1 /* 2 * Driver for Digigram pcxhr compatible soundcards 3 * 4 * main file with alsa callbacks 5 * 6 * Copyright (c) 2004 by Digigram <alsa@digigram.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/slab.h> 27 #include <linux/pci.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/delay.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mutex.h> 32 33 #include <sound/core.h> 34 #include <sound/initval.h> 35 #include <sound/info.h> 36 #include <sound/control.h> 37 #include <sound/pcm.h> 38 #include <sound/pcm_params.h> 39 #include "pcxhr.h" 40 #include "pcxhr_mixer.h" 41 #include "pcxhr_hwdep.h" 42 #include "pcxhr_core.h" 43 44 #define DRIVER_NAME "pcxhr" 45 46 MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>"); 47 MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING); 48 MODULE_LICENSE("GPL"); 49 MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}"); 50 51 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 52 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 53 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 54 static int mono[SNDRV_CARDS]; /* capture in mono only */ 55 56 module_param_array(index, int, NULL, 0444); 57 MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard"); 58 module_param_array(id, charp, NULL, 0444); 59 MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard"); 60 module_param_array(enable, bool, NULL, 0444); 61 MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard"); 62 module_param_array(mono, bool, NULL, 0444); 63 MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)"); 64 65 enum { 66 PCI_ID_VX882HR, 67 PCI_ID_PCX882HR, 68 PCI_ID_VX881HR, 69 PCI_ID_PCX881HR, 70 PCI_ID_PCX1222HR, 71 PCI_ID_PCX1221HR, 72 PCI_ID_LAST 73 }; 74 75 static struct pci_device_id pcxhr_ids[] = { 76 { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, }, /* VX882HR */ 77 { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, }, /* PCX882HR */ 78 { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, }, /* VX881HR */ 79 { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, }, /* PCX881HR */ 80 { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, /* PCX1222HR */ 81 { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, /* PCX1221HR */ 82 { 0, } 83 }; 84 85 MODULE_DEVICE_TABLE(pci, pcxhr_ids); 86 87 struct board_parameters { 88 char* board_name; 89 short playback_chips; 90 short capture_chips; 91 short firmware_num; 92 }; 93 static struct board_parameters pcxhr_board_params[] = { 94 [PCI_ID_VX882HR] = { "VX882HR", 4, 4, 41, }, 95 [PCI_ID_PCX882HR] = { "PCX882HR", 4, 4, 41, }, 96 [PCI_ID_VX881HR] = { "VX881HR", 4, 4, 41, }, 97 [PCI_ID_PCX881HR] = { "PCX881HR", 4, 4, 41, }, 98 [PCI_ID_PCX1222HR] = { "PCX1222HR", 6, 1, 42, }, 99 [PCI_ID_PCX1221HR] = { "PCX1221HR", 6, 1, 42, }, 100 }; 101 102 103 static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg, 104 unsigned int* realfreq) 105 { 106 unsigned int reg; 107 108 if (freq < 6900 || freq > 110250) 109 return -EINVAL; 110 reg = (28224000 * 10) / freq; 111 reg = (reg + 5) / 10; 112 if (reg < 0x200) 113 *pllreg = reg + 0x800; 114 else if (reg < 0x400) 115 *pllreg = reg & 0x1ff; 116 else if (reg < 0x800) { 117 *pllreg = ((reg >> 1) & 0x1ff) + 0x200; 118 reg &= ~1; 119 } else { 120 *pllreg = ((reg >> 2) & 0x1ff) + 0x400; 121 reg &= ~3; 122 } 123 if (realfreq) 124 *realfreq = ((28224000 * 10) / reg + 5) / 10; 125 return 0; 126 } 127 128 129 #define PCXHR_FREQ_REG_MASK 0x1f 130 #define PCXHR_FREQ_QUARTZ_48000 0x00 131 #define PCXHR_FREQ_QUARTZ_24000 0x01 132 #define PCXHR_FREQ_QUARTZ_12000 0x09 133 #define PCXHR_FREQ_QUARTZ_32000 0x08 134 #define PCXHR_FREQ_QUARTZ_16000 0x04 135 #define PCXHR_FREQ_QUARTZ_8000 0x0c 136 #define PCXHR_FREQ_QUARTZ_44100 0x02 137 #define PCXHR_FREQ_QUARTZ_22050 0x0a 138 #define PCXHR_FREQ_QUARTZ_11025 0x06 139 #define PCXHR_FREQ_PLL 0x05 140 #define PCXHR_FREQ_QUARTZ_192000 0x10 141 #define PCXHR_FREQ_QUARTZ_96000 0x18 142 #define PCXHR_FREQ_QUARTZ_176400 0x14 143 #define PCXHR_FREQ_QUARTZ_88200 0x1c 144 #define PCXHR_FREQ_QUARTZ_128000 0x12 145 #define PCXHR_FREQ_QUARTZ_64000 0x1a 146 147 #define PCXHR_FREQ_WORD_CLOCK 0x0f 148 #define PCXHR_FREQ_SYNC_AES 0x0e 149 #define PCXHR_FREQ_AES_1 0x07 150 #define PCXHR_FREQ_AES_2 0x0b 151 #define PCXHR_FREQ_AES_3 0x03 152 #define PCXHR_FREQ_AES_4 0x0d 153 154 #define PCXHR_MODIFY_CLOCK_S_BIT 0x04 155 156 #define PCXHR_IRQ_TIMER_FREQ 92000 157 #define PCXHR_IRQ_TIMER_PERIOD 48 158 159 static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate, 160 unsigned int *reg, unsigned int *freq) 161 { 162 unsigned int val, realfreq, pllreg; 163 struct pcxhr_rmh rmh; 164 int err; 165 166 realfreq = rate; 167 switch (mgr->use_clock_type) { 168 case PCXHR_CLOCK_TYPE_INTERNAL : /* clock by quartz or pll */ 169 switch (rate) { 170 case 48000 : val = PCXHR_FREQ_QUARTZ_48000; break; 171 case 24000 : val = PCXHR_FREQ_QUARTZ_24000; break; 172 case 12000 : val = PCXHR_FREQ_QUARTZ_12000; break; 173 case 32000 : val = PCXHR_FREQ_QUARTZ_32000; break; 174 case 16000 : val = PCXHR_FREQ_QUARTZ_16000; break; 175 case 8000 : val = PCXHR_FREQ_QUARTZ_8000; break; 176 case 44100 : val = PCXHR_FREQ_QUARTZ_44100; break; 177 case 22050 : val = PCXHR_FREQ_QUARTZ_22050; break; 178 case 11025 : val = PCXHR_FREQ_QUARTZ_11025; break; 179 case 192000 : val = PCXHR_FREQ_QUARTZ_192000; break; 180 case 96000 : val = PCXHR_FREQ_QUARTZ_96000; break; 181 case 176400 : val = PCXHR_FREQ_QUARTZ_176400; break; 182 case 88200 : val = PCXHR_FREQ_QUARTZ_88200; break; 183 case 128000 : val = PCXHR_FREQ_QUARTZ_128000; break; 184 case 64000 : val = PCXHR_FREQ_QUARTZ_64000; break; 185 default : 186 val = PCXHR_FREQ_PLL; 187 /* get the value for the pll register */ 188 err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq); 189 if (err) 190 return err; 191 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); 192 rmh.cmd[0] |= IO_NUM_REG_GENCLK; 193 rmh.cmd[1] = pllreg & MASK_DSP_WORD; 194 rmh.cmd[2] = pllreg >> 24; 195 rmh.cmd_len = 3; 196 err = pcxhr_send_msg(mgr, &rmh); 197 if (err < 0) { 198 snd_printk(KERN_ERR 199 "error CMD_ACCESS_IO_WRITE for PLL register : %x!\n", 200 err ); 201 return err; 202 } 203 } 204 break; 205 case PCXHR_CLOCK_TYPE_WORD_CLOCK : val = PCXHR_FREQ_WORD_CLOCK; break; 206 case PCXHR_CLOCK_TYPE_AES_SYNC : val = PCXHR_FREQ_SYNC_AES; break; 207 case PCXHR_CLOCK_TYPE_AES_1 : val = PCXHR_FREQ_AES_1; break; 208 case PCXHR_CLOCK_TYPE_AES_2 : val = PCXHR_FREQ_AES_2; break; 209 case PCXHR_CLOCK_TYPE_AES_3 : val = PCXHR_FREQ_AES_3; break; 210 case PCXHR_CLOCK_TYPE_AES_4 : val = PCXHR_FREQ_AES_4; break; 211 default : return -EINVAL; 212 } 213 *reg = val; 214 *freq = realfreq; 215 return 0; 216 } 217 218 219 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate) 220 { 221 unsigned int val, realfreq, speed; 222 struct pcxhr_rmh rmh; 223 int err, changed; 224 225 if (rate == 0) 226 return 0; /* nothing to do */ 227 228 err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq); 229 if (err) 230 return err; 231 232 /* codec speed modes */ 233 if (rate < 55000) 234 speed = 0; /* single speed */ 235 else if (rate < 100000) 236 speed = 1; /* dual speed */ 237 else 238 speed = 2; /* quad speed */ 239 if (mgr->codec_speed != speed) { 240 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* mute outputs */ 241 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT; 242 err = pcxhr_send_msg(mgr, &rmh); 243 if (err) 244 return err; 245 246 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* set speed ratio */ 247 rmh.cmd[0] |= IO_NUM_SPEED_RATIO; 248 rmh.cmd[1] = speed; 249 rmh.cmd_len = 2; 250 err = pcxhr_send_msg(mgr, &rmh); 251 if (err) 252 return err; 253 } 254 /* set the new frequency */ 255 snd_printdd("clock register : set %x\n", val); 256 err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, &changed); 257 if (err) 258 return err; 259 mgr->sample_rate_real = realfreq; 260 mgr->cur_clock_type = mgr->use_clock_type; 261 262 /* unmute after codec speed modes */ 263 if (mgr->codec_speed != speed) { 264 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); /* unmute outputs */ 265 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT; 266 err = pcxhr_send_msg(mgr, &rmh); 267 if (err) 268 return err; 269 mgr->codec_speed = speed; /* save new codec speed */ 270 } 271 272 if (changed) { 273 pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK); 274 rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT; /* resync fifos */ 275 if (rate < PCXHR_IRQ_TIMER_FREQ) 276 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD; 277 else 278 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2; 279 rmh.cmd[2] = rate; 280 rmh.cmd_len = 3; 281 err = pcxhr_send_msg(mgr, &rmh); 282 if (err) 283 return err; 284 } 285 snd_printdd("pcxhr_set_clock to %dHz (realfreq=%d)\n", rate, realfreq); 286 return 0; 287 } 288 289 290 int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type, 291 int *sample_rate) 292 { 293 struct pcxhr_rmh rmh; 294 unsigned char reg; 295 int err, rate; 296 297 switch (clock_type) { 298 case PCXHR_CLOCK_TYPE_WORD_CLOCK : reg = REG_STATUS_WORD_CLOCK; break; 299 case PCXHR_CLOCK_TYPE_AES_SYNC : reg = REG_STATUS_AES_SYNC; break; 300 case PCXHR_CLOCK_TYPE_AES_1 : reg = REG_STATUS_AES_1; break; 301 case PCXHR_CLOCK_TYPE_AES_2 : reg = REG_STATUS_AES_2; break; 302 case PCXHR_CLOCK_TYPE_AES_3 : reg = REG_STATUS_AES_3; break; 303 case PCXHR_CLOCK_TYPE_AES_4 : reg = REG_STATUS_AES_4; break; 304 default : return -EINVAL; 305 } 306 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); 307 rmh.cmd_len = 2; 308 rmh.cmd[0] |= IO_NUM_REG_STATUS; 309 if (mgr->last_reg_stat != reg) { 310 rmh.cmd[1] = reg; 311 err = pcxhr_send_msg(mgr, &rmh); 312 if (err) 313 return err; 314 udelay(100); /* wait minimum 2 sample_frames at 32kHz ! */ 315 mgr->last_reg_stat = reg; 316 } 317 rmh.cmd[1] = REG_STATUS_CURRENT; 318 err = pcxhr_send_msg(mgr, &rmh); 319 if (err) 320 return err; 321 switch (rmh.stat[1] & 0x0f) { 322 case REG_STATUS_SYNC_32000 : rate = 32000; break; 323 case REG_STATUS_SYNC_44100 : rate = 44100; break; 324 case REG_STATUS_SYNC_48000 : rate = 48000; break; 325 case REG_STATUS_SYNC_64000 : rate = 64000; break; 326 case REG_STATUS_SYNC_88200 : rate = 88200; break; 327 case REG_STATUS_SYNC_96000 : rate = 96000; break; 328 case REG_STATUS_SYNC_128000 : rate = 128000; break; 329 case REG_STATUS_SYNC_176400 : rate = 176400; break; 330 