1 /* 2 * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces 3 * 4 * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>, 5 * Pilo Chambert <pilo.c@wanadoo.fr> 6 * 7 * Thanks to : Anders Torger <torger@ludd.luth.se>, 8 * Henk Hesselink <henk@anda.nl> 9 * for writing the digi96-driver 10 * and RME for all informations. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * **************************************************************************** 28 * 29 * Note #1 "Sek'd models" ................................... martin 2002-12-07 30 * 31 * Identical soundcards by Sek'd were labeled: 32 * RME Digi 32 = Sek'd Prodif 32 33 * RME Digi 32 Pro = Sek'd Prodif 96 34 * RME Digi 32/8 = Sek'd Prodif Gold 35 * 36 * **************************************************************************** 37 * 38 * Note #2 "full duplex mode" ............................... martin 2002-12-07 39 * 40 * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical 41 * in this mode. Rec data and play data are using the same buffer therefore. At 42 * first you have got the playing bits in the buffer and then (after playing 43 * them) they were overwitten by the captured sound of the CS8412/14. Both 44 * modes (play/record) are running harmonically hand in hand in the same buffer 45 * and you have only one start bit plus one interrupt bit to control this 46 * paired action. 47 * This is opposite to the latter rme96 where playing and capturing is totally 48 * separated and so their full duplex mode is supported by alsa (using two 49 * start bits and two interrupts for two different buffers). 50 * But due to the wrong sequence of playing and capturing ALSA shows no solved 51 * full duplex support for the rme32 at the moment. That's bad, but I'm not 52 * able to solve it. Are you motivated enough to solve this problem now? Your 53 * patch would be welcome! 54 * 55 * **************************************************************************** 56 * 57 * "The story after the long seeking" -- tiwai 58 * 59 * Ok, the situation regarding the full duplex is now improved a bit. 60 * In the fullduplex mode (given by the module parameter), the hardware buffer 61 * is split to halves for read and write directions at the DMA pointer. 62 * That is, the half above the current DMA pointer is used for write, and 63 * the half below is used for read. To mangle this strange behavior, an 64 * software intermediate buffer is introduced. This is, of course, not good 65 * from the viewpoint of the data transfer efficiency. However, this allows 66 * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size. 67 * 68 * **************************************************************************** 69 */ 70 71 72 #include <linux/delay.h> 73 #include <linux/gfp.h> 74 #include <linux/init.h> 75 #include <linux/interrupt.h> 76 #include <linux/pci.h> 77 #include <linux/module.h> 78 #include <linux/io.h> 79 80 #include <sound/core.h> 81 #include <sound/info.h> 82 #include <sound/control.h> 83 #include <sound/pcm.h> 84 #include <sound/pcm_params.h> 85 #include <sound/pcm-indirect.h> 86 #include <sound/asoundef.h> 87 #include <sound/initval.h> 88 89 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 90 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 91 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 92 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1}; 93 94 module_param_array(index, int, NULL, 0444); 95 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard."); 96 module_param_array(id, charp, NULL, 0444); 97 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard."); 98 module_param_array(enable, bool, NULL, 0444); 99 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard."); 100 module_param_array(fullduplex, bool, NULL, 0444); 101 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode."); 102 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>"); 103 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO"); 104 MODULE_LICENSE("GPL"); 105 MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}"); 106 107 /* Defines for RME Digi32 series */ 108 #define RME32_SPDIF_NCHANNELS 2 109 110 /* Playback and capture buffer size */ 111 #define RME32_BUFFER_SIZE 0x20000 112 113 /* IO area size */ 114 #define RME32_IO_SIZE 0x30000 115 116 /* IO area offsets */ 117 #define RME32_IO_DATA_BUFFER 0x0 118 #define RME32_IO_CONTROL_REGISTER 0x20000 119 #define RME32_IO_GET_POS 0x20000 120 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004 121 #define RME32_IO_RESET_POS 0x20100 122 123 /* Write control register bits */ 124 #define RME32_WCR_START (1 << 0) /* startbit */ 125 #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono 126 Setting the whole card to mono 127 doesn't seem to be very useful. 128 A software-solution can handle 129 full-duplex with one direction in 130 stereo and the other way in mono. 131 So, the hardware should work all 132 the time in stereo! */ 133 #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */ 134 #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */ 135 #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */ 136 #define RME32_WCR_FREQ_1 (1 << 5) 137 #define RME32_WCR_INP_0 (1 << 6) /* input switch */ 138 #define RME32_WCR_INP_1 (1 << 7) 139 #define RME32_WCR_RESET (1 << 8) /* Reset address */ 140 #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */ 141 #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */ 142 #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */ 143 #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */ 144 #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */ 145 #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */ 146 #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */ 147 148 #define RME32_WCR_BITPOS_FREQ_0 4 149 #define RME32_WCR_BITPOS_FREQ_1 5 150 #define RME32_WCR_BITPOS_INP_0 6 151 #define RME32_WCR_BITPOS_INP_1 7 152 153 /* Read control register bits */ 154 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff 155 #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */ 156 #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */ 157 #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */ 158 #define RME32_RCR_FREQ_1 (1 << 28) 159 #define RME32_RCR_FREQ_2 (1 << 29) 160 #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */ 161 #define RME32_RCR_IRQ (1 << 31) /* interrupt */ 162 163 #define RME32_RCR_BITPOS_F0 27 164 #define RME32_RCR_BITPOS_F1 28 165 #define RME32_RCR_BITPOS_F2 29 166 167 /* Input types */ 168 #define RME32_INPUT_OPTICAL 0 169 #define RME32_INPUT_COAXIAL 1 170 #define RME32_INPUT_INTERNAL 2 171 #define RME32_INPUT_XLR 3 172 173 /* Clock modes */ 174 #define RME32_CLOCKMODE_SLAVE 0 175 #define RME32_CLOCKMODE_MASTER_32 1 176 #define RME32_CLOCKMODE_MASTER_44 2 177 #define RME32_CLOCKMODE_MASTER_48 3 178 179 /* Block sizes in bytes */ 180 #define RME32_BLOCK_SIZE 8192 181 182 /* Software intermediate buffer (max) size */ 183 #define RME32_MID_BUFFER_SIZE (1024*1024) 184 185 /* Hardware revisions */ 186 #define RME32_32_REVISION 192 187 #define RME32_328_REVISION_OLD 100 188 #define RME32_328_REVISION_NEW 101 189 #define RME32_PRO_REVISION_WITH_8412 192 190 #define RME32_PRO_REVISION_WITH_8414 150 191 192 193 struct rme32 { 194 spinlock_t lock; 195 int irq; 196 unsigned long port; 197 void __iomem *iobase; 198 199 u32 wcreg; /* cached write control register value */ 200 u32 wcreg_spdif; /* S/PDIF setup */ 201 u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */ 202 u32 rcreg; /* cached read control register value */ 203 204 u8 rev; /* card revision number */ 205 206 struct snd_pcm_substream *playback_substream; 207 struct snd_pcm_substream *capture_substream; 208 209 int playback_frlog; /* log2 of framesize */ 210 int capture_frlog; 211 212 size_t playback_periodsize; /* in bytes, zero if not used */ 213 size_t capture_periodsize; /* in bytes, zero if not used */ 214 215 unsigned int fullduplex_mode; 216 int running; 217 218 struct snd_pcm_indirect playback_pcm; 219 struct snd_pcm_indirect capture_pcm; 220 221 struct snd_card *card; 222 struct snd_pcm *spdif_pcm; 223 struct snd_pcm *adat_pcm; 224 struct pci_dev *pci; 225 struct snd_kcontrol *spdif_ctl; 226 }; 227 228 static const struct pci_device_id snd_rme32_ids[] = { 229 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,}, 230 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,}, 231 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,}, 232 {0,} 233 }; 234 235 MODULE_DEVICE_TABLE(pci, snd_rme32_ids); 236 237 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START) 238 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414) 239 240 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream); 241 242 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream); 243 244 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd); 245 246 static void snd_rme32_proc_init(struct rme32 * rme32); 247 248 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32); 249 250 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32) 251 { 252 return (readl(rme32->iobase + RME32_IO_GET_POS) 253 & RME32_RCR_AUDIO_ADDR_MASK); 254 } 255 256 /* silence callback for halfduplex mode */ 257 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ 258 snd_pcm_uframes_t pos, 259 snd_pcm_uframes_t count) 260 { 261 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 262 count <<= rme32->playback_frlog; 263 pos <<= rme32->playback_frlog; 264 memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count); 265 return 0; 266 } 267 268 /* copy callback for halfduplex mode */ 269 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ 270 snd_pcm_uframes_t pos, 271 void __user *src, snd_pcm_uframes_t count) 272 { 273 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 274 count <<= rme32->playback_frlog; 275 pos <<= rme32->playback_frlog; 276 if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 277 src, count)) 278 return -EFAULT; 279 return 0; 280 } 281 282 /* copy callback for halfduplex mode */ 283 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ 284 snd_pcm_uframes_t pos, 285 void __user *dst, snd_pcm_uframes_t count) 286 { 287 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 288 count <<= rme32->capture_frlog; 289 pos <<= rme32->capture_frlog; 290 if (copy_to_user_fromio(dst, 291 rme32->iobase + RME32_IO_DATA_BUFFER + pos, 292 count)) 293 return -EFAULT; 294 return 0; 295 } 296 297 /* 298 * SPDIF I/O capabilities (half-duplex mode) 299 */ 300 static struct snd_pcm_hardware snd_rme32_spdif_info = { 301 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 302 SNDRV_PCM_INFO_MMAP_VALID | 303 SNDRV_PCM_INFO_INTERLEAVED | 304 SNDRV_PCM_INFO_PAUSE | 305 SNDRV_PCM_INFO_SYNC_START), 306 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 307 SNDRV_PCM_FMTBIT_S32_LE), 308 .rates = (SNDRV_PCM_RATE_32000 | 309 SNDRV_PCM_RATE_44100 | 310 SNDRV_PCM_RATE_48000), 311 .rate_min = 32000, 312 .rate_max = 48000, 313 .channels_min = 2, 314 .channels_max = 2, 315 .buffer_bytes_max = RME32_BUFFER_SIZE, 316 .period_bytes_min = RME32_BLOCK_SIZE, 317 .period_bytes_max = RME32_BLOCK_SIZE, 318 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 319 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 320 .fifo_size = 0, 321 }; 322 323 /* 324 * ADAT I/O capabilities (half-duplex mode) 325 */ 326 static struct snd_pcm_hardware snd_rme32_adat_info = 327 { 328 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 329 SNDRV_PCM_INFO_MMAP_VALID | 330 SNDRV_PCM_INFO_INTERLEAVED | 331 SNDRV_PCM_INFO_PAUSE | 332 SNDRV_PCM_INFO_SYNC_START), 333 .formats= SNDRV_PCM_FMTBIT_S16_LE, 334 .rates = (SNDRV_PCM_RATE_44100 | 335 SNDRV_PCM_RATE_48000), 336 .rate_min = 44100, 337 .rate_max = 48000, 338 .channels_min = 8, 339 .channels_max = 8, 340 .buffer_bytes_max = RME32_BUFFER_SIZE, 341 .period_bytes_min = RME32_BLOCK_SIZE, 342 .period_bytes_max = RME32_BLOCK_SIZE, 343 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 344 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 345 .fifo_size = 0, 346 }; 347 348 /* 349 * SPDIF I/O capabilities (full-duplex mode) 350 */ 351 static struct snd_pcm_hardware snd_rme32_spdif_fd_info = { 352 .info = (SNDRV_PCM_INFO_MMAP | 353 SNDRV_PCM_INFO_MMAP_VALID | 354 SNDRV_PCM_INFO_INTERLEAVED | 355 SNDRV_PCM_INFO_PAUSE | 356 SNDRV_PCM_INFO_SYNC_START), 357 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 358 SNDRV_PCM_FMTBIT_S32_LE), 359 .rates = (SNDRV_PCM_RATE_32000 | 360 SNDRV_PCM_RATE_44100 | 361 SNDRV_PCM_RATE_48000), 362 .rate_min = 32000, 363 .rate_max = 48000, 364 .channels_min = 2, 365 .channels_max = 2, 366 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 367 .period_bytes_min = RME32_BLOCK_SIZE, 368 .period_bytes_max = RME32_BLOCK_SIZE, 369 .periods_min = 2, 370 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 371 .fifo_size = 0, 372 }; 373 374 /* 375 * ADAT I/O capabilities (full-duplex mode) 376 */ 377 static struct snd_pcm_hardware snd_rme32_adat_fd_info = 378 { 379 .info = (SNDRV_PCM_INFO_MMAP | 380 SNDRV_PCM_INFO_MMAP_VALID | 381 SNDRV_PCM_INFO_INTERLEAVED | 382 SNDRV_PCM_INFO_PAUSE | 383 SNDRV_PCM_INFO_SYNC_START), 384 .formats= SNDRV_PCM_FMTBIT_S16_LE, 385 .rates = (SNDRV_PCM_RATE_44100 | 386 SNDRV_PCM_RATE_48000), 387 .rate_min = 44100, 388 .rate_max = 48000, 389 .channels_min = 8, 390 .channels_max = 8, 391 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 392 .period_bytes_min = RME32_BLOCK_SIZE, 393 .period_bytes_max = RME32_BLOCK_SIZE, 394 .periods_min = 2, 395 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 396 .fifo_size = 0, 397 }; 398 399 static void snd_rme32_reset_dac(struct rme32 *rme32) 400 { 401 writel(rme32->wcreg | RME32_WCR_PD, 402 rme32->iobase + RME32_IO_CONTROL_REGISTER); 403 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 404 } 405 406 static int snd_rme32_playback_getrate(struct rme32 * rme32) 407 { 408 int rate; 409 410 rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 411 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 412 switch (rate) { 413 case 1: 414 rate = 32000; 415 break; 416 case 2: 417 rate = 44100; 418 break; 419 case 3: 420 rate = 48000; 421 break; 422 default: 423 return -1; 424 } 425 return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate; 426 } 427 428 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat) 429 { 430 int n; 431 432 *is_adat = 0; 433 if (rme32->rcreg & RME32_RCR_LOCK) { 434 /* ADAT rate */ 435 *is_adat = 1; 436 } 437 if (rme32->rcreg & RME32_RCR_ERF) { 438 return -1; 439 } 440 441 /* S/PDIF rate */ 442 n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) + 443 (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) + 444 (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2); 445 446 if (RME32_PRO_WITH_8414(rme32)) 447 switch (n) { /* supporting the CS8414 */ 448 case 0: 449 case 1: 450 case 2: 451 return -1; 452 case 3: 453 return 96000; 454 case 4: 455 return 88200; 456 case 5: 457 return 48000; 458 case 6: 459 return 44100; 460 case 7: 461 return 32000; 462 default: 463 return -1; 464 break; 465 } 466 else 467 switch (n) { /* supporting the CS8412 */ 468 case 0: 469 return -1; 470 case 1: 471 return 48000; 472 case 2: 473 