1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces 4 * 5 * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>, 6 * Pilo Chambert <pilo.c@wanadoo.fr> 7 * 8 * Thanks to : Anders Torger <torger@ludd.luth.se>, 9 * Henk Hesselink <henk@anda.nl> 10 * for writing the digi96-driver 11 * and RME for all informations. 12 * 13 * **************************************************************************** 14 * 15 * Note #1 "Sek'd models" ................................... martin 2002-12-07 16 * 17 * Identical soundcards by Sek'd were labeled: 18 * RME Digi 32 = Sek'd Prodif 32 19 * RME Digi 32 Pro = Sek'd Prodif 96 20 * RME Digi 32/8 = Sek'd Prodif Gold 21 * 22 * **************************************************************************** 23 * 24 * Note #2 "full duplex mode" ............................... martin 2002-12-07 25 * 26 * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical 27 * in this mode. Rec data and play data are using the same buffer therefore. At 28 * first you have got the playing bits in the buffer and then (after playing 29 * them) they were overwitten by the captured sound of the CS8412/14. Both 30 * modes (play/record) are running harmonically hand in hand in the same buffer 31 * and you have only one start bit plus one interrupt bit to control this 32 * paired action. 33 * This is opposite to the latter rme96 where playing and capturing is totally 34 * separated and so their full duplex mode is supported by alsa (using two 35 * start bits and two interrupts for two different buffers). 36 * But due to the wrong sequence of playing and capturing ALSA shows no solved 37 * full duplex support for the rme32 at the moment. That's bad, but I'm not 38 * able to solve it. Are you motivated enough to solve this problem now? Your 39 * patch would be welcome! 40 * 41 * **************************************************************************** 42 * 43 * "The story after the long seeking" -- tiwai 44 * 45 * Ok, the situation regarding the full duplex is now improved a bit. 46 * In the fullduplex mode (given by the module parameter), the hardware buffer 47 * is split to halves for read and write directions at the DMA pointer. 48 * That is, the half above the current DMA pointer is used for write, and 49 * the half below is used for read. To mangle this strange behavior, an 50 * software intermediate buffer is introduced. This is, of course, not good 51 * from the viewpoint of the data transfer efficiency. However, this allows 52 * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size. 53 * 54 * **************************************************************************** 55 */ 56 57 58 #include <linux/delay.h> 59 #include <linux/gfp.h> 60 #include <linux/init.h> 61 #include <linux/interrupt.h> 62 #include <linux/pci.h> 63 #include <linux/module.h> 64 #include <linux/io.h> 65 66 #include <sound/core.h> 67 #include <sound/info.h> 68 #include <sound/control.h> 69 #include <sound/pcm.h> 70 #include <sound/pcm_params.h> 71 #include <sound/pcm-indirect.h> 72 #include <sound/asoundef.h> 73 #include <sound/initval.h> 74 75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 77 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 78 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1}; 79 80 module_param_array(index, int, NULL, 0444); 81 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard."); 82 module_param_array(id, charp, NULL, 0444); 83 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard."); 84 module_param_array(enable, bool, NULL, 0444); 85 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard."); 86 module_param_array(fullduplex, bool, NULL, 0444); 87 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode."); 88 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>"); 89 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO"); 90 MODULE_LICENSE("GPL"); 91 92 /* Defines for RME Digi32 series */ 93 #define RME32_SPDIF_NCHANNELS 2 94 95 /* Playback and capture buffer size */ 96 #define RME32_BUFFER_SIZE 0x20000 97 98 /* IO area size */ 99 #define RME32_IO_SIZE 0x30000 100 101 /* IO area offsets */ 102 #define RME32_IO_DATA_BUFFER 0x0 103 #define RME32_IO_CONTROL_REGISTER 0x20000 104 #define RME32_IO_GET_POS 0x20000 105 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004 106 #define RME32_IO_RESET_POS 0x20100 107 108 /* Write control register bits */ 109 #define RME32_WCR_START (1 << 0) /* startbit */ 110 #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono 111 Setting the whole card to mono 112 doesn't seem to be very useful. 113 A software-solution can handle 114 full-duplex with one direction in 115 stereo and the other way in mono. 116 So, the hardware should work all 117 the time in stereo! */ 118 #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */ 119 #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */ 120 #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */ 121 #define RME32_WCR_FREQ_1 (1 << 5) 122 #define RME32_WCR_INP_0 (1 << 6) /* input switch */ 123 #define RME32_WCR_INP_1 (1 << 7) 124 #define RME32_WCR_RESET (1 << 8) /* Reset address */ 125 #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */ 126 #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */ 127 #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */ 128 #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */ 129 #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */ 130 #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */ 131 #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */ 132 133 #define RME32_WCR_BITPOS_FREQ_0 4 134 #define RME32_WCR_BITPOS_FREQ_1 5 135 #define RME32_WCR_BITPOS_INP_0 6 136 #define RME32_WCR_BITPOS_INP_1 7 137 138 /* Read control register bits */ 139 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff 140 #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */ 141 #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */ 142 #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */ 143 #define RME32_RCR_FREQ_1 (1 << 28) 144 #define RME32_RCR_FREQ_2 (1 << 29) 145 #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */ 146 #define RME32_RCR_IRQ (1 << 31) /* interrupt */ 147 148 #define RME32_RCR_BITPOS_F0 27 149 #define RME32_RCR_BITPOS_F1 28 150 #define RME32_RCR_BITPOS_F2 29 151 152 /* Input types */ 153 #define RME32_INPUT_OPTICAL 0 154 #define RME32_INPUT_COAXIAL 1 155 #define RME32_INPUT_INTERNAL 2 156 #define RME32_INPUT_XLR 3 157 158 /* Clock modes */ 159 #define RME32_CLOCKMODE_SLAVE 0 160 #define RME32_CLOCKMODE_MASTER_32 1 161 #define RME32_CLOCKMODE_MASTER_44 2 162 #define RME32_CLOCKMODE_MASTER_48 3 163 164 /* Block sizes in bytes */ 165 #define RME32_BLOCK_SIZE 8192 166 167 /* Software intermediate buffer (max) size */ 168 #define RME32_MID_BUFFER_SIZE (1024*1024) 169 170 /* Hardware revisions */ 171 #define RME32_32_REVISION 192 172 #define RME32_328_REVISION_OLD 100 173 #define RME32_328_REVISION_NEW 101 174 #define RME32_PRO_REVISION_WITH_8412 192 175 #define RME32_PRO_REVISION_WITH_8414 150 176 177 178 struct rme32 { 179 spinlock_t lock; 180 int irq; 181 unsigned long port; 182 void __iomem *iobase; 183 184 u32 wcreg; /* cached write control register value */ 185 u32 wcreg_spdif; /* S/PDIF setup */ 186 u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */ 187 u32 rcreg; /* cached read control register value */ 188 189 u8 rev; /* card revision number */ 190 191 struct snd_pcm_substream *playback_substream; 192 struct snd_pcm_substream *capture_substream; 193 194 int playback_frlog; /* log2 of framesize */ 195 int capture_frlog; 196 197 size_t playback_periodsize; /* in bytes, zero if not used */ 198 size_t capture_periodsize; /* in bytes, zero if not used */ 199 200 unsigned int fullduplex_mode; 201 int running; 202 203 struct snd_pcm_indirect playback_pcm; 204 struct snd_pcm_indirect capture_pcm; 205 206 struct snd_card *card; 207 struct snd_pcm *spdif_pcm; 208 struct snd_pcm *adat_pcm; 209 struct pci_dev *pci; 210 struct snd_kcontrol *spdif_ctl; 211 }; 212 213 static const struct pci_device_id snd_rme32_ids[] = { 214 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,}, 215 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,}, 216 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,}, 217 {0,} 218 }; 219 220 MODULE_DEVICE_TABLE(pci, snd_rme32_ids); 221 222 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START) 223 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414) 224 225 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream); 226 227 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream); 228 229 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd); 230 231 static void snd_rme32_proc_init(struct rme32 * rme32); 232 233 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32); 234 235 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32) 236 { 237 return (readl(rme32->iobase + RME32_IO_GET_POS) 238 & RME32_RCR_AUDIO_ADDR_MASK); 239 } 240 241 /* silence callback for halfduplex mode */ 242 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, 243 int channel, unsigned long pos, 244 unsigned long count) 245 { 246 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 247 248 memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count); 249 return 0; 250 } 251 252 /* copy callback for halfduplex mode */ 253 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, 254 int channel, unsigned long pos, 255 void __user *src, unsigned long count) 256 { 257 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 258 259 if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 260 src, count)) 261 return -EFAULT; 262 return 0; 263 } 264 265 static int snd_rme32_playback_copy_kernel(struct snd_pcm_substream *substream, 266 int channel, unsigned long pos, 267 void *src, unsigned long count) 268 { 269 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 270 271 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count); 272 return 0; 273 } 274 275 /* copy callback for halfduplex mode */ 276 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, 277 int channel, unsigned long pos, 278 void __user *dst, unsigned long count) 279 { 280 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 281 282 if (copy_to_user_fromio(dst, 283 rme32->iobase + RME32_IO_DATA_BUFFER + pos, 284 count)) 285 return -EFAULT; 286 return 0; 287 } 288 289 static int snd_rme32_capture_copy_kernel(struct snd_pcm_substream *substream, 290 int channel, unsigned long pos, 291 void *dst, unsigned long count) 292 { 293 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 294 295 memcpy_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count); 296 return 0; 297 } 298 299 /* 300 * SPDIF I/O capabilities (half-duplex mode) 301 */ 302 static const struct snd_pcm_hardware snd_rme32_spdif_info = { 303 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 304 SNDRV_PCM_INFO_MMAP_VALID | 305 SNDRV_PCM_INFO_INTERLEAVED | 306 SNDRV_PCM_INFO_PAUSE | 307 SNDRV_PCM_INFO_SYNC_START | 308 SNDRV_PCM_INFO_SYNC_APPLPTR), 309 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 310 SNDRV_PCM_FMTBIT_S32_LE), 311 .rates = (SNDRV_PCM_RATE_32000 | 312 SNDRV_PCM_RATE_44100 | 313 SNDRV_PCM_RATE_48000), 314 .rate_min = 32000, 315 .rate_max = 48000, 316 .channels_min = 2, 317 .channels_max = 2, 318 .buffer_bytes_max = RME32_BUFFER_SIZE, 319 .period_bytes_min = RME32_BLOCK_SIZE, 320 .period_bytes_max = RME32_BLOCK_SIZE, 321 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 322 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 323 .fifo_size = 0, 324 }; 325 326 /* 327 * ADAT I/O capabilities (half-duplex mode) 328 */ 329 static const struct snd_pcm_hardware snd_rme32_adat_info = 330 { 331 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 332 SNDRV_PCM_INFO_MMAP_VALID | 333 SNDRV_PCM_INFO_INTERLEAVED | 334 SNDRV_PCM_INFO_PAUSE | 335 SNDRV_PCM_INFO_SYNC_START | 336 SNDRV_PCM_INFO_SYNC_APPLPTR), 337 .formats= SNDRV_PCM_FMTBIT_S16_LE, 338 .rates = (SNDRV_PCM_RATE_44100 | 339 SNDRV_PCM_RATE_48000), 340 .rate_min = 44100, 341 .rate_max = 48000, 342 .channels_min = 8, 343 .channels_max = 8, 344 .buffer_bytes_max = RME32_BUFFER_SIZE, 345 .period_bytes_min = RME32_BLOCK_SIZE, 346 .period_bytes_max = RME32_BLOCK_SIZE, 347 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 348 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 349 .fifo_size = 0, 350 }; 351 352 /* 353 * SPDIF I/O capabilities (full-duplex mode) 354 */ 355 static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = { 356 .info = (SNDRV_PCM_INFO_MMAP | 357 SNDRV_PCM_INFO_MMAP_VALID | 358 SNDRV_PCM_INFO_INTERLEAVED | 359 SNDRV_PCM_INFO_PAUSE | 360 SNDRV_PCM_INFO_SYNC_START | 361 SNDRV_PCM_INFO_SYNC_APPLPTR), 362 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 363 SNDRV_PCM_FMTBIT_S32_LE), 364 .rates = (SNDRV_PCM_RATE_32000 | 365 SNDRV_PCM_RATE_44100 | 366 SNDRV_PCM_RATE_48000), 367 .rate_min = 32000, 368 .rate_max = 48000, 369 .channels_min = 2, 370 .channels_max = 2, 371 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 372 .period_bytes_min = RME32_BLOCK_SIZE, 373 .period_bytes_max = RME32_BLOCK_SIZE, 374 .periods_min = 2, 375 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 376 .fifo_size = 0, 377 }; 378 379 /* 380 * ADAT I/O capabilities (full-duplex mode) 381 */ 382 static const struct snd_pcm_hardware snd_rme32_adat_fd_info = 383 { 384 .info = (SNDRV_PCM_INFO_MMAP | 385 SNDRV_PCM_INFO_MMAP_VALID | 386 SNDRV_PCM_INFO_INTERLEAVED | 387 SNDRV_PCM_INFO_PAUSE | 388 SNDRV_PCM_INFO_SYNC_START | 389 SNDRV_PCM_INFO_SYNC_APPLPTR), 390 .formats= SNDRV_PCM_FMTBIT_S16_LE, 391 .rates = (SNDRV_PCM_RATE_44100 | 392 SNDRV_PCM_RATE_48000), 393 .rate_min = 44100, 394 .rate_max = 48000, 395 .channels_min = 8, 396 .channels_max = 8, 397 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 398 .period_bytes_min = RME32_BLOCK_SIZE, 399 .period_bytes_max = RME32_BLOCK_SIZE, 400 .periods_min = 2, 401 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 402 .fifo_size = 0, 403 }; 404 405 static void snd_rme32_reset_dac(struct rme32 *rme32) 406 { 407 writel(rme32->wcreg | RME32_WCR_PD, 408 rme32->iobase + RME32_IO_CONTROL_REGISTER); 409 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 410 } 411 412 static int snd_rme32_playback_getrate(struct rme32 * rme32) 413 { 414 int rate; 415 416 rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 417 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 418 switch (rate) { 419 case 1: 420 rate = 32000; 421 break; 422 case 2: 423 rate = 44100; 424 break; 425 case 3: 426 rate = 48000; 427 break; 428 default: 429 return -1; 430 } 431 return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate; 432 } 433 434 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat) 435 { 436 int n; 437 438 *is_adat = 0; 439 if (rme32->rcreg & RME32_RCR_LOCK) { 440 /* ADAT rate */ 441 *is_adat = 1; 442 } 443 if (rme32->rcreg & RME32_RCR_ERF) { 444 return -1; 445 } 446 447 /* S/PDIF rate */ 448 