1 /* 2 * C-Media CMI8788 driver - mixer code 3 * 4 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 5 * 6 * 7 * This driver is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License, version 2. 9 * 10 * This driver is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this driver; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #include <linux/mutex.h> 21 #include <sound/ac97_codec.h> 22 #include <sound/asoundef.h> 23 #include <sound/control.h> 24 #include <sound/tlv.h> 25 #include "oxygen.h" 26 #include "cm9780.h" 27 28 static int dac_volume_info(struct snd_kcontrol *ctl, 29 struct snd_ctl_elem_info *info) 30 { 31 struct oxygen *chip = ctl->private_data; 32 33 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 34 info->count = chip->model.dac_channels; 35 info->value.integer.min = chip->model.dac_volume_min; 36 info->value.integer.max = chip->model.dac_volume_max; 37 return 0; 38 } 39 40 static int dac_volume_get(struct snd_kcontrol *ctl, 41 struct snd_ctl_elem_value *value) 42 { 43 struct oxygen *chip = ctl->private_data; 44 unsigned int i; 45 46 mutex_lock(&chip->mutex); 47 for (i = 0; i < chip->model.dac_channels; ++i) 48 value->value.integer.value[i] = chip->dac_volume[i]; 49 mutex_unlock(&chip->mutex); 50 return 0; 51 } 52 53 static int dac_volume_put(struct snd_kcontrol *ctl, 54 struct snd_ctl_elem_value *value) 55 { 56 struct oxygen *chip = ctl->private_data; 57 unsigned int i; 58 int changed; 59 60 changed = 0; 61 mutex_lock(&chip->mutex); 62 for (i = 0; i < chip->model.dac_channels; ++i) 63 if (value->value.integer.value[i] != chip->dac_volume[i]) { 64 chip->dac_volume[i] = value->value.integer.value[i]; 65 changed = 1; 66 } 67 if (changed) 68 chip->model.update_dac_volume(chip); 69 mutex_unlock(&chip->mutex); 70 return changed; 71 } 72 73 static int dac_mute_get(struct snd_kcontrol *ctl, 74 struct snd_ctl_elem_value *value) 75 { 76 struct oxygen *chip = ctl->private_data; 77 78 mutex_lock(&chip->mutex); 79 value->value.integer.value[0] = !chip->dac_mute; 80 mutex_unlock(&chip->mutex); 81 return 0; 82 } 83 84 static int dac_mute_put(struct snd_kcontrol *ctl, 85 struct snd_ctl_elem_value *value) 86 { 87 struct oxygen *chip = ctl->private_data; 88 int changed; 89 90 mutex_lock(&chip->mutex); 91 changed = !value->value.integer.value[0] != chip->dac_mute; 92 if (changed) { 93 chip->dac_mute = !value->value.integer.value[0]; 94 chip->model.update_dac_mute(chip); 95 } 96 mutex_unlock(&chip->mutex); 97 return changed; 98 } 99 100 static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) 101 { 102 static const char *const names[3] = { 103 "Front", "Front+Surround", "Front+Surround+Back" 104 }; 105 struct oxygen *chip = ctl->private_data; 106 unsigned int count = 2 + (chip->model.dac_channels == 8); 107 108 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 109 info->count = 1; 110 info->value.enumerated.items = count; 111 if (info->value.enumerated.item >= count) 112 info->value.enumerated.item = count - 1; 113 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]); 114 return 0; 115 } 116 117 static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) 118 { 119 struct oxygen *chip = ctl->private_data; 120 121 mutex_lock(&chip->mutex); 122 value->value.enumerated.item[0] = chip->dac_routing; 123 mutex_unlock(&chip->mutex); 124 return 0; 125 } 126 127 void oxygen_update_dac_routing(struct oxygen *chip) 128 { 129 /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */ 130 static const unsigned int reg_values[3] = { 131 /* stereo -> front */ 132 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | 133 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | 134 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | 135 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT), 136 /* stereo -> front+surround */ 137 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | 138 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | 139 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | 140 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT), 141 /* stereo -> front+surround+back */ 142 (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | 143 (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | 144 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | 145 (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT), 146 }; 147 u8 channels; 148 unsigned int reg_value; 149 150 channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) & 151 OXYGEN_PLAY_CHANNELS_MASK; 152 if (channels == OXYGEN_PLAY_CHANNELS_2) 153 reg_value = reg_values[chip->dac_routing]; 154 else if (channels == OXYGEN_PLAY_CHANNELS_8) 155 /* in 7.1 mode, "rear" channels go to the "back" jack */ 156 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | 157 (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | 158 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | 159 (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT); 160 else 161 reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) | 162 (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) | 163 (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) | 164 (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT); 165 oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value, 166 OXYGEN_PLAY_DAC0_SOURCE_MASK | 167 OXYGEN_PLAY_DAC1_SOURCE_MASK | 168 OXYGEN_PLAY_DAC2_SOURCE_MASK | 169 OXYGEN_PLAY_DAC3_SOURCE_MASK); 170 } 171 172 static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) 173 { 174 struct oxygen *chip = ctl->private_data; 175 unsigned int count = 2 + (chip->model.dac_channels == 8); 176 int changed; 177 178 mutex_lock(&chip->mutex); 179 changed = value->value.enumerated.item[0] != chip->dac_routing; 180 if (changed) { 181 chