xref: /openbmc/linux/sound/pci/oxygen/oxygen_mixer.c (revision e8e0929d)
1 /*
2  * C-Media CMI8788 driver - mixer code
3  *
4  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License, version 2.
9  *
10  *  This driver is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this driver; if not, write to the Free Software
17  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/mutex.h>
21 #include <sound/ac97_codec.h>
22 #include <sound/asoundef.h>
23 #include <sound/control.h>
24 #include <sound/tlv.h>
25 #include "oxygen.h"
26 #include "cm9780.h"
27 
28 static int dac_volume_info(struct snd_kcontrol *ctl,
29 			   struct snd_ctl_elem_info *info)
30 {
31 	struct oxygen *chip = ctl->private_data;
32 
33 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
34 	info->count = chip->model.dac_channels;
35 	info->value.integer.min = chip->model.dac_volume_min;
36 	info->value.integer.max = chip->model.dac_volume_max;
37 	return 0;
38 }
39 
40 static int dac_volume_get(struct snd_kcontrol *ctl,
41 			  struct snd_ctl_elem_value *value)
42 {
43 	struct oxygen *chip = ctl->private_data;
44 	unsigned int i;
45 
46 	mutex_lock(&chip->mutex);
47 	for (i = 0; i < chip->model.dac_channels; ++i)
48 		value->value.integer.value[i] = chip->dac_volume[i];
49 	mutex_unlock(&chip->mutex);
50 	return 0;
51 }
52 
53 static int dac_volume_put(struct snd_kcontrol *ctl,
54 			  struct snd_ctl_elem_value *value)
55 {
56 	struct oxygen *chip = ctl->private_data;
57 	unsigned int i;
58 	int changed;
59 
60 	changed = 0;
61 	mutex_lock(&chip->mutex);
62 	for (i = 0; i < chip->model.dac_channels; ++i)
63 		if (value->value.integer.value[i] != chip->dac_volume[i]) {
64 			chip->dac_volume[i] = value->value.integer.value[i];
65 			changed = 1;
66 		}
67 	if (changed)
68 		chip->model.update_dac_volume(chip);
69 	mutex_unlock(&chip->mutex);
70 	return changed;
71 }
72 
73 static int dac_mute_get(struct snd_kcontrol *ctl,
74 			struct snd_ctl_elem_value *value)
75 {
76 	struct oxygen *chip = ctl->private_data;
77 
78 	mutex_lock(&chip->mutex);
79 	value->value.integer.value[0] = !chip->dac_mute;
80 	mutex_unlock(&chip->mutex);
81 	return 0;
82 }
83 
84 static int dac_mute_put(struct snd_kcontrol *ctl,
85 			  struct snd_ctl_elem_value *value)
86 {
87 	struct oxygen *chip = ctl->private_data;
88 	int changed;
89 
90 	mutex_lock(&chip->mutex);
91 	changed = !value->value.integer.value[0] != chip->dac_mute;
92 	if (changed) {
93 		chip->dac_mute = !value->value.integer.value[0];
94 		chip->model.update_dac_mute(chip);
95 	}
96 	mutex_unlock(&chip->mutex);
97 	return changed;
98 }
99 
100 static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
101 {
102 	static const char *const names[3] = {
103 		"Front", "Front+Surround", "Front+Surround+Back"
104 	};
105 	struct oxygen *chip = ctl->private_data;
106 	unsigned int count = 2 + (chip->model.dac_channels == 8);
107 
108 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
109 	info->count = 1;
110 	info->value.enumerated.items = count;
111 	if (info->value.enumerated.item >= count)
112 		info->value.enumerated.item = count - 1;
113 	strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
114 	return 0;
115 }
116 
117 static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
118 {
119 	struct oxygen *chip = ctl->private_data;
120 
121 	mutex_lock(&chip->mutex);
122 	value->value.enumerated.item[0] = chip->dac_routing;
123 	mutex_unlock(&chip->mutex);
124 	return 0;
125 }
126 
127 void oxygen_update_dac_routing(struct oxygen *chip)
128 {
129 	/* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
130 	static const unsigned int reg_values[3] = {
131 		/* stereo -> front */
132 		(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
133 		(1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
134 		(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
135 		(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
136 		/* stereo -> front+surround */
137 		(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
138 		(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
139 		(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
140 		(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
141 		/* stereo -> front+surround+back */
142 		(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
143 		(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
144 		(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
145 		(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
146 	};
147 	u8 channels;
148 	unsigned int reg_value;
149 
150 	channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