n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) + 449 (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) + 450 (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2); 451 452 if (RME32_PRO_WITH_8414(rme32)) 453 switch (n) { /* supporting the CS8414 */ 454 case 0: 455 case 1: 456 case 2: 457 return -1; 458 case 3: 459 return 96000; 460 case 4: 461 return 88200; 462 case 5: 463 return 48000; 464 case 6: 465 return 44100; 466 case 7: 467 return 32000; 468 default: 469 return -1; 470 } 471 else 472 switch (n) { /* supporting the CS8412 */ 473 case 0: 474 return -1; 475 case 1: 476 return 48000; 477 case 2: 478 return 44100; 479 case 3: 480 return 32000; 481 case 4: 482 return 48000; 483 case 5: 484 return 44100; 485 case 6: 486 return 44056; 487 case 7: 488 return 32000; 489 default: 490 break; 491 } 492 return -1; 493 } 494 495 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate) 496 { 497 int ds; 498 499 ds = rme32->wcreg & RME32_WCR_DS_BM; 500 switch (rate) { 501 case 32000: 502 rme32->wcreg &= ~RME32_WCR_DS_BM; 503 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 504 ~RME32_WCR_FREQ_1; 505 break; 506 case 44100: 507 rme32->wcreg &= ~RME32_WCR_DS_BM; 508 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 509 ~RME32_WCR_FREQ_0; 510 break; 511 case 48000: 512 rme32->wcreg &= ~RME32_WCR_DS_BM; 513 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 514 RME32_WCR_FREQ_1; 515 break; 516 case 64000: 517 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 518 return -EINVAL; 519 rme32->wcreg |= RME32_WCR_DS_BM; 520 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 521 ~RME32_WCR_FREQ_1; 522 break; 523 case 88200: 524 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 525 return -EINVAL; 526 rme32->wcreg |= RME32_WCR_DS_BM; 527 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 528 ~RME32_WCR_FREQ_0; 529 break; 530 case 96000: 531 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 532 return -EINVAL; 533 rme32->wcreg |= RME32_WCR_DS_BM; 534 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 535 RME32_WCR_FREQ_1; 536 break; 537 default: 538 return -EINVAL; 539 } 540 if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) || 541 (ds && !(rme32->wcreg & RME32_WCR_DS_BM))) 542 { 543 /* change to/from double-speed: reset the DAC (if available) */ 544 snd_rme32_reset_dac(rme32); 545 } else { 546 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 547 } 548 return 0; 549 } 550 551 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode) 552 { 553 switch (mode) { 554 case RME32_CLOCKMODE_SLAVE: 555 /* AutoSync */ 556 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) & 557 ~RME32_WCR_FREQ_1; 558 break; 559 case RME32_CLOCKMODE_MASTER_32: 560 /* Internal 32.0kHz */ 561 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 562 ~RME32_WCR_FREQ_1; 563 break; 564 case RME32_CLOCKMODE_MASTER_44: 565 /* Internal 44.1kHz */ 566 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) | 567 RME32_WCR_FREQ_1; 568 break; 569 case RME32_CLOCKMODE_MASTER_48: 570 /* Internal 48.0kHz */ 571 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 572 RME32_WCR_FREQ_1; 573 break; 574 default: 575 return -EINVAL; 576 } 577 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 578 return 0; 579 } 580 581 static int snd_rme32_getclockmode(struct rme32 * rme32) 582 { 583 return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 584 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 585 } 586 587 static int snd_rme32_setinputtype(struct rme32 * rme32, int type) 588 { 589 switch (type) { 590 case RME32_INPUT_OPTICAL: 591 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) & 592 ~RME32_WCR_INP_1; 593 break; 594 case RME32_INPUT_COAXIAL: 595 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) & 596 ~RME32_WCR_INP_1; 597 break; 598 case RME32_INPUT_INTERNAL: 599 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) | 600 RME32_WCR_INP_1; 601 break; 602 case RME32_INPUT_XLR: 603 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) | 604 RME32_WCR_INP_1; 605 break; 606 default: 607 return -EINVAL; 608 } 609 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 610 return 0; 611 } 612 613 static int snd_rme32_getinputtype(struct rme32 * rme32) 614 { 615 return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) + 616 (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1); 617 } 618 619 static void 620 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback) 621 { 622 int frlog; 623 624 if (n_channels == 2) { 625 frlog = 1; 626 } else { 627 /* assume 8 channels */ 628 frlog = 3; 629 } 630 if (is_playback) { 631 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 632 rme32->playback_frlog = frlog; 633 } else { 634 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 635 rme32->capture_frlog = frlog; 636 } 637 } 638 639 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format) 640 { 641 switch (format) { 642 case SNDRV_PCM_FORMAT_S16_LE: 643 rme32->wcreg &= ~RME32_WCR_MODE24; 644 break; 645 case SNDRV_PCM_FORMAT_S32_LE: 646 rme32->wcreg |= RME32_WCR_MODE24; 647 break; 648 default: 649 return -EINVAL; 650 } 651 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 652 return 0; 653 } 654 655 static int 656 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream, 657 struct snd_pcm_hw_params *params) 658 { 659 int err, rate, dummy; 660 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 661 struct snd_pcm_runtime *runtime = substream->runtime; 662 663 if (!rme32->fullduplex_mode) { 664 runtime->dma_area = (void __force *)(rme32->iobase + 665 RME32_IO_DATA_BUFFER); 666 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 667 runtime->dma_bytes = RME32_BUFFER_SIZE; 668 } 669 670 spin_lock_irq(&rme32->lock); 671 rate = 0; 672 if (rme32->rcreg & RME32_RCR_KMODE) 673 rate = snd_rme32_capture_getrate(rme32, &dummy); 674 if (rate > 0) { 675 /* AutoSync */ 676 if ((int)params_rate(params) != rate) { 677 spin_unlock_irq(&rme32->lock); 678 return -EIO; 679 } 680 } else { 681 err = snd_rme32_playback_setrate(rme32, params_rate(params)); 682 if (err < 0) { 683 spin_unlock_irq(&rme32->lock); 684 return err; 685 } 686 } 687 err = snd_rme32_setformat(rme32, params_format(params)); 688 if (err < 0) { 689 spin_unlock_irq(&rme32->lock); 690 return err; 691 } 692 693 snd_rme32_setframelog(rme32, params_channels(params), 1); 694 if (rme32->capture_periodsize != 0) { 695 if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) { 696 spin_unlock_irq(&rme32->lock); 697 return -EBUSY; 698 } 699 } 700 rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog; 701 /* S/PDIF setup */ 702 if ((rme32->wcreg & RME32_WCR_ADAT) == 0) { 703 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 704 rme32->wcreg |= rme32->wcreg_spdif_stream; 705 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 706 } 707 spin_unlock_irq(&rme32->lock); 708 709 return 0; 710 } 711 712 static int 713 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream, 714 struct snd_pcm_hw_params *params) 715 { 716 int err, isadat, rate; 717 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 718 struct snd_pcm_runtime *runtime = substream->runtime; 719 720 if (!rme32->fullduplex_mode) { 721 runtime->dma_area = (void __force *)rme32->iobase + 722 RME32_IO_DATA_BUFFER; 723 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 724 runtime->dma_bytes = RME32_BUFFER_SIZE; 725 } 726 727 spin_lock_irq(&rme32->lock); 728 /* enable AutoSync for record-preparing */ 729 rme32->wcreg |= RME32_WCR_AUTOSYNC; 730 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 731 732 err = snd_rme32_setformat(rme32, params_format(params)); 733 if (err < 0) { 734 spin_unlock_irq(&rme32->lock); 735 return err; 736 } 737 err = snd_rme32_playback_setrate(rme32, params_rate(params)); 738 if (err < 0) { 739 spin_unlock_irq(&rme32->lock); 740 return err; 741 } 742 rate = snd_rme32_capture_getrate(rme32, &isadat); 743 if (rate > 0) { 744 if ((int)params_rate(params) != rate) { 745 spin_unlock_irq(&rme32->lock); 746 return -EIO; 747 } 748 if ((isadat && runtime->hw.channels_min == 2) || 749 (!isadat && runtime->hw.channels_min == 8)) { 750 spin_unlock_irq(&rme32->lock); 751 return -EIO; 752 } 753 } 754 /* AutoSync off for recording */ 755 rme32->wcreg &= ~RME32_WCR_AUTOSYNC; 756 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 757 758 snd_rme32_setframelog(rme32, params_channels(params), 0); 759 if (rme32->playback_periodsize != 0) { 760 if (params_period_size(params) << rme32->capture_frlog != 761 rme32->playback_periodsize) { 762 spin_unlock_irq(&rme32->lock); 763 return -EBUSY; 764 } 765 } 766 rme32->capture_periodsize = 767 params_period_size(params) << rme32->capture_frlog; 768 spin_unlock_irq(&rme32->lock); 769 770 return 0; 771 } 772 773 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause) 774 { 775 if (!from_pause) { 776 writel(0, rme32->iobase + RME32_IO_RESET_POS); 777 } 778 779 rme32->wcreg |= RME32_WCR_START; 780 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 781 } 782 783 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause) 784 { 785 /* 786 * Check if there is an unconfirmed IRQ, if so confirm it, or else 787 * the hardware will not stop generating interrupts 788 */ 789 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 790 if (rme32->rcreg & RME32_RCR_IRQ) { 791 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 792 } 793 rme32->wcreg &= ~RME32_WCR_START; 794 if (rme32->wcreg & RME32_WCR_SEL) 795 rme32->wcreg |= RME32_WCR_MUTE; 796 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 797 if (! to_pause) 798 writel(0, rme32->iobase + RME32_IO_RESET_POS); 799 } 800 801 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id) 802 { 803 struct rme32 *rme32 = (struct rme32 *) dev_id; 804 805 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 806 if (!(rme32->rcreg & RME32_RCR_IRQ)) { 807 return IRQ_NONE; 808 } else { 809 if (rme32->capture_substream) { 810 snd_pcm_period_elapsed(rme32->capture_substream); 811 } 812 if (rme32->playback_substream) { 813 snd_pcm_period_elapsed(rme32->playback_substream); 814 } 815 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 816 } 817 return IRQ_HANDLED; 818 } 819 820 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE }; 821 822 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = { 823 .count = ARRAY_SIZE(period_bytes), 824 .list = period_bytes, 825 .mask = 0 826 }; 827 828 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime) 829 { 830 if (! rme32->fullduplex_mode) { 831 snd_pcm_hw_constraint_single(runtime, 832 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 833 RME32_BUFFER_SIZE); 834 snd_pcm_hw_constraint_list(runtime, 0, 835 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 836 &hw_constraints_period_bytes); 837 } 838 } 839 840 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream) 841 { 842 int rate, dummy; 843 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 844 struct snd_pcm_runtime *runtime = substream->runtime; 845 846 snd_pcm_set_sync(substream); 847 848 spin_lock_irq(&rme32->lock); 849 if (rme32->playback_substream != NULL) { 850 spin_unlock_irq(&rme32->lock); 851 return -EBUSY; 852 } 853 rme32->wcreg &= ~RME32_WCR_ADAT; 854 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 855 rme32->playback_substream = substream; 856 spin_unlock_irq(&rme32->lock); 857 858 if (rme32->fullduplex_mode) 859 runtime->hw = snd_rme32_spdif_fd_info; 860 else 861 runtime->hw = snd_rme32_spdif_info; 862 if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) { 863 runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 864 runtime->hw.rate_max = 96000; 865 } 866 rate = 0; 867 if (rme32->rcreg & RME32_RCR_KMODE) 868 rate = snd_rme32_capture_getrate(rme32, &dummy); 869 if (rate > 0) { 870 /* AutoSync */ 871 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 872 runtime->hw.rate_min = rate; 873 runtime->hw.rate_max = rate; 874 } 875 876 snd_rme32_set_buffer_constraint(rme32, runtime); 877 878 rme32->wcreg_spdif_stream = rme32->wcreg_spdif; 879 rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 880 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 881 SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id); 882 return 0; 883 } 884 885 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream) 886 { 887 int isadat, rate; 888 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 889 struct snd_pcm_runtime *runtime = substream->runtime; 890 891 snd_pcm_set_sync(substream); 892 893 spin_lock_irq(&rme32->lock); 894 if (rme32->capture_substream != NULL) { 895 spin_unlock_irq(&rme32->lock); 896 return -EBUSY; 897 } 898 rme32->capture_substream = substream; 899 spin_unlock_irq(&rme32->lock); 900 901 if (rme32->fullduplex_mode) 902 runtime->hw = snd_rme32_spdif_fd_info; 903 else 904 runtime->hw = snd_rme32_spdif_info; 905 if (RME32_PRO_WITH_8414(rme32)) { 906 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 907 runtime->hw.rate_max = 96000; 908 } 909 rate = snd_rme32_capture_getrate(rme32, &isadat); 910 if (rate > 0) { 911 if (isadat) { 912 return -EIO; 913 } 914 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 915 runtime->hw.rate_min = rate; 916 runtime->hw.rate_max = rate; 917 } 918 919 snd_rme32_set_buffer_constraint(rme32, runtime); 920 921 return 0; 922 } 923 924 static int 925 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream) 926 { 927 int rate, dummy; 928 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 929 struct snd_pcm_runtime *runtime = substream->runtime; 930 931 snd_pcm_set_sync(substream); 932 933 spin_lock_irq(&rme32->lock); 934 if (rme32->playback_substream != NULL) { 935 spin_unlock_irq(&rme32->lock); 936 return -EBUSY; 937 } 938 rme32->wcreg |= RME32_WCR_ADAT; 939 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 940 rme32->playback_substream = substream; 941 spin_unlock_irq(&rme32->lock); 942 943 if (rme32->fullduplex_mode) 944 runtime->hw = snd_rme32_adat_fd_info; 945 else 946 runtime->hw = snd_rme32_adat_info; 947 rate = 0; 948 if (rme32->rcreg & RME32_RCR_KMODE) 949 rate = snd_rme32_capture_getrate(rme32, &dummy); 950 if (rate > 0) { 951 /* AutoSync */ 952 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 953 runtime->hw.rate_min = rate; 954 runtime->hw.rate_max = rate; 955 } 956 957 snd_rme32_set_buffer_constraint(rme32, runtime); 958 return 0; 959 } 960 961 static int 962 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream) 963 { 964 int isadat, rate; 965 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 966 struct snd_pcm_runtime *runtime = substream->runtime; 967 968 if (rme32->fullduplex_mode) 969 runtime->hw = snd_rme32_adat_fd_info; 970 else 971 runtime->hw = snd_rme32_adat_info; 972 rate = snd_rme32_capture_getrate(rme32, &isadat); 973 if (rate > 0) { 974 if (!isadat) { 975 return -EIO; 976 } 977 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 978 runtime->hw.rate_min = rate; 979 runtime->hw.rate_max = rate; 980 } 981 982 snd_pcm_set_sync(substream); 983 984 spin_lock_irq(&rme32->lock); 985 if (rme32->capture_substream != NULL) { 986 spin_unlock_irq(&rme32->lock); 987 return -EBUSY; 988 } 989 rme32->capture_substream = substream; 990 spin_unlock_irq(&rme32->lock); 991 992 snd_rme32_set_buffer_constraint(rme32, runtime); 993 return 0; 994 } 995 996 static int snd_rme32_playback_close(struct snd_pcm_substream *substream) 997 { 998 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 999 int spdif = 0; 1000 1001 spin_lock_irq(&rme32->lock); 1002 rme32->playback_substream = NULL; 1003 rme32->playback_periodsize = 0; 1004 spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0; 1005 spin_unlock_irq(&rme32->lock); 1006 if (spdif) { 1007 rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1008 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 1009 SNDRV_CTL_EVENT_MASK_INFO, 1010 &rme32->spdif_ctl->id); 1011 } 1012 return 0; 1013 } 1014 1015 static int snd_rme32_capture_close(struct snd_pcm_substream *substream) 1016 { 1017 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1018 1019 spin_lock_irq(&rme32->lock); 1020 rme32->capture_substream = NULL; 1021 rme32->capture_periodsize = 0; 1022 spin_unlock_irq(&rme32->lock); 1023 return 0; 1024 } 1025 1026 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream) 1027 { 1028 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1029 1030 spin_lock_irq(&rme32->lock); 1031 if (rme32->fullduplex_mode) { 1032 memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm)); 1033 rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1034 rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1035 } else { 1036 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1037 } 1038 if (rme32->wcreg & RME32_WCR_SEL) 1039 rme32->wcreg &= ~RME32_WCR_MUTE; 1040 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1041 spin_unlock_irq(&rme32->lock); 1042 return 0; 1043 } 1044 1045 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream) 1046 { 1047 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1048 1049 spin_lock_irq(&rme32->lock); 1050 if (rme32->fullduplex_mode) { 1051 memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm)); 1052 rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1053 rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2; 1054 rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1055 } else { 1056 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1057 } 1058 spin_unlock_irq(&rme32->lock); 1059 return 0; 1060 } 1061 1062 static int 1063 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1064 { 1065 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1066 struct snd_pcm_substream *s; 1067 1068 spin_lock(&rme32->lock); 1069 snd_pcm_group_for_each_entry(s, substream) { 1070 if (s != rme32->playback_substream && 1071 s != rme32->capture_substream) 1072 continue; 1073 switch (cmd) { 1074 case SNDRV_PCM_TRIGGER_START: 1075 rme32->running |= (1 << s->stream); 1076 if (rme32->fullduplex_mode) { 1077 /* remember the current DMA position */ 1078 if (s == rme32->playback_substream) { 1079 rme32->playback_pcm.hw_io = 1080 rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1081 } else { 1082 rme32->capture_pcm.hw_io = 1083 rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1084 } 1085 } 1086 break; 1087 case SNDRV_PCM_TRIGGER_STOP: 1088 rme32->running &= ~(1 << s->stream); 1089 break; 1090 } 1091 snd_pcm_trigger_done(s, substream); 1092 } 1093 1094 switch (cmd) { 1095 case SNDRV_PCM_TRIGGER_START: 1096 if (rme32->running && ! RME32_ISWORKING(rme32)) 1097 snd_rme32_pcm_start(rme32, 0); 1098 break; 1099 case SNDRV_PCM_TRIGGER_STOP: 1100 if (! rme32->running && RME32_ISWORKING(rme32)) 1101 snd_rme32_pcm_stop(rme32, 0); 1102 break; 1103 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1104 if (rme32->running && RME32_ISWORKING(rme32)) 1105 snd_rme32_pcm_stop(rme32, 1); 1106 break; 1107 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1108 if (rme32->running && ! RME32_ISWORKING(rme32)) 1109 snd_rme32_pcm_start(rme32, 1); 1110 break; 1111 } 1112 spin_unlock(&rme32->lock); 1113 return 0; 1114 } 1115 1116 /* pointer callback for halfduplex mode */ 1117 static snd_pcm_uframes_t 1118 snd_rme32_playback_pointer(struct snd_pcm_substream *substream) 1119 { 1120 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1121 return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog; 1122 } 1123 1124 static snd_pcm_uframes_t 1125 snd_rme32_capture_pointer(struct snd_pcm_substream *substream) 1126 { 1127 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1128 return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog; 1129 } 1130 1131 1132 /* ack and pointer callbacks for fullduplex mode */ 1133 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream, 1134 struct snd_pcm_indirect *rec, size_t bytes) 1135 { 1136 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1137 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1138 substream->runtime->dma_area + rec->sw_data, bytes); 1139 } 1140 1141 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream) 1142 { 1143 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1144 struct snd_pcm_indirect *rec, *cprec; 1145 1146 rec = &rme32->playback_pcm; 1147 cprec = &rme32->capture_pcm; 1148 spin_lock(&rme32->lock); 1149 rec->hw_queue_size = RME32_BUFFER_SIZE; 1150 if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE)) 1151 rec->hw_queue_size -= cprec->hw_ready; 1152 spin_unlock(&rme32->lock); 1153 return snd_pcm_indirect_playback_transfer(substream, rec, 1154 snd_rme32_pb_trans_copy); 1155 } 1156 1157 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream, 1158 struct snd_pcm_indirect *rec, size_t bytes) 1159 { 1160 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1161 memcpy_fromio(substream->runtime->dma_area + rec->sw_data, 1162 rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1163 bytes); 1164 } 1165 1166 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream) 1167 { 1168 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1169 return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm, 1170 snd_rme32_cp_trans_copy); 1171 } 1172 1173 static snd_pcm_uframes_t 1174 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream) 1175 { 1176 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1177 return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm, 1178 snd_rme32_pcm_byteptr(rme32)); 1179 } 1180 1181 static snd_pcm_uframes_t 1182 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream) 1183 { 1184 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1185 return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm, 1186 snd_rme32_pcm_byteptr(rme32)); 1187 } 1188 1189 /* for halfduplex mode */ 1190 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = { 1191 .open = snd_rme32_playback_spdif_open, 1192 .close = snd_rme32_playback_close, 1193 .hw_params = snd_rme32_playback_hw_params, 1194 .prepare = snd_rme32_playback_prepare, 1195 .trigger = snd_rme32_pcm_trigger, 1196 .pointer = snd_rme32_playback_pointer, 1197 .copy_user = snd_rme32_playback_copy, 1198 .copy_kernel = snd_rme32_playback_copy_kernel, 1199 .fill_silence = snd_rme32_playback_silence, 1200 .mmap = snd_pcm_lib_mmap_iomem, 1201 }; 1202 1203 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = { 1204 .open = snd_rme32_capture_spdif_open, 1205 .close = snd_rme32_capture_close, 1206 .hw_params = snd_rme32_capture_hw_params, 1207 .prepare = snd_rme32_capture_prepare, 1208 .trigger = snd_rme32_pcm_trigger, 1209 .pointer = snd_rme32_capture_pointer, 1210 .copy_user = snd_rme32_capture_copy, 1211 .copy_kernel = snd_rme32_capture_copy_kernel, 1212 .mmap = snd_pcm_lib_mmap_iomem, 1213 }; 1214 1215 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = { 1216 .open = snd_rme32_playback_adat_open, 1217 .close = snd_rme32_playback_close, 1218 .hw_params = snd_rme32_playback_hw_params, 1219 .prepare = snd_rme32_playback_prepare, 1220 .trigger = snd_rme32_pcm_trigger, 1221 .pointer = snd_rme32_playback_pointer, 1222 .copy_user = snd_rme32_playback_copy, 1223 .copy_kernel = snd_rme32_playback_copy_kernel, 1224 .fill_silence = snd_rme32_playback_silence, 1225 .mmap = snd_pcm_lib_mmap_iomem, 1226 }; 1227 1228 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = { 1229 .open = snd_rme32_capture_adat_open, 1230 .close = snd_rme32_capture_close, 1231 .hw_params = snd_rme32_capture_hw_params, 1232 .prepare = snd_rme32_capture_prepare, 1233 .trigger = snd_rme32_pcm_trigger, 1234 .pointer = snd_rme32_capture_pointer, 1235 .copy_user = snd_rme32_capture_copy, 1236 .copy_kernel = snd_rme32_capture_copy_kernel, 1237 .mmap = snd_pcm_lib_mmap_iomem, 1238 }; 1239 1240 /* for fullduplex mode */ 1241 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = { 1242 .open = snd_rme32_playback_spdif_open, 1243 .close = snd_rme32_playback_close, 1244 .hw_params = snd_rme32_playback_hw_params, 1245 .prepare = snd_rme32_playback_prepare, 1246 .trigger = snd_rme32_pcm_trigger, 1247 .pointer = snd_rme32_playback_fd_pointer, 1248 .ack = snd_rme32_playback_fd_ack, 1249 }; 1250 1251 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = { 1252 .open = snd_rme32_capture_spdif_open, 1253 .close = snd_rme32_capture_close, 1254 .hw_params = snd_rme32_capture_hw_params, 1255 .prepare = snd_rme32_capture_prepare, 1256 .trigger = snd_rme32_pcm_trigger, 1257 .pointer = snd_rme32_capture_fd_pointer, 1258 .ack = snd_rme32_capture_fd_ack, 1259 }; 1260 1261 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = { 1262 .open = snd_rme32_playback_adat_open, 1263 .close = snd_rme32_playback_close, 1264 .hw_params = snd_rme32_playback_hw_params, 1265 .prepare = snd_rme32_playback_prepare, 1266 .trigger = snd_rme32_pcm_trigger, 1267 .pointer = snd_rme32_playback_fd_pointer, 1268 .ack = snd_rme32_playback_fd_ack, 1269 }; 1270 1271 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = { 1272 .open = snd_rme32_capture_adat_open, 1273 .close = snd_rme32_capture_close, 1274 .hw_params = snd_rme32_capture_hw_params, 1275 .prepare = snd_rme32_capture_prepare, 1276 .trigger = snd_rme32_pcm_trigger, 1277 .pointer = snd_rme32_capture_fd_pointer, 1278 .ack = snd_rme32_capture_fd_ack, 1279 }; 1280 1281 static void snd_rme32_free(struct rme32 *rme32) 1282 { 1283 if (rme32->irq >= 0) 1284 snd_rme32_pcm_stop(rme32, 0); 1285 } 1286 1287 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm) 1288 { 1289 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1290 rme32->spdif_pcm = NULL; 1291 } 1292 1293 static void 1294 snd_rme32_free_adat_pcm(struct snd_pcm *pcm) 1295 { 1296 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1297 rme32->adat_pcm = NULL; 1298 } 1299 1300 static int snd_rme32_create(struct rme32 *rme32) 1301 { 1302 struct pci_dev *pci = rme32->pci; 1303 int err; 1304 1305 rme32->irq = -1; 1306 spin_lock_init(&rme32->lock); 1307 1308 err = pcim_enable_device(pci); 1309 if (err < 0) 1310 return err; 1311 1312 err = pci_request_regions(pci, "RME32"); 1313 if (err < 0) 1314 return err; 1315 rme32->port = pci_resource_start(rme32->pci, 0); 1316 1317 rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE); 1318 if (!rme32->iobase) { 1319 dev_err(rme32->card->dev, 1320 "unable to remap memory region 0x%lx-0x%lx\n", 1321 rme32->port, rme32->port + RME32_IO_SIZE - 1); 1322 return -ENOMEM; 1323 } 1324 1325 if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt, 1326 IRQF_SHARED, KBUILD_MODNAME, rme32)) { 1327 dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq); 1328 return -EBUSY; 1329 } 1330 rme32->irq = pci->irq; 1331 rme32->card->sync_irq = rme32->irq; 1332 1333 /* read the card's revision number */ 1334 pci_read_config_byte(pci, 8, &rme32->rev); 1335 1336 /* set up ALSA pcm device for S/PDIF */ 1337 err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm); 1338 if (err < 0) 1339 return err; 1340 rme32->spdif_pcm->private_data = rme32; 1341 rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm; 1342 strcpy(rme32->spdif_pcm->name, "Digi32 IEC958"); 1343 if (rme32->fullduplex_mode) { 1344 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1345 &snd_rme32_playback_spdif_fd_ops); 1346 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1347 &snd_rme32_capture_spdif_fd_ops); 1348 snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1349 NULL, 0, RME32_MID_BUFFER_SIZE); 1350 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1351 } else { 1352 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1353 &snd_rme32_playback_spdif_ops); 1354 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1355 &snd_rme32_capture_spdif_ops); 1356 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1357 } 1358 1359 /* set up ALSA pcm device for ADAT */ 1360 if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) || 1361 (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) { 1362 /* ADAT is not available on DIGI32 and DIGI32 Pro */ 1363 rme32->adat_pcm = NULL; 1364 } 1365 else { 1366 err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1, 1367 1, 1, &rme32->adat_pcm); 1368 if (err < 0) 1369 return err; 1370 rme32->adat_pcm->private_data = rme32; 1371 rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm; 1372 strcpy(rme32->adat_pcm->name, "Digi32 ADAT"); 1373 if (rme32->fullduplex_mode) { 1374 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1375 &snd_rme32_playback_adat_fd_ops); 1376 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1377 &snd_rme32_capture_adat_fd_ops); 1378 snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1379 NULL, 1380 0, RME32_MID_BUFFER_SIZE); 1381 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1382 } else { 1383 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1384 &snd_rme32_playback_adat_ops); 1385 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1386 &snd_rme32_capture_adat_ops); 1387 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1388 } 1389 } 1390 1391 1392 rme32->playback_periodsize = 0; 1393 rme32->capture_periodsize = 0; 1394 1395 /* make sure playback/capture is stopped, if by some reason active */ 1396 snd_rme32_pcm_stop(rme32, 0); 1397 1398 /* reset DAC */ 1399 snd_rme32_reset_dac(rme32); 1400 1401 /* reset buffer pointer */ 1402 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1403 1404 /* set default values in registers */ 1405 rme32->wcreg = RME32_WCR_SEL | /* normal playback */ 1406 RME32_WCR_INP_0 | /* input select */ 1407 RME32_WCR_MUTE; /* muting on */ 1408 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1409 1410 1411 /* init switch interface */ 1412 err = snd_rme32_create_switches(rme32->card, rme32); 1413 if (err < 0) 1414 return err; 1415 1416 /* init proc interface */ 1417 snd_rme32_proc_init(rme32); 1418 1419 rme32->capture_substream = NULL; 1420 rme32->playback_substream = NULL; 1421 1422 return 0; 1423 } 1424 1425 /* 1426 * proc interface 1427 */ 1428 1429 static void 1430 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) 