239 }
240 
241 /* silence callback for halfduplex mode */
242 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
243 				      int channel, unsigned long pos,
244 				      unsigned long count)
245 {
246 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
247 
248 	memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
249 	return 0;
250 }
251 
252 /* copy callback for halfduplex mode */
253 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
254 				   int channel, unsigned long pos,
255 				   struct iov_iter *src, unsigned long count)
256 {
257 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
258 
259 	return copy_from_iter_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
260 				   src, count);
261 }
262 
263 /* copy callback for halfduplex mode */
264 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
265 				  int channel, unsigned long pos,
266 				  struct iov_iter *dst, unsigned long count)
267 {
268 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
269 
270 	return copy_to_iter_fromio(dst,
271 				   rme32->iobase + RME32_IO_DATA_BUFFER + pos,
272 				   count);
273 }
274 
275 /*
276  * SPDIF I/O capabilities (half-duplex mode)
277  */
278 static const struct snd_pcm_hardware snd_rme32_spdif_info = {
279 	.info =		(SNDRV_PCM_INFO_MMAP_IOMEM |
280 			 SNDRV_PCM_INFO_MMAP_VALID |
281 			 SNDRV_PCM_INFO_INTERLEAVED |
282 			 SNDRV_PCM_INFO_PAUSE |
283 			 SNDRV_PCM_INFO_SYNC_START |
284 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
285 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
286 			 SNDRV_PCM_FMTBIT_S32_LE),
287 	.rates =	(SNDRV_PCM_RATE_32000 |
288 			 SNDRV_PCM_RATE_44100 |
289 			 SNDRV_PCM_RATE_48000),
290 	.rate_min =	32000,
291 	.rate_max =	48000,
292 	.channels_min =	2,
293 	.channels_max =	2,
294 	.buffer_bytes_max = RME32_BUFFER_SIZE,
295 	.period_bytes_min = RME32_BLOCK_SIZE,
296 	.period_bytes_max = RME32_BLOCK_SIZE,
297 	.periods_min =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
298 	.periods_max =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
299 	.fifo_size =	0,
300 };
301 
302 /*
303  * ADAT I/O capabilities (half-duplex mode)
304  */
305 static const struct snd_pcm_hardware snd_rme32_adat_info =
306 {
307 	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
308 			      SNDRV_PCM_INFO_MMAP_VALID |
309 			      SNDRV_PCM_INFO_INTERLEAVED |
310 			      SNDRV_PCM_INFO_PAUSE |
311 			      SNDRV_PCM_INFO_SYNC_START |
312 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
313 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
314 	.rates =             (SNDRV_PCM_RATE_44100 |
315 			      SNDRV_PCM_RATE_48000),
316 	.rate_min =          44100,
317 	.rate_max =          48000,
318 	.channels_min =      8,
319 	.channels_max =	     8,
320 	.buffer_bytes_max =  RME32_BUFFER_SIZE,
321 	.period_bytes_min =  RME32_BLOCK_SIZE,
322 	.period_bytes_max =  RME32_BLOCK_SIZE,
323 	.periods_min =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
324 	.periods_max =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
325 	.fifo_size =	    0,
326 };
327 
328 /*
329  * SPDIF I/O capabilities (full-duplex mode)
330  */
331 static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
332 	.info =		(SNDRV_PCM_INFO_MMAP |
333 			 SNDRV_PCM_INFO_MMAP_VALID |
334 			 SNDRV_PCM_INFO_INTERLEAVED |
335 			 SNDRV_PCM_INFO_PAUSE |
336 			 SNDRV_PCM_INFO_SYNC_START |
337 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
338 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
339 			 SNDRV_PCM_FMTBIT_S32_LE),
340 	.rates =	(SNDRV_PCM_RATE_32000 |
341 			 SNDRV_PCM_RATE_44100 |
342 			 SNDRV_PCM_RATE_48000),
343 	.rate_min =	32000,
344 	.rate_max =	48000,
345 	.channels_min =	2,
346 	.channels_max =	2,
347 	.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
348 	.period_bytes_min = RME32_BLOCK_SIZE,
349 	.period_bytes_max = RME32_BLOCK_SIZE,
350 	.periods_min =	2,
351 	.periods_max =	RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
352 	.fifo_size =	0,
353 };
354 
355 /*
356  * ADAT I/O capabilities (full-duplex mode)
357  */
358 static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
359 {
360 	.info =		     (SNDRV_PCM_INFO_MMAP |
361 			      SNDRV_PCM_INFO_MMAP_VALID |
362 			      SNDRV_PCM_INFO_INTERLEAVED |
363 			      SNDRV_PCM_INFO_PAUSE |
364 			      SNDRV_PCM_INFO_SYNC_START |
365 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
366 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
367 	.rates =             (SNDRV_PCM_RATE_44100 |
368 			      SNDRV_PCM_RATE_48000),
369 	.rate_min =          44100,
370 	.rate_max =          48000,
371 	.channels_min =      8,
372 	.channels_max =	     8,
373 	.buffer_bytes_max =  RME32_MID_BUFFER_SIZE,
374 	.period_bytes_min =  RME32_BLOCK_SIZE,
375 	.period_bytes_max =  RME32_BLOCK_SIZE,
376 	.periods_min =	    2,
377 	.periods_max =	    RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
378 	.fifo_size =	    0,
379 };
380 
381 static void snd_rme32_reset_dac(struct rme32 *rme32)
382 {
383         writel(rme32->wcreg | RME32_WCR_PD,
384                rme32->iobase + RME32_IO_CONTROL_REGISTER);
385         writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
386 }
387 
388 static int snd_rme32_playback_getrate(struct rme32 * rme32)
389 {
390 	int rate;
391 
392 	rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
393 	       (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
394 	switch (rate) {
395 	case 1:
396 		rate = 32000;
397 		break;
398 	case 2:
399 		rate = 44100;
400 		break;
401 	case 3:
402 		rate = 48000;
403 		break;
404 	default:
405 		return -1;
406 	}
407 	return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
408 }
409 
410 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
411 {
412 	int n;
413 
414 	*is_adat = 0;
415 	if (rme32->rcreg & RME32_RCR_LOCK) {
416                 /* ADAT rate */
417                 *is_adat = 1;
418 	}
419 	if (rme32->rcreg & RME32_RCR_ERF) {
420 		return -1;
421 	}
422 
423         /* S/PDIF rate */
424 	n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
425 		(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
426 		(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
427 
428 	if (RME32_PRO_WITH_8414(rme32))
429 		switch (n) {	/* supporting the CS8414 */
430 		case 0:
431 		case 1:
432 		case 2:
433 			return -1;
434 		case 3:
435 			return 96000;
436 		case 4:
437 			return 88200;
438 		case 5:
439 			return 48000;
440 		case 6:
441 			return 44100;
442 		case 7:
443 			return 32000;
444 		default:
445 			return -1;
446 		}