case REG_STATUS_SYNC_192000 : rate = 192000; break; 331 default: rate = 0; 332 } 333 snd_printdd("External clock is at %d Hz\n", rate); 334 *sample_rate = rate; 335 return 0; 336 } 337 338 339 /* 340 * start or stop playback/capture substream 341 */ 342 static int pcxhr_set_stream_state(struct pcxhr_stream *stream) 343 { 344 int err; 345 struct snd_pcxhr *chip; 346 struct pcxhr_rmh rmh; 347 int stream_mask, start; 348 349 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) 350 start = 1; 351 else { 352 if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) { 353 snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state CANNOT be stopped\n"); 354 return -EINVAL; 355 } 356 start = 0; 357 } 358 if (!stream->substream) 359 return -EINVAL; 360 361 stream->timer_abs_periods = 0; 362 stream->timer_period_frag = 0; /* reset theoretical stream pos */ 363 stream->timer_buf_periods = 0; 364 stream->timer_is_synced = 0; 365 366 stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number; 367 368 pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM); 369 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 370 stream->pipe->first_audio, 0, stream_mask); 371 372 chip = snd_pcm_substream_chip(stream->substream); 373 374 err = pcxhr_send_msg(chip->mgr, &rmh); 375 if (err) 376 snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n", err); 377 stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED; 378 return err; 379 } 380 381 #define HEADER_FMT_BASE_LIN 0xfed00000 382 #define HEADER_FMT_BASE_FLOAT 0xfad00000 383 #define HEADER_FMT_INTEL 0x00008000 384 #define HEADER_FMT_24BITS 0x00004000 385 #define HEADER_FMT_16BITS 0x00002000 386 #define HEADER_FMT_UPTO11 0x00000200 387 #define HEADER_FMT_UPTO32 0x00000100 388 #define HEADER_FMT_MONO 0x00000080 389 390 static int pcxhr_set_format(struct pcxhr_stream *stream) 391 { 392 int err, is_capture, sample_rate, stream_num; 393 struct snd_pcxhr *chip; 394 struct pcxhr_rmh rmh; 395 unsigned int header; 396 397 switch (stream->format) { 398 case SNDRV_PCM_FORMAT_U8: 399 header = HEADER_FMT_BASE_LIN; 400 break; 401 case SNDRV_PCM_FORMAT_S16_LE: 402 header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL; 403 break; 404 case SNDRV_PCM_FORMAT_S16_BE: 405 header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS; 406 break; 407 case SNDRV_PCM_FORMAT_S24_3LE: 408 header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL; 409 break; 410 case SNDRV_PCM_FORMAT_S24_3BE: 411 header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS; 412 break; 413 case SNDRV_PCM_FORMAT_FLOAT_LE: 414 header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL; 415 break; 416 default: 417 snd_printk(KERN_ERR "error pcxhr_set_format() : unknown format\n"); 418 return -EINVAL; 419 } 420 chip = snd_pcm_substream_chip(stream->substream); 421 422 sample_rate = chip->mgr->sample_rate; 423 if (sample_rate <= 32000 && sample_rate !=0) { 424 if (sample_rate <= 11025) 425 header |= HEADER_FMT_UPTO11; 426 else 427 header |= HEADER_FMT_UPTO32; 428 } 429 if (stream->channels == 1) 430 header |= HEADER_FMT_MONO; 431 432 is_capture = stream->pipe->is_capture; 433 stream_num = is_capture ? 0 : stream->substream->number; 434 435 pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT); 436 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0); 437 if (is_capture) 438 rmh.cmd[0] |= 1<<12; 439 rmh.cmd[1] = 0; 440 rmh.cmd[2] = header >> 8; 441 rmh.cmd[3] = (header & 0xff) << 16; 442 rmh.cmd_len = 4; 443 err = pcxhr_send_msg(chip->mgr, &rmh); 444 if (err) 445 snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err); 446 return err; 447 } 448 449 static int pcxhr_update_r_buffer(struct pcxhr_stream *stream) 450 { 451 int err, is_capture, stream_num; 452 struct pcxhr_rmh rmh; 453 struct snd_pcm_substream *subs = stream->substream; 454 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 455 456 is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE); 457 stream_num = is_capture ? 0 : subs->number; 458 459 snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n", 460 is_capture ? 'c' : 'p', 461 chip->chip_idx, (void *)(long)subs->runtime->dma_addr, 462 subs->runtime->dma_bytes, subs->number); 463 464 pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS); 465 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0); 466 467 snd_assert(subs->runtime->dma_bytes < 0x200000); /* max buffer size is 2 MByte */ 468 rmh.cmd[1] = subs->runtime->dma_bytes * 8; /* size in bits */ 469 rmh.cmd[2] = subs->runtime->dma_addr >> 24; /* most significant byte */ 470 rmh.cmd[2] |= 1<<19; /* this is a circular buffer */ 471 rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD; /* least 3 significant bytes */ 472 rmh.cmd_len = 4; 473 err = pcxhr_send_msg(chip->mgr, &rmh); 474 if (err) 475 snd_printk(KERN_ERR "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err); 476 return err; 477 } 478 479 480 #if 0 481 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count) 482 { 483 struct pcxhr_rmh rmh; 484 int err; 485 pcxhr_t *chip = snd_pcm_substream_chip(stream->substream); 486 pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT); 487 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0, 