1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Digigram pcxhr compatible soundcards
4 *
5 * main file with alsa callbacks
6 *
7 * Copyright (c) 2004 by Digigram <alsa@digigram.com>
8 */
9
10
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/slab.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/delay.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19
20 #include <sound/core.h>
21 #include <sound/initval.h>
22 #include <sound/info.h>
23 #include <sound/control.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include "pcxhr.h"
27 #include "pcxhr_mixer.h"
28 #include "pcxhr_hwdep.h"
29 #include "pcxhr_core.h"
30 #include "pcxhr_mix22.h"
31
32 #define DRIVER_NAME "pcxhr"
33
34 MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>, "
35 "Marc Titinger <titinger@digigram.com>");
36 MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
37 MODULE_LICENSE("GPL");
38
39 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
40 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
41 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
42 static bool mono[SNDRV_CARDS]; /* capture mono only */
43
44 module_param_array(index, int, NULL, 0444);
45 MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
46 module_param_array(id, charp, NULL, 0444);
47 MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
48 module_param_array(enable, bool, NULL, 0444);
49 MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
50 module_param_array(mono, bool, NULL, 0444);
51 MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");
52
53 enum {
54 PCI_ID_VX882HR,
55 PCI_ID_PCX882HR,
56 PCI_ID_VX881HR,
57 PCI_ID_PCX881HR,
58 PCI_ID_VX882E,
59 PCI_ID_PCX882E,
60 PCI_ID_VX881E,
61 PCI_ID_PCX881E,
62 PCI_ID_VX1222HR,
63 PCI_ID_PCX1222HR,
64 PCI_ID_VX1221HR,
65 PCI_ID_PCX1221HR,
66 PCI_ID_VX1222E,
67 PCI_ID_PCX1222E,
68 PCI_ID_VX1221E,
69 PCI_ID_PCX1221E,
70 PCI_ID_VX222HR,
71 PCI_ID_VX222E,
72 PCI_ID_PCX22HR,
73 PCI_ID_PCX22E,
74 PCI_ID_VX222HRMIC,
75 PCI_ID_VX222E_MIC,
76 PCI_ID_PCX924HR,
77 PCI_ID_PCX924E,
78 PCI_ID_PCX924HRMIC,
79 PCI_ID_PCX924E_MIC,
80 PCI_ID_VX442HR,
81 PCI_ID_PCX442HR,
82 PCI_ID_VX442E,
83 PCI_ID_PCX442E,
84 PCI_ID_VX822HR,
85 PCI_ID_PCX822HR,
86 PCI_ID_VX822E,
87 PCI_ID_PCX822E,
88 PCI_ID_LAST
89 };
90
91 static const struct pci_device_id pcxhr_ids[] = {
92 { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, },
93 { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, },
94 { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, },
95 { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, },
96 { 0x10b5, 0x9056, 0x1369, 0xb021, 0, 0, PCI_ID_VX882E, },
97 { 0x10b5, 0x9056, 0x1369, 0xb121, 0, 0, PCI_ID_PCX882E, },
98 { 0x10b5, 0x9056, 0x1369, 0xb221, 0, 0, PCI_ID_VX881E, },
99 { 0x10b5, 0x9056, 0x1369, 0xb321, 0, 0, PCI_ID_PCX881E, },
100 { 0x10b5, 0x9656, 0x1369, 0xb401, 0, 0, PCI_ID_VX1222HR, },
101 { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, },
102 { 0x10b5, 0x9656, 0x1369, 0xb601, 0, 0, PCI_ID_VX1221HR, },
103 { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, },
104 { 0x10b5, 0x9056, 0x1369, 0xb421, 0, 0, PCI_ID_VX1222E, },
105 { 0x10b5, 0x9056, 0x1369, 0xb521, 0, 0, PCI_ID_PCX1222E, },
106 { 0x10b5, 0x9056, 0x1369, 0xb621, 0, 0, PCI_ID_VX1221E, },
107 { 0x10b5, 0x9056, 0x1369, 0xb721, 0, 0, PCI_ID_PCX1221E, },
108 { 0x10b5, 0x9056, 0x1369, 0xba01, 0, 0, PCI_ID_VX222HR, },
109 { 0x10b5, 0x9056, 0x1369, 0xba21, 0, 0, PCI_ID_VX222E, },
110 { 0x10b5, 0x9056, 0x1369, 0xbd01, 0, 0, PCI_ID_PCX22HR, },
111 { 0x10b5, 0x9056, 0x1369, 0xbd21, 0, 0, PCI_ID_PCX22E, },
112 { 0x10b5, 0x9056, 0x1369, 0xbc01, 0, 0, PCI_ID_VX222HRMIC, },
113 { 0x10b5, 0x9056, 0x1369, 0xbc21, 0, 0, PCI_ID_VX222E_MIC, },
114 { 0x10b5, 0x9056, 0x1369, 0xbb01, 0, 0, PCI_ID_PCX924HR, },
115 { 0x10b5, 0x9056, 0x1369, 0xbb21, 0, 0, PCI_ID_PCX924E, },
116 { 0x10b5, 0x9056, 0x1369, 0xbf01, 0, 0, PCI_ID_PCX924HRMIC, },
117 { 0x10b5, 0x9056, 0x1369, 0xbf21, 0, 0, PCI_ID_PCX924E_MIC, },
118 { 0x10b5, 0x9656, 0x1369, 0xd001, 0, 0, PCI_ID_VX442HR, },
119 { 0x10b5, 0x9656, 0x1369, 0xd101, 0, 0, PCI_ID_PCX442HR, },
120 { 0x10b5, 0x9056, 0x1369, 0xd021, 0, 0, PCI_ID_VX442E, },
121 { 0x10b5, 0x9056, 0x1369, 0xd121, 0, 0, PCI_ID_PCX442E, },
122 { 0x10b5, 0x9656, 0x1369, 0xd201, 0, 0, PCI_ID_VX822HR, },
123 { 0x10b5, 0x9656, 0x1369, 0xd301, 0, 0, PCI_ID_PCX822HR, },
124 { 0x10b5, 0x9056, 0x1369, 0xd221, 0, 0, PCI_ID_VX822E, },
125 { 0x10b5, 0x9056, 0x1369, 0xd321, 0, 0, PCI_ID_PCX822E, },
126 { 0, }
127 };
128
129 MODULE_DEVICE_TABLE(pci, pcxhr_ids);
130
131 struct board_parameters {
132 char* board_name;
133 short playback_chips;
134 short capture_chips;
135 short fw_file_set;
136 short firmware_num;
137 };
138 static const struct board_parameters pcxhr_board_params[] = {
139 [PCI_ID_VX882HR] = { "VX882HR", 4, 4, 0, 41 },
140 [PCI_ID_PCX882HR] = { "PCX882HR", 4, 4, 0, 41 },
141 [PCI_ID_VX881HR] = { "VX881HR", 4, 4, 0, 41 },
142 [PCI_ID_PCX881HR] = { "PCX881HR", 4, 4, 0, 41 },
143 [PCI_ID_VX882E] = { "VX882e", 4, 4, 1, 41 },
144 [PCI_ID_PCX882E] = { "PCX882e", 4, 4, 1, 41 },
145 [PCI_ID_VX881E] = { "VX881e", 4, 4, 1, 41 },
146 [PCI_ID_PCX881E] = { "PCX881e", 4, 4, 1, 41 },
147 [PCI_ID_VX1222HR] = { "VX1222HR", 6, 1, 2, 42 },
148 [PCI_ID_PCX1222HR] = { "PCX1222HR", 6, 1, 2, 42 },
149 [PCI_ID_VX1221HR] = { "VX1221HR", 6, 1, 2, 42 },
150 [PCI_ID_PCX1221HR] = { "PCX1221HR", 6, 1, 2, 42 },
151 [PCI_ID_VX1222E] = { "VX1222e", 6, 1, 3, 42 },
152 [PCI_ID_PCX1222E] = { "PCX1222e", 6, 1, 3, 42 },
153 [PCI_ID_VX1221E] = { "VX1221e", 6, 1, 3, 42 },
154 [PCI_ID_PCX1221E] = { "PCX1221e", 6, 1, 3, 42 },
155 [PCI_ID_VX222HR] = { "VX222HR", 1, 1, 4, 44 },
156 [PCI_ID_VX222E] = { "VX222e", 1, 1, 4, 44 },
157 [PCI_ID_PCX22HR] = { "PCX22HR", 1, 0, 4, 44 },
158 [PCI_ID_PCX22E] = { "PCX22e", 1, 0, 4, 44 },
159 [PCI_ID_VX222HRMIC] = { "VX222HR-Mic", 1, 1, 5, 44 },
160 [PCI_ID_VX222E_MIC] = { "VX222e-Mic", 1, 1, 5, 44 },
161 [PCI_ID_PCX924HR] = { "PCX924HR", 1, 1, 5, 44 },
162 [PCI_ID_PCX924E] = { "PCX924e", 1, 1, 5, 44 },
163 [PCI_ID_PCX924HRMIC] = { "PCX924HR-Mic", 1, 1, 5, 44 },
164 [PCI_ID_PCX924E_MIC] = { "PCX924e-Mic", 1, 1, 5, 44 },
165 [PCI_ID_VX442HR] = { "VX442HR", 2, 2, 0, 41 },
166 [PCI_ID_PCX442HR] = { "PCX442HR", 2, 2, 0, 41 },
167 [PCI_ID_VX442E] = { "VX442e", 2, 2, 1, 41 },
168 [PCI_ID_PCX442E] = { "PCX442e", 2, 2, 1, 41 },
169 [PCI_ID_VX822HR] = { "VX822HR", 4, 1, 2, 42 },
170 [PCI_ID_PCX822HR] = { "PCX822HR", 4, 1, 2, 42 },
171 [PCI_ID_VX822E] = { "VX822e", 4, 1, 3, 42 },
172 [PCI_ID_PCX822E] = { "PCX822e", 4, 1, 3, 42 },
173 };
174
175 /* boards without hw AES1 and SRC onboard are all using fw_file_set==4 */
176 /* VX222HR, VX222e, PCX22HR and PCX22e */
177 #define PCXHR_BOARD_HAS_AES1(x) (x->fw_file_set != 4)
178 /* some boards do not support 192kHz on digital AES input plugs */
179 #define PCXHR_BOARD_AESIN_NO_192K(x) ((x->capture_chips == 0) || \
180 (x->fw_file_set == 0) || \
181 (x->fw_file_set == 2))
182
pcxhr_pll_freq_register(unsigned int freq,unsigned int * pllreg,unsigned int * realfreq)183 static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
184 unsigned int* realfreq)
185 {
186 unsigned int reg;
187
188 if (freq < 6900 || freq > 110000)
189 return -EINVAL;
190 reg = (28224000 * 2) / freq;
191 reg = (reg - 1) / 2;
192 if (reg < 0x200)
193 *pllreg = reg + 0x800;
194 else if (reg < 0x400)
195 *pllreg = reg & 0x1ff;
196 else if (reg < 0x800) {
197 *pllreg = ((reg >> 1) & 0x1ff) + 0x200;
198 reg &= ~1;
199 } else {
200 *pllreg = ((reg >> 2) & 0x1ff) + 0x400;
201 reg &= ~3;
202 }
203 if (realfreq)
204 *realfreq = (28224000 / (reg + 1));
205 return 0;
206 }
207
208
209 #define PCXHR_FREQ_REG_MASK 0x1f
210 #define PCXHR_FREQ_QUARTZ_48000 0x00
211 #define PCXHR_FREQ_QUARTZ_24000 0x01
212 #define PCXHR_FREQ_QUARTZ_12000 0x09
213 #define PCXHR_FREQ_QUARTZ_32000 0x08
214 #define PCXHR_FREQ_QUARTZ_16000 0x04
215 #define PCXHR_FREQ_QUARTZ_8000 0x0c
216 #define PCXHR_FREQ_QUARTZ_44100 0x02
217 #define PCXHR_FREQ_QUARTZ_22050 0x0a
218 #define PCXHR_FREQ_QUARTZ_11025 0x06
219 #define PCXHR_FREQ_PLL 0x05
220 #define PCXHR_FREQ_QUARTZ_192000 0x10
221 #define PCXHR_FREQ_QUARTZ_96000 0x18
222 #define PCXHR_FREQ_QUARTZ_176400 0x14
223 #define PCXHR_FREQ_QUARTZ_88200 0x1c
224 #define PCXHR_FREQ_QUARTZ_128000 0x12
225 #define PCXHR_FREQ_QUARTZ_64000 0x1a
226
227 #define PCXHR_FREQ_WORD_CLOCK 0x0f
228 #define PCXHR_FREQ_SYNC_AES 0x0e
229 #define PCXHR_FREQ_AES_1 0x07
230 #define PCXHR_FREQ_AES_2 0x0b
231 #define PCXHR_FREQ_AES_3 0x03
232 #define PCXHR_FREQ_AES_4 0x0d
233
pcxhr_get_clock_reg(struct pcxhr_mgr * mgr,unsigned int rate,unsigned int * reg,unsigned int * freq)234 static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
235 unsigned int *reg, unsigned int *freq)
236 {
237 unsigned int val, realfreq, pllreg;
238 struct pcxhr_rmh rmh;
239 int err;
240
241 realfreq = rate;
242 switch (mgr->use_clock_type) {
243 case PCXHR_CLOCK_TYPE_INTERNAL : /* clock by quartz or pll */
244 switch (rate) {
245 case 48000 : val = PCXHR_FREQ_QUARTZ_48000; break;
246 case 24000 : val = PCXHR_FREQ_QUARTZ_24000; break;
247 case 12000 : val = PCXHR_FREQ_QUARTZ_12000; break;
248 case 32000 : val = PCXHR_FREQ_QUARTZ_32000; break;
249 case 16000 : val = PCXHR_FREQ_QUARTZ_16000; break;
250 case 8000 : val = PCXHR_FREQ_QUARTZ_8000; break;
251 case 44100 : val = PCXHR_FREQ_QUARTZ_44100; break;
252 case 22050 : val = PCXHR_FREQ_QUARTZ_22050; break;
253 case 11025 : val = PCXHR_FREQ_QUARTZ_11025; break;
254 case 192000 : val = PCXHR_FREQ_QUARTZ_192000; break;
255 case 96000 : val = PCXHR_FREQ_QUARTZ_96000; break;
256 case 176400 : val = PCXHR_FREQ_QUARTZ_176400; break;
257 case 88200 : val = PCXHR_FREQ_QUARTZ_88200; break;
258 case 128000 : val = PCXHR_FREQ_QUARTZ_128000; break;
259 case 64000 : val = PCXHR_FREQ_QUARTZ_64000; break;
260 default :
261 val = PCXHR_FREQ_PLL;
262 /* get the value for the pll register */
263 err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
264 if (err)
265 return err;
266 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
267 rmh.cmd[0] |= IO_NUM_REG_GENCLK;
268 rmh.cmd[1] = pllreg & MASK_DSP_WORD;
269 rmh.cmd[2] = pllreg >> 24;
270 rmh.cmd_len = 3;
271 err = pcxhr_send_msg(mgr, &rmh);
272 if (err < 0) {
273 dev_err(&mgr->pci->dev,
274 "error CMD_ACCESS_IO_WRITE "
275 "for PLL register : %x!\n", err);
276 return err;
277 }
278 }
279 break;
280 case PCXHR_CLOCK_TYPE_WORD_CLOCK:
281 val = PCXHR_FREQ_WORD_CLOCK;
282 break;
283 case PCXHR_CLOCK_TYPE_AES_SYNC:
284 val = PCXHR_FREQ_SYNC_AES;
285 break;
286 case PCXHR_CLOCK_TYPE_AES_1:
287 val = PCXHR_FREQ_AES_1;
288 break;
289 case PCXHR_CLOCK_TYPE_AES_2:
290 val = PCXHR_FREQ_AES_2;
291 break;
292 case PCXHR_CLOCK_TYPE_AES_3:
293 val = PCXHR_FREQ_AES_3;
294 break;
295 case PCXHR_CLOCK_TYPE_AES_4:
296 val = PCXHR_FREQ_AES_4;
297 break;
298 default:
299 return -EINVAL;
300 }
301 *reg = val;
302 *freq = realfreq;
303 return 0;
304 }
305
306
pcxhr_sub_set_clock(struct pcxhr_mgr * mgr,unsigned int rate,int * changed)307 static int pcxhr_sub_set_clock(struct pcxhr_mgr *mgr,
308 unsigned int rate,
309 int *changed)
310 {
311 unsigned int val, realfreq, speed;
312 struct pcxhr_rmh rmh;
313 int err;
314
315 err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
316 if (err)
317 return err;
318
319 /* codec speed modes */
320 if (rate < 55000)
321 speed = 0; /* single speed */
322 else if (rate < 100000)
323 speed = 1; /* dual speed */
324 else
325 speed = 2; /* quad speed */
326 if (mgr->codec_speed != speed) {
327 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* mute outputs */
328 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
329 if (DSP_EXT_CMD_SET(mgr)) {
330 rmh.cmd[1] = 1;
331 rmh.cmd_len = 2;
332 }
333 err = pcxhr_send_msg(mgr, &rmh);
334 if (err)
335 return err;
336
337 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* set speed ratio */
338 rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
339 rmh.cmd[1] = speed;
340 rmh.cmd_len = 2;
341 err = pcxhr_send_msg(mgr, &rmh);
342 if (err)
343 return err;
344 }
345 /* set the new frequency */
346 dev_dbg(&mgr->pci->dev, "clock register : set %x\n", val);
347 err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK,
348 val, changed);
349 if (err)
350 return err;
351
352 mgr->sample_rate_real = realfreq;
353 mgr->cur_clock_type = mgr->use_clock_type;
354
355 /* unmute after codec speed modes */
356 if (mgr->codec_speed != speed) {
357 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); /* unmute outputs */
358 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
359 if (DSP_EXT_CMD_SET(mgr)) {
360 rmh.cmd[1] = 1;
361 rmh.cmd_len = 2;
362 }
363 err = pcxhr_send_msg(mgr, &rmh);
364 if (err)
365 return err;
366 mgr->codec_speed = speed; /* save new codec speed */
367 }
368
369 dev_dbg(&mgr->pci->dev, "%s to %dHz (realfreq=%d)\n", __func__,
370 rate, realfreq);
371 return 0;
372 }
373
374 #define PCXHR_MODIFY_CLOCK_S_BIT 0x04
375
376 #define PCXHR_IRQ_TIMER_FREQ 92000