return 44100; 474 case 3: 475 return 32000; 476 case 4: 477 return 48000; 478 case 5: 479 return 44100; 480 case 6: 481 return 44056; 482 case 7: 483 return 32000; 484 default: 485 break; 486 } 487 return -1; 488 } 489 490 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate) 491 { 492 int ds; 493 494 ds = rme32->wcreg & RME32_WCR_DS_BM; 495 switch (rate) { 496 case 32000: 497 rme32->wcreg &= ~RME32_WCR_DS_BM; 498 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 499 ~RME32_WCR_FREQ_1; 500 break; 501 case 44100: 502 rme32->wcreg &= ~RME32_WCR_DS_BM; 503 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 504 ~RME32_WCR_FREQ_0; 505 break; 506 case 48000: 507 rme32->wcreg &= ~RME32_WCR_DS_BM; 508 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 509 RME32_WCR_FREQ_1; 510 break; 511 case 64000: 512 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 513 return -EINVAL; 514 rme32->wcreg |= RME32_WCR_DS_BM; 515 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 516 ~RME32_WCR_FREQ_1; 517 break; 518 case 88200: 519 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 520 return -EINVAL; 521 rme32->wcreg |= RME32_WCR_DS_BM; 522 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 523 ~RME32_WCR_FREQ_0; 524 break; 525 case 96000: 526 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 527 return -EINVAL; 528 rme32->wcreg |= RME32_WCR_DS_BM; 529 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 530 RME32_WCR_FREQ_1; 531 break; 532 default: 533 return -EINVAL; 534 } 535 if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) || 536 (ds && !(rme32->wcreg & RME32_WCR_DS_BM))) 537 { 538 /* change to/from double-speed: reset the DAC (if available) */ 539 snd_rme32_reset_dac(rme32); 540 } else { 541 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 542 } 543 return 0; 544 } 545 546 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode) 547 { 548 switch (mode) { 549 case RME32_CLOCKMODE_SLAVE: 550 /* AutoSync */ 551 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) & 552 ~RME32_WCR_FREQ_1; 553 break; 554 case RME32_CLOCKMODE_MASTER_32: 555 /* Internal 32.0kHz */ 556 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 557 ~RME32_WCR_FREQ_1; 558 break; 559 case RME32_CLOCKMODE_MASTER_44: 560 /* Internal 44.1kHz */ 561 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) | 562 RME32_WCR_FREQ_1; 563 break; 564 case RME32_CLOCKMODE_MASTER_48: 565 /* Internal 48.0kHz */ 566 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 567 RME32_WCR_FREQ_1; 568 break; 569 default: 570 return -EINVAL; 571 } 572 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 573 return 0; 574 } 575 576 static int snd_rme32_getclockmode(struct rme32 * rme32) 577 { 578 return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 579 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 580 } 581 582 static int snd_rme32_setinputtype(struct rme32 * rme32, int type) 583 { 584 switch (type) { 585 case RME32_INPUT_OPTICAL: 586 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) & 587 ~RME32_WCR_INP_1; 588 break; 589 case RME32_INPUT_COAXIAL: 590 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) & 591 ~RME32_WCR_INP_1; 592 break; 593 case RME32_INPUT_INTERNAL: 594 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) | 595 RME32_WCR_INP_1; 596 break; 597 case RME32_INPUT_XLR: 598 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) | 599 RME32_WCR_INP_1; 600 break; 601 default: 602 return -EINVAL; 603 } 604 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 605 return 0; 606 } 607 608 static int snd_rme32_getinputtype(struct rme32 * rme32) 609 { 610 return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) + 611 (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1); 612 } 613 614 static void 615 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback) 616 { 617 int frlog; 618 619 if (n_channels == 2) { 620 frlog = 1; 621 } else { 622 /* assume 8 channels */ 623 frlog = 3; 624 } 625 if (is_playback) { 626 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 627 rme32->playback_frlog = frlog; 628 } else { 629 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 630 rme32->capture_frlog = frlog; 631 } 632 } 633 634 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format) 635 { 636 switch (format) { 637 case SNDRV_PCM_FORMAT_S16_LE: 638 rme32->wcreg &= ~RME32_WCR_MODE24; 639 break; 640 case SNDRV_PCM_FORMAT_S32_LE: 641 rme32->wcreg |= RME32_WCR_MODE24; 642 break; 643 default: 644 return -EINVAL; 645 } 646 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 647 return 0; 648 } 649 650 static int 651 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream, 652 struct snd_pcm_hw_params *params) 653 { 654 int err, rate, dummy; 655 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 656 struct snd_pcm_runtime *runtime = substream->runtime; 657 658 if (rme32->fullduplex_mode) { 659 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 660 if (err < 0) 661 return err; 662 } else { 663 runtime->dma_area = (void __force *)(rme32->iobase + 664 RME32_IO_DATA_BUFFER); 665 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 666 runtime->dma_bytes = RME32_BUFFER_SIZE; 667 } 668 669 spin_lock_irq(&rme32->lock); 670 if ((rme32->rcreg & RME32_RCR_KMODE) && 671 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 672 /* AutoSync */ 673 if ((int)params_rate(params) != rate) { 674 spin_unlock_irq(&rme32->lock); 675 return -EIO; 676 } 677 } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { 678 spin_unlock_irq(&rme32->lock); 679 return err; 680 } 681 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { 682 spin_unlock_irq(&rme32->lock); 683 return err; 684 } 685 686 snd_rme32_setframelog(rme32, params_channels(params), 1); 687 if (rme32->capture_periodsize != 0) { 688 if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) { 689 spin_unlock_irq(&rme32->lock); 690 return -EBUSY; 691 } 692 } 693 rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog; 694 /* S/PDIF setup */ 695 if ((rme32->wcreg & RME32_WCR_ADAT) == 0) { 696 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 697 rme32->wcreg |= rme32->wcreg_spdif_stream; 698 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 699 } 700 spin_unlock_irq(&rme32->lock); 701 702 return 0; 703 } 704 705 static int 706 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream, 707 struct snd_pcm_hw_params *params) 708 { 709 int err, isadat, rate; 710 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 711 struct snd_pcm_runtime *runtime = substream->runtime; 712 713 if (rme32->fullduplex_mode) { 714 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 715 if (err < 0) 716 return err; 717 } else { 718 runtime->dma_area = (void __force *)rme32->iobase + 719 RME32_IO_DATA_BUFFER; 720 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 721 runtime->dma_bytes = RME32_BUFFER_SIZE; 722 } 723 724 spin_lock_irq(&rme32->lock); 725 /* enable AutoSync for record-preparing */ 726 rme32->wcreg |= RME32_WCR_AUTOSYNC; 727 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 728 729 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { 730 spin_unlock_irq(&rme32->lock); 731 return err; 732 } 733 if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { 734 spin_unlock_irq(&rme32->lock); 735 return err; 736 } 737 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 738 if ((int)params_rate(params) != rate) { 739 spin_unlock_irq(&rme32->lock); 740 return -EIO; 741 } 742 if ((isadat && runtime->hw.channels_min == 2) || 743 (!isadat && runtime->hw.channels_min == 8)) { 744 