488 1<<stream->pipe->first_audio); 489 err = pcxhr_send_msg(chip->mgr, &rmh); 490 if (err == 0) { 491 *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24; 492 *sample_count += (snd_pcm_uframes_t)rmh.stat[1]; 493 } 494 snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count); 495 return err; 496 } 497 #endif 498 499 static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream, 500 struct pcxhr_pipe **pipe) 501 { 502 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) { 503 *pipe = stream->pipe; 504 return 1; 505 } 506 return 0; 507 } 508 509 static void pcxhr_trigger_tasklet(unsigned long arg) 510 { 511 unsigned long flags; 512 int i, j, err; 513 struct pcxhr_pipe *pipe; 514 struct snd_pcxhr *chip; 515 struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg); 516 int capture_mask = 0; 517 int playback_mask = 0; 518 519 #ifdef CONFIG_SND_DEBUG_VERBOSE 520 struct timeval my_tv1, my_tv2; 521 do_gettimeofday(&my_tv1); 522 #endif 523 mutex_lock(&mgr->setup_mutex); 524 525 /* check the pipes concerned and build pipe_array */ 526 for (i = 0; i < mgr->num_cards; i++) { 527 chip = mgr->chip[i]; 528 for (j = 0; j < chip->nb_streams_capt; j++) { 529 if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe)) 530 capture_mask |= (1 << pipe->first_audio); 531 } 532 for (j = 0; j < chip->nb_streams_play; j++) { 533 if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) { 534 playback_mask |= (1 << pipe->first_audio); 535 break; /* add only once, as all playback streams of 536 * one chip use the same pipe 537 */ 538 } 539 } 540 } 541 if (capture_mask == 0 && playback_mask == 0) { 542 mutex_unlock(&mgr->setup_mutex); 543 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n"); 544 return; 545 } 546 547 snd_printdd("pcxhr_trigger_tasklet : playback_mask=%x capture_mask=%x\n", 548 playback_mask, capture_mask); 549 550 /* synchronous stop of all the pipes concerned */ 551 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 0); 552 if (err) { 553 mutex_unlock(&mgr->setup_mutex); 554 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error stop pipes (P%x C%x)\n", 555 playback_mask, capture_mask); 556 return; 557 } 558 559 /* unfortunately the dsp lost format and buffer info with the stop pipe */ 560 for (i = 0; i < mgr->num_cards; i++) { 561 struct pcxhr_stream *stream; 562 chip = mgr->chip[i]; 563 for (j = 0; j < chip->nb_streams_capt; j++) { 564 stream = &chip->capture_stream[j]; 565 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) { 566 err = pcxhr_set_format(stream); 567 err = pcxhr_update_r_buffer(stream); 568 } 569 } 570 for (j = 0; j < chip->nb_streams_play; j++) { 571 stream = &chip->playback_stream[j]; 572 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) { 573 err = pcxhr_set_format(stream); 574 err = pcxhr_update_r_buffer(stream); 575 } 576 } 577 } 578 /* start all the streams */ 579 for (i = 0; i < mgr->num_cards; i++) { 580 struct pcxhr_stream *stream; 581 chip = mgr->chip[i]; 582 for (j = 0; j < chip->nb_streams_capt; j++) { 583 stream = &chip->capture_stream[j]; 584 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) 585 err = pcxhr_set_stream_state(stream); 586 } 587 for (j = 0; j < chip->nb_streams_play; j++) { 588 stream = &chip->playback_stream[j]; 589 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) 590 err = pcxhr_set_stream_state(stream); 591 } 592 } 593 594 /* synchronous start of all the pipes concerned */ 595 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1); 596 if (err) { 597 mutex_unlock(&mgr->setup_mutex); 598 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error start pipes (P%x C%x)\n", 599 playback_mask, capture_mask); 600 return; 601 } 602 603 /* put the streams into the running state now (increment pointer by interrupt) */ 604 spin_lock_irqsave(&mgr->lock, flags); 605 for ( i =0; i < mgr->num_cards; i++) { 606 struct pcxhr_stream *stream; 607 chip = mgr->chip[i]; 608 for(j = 0; j < chip->nb_streams_capt; j++) { 609 stream = &chip->capture_stream[j]; 610 if(stream->status == PCXHR_STREAM_STATUS_STARTED) 611 stream->status = PCXHR_STREAM_STATUS_RUNNING; 612 } 613 for (j = 0; j < chip->nb_streams_play; j++) { 614 stream = &chip->playback_stream[j]; 615 if (stream->status == PCXHR_STREAM_STATUS_STARTED) { 616 /* playback will already have advanced ! */ 617 stream->timer_period_frag += PCXHR_GRANULARITY; 618 stream->status = PCXHR_STREAM_STATUS_RUNNING; 619 } 620 } 621 } 622 spin_unlock_irqrestore(&mgr->lock, flags); 623 624 mutex_unlock(&mgr->setup_mutex); 625 626 #ifdef CONFIG_SND_DEBUG_VERBOSE 627 do_gettimeofday(&my_tv2); 628 snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n", 629 (long)(my_tv2.tv_usec - my_tv1.tv_usec), err); 630 #endif 631 } 632 633 634 /* 635 * trigger callback 636 */ 637 static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd) 638 { 639 struct pcxhr_stream *stream; 640 struct snd_pcm_substream *s; 641 642 switch (cmd) { 643 case SNDRV_PCM_TRIGGER_START: 644 snd_printdd("SNDRV_PCM_TRIGGER_START\n"); 645 if (snd_pcm_stream_linked(subs)) { 646 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 647 snd_pcm_group_for_each_entry(s, subs) { 648 if (snd_pcm_substream_chip(s) != chip) 649 continue; 650 stream = s->runtime->private_data; 651 stream->status = 652 PCXHR_STREAM_STATUS_SCHEDULE_RUN; 653 snd_pcm_trigger_done(s, subs); 654 } 655 tasklet_hi_schedule(&chip->mgr->trigger_taskq); 656 } else { 657 stream = subs->runtime->private_data; 658 snd_printdd("Only one Substream %c %d\n", 659 stream->pipe->is_capture ? 