377 #define PCXHR_IRQ_TIMER_PERIOD 48
378
pcxhr_set_clock(struct pcxhr_mgr * mgr,unsigned int rate)379 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
380 {
381 struct pcxhr_rmh rmh;
382 int err, changed;
383
384 if (rate == 0)
385 return 0; /* nothing to do */
386
387 if (mgr->is_hr_stereo)
388 err = hr222_sub_set_clock(mgr, rate, &changed);
389 else
390 err = pcxhr_sub_set_clock(mgr, rate, &changed);
391
392 if (err)
393 return err;
394
395 if (changed) {
396 pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
397 rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT; /* resync fifos */
398 if (rate < PCXHR_IRQ_TIMER_FREQ)
399 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
400 else
401 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
402 rmh.cmd[2] = rate;
403 rmh.cmd_len = 3;
404 err = pcxhr_send_msg(mgr, &rmh);
405 if (err)
406 return err;
407 }
408 return 0;
409 }
410
411
pcxhr_sub_get_external_clock(struct pcxhr_mgr * mgr,enum pcxhr_clock_type clock_type,int * sample_rate)412 static int pcxhr_sub_get_external_clock(struct pcxhr_mgr *mgr,
413 enum pcxhr_clock_type clock_type,
414 int *sample_rate)
415 {
416 struct pcxhr_rmh rmh;
417 unsigned char reg;
418 int err, rate;
419
420 switch (clock_type) {
421 case PCXHR_CLOCK_TYPE_WORD_CLOCK:
422 reg = REG_STATUS_WORD_CLOCK;
423 break;
424 case PCXHR_CLOCK_TYPE_AES_SYNC:
425 reg = REG_STATUS_AES_SYNC;
426 break;
427 case PCXHR_CLOCK_TYPE_AES_1:
428 reg = REG_STATUS_AES_1;
429 break;
430 case PCXHR_CLOCK_TYPE_AES_2:
431 reg = REG_STATUS_AES_2;
432 break;
433 case PCXHR_CLOCK_TYPE_AES_3:
434 reg = REG_STATUS_AES_3;
435 break;
436 case PCXHR_CLOCK_TYPE_AES_4:
437 reg = REG_STATUS_AES_4;
438 break;
439 default:
440 return -EINVAL;
441 }
442 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
443 rmh.cmd_len = 2;
444 rmh.cmd[0] |= IO_NUM_REG_STATUS;
445 if (mgr->last_reg_stat != reg) {
446 rmh.cmd[1] = reg;
447 err = pcxhr_send_msg(mgr, &rmh);
448 if (err)
449 return err;
450 udelay(100); /* wait minimum 2 sample_frames at 32kHz ! */
451 mgr->last_reg_stat = reg;
452 }
453 rmh.cmd[1] = REG_STATUS_CURRENT;
454 err = pcxhr_send_msg(mgr, &rmh);
455 if (err)
456 return err;
457 switch (rmh.stat[1] & 0x0f) {
458 case REG_STATUS_SYNC_32000 : rate = 32000; break;
459 case REG_STATUS_SYNC_44100 : rate = 44100; break;
460 case REG_STATUS_SYNC_48000 : rate = 48000; break;
461 case REG_STATUS_SYNC_64000 : rate = 64000; break;
462 case REG_STATUS_SYNC_88200 : rate = 88200; break;
463 case REG_STATUS_SYNC_96000 : rate = 96000; break;
464 case REG_STATUS_SYNC_128000 : rate = 128000; break;
465 case REG_STATUS_SYNC_176400 : rate = 176400; break;
466 case REG_STATUS_SYNC_192000 : rate = 192000; break;
467 default: rate = 0;
468 }
469 dev_dbg(&mgr->pci->dev, "External clock is at %d Hz\n", rate);
470 *sample_rate = rate;
471 return 0;
472 }
473
474
pcxhr_get_external_clock(struct pcxhr_mgr * mgr,enum pcxhr_clock_type clock_type,int * sample_rate)475 int pcxhr_get_external_clock(struct pcxhr_mgr *mgr,
476 enum pcxhr_clock_type clock_type,
477 int *sample_rate)
478 {
479 if (mgr->is_hr_stereo)
480 return hr222_get_external_clock(mgr, clock_type,
481 sample_rate);
482 else
483 return pcxhr_sub_get_external_clock(mgr, clock_type,
484 sample_rate);
485 }
486
487 /*
488 * start or stop playback/capture substream
489 */
pcxhr_set_stream_state(struct snd_pcxhr * chip,struct pcxhr_stream * stream)490 static int pcxhr_set_stream_state(struct snd_pcxhr *chip,
491 struct pcxhr_stream *stream)
492 {
493 int err;
494 struct pcxhr_rmh rmh;
495 int stream_mask, start;
496
497 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
498 start = 1;
499 else {
500 if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
501 dev_err(chip->card->dev,
502 "%s CANNOT be stopped\n", __func__);
503 return -EINVAL;
504 }
505 start = 0;
506 }
507 if (!stream->substream)
508 return -EINVAL;
509
510 stream->timer_abs_periods = 0;
511 stream->timer_period_frag = 0; /* reset theoretical stream pos */
512 stream->timer_buf_periods = 0;
513 stream->timer_is_synced = 0;
514
515 stream_mask =
516 stream->pipe->is_capture ? 1 : 1<<stream->substream->number;
517
518 pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
519 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
520 stream->pipe->first_audio, 0, stream_mask);
521
522 chip = snd_pcm_substream_chip(stream->substream);
523
524 err = pcxhr_send_msg(chip->mgr, &rmh);
525 if (err)
526 dev_err(chip->card->dev,
527 "ERROR %s err=%x;\n", __func__, err);
528 stream->status =
529 start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
530 return err;
531 }
532
533 #define HEADER_FMT_BASE_LIN 0xfed00000
534 #define HEADER_FMT_BASE_FLOAT 0xfad00000
535 #define HEADER_FMT_INTEL 0x00008000
536 #define HEADER_FMT_24BITS 0x00004000
537 #define HEADER_FMT_16BITS 0x00002000
538 #define HEADER_FMT_UPTO11 0x00000200
539 #define HEADER_FMT_UPTO32 0x00000100
540 #define HEADER_FMT_MONO 0x00000080
541
pcxhr_set_format(struct pcxhr_stream * stream)542 static int pcxhr_set_format(struct pcxhr_stream *stream)
543 {
544 int err, is_capture, sample_rate, stream_num;
545 struct snd_pcxhr *chip;
546 struct pcxhr_rmh rmh;
547 unsigned int header;
548
549 chip = snd_pcm_substream_chip(stream->substream);
550 switch (stream->format) {
551 case SNDRV_PCM_FORMAT_U8:
552 header = HEADER_FMT_BASE_LIN;
553 break;
554 case SNDRV_PCM_FORMAT_S16_LE:
555 header = HEADER_FMT_BASE_LIN |
556 HEADER_FMT_16BITS | HEADER_FMT_INTEL;
557 break;
558 case SNDRV_PCM_FORMAT_S16_BE:
559 header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
560 break;
561 case SNDRV_PCM_FORMAT_S24_3LE:
562 header = HEADER_FMT_BASE_LIN |
563 HEADER_FMT_24BITS | HEADER_FMT_INTEL;
564 break;
565 case SNDRV_PCM_FORMAT_S24_3BE:
566 header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
567 break;
568 case SNDRV_PCM_FORMAT_FLOAT_LE:
569 header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
570 break;
571 default:
572 dev_err(chip->card->dev,
573 "error %s() : unknown format\n", __func__);
574 return -EINVAL;
575 }
576
577 sample_rate = chip->mgr->sample_rate;
578 if (sample_rate <= 32000 && sample_rate !=0) {
579 if (sample_rate <= 11025)
580 header |= HEADER_FMT_UPTO11;
581 else
582 header |= HEADER_FMT_UPTO32;
583 }
584 if (stream->channels == 1)
585 header |= HEADER_FMT_MONO;
586
587 is_capture = stream->pipe->is_capture;
588 stream_num = is_capture ? 0 : stream->substream->number;
589
590 pcxhr_init_rmh(&rmh, is_capture ?