151 		OXYGEN_PLAY_CHANNELS_MASK;
152 	if (channels == OXYGEN_PLAY_CHANNELS_2)
153 		reg_value = reg_values[chip->dac_routing];
154 	else if (channels == OXYGEN_PLAY_CHANNELS_8)
155 		/* in 7.1 mode, "rear" channels go to the "back" jack */
156 		reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
157 			    (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
158 			    (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
159 			    (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
160 	else
161 		reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
162 			    (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
163 			    (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
164 			    (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
165 	oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
166 			      OXYGEN_PLAY_DAC0_SOURCE_MASK |
167 			      OXYGEN_PLAY_DAC1_SOURCE_MASK |
168 			      OXYGEN_PLAY_DAC2_SOURCE_MASK |
169 			      OXYGEN_PLAY_DAC3_SOURCE_MASK);
170 }
171 
172 static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
173 {
174 	struct oxygen *chip = ctl->private_data;
175 	unsigned int count = 2 + (chip->model.dac_channels == 8);
176 	int changed;
177 
178 	mutex_lock(&chip->mutex);
179 	changed = value->value.enumerated.item[0] != chip->dac_routing;
180 	if (changed) {
181 		chip->dac_routing = min(value->value.enumerated.item[0],
182 					count - 1);
183 		spin_lock_irq(&chip->reg_lock);
184 		oxygen_update_dac_routing(chip);
185 		spin_unlock_irq(&chip->reg_lock);
186 	}
187 	mutex_unlock(&chip->mutex);
188 	return changed;
189 }
190 
191 static int spdif_switch_get(struct snd_kcontrol *ctl,
192 			    struct snd_ctl_elem_value *value)
193 {
194 	struct oxygen *chip = ctl->private_data;
195 
196 	mutex_lock(&chip->mutex);
197 	value->value.integer.value[0] = chip->spdif_playback_enable;
198 	mutex_unlock(&chip->mutex);
199 	return 0;
200 }
201 
202 static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
203 {
204 	switch (oxygen_rate) {
205 	case OXYGEN_RATE_32000:
206 		return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
207 	case OXYGEN_RATE_44100:
208 		return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
209 	default: /* OXYGEN_RATE_48000 */
210 		return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
211 	case OXYGEN_RATE_64000:
212 		return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
213 	case OXYGEN_RATE_88200:
214 		return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
215 	case OXYGEN_RATE_96000:
216 		return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
217 	case OXYGEN_RATE_176400:
218 		return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
219 	case OXYGEN_RATE_192000:
220 		return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
221 	}
222 }
223 
224 void oxygen_update_spdif_source(struct oxygen *chip)
225 {
226 	u32 old_control, new_control;
227 	u16 old_routing, new_routing;
228 	unsigned int oxygen_rate;
229 
230 	old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
231 	old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
232 	if (chip->pcm_active & (1 << PCM_SPDIF)) {
233 		new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
234 		new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
235 			| OXYGEN_PLAY_SPDIF_SPDIF;
236 		oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
237 			& OXYGEN_I2S_RATE_MASK;
238 		/* S/PDIF rate was already set by the caller */
239 	} else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
240 		   chip->spdif_playback_enable) {
241 		new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
242 			| OXYGEN_PLAY_SPDIF_MULTICH_01;
243 		oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
244 			& OXYGEN_I2S_RATE_MASK;
245 		new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
246 			(oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
247 			OXYGEN_SPDIF_OUT_ENABLE;
248 	} else {
249 		new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
250 		new_routing = old_routing;
251 		oxygen_rate = OXYGEN_RATE_44100;
252 	}
253 	if (old_routing != new_routing) {
254 		oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
255 			       new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
256 		oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
257 	}
258 	if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
259 		oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
260 			       oxygen_spdif_rate(oxygen_rate) |
261 			       ((chip->pcm_active & (1 << PCM_SPDIF)) ?