'C' : 'P', 660 stream->pipe->first_audio); 661 if (pcxhr_set_format(stream)) 662 return -EINVAL; 663 if (pcxhr_update_r_buffer(stream)) 664 return -EINVAL; 665 666 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN; 667 if (pcxhr_set_stream_state(stream)) 668 return -EINVAL; 669 stream->status = PCXHR_STREAM_STATUS_RUNNING; 670 } 671 break; 672 case SNDRV_PCM_TRIGGER_STOP: 673 snd_printdd("SNDRV_PCM_TRIGGER_STOP\n"); 674 snd_pcm_group_for_each_entry(s, subs) { 675 stream = s->runtime->private_data; 676 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP; 677 if (pcxhr_set_stream_state(stream)) 678 return -EINVAL; 679 snd_pcm_trigger_done(s, subs); 680 } 681 break; 682 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 683 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 684 /* TODO */ 685 default: 686 return -EINVAL; 687 } 688 return 0; 689 } 690 691 692 static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start) 693 { 694 struct pcxhr_rmh rmh; 695 int err; 696 697 pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT); 698 if (start) { 699 mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID; /* last dsp time invalid */ 700 rmh.cmd[0] |= PCXHR_GRANULARITY; 701 } 702 err = pcxhr_send_msg(mgr, &rmh); 703 if (err < 0) 704 snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n", err); 705 return err; 706 } 707 708 /* 709 * prepare callback for all pcms 710 */ 711 static int pcxhr_prepare(struct snd_pcm_substream *subs) 712 { 713 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 714 struct pcxhr_mgr *mgr = chip->mgr; 715 /* 716 struct pcxhr_stream *stream = (pcxhr_stream_t*)subs->runtime->private_data; 717 */ 718 int err = 0; 719 720 snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n", 721 subs->runtime->period_size, subs->runtime->periods, 722 subs->runtime->buffer_size); 723 724 /* 725 if(subs->runtime->period_size <= PCXHR_GRANULARITY) { 726 snd_printk(KERN_ERR "pcxhr_prepare : error period_size too small (%x)\n", 727 (unsigned int)subs->runtime->period_size); 728 return -EINVAL; 729 } 730 */ 731 732 mutex_lock(&mgr->setup_mutex); 733 734 do { 735 /* if the stream was stopped before, format and buffer were reset */ 736 /* 737 if(stream->status == PCXHR_STREAM_STATUS_STOPPED) { 738 err = pcxhr_set_format(stream); 739 if(err) break; 740 err = pcxhr_update_r_buffer(stream); 741 if(err) break; 742 } 743 */ 744 745 /* only the first stream can choose the sample rate */ 746 /* the further opened streams will be limited to its frequency (see open) */ 747 /* set the clock only once (first stream) */ 748 if (mgr->sample_rate != subs->runtime->rate) { 749 err = pcxhr_set_clock(mgr, subs->runtime->rate); 750 if (err) 751 break; 752 if (mgr->sample_rate == 0) 753 /* start the DSP-timer */ 754 err = pcxhr_hardware_timer(mgr, 1); 755 mgr->sample_rate = subs->runtime->rate; 756 } 757 } while(0); /* do only once (so we can use break instead of goto) */ 758 759 mutex_unlock(&mgr->setup_mutex); 760 761 return err; 762 } 763 764 765 /* 766 * HW_PARAMS callback for all pcms 767 */ 768 static int pcxhr_hw_params(struct snd_pcm_substream *subs, 769 struct snd_pcm_hw_params *hw) 770 { 771 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 772 struct pcxhr_mgr *mgr = chip->mgr; 773 struct pcxhr_stream *stream = subs->runtime->private_data; 774 snd_pcm_format_t format; 775 int err; 776 int channels; 777 778 /* set up channels */ 779 channels = params_channels(hw); 780 781 /* set up format for the stream */ 782 format = params_format(hw); 783 784 mutex_lock(&mgr->setup_mutex); 785 786 stream->channels = channels; 787 stream->format = format; 788 789 /* set the format to the board */ 790 /* 791 err = pcxhr_set_format(stream); 792 if(err) { 793 mutex_unlock(&mgr->setup_mutex); 794 return err; 795 } 796 */ 797 /* allocate buffer */ 798 err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw)); 799 800 /* 801 if (err > 0) { 802 err = pcxhr_update_r_buffer(stream); 803 } 804 */ 805 mutex_unlock(&mgr->setup_mutex); 806 807 return err; 808 } 809 810 static int pcxhr_hw_free(struct snd_pcm_substream *subs) 811 { 812 snd_pcm_lib_free_pages(subs); 813 return 0; 814 } 815 816 817 /* 818 * CONFIGURATION SPACE for all pcms, mono pcm must update channels_max 819 */ 820 static struct snd_pcm_hardware pcxhr_caps = 821 { 822 .info = ( SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 823 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START | 824 0 /*SNDRV_PCM_INFO_PAUSE*/), 825 .formats = ( SNDRV_PCM_FMTBIT_U8 | 826 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | 827 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | 828 SNDRV_PCM_FMTBIT_FLOAT_LE ), 829 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000, 830 .rate_min = 8000, 831 .rate_max = 192000, 832 .channels_min = 1, 833 .channels_max = 2, 834 .buffer_bytes_max = (32*1024), 