591 CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
592 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio,
593 stream_num, 0);
594 if (is_capture) {
595 /* bug with old dsp versions: */
596 /* bit 12 also sets the format of the playback stream */
597 if (DSP_EXT_CMD_SET(chip->mgr))
598 rmh.cmd[0] |= 1<<10;
599 else
600 rmh.cmd[0] |= 1<<12;
601 }
602 rmh.cmd[1] = 0;
603 rmh.cmd_len = 2;
604 if (DSP_EXT_CMD_SET(chip->mgr)) {
605 /* add channels and set bit 19 if channels>2 */
606 rmh.cmd[1] = stream->channels;
607 if (!is_capture) {
608 /* playback : add channel mask to command */
609 rmh.cmd[2] = (stream->channels == 1) ? 0x01 : 0x03;
610 rmh.cmd_len = 3;
611 }
612 }
613 rmh.cmd[rmh.cmd_len++] = header >> 8;
614 rmh.cmd[rmh.cmd_len++] = (header & 0xff) << 16;
615 err = pcxhr_send_msg(chip->mgr, &rmh);
616 if (err)
617 dev_err(chip->card->dev,
618 "ERROR %s err=%x;\n", __func__, err);
619 return err;
620 }
621
pcxhr_update_r_buffer(struct pcxhr_stream * stream)622 static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
623 {
624 int err, is_capture, stream_num;
625 struct pcxhr_rmh rmh;
626 struct snd_pcm_substream *subs = stream->substream;
627 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
628
629 is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
630 stream_num = is_capture ? 0 : subs->number;
631
632 dev_dbg(chip->card->dev,
633 "%s(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n", __func__,
634 is_capture ? 'c' : 'p',
635 chip->chip_idx, (void *)(long)subs->runtime->dma_addr,
636 subs->runtime->dma_bytes, subs->number);
637
638 pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
639 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio,
640 stream_num, 0);
641
642 /* max buffer size is 2 MByte */
643 snd_BUG_ON(subs->runtime->dma_bytes >= 0x200000);
644 /* size in bits */
645 rmh.cmd[1] = subs->runtime->dma_bytes * 8;
646 /* most significant byte */
647 rmh.cmd[2] = subs->runtime->dma_addr >> 24;
648 /* this is a circular buffer */
649 rmh.cmd[2] |= 1<<19;
650 /* least 3 significant bytes */
651 rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD;
652 rmh.cmd_len = 4;
653 err = pcxhr_send_msg(chip->mgr, &rmh);
654 if (err)
655 dev_err(chip->card->dev,
656 "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
657 return err;
658 }
659
660
661 #if 0
662 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream,
663 snd_pcm_uframes_t *sample_count)
664 {
665 struct pcxhr_rmh rmh;
666 int err;
667 pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
668 pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
669 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
670 1<<stream->pipe->first_audio);
671 err = pcxhr_send_msg(chip->mgr, &rmh);
672 if (err == 0) {
673 *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
674 *sample_count += (snd_pcm_uframes_t)rmh.stat[1];
675 }
676 dev_dbg(chip->card->dev, "PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
677 return err;
678 }
679 #endif
680
pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream * stream,struct pcxhr_pipe ** pipe)681 static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
682 struct pcxhr_pipe **pipe)
683 {
684 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
685 *pipe = stream->pipe;
686 return 1;
687 }
688 return 0;
689 }
690
pcxhr_start_linked_stream(struct pcxhr_mgr * mgr)691 static void pcxhr_start_linked_stream(struct pcxhr_mgr *mgr)
692 {
693 int i, j, err;
694 struct pcxhr_pipe *pipe;
695 struct snd_pcxhr *chip;
696 int capture_mask = 0;
697 int playback_mask = 0;
698
699 #ifdef CONFIG_SND_DEBUG_VERBOSE
700 ktime_t start_time, stop_time, diff_time;
701
702 start_time = ktime_get();
703 #endif
704 mutex_lock(&mgr->setup_mutex);
705
706 /* check the pipes concerned and build pipe_array */
707 for (i = 0; i < mgr->num_cards; i++) {
708 chip = mgr->chip[i];
709 for (j = 0; j < chip->nb_streams_capt; j++) {
710 if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
711 capture_mask |= (1 << pipe->first_audio);
712 }
713 for (j = 0; j < chip->nb_streams_play; j++) {
714 if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
715 playback_mask |= (1 << pipe->first_audio);
716 break; /* add only once, as all playback
717 * streams of one chip use the same pipe
718 */
719 }
720 }
721 }
722 if (capture_mask == 0 && playback_mask == 0) {
723 mutex_unlock(&mgr->setup_mutex);
724 dev_err(&mgr->pci->dev, "%s : no pipes\n", __func__);
725 return;
726 }
727
728 dev_dbg(&mgr->pci->dev, "%s : playback_mask=%x capture_mask=%x\n",
729 __func__, playback_mask, capture_mask);
730
731 /* synchronous stop of all the pipes concerned */
732 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 0);
733 if (err) {
734 mutex_unlock(&mgr->setup_mutex);
735 dev_err(&mgr->pci->dev, "%s : "
736 "error stop pipes (P%x C%x)\n",
737 __func__, playback_mask, capture_mask);
738 return;
739 }
740
741 /* the dsp lost format and buffer info with the stop pipe */
742 for (i = 0; i < mgr->num_cards; i++) {
743 struct pcxhr_stream *stream;
744 chip = mgr->chip[i];
745 for (j = 0; j < chip->nb_streams_capt; j++) {
746 stream = &chip->capture_stream[j];
747 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
748 err = pcxhr_set_format(stream);
749 err = pcxhr_update_r_buffer(stream);
750 }
751 }
752 for (j = 0; j < chip->nb_streams_play; j++) {
753 stream = &chip->playback_stream[j];
754 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
755 err = pcxhr_set_format(stream);
756 err = pcxhr_update_r_buffer(stream);
757 }
758 }
759 }
760 /* start all the streams */
761 for (i = 0; i < mgr->num_cards; i++) {
762 struct pcxhr_stream *stream;
763 chip = mgr->chip[i];
764 for (j = 0; j < chip->nb_streams_capt; j++) {
765 stream = &chip->capture_stream[j];
766 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
767 err = pcxhr_set_stream_state(chip, stream);
768 }
769 for (j = 0; j < chip->nb_streams_play; j++) {
770 stream = &chip->playback_stream[j];
771 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
772 err = pcxhr_set_stream_state(chip, stream);
773 }
774 }
775
776 /* synchronous start of all the pipes concerned */
777 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
778 if (err) {
779 mutex_unlock(&mgr->setup_mutex);
780 dev_err(&mgr->pci->dev, "%s : "
781 "error start pipes (P%x C%x)\n",
782 __func__, playback_mask, capture_mask);
783 return;
784 }
785
786 /* put the streams into the running state now
787 * (increment pointer by interrupt)
788 */
789 mutex_lock(&mgr->lock);
790 for ( i =0; i < mgr->num_cards; i++) {
791 struct pcxhr_stream *stream;
792 chip = mgr->chip[i];
793 for(j = 0; j < chip->nb_streams_capt; j++) {
794 stream = &chip->capture_stream[j];