262 				chip->spdif_pcm_bits : chip->spdif_bits));
263 	oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
264 }
265 
266 static int spdif_switch_put(struct snd_kcontrol *ctl,
267 			    struct snd_ctl_elem_value *value)
268 {
269 	struct oxygen *chip = ctl->private_data;
270 	int changed;
271 
272 	mutex_lock(&chip->mutex);
273 	changed = value->value.integer.value[0] != chip->spdif_playback_enable;
274 	if (changed) {
275 		chip->spdif_playback_enable = !!value->value.integer.value[0];
276 		spin_lock_irq(&chip->reg_lock);
277 		oxygen_update_spdif_source(chip);
278 		spin_unlock_irq(&chip->reg_lock);
279 	}
280 	mutex_unlock(&chip->mutex);
281 	return changed;
282 }
283 
284 static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
285 {
286 	info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
287 	info->count = 1;
288 	return 0;
289 }
290 
291 static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
292 {
293 	value->value.iec958.status[0] =
294 		bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
295 			OXYGEN_SPDIF_PREEMPHASIS);
296 	value->value.iec958.status[1] = /* category and original */
297 		bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
298 }
299 
300 static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
301 {
302 	u32 bits;
303 
304 	bits = value->value.iec958.status[0] &
305 		(OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
306 		 OXYGEN_SPDIF_PREEMPHASIS);
307 	bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
308 	if (bits & OXYGEN_SPDIF_NONAUDIO)
309 		bits |= OXYGEN_SPDIF_V;
310 	return bits;
311 }
312 
313 static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
314 {
315 	oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
316 			      OXYGEN_SPDIF_NONAUDIO |
317 			      OXYGEN_SPDIF_C |
318 			      OXYGEN_SPDIF_PREEMPHASIS |
319 			      OXYGEN_SPDIF_CATEGORY_MASK |
320 			      OXYGEN_SPDIF_ORIGINAL |
321 			      OXYGEN_SPDIF_V);
322 }
323 
324 static int spdif_default_get(struct snd_kcontrol *ctl,
325 			     struct snd_ctl_elem_value *value)
326 {
327 	struct oxygen *chip = ctl->private_data;
328 
329 	mutex_lock(&chip->mutex);
330 	oxygen_to_iec958(chip->spdif_bits, value);
331 	mutex_unlock(&chip->mutex);
332 	return 0;
333 }
334 
335 static int spdif_default_put(struct snd_kcontrol *ctl,
336 			     struct snd_ctl_elem_value *value)
337 {
338 	struct oxygen *chip = ctl->private_data;
339 	u32 new_bits;
340 	int changed;
341 
342 	new_bits = iec958_to_oxygen(value);
343 	mutex_lock(&chip->mutex);
344 	changed = new_bits != chip->spdif_bits;
345 	if (changed) {
346 		chip->spdif_bits = new_bits;
347 		if (!(chip->pcm_active & (1 << PCM_SPDIF)))
348 			write_spdif_bits(chip, new_bits);
349 	}
350 	mutex_unlock(&chip->mutex);
351 	return changed;
352 }
353 
354 static int spdif_mask_get(struct snd_kcontrol *ctl,
355 			  struct snd_ctl_elem_value *value)
356 {
357 	value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
358 		IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
359 	value->value.iec958.status[1] =
360 		IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
361 	return 0;
362 }
363 
364 static int spdif_pcm_get(struct snd_kcontrol *ctl,
365 			 struct snd_ctl_elem_value *value)
366 {
367 	struct oxygen *chip = ctl->private_data;
368 
369 	mutex_lock(&chip->mutex);
370 	oxygen_to_iec958(chip->spdif_pcm_bits, value);
371 	mutex_unlock(&chip->mutex);
372 	return 0;
373 }
374 
375 static int spdif_pcm_put(struct snd_kcontrol *ctl,
376 			 struct snd_ctl_elem_value *value)
377 {
378 	struct oxygen *chip = ctl->private_data;
379 	u32 new_bits;
380 	int changed;
381 
382 	new_bits = iec958_to_oxygen(value);
383 	mutex_lock(&chip->mutex);
384 	changed = new_bits != chip->spdif_pcm_bits;
385 	if (changed) {
386 		chip->spdif_pcm_bits = new_bits;
387 		if (chip->pcm_active & (1 << PCM_SPDIF))
388 			write_spdif_bits(chip, new_bits);
389 	}
390 	mutex_unlock(&chip->mutex);
391 	return changed;
392 }
393 
394 static int spdif_input_mask_get(struct snd_kcontrol *ctl,
395 				struct snd_ctl_elem_value *value)
396 {