1431 { 1432 int n; 1433 struct rme32 *rme32 = (struct rme32 *) entry->private_data; 1434 1435 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 1436 1437 snd_iprintf(buffer, rme32->card->longname); 1438 snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1); 1439 1440 snd_iprintf(buffer, "\nGeneral settings\n"); 1441 if (rme32->fullduplex_mode) 1442 snd_iprintf(buffer, " Full-duplex mode\n"); 1443 else 1444 snd_iprintf(buffer, " Half-duplex mode\n"); 1445 if (RME32_PRO_WITH_8414(rme32)) { 1446 snd_iprintf(buffer, " receiver: CS8414\n"); 1447 } else { 1448 snd_iprintf(buffer, " receiver: CS8412\n"); 1449 } 1450 if (rme32->wcreg & RME32_WCR_MODE24) { 1451 snd_iprintf(buffer, " format: 24 bit"); 1452 } else { 1453 snd_iprintf(buffer, " format: 16 bit"); 1454 } 1455 if (rme32->wcreg & RME32_WCR_MONO) { 1456 snd_iprintf(buffer, ", Mono\n"); 1457 } else { 1458 snd_iprintf(buffer, ", Stereo\n"); 1459 } 1460 1461 snd_iprintf(buffer, "\nInput settings\n"); 1462 switch (snd_rme32_getinputtype(rme32)) { 1463 case RME32_INPUT_OPTICAL: 1464 snd_iprintf(buffer, " input: optical"); 1465 break; 1466 case RME32_INPUT_COAXIAL: 1467 snd_iprintf(buffer, " input: coaxial"); 1468 break; 1469 case RME32_INPUT_INTERNAL: 1470 snd_iprintf(buffer, " input: internal"); 1471 break; 1472 case RME32_INPUT_XLR: 1473 snd_iprintf(buffer, " input: XLR"); 1474 break; 1475 } 1476 if (snd_rme32_capture_getrate(rme32, &n) < 0) { 1477 snd_iprintf(buffer, "\n sample rate: no valid signal\n"); 1478 } else { 1479 if (n) { 1480 snd_iprintf(buffer, " (8 channels)\n"); 1481 } else { 1482 snd_iprintf(buffer, " (2 channels)\n"); 1483 } 1484 snd_iprintf(buffer, " sample rate: %d Hz\n", 1485 snd_rme32_capture_getrate(rme32, &n)); 1486 } 1487 1488 snd_iprintf(buffer, "\nOutput settings\n"); 1489 if (rme32->wcreg & RME32_WCR_SEL) { 1490 snd_iprintf(buffer, " output signal: normal playback"); 1491 } else { 1492 snd_iprintf(buffer, " output signal: same as input"); 1493 } 1494 if (rme32->wcreg & RME32_WCR_MUTE) { 1495 snd_iprintf(buffer, " (muted)\n"); 1496 } else { 1497 snd_iprintf(buffer, "\n"); 1498 } 1499 1500 /* master output frequency */ 1501 if (! 1502 ((!(rme32->wcreg & RME32_WCR_FREQ_0)) 1503 && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) { 1504 snd_iprintf(buffer, " sample rate: %d Hz\n", 1505 snd_rme32_playback_getrate(rme32)); 1506 } 1507 if (rme32->rcreg & RME32_RCR_KMODE) { 1508 snd_iprintf(buffer, " sample clock source: AutoSync\n"); 1509 } else { 1510 snd_iprintf(buffer, " sample clock source: Internal\n"); 1511 } 1512 if (rme32->wcreg & RME32_WCR_PRO) { 1513 snd_iprintf(buffer, " format: AES/EBU (professional)\n"); 1514 } else { 1515 snd_iprintf(buffer, " format: IEC958 (consumer)\n"); 1516 } 1517 if (rme32->wcreg & RME32_WCR_EMP) { 1518 snd_iprintf(buffer, " emphasis: on\n"); 1519 } else { 1520 snd_iprintf(buffer, " emphasis: off\n"); 1521 } 1522 } 1523 1524 static void snd_rme32_proc_init(struct rme32 *rme32) 1525 { 1526 snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read); 1527 } 1528 1529 /* 1530 * control interface 1531 */ 1532 1533 #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info 1534 1535 static int 1536 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol, 1537 struct snd_ctl_elem_value *ucontrol) 1538 { 1539 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1540 1541 spin_lock_irq(&rme32->lock); 1542 ucontrol->value.integer.value[0] = 1543 rme32->wcreg & RME32_WCR_SEL ? 0 : 1; 1544 spin_unlock_irq(&rme32->lock); 1545 return 0; 1546 } 1547 static int 1548 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol, 1549 struct snd_ctl_elem_value *ucontrol) 1550 { 1551 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1552 unsigned int val; 1553 int change; 1554 1555 val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL; 1556 spin_lock_irq(&rme32->lock); 1557 val = (rme32->wcreg & ~RME32_WCR_SEL) | val; 1558 change = val != rme32->wcreg; 1559 if (ucontrol->value.integer.value[0]) 1560 val &= ~RME32_WCR_MUTE; 1561 else 1562 val |= RME32_WCR_MUTE; 1563 rme32->wcreg = val; 1564 writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1565 spin_unlock_irq(&rme32->lock); 1566 return change; 1567 } 1568 1569 static int 1570 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol, 1571 struct snd_ctl_elem_info *uinfo) 1572 { 1573 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1574 static const char * const texts[4] = { 1575 "Optical", "Coaxial", "Internal", "XLR" 1576 }; 1577 int num_items; 1578 1579 switch (rme32->pci->device) { 1580 case PCI_DEVICE_ID_RME_DIGI32: 1581 case PCI_DEVICE_ID_RME_DIGI32_8: 1582 num_items = 3; 1583 break; 1584 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1585 num_items = 4; 1586 break; 1587 default: 1588 snd_BUG(); 1589 return -EINVAL; 1590 } 1591 return snd_ctl_enum_info(uinfo, 1, num_items, texts); 1592 } 1593 static int 1594 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol, 1595 struct snd_ctl_elem_value *ucontrol) 1596 { 1597 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1598 unsigned int items = 3; 1599 1600 spin_lock_irq(&rme32->lock); 1601 ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32); 1602 1603 switch (rme32->pci->device) { 1604 case PCI_DEVICE_ID_RME_DIGI32: 1605 case PCI_DEVICE_ID_RME_DIGI32_8: 1606 items = 3; 1607 break; 1608 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1609 items = 4; 1610 break; 1611 default: 1612 snd_BUG(); 1613 break; 1614 } 1615 if (ucontrol->value.enumerated.item[0] >= items) { 1616 ucontrol->value.enumerated.item[0] = items - 1; 1617 } 1618 1619 spin_unlock_irq(&rme32->lock); 1620 return 0; 1621 } 1622 static int 1623 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol, 1624 struct snd_ctl_elem_value *ucontrol) 1625 { 1626 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1627 unsigned int val; 1628 int change, items = 3; 1629 1630 switch (rme32->pci->device) { 1631 case PCI_DEVICE_ID_RME_DIGI32: 1632 case PCI_DEVICE_ID_RME_DIGI32_8: 1633 items = 3; 1634 break; 1635 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1636 items = 4; 1637 break; 1638 default: 1639 snd_BUG(); 1640 break; 1641 } 1642 val = ucontrol->value.enumerated.item[0] % items; 1643 1644 spin_lock_irq(&rme32->lock); 1645 change = val != (unsigned int)snd_rme32_getinputtype(rme32); 1646 snd_rme32_setinputtype(rme32, val); 1647 spin_unlock_irq(&rme32->lock); 1648 return change; 1649 } 1650 1651 static int 1652 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol, 1653 struct snd_ctl_elem_info *uinfo) 1654 { 1655 static const char * const texts[4] = { "AutoSync", 1656 "Internal 32.0kHz", 1657 "Internal 44.1kHz", 1658 "Internal 48.0kHz" }; 1659 1660 return snd_ctl_enum_info(uinfo, 1, 4, texts); 1661 } 1662 static int 1663 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol, 1664 struct snd_ctl_elem_value *ucontrol) 1665 { 1666 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1667 1668 spin_lock_irq(&rme32->lock); 1669 ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32); 1670 spin_unlock_irq(&rme32->lock); 1671 return 0; 1672 } 1673 static int 1674 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol, 1675 struct snd_ctl_elem_value *ucontrol) 1676 { 1677 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1678 unsigned int val; 1679 int change; 1680 1681 val = ucontrol->value.enumerated.item[0] % 3; 1682 spin_lock_irq(&rme32->lock); 1683 change = val != (unsigned int)snd_rme32_getclockmode(rme32); 1684 