835 /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */ 836 .period_bytes_min = (2*PCXHR_GRANULARITY), 837 .period_bytes_max = (16*1024), 838 .periods_min = 2, 839 .periods_max = (32*1024/PCXHR_GRANULARITY), 840 }; 841 842 843 static int pcxhr_open(struct snd_pcm_substream *subs) 844 { 845 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 846 struct pcxhr_mgr *mgr = chip->mgr; 847 struct snd_pcm_runtime *runtime = subs->runtime; 848 struct pcxhr_stream *stream; 849 850 mutex_lock(&mgr->setup_mutex); 851 852 /* copy the struct snd_pcm_hardware struct */ 853 runtime->hw = pcxhr_caps; 854 855 if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) { 856 snd_printdd("pcxhr_open playback chip%d subs%d\n", 857 chip->chip_idx, subs->number); 858 stream = &chip->playback_stream[subs->number]; 859 } else { 860 snd_printdd("pcxhr_open capture chip%d subs%d\n", 861 chip->chip_idx, subs->number); 862 if (mgr->mono_capture) 863 runtime->hw.channels_max = 1; 864 else 865 runtime->hw.channels_min = 2; 866 stream = &chip->capture_stream[subs->number]; 867 } 868 if (stream->status != PCXHR_STREAM_STATUS_FREE){ 869 /* streams in use */ 870 snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n", 871 chip->chip_idx, subs->number); 872 mutex_unlock(&mgr->setup_mutex); 873 return -EBUSY; 874 } 875 876 /* if a sample rate is already used or fixed by external clock, 877 * the stream cannot change 878 */ 879 if (mgr->sample_rate) 880 runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate; 881 else { 882 if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) { 883 int external_rate; 884 if (pcxhr_get_external_clock(mgr, mgr->use_clock_type, 885 &external_rate) || 886 external_rate == 0) { 887 /* cannot detect the external clock rate */ 888 mutex_unlock(&mgr->setup_mutex); 889 return -EBUSY; 890 } 891 runtime->hw.rate_min = runtime->hw.rate_max = external_rate; 892 } 893 } 894 895 stream->status = PCXHR_STREAM_STATUS_OPEN; 896 stream->substream = subs; 897 stream->channels = 0; /* not configured yet */ 898 899 runtime->private_data = stream; 900 901 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4); 902 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 4); 903 904 snd_pcm_set_sync(subs); 905 906 mgr->ref_count_rate++; 907 908 mutex_unlock(&mgr->setup_mutex); 909 return 0; 910 } 911 912 913 static int pcxhr_close(struct snd_pcm_substream *subs) 914 { 915 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 916 struct pcxhr_mgr *mgr = chip->mgr; 917 struct pcxhr_stream *stream = subs->runtime->private_data; 918 919 mutex_lock(&mgr->setup_mutex); 920 921 snd_printdd("pcxhr_close chip%d subs%d\n", chip->chip_idx, subs->number); 922 923 /* sample rate released */ 924 if (--mgr->ref_count_rate == 0) { 925 mgr->sample_rate = 0; /* the sample rate is no more locked */ 926 pcxhr_hardware_timer(mgr, 0); /* stop the DSP-timer */ 927 } 928 929 stream->status = PCXHR_STREAM_STATUS_FREE; 930 stream->substream = NULL; 931 932 mutex_unlock(&mgr->setup_mutex); 933 934 return 0; 935 } 936 937 938 static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs) 939 { 940 unsigned long flags; 941 u_int32_t timer_period_frag; 942 int timer_buf_periods; 943 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); 944 struct snd_pcm_runtime *runtime = subs->runtime; 945 struct pcxhr_stream *stream = runtime->private_data; 946 947 spin_lock_irqsave(&chip->mgr->lock, flags); 948 949 /* get the period fragment and the nb of periods in the buffer */ 950 timer_period_frag = stream->timer_period_frag; 951 timer_buf_periods = stream->timer_buf_periods; 952 953 spin_unlock_irqrestore(&chip->mgr->lock, flags); 954 955 return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) + 956 timer_period_frag); 957 } 958 959 960 static struct snd_pcm_ops pcxhr_ops = { 961 .open = pcxhr_open, 962 .close = pcxhr_close, 963 .ioctl = snd_pcm_lib_ioctl, 964 .prepare = pcxhr_prepare, 965 .hw_params = pcxhr_hw_params, 966 .hw_free = pcxhr_hw_free, 967 .trigger = pcxhr_trigger, 968 .pointer = pcxhr_stream_pointer, 969 }; 970 971 /* 972 */ 973 int pcxhr_create_pcm(struct snd_pcxhr *chip) 974 { 975 int err; 976 struct snd_pcm *pcm; 977 char name[32]; 978 979 sprintf(name, "pcxhr %d", chip->chip_idx); 980 if ((err = snd_pcm_new(chip->card, name, 0, 981 chip->nb_streams_play, 982 chip->nb_streams_capt, &pcm)) < 0) { 983 snd_printk(KERN_ERR "cannot create pcm %s\n", name); 984 return err; 985 } 986 pcm->private_data = chip; 987 988 if (chip->nb_streams_play) 989 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops); 990 if (chip->nb_streams_capt) 991 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops); 992 993 pcm->info_flags = 0; 994 strcpy(pcm->name, name); 995 996 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 997 snd_dma_pci_data(chip->mgr->pci), 998 32*1024, 32*1024); 999 chip->pcm = pcm; 1000 return 0; 1001 } 1002 1003 static int pcxhr_chip_free(struct snd_pcxhr *chip) 1004 { 1005 kfree(chip); 1006 return 0; 1007 } 1008 1009 static int pcxhr_chip_dev_free(struct snd_device *device) 1010 { 1011 struct snd_pcxhr *chip = device->device_data; 1012 return pcxhr_chip_free(chip); 1013 } 1014 1015 1016 /* 1017 */ 1018 