spin_unlock_irq(&rme32->lock); 745 return -EIO; 746 } 747 } 748 /* AutoSync off for recording */ 749 rme32->wcreg &= ~RME32_WCR_AUTOSYNC; 750 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 751 752 snd_rme32_setframelog(rme32, params_channels(params), 0); 753 if (rme32->playback_periodsize != 0) { 754 if (params_period_size(params) << rme32->capture_frlog != 755 rme32->playback_periodsize) { 756 spin_unlock_irq(&rme32->lock); 757 return -EBUSY; 758 } 759 } 760 rme32->capture_periodsize = 761 params_period_size(params) << rme32->capture_frlog; 762 spin_unlock_irq(&rme32->lock); 763 764 return 0; 765 } 766 767 static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream) 768 { 769 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 770 if (! rme32->fullduplex_mode) 771 return 0; 772 return snd_pcm_lib_free_pages(substream); 773 } 774 775 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause) 776 { 777 if (!from_pause) { 778 writel(0, rme32->iobase + RME32_IO_RESET_POS); 779 } 780 781 rme32->wcreg |= RME32_WCR_START; 782 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 783 } 784 785 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause) 786 { 787 /* 788 * Check if there is an unconfirmed IRQ, if so confirm it, or else 789 * the hardware will not stop generating interrupts 790 */ 791 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 792 if (rme32->rcreg & RME32_RCR_IRQ) { 793 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 794 } 795 rme32->wcreg &= ~RME32_WCR_START; 796 if (rme32->wcreg & RME32_WCR_SEL) 797 rme32->wcreg |= RME32_WCR_MUTE; 798 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 799 if (! to_pause) 800 writel(0, rme32->iobase + RME32_IO_RESET_POS); 801 } 802 803 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id) 804 { 805 struct rme32 *rme32 = (struct rme32 *) dev_id; 806 807 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 808 if (!(rme32->rcreg & RME32_RCR_IRQ)) { 809 return IRQ_NONE; 810 } else { 811 if (rme32->capture_substream) { 812 snd_pcm_period_elapsed(rme32->capture_substream); 813 } 814 if (rme32->playback_substream) { 815 snd_pcm_period_elapsed(rme32->playback_substream); 816 } 817 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 818 } 819 return IRQ_HANDLED; 820 } 821 822 static unsigned int period_bytes[] = { RME32_BLOCK_SIZE }; 823 824 825 static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = { 826 .count = ARRAY_SIZE(period_bytes), 827 .list = period_bytes, 828 .mask = 0 829 }; 830 831 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime) 832 { 833 if (! rme32->fullduplex_mode) { 834 snd_pcm_hw_constraint_single(runtime, 835 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 836 RME32_BUFFER_SIZE); 837 snd_pcm_hw_constraint_list(runtime, 0, 838 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 839 &hw_constraints_period_bytes); 840 } 841 } 842 843 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream) 844 { 845 int rate, dummy; 846 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 847 struct snd_pcm_runtime *runtime = substream->runtime; 848 849 snd_pcm_set_sync(substream); 850 851 spin_lock_irq(&rme32->lock); 852 if (rme32->playback_substream != NULL) { 853 spin_unlock_irq(&rme32->lock); 854 return -EBUSY; 855 } 856 rme32->wcreg &= ~RME32_WCR_ADAT; 857 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 858 rme32->playback_substream = substream; 859 spin_unlock_irq(&rme32->lock); 860 861 if (rme32->fullduplex_mode) 862 runtime->hw = snd_rme32_spdif_fd_info; 863 else 864 runtime->hw = snd_rme32_spdif_info; 865 if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) { 866 runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 867 runtime->hw.rate_max = 96000; 868 } 869 if ((rme32->rcreg & RME32_RCR_KMODE) && 870 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 871 /* AutoSync */ 872 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 873 runtime->hw.rate_min = rate; 874 runtime->hw.rate_max = rate; 875 } 876 877 snd_rme32_set_buffer_constraint(rme32, runtime); 878 879 rme32->wcreg_spdif_stream = rme32->wcreg_spdif; 880 rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 881 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 882 SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id); 883 return 0; 884 } 885 886 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream) 887 { 888 int isadat, rate; 889 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 890 struct snd_pcm_runtime *runtime = substream->runtime; 891 892 snd_pcm_set_sync(substream); 893 894 spin_lock_irq(&rme32->lock); 895 if (rme32->capture_substream != NULL) { 896 spin_unlock_irq(&rme32->lock); 897 return -EBUSY; 898 } 899 rme32->capture_substream = substream; 900 spin_unlock_irq(&rme32->lock); 901 902 if (rme32->fullduplex_mode) 903 runtime->hw = snd_rme32_spdif_fd_info; 904 else 905 runtime->hw = snd_rme32_spdif_info; 906 if (RME32_PRO_WITH_8414(rme32)) { 907 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 908 runtime->hw.rate_max = 96000; 909 } 910 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 911 if (isadat) { 912 return -EIO; 913 } 914 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 915 runtime->hw.rate_min = rate; 916 runtime->hw.rate_max = rate; 917 } 918 919 snd_rme32_set_buffer_constraint(rme32, runtime); 920 921 return 0; 922 } 923 924 static int 925 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream) 926 { 927 int rate, dummy; 928 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 929 struct snd_pcm_runtime *runtime = substream->runtime; 930 931 snd_pcm_set_sync(substream); 932 933 spin_lock_irq(&rme32->lock); 934 if (rme32->playback_substream != NULL) { 935 spin_unlock_irq(&rme32->lock); 936 return -EBUSY; 937 } 938 rme32->wcreg |= RME32_WCR_ADAT; 939 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 940 rme32->playback_substream = substream; 941 spin_unlock_irq(&rme32->lock); 942 943 if (rme32->fullduplex_mode) 944 runtime->hw = snd_rme32_adat_fd_info; 945 else 946 runtime->hw = snd_rme32_adat_info; 947 if ((rme32->rcreg & RME32_RCR_KMODE) && 948 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 949 /* AutoSync */ 950 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 951 runtime->hw.rate_min = rate; 952 runtime->hw.rate_max = rate; 953 } 954 955 snd_rme32_set_buffer_constraint(rme32, runtime); 956 return 0; 957 } 958 959 static int 960 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream) 961 { 962 int isadat, rate; 963 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 964 struct snd_pcm_runtime *runtime = substream->runtime; 965 966 if (rme32->fullduplex_mode) 967 runtime->hw = snd_rme32_adat_fd_info; 968 else 969 runtime->hw = snd_rme32_adat_info; 970 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 971 if (!isadat) { 972 return -EIO; 973 } 974 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 975 runtime->hw.rate_min = rate; 976 runtime->hw.rate_max = rate; 977 } 978 979 snd_pcm_set_sync(substream); 980 981 spin_lock_irq(&rme32->lock); 982 if (rme32->capture_substream != NULL) { 983 spin_unlock_irq(&rme32->lock); 984 return -EBUSY; 985 } 986 rme32->capture_substream = substream; 987 spin_unlock_irq(&rme32->lock); 988 989 snd_rme32_set_buffer_constraint(rme32, runtime); 990 return 0; 991 } 992 993 static int snd_rme32_playback_close(struct snd_pcm_substream *substream) 994 { 995 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 996 int spdif = 0; 997 998 spin_lock_irq(&rme32->lock); 999 rme32->playback_substream = NULL; 1000 rme32->playback_periodsize = 0; 1001 spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0; 1002 spin_unlock_irq(&rme32->lock); 1003 if (spdif) { 1004 rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1005 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 1006 SNDRV_CTL_EVENT_MASK_INFO, 1007 &rme32->spdif_ctl->id); 1008 } 1009 return 0; 1010 } 1011 1012 static int snd_rme32_capture_close(struct snd_pcm_substream *substream) 1013 { 1014 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1015 1016 spin_lock_irq(&rme32->lock); 1017 rme32->capture_substream = NULL; 1018 rme32->capture_periodsize = 0; 1019 spin_unlock_irq(&rme32->lock); 1020 return 0; 1021 } 1022 1023 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream) 1024 { 1025 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1026 1027 spin_lock_irq(&rme32->lock); 1028 if (rme32->fullduplex_mode) { 1029 memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm)); 1030 rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1031 rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1032 } else { 1033 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1034 } 1035 if (rme32->wcreg & RME32_WCR_SEL) 1036 rme32->wcreg &= ~RME32_WCR_MUTE; 1037 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1038 spin_unlock_irq(&rme32->lock); 1039 return 0; 1040 } 1041 1042 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream) 1043 { 1044 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1045 1046 spin_lock_irq(&rme32->lock); 1047 if (rme32->fullduplex_mode) { 1048 memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm)); 1049 rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1050 rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2; 1051 rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1052 } else { 1053 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1054 } 1055 spin_unlock_irq(&rme32->lock); 1056 return 0; 1057 } 1058 1059 static int 1060 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1061 { 1062 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1063 struct snd_pcm_substream *s; 1064 1065 spin_lock(&rme32->lock); 1066 snd_pcm_group_for_each_entry(s, substream) { 1067 if (s != rme32->playback_substream && 1068 s != rme32->capture_substream) 1069 continue; 1070 switch (cmd) { 1071 case SNDRV_PCM_TRIGGER_START: 1072 rme32->running |= (1 << s->stream); 1073 if (rme32->fullduplex_mode) { 1074 /* remember the current DMA position */ 1075 if (s == rme32->playback_substream) { 1076 rme32->playback_pcm.hw_io = 1077 rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1078 } else { 1079 rme32->capture_pcm.hw_io = 1080 rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1081 } 1082 } 1083 break; 1084 case SNDRV_PCM_TRIGGER_STOP: 1085 rme32->running &= ~(1 << s->stream); 1086 break; 1087 } 1088 snd_pcm_trigger_done(s, substream); 1089 } 1090 1091 /* prefill playback buffer */ 1092 if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) { 1093 snd_pcm_group_for_each_entry(s, substream) { 1094 if (s == rme32->playback_substream) { 1095 s->ops->ack(s); 1096 break; 1097 } 1098 } 1099 } 1100 1101 switch (cmd) { 1102 case SNDRV_PCM_TRIGGER_START: 1103 if (rme32->running && ! RME32_ISWORKING(rme32)) 1104 snd_rme32_pcm_start(rme32, 0); 1105 break; 1106 case SNDRV_PCM_TRIGGER_STOP: 1107 if (! rme32->running && RME32_ISWORKING(rme32)) 1108 snd_rme32_pcm_stop(rme32, 0); 1109 break; 1110 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1111 if (rme32->running && RME32_ISWORKING(rme32)) 1112 snd_rme32_pcm_stop(rme32, 1); 1113 break; 1114 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1115 if (rme32->running && ! RME32_ISWORKING(rme32)) 1116 snd_rme32_pcm_start(rme32, 1); 1117 break; 1118 } 1119 spin_unlock(&rme32->lock); 1120 return 0; 1121 } 1122 1123 /* pointer callback for halfduplex mode */ 1124 static snd_pcm_uframes_t 1125 snd_rme32_playback_pointer(struct snd_pcm_substream *substream) 1126 { 1127 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1128 return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog; 1129 } 1130 1131 static snd_pcm_uframes_t 1132 snd_rme32_capture_pointer(struct snd_pcm_substream *substream) 1133 { 1134 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1135 return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog; 1136 } 1137 1138 1139 /* ack and pointer callbacks for fullduplex mode */ 1140 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream, 1141 struct snd_pcm_indirect *rec, size_t bytes) 1142 { 1143 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1144 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1145 substream->runtime->dma_area + rec->sw_data, bytes); 1146 } 1147 1148 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream) 1149 { 1150 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1151 struct snd_pcm_indirect *rec, *cprec; 1152 1153 rec = &rme32->playback_pcm; 1154 cprec = &rme32->capture_pcm; 1155 spin_lock(&rme32->lock); 1156 rec->hw_queue_size = RME32_BUFFER_SIZE; 1157 if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE)) 1158 rec->hw_queue_size -= cprec->hw_ready; 1159 spin_unlock(&rme32->lock); 1160 snd_pcm_indirect_playback_transfer(substream, rec, 1161 snd_rme32_pb_trans_copy); 1162 return 0; 1163 } 1164 1165 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream, 1166 struct snd_pcm_indirect *rec, size_t bytes) 1167 { 1168 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1169 memcpy_fromio(substream->runtime->dma_area + rec->sw_data, 1170 rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1171 bytes); 1172 } 1173 1174 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream) 1175 { 1176 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1177 snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm, 1178 snd_rme32_cp_trans_copy); 1179 return 0; 1180 } 1181 1182 static snd_pcm_uframes_t 1183 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream) 1184 { 1185 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1186 return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm, 1187 snd_rme32_pcm_byteptr(rme32)); 1188 } 1189 1190 static snd_pcm_uframes_t 1191 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream) 1192 { 1193 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1194 return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm, 1195 snd_rme32_pcm_byteptr(rme32)); 1196 } 1197 1198 /* for halfduplex mode */ 1199 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = { 1200 .open = snd_rme32_playback_spdif_open, 1201 .close = snd_rme32_playback_close, 1202 .ioctl = snd_pcm_lib_ioctl, 1203 .hw_params = snd_rme32_playback_hw_params, 1204 .hw_free = snd_rme32_pcm_hw_free, 1205 .prepare = snd_rme32_playback_prepare, 1206 .trigger = snd_rme32_pcm_trigger, 1207 .pointer = snd_rme32_playback_pointer, 1208 .copy = snd_rme32_playback_copy, 1209 .silence = snd_rme32_playback_silence, 1210 .mmap = snd_pcm_lib_mmap_iomem, 1211 }; 1212 1213 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = { 1214 .open = snd_rme32_capture_spdif_open, 1215 .close = snd_rme32_capture_close, 1216 .ioctl = snd_pcm_lib_ioctl, 1217 .hw_params = snd_rme32_capture_hw_params, 1218 .hw_free = snd_rme32_pcm_hw_free, 1219 .prepare = snd_rme32_capture_prepare, 1220 .trigger = snd_rme32_pcm_trigger, 1221 .pointer = snd_rme32_capture_pointer, 1222 .copy = snd_rme32_capture_copy, 1223 .mmap = snd_pcm_lib_mmap_iomem, 1224 }; 1225 1226 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = { 1227 .open = snd_rme32_playback_adat_open, 1228 .close = snd_rme32_playback_close, 1229 .ioctl = snd_pcm_lib_ioctl, 1230 .hw_params = snd_rme32_playback_hw_params, 1231 .prepare = snd_rme32_playback_prepare, 1232 .trigger = snd_rme32_pcm_trigger, 1233 .pointer = snd_rme32_playback_pointer, 1234 .copy = snd_rme32_playback_copy, 1235 .silence = snd_rme32_playback_silence, 1236 .mmap = snd_pcm_lib_mmap_iomem, 1237 }; 1238 1239 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = { 1240 .open = snd_rme32_capture_adat_open, 1241 .close = snd_rme32_capture_close, 1242 .ioctl = snd_pcm_lib_ioctl, 1243 .hw_params = snd_rme32_capture_hw_params, 1244 .prepare = snd_rme32_capture_prepare, 1245 .trigger = snd_rme32_pcm_trigger, 1246 .pointer = snd_rme32_capture_pointer, 1247 .copy = snd_rme32_capture_copy, 1248 .mmap = snd_pcm_lib_mmap_iomem, 1249 }; 1250 1251 /* for fullduplex mode */ 1252 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = { 1253 .open = snd_rme32_playback_spdif_open, 1254 .close = snd_rme32_playback_close, 1255 .ioctl = snd_pcm_lib_ioctl, 1256 .hw_params = snd_rme32_playback_hw_params, 1257 .hw_free = snd_rme32_pcm_hw_free, 1258 .prepare = snd_rme32_playback_prepare, 1259 .trigger = snd_rme32_pcm_trigger, 1260 .pointer = snd_rme32_playback_fd_pointer, 1261 .ack = snd_rme32_playback_fd_ack, 1262 }; 1263 1264 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = { 1265 .open = snd_rme32_capture_spdif_open, 1266 .close = snd_rme32_capture_close, 1267 .ioctl = snd_pcm_lib_ioctl, 1268 .hw_params = snd_rme32_capture_hw_params, 1269 .hw_free = snd_rme32_pcm_hw_free, 1270 .prepare = snd_rme32_capture_prepare, 1271 .trigger = snd_rme32_pcm_trigger, 1272 .pointer = snd_rme32_capture_fd_pointer, 1273 .ack = snd_rme32_capture_fd_ack, 1274 }; 1275 1276 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = { 1277 .open = snd_rme32_playback_adat_open, 1278 .close = snd_rme32_playback_close, 1279 .ioctl = snd_pcm_lib_ioctl, 1280 .hw_params = snd_rme32_playback_hw_params, 1281 .prepare = snd_rme32_playback_prepare, 1282 .trigger = snd_rme32_pcm_trigger, 1283 .pointer = snd_rme32_playback_fd_pointer, 1284 .ack = snd_rme32_playback_fd_ack, 1285 }; 1286 1287 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = { 1288 .open = snd_rme32_capture_adat_open, 1289 .close = snd_rme32_capture_close, 1290 .ioctl = snd_pcm_lib_ioctl, 1291 .hw_params = snd_rme32_capture_hw_params, 1292 .prepare = snd_rme32_capture_prepare, 1293 .trigger = snd_rme32_pcm_trigger, 1294 .pointer = snd_rme32_capture_fd_pointer, 1295 .ack = snd_rme32_capture_fd_ack, 1296 }; 1297 1298 static void snd_rme32_free(void *private_data) 1299 { 1300 struct rme32 *rme32 = (struct rme32 *) private_data; 1301 1302 if (rme32 == NULL) { 1303 return; 1304 } 1305 if (rme32->irq >= 0) { 1306 snd_rme32_pcm_stop(rme32, 0); 1307 free_irq(rme32->irq, (void *) rme32); 1308 rme32->irq = -1; 1309 } 1310 if (rme32->iobase) { 1311 iounmap(rme32->iobase); 1312 rme32->iobase = NULL; 1313 } 1314 if (rme32->port) { 1315 pci_release_regions(rme32->pci); 1316 rme32->port = 0; 1317 } 1318 pci_disable_device(rme32->pci); 1319 } 1320 1321 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm) 1322 { 1323 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1324 rme32->spdif_pcm = NULL; 1325 } 1326 1327 static void 1328 snd_rme32_free_adat_pcm(struct snd_pcm *pcm) 1329 { 1330 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1331 rme32->adat_pcm = NULL; 1332 } 1333 1334 static int snd_rme32_create(struct rme32 *rme32) 1335 { 1336 struct pci_dev *pci = rme32->pci; 1337 int err; 1338 1339 rme32->irq = -1; 1340 spin_lock_init(&rme32->lock); 1341 1342 if ((err = pci_enable_device(pci)) < 0) 1343 return err; 1344 1345 if ((err = pci_request_regions(pci, "RME32")) < 0) 1346 return err; 1347 rme32->port = pci_resource_start(rme32->pci, 0); 1348 1349 rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE); 1350 if (!rme32->iobase) { 1351 dev_err(rme32->card->dev, 1352 "unable to remap memory region 0x%lx-0x%lx\n", 1353 rme32->port, rme32->port + RME32_IO_SIZE - 1); 1354 return -ENOMEM; 1355 } 1356 1357 if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED, 1358 KBUILD_MODNAME, rme32)) { 1359 dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq); 1360 return -EBUSY; 1361 } 1362 rme32->irq = pci->irq; 1363 1364 /* read the card's revision number */ 1365 pci_read_config_byte(pci, 8, &rme32->rev); 1366 1367 /* set up ALSA pcm device for S/PDIF */ 1368 if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) { 1369 return err; 1370 } 1371 rme32->spdif_pcm->private_data = rme32; 1372 rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm; 1373 strcpy(rme32->spdif_pcm->name, "Digi32 IEC958"); 1374 if (rme32->fullduplex_mode) { 1375 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1376 &snd_rme32_playback_spdif_fd_ops); 1377 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1378 &snd_rme32_capture_spdif_fd_ops); 1379 snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1380 snd_dma_continuous_data(GFP_KERNEL), 1381 0, RME32_MID_BUFFER_SIZE); 1382 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1383 } else { 1384 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1385 &snd_rme32_playback_spdif_ops); 1386 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1387 &snd_rme32_capture_spdif_ops); 1388 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1389 } 1390 1391 /* set up ALSA pcm device for ADAT */ 1392 if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) || 1393 (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) { 1394 /* ADAT is not available on DIGI32 and DIGI32 Pro */ 1395 rme32->adat_pcm = NULL; 1396 } 1397 else { 1398 if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1, 1399 1, 1, &rme32->adat_pcm)) < 0) 1400 { 1401 return err; 1402 } 1403 rme32->adat_pcm->private_data = rme32; 1404 rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm; 1405 strcpy(rme32->adat_pcm->name, "Digi32 ADAT"); 1406 if (rme32->fullduplex_mode) { 1407 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1408 &snd_rme32_playback_adat_fd_ops); 1409 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1410 &snd_rme32_capture_adat_fd_ops); 1411 snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1412 snd_dma_continuous_data(GFP_KERNEL), 1413 0, RME32_MID_BUFFER_SIZE); 1414 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1415 } else { 1416 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1417 &snd_rme32_playback_adat_ops); 1418 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1419 &snd_rme32_capture_adat_ops); 1420 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1421 } 1422 } 1423 1424 1425 rme32->playback_periodsize = 0; 1426 rme32->capture_periodsize = 0; 1427 1428 /* make sure playback/capture is stopped, if by some reason active */ 1429 snd_rme32_pcm_stop(rme32, 0); 1430 1431 /* reset DAC */ 1432 snd_rme32_reset_dac(rme32); 1433 1434 /* reset buffer pointer */ 1435 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1436 1437 /* set default values in registers */ 1438 rme32->wcreg = RME32_WCR_SEL | /* normal playback */ 1439 RME32_WCR_INP_0 | /* input select */ 1440 RME32_WCR_MUTE; /* muting on */ 1441 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1442 1443 1444 /* init switch interface */ 1445 if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) { 1446 return err; 1447 } 1448 1449 /* init proc interface */ 1450 snd_rme32_proc_init(rme32); 1451 1452 rme32->capture_substream = NULL; 1453 rme32->playback_substream = NULL; 1454 1455 return 0; 1456 } 1457 1458 /* 1459 * proc interface 1460 */ 1461 1462 static void 1463 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) 1464 { 1465 int n; 