397 	value->value.iec958.status[0] = 0xff;
398 	value->value.iec958.status[1] = 0xff;
399 	value->value.iec958.status[2] = 0xff;
400 	value->value.iec958.status[3] = 0xff;
401 	return 0;
402 }
403 
404 static int spdif_input_default_get(struct snd_kcontrol *ctl,
405 				   struct snd_ctl_elem_value *value)
406 {
407 	struct oxygen *chip = ctl->private_data;
408 	u32 bits;
409 
410 	bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
411 	value->value.iec958.status[0] = bits;
412 	value->value.iec958.status[1] = bits >> 8;
413 	value->value.iec958.status[2] = bits >> 16;
414 	value->value.iec958.status[3] = bits >> 24;
415 	return 0;
416 }
417 
418 static int spdif_loopback_get(struct snd_kcontrol *ctl,
419 			      struct snd_ctl_elem_value *value)
420 {
421 	struct oxygen *chip = ctl->private_data;
422 
423 	value->value.integer.value[0] =
424 		!!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
425 		   & OXYGEN_SPDIF_LOOPBACK);
426 	return 0;
427 }
428 
429 static int spdif_loopback_put(struct snd_kcontrol *ctl,
430 			      struct snd_ctl_elem_value *value)
431 {
432 	struct oxygen *chip = ctl->private_data;
433 	u32 oldreg, newreg;
434 	int changed;
435 
436 	spin_lock_irq(&chip->reg_lock);
437 	oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
438 	if (value->value.integer.value[0])
439 		newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
440 	else
441 		newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
442 	changed = newreg != oldreg;
443 	if (changed)
444 		oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
445 	spin_unlock_irq(&chip->reg_lock);
446 	return changed;
447 }
448 
449 static int monitor_volume_info(struct snd_kcontrol *ctl,
450 			       struct snd_ctl_elem_info *info)
451 {
452 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
453 	info->count = 1;
454 	info->value.integer.min = 0;
455 	info->value.integer.max = 1;
456 	return 0;
457 }
458 
459 static int monitor_get(struct snd_kcontrol *ctl,
460 		       struct snd_ctl_elem_value *value)
461 {
462 	struct oxygen *chip = ctl->private_data;
463 	u8 bit = ctl->private_value;
464 	int invert = ctl->private_value & (1 << 8);
465 
466 	value->value.integer.value[0] =
467 		!!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
468 	return 0;
469 }
470 
471 static int monitor_put(struct snd_kcontrol *ctl,
472 		       struct snd_ctl_elem_value *value)
473 {
474 	struct oxygen *chip = ctl->private_data;
475 	u8 bit = ctl->private_value;
476 	int invert = ctl->private_value & (1 << 8);
477 	u8 oldreg, newreg;
478 	int changed;
479 
480 	spin_lock_irq(&chip->reg_lock);
481 	oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
482 	if ((!!value->value.integer.value[0] ^ !!invert) != 0)
483 		newreg = oldreg | bit;
484 	else
485 		newreg = oldreg & ~bit;
486 	changed = newreg != oldreg;
487 	if (changed)
488 		oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
489 	spin_unlock_irq(&chip->reg_lock);
490 	return changed;
491 }
492 
493 static int ac97_switch_get(struct snd_kcontrol *ctl,
494 			   struct snd_ctl_elem_value *value)
495 {
496 	struct oxygen *chip = ctl->private_data;
497 	unsigned int codec = (ctl->private_value >> 24) & 1;
498 	unsigned int index = ctl->private_value & 0xff;
499 	unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
500 	int invert = ctl->private_value & (1 << 16);
501 	u16 reg;
502 
503 	mutex_lock(&chip->mutex);
504 	reg = oxygen_read_ac97(chip, codec, index);
505 	mutex_unlock(&chip->mutex);
506 	if (!(reg & (1 << bitnr)) ^ !invert)
507 		value->value.integer.value[0] = 1;
508 	else
509 		value->value.integer.value[0] = 0;
510 	return 0;
511 }
512 
513 static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
514 {
515 	unsigned int priv_idx;
516 	u16 value;
517 
518 	if (!chip->controls[control])
519 		return;
520 	priv_idx = chip->controls[control]->private_value & 0xff;
521 	value = oxygen_read_ac97(chip, 0, priv_idx);
522 	if (!(value & 0x8000)) {
523 		oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
524 		if (chip->model.ac97_switch)
525 			chip->model.ac97_switch(chip, priv_idx, 0x8000);