static int __devinit pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx) 1019 { 1020 int err; 1021 struct snd_pcxhr *chip; 1022 static struct snd_device_ops ops = { 1023 .dev_free = pcxhr_chip_dev_free, 1024 }; 1025 1026 mgr->chip[idx] = chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1027 if (! chip) { 1028 snd_printk(KERN_ERR "cannot allocate chip\n"); 1029 return -ENOMEM; 1030 } 1031 1032 chip->card = card; 1033 chip->chip_idx = idx; 1034 chip->mgr = mgr; 1035 1036 if (idx < mgr->playback_chips) 1037 /* stereo or mono streams */ 1038 chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS; 1039 1040 if (idx < mgr->capture_chips) { 1041 if (mgr->mono_capture) 1042 chip->nb_streams_capt = 2; /* 2 mono streams (left+right) */ 1043 else 1044 chip->nb_streams_capt = 1; /* or 1 stereo stream */ 1045 } 1046 1047 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 1048 pcxhr_chip_free(chip); 1049 return err; 1050 } 1051 1052 snd_card_set_dev(card, &mgr->pci->dev); 1053 1054 return 0; 1055 } 1056 1057 /* proc interface */ 1058 static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer) 1059 { 1060 struct snd_pcxhr *chip = entry->private_data; 1061 struct pcxhr_mgr *mgr = chip->mgr; 1062 1063 snd_iprintf(buffer, "\n%s\n", mgr->longname); 1064 1065 /* stats available when embedded DSP is running */ 1066 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) { 1067 struct pcxhr_rmh rmh; 1068 short ver_maj = (mgr->dsp_version >> 16) & 0xff; 1069 short ver_min = (mgr->dsp_version >> 8) & 0xff; 1070 short ver_build = mgr->dsp_version & 0xff; 1071 snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING); 1072 snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build); 1073 if (mgr->board_has_analog) 1074 snd_iprintf(buffer, "analog io available\n"); 1075 else 1076 snd_iprintf(buffer, "digital only board\n"); 1077 1078 /* calc cpu load of the dsp */ 1079 pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES); 1080 if( ! pcxhr_send_msg(mgr, &rmh) ) { 1081 int cur = rmh.stat[0]; 1082 int ref = rmh.stat[1]; 1083 if (ref > 0) { 1084 if (mgr->sample_rate_real != 0 && 1085 mgr->sample_rate_real != 48000) { 1086 ref = (ref * 48000) / mgr->sample_rate_real; 1087 if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ) 1088 ref *= 2; 1089 } 1090 cur = 100 - (100 * cur) / ref; 1091 snd_iprintf(buffer, "cpu load %d%%\n", cur); 1092 snd_iprintf(buffer, "buffer pool %d/%d kWords\n", 1093 rmh.stat[2], rmh.stat[3]); 1094 } 1095 } 1096 snd_iprintf(buffer, "dma granularity : %d\n", PCXHR_GRANULARITY); 1097 snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err); 1098 snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n", 1099 mgr->async_err_pipe_xrun); 1100 snd_iprintf(buffer, "dsp async stream xrun errors : %d\n", 1101 mgr->async_err_stream_xrun); 1102 snd_iprintf(buffer, "dsp async last other error : %x\n", 1103 mgr->async_err_other_last); 1104 /* debug zone dsp */ 1105 rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS; 1106 rmh.cmd_len = 1; 1107 rmh.stat_len = PCXHR_SIZE_MAX_STATUS; 1108 rmh.dsp_stat = 0; 1109 rmh.cmd_idx = CMD_LAST_INDEX; 1110 if( ! pcxhr_send_msg(mgr, &rmh) ) { 1111 int i; 1112 for (i = 0; i < rmh.stat_len; i++) 1113 snd_iprintf(buffer, "debug[%02d] = %06x\n", i, rmh.stat[i]); 1114 } 1115 } else 1116 snd_iprintf(buffer, "no firmware loaded\n"); 1117 snd_iprintf(buffer, "\n"); 1118 } 1119 static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer) 1120 { 1121 struct snd_pcxhr *chip = entry->private_data; 1122 struct pcxhr_mgr *mgr = chip->mgr; 1123 static char *texts[7] = { 1124 "Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4" 1125 }; 1126 1127 snd_iprintf(buffer, "\n%s\n", mgr->longname); 1128 snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]); 1129 snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real); 1130 1131 /* commands available when embedded DSP is running */ 1132 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) { 1133 int i, err, sample_rate; 1134 for (i = PCXHR_CLOCK_TYPE_WORD_CLOCK; i< (3 + mgr->capture_chips); i++) { 1135 err = pcxhr_get_external_clock(mgr, i, &sample_rate); 1136 if (err) 1137 break; 1138 snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate); 1139 } 1140 } else 1141 snd_iprintf(buffer, "no firmware loaded\n"); 1142 snd_iprintf(buffer, "\n"); 1143 } 1144 1145 static void __devinit pcxhr_proc_init(struct snd_pcxhr *chip) 1146 { 1147 struct snd_info_entry *entry; 1148 1149 if (! snd_card_proc_new(chip->card, "info", &entry)) 1150 snd_info_set_text_ops(entry, chip, pcxhr_proc_info); 1151 if (! snd_card_proc_new(chip->card, "sync", &entry)) 1152 snd_info_set_text_ops(entry, chip, pcxhr_proc_sync); 1153 } 1154 /* end of proc interface */ 1155 1156 /* 1157 * release all the cards assigned to a manager instance 1158 */ 1159 static int pcxhr_free(struct pcxhr_mgr *mgr) 1160 { 1161 unsigned int i; 1162 1163 for (i = 0; i < mgr->num_cards; i++) { 1164 if (mgr->chip[i]) 1165 snd_card_free(mgr->chip[i]->card); 1166 } 1167 1168 /* reset board if some firmware was loaded */ 1169 if(mgr->dsp_loaded) { 1170 pcxhr_reset_board(mgr); 1171 snd_printdd("reset pcxhr !