447 	else
448 		switch (n) {	/* supporting the CS8412 */
449 		case 0:
450 			return -1;
451 		case 1:
452 			return 48000;
453 		case 2:
454 			return 44100;
455 		case 3:
456 			return 32000;
457 		case 4:
458 			return 48000;
459 		case 5:
460 			return 44100;
461 		case 6:
462 			return 44056;
463 		case 7:
464 			return 32000;
465 		default:
466 			break;
467 		}
468 	return -1;
469 }
470 
471 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
472 {
473         int ds;
474 
475         ds = rme32->wcreg & RME32_WCR_DS_BM;
476 	switch (rate) {
477 	case 32000:
478 		rme32->wcreg &= ~RME32_WCR_DS_BM;
479 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
480 			~RME32_WCR_FREQ_1;
481 		break;
482 	case 44100:
483 		rme32->wcreg &= ~RME32_WCR_DS_BM;
484 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
485 			~RME32_WCR_FREQ_0;
486 		break;
487 	case 48000:
488 		rme32->wcreg &= ~RME32_WCR_DS_BM;
489 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
490 			RME32_WCR_FREQ_1;
491 		break;
492 	case 64000:
493 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
494 			return -EINVAL;
495 		rme32->wcreg |= RME32_WCR_DS_BM;
496 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
497 			~RME32_WCR_FREQ_1;
498 		break;
499 	case 88200:
500 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
501 			return -EINVAL;
502 		rme32->wcreg |= RME32_WCR_DS_BM;
503 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
504 			~RME32_WCR_FREQ_0;
505 		break;
506 	case 96000:
507 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
508 			return -EINVAL;
509 		rme32->wcreg |= RME32_WCR_DS_BM;
510 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
511 			RME32_WCR_FREQ_1;
512 		break;
513 	default:
514 		return -EINVAL;
515 	}
516         if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
517             (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
518         {
519                 /* change to/from double-speed: reset the DAC (if available) */
520                 snd_rme32_reset_dac(rme32);
521         } else {
522                 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
523 	}
524 	return 0;
525 }
526 
527 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
528 {
529 	switch (mode) {
530 	case RME32_CLOCKMODE_SLAVE:
531 		/* AutoSync */
532 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
533 			~RME32_WCR_FREQ_1;
534 		break;
535 	case RME32_CLOCKMODE_MASTER_32:
536 		/* Internal 32.0kHz */
537 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
538 			~RME32_WCR_FREQ_1;
539 		break;
540 	case RME32_CLOCKMODE_MASTER_44:
541 		/* Internal 44.1kHz */
542 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
543 			RME32_WCR_FREQ_1;
544 		break;
545 	case RME32_CLOCKMODE_MASTER_48:
546 		/* Internal 48.0kHz */
547 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
548 			RME32_WCR_FREQ_1;
549 		break;
550 	default:
551 		return -EINVAL;
552 	}
553 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
554 	return 0;
555 }
556 
557 static int snd_rme32_getclockmode(struct rme32 * rme32)
558 {
559 	return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
560 	    (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
561 }
562 
563 static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
564 {
565 	switch (type) {
566 	case RME32_INPUT_OPTICAL:
567 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
568 			~RME32_WCR_INP_1;
569 		break;
570 	case RME32_INPUT_COAXIAL:
571 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
572 			~RME32_WCR_INP_1;
573 		break;
574 	case RME32_INPUT_INTERNAL:
575 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
576 			RME32_WCR_INP_1;
577 		break;
578 	case RME32_INPUT_XLR:
579 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
580 			RME32_WCR_INP_1;
581 		break;
582 	default:
583 		return -EINVAL;
584 	}
585 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
586 	return 0;
587 }
588 
589 static int snd_rme32_getinputtype(struct rme32 * rme32)
590 {
591 	return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
592 	    (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
593 }
594 
595 static void
596 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
597 {
598 	int frlog;
599 
600 	if (n_channels == 2) {
601 		frlog = 1;
602 	} else {
603 		/* assume 8 channels */
604 		frlog = 3;
605 	}
606 	if (is_playback) {
607 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
608 		rme32->playback_frlog = frlog;
609 	} else {
610 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
611 		rme32->capture_frlog = frlog;
612 	}
613 }
614 
615 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
616 {
617 	switch (format) {
618 	case SNDRV_PCM_FORMAT_S16_LE:
619 		rme32->wcreg &= ~RME32_WCR_MODE24;
620 		break;
621 	case SNDRV_PCM_FORMAT_S32_LE:
622 		rme32->wcreg |= RME32_WCR_MODE24;
623 		break;
624 	default:
625 		return -EINVAL;
626 	}
627 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
628 	return 0;
629 }
630 
631 static int
632 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
633 			     struct snd_pcm_hw_params *params)
634 {
635 	int err, rate, dummy;
636 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
637 	struct snd_pcm_runtime *runtime = substream->runtime;
638 
639 	if (!rme32->fullduplex_mode) {
640 		runtime->dma_area = (void __force *)(rme32->iobase +
641 						     RME32_IO_DATA_BUFFER);
642 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
643 		runtime->dma_bytes = RME32_BUFFER_SIZE;
644 	}
645 
646 	spin_lock_irq(&rme32->lock);
647 	rate = 0;
648 	if (rme32->rcreg & RME32_RCR_KMODE)
649 		rate = snd_rme32_capture_getrate(rme32, &dummy);
650 	if (rate > 0) {
651 		/* AutoSync */
652 		if ((int)params_rate(params) != rate) {
653 			spin_unlock_irq(&rme32->lock);
654 			return -EIO;
655 		}
656 	} else {
657 		err = snd_rme32_playback_setrate(rme32, params_rate(params));
658 		if (err < 0) {
659 			spin_unlock_irq(&rme32->lock);
660 			return err;
661 		}
662 	}
663 	err = snd_rme32_setformat(rme32, params_format(params));
664 	if (err < 0) {
665 		spin_unlock_irq(&rme32->lock);
666 		return err;
667 	}
668 
669 	snd_rme32_setframelog(rme32, params_channels(params), 1);
670 	if (rme32->capture_periodsize != 0) {
671 		if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
672 			spin_unlock_irq(&rme32->lock);
673 			return -EBUSY;
674 		}
675 	}
676 	rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
677 	/* S/PDIF setup */
678 	if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
679 		rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