526 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
527 			       &chip->controls[control]->id);
528 	}
529 }
530 
531 static int ac97_switch_put(struct snd_kcontrol *ctl,
532 			   struct snd_ctl_elem_value *value)
533 {
534 	struct oxygen *chip = ctl->private_data;
535 	unsigned int codec = (ctl->private_value >> 24) & 1;
536 	unsigned int index = ctl->private_value & 0xff;
537 	unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
538 	int invert = ctl->private_value & (1 << 16);
539 	u16 oldreg, newreg;
540 	int change;
541 
542 	mutex_lock(&chip->mutex);
543 	oldreg = oxygen_read_ac97(chip, codec, index);
544 	newreg = oldreg;
545 	if (!value->value.integer.value[0] ^ !invert)
546 		newreg |= 1 << bitnr;
547 	else
548 		newreg &= ~(1 << bitnr);
549 	change = newreg != oldreg;
550 	if (change) {
551 		oxygen_write_ac97(chip, codec, index, newreg);
552 		if (codec == 0 && chip->model.ac97_switch)
553 			chip->model.ac97_switch(chip, index, newreg & 0x8000);
554 		if (index == AC97_LINE) {
555 			oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
556 						 newreg & 0x8000 ?
557 						 CM9780_GPO0 : 0, CM9780_GPO0);
558 			if (!(newreg & 0x8000)) {
559 				mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
560 				mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
561 				mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
562 			}
563 		} else if ((index == AC97_MIC || index == AC97_CD ||
564 			    index == AC97_VIDEO || index == AC97_AUX) &&
565 			   bitnr == 15 && !(newreg & 0x8000)) {
566 			mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
567 			oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
568 						 CM9780_GPO0, CM9780_GPO0);
569 		}
570 	}
571 	mutex_unlock(&chip->mutex);
572 	return change;
573 }
574 
575 static int ac97_volume_info(struct snd_kcontrol *ctl,
576 			    struct snd_ctl_elem_info *info)
577 {
578 	int stereo = (ctl->private_value >> 16) & 1;
579 
580 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
581 	info->count = stereo ? 2 : 1;
582 	info->value.integer.min = 0;
583 	info->value.integer.max = 0x1f;
584 	return 0;
585 }
586 
587 static int ac97_volume_get(struct snd_kcontrol *ctl,
588 			   struct snd_ctl_elem_value *value)
589 {
590 	struct oxygen *chip = ctl->private_data;
591 	unsigned int codec = (ctl->private_value >> 24) & 1;
592 	int stereo = (ctl->private_value >> 16) & 1;
593 	unsigned int index = ctl->private_value & 0xff;
594 	u16 reg;
595 
596 	mutex_lock(&chip->mutex);
597 	reg = oxygen_read_ac97(chip, codec, index);
598 	mutex_unlock(&chip->mutex);
599 	value->value.integer.value[0] = 31 - (reg & 0x1f);
600 	if (stereo)
601 		value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
602 	return 0;
603 }
604 
605 static int ac97_volume_put(struct snd_kcontrol *ctl,
606 			   struct snd_ctl_elem_value *value)
607 {
608 	struct oxygen *chip = ctl->private_data;
609 	unsigned int codec = (ctl->private_value >> 24) & 1;
610 	int stereo = (ctl->private_value >> 16) & 1;
611 	unsigned int index = ctl->private_value & 0xff;
612 	u16 oldreg, newreg;
613 	int change;
614 
615 	mutex_lock(&chip->mutex);
616 	oldreg = oxygen_read_ac97(chip, codec, index);
617 	newreg = oldreg;
618 	newreg = (newreg & ~0x1f) |
619 		(31 - (value->value.integer.value[0] & 0x1f));
620 	if (stereo)
621 		newreg = (newreg & ~0x1f00) |
622 			((31 - (value->value.integer.value[1] & 0x1f)) << 8);
623 	else
624 		newreg = (newreg & ~0x1f00) | ((newreg & 0x1f) << 8);
625 	change = newreg != oldreg;
626 	if (change)
627 		oxygen_write_ac97(chip, codec, index, newreg);
628 	mutex_unlock(&chip->mutex);
629 	return change;
630 }
631 
632 static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
633 				   struct snd_ctl_elem_info *info)
634 {
635 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
636 	info->count = 2;
637 	info->value.integer.min = 0;
638 	info->value.integer.max = 7;
639 	return 0;
640 }
641 
642 static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
643 				  struct snd_ctl_elem_value *value)
644 {
645 	struct oxygen *chip = ctl->private_data;