\n"); 1172 } 1173 1174 /* release irq */ 1175 if (mgr->irq >= 0) 1176 free_irq(mgr->irq, mgr); 1177 1178 pci_release_regions(mgr->pci); 1179 1180 /* free hostport purgebuffer */ 1181 if (mgr->hostport.area) { 1182 snd_dma_free_pages(&mgr->hostport); 1183 mgr->hostport.area = NULL; 1184 } 1185 1186 kfree(mgr->prmh); 1187 1188 pci_disable_device(mgr->pci); 1189 kfree(mgr); 1190 return 0; 1191 } 1192 1193 /* 1194 * probe function - creates the card manager 1195 */ 1196 static int __devinit pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) 1197 { 1198 static int dev; 1199 struct pcxhr_mgr *mgr; 1200 unsigned int i; 1201 int err; 1202 size_t size; 1203 char *card_name; 1204 1205 if (dev >= SNDRV_CARDS) 1206 return -ENODEV; 1207 if (! enable[dev]) { 1208 dev++; 1209 return -ENOENT; 1210 } 1211 1212 /* enable PCI device */ 1213 if ((err = pci_enable_device(pci)) < 0) 1214 return err; 1215 pci_set_master(pci); 1216 1217 /* check if we can restrict PCI DMA transfers to 32 bits */ 1218 if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0) { 1219 snd_printk(KERN_ERR "architecture does not support 32bit PCI busmaster DMA\n"); 1220 pci_disable_device(pci); 1221 return -ENXIO; 1222 } 1223 1224 /* alloc card manager */ 1225 mgr = kzalloc(sizeof(*mgr), GFP_KERNEL); 1226 if (! mgr) { 1227 pci_disable_device(pci); 1228 return -ENOMEM; 1229 } 1230 1231 snd_assert(pci_id->driver_data < PCI_ID_LAST, return -ENODEV); 1232 card_name = pcxhr_board_params[pci_id->driver_data].board_name; 1233 mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips; 1234 mgr->capture_chips = pcxhr_board_params[pci_id->driver_data].capture_chips; 1235 mgr->firmware_num = pcxhr_board_params[pci_id->driver_data].firmware_num; 1236 mgr->mono_capture = mono[dev]; 1237 1238 /* resource assignment */ 1239 if ((err = pci_request_regions(pci, card_name)) < 0) { 1240 kfree(mgr); 1241 pci_disable_device(pci); 1242 return err; 1243 } 1244 for (i = 0; i < 3; i++) 1245 mgr->port[i] = pci_resource_start(pci, i); 1246 1247 mgr->pci = pci; 1248 mgr->irq = -1; 1249 1250 if (request_irq(pci->irq, pcxhr_interrupt, IRQF_SHARED, 1251 card_name, mgr)) { 1252 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 1253 pcxhr_free(mgr); 1254 return -EBUSY; 1255 } 1256 mgr->irq = pci->irq; 1257 1258 sprintf(mgr->shortname, "Digigram %s", card_name); 1259 sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->shortname, 1260 mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq); 1261 1262 /* ISR spinlock */ 1263 spin_lock_init(&mgr->lock); 1264 spin_lock_init(&mgr->msg_lock); 1265 1266 /* init setup mutex*/ 1267 mutex_init(&mgr->setup_mutex); 1268 1269 /* init taslket */ 1270 tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet, (unsigned long) mgr); 1271 tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet, (unsigned long) mgr); 1272 mgr->prmh = kmalloc(sizeof(*mgr->prmh) + 1273 sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS), 1274 GFP_KERNEL); 1275 if (! mgr->prmh) { 1276 pcxhr_free(mgr); 1277 return -ENOMEM; 1278 } 1279 1280 for (i=0; i < PCXHR_MAX_CARDS; i++) { 1281 struct snd_card *card; 1282 char tmpid[16]; 1283 int idx; 1284 1285 if (i >= max(mgr->playback_chips, mgr->capture_chips)) 1286 break; 1287 mgr->num_cards++; 1288 1289 if (index[dev] < 0) 1290 idx = index[dev]; 1291 else 1292 idx = index[dev] + i; 1293 1294 snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i); 1295 card = snd_card_new(idx, tmpid, THIS_MODULE, 0); 1296 1297 if (! card) { 1298 snd_printk(KERN_ERR "cannot allocate the card %d\n", i); 1299 pcxhr_free(mgr); 1300 return -ENOMEM; 1301 } 1302 1303 strcpy(card->driver, DRIVER_NAME); 1304 sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i); 1305 sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i); 1306 1307 if ((err = pcxhr_create(mgr, card, i)) < 0) { 1308 pcxhr_free(mgr); 1309 return err; 1310 } 1311 1312 if (i == 0) 1313 /* init proc interface only for chip0 */ 1314 pcxhr_proc_init(mgr->chip[i]); 1315 1316 if ((err = snd_card_register(card)) < 0) { 1317 pcxhr_free(mgr); 1318 return err; 1319 } 1320 } 1321 1322 /* create hostport purgebuffer */ 1323 size = PAGE_ALIGN(sizeof(struct pcxhr_hostport)); 1324 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 1325 size, &mgr->hostport) < 0) { 1326 pcxhr_free(mgr); 1327 return -ENOMEM; 1328 } 1329 /* init purgebuffer */ 1330 memset(mgr->hostport.area, 0, size); 1331 1332 /* create a DSP loader */ 1333 err = pcxhr_setup_firmware(mgr); 1334 if (err < 0) { 1335 pcxhr_free(mgr); 1336 return err; 1337 } 1338 1339 pci_set_drvdata(pci, mgr); 1340 dev++; 1341 return 0; 1342 } 1343 1344 static void __devexit pcxhr_remove(struct pci_dev *pci) 1345 { 1346 pcxhr_free(pci_get_drvdata(pci)); 1347 pci_set_drvdata(pci, NULL); 1348 } 1349 1350 static struct pci_driver driver = { 1351 .name = "Digigram pcxhr", 1352 .id_table = pcxhr_ids, 1353 .probe = pcxhr_probe, 1354 .remove = __devexit_p(pcxhr_remove), 1355 }; 1356 1357 static int __init pcxhr_module_init(void) 1358 { 1359 return pci_register_driver(&driver); 1360 } 1361 1362 static void __exit pcxhr_module_exit(void) 1363 { 1364 pci_unregister_driver(&driver); 1365 } 1366 1367 module_init(pcxhr_module_init) 1368 module_exit(pcxhr_module_exit) 1369