1466 struct rme32 *rme32 = (struct rme32 *) entry->private_data; 1467 1468 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 1469 1470 snd_iprintf(buffer, rme32->card->longname); 1471 snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1); 1472 1473 snd_iprintf(buffer, "\nGeneral settings\n"); 1474 if (rme32->fullduplex_mode) 1475 snd_iprintf(buffer, " Full-duplex mode\n"); 1476 else 1477 snd_iprintf(buffer, " Half-duplex mode\n"); 1478 if (RME32_PRO_WITH_8414(rme32)) { 1479 snd_iprintf(buffer, " receiver: CS8414\n"); 1480 } else { 1481 snd_iprintf(buffer, " receiver: CS8412\n"); 1482 } 1483 if (rme32->wcreg & RME32_WCR_MODE24) { 1484 snd_iprintf(buffer, " format: 24 bit"); 1485 } else { 1486 snd_iprintf(buffer, " format: 16 bit"); 1487 } 1488 if (rme32->wcreg & RME32_WCR_MONO) { 1489 snd_iprintf(buffer, ", Mono\n"); 1490 } else { 1491 snd_iprintf(buffer, ", Stereo\n"); 1492 } 1493 1494 snd_iprintf(buffer, "\nInput settings\n"); 1495 switch (snd_rme32_getinputtype(rme32)) { 1496 case RME32_INPUT_OPTICAL: 1497 snd_iprintf(buffer, " input: optical"); 1498 break; 1499 case RME32_INPUT_COAXIAL: 1500 snd_iprintf(buffer, " input: coaxial"); 1501 break; 1502 case RME32_INPUT_INTERNAL: 1503 snd_iprintf(buffer, " input: internal"); 1504 break; 1505 case RME32_INPUT_XLR: 1506 snd_iprintf(buffer, " input: XLR"); 1507 break; 1508 } 1509 if (snd_rme32_capture_getrate(rme32, &n) < 0) { 1510 snd_iprintf(buffer, "\n sample rate: no valid signal\n"); 1511 } else { 1512 if (n) { 1513 snd_iprintf(buffer, " (8 channels)\n"); 1514 } else { 1515 snd_iprintf(buffer, " (2 channels)\n"); 1516 } 1517 snd_iprintf(buffer, " sample rate: %d Hz\n", 1518 snd_rme32_capture_getrate(rme32, &n)); 1519 } 1520 1521 snd_iprintf(buffer, "\nOutput settings\n"); 1522 if (rme32->wcreg & RME32_WCR_SEL) { 1523 snd_iprintf(buffer, " output signal: normal playback"); 1524 } else { 1525 snd_iprintf(buffer, " output signal: same as input"); 1526 } 1527 if (rme32->wcreg & RME32_WCR_MUTE) { 1528 snd_iprintf(buffer, " (muted)\n"); 1529 } else { 1530 snd_iprintf(buffer, "\n"); 1531 } 1532 1533 /* master output frequency */ 1534 if (! 1535 ((!(rme32->wcreg & RME32_WCR_FREQ_0)) 1536 && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) { 1537 snd_iprintf(buffer, " sample rate: %d Hz\n", 1538 snd_rme32_playback_getrate(rme32)); 1539 } 1540 if (rme32->rcreg & RME32_RCR_KMODE) { 1541 snd_iprintf(buffer, " sample clock source: AutoSync\n"); 1542 } else { 1543 snd_iprintf(buffer, " sample clock source: Internal\n"); 1544 } 1545 if (rme32->wcreg & RME32_WCR_PRO) { 1546 snd_iprintf(buffer, " format: AES/EBU (professional)\n"); 1547 } else { 1548 snd_iprintf(buffer, " format: IEC958 (consumer)\n"); 1549 } 1550 if (rme32->wcreg & RME32_WCR_EMP) { 1551 snd_iprintf(buffer, " emphasis: on\n"); 1552 } else { 1553 snd_iprintf(buffer, " emphasis: off\n"); 1554 } 1555 } 1556 1557 static void snd_rme32_proc_init(struct rme32 *rme32) 1558 { 1559 struct snd_info_entry *entry; 1560 1561 if (! snd_card_proc_new(rme32->card, "rme32", &entry)) 1562 snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read); 1563 } 1564 1565 /* 1566 * control interface 1567 */ 1568 1569 #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info 1570 1571 static int 1572 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol, 1573 struct snd_ctl_elem_value *ucontrol) 1574 { 1575 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1576 1577 spin_lock_irq(&rme32->lock); 1578 ucontrol->value.integer.value[0] = 1579 rme32->wcreg & RME32_WCR_SEL ? 0 : 1; 1580 spin_unlock_irq(&rme32->lock); 1581 return 0; 1582 } 1583 static int 1584 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol, 1585 struct snd_ctl_elem_value *ucontrol) 1586 { 1587 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1588 unsigned int val; 1589 int change; 1590 1591 val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL; 1592 spin_lock_irq(&rme32->lock); 1593 val = (rme32->wcreg & ~RME32_WCR_SEL) | val; 1594 change = val != rme32->wcreg; 1595 if (ucontrol->value.integer.value[0]) 1596 val &= ~RME32_WCR_MUTE; 1597 else 1598 val |= RME32_WCR_MUTE; 1599 rme32->wcreg = val; 1600 writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1601 spin_unlock_irq(&rme32->lock); 1602 return change; 1603 } 1604 1605 static int 1606 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol, 1607 struct snd_ctl_elem_info *uinfo) 1608 { 1609 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1610 static const char * const texts[4] = { 1611 "Optical", "Coaxial", "Internal", "XLR" 1612 }; 1613 int num_items; 1614 1615 switch (rme32->pci->device) { 1616 case PCI_DEVICE_ID_RME_DIGI32: 1617 case PCI_DEVICE_ID_RME_DIGI32_8: 1618 num_items = 3; 1619 break; 1620 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1621 num_items = 4; 1622 break; 1623 default: 1624 snd_BUG(); 1625 return -EINVAL; 1626 } 1627 return snd_ctl_enum_info(uinfo, 1, num_items, texts); 1628 } 1629 static int 1630 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol, 1631 struct snd_ctl_elem_value *ucontrol) 1632 { 1633 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1634 unsigned int items = 3; 1635 1636 spin_lock_irq(&rme32->lock); 1637 ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32); 1638 1639 switch (rme32->pci->device) { 1640 case PCI_DEVICE_ID_RME_DIGI32: 1641 case PCI_DEVICE_ID_RME_DIGI32_8: 1642 items = 3; 1643 break; 1644 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1645 items = 4; 1646 break; 1647 default: 1648 snd_BUG(); 1649 break; 1650 } 1651 if (ucontrol->value.enumerated.item[0] >= items) { 1652 ucontrol->value.enumerated.item[0] = items - 1; 1653 } 1654 1655 spin_unlock_irq(&rme32->lock); 1656 return 0; 1657 } 1658 static int 1659 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol, 1660 struct snd_ctl_elem_value *ucontrol) 1661 { 1662 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1663 unsigned int val; 1664 int change, items = 3; 1665 1666 switch (rme32->pci->device) { 1667 case PCI_DEVICE_ID_RME_DIGI32: 1668 case PCI_DEVICE_ID_RME_DIGI32_8: 1669 items = 3; 1670 break; 1671 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1672 items = 4; 1673 break; 1674 default: 1675 snd_BUG(); 1676 break; 1677 } 1678 val = ucontrol->value.enumerated.item[0] % items; 1679 1680 spin_lock_irq(&rme32->lock); 1681 change = val != (unsigned int)snd_rme32_getinputtype(rme32); 1682 snd_rme32_setinputtype(rme32, val); 1683 spin_unlock_irq(&rme32->lock); 1684 return change; 1685 } 1686 1687 static int 1688 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol, 1689 struct snd_ctl_elem_info *uinfo) 1690 { 1691 static const char * const texts[4] = { "AutoSync", 1692 "Internal 32.0kHz", 1693 "Internal 44.1kHz", 1694 "Internal 48.0kHz" }; 1695 1696 return snd_ctl_enum_info(uinfo, 1, 4, texts); 1697 } 1698 static int 1699 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol, 1700 struct snd_ctl_elem_value *ucontrol) 1701 { 1702 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1703 1704 spin_lock_irq(&rme32->lock); 1705 ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32); 1706 spin_unlock_irq(&rme32->lock); 1707 return 0; 1708 } 1709 static int 1710 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol, 1711 struct snd_ctl_elem_value *ucontrol) 1712 { 1713 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1714 unsigned int val; 1715 int change; 1716 1717 val = ucontrol->value.enumerated.item[0] % 3; 1718 spin_lock_irq(&rme32->lock); 1719 change = val != (unsigned int)snd_rme32_getclockmode(rme32); 1720 snd_rme32_setclockmode(rme32, val); 1721 