795 if(stream->status == PCXHR_STREAM_STATUS_STARTED)
796 stream->status = PCXHR_STREAM_STATUS_RUNNING;
797 }
798 for (j = 0; j < chip->nb_streams_play; j++) {
799 stream = &chip->playback_stream[j];
800 if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
801 /* playback will already have advanced ! */
802 stream->timer_period_frag += mgr->granularity;
803 stream->status = PCXHR_STREAM_STATUS_RUNNING;
804 }
805 }
806 }
807 mutex_unlock(&mgr->lock);
808
809 mutex_unlock(&mgr->setup_mutex);
810
811 #ifdef CONFIG_SND_DEBUG_VERBOSE
812 stop_time = ktime_get();
813 diff_time = ktime_sub(stop_time, start_time);
814 dev_dbg(&mgr->pci->dev, "***TRIGGER START*** TIME = %ld (err = %x)\n",
815 (long)(ktime_to_ns(diff_time)), err);
816 #endif
817 }
818
819
820 /*
821 * trigger callback
822 */
pcxhr_trigger(struct snd_pcm_substream * subs,int cmd)823 static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
824 {
825 struct pcxhr_stream *stream;
826 struct snd_pcm_substream *s;
827 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
828
829 switch (cmd) {
830 case SNDRV_PCM_TRIGGER_START:
831 dev_dbg(chip->card->dev, "SNDRV_PCM_TRIGGER_START\n");
832 if (snd_pcm_stream_linked(subs)) {
833 snd_pcm_group_for_each_entry(s, subs) {
834 if (snd_pcm_substream_chip(s) != chip)
835 continue;
836 stream = s->runtime->private_data;
837 stream->status =
838 PCXHR_STREAM_STATUS_SCHEDULE_RUN;
839 snd_pcm_trigger_done(s, subs);
840 }
841 pcxhr_start_linked_stream(chip->mgr);
842 } else {
843 stream = subs->runtime->private_data;
844 dev_dbg(chip->card->dev, "Only one Substream %c %d\n",
845 stream->pipe->is_capture ? 'C' : 'P',
846 stream->pipe->first_audio);
847 if (pcxhr_set_format(stream))
848 return -EINVAL;
849 if (pcxhr_update_r_buffer(stream))
850 return -EINVAL;
851
852 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN;
853 if (pcxhr_set_stream_state(chip, stream))
854 return -EINVAL;
855 stream->status = PCXHR_STREAM_STATUS_RUNNING;
856 }
857 break;
858 case SNDRV_PCM_TRIGGER_STOP:
859 dev_dbg(chip->card->dev, "SNDRV_PCM_TRIGGER_STOP\n");
860 snd_pcm_group_for_each_entry(s, subs) {
861 stream = s->runtime->private_data;
862 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
863 if (pcxhr_set_stream_state(chip, stream))
864 return -EINVAL;
865 snd_pcm_trigger_done(s, subs);
866 }
867 break;
868 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
869 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
870 /* TODO */
871 default:
872 return -EINVAL;
873 }
874 return 0;
875 }
876
877
pcxhr_hardware_timer(struct pcxhr_mgr * mgr,int start)878 static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
879 {
880 struct pcxhr_rmh rmh;
881 int err;
882
883 pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
884 if (start) {
885 /* last dsp time invalid */
886 mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID;
887 rmh.cmd[0] |= mgr->granularity;
888 }
889 err = pcxhr_send_msg(mgr, &rmh);
890 if (err < 0)
891 dev_err(&mgr->pci->dev, "error %s err(%x)\n", __func__,
892 err);
893 return err;
894 }
895
896 /*
897 * prepare callback for all pcms
898 */
pcxhr_prepare(struct snd_pcm_substream * subs)899 static int pcxhr_prepare(struct snd_pcm_substream *subs)
900 {
901 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
902 struct pcxhr_mgr *mgr = chip->mgr;
903 int err = 0;
904
905 dev_dbg(chip->card->dev,
906 "%s : period_size(%lx) periods(%x) buffer_size(%lx)\n", __func__,
907 subs->runtime->period_size, subs->runtime->periods,
908 subs->runtime->buffer_size);
909
910 mutex_lock(&mgr->setup_mutex);
911
912 do {
913 /* only the first stream can choose the sample rate */
914 /* set the clock only once (first stream) */
915 if (mgr->sample_rate != subs->runtime->rate) {
916 err = pcxhr_set_clock(mgr, subs->runtime->rate);
917 if (err)
918 break;
919 if (mgr->sample_rate == 0)
920 /* start the DSP-timer */
921 err = pcxhr_hardware_timer(mgr, 1);
922 mgr->sample_rate = subs->runtime->rate;
923 }
924 } while(0); /* do only once (so we can use break instead of goto) */
925
926 mutex_unlock(&mgr->setup_mutex);
927
928 return err;
929 }
930
931
932 /*
933 * HW_PARAMS callback for all pcms
934 */
pcxhr_hw_params(struct snd_pcm_substream * subs,struct snd_pcm_hw_params * hw)935 static int pcxhr_hw_params(struct snd_pcm_substream *subs,
936 struct snd_pcm_hw_params *hw)
937 {
938 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
939 struct pcxhr_mgr *mgr = chip->mgr;
940 struct pcxhr_stream *stream = subs->runtime->private_data;
941
942 mutex_lock(&mgr->setup_mutex);
943
944 /* set up channels */
945 stream->channels = params_channels(hw);
946 /* set up format for the stream */
947 stream->format = params_format(hw);
948
949 mutex_unlock(&mgr->setup_mutex);
950
951 return 0;
952 }
953
954
955 /*
956 * CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
957 */
958 static const struct snd_pcm_hardware pcxhr_caps =
959 {
960 .info = (SNDRV_PCM_INFO_MMAP |
961 SNDRV_PCM_INFO_INTERLEAVED |
962 SNDRV_PCM_INFO_MMAP_VALID |
963 SNDRV_PCM_INFO_SYNC_START),
964 .formats = (SNDRV_PCM_FMTBIT_U8 |
965 SNDRV_PCM_FMTBIT_S16_LE |
966 SNDRV_PCM_FMTBIT_S16_BE |
967 SNDRV_PCM_FMTBIT_S24_3LE |
968 SNDRV_PCM_FMTBIT_S24_3BE |
969 SNDRV_PCM_FMTBIT_FLOAT_LE),
970 .rates = (SNDRV_PCM_RATE_CONTINUOUS |
971 SNDRV_PCM_RATE_8000_192000),
972 .rate_min = 8000,
973 .rate_max = 192000,
974 .channels_min = 1,
975 .channels_max = 2,
976 .buffer_bytes_max = (32*1024),
977 /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
978 .period_bytes_min = (2*PCXHR_GRANULARITY),
979 .period_bytes_max = (16*1024),
980 .periods_min = 2,
981 .periods_max = (32*1024/PCXHR_GRANULARITY),
982 };
983
984
pcxhr_open(struct snd_pcm_substream * subs)985 static int pcxhr_open(struct snd_pcm_substream *subs)
986 {
987 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
988 struct pcxhr_mgr *mgr = chip->mgr;
989 struct snd_pcm_runtime *runtime = subs->runtime;
990 struct pcxhr_stream *stream;
991 int err;
992
993 mutex_lock(&mgr->setup_mutex);
994
995 /* copy the struct snd_pcm_hardware struct */
996 runtime->hw = pcxhr_caps;
997
998 if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
999 dev_dbg(chip->card->dev, "%s playback chip%d subs%d\n",
1000 __func__, chip->chip_idx, subs->number);
1001 stream = &chip->playback_stream[subs->number];
1002 } else {
1003 dev_dbg(chip->card->dev, "%s capture chip%d subs%d\n",
1004 __func__, chip->chip_idx, subs->number);
1005 if (mgr->mono_capture)
1006 runtime->hw.channels_max = 1;
1007 else
1008 runtime->hw.channels_min = 2;
1009 stream = &chip->capture_stream[subs->number];
1010 }
1011 if (stream->status != PCXHR_STREAM_STATUS_FREE){
1012 /* streams in use */
1013 dev_err(chip->card->dev, "%s chip%d subs%d in use\n",