680 		rme32->wcreg |= rme32->wcreg_spdif_stream;
681 		writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
682 	}
683 	spin_unlock_irq(&rme32->lock);
684 
685 	return 0;
686 }
687 
688 static int
689 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
690 			    struct snd_pcm_hw_params *params)
691 {
692 	int err, isadat, rate;
693 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
694 	struct snd_pcm_runtime *runtime = substream->runtime;
695 
696 	if (!rme32->fullduplex_mode) {
697 		runtime->dma_area = (void __force *)rme32->iobase +
698 					RME32_IO_DATA_BUFFER;
699 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
700 		runtime->dma_bytes = RME32_BUFFER_SIZE;
701 	}
702 
703 	spin_lock_irq(&rme32->lock);
704 	/* enable AutoSync for record-preparing */
705 	rme32->wcreg |= RME32_WCR_AUTOSYNC;
706 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
707 
708 	err = snd_rme32_setformat(rme32, params_format(params));
709 	if (err < 0) {
710 		spin_unlock_irq(&rme32->lock);
711 		return err;
712 	}
713 	err = snd_rme32_playback_setrate(rme32, params_rate(params));
714 	if (err < 0) {
715 		spin_unlock_irq(&rme32->lock);
716 		return err;
717 	}
718 	rate = snd_rme32_capture_getrate(rme32, &isadat);
719 	if (rate > 0) {
720                 if ((int)params_rate(params) != rate) {
721 			spin_unlock_irq(&rme32->lock);
722                         return -EIO;
723                 }
724                 if ((isadat && runtime->hw.channels_min == 2) ||
725                     (!isadat && runtime->hw.channels_min == 8)) {
726 			spin_unlock_irq(&rme32->lock);
727                         return -EIO;
728                 }
729 	}
730 	/* AutoSync off for recording */
731 	rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
732 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
733 
734 	snd_rme32_setframelog(rme32, params_channels(params), 0);
735 	if (rme32->playback_periodsize != 0) {
736 		if (params_period_size(params) << rme32->capture_frlog !=
737 		    rme32->playback_periodsize) {
738 			spin_unlock_irq(&rme32->lock);
739 			return -EBUSY;
740 		}
741 	}
742 	rme32->capture_periodsize =
743 	    params_period_size(params) << rme32->capture_frlog;
744 	spin_unlock_irq(&rme32->lock);
745 
746 	return 0;
747 }
748 
749 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
750 {
751 	if (!from_pause) {
752 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
753 	}
754 
755 	rme32->wcreg |= RME32_WCR_START;
756 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
757 }
758 
759 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
760 {
761 	/*
762 	 * Check if there is an unconfirmed IRQ, if so confirm it, or else
763 	 * the hardware will not stop generating interrupts
764 	 */
765 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
766 	if (rme32->rcreg & RME32_RCR_IRQ) {
767 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
768 	}
769 	rme32->wcreg &= ~RME32_WCR_START;
770 	if (rme32->wcreg & RME32_WCR_SEL)
771 		rme32->wcreg |= RME32_WCR_MUTE;
772 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
773 	if (! to_pause)
774 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
775 }
776 
777 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
778 {
779 	struct rme32 *rme32 = (struct rme32 *) dev_id;
780 
781 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
782 	if (!(rme32->rcreg & RME32_RCR_IRQ)) {
783 		return IRQ_NONE;
784 	} else {
785 		if (rme32->capture_substream) {
786 			snd_pcm_period_elapsed(rme32->capture_substream);
787 		}
788 		if (rme32->playback_substream) {
789 			snd_pcm_period_elapsed(rme32->playback_substream);
790 		}
791 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
792 	}
793 	return IRQ_HANDLED;
794 }
795 
796 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
797 
798 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
799 	.count = ARRAY_SIZE(period_bytes),
800 	.list = period_bytes,
801 	.mask = 0
802 };
803 
804 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
805 {
806 	if (! rme32->fullduplex_mode) {
807 		snd_pcm_hw_constraint_single(runtime,
808 					     SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
809 					     RME32_BUFFER_SIZE);
810 		snd_pcm_hw_constraint_list(runtime, 0,
811 					   SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
812 					   &hw_constraints_period_bytes);
813 	}
814 }
815 
816 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
817 {
818 	int rate, dummy;
819 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
820 	struct snd_pcm_runtime *runtime = substream->runtime;
821 
822 	snd_pcm_set_sync(substream);
823 
824 	spin_lock_irq(&rme32->lock);
825 	if (rme32->playback_substream != NULL) {
826 		spin_unlock_irq(&rme32->lock);
827 		return -EBUSY;
828 	}
829 	rme32->wcreg &= ~RME32_WCR_ADAT;
830 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
831 	rme32->playback_substream = substream;
832 	spin_unlock_irq(&rme32->lock);
833 
834 	if (rme32->fullduplex_mode)
835 		runtime->hw = snd_rme32_spdif_fd_info;
836 	else
837 		runtime->hw = snd_rme32_spdif_info;
838 	if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
839 		runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
840 		runtime->hw.rate_max = 96000;
841 	}
842 	rate = 0;
843 	if (rme32->rcreg & RME32_RCR_KMODE)
844 		rate = snd_rme32_capture_getrate(rme32, &dummy);
845 	if (rate > 0) {
846 		/* AutoSync */
847 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
848 		runtime->hw.rate_min = rate;
849 		runtime->hw.rate_max = rate;
850 	}
851 
852 	snd_rme32_set_buffer_constraint(rme32, runtime);
853 
854 	rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
855 	rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
856 	snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
857 		       SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
858 	return 0;
859 }
860 
861 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
862 {
863 	int isadat, rate;
864 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
865 	struct snd_pcm_runtime *runtime = substream->runtime;
866 
867 	snd_pcm_set_sync(substream);
868 
869 	spin_lock_irq(&rme32->lock);
870         if (rme32->capture_substream != NULL) {
871 		spin_unlock_irq(&rme32->lock);
872                 return -EBUSY;
873         }
874 	rme32->capture_substream = substream;
875 	spin_unlock_irq(&rme32->lock);
876 
877 	if (rme32->fullduplex_mode)
878 		runtime->hw = snd_rme32_spdif_fd_info;
879 	else
880 		runtime->hw = snd_rme32_spdif_info;
881 	if (RME32_PRO_WITH_8414(rme32)) {