646 	u16 reg;
647 
648 	mutex_lock(&chip->mutex);
649 	reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
650 	mutex_unlock(&chip->mutex);
651 	value->value.integer.value[0] = reg & 7;
652 	value->value.integer.value[1] = (reg >> 8) & 7;
653 	return 0;
654 }
655 
656 static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
657 				  struct snd_ctl_elem_value *value)
658 {
659 	struct oxygen *chip = ctl->private_data;
660 	u16 oldreg, newreg;
661 	int change;
662 
663 	mutex_lock(&chip->mutex);
664 	oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
665 	newreg = oldreg & ~0x0707;
666 	newreg = newreg | (value->value.integer.value[0] & 7);
667 	newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
668 	change = newreg != oldreg;
669 	if (change)
670 		oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
671 	mutex_unlock(&chip->mutex);
672 	return change;
673 }
674 
675 #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
676 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
677 		.name = xname, \
678 		.info = snd_ctl_boolean_mono_info, \
679 		.get = ac97_switch_get, \
680 		.put = ac97_switch_put, \
681 		.private_value = ((codec) << 24) | ((invert) << 16) | \
682 				 ((bitnr) << 8) | (index), \
683 	}
684 #define AC97_VOLUME(xname, codec, index, stereo) { \
685 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
686 		.name = xname, \
687 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
688 			  SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
689 		.info = ac97_volume_info, \
690 		.get = ac97_volume_get, \
691 		.put = ac97_volume_put, \
692 		.tlv = { .p = ac97_db_scale, }, \
693 		.private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
694 	}
695 
696 static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
697 static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
698 static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
699 
700 static const struct snd_kcontrol_new controls[] = {
701 	{
702 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
703 		.name = "Master Playback Volume",
704 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
705 		.info = dac_volume_info,
706 		.get = dac_volume_get,
707 		.put = dac_volume_put,
708 	},
709 	{
710 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
711 		.name = "Master Playback Switch",
712 		.info = snd_ctl_boolean_mono_info,
713 		.get = dac_mute_get,
714 		.put = dac_mute_put,
715 	},
716 	{
717 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
718 		.name = "Stereo Upmixing",
719 		.info = upmix_info,
720 		.get = upmix_get,
721 		.put = upmix_put,
722 	},
723 	{
724 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
725 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
726 		.info = snd_ctl_boolean_mono_info,
727 		.get = spdif_switch_get,
728 		.put = spdif_switch_put,
729 	},
730 	{
731 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
732 		.device = 1,
733 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
734 		.info = spdif_info,
735 		.get = spdif_default_get,
736 		.put = spdif_default_put,
737 	},
738 	{
739 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
740 		.device = 1,
741 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
742 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
743 		.info = spdif_info,
744 		.get = spdif_mask_get,
745 	},
746 	{
747 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
748 		.device = 1,
749 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
750 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
751 			  SNDRV_CTL_ELEM_ACCESS_INACTIVE,
752 		.info = spdif_info,
753 		.get = spdif_pcm_get,
754 		.put = spdif_pcm_put,
755 	},
756 };
757 
758 static const struct snd_kcontrol_new spdif_input_controls[] = {
759 	{
760 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
761 		.device = 1,
762 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
763 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
764 		.info = spdif_info,
765 		.get = spdif_input_mask_get,
766 	},
767 	{