1014 __func__, chip->chip_idx, subs->number);
1015 mutex_unlock(&mgr->setup_mutex);
1016 return -EBUSY;
1017 }
1018
1019 /* float format support is in some cases buggy on stereo cards */
1020 if (mgr->is_hr_stereo)
1021 runtime->hw.formats &= ~SNDRV_PCM_FMTBIT_FLOAT_LE;
1022
1023 /* buffer-size should better be multiple of period-size */
1024 err = snd_pcm_hw_constraint_integer(runtime,
1025 SNDRV_PCM_HW_PARAM_PERIODS);
1026 if (err < 0) {
1027 mutex_unlock(&mgr->setup_mutex);
1028 return err;
1029 }
1030
1031 /* if a sample rate is already used or fixed by external clock,
1032 * the stream cannot change
1033 */
1034 if (mgr->sample_rate)
1035 runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
1036 else {
1037 if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
1038 int external_rate;
1039 if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
1040 &external_rate) ||
1041 external_rate == 0) {
1042 /* cannot detect the external clock rate */
1043 mutex_unlock(&mgr->setup_mutex);
1044 return -EBUSY;
1045 }
1046 runtime->hw.rate_min = external_rate;
1047 runtime->hw.rate_max = external_rate;
1048 }
1049 }
1050
1051 stream->status = PCXHR_STREAM_STATUS_OPEN;
1052 stream->substream = subs;
1053 stream->channels = 0; /* not configured yet */
1054
1055 runtime->private_data = stream;
1056
1057 /* better get a divisor of granularity values (96 or 192) */
1058 snd_pcm_hw_constraint_step(runtime, 0,
1059 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
1060 snd_pcm_hw_constraint_step(runtime, 0,
1061 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
1062 snd_pcm_set_sync(subs);
1063
1064 mgr->ref_count_rate++;
1065
1066 mutex_unlock(&mgr->setup_mutex);
1067 return 0;
1068 }
1069
1070
pcxhr_close(struct snd_pcm_substream * subs)1071 static int pcxhr_close(struct snd_pcm_substream *subs)
1072 {
1073 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
1074 struct pcxhr_mgr *mgr = chip->mgr;
1075 struct pcxhr_stream *stream = subs->runtime->private_data;
1076
1077 mutex_lock(&mgr->setup_mutex);
1078
1079 dev_dbg(chip->card->dev, "%s chip%d subs%d\n", __func__,
1080 chip->chip_idx, subs->number);
1081
1082 /* sample rate released */
1083 if (--mgr->ref_count_rate == 0) {
1084 mgr->sample_rate = 0; /* the sample rate is no more locked */
1085 pcxhr_hardware_timer(mgr, 0); /* stop the DSP-timer */
1086 }
1087
1088 stream->status = PCXHR_STREAM_STATUS_FREE;
1089 stream->substream = NULL;
1090
1091 mutex_unlock(&mgr->setup_mutex);
1092
1093 return 0;
1094 }
1095
1096
pcxhr_stream_pointer(struct snd_pcm_substream * subs)1097 static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
1098 {
1099 u_int32_t timer_period_frag;
1100 int timer_buf_periods;
1101 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
1102 struct snd_pcm_runtime *runtime = subs->runtime;
1103 struct pcxhr_stream *stream = runtime->private_data;
1104
1105 mutex_lock(&chip->mgr->lock);
1106
1107 /* get the period fragment and the nb of periods in the buffer */
1108 timer_period_frag = stream->timer_period_frag;
1109 timer_buf_periods = stream->timer_buf_periods;
1110
1111 mutex_unlock(&chip->mgr->lock);
1112
1113 return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
1114 timer_period_frag);
1115 }
1116
1117
1118 static const struct snd_pcm_ops pcxhr_ops = {
1119 .open = pcxhr_open,
1120 .close = pcxhr_close,
1121 .prepare = pcxhr_prepare,
1122 .hw_params = pcxhr_hw_params,
1123 .trigger = pcxhr_trigger,
1124 .pointer = pcxhr_stream_pointer,
1125 };
1126
1127 /*
1128 */
pcxhr_create_pcm(struct snd_pcxhr * chip)1129 int pcxhr_create_pcm(struct snd_pcxhr *chip)
1130 {
1131 int err;
1132 struct snd_pcm *pcm;
1133 char name[32];
1134
1135 snprintf(name, sizeof(name), "pcxhr %d", chip->chip_idx);
1136 err = snd_pcm_new(chip->card, name, 0,
1137 chip->nb_streams_play,
1138 chip->nb_streams_capt, &pcm);
1139 if (err < 0) {
1140 dev_err(chip->card->dev, "cannot create pcm %s\n", name);
1141 return err;
1142 }
1143 pcm->private_data = chip;
1144
1145 if (chip->nb_streams_play)
1146 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
1147 if (chip->nb_streams_capt)
1148 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);
1149
1150 pcm->info_flags = 0;
1151 pcm->nonatomic = true;
1152 strcpy(pcm->name, name);
1153
1154 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1155 &chip->mgr->pci->dev,
1156 32*1024, 32*1024);
1157 chip->pcm = pcm;
1158 return 0;
1159 }
1160
pcxhr_chip_free(struct snd_pcxhr * chip)1161 static int pcxhr_chip_free(struct snd_pcxhr *chip)
1162 {
1163 kfree(chip);
1164 return 0;
1165 }
1166
pcxhr_chip_dev_free(struct snd_device * device)1167 static int pcxhr_chip_dev_free(struct snd_device *device)
1168 {
1169 struct snd_pcxhr *chip = device->device_data;
1170 return pcxhr_chip_free(chip);
1171 }
1172
1173
1174 /*
1175 */
pcxhr_create(struct pcxhr_mgr * mgr,struct snd_card * card,int idx)1176 static int pcxhr_create(struct pcxhr_mgr *mgr,
1177 struct snd_card *card, int idx)
1178 {
1179 int err;
1180 struct snd_pcxhr *chip;
1181 static const struct snd_device_ops ops = {
1182 .dev_free = pcxhr_chip_dev_free,
1183 };
1184
1185 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1186 if (!chip)
1187 return -ENOMEM;
1188
1189 chip->card = card;
1190 chip->chip_idx = idx;
1191 chip->mgr = mgr;
1192 card->sync_irq = mgr->irq;
1193
1194 if (idx < mgr->playback_chips)
1195 /* stereo or mono streams */
1196 chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;
1197
1198 if (idx < mgr->capture_chips) {
1199 if (mgr->mono_capture)
1200 chip->nb_streams_capt = 2; /* 2 mono streams */
1201 else
1202 chip->nb_streams_capt = 1; /* or 1 stereo stream */
1203 }
1204
1205 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1206 if (err < 0) {
1207 pcxhr_chip_free(chip);
1208 return err;
1209 }
1210
1211 mgr->chip[idx] = chip;
1212
1213 return 0;
1214 }
1215
1216 /* proc interface */
pcxhr_proc_info(struct snd_info_entry * entry,struct snd_info_buffer * buffer)1217 static void pcxhr_proc_info(struct snd_info_entry *entry,
1218 struct snd_info_buffer *buffer)
1219 {
1220 struct snd_pcxhr *chip = entry->private_data;
1221 struct pcxhr_mgr *mgr = chip->mgr;
1222
1223 snd_iprintf(buffer, "\n%s\n", mgr->name);
1224
1225 /* stats available when embedded DSP is running */
1226 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1227 struct pcxhr_rmh rmh;
1228 short ver_maj = (mgr->dsp_version >> 16) & 0xff;
1229 short ver_min = (mgr->dsp_version >> 8) & 0xff;
1230 short ver_build = mgr->dsp_version & 0xff;
1231 snd_iprintf(buffer, "module version %s\n",
1232 PCXHR_DRIVER_VERSION_STRING);
1233 snd_iprintf(buffer, "dsp version %d.%d.%d\n",
1234 ver_maj, ver_min, ver_build);
1235 if (mgr->board_has_analog)