snd_rme32_setclockmode(rme32, val); 1685 spin_unlock_irq(&rme32->lock); 1686 return change; 1687 } 1688 1689 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes) 1690 { 1691 u32 val = 0; 1692 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0; 1693 if (val & RME32_WCR_PRO) 1694 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1695 else 1696 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1697 return val; 1698 } 1699 1700 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val) 1701 { 1702 aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0); 1703 if (val & RME32_WCR_PRO) 1704 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; 1705 else 1706 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; 1707 } 1708 1709 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol, 1710 struct snd_ctl_elem_info *uinfo) 1711 { 1712 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1713 uinfo->count = 1; 1714 return 0; 1715 } 1716 1717 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol, 1718 struct snd_ctl_elem_value *ucontrol) 1719 { 1720 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1721 1722 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1723 rme32->wcreg_spdif); 1724 return 0; 1725 } 1726 1727 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol, 1728 struct snd_ctl_elem_value *ucontrol) 1729 { 1730 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1731 int change; 1732 u32 val; 1733 1734 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1735 spin_lock_irq(&rme32->lock); 1736 change = val != rme32->wcreg_spdif; 1737 rme32->wcreg_spdif = val; 1738 spin_unlock_irq(&rme32->lock); 1739 return change; 1740 } 1741 1742 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol, 1743 struct snd_ctl_elem_info *uinfo) 1744 { 1745 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1746 uinfo->count = 1; 1747 return 0; 1748 } 1749 1750 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol, 1751 struct snd_ctl_elem_value * 1752 ucontrol) 1753 { 1754 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1755 1756 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1757 rme32->wcreg_spdif_stream); 1758 return 0; 1759 } 1760 1761 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol, 1762 struct snd_ctl_elem_value * 1763 ucontrol) 1764 { 1765 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1766 int change; 1767 u32 val; 1768 1769 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1770 spin_lock_irq(&rme32->lock); 1771 change = val != rme32->wcreg_spdif_stream; 1772 rme32->wcreg_spdif_stream = val; 1773 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 1774 rme32->wcreg |= val; 1775 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1776 spin_unlock_irq(&rme32->lock); 1777 return change; 1778 } 1779 1780 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol, 1781 struct snd_ctl_elem_info *uinfo) 1782 { 1783 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1784 uinfo->count = 1; 1785 return 0; 1786 } 1787 1788 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol, 1789 struct snd_ctl_elem_value * 1790 ucontrol) 1791 { 1792 ucontrol->value.iec958.status[0] = kcontrol->private_value; 1793 return 0; 1794 } 1795 1796 static const struct snd_kcontrol_new snd_rme32_controls[] = { 1797 { 1798 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1799 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1800 .info = snd_rme32_control_spdif_info, 1801 .get = snd_rme32_control_spdif_get, 1802 .put = snd_rme32_control_spdif_put 1803 }, 1804 { 1805 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1806 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1807 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), 1808 .info = snd_rme32_control_spdif_stream_info, 1809 .get = snd_rme32_control_spdif_stream_get, 1810 .put = snd_rme32_control_spdif_stream_put 1811 }, 1812 { 1813 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1814 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1815 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), 1816 .info = snd_rme32_control_spdif_mask_info, 1817 .get = snd_rme32_control_spdif_mask_get, 1818 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS 1819 }, 1820 { 1821 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1822 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1823 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), 1824 .info = snd_rme32_control_spdif_mask_info, 1825 .get = snd_rme32_control_spdif_mask_get, 1826 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS 1827 }, 1828 { 1829 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1830 .name = "Input Connector", 1831 .info = snd_rme32_info_inputtype_control, 1832 .get = snd_rme32_get_inputtype_control, 1833 .put = snd_rme32_put_inputtype_control 1834 }, 1835 { 1836 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1837 .name = "Loopback Input", 1838 .info = snd_rme32_info_loopback_control, 1839 .get = snd_rme32_get_loopback_control, 1840 .put = snd_rme32_put_loopback_control 1841 }, 1842 { 1843 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1844 .name = "Sample Clock Source", 1845 .info = snd_rme32_info_clockmode_control, 1846 .get = snd_rme32_get_clockmode_control, 1847 .put = snd_rme32_put_clockmode_control 1848 } 1849 }; 1850 1851 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32) 1852 { 1853 int idx, err; 1854 struct snd_kcontrol *kctl; 1855 1856 for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) { 1857 kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32); 1858 err = snd_ctl_add(card, kctl); 1859 if (err < 0) 1860 return err; 1861 if (idx == 1) /* IEC958 (S/PDIF) Stream */ 1862 rme32->spdif_ctl = kctl; 1863 } 1864 1865 return 0; 1866 } 1867 1868 /* 1869 * Card initialisation 1870 */ 1871 1872 static void snd_rme32_card_free(struct snd_card *card) 1873 { 1874 snd_rme32_free(card->private_data); 1875 } 1876 1877 static int 1878 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) 1879 { 1880 static int dev; 1881 struct rme32 *rme32; 1882 struct snd_card *card; 1883 int err; 1884 1885 if (dev >= SNDRV_CARDS) { 1886 return -ENODEV; 1887 } 1888 if (!enable[dev]) { 1889 dev++; 1890 return -ENOENT; 1891 } 1892 1893 err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 1894 sizeof(*rme32), &card); 1895 if (err < 0) 1896 return err; 1897 card->private_free = snd_rme32_card_free; 1898 rme32 = (struct rme32 *) card->private_data; 1899 rme32->card = card; 1900 rme32->pci = pci; 1901 if (fullduplex[dev]) 1902 rme32->fullduplex_mode = 1; 1903 err = snd_rme32_create(rme32); 1904 if (err < 0) 1905 return err; 1906 1907 strcpy(card->driver, "Digi32"); 1908 switch (rme32->pci->device) { 1909 case PCI_DEVICE_ID_RME_DIGI32: 1910 strcpy(card->shortname, "RME Digi32"); 1911 break; 1912 case PCI_DEVICE_ID_RME_DIGI32_8: 1913 strcpy(card->shortname, "RME Digi32/8"); 1914 break; 1915 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1916 strcpy(card->shortname, "RME Digi32 PRO"); 1917 break; 1918 } 1919 sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d", 1920 card->shortname, rme32->rev, rme32->port, rme32->irq); 1921 1922 err = snd_card_register(card); 1923 if (err < 0) 1924 return err; 1925 pci_set_drvdata(pci, card); 1926 dev++; 1927 return 0; 1928 } 1929 1930 static struct pci_driver rme32_driver = { 1931 .name = KBUILD_MODNAME, 1932 .id_table = snd_rme32_ids, 1933 .probe = snd_rme32_probe, 1934 }; 1935 1936 module_pci_driver(rme32_driver); 1937