768 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
769 		.device = 1,
770 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
771 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
772 		.info = spdif_info,
773 		.get = spdif_input_default_get,
774 	},
775 	{
776 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
777 		.name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
778 		.info = snd_ctl_boolean_mono_info,
779 		.get = spdif_loopback_get,
780 		.put = spdif_loopback_put,
781 	},
782 };
783 
784 static const struct {
785 	unsigned int pcm_dev;
786 	struct snd_kcontrol_new controls[2];
787 } monitor_controls[] = {
788 	{
789 		.pcm_dev = CAPTURE_0_FROM_I2S_1,
790 		.controls = {
791 			{
792 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
793 				.name = "Analog Input Monitor Switch",
794 				.info = snd_ctl_boolean_mono_info,
795 				.get = monitor_get,
796 				.put = monitor_put,
797 				.private_value = OXYGEN_ADC_MONITOR_A,
798 			},
799 			{
800 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
801 				.name = "Analog Input Monitor Volume",
802 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
803 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
804 				.info = monitor_volume_info,
805 				.get = monitor_get,
806 				.put = monitor_put,
807 				.private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
808 						| (1 << 8),
809 				.tlv = { .p = monitor_db_scale, },
810 			},
811 		},
812 	},
813 	{
814 		.pcm_dev = CAPTURE_0_FROM_I2S_2,
815 		.controls = {
816 			{
817 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
818 				.name = "Analog Input Monitor Switch",
819 				.info = snd_ctl_boolean_mono_info,
820 				.get = monitor_get,
821 				.put = monitor_put,
822 				.private_value = OXYGEN_ADC_MONITOR_B,
823 			},
824 			{
825 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
826 				.name = "Analog Input Monitor Volume",
827 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
828 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
829 				.info = monitor_volume_info,
830 				.get = monitor_get,
831 				.put = monitor_put,
832 				.private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
833 						| (1 << 8),
834 				.tlv = { .p = monitor_db_scale, },
835 			},
836 		},
837 	},
838 	{
839 		.pcm_dev = CAPTURE_2_FROM_I2S_2,
840 		.controls = {
841 			{
842 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
843 				.name = "Analog Input Monitor Switch",
844 				.index = 1,
845 				.info = snd_ctl_boolean_mono_info,
846 				.get = monitor_get,
847 				.put = monitor_put,
848 				.private_value = OXYGEN_ADC_MONITOR_B,
849 			},
850 			{
851 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
852 				.name = "Analog Input Monitor Volume",
853 				.index = 1,
854 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
855 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
856 				.info = monitor_volume_info,
857 				.get = monitor_get,
858 				.put = monitor_put,
859 				.private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
860 						| (1 << 8),
861 				.tlv = { .p = monitor_db_scale, },
862 			},
863 		},
864 	},
865 	{
866 		.pcm_dev = CAPTURE_1_FROM_SPDIF,
867 		.controls = {
868 			{
869 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
870 				.name = "Digital Input Monitor Switch",
871 				.info = snd_ctl_boolean_mono_info,
872 				.get = monitor_get,
873 				.put = monitor_put,
874 				.private_value = OXYGEN_ADC_MONITOR_C,
875 			},
876 			{
877 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
878 				.name = "Digital Input Monitor Volume",
879 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
880 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
881 				.info = monitor_volume_info,
882 				.get = monitor_get,
883 				.put = monitor_put,
884 				.private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
885 						| (1 << 8),
886 				.tlv = { .p = monitor_db_scale, },
887 			},
888 		},
889 	},
890 };
891 
892 static const struct snd_kcontrol_new ac97_controls[] = {
893 	AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