1236 snd_iprintf(buffer, "analog io available\n");
1237 else
1238 snd_iprintf(buffer, "digital only board\n");
1239
1240 /* calc cpu load of the dsp */
1241 pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
1242 if( ! pcxhr_send_msg(mgr, &rmh) ) {
1243 int cur = rmh.stat[0];
1244 int ref = rmh.stat[1];
1245 if (ref > 0) {
1246 if (mgr->sample_rate_real != 0 &&
1247 mgr->sample_rate_real != 48000) {
1248 ref = (ref * 48000) /
1249 mgr->sample_rate_real;
1250 if (mgr->sample_rate_real >=
1251 PCXHR_IRQ_TIMER_FREQ)
1252 ref *= 2;
1253 }
1254 cur = 100 - (100 * cur) / ref;
1255 snd_iprintf(buffer, "cpu load %d%%\n", cur);
1256 snd_iprintf(buffer, "buffer pool %d/%d\n",
1257 rmh.stat[2], rmh.stat[3]);
1258 }
1259 }
1260 snd_iprintf(buffer, "dma granularity : %d\n",
1261 mgr->granularity);
1262 snd_iprintf(buffer, "dsp time errors : %d\n",
1263 mgr->dsp_time_err);
1264 snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
1265 mgr->async_err_pipe_xrun);
1266 snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
1267 mgr->async_err_stream_xrun);
1268 snd_iprintf(buffer, "dsp async last other error : %x\n",
1269 mgr->async_err_other_last);
1270 /* debug zone dsp */
1271 rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
1272 rmh.cmd_len = 1;
1273 rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
1274 rmh.dsp_stat = 0;
1275 rmh.cmd_idx = CMD_LAST_INDEX;
1276 if( ! pcxhr_send_msg(mgr, &rmh) ) {
1277 int i;
1278 if (rmh.stat_len > 8)
1279 rmh.stat_len = 8;
1280 for (i = 0; i < rmh.stat_len; i++)
1281 snd_iprintf(buffer, "debug[%02d] = %06x\n",
1282 i, rmh.stat[i]);
1283 }
1284 } else
1285 snd_iprintf(buffer, "no firmware loaded\n");
1286 snd_iprintf(buffer, "\n");
1287 }
pcxhr_proc_sync(struct snd_info_entry * entry,struct snd_info_buffer * buffer)1288 static void pcxhr_proc_sync(struct snd_info_entry *entry,
1289 struct snd_info_buffer *buffer)
1290 {
1291 struct snd_pcxhr *chip = entry->private_data;
1292 struct pcxhr_mgr *mgr = chip->mgr;
1293 static const char *textsHR22[3] = {
1294 "Internal", "AES Sync", "AES 1"
1295 };
1296 static const char *textsPCXHR[7] = {
1297 "Internal", "Word", "AES Sync",
1298 "AES 1", "AES 2", "AES 3", "AES 4"
1299 };
1300 const char **texts;
1301 int max_clock;
1302 if (mgr->is_hr_stereo) {
1303 texts = textsHR22;
1304 max_clock = HR22_CLOCK_TYPE_MAX;
1305 } else {
1306 texts = textsPCXHR;
1307 max_clock = PCXHR_CLOCK_TYPE_MAX;
1308 }
1309
1310 snd_iprintf(buffer, "\n%s\n", mgr->name);
1311 snd_iprintf(buffer, "Current Sample Clock\t: %s\n",
1312 texts[mgr->cur_clock_type]);
1313 snd_iprintf(buffer, "Current Sample Rate\t= %d\n",
1314 mgr->sample_rate_real);
1315 /* commands available when embedded DSP is running */
1316 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1317 int i, err, sample_rate;
1318 for (i = 1; i <= max_clock; i++) {
1319 err = pcxhr_get_external_clock(mgr, i, &sample_rate);
1320 if (err)
1321 break;
1322 snd_iprintf(buffer, "%s Clock\t\t= %d\n",
1323 texts[i], sample_rate);
1324 }
1325 } else
1326 snd_iprintf(buffer, "no firmware loaded\n");
1327 snd_iprintf(buffer, "\n");
1328 }
1329
pcxhr_proc_gpio_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)1330 static void pcxhr_proc_gpio_read(struct snd_info_entry *entry,
1331 struct snd_info_buffer *buffer)
1332 {
1333 struct snd_pcxhr *chip = entry->private_data;
1334 struct pcxhr_mgr *mgr = chip->mgr;
1335 /* commands available when embedded DSP is running */
1336 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1337 /* gpio ports on stereo boards only available */
1338 int value = 0;
1339 hr222_read_gpio(mgr, 1, &value); /* GPI */
1340 snd_iprintf(buffer, "GPI: 0x%x\n", value);
1341 hr222_read_gpio(mgr, 0, &value); /* GP0 */
1342 snd_iprintf(buffer, "GPO: 0x%x\n", value);
1343 } else
1344 snd_iprintf(buffer, "no firmware loaded\n");
1345 snd_iprintf(buffer, "\n");
1346 }
pcxhr_proc_gpo_write(struct snd_info_entry * entry,struct snd_info_buffer * buffer)1347 static void pcxhr_proc_gpo_write(struct snd_info_entry *entry,
1348 struct snd_info_buffer *buffer)
1349 {
1350 struct snd_pcxhr *chip = entry->private_data;
1351 struct pcxhr_mgr *mgr = chip->mgr;
1352 char line[64];
1353 int value;
1354 /* commands available when embedded DSP is running */
1355 if (!(mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)))
1356 return;
1357 while (!snd_info_get_line(buffer, line, sizeof(line))) {
1358 if (sscanf(line, "GPO: 0x%x", &value) != 1)
1359 continue;
1360 hr222_write_gpo(mgr, value); /* GP0 */
1361 }
1362 }
1363
1364 /* Access to the results of the CMD_GET_TIME_CODE RMH */
1365 #define TIME_CODE_VALID_MASK 0x00800000
1366 #define TIME_CODE_NEW_MASK 0x00400000
1367 #define TIME_CODE_BACK_MASK 0x00200000
1368 #define TIME_CODE_WAIT_MASK 0x00100000
1369
1370 /* Values for the CMD_MANAGE_SIGNAL RMH */
1371 #define MANAGE_SIGNAL_TIME_CODE 0x01
1372 #define MANAGE_SIGNAL_MIDI 0x02
1373
1374 /* linear time code read proc*/
pcxhr_proc_ltc(struct snd_info_entry * entry,struct snd_info_buffer * buffer)1375 static void pcxhr_proc_ltc(struct snd_info_entry *entry,
1376 struct snd_info_buffer *buffer)
1377 {
1378 struct snd_pcxhr *chip = entry->private_data;
1379 struct pcxhr_mgr *mgr = chip->mgr;
1380 struct pcxhr_rmh rmh;
1381 unsigned int ltcHrs, ltcMin, ltcSec, ltcFrm;
1382 int err;
1383 /* commands available when embedded DSP is running */
1384 if (!(mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX))) {
1385 snd_iprintf(buffer, "no firmware loaded\n");
1386 return;
1387 }
1388 if (!mgr->capture_ltc) {
1389 pcxhr_init_rmh(&rmh, CMD_MANAGE_SIGNAL);
1390 rmh.cmd[0] |= MANAGE_SIGNAL_TIME_CODE;
1391 err = pcxhr_send_msg(mgr, &rmh);
1392 if (err) {
1393 snd_iprintf(buffer, "ltc not activated (%d)\n", err);
1394 return;
1395 }
1396 if (mgr->is_hr_stereo)
1397 hr222_manage_timecode(mgr, 1);
1398 else
1399 pcxhr_write_io_num_reg_cont(mgr, REG_CONT_VALSMPTE,
1400 REG_CONT_VALSMPTE, NULL);
1401 mgr->capture_ltc = 1;
1402 }
1403 pcxhr_init_rmh(&rmh, CMD_GET_TIME_CODE);
1404 err = pcxhr_send_msg(mgr, &rmh);
1405 if (err) {
1406 snd_iprintf(buffer, "ltc read error (err=%d)\n", err);
1407 return ;
1408 }
1409 ltcHrs = 10*((rmh.stat[0] >> 8) & 0x3) + (rmh.stat[0] & 0xf);
1410 ltcMin = 10*((rmh.stat[1] >> 16) & 0x7) + ((rmh.stat[1] >> 8) & 0xf);
1411 ltcSec = 10*(rmh.stat[1] & 0x7) + ((rmh.stat[2] >> 16) & 0xf);
1412 ltcFrm = 10*((rmh.stat[2] >> 8) & 0x3) + (rmh.stat[2] & 0xf);
1413
1414 snd_iprintf(buffer, "timecode: %02u:%02u:%02u-%02u\n",
1415 ltcHrs, ltcMin, ltcSec, ltcFrm);
1416 snd_iprintf(buffer, "raw: 0x%04x%06x%06x\n", rmh.stat[0] & 0x00ffff,
1417 rmh.stat[1] & 0xffffff, rmh.stat[2] & 0xffffff);
1418 /*snd_iprintf(buffer, "dsp ref time: 0x%06x%06x\n",