882 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
883 		runtime->hw.rate_max = 96000;
884 	}
885 	rate = snd_rme32_capture_getrate(rme32, &isadat);
886 	if (rate > 0) {
887 		if (isadat) {
888 			return -EIO;
889 		}
890 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
891 		runtime->hw.rate_min = rate;
892 		runtime->hw.rate_max = rate;
893 	}
894 
895 	snd_rme32_set_buffer_constraint(rme32, runtime);
896 
897 	return 0;
898 }
899 
900 static int
901 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
902 {
903 	int rate, dummy;
904 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
905 	struct snd_pcm_runtime *runtime = substream->runtime;
906 
907 	snd_pcm_set_sync(substream);
908 
909 	spin_lock_irq(&rme32->lock);
910         if (rme32->playback_substream != NULL) {
911 		spin_unlock_irq(&rme32->lock);
912                 return -EBUSY;
913         }
914 	rme32->wcreg |= RME32_WCR_ADAT;
915 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
916 	rme32->playback_substream = substream;
917 	spin_unlock_irq(&rme32->lock);
918 
919 	if (rme32->fullduplex_mode)
920 		runtime->hw = snd_rme32_adat_fd_info;
921 	else
922 		runtime->hw = snd_rme32_adat_info;
923 	rate = 0;
924 	if (rme32->rcreg & RME32_RCR_KMODE)
925 		rate = snd_rme32_capture_getrate(rme32, &dummy);
926 	if (rate > 0) {
927                 /* AutoSync */
928                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
929                 runtime->hw.rate_min = rate;
930                 runtime->hw.rate_max = rate;
931 	}
932 
933 	snd_rme32_set_buffer_constraint(rme32, runtime);
934 	return 0;
935 }
936 
937 static int
938 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
939 {
940 	int isadat, rate;
941 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
942 	struct snd_pcm_runtime *runtime = substream->runtime;
943 
944 	if (rme32->fullduplex_mode)
945 		runtime->hw = snd_rme32_adat_fd_info;
946 	else
947 		runtime->hw = snd_rme32_adat_info;
948 	rate = snd_rme32_capture_getrate(rme32, &isadat);
949 	if (rate > 0) {
950 		if (!isadat) {
951 			return -EIO;
952 		}
953                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
954                 runtime->hw.rate_min = rate;
955                 runtime->hw.rate_max = rate;
956         }
957 
958 	snd_pcm_set_sync(substream);
959 
960 	spin_lock_irq(&rme32->lock);
961 	if (rme32->capture_substream != NULL) {
962 		spin_unlock_irq(&rme32->lock);
963 		return -EBUSY;
964         }
965 	rme32->capture_substream = substream;
966 	spin_unlock_irq(&rme32->lock);
967 
968 	snd_rme32_set_buffer_constraint(rme32, runtime);
969 	return 0;
970 }
971 
972 static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
973 {
974 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
975 	int spdif = 0;
976 
977 	spin_lock_irq(&rme32->lock);
978 	rme32->playback_substream = NULL;
979 	rme32->playback_periodsize = 0;
980 	spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
981 	spin_unlock_irq(&rme32->lock);
982 	if (spdif) {
983 		rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
984 		snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
985 			       SNDRV_CTL_EVENT_MASK_INFO,
986 			       &rme32->spdif_ctl->id);
987 	}
988 	return 0;
989 }
990 
991 static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
992 {
993 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
994 
995 	spin_lock_irq(&rme32->lock);
996 	rme32->capture_substream = NULL;
997 	rme32->capture_periodsize = 0;
998 	spin_unlock_irq(&rme32->lock);
999 	return 0;
1000 }
1001 
1002 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
1003 {
1004 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1005 
1006 	spin_lock_irq(&rme32->lock);
1007 	if (rme32->fullduplex_mode) {
1008 		memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
1009 		rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1010 		rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1011 	} else {
1012 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1013 	}
1014 	if (rme32->wcreg & RME32_WCR_SEL)
1015 		rme32->wcreg &= ~RME32_WCR_MUTE;
1016 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1017 	spin_unlock_irq(&rme32->lock);
1018 	return 0;
1019 }
1020 
1021 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
1022 {
1023 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1024 
1025 	spin_lock_irq(&rme32->lock);
1026 	if (rme32->fullduplex_mode) {
1027 		memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1028 		rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1029 		rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1030 		rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1031 	} else {
1032 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1033 	}
1034 	spin_unlock_irq(&rme32->lock);
1035 	return 0;
1036 }
1037 
1038 static int
1039 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1040 {
1041 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1042 	struct snd_pcm_substream *s;
1043 
1044 	spin_lock(&rme32->lock);
1045 	snd_pcm_group_for_each_entry(s, substream) {
1046 		if (s != rme32->playback_substream &&
1047 		    s != rme32->capture_substream)
1048 			continue;
1049 		switch (cmd) {
1050 		case SNDRV_PCM_TRIGGER_START:
1051 			rme32->running |= (1 << s->stream);
1052 			if (rme32->fullduplex_mode) {
1053 				/* remember the current DMA position */
1054 				if (s == rme32->playback_substream) {
1055 					rme32->playback_pcm.hw_io =
1056 					rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1057 				} else {
1058 					rme32->capture_pcm.hw_io =
1059 					rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1060 				}
1061 			}
1062 			break;
1063 		case SNDRV_PCM_TRIGGER_STOP:
1064 			rme32->running &= ~(1 << s->stream);
1065 			break;
1066 		}
1067 		snd_pcm_trigger_done(s, substream);
1068 	}
1069 
1070 	switch (cmd) {
1071 	case SNDRV_PCM_TRIGGER_START:
1072 		if (rme32->running && ! RME32_ISWORKING(rme32))
1073 			snd_rme32_pcm_start(rme32, 0);
1074 		break;
1075 	case SNDRV_PCM_TRIGGER_STOP:
1076 		if (! rme32->running && RME32_ISWORKING(rme32))
1077 			snd_rme32_pcm_stop(rme32, 0);
1078 		break;
1079 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1080 		if (rme32->running && RME32_ISWORKING(rme32))
1081 			snd_rme32_pcm_stop(rme32, 1);
1082 		break;
1083 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1084 		if (rme32->running && ! RME32_ISWORKING(rme32))
1085 			snd_rme32_pcm_start(rme32, 1);
1086 		break;
1087 	}
1088 	spin_unlock(&rme32->lock);
1089 	return 0;
1090 }
1091 