spin_unlock_irq(&rme32->lock); 1722 return change; 1723 } 1724 1725 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes) 1726 { 1727 u32 val = 0; 1728 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0; 1729 if (val & RME32_WCR_PRO) 1730 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1731 else 1732 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1733 return val; 1734 } 1735 1736 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val) 1737 { 1738 aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0); 1739 if (val & RME32_WCR_PRO) 1740 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; 1741 else 1742 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; 1743 } 1744 1745 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol, 1746 struct snd_ctl_elem_info *uinfo) 1747 { 1748 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1749 uinfo->count = 1; 1750 return 0; 1751 } 1752 1753 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol, 1754 struct snd_ctl_elem_value *ucontrol) 1755 { 1756 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1757 1758 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1759 rme32->wcreg_spdif); 1760 return 0; 1761 } 1762 1763 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol, 1764 struct snd_ctl_elem_value *ucontrol) 1765 { 1766 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1767 int change; 1768 u32 val; 1769 1770 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1771 spin_lock_irq(&rme32->lock); 1772 change = val != rme32->wcreg_spdif; 1773 rme32->wcreg_spdif = val; 1774 spin_unlock_irq(&rme32->lock); 1775 return change; 1776 } 1777 1778 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol, 1779 struct snd_ctl_elem_info *uinfo) 1780 { 1781 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1782 uinfo->count = 1; 1783 return 0; 1784 } 1785 1786 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol, 1787 struct snd_ctl_elem_value * 1788 ucontrol) 1789 { 1790 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1791 1792 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1793 rme32->wcreg_spdif_stream); 1794 return 0; 1795 } 1796 1797 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol, 1798 struct snd_ctl_elem_value * 1799 ucontrol) 1800 { 1801 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1802 int change; 1803 u32 val; 1804 1805 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1806 spin_lock_irq(&rme32->lock); 1807 change = val != rme32->wcreg_spdif_stream; 1808 rme32->wcreg_spdif_stream = val; 1809 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 1810 rme32->wcreg |= val; 1811 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1812 spin_unlock_irq(&rme32->lock); 1813 return change; 1814 } 1815 1816 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol, 1817 struct snd_ctl_elem_info *uinfo) 1818 { 1819 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1820 uinfo->count = 1; 1821 return 0; 1822 } 1823 1824 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol, 1825 struct snd_ctl_elem_value * 1826 ucontrol) 1827 { 1828 ucontrol->value.iec958.status[0] = kcontrol->private_value; 1829 return 0; 1830 } 1831 1832 static struct snd_kcontrol_new snd_rme32_controls[] = { 1833 { 1834 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1835 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1836 .info = snd_rme32_control_spdif_info, 1837 .get = snd_rme32_control_spdif_get, 1838 .put = snd_rme32_control_spdif_put 1839 }, 1840 { 1841 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1842 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1843 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), 1844 .info = snd_rme32_control_spdif_stream_info, 1845 .get = snd_rme32_control_spdif_stream_get, 1846 .put = snd_rme32_control_spdif_stream_put 1847 }, 1848 { 1849 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1850 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1851 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), 1852 .info = snd_rme32_control_spdif_mask_info, 1853 .get = snd_rme32_control_spdif_mask_get, 1854 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS 1855 }, 1856 { 1857 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1858 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1859 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), 1860 .info = snd_rme32_control_spdif_mask_info, 1861 .get = snd_rme32_control_spdif_mask_get, 1862 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS 1863 }, 1864 { 1865 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1866 .name = "Input Connector", 1867 .info = snd_rme32_info_inputtype_control, 1868 .get = snd_rme32_get_inputtype_control, 1869 .put = snd_rme32_put_inputtype_control 1870 }, 1871 { 1872 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1873 .name = "Loopback Input", 1874 .info = snd_rme32_info_loopback_control, 1875 .get = snd_rme32_get_loopback_control, 1876 .put = snd_rme32_put_loopback_control 1877 }, 1878 { 1879 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1880 .name = "Sample Clock Source", 1881 .info = snd_rme32_info_clockmode_control, 1882 .get = snd_rme32_get_clockmode_control, 1883 .put = snd_rme32_put_clockmode_control 1884 } 1885 }; 1886 1887 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32) 1888 { 1889 int idx, err; 1890 struct snd_kcontrol *kctl; 1891 1892 for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) { 1893 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0) 1894 return err; 1895 if (idx == 1) /* IEC958 (S/PDIF) Stream */ 1896 rme32->spdif_ctl = kctl; 1897 } 1898 1899 return 0; 1900 } 1901 1902 /* 1903 * Card initialisation 1904 */ 1905 1906 static void snd_rme32_card_free(struct snd_card *card) 1907 { 1908 snd_rme32_free(card->private_data); 1909 } 1910 1911 static int 1912 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) 1913 { 1914 static int dev; 1915 struct rme32 *rme32; 1916 struct snd_card *card; 1917 int err; 1918 1919 if (dev >= SNDRV_CARDS) { 1920 return -ENODEV; 1921 } 1922 if (!enable[dev]) { 1923 dev++; 1924 return -ENOENT; 1925 } 1926 1927 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 1928 sizeof(struct rme32), &card); 1929 if (err < 0) 1930 return err; 1931 card->private_free = snd_rme32_card_free; 1932 rme32 = (struct rme32 *) card->private_data; 1933 rme32->card = card; 1934 rme32->pci = pci; 1935 if (fullduplex[dev]) 1936 rme32->fullduplex_mode = 1; 1937 if ((err = snd_rme32_create(rme32)) < 0) { 1938 snd_card_free(card); 1939 return err; 1940 } 1941 1942 strcpy(card->driver, "Digi32"); 1943 switch (rme32->pci->device) { 1944 case PCI_DEVICE_ID_RME_DIGI32: 1945 strcpy(card->shortname, "RME Digi32"); 1946 break; 1947 case PCI_DEVICE_ID_RME_DIGI32_8: 1948 strcpy(card->shortname, "RME Digi32/8"); 1949 break; 1950 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1951 strcpy(card->shortname, "RME Digi32 PRO"); 1952 break; 1953 } 1954 sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d", 1955 card->shortname, rme32->rev, rme32->port, rme32->irq); 1956 1957 if ((err = snd_card_register(card)) < 0) { 1958 snd_card_free(card); 1959 return err; 1960 } 1961 pci_set_drvdata(pci, card); 1962 dev++; 1963 return 0; 1964 } 1965 1966 static void snd_rme32_remove(struct pci_dev *pci) 1967 { 1968 snd_card_free(pci_get_drvdata(pci)); 1969 } 1970 1971 static struct pci_driver rme32_driver = { 1972 .name = KBUILD_MODNAME, 1973 .id_table = snd_rme32_ids, 1974 .probe = snd_rme32_probe, 1975 .remove = snd_rme32_remove, 1976 }; 1977 1978 module_pci_driver(rme32_driver); 1979