894 	AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
895 	AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
896 	AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
897 	AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
898 	AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
899 	AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
900 	AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
901 };
902 
903 static const struct snd_kcontrol_new ac97_fp_controls[] = {
904 	AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
905 	AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
906 	{
907 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
908 		.name = "Front Panel Capture Volume",
909 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
910 			  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
911 		.info = ac97_fp_rec_volume_info,
912 		.get = ac97_fp_rec_volume_get,
913 		.put = ac97_fp_rec_volume_put,
914 		.tlv = { .p = ac97_rec_db_scale, },
915 	},
916 	AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
917 };
918 
919 static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
920 {
921 	struct oxygen *chip = ctl->private_data;
922 	unsigned int i;
923 
924 	/* I'm too lazy to write a function for each control :-) */
925 	for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
926 		chip->controls[i] = NULL;
927 }
928 
929 static int add_controls(struct oxygen *chip,
930 			const struct snd_kcontrol_new controls[],
931 			unsigned int count)
932 {
933 	static const char *const known_ctl_names[CONTROL_COUNT] = {
934 		[CONTROL_SPDIF_PCM] =
935 			SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
936 		[CONTROL_SPDIF_INPUT_BITS] =
937 			SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
938 		[CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
939 		[CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
940 		[CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
941 		[CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
942 	};
943 	unsigned int i, j;
944 	struct snd_kcontrol_new template;
945 	struct snd_kcontrol *ctl;
946 	int err;
947 
948 	for (i = 0; i < count; ++i) {
949 		template = controls[i];
950 		if (chip->model.control_filter) {
951 			err = chip->model.control_filter(&template);
952 			if (err < 0)
953 				return err;
954 			if (err == 1)
955 				continue;
956 		}
957 		if (!strcmp(template.name, "Master Playback Volume") &&
958 		    chip->model.dac_tlv) {
959 			template.tlv.p = chip->model.dac_tlv;
960 			template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
961 		}
962 		ctl = snd_ctl_new1(&template, chip);
963 		if (!ctl)
964 			return -ENOMEM;
965 		err = snd_ctl_add(chip->card, ctl);
966 		if (err < 0)
967 			return err;
968 		for (j = 0; j < CONTROL_COUNT; ++j)
969 			if (!strcmp(ctl->id.name, known_ctl_names[j])) {
970 				chip->controls[j] = ctl;
971 				ctl->private_free = oxygen_any_ctl_free;
972 			}
973 	}
974 	return 0;
975 }
976 
977 int oxygen_mixer_init(struct oxygen *chip)
978 {
979 	unsigned int i;
980 	int err;
981 
982 	err = add_controls(chip, controls, ARRAY_SIZE(controls));
983 	if (err < 0)
984 		return err;
985 	if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
986 		err = add_controls(chip, spdif_input_controls,
987 				   ARRAY_SIZE(spdif_input_controls));
988 		if (err < 0)
989 			return err;
990 	}
991 	for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
992 		if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
993 			continue;
994 		err = add_controls(chip, monitor_controls[i].controls,
995 				   ARRAY_SIZE(monitor_controls[i].controls));
996 		if (err < 0)
997 			return err;
998 	}
999 	if (chip->has_ac97_0) {
1000 		err = add_controls(chip, ac97_controls,
1001 				   ARRAY_SIZE(ac97_controls));
1002 		if (err < 0)
1003 			return err;
1004 	}
1005 	if (chip->has_ac97_1) {
1006 		err = add_controls(chip, ac97_fp_controls,
1007 				   ARRAY_SIZE(ac97_fp_controls));
1008 		if (err < 0)
1009 			return err;
1010 	}
1011 	return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
1012 }
1013