1092 /* pointer callback for halfduplex mode */
1093 static snd_pcm_uframes_t
1094 snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1095 {
1096 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1097 	return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1098 }
1099 
1100 static snd_pcm_uframes_t
1101 snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1102 {
1103 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1104 	return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1105 }
1106 
1107 
1108 /* ack and pointer callbacks for fullduplex mode */
1109 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1110 				    struct snd_pcm_indirect *rec, size_t bytes)
1111 {
1112 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1113 	memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1114 		    substream->runtime->dma_area + rec->sw_data, bytes);
1115 }
1116 
1117 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1118 {
1119 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1120 	struct snd_pcm_indirect *rec, *cprec;
1121 
1122 	rec = &rme32->playback_pcm;
1123 	cprec = &rme32->capture_pcm;
1124 	spin_lock(&rme32->lock);
1125 	rec->hw_queue_size = RME32_BUFFER_SIZE;
1126 	if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1127 		rec->hw_queue_size -= cprec->hw_ready;
1128 	spin_unlock(&rme32->lock);
1129 	return snd_pcm_indirect_playback_transfer(substream, rec,
1130 						  snd_rme32_pb_trans_copy);
1131 }
1132 
1133 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1134 				    struct snd_pcm_indirect *rec, size_t bytes)
1135 {
1136 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1137 	memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1138 		      rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1139 		      bytes);
1140 }
1141 
1142 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1143 {
1144 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1145 	return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1146 						 snd_rme32_cp_trans_copy);
1147 }
1148 
1149 static snd_pcm_uframes_t
1150 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1151 {
1152 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1153 	return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1154 						 snd_rme32_pcm_byteptr(rme32));
1155 }
1156 
1157 static snd_pcm_uframes_t
1158 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1159 {
1160 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1161 	return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1162 						snd_rme32_pcm_byteptr(rme32));
1163 }
1164 
1165 /* for halfduplex mode */
1166 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1167 	.open =		snd_rme32_playback_spdif_open,
1168 	.close =	snd_rme32_playback_close,
1169 	.hw_params =	snd_rme32_playback_hw_params,
1170 	.prepare =	snd_rme32_playback_prepare,
1171 	.trigger =	snd_rme32_pcm_trigger,
1172 	.pointer =	snd_rme32_playback_pointer,
1173 	.copy =		snd_rme32_playback_copy,
1174 	.fill_silence =	snd_rme32_playback_silence,
1175 	.mmap =		snd_pcm_lib_mmap_iomem,
1176 };
1177 
1178 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1179 	.open =		snd_rme32_capture_spdif_open,
1180 	.close =	snd_rme32_capture_close,
1181 	.hw_params =	snd_rme32_capture_hw_params,
1182 	.prepare =	snd_rme32_capture_prepare,
1183 	.trigger =	snd_rme32_pcm_trigger,
1184 	.pointer =	snd_rme32_capture_pointer,
1185 	.copy =		snd_rme32_capture_copy,
1186 	.mmap =		snd_pcm_lib_mmap_iomem,
1187 };
1188 
1189 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1190 	.open =		snd_rme32_playback_adat_open,
1191 	.close =	snd_rme32_playback_close,
1192 	.hw_params =	snd_rme32_playback_hw_params,
1193 	.prepare =	snd_rme32_playback_prepare,
1194 	.trigger =	snd_rme32_pcm_trigger,
1195 	.pointer =	snd_rme32_playback_pointer,
1196 	.copy =		snd_rme32_playback_copy,
1197 	.fill_silence =	snd_rme32_playback_silence,
1198 	.mmap =		snd_pcm_lib_mmap_iomem,
1199 };
1200 
1201 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1202 	.open =		snd_rme32_capture_adat_open,
1203 	.close =	snd_rme32_capture_close,
1204 	.hw_params =	snd_rme32_capture_hw_params,
1205 	.prepare =	snd_rme32_capture_prepare,
1206 	.trigger =	snd_rme32_pcm_trigger,
1207 	.pointer =	snd_rme32_capture_pointer,
1208 	.copy =		snd_rme32_capture_copy,
1209 	.mmap =		snd_pcm_lib_mmap_iomem,
1210 };
1211 
1212 /* for fullduplex mode */
1213 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1214 	.open =		snd_rme32_playback_spdif_open,
1215 	.close =	snd_rme32_playback_close,
1216 	.hw_params =	snd_rme32_playback_hw_params,
1217 	.prepare =	snd_rme32_playback_prepare,
1218 	.trigger =	snd_rme32_pcm_trigger,
1219 	.pointer =	snd_rme32_playback_fd_pointer,
1220 	.ack =		snd_rme32_playback_fd_ack,
1221 };
1222 
1223 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1224 	.open =		snd_rme32_capture_spdif_open,
1225 	.close =	snd_rme32_capture_close,
1226 	.hw_params =	snd_rme32_capture_hw_params,
1227 	.prepare =	snd_rme32_capture_prepare,
1228 	.trigger =	snd_rme32_pcm_trigger,
1229 	.pointer =	snd_rme32_capture_fd_pointer,
1230 	.ack =		snd_rme32_capture_fd_ack,
1231 };
1232 
1233 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1234 	.open =		snd_rme32_playback_adat_open,
1235 	.close =	snd_rme32_playback_close,
1236 	.hw_params =	snd_rme32_playback_hw_params,
1237 	.prepare =	snd_rme32_playback_prepare,
1238 	.trigger =	snd_rme32_pcm_trigger,
1239 	.pointer =	snd_rme32_playback_fd_pointer,
1240 	.ack =		snd_rme32_playback_fd_ack,
1241 };
1242 
1243 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1244 	.open =		snd_rme32_capture_adat_open,
1245 	.close =	snd_rme32_capture_close,
1246 	.hw_params =	snd_rme32_capture_hw_params,
1247 	.prepare =	snd_rme32_capture_prepare,
1248 	.trigger =	snd_rme32_pcm_trigger,
1249 	.pointer =	snd_rme32_capture_fd_pointer,
1250 	.ack =		snd_rme32_capture_fd_ack,
1251 };
1252 
1253 static void snd_rme32_free(struct rme32 *rme32)
1254 {
1255 	if (rme32->irq >= 0)
1256 		snd_rme32_pcm_stop(rme32, 0);
1257 }
1258 
1259 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1260 {
1261 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1262 	rme32->spdif_pcm = NULL;
1263 }
1264 
1265 static void
1266 snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1267 {
1268 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1269 	rme32->adat_pcm = NULL;
1270 }
1271 
1272 static int snd_rme32_create(struct rme32 *rme32)
1273 {
1274 	struct pci_dev *pci = rme32->pci;
1275 	int err;
1276 
1277 	rme32->irq = -1;