1419 rmh.stat[3] & 0xffffff, rmh.stat[4] & 0xffffff);*/
1420 if (!(rmh.stat[0] & TIME_CODE_VALID_MASK)) {
1421 snd_iprintf(buffer, "warning: linear timecode not valid\n");
1422 }
1423 }
1424
pcxhr_proc_init(struct snd_pcxhr * chip)1425 static void pcxhr_proc_init(struct snd_pcxhr *chip)
1426 {
1427 snd_card_ro_proc_new(chip->card, "info", chip, pcxhr_proc_info);
1428 snd_card_ro_proc_new(chip->card, "sync", chip, pcxhr_proc_sync);
1429 /* gpio available on stereo sound cards only */
1430 if (chip->mgr->is_hr_stereo)
1431 snd_card_rw_proc_new(chip->card, "gpio", chip,
1432 pcxhr_proc_gpio_read,
1433 pcxhr_proc_gpo_write);
1434 snd_card_ro_proc_new(chip->card, "ltc", chip, pcxhr_proc_ltc);
1435 }
1436 /* end of proc interface */
1437
1438 /*
1439 * release all the cards assigned to a manager instance
1440 */
pcxhr_free(struct pcxhr_mgr * mgr)1441 static int pcxhr_free(struct pcxhr_mgr *mgr)
1442 {
1443 unsigned int i;
1444
1445 for (i = 0; i < mgr->num_cards; i++) {
1446 if (mgr->chip[i])
1447 snd_card_free(mgr->chip[i]->card);
1448 }
1449
1450 /* reset board if some firmware was loaded */
1451 if(mgr->dsp_loaded) {
1452 pcxhr_reset_board(mgr);
1453 dev_dbg(&mgr->pci->dev, "reset pcxhr !\n");
1454 }
1455
1456 /* release irq */
1457 if (mgr->irq >= 0)
1458 free_irq(mgr->irq, mgr);
1459
1460 pci_release_regions(mgr->pci);
1461
1462 /* free hostport purgebuffer */
1463 if (mgr->hostport.area) {
1464 snd_dma_free_pages(&mgr->hostport);
1465 mgr->hostport.area = NULL;
1466 }
1467
1468 kfree(mgr->prmh);
1469
1470 pci_disable_device(mgr->pci);
1471 kfree(mgr);
1472 return 0;
1473 }
1474
1475 /*
1476 * probe function - creates the card manager
1477 */
pcxhr_probe(struct pci_dev * pci,const struct pci_device_id * pci_id)1478 static int pcxhr_probe(struct pci_dev *pci,
1479 const struct pci_device_id *pci_id)
1480 {
1481 static int dev;
1482 struct pcxhr_mgr *mgr;
1483 unsigned int i;
1484 int err;
1485 size_t size;
1486 char *card_name;
1487
1488 if (dev >= SNDRV_CARDS)
1489 return -ENODEV;
1490 if (! enable[dev]) {
1491 dev++;
1492 return -ENOENT;
1493 }
1494
1495 /* enable PCI device */
1496 err = pci_enable_device(pci);
1497 if (err < 0)
1498 return err;
1499 pci_set_master(pci);
1500
1501 /* check if we can restrict PCI DMA transfers to 32 bits */
1502 if (dma_set_mask(&pci->dev, DMA_BIT_MASK(32)) < 0) {
1503 dev_err(&pci->dev,
1504 "architecture does not support 32bit PCI busmaster DMA\n");
1505 pci_disable_device(pci);
1506 return -ENXIO;
1507 }
1508
1509 /* alloc card manager */
1510 mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
1511 if (! mgr) {
1512 pci_disable_device(pci);
1513 return -ENOMEM;
1514 }
1515
1516 if (snd_BUG_ON(pci_id->driver_data >= PCI_ID_LAST)) {
1517 kfree(mgr);
1518 pci_disable_device(pci);
1519 return -ENODEV;
1520 }
1521 card_name =
1522 pcxhr_board_params[pci_id->driver_data].board_name;
1523 mgr->playback_chips =
1524 pcxhr_board_params[pci_id->driver_data].playback_chips;
1525 mgr->capture_chips =
1526 pcxhr_board_params[pci_id->driver_data].capture_chips;
1527 mgr->fw_file_set =
1528 pcxhr_board_params[pci_id->driver_data].fw_file_set;
1529 mgr->firmware_num =
1530 pcxhr_board_params[pci_id->driver_data].firmware_num;
1531 mgr->mono_capture = mono[dev];
1532 mgr->is_hr_stereo = (mgr->playback_chips == 1);
1533 mgr->board_has_aes1 = PCXHR_BOARD_HAS_AES1(mgr);
1534 mgr->board_aes_in_192k = !PCXHR_BOARD_AESIN_NO_192K(mgr);
1535
1536 if (mgr->is_hr_stereo)
1537 mgr->granularity = PCXHR_GRANULARITY_HR22;
1538 else
1539 mgr->granularity = PCXHR_GRANULARITY;
1540
1541 /* resource assignment */
1542 err = pci_request_regions(pci, card_name);
1543 if (err < 0) {
1544 kfree(mgr);
1545 pci_disable_device(pci);
1546 return err;
1547 }
1548 for (i = 0; i < 3; i++)
1549 mgr->port[i] = pci_resource_start(pci, i);
1550
1551 mgr->pci = pci;
1552 mgr->irq = -1;
1553
1554 if (request_threaded_irq(pci->irq, pcxhr_interrupt,
1555 pcxhr_threaded_irq, IRQF_SHARED,
1556 KBUILD_MODNAME, mgr)) {
1557 dev_err(&pci->dev, "unable to grab IRQ %d\n", pci->irq);
1558 pcxhr_free(mgr);
1559 return -EBUSY;
1560 }
1561 mgr->irq = pci->irq;
1562
1563 snprintf(mgr->name, sizeof(mgr->name),
1564 "Digigram at 0x%lx & 0x%lx, 0x%lx irq %i",
1565 mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);
1566
1567 /* ISR lock */
1568 mutex_init(&mgr->lock);
1569 mutex_init(&mgr->msg_lock);
1570
1571 /* init setup mutex*/
1572 mutex_init(&mgr->setup_mutex);
1573
1574 mgr->prmh = kmalloc(sizeof(*mgr->prmh) +
1575 sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS -
1576 PCXHR_SIZE_MAX_STATUS),
1577 GFP_KERNEL);
1578 if (! mgr->prmh) {
1579 pcxhr_free(mgr);
1580 return -ENOMEM;
1581 }
1582
1583 for (i=0; i < PCXHR_MAX_CARDS; i++) {
1584 struct snd_card *card;
1585 char tmpid[16];
1586 int idx;
1587
1588 if (i >= max(mgr->playback_chips, mgr->capture_chips))
1589 break;
1590 mgr->num_cards++;
1591
1592 if (index[dev] < 0)
1593 idx = index[dev];
1594 else
1595 idx = index[dev] + i;
1596
1597 snprintf(tmpid, sizeof(tmpid), "%s-%d",
1598 id[dev] ? id[dev] : card_name, i);
1599 err = snd_card_new(&pci->dev, idx, tmpid, THIS_MODULE,
1600 0, &card);
1601
1602 if (err < 0) {
1603 dev_err(&pci->dev, "cannot allocate the card %d\n", i);
1604 pcxhr_free(mgr);
1605 return err;
1606 }
1607
1608 strcpy(card->driver, DRIVER_NAME);
1609 snprintf(card->shortname, sizeof(card->shortname),
1610 "Digigram [PCM #%d]", i);
1611 snprintf(card->longname, sizeof(card->longname),
1612 "%s [PCM #%d]", mgr->name, i);
1613
1614 err = pcxhr_create(mgr, card, i);
1615 if (err < 0) {
1616 snd_card_free(card);
1617 pcxhr_free(mgr);
1618 return err;
1619 }
1620
1621 if (i == 0)
1622 /* init proc interface only for chip0 */
1623 pcxhr_proc_init(mgr->chip[i]);
1624
1625 err = snd_card_register(card);
1626 if (err < 0) {
1627 pcxhr_free(mgr);
1628 return err;
1629 }
1630 }
1631
1632 /* create hostport purgebuffer */
1633 size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
1634 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &pci->dev,
1635 size, &mgr->hostport) < 0) {
1636 pcxhr_free(mgr);
1637 return -ENOMEM;
1638 }
1639 /* init purgebuffer */
1640 memset(mgr->hostport.area, 0, size);
1641
1642 /* create a DSP loader */
1643 err = pcxhr_setup_firmware(mgr);
1644 if (err < 0) {
1645 pcxhr_free(mgr);
1646 return err;
1647 }
1648
1649 pci_set_drvdata(pci, mgr);
1650 dev++;
1651 return 0;
1652 }
1653
pcxhr_remove(struct pci_dev * pci)1654 static void pcxhr_remove(struct pci_dev *pci)
1655 {
1656 pcxhr_free(pci_get_drvdata(pci));
1657 }
1658
1659 static struct pci_driver pcxhr_driver = {
1660 .name = KBUILD_MODNAME,
1661 .id_table = pcxhr_ids,
1662 .probe = pcxhr_probe,
1663 .remove = pcxhr_remove,
1664 };
1665
1666 module_pci_driver(pcxhr_driver);
1667