1278 	spin_lock_init(&rme32->lock);
1279 
1280 	err = pcim_enable_device(pci);
1281 	if (err < 0)
1282 		return err;
1283 
1284 	err = pci_request_regions(pci, "RME32");
1285 	if (err < 0)
1286 		return err;
1287 	rme32->port = pci_resource_start(rme32->pci, 0);
1288 
1289 	rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
1290 	if (!rme32->iobase) {
1291 		dev_err(rme32->card->dev,
1292 			"unable to remap memory region 0x%lx-0x%lx\n",
1293 			rme32->port, rme32->port + RME32_IO_SIZE - 1);
1294 		return -ENOMEM;
1295 	}
1296 
1297 	if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
1298 			     IRQF_SHARED, KBUILD_MODNAME, rme32)) {
1299 		dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1300 		return -EBUSY;
1301 	}
1302 	rme32->irq = pci->irq;
1303 	rme32->card->sync_irq = rme32->irq;
1304 
1305 	/* read the card's revision number */
1306 	pci_read_config_byte(pci, 8, &rme32->rev);
1307 
1308 	/* set up ALSA pcm device for S/PDIF */
1309 	err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
1310 	if (err < 0)
1311 		return err;
1312 	rme32->spdif_pcm->private_data = rme32;
1313 	rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1314 	strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1315 	if (rme32->fullduplex_mode) {
1316 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1317 				&snd_rme32_playback_spdif_fd_ops);
1318 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1319 				&snd_rme32_capture_spdif_fd_ops);
1320 		snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1321 					       NULL, 0, RME32_MID_BUFFER_SIZE);
1322 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1323 	} else {
1324 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1325 				&snd_rme32_playback_spdif_ops);
1326 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1327 				&snd_rme32_capture_spdif_ops);
1328 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1329 	}
1330 
1331 	/* set up ALSA pcm device for ADAT */
1332 	if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1333 	    (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1334 		/* ADAT is not available on DIGI32 and DIGI32 Pro */
1335 		rme32->adat_pcm = NULL;
1336 	}
1337 	else {
1338 		err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1339 				  1, 1, &rme32->adat_pcm);
1340 		if (err < 0)
1341 			return err;
1342 		rme32->adat_pcm->private_data = rme32;
1343 		rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1344 		strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
1345 		if (rme32->fullduplex_mode) {
1346 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1347 					&snd_rme32_playback_adat_fd_ops);
1348 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1349 					&snd_rme32_capture_adat_fd_ops);
1350 			snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1351 						       NULL,
1352 						       0, RME32_MID_BUFFER_SIZE);
1353 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1354 		} else {
1355 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1356 					&snd_rme32_playback_adat_ops);
1357 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1358 					&snd_rme32_capture_adat_ops);
1359 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1360 		}
1361 	}
1362 
1363 
1364 	rme32->playback_periodsize = 0;
1365 	rme32->capture_periodsize = 0;
1366 
1367 	/* make sure playback/capture is stopped, if by some reason active */
1368 	snd_rme32_pcm_stop(rme32, 0);
1369 
1370         /* reset DAC */
1371         snd_rme32_reset_dac(rme32);
1372 
1373 	/* reset buffer pointer */
1374 	writel(0, rme32->iobase + RME32_IO_RESET_POS);
1375 
1376 	/* set default values in registers */
1377 	rme32->wcreg = RME32_WCR_SEL |	 /* normal playback */
1378 		RME32_WCR_INP_0 | /* input select */
1379 		RME32_WCR_MUTE;	 /* muting on */
1380 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1381 
1382 
1383 	/* init switch interface */
1384 	err = snd_rme32_create_switches(rme32->card, rme32);
1385 	if (err < 0)
1386 		return err;
1387 
1388 	/* init proc interface */
1389 	snd_rme32_proc_init(rme32);
1390 
1391 	rme32->capture_substream = NULL;
1392 	rme32->playback_substream = NULL;
1393 
1394 	return 0;
1395 }
1396 
1397 /*
1398  * proc interface
1399  */
1400 
1401 static void
1402 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1403 {
1404 	int n;
1405 	struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1406 
1407 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1408 
1409 	snd_iprintf(buffer, rme32->card->longname);
1410 	snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1411 
1412 	snd_iprintf(buffer, "\nGeneral settings\n");
1413 	if (rme32->fullduplex_mode)
1414 		snd_iprintf(buffer, "  Full-duplex mode\n");
1415 	else
1416 		snd_iprintf(buffer, "  Half-duplex mode\n");
1417 	if (RME32_PRO_WITH_8414(rme32)) {
1418 		snd_iprintf(buffer, "  receiver: CS8414\n");
1419 	} else {
1420 		snd_iprintf(buffer, "  receiver: CS8412\n");
1421 	}
1422 	if (rme32->wcreg & RME32_WCR_MODE24) {
1423 		snd_iprintf(buffer, "  format: 24 bit");
1424 	} else {
1425 		snd_iprintf(buffer, "  format: 16 bit");
1426 	}
1427 	if (rme32->wcreg & RME32_WCR_MONO) {
1428 		snd_iprintf(buffer, ", Mono\n");
1429 	} else {
1430 		snd_iprintf(buffer, ", Stereo\n");
1431 	}
1432 
1433 	snd_iprintf(buffer, "\nInput settings\n");
1434 	switch (snd_rme32_getinputtype(rme32)) {
1435 	case RME32_INPUT_OPTICAL:
1436 		snd_iprintf(buffer, "  input: optical");
1437 		break;
1438 	case RME32_INPUT_COAXIAL:
1439 		snd_iprintf(buffer, "  input: coaxial");
1440 		break;
1441 	case RME32_INPUT_INTERNAL:
1442 		snd_iprintf(buffer, "  input: internal");
1443 		break;
1444 	case RME32_INPUT_XLR:
1445 		snd_iprintf(buffer, "  input: XLR");
1446 		break;
1447 	}
1448 	if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1449 		snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
1450 	} else {
1451 		if (n) {
1452 			snd_iprintf(buffer, " (8 channels)\n");
1453 		} else {
1454 			snd_iprintf(buffer, " (2 channels)\n");
1455 		}
1456 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1457 			    snd_rme32_capture_getrate(rme32, &n));
1458 	}
1459 
1460 	snd_iprintf(buffer, "\nOutput settings\n");
1461 	if (rme32->wcreg & RME32_WCR_SEL) {
1462 		snd_iprintf(buffer, "  output signal: normal playback");
1463 	} else {
1464 		snd_iprintf(buffer, "  output signal: same as input");
1465 	}
1466 	if (rme32->wcreg & RME32_WCR_MUTE) {
1467 		snd_iprintf(buffer, " (muted)\n");
1468 	} else {
1469 		snd_iprintf(buffer, "\n");
1470 	}
1471 
1472 	/* master output frequency */
1473 	if (!
1474 	    ((!(rme32->wcreg & RME32_WCR_FREQ_0))
1475 	     && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1476 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1477 			    snd_rme32_playback_getrate(rme32));
1478 	}
1479 	if (rme32->rcreg & RME32_RCR_KMODE) {
1480 		snd_iprintf(buffer, "  sample clock source: AutoSync\n");
1481 	} else {
1482 		snd_iprintf(buffer, "  sample clock source: Internal\n");
1483 	}
1484 	if (rme32->wcreg & RME32_WCR_PRO) {
1485 		snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
1486 	} else {
1487 		snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
1488 	}
1489 	if (rme32->wcreg & RME32_WCR_EMP) {
1490 		snd_iprintf(buffer, "  emphasis: on\n");
1491 	} else {
1492 		snd_iprintf(buffer, "  emphasis: off\n");
1493 	}
1494 }
1495 
1496 static void snd_rme32_proc_init(struct rme32 *rme32)
1497 {
1498 	snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
1499 }
1500 
1501 /*
1502  * control interface
1503  */
1504 
1505 #define snd_rme32_info_loopback_control		snd_ctl_boolean_mono_info
1506 
1507 static int
1508 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1509 			       struct snd_ctl_elem_value *ucontrol)
1510 {
1511 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1512 
1513 	spin_lock_irq(&rme32->lock);
1514 	ucontrol->value.integer.value[0] =
1515 	    rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1516 	spin_unlock_irq(&rme32->lock);
1517 	return 0;
1518 }
1519 static int
1520 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1521 			       struct snd_ctl_elem_value *ucontrol)
1522 {
1523 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1524 	unsigned int val;
1525 	int change;
1526 
1527 	val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1528 	spin_lock_irq(&rme32->lock);
1529 	val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1530 	change = val != rme32->wcreg;
1531 	if (ucontrol->value.integer.value[0])
1532 		val &= ~RME32_WCR_MUTE;
1533 	else
1534 		val |= RME32_WCR_MUTE;
1535 	rme32->wcreg = val;
1536 	writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1537 	spin_unlock_irq(&rme32->lock);
1538 	return change;
1539 }
1540 
1541 static int
1542 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1543 				 struct snd_ctl_elem_info *uinfo)
1544 {
1545 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1546 	static const char * const texts[4] = {
1547 		"Optical", "Coaxial", "Internal", "XLR"
1548 	};
1549 	int num_items;
1550 
1551 	switch (rme32->pci->device) {
1552 	case PCI_DEVICE_ID_RME_DIGI32:
1553 	case PCI_DEVICE_ID_RME_DIGI32_8:
1554 		num_items = 3;
1555 		break;
1556 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1557 		num_items = 4;
1558 		break;
1559 	default:
1560 		snd_BUG();
1561 		return -EINVAL;
1562 	}
1563 	return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1564 }
1565 static int
1566 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1567 				struct snd_ctl_elem_value *ucontrol)
1568 {
1569 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1570 	unsigned int items = 3;
1571 
1572 	spin_lock_irq(&rme32->lock);
1573 	ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1574 
1575 	switch (rme32->pci->device) {
1576 	case PCI_DEVICE_ID_RME_DIGI32:
1577 	case PCI_DEVICE_ID_RME_DIGI32_8:
1578 		items = 3;
1579 		break;
1580 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1581 		items = 4;
1582 		break;
1583 	default:
1584 		snd_BUG();
1585 		break;
1586 	}
1587 	if (ucontrol->value.enumerated.item[0] >= items) {
1588 		ucontrol->value.enumerated.item[0] = items - 1;
1589 	}
1590 
1591 	spin_unlock_irq(&rme32->lock);
1592 	return 0;
1593 }
1594 static int
1595 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1596 				struct snd_ctl_elem_value *ucontrol)
1597 {
1598 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1599 	unsigned int val;
1600 	int change, items = 3;
1601 
1602 	switch (rme32->pci->device) {
1603 	case PCI_DEVICE_ID_RME_DIGI32:
1604 	case PCI_DEVICE_ID_RME_DIGI32_8:
1605 		items = 3;
1606 		break;
1607 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1608 		items = 4;
1609 		break;
1610 	default:
1611 		snd_BUG();
1612 		break;
1613 	}
1614 	val = ucontrol->value.enumerated.item[0] % items;
1615 
1616 	spin_lock_irq(&rme32->lock);
1617 	change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1618 	snd_rme32_setinputtype(rme32, val);
1619 	spin_unlock_irq(&rme32->lock);
1620 	return change;
1621 }
1622 
1623 static int
1624 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1625 				 struct snd_ctl_elem_info *uinfo)
1626 {
1627 	static const char * const texts[4] = { "AutoSync",
1628 				  "Internal 32.0kHz",
1629 				  "Internal 44.1kHz",
1630 				  "Internal 48.0kHz" };
1631 
1632 	return snd_ctl_enum_info(uinfo, 1, 4, texts);
1633 }
1634 static int
1635 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1636 				struct snd_ctl_elem_value *ucontrol)
1637 {
1638 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1639 
1640 	spin_lock_irq(&rme32->lock);
1641 	ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1642 	spin_unlock_irq(&rme32->lock);
1643 	return 0;
1644 }
1645 static int
1646 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1647 				struct snd_ctl_elem_value *ucontrol)
1648 {
1649 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1650 	unsigned int val;
1651 	int change;
1652 
1653 	val = ucontrol->value.enumerated.item[0] % 3;
1654 	spin_lock_irq(&rme32->lock);
1655 	change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1656 	snd_rme32_setclockmode(rme32, val);
1657 	spin_unlock_irq(&rme32->lock);
1658 	return change;
1659 }
1660 
1661 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1662 {
1663 	u32 val = 0;
1664 	val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1665 	if (val & RME32_WCR_PRO)
1666 		val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1667 	else
1668 		val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1669 	return val;
1670 }
1671 
1672 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1673 {
1674 	aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1675 	if (val & RME32_WCR_PRO)
1676 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1677 	else
1678 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1679 }
1680 
1681 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1682 					struct snd_ctl_elem_info *uinfo)
1683 {
1684 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1685 	uinfo->count = 1;
1686 	return 0;
1687 }
1688 
1689 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1690 				       struct snd_ctl_elem_value *ucontrol)
1691 {
1692 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1693 
1694 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1695 				 rme32->wcreg_spdif);
1696 	return 0;
1697 }
1698 
1699 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1700 				       struct snd_ctl_elem_value *ucontrol)
1701 {
1702 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1703 	int change;
1704 	u32 val;
1705 
1706 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1707 	spin_lock_irq(&rme32->lock);
1708 	change = val != rme32->wcreg_spdif;
1709 	rme32->wcreg_spdif = val;
1710 	spin_unlock_irq(&rme32->lock);
1711 	return change;
1712 }
1713 
1714 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1715 					       struct snd_ctl_elem_info *uinfo)
1716 {
1717 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1718 	uinfo->count = 1;
1719 	return 0;
1720 }
1721 
1722 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1723 					      struct snd_ctl_elem_value *
1724 					      ucontrol)
1725 {
1726 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1727 
1728 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1729 				 rme32->wcreg_spdif_stream);
1730 	return 0;
1731 }
1732 
1733 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1734 					      struct snd_ctl_elem_value *
1735 					      ucontrol)
1736 {
1737 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1738 	int change;
1739 	u32 val;
1740 
1741 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1742 	spin_lock_irq(&rme32->lock);
1743 	change = val != rme32->wcreg_spdif_stream;
1744 	rme32->wcreg_spdif_stream = val;
1745 	rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1746 	rme32->wcreg |= val;
1747 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1748 	spin_unlock_irq(&rme32->lock);
1749 	return change;
1750 }
1751 
1752 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1753 					     struct snd_ctl_elem_info *uinfo)
1754 {
1755 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1756 	uinfo->count = 1;
1757 	return 0;
1758 }
1759 
1760 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1761 					    struct snd_ctl_elem_value *
1762 					    ucontrol)
1763 {
1764 	ucontrol->value.iec958.status[0] = kcontrol->private_value;
1765 	return 0;
1766 }
1767 
1768 static const struct snd_kcontrol_new snd_rme32_controls[] = {
1769 	{
1770 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1771 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1772 		.info =	snd_rme32_control_spdif_info,
1773 		.get =	snd_rme32_control_spdif_get,
1774 		.put =	snd_rme32_control_spdif_put
1775 	},
1776 	{
1777 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1778 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1779 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1780 		.info =	snd_rme32_control_spdif_stream_info,
1781 		.get =	snd_rme32_control_spdif_stream_get,
1782 		.put =	snd_rme32_control_spdif_stream_put
1783 	},
1784 	{
1785 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1786 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1787 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1788 		.info =	snd_rme32_control_spdif_mask_info,
1789 		.get =	snd_rme32_control_spdif_mask_get,
1790 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1791 	},
1792 	{
1793 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1794 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1795 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1796 		.info =	snd_rme32_control_spdif_mask_info,
1797 		.get =	snd_rme32_control_spdif_mask_get,
1798 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1799 	},
1800 	{
1801 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1802 		.name =	"Input Connector",
1803 		.info =	snd_rme32_info_inputtype_control,
1804 		.get =	snd_rme32_get_inputtype_control,
1805 		.put =	snd_rme32_put_inputtype_control
1806 	},
1807 	{
1808 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1809 		.name =	"Loopback Input",
1810 		.info =	snd_rme32_info_loopback_control,
1811 		.get =	snd_rme32_get_loopback_control,
1812 		.put =	snd_rme32_put_loopback_control
1813 	},
1814 	{
1815 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1816 		.name =	"Sample Clock Source",
1817 		.info =	snd_rme32_info_clockmode_control,
1818 		.get =	snd_rme32_get_clockmode_control,
1819 		.put =	snd_rme32_put_clockmode_control
1820 	}
1821 };
1822 
1823 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1824 {
1825 	int idx, err;
1826 	struct snd_kcontrol *kctl;
1827 
1828 	for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1829 		kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
1830 		err = snd_ctl_add(card, kctl);
1831 		if (err < 0)
1832 			return err;
1833 		if (idx == 1)	/* IEC958 (S/PDIF) Stream */
1834 			rme32->spdif_ctl = kctl;
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 /*
1841  * Card initialisation
1842  */
1843 
1844 static void snd_rme32_card_free(struct snd_card *card)
1845 {
1846 	snd_rme32_free(card->private_data);
1847 }
1848 
1849 static int
1850 __snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1851 {
1852 	static int dev;
1853 	struct rme32 *rme32;
1854 	struct snd_card *card;
1855 	int err;
1856 
1857 	if (dev >= SNDRV_CARDS) {
1858 		return -ENODEV;
1859 	}
1860 	if (!enable[dev]) {
1861 		dev++;
1862 		return -ENOENT;
1863 	}
1864 
1865 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1866 				sizeof(*rme32), &card);
1867 	if (err < 0)
1868 		return err;
1869 	card->private_free = snd_rme32_card_free;
1870 	rme32 = (struct rme32 *) card->private_data;
1871 	rme32->card = card;
1872 	rme32->pci = pci;
1873         if (fullduplex[dev])
1874 		rme32->fullduplex_mode = 1;
1875 	err = snd_rme32_create(rme32);
1876 	if (err < 0)
1877 		return err;
1878 
1879 	strcpy(card->driver, "Digi32");
1880 	switch (rme32->pci->device) {
1881 	case PCI_DEVICE_ID_RME_DIGI32:
1882 		strcpy(card->shortname, "RME Digi32");
1883 		break;
1884 	case PCI_DEVICE_ID_RME_DIGI32_8:
1885 		strcpy(card->shortname, "RME Digi32/8");
1886 		break;
1887 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1888 		strcpy(card->shortname, "RME Digi32 PRO");
1889 		break;
1890 	}
1891 	sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1892 		card->shortname, rme32->rev, rme32->port, rme32->irq);
1893 
1894 	err = snd_card_register(card);
1895 	if (err < 0)
1896 		return err;
1897 	pci_set_drvdata(pci, card);
1898 	dev++;
1899 	return 0;
1900 }
1901 
1902 static int
1903 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1904 {
1905 	return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
1906 }
1907 
1908 static struct pci_driver rme32_driver = {
1909 	.name =		KBUILD_MODNAME,
1910 	.id_table =	snd_rme32_ids,
1911 	.probe =	snd_rme32_probe,
1912 };
1913 
1914 module_pci_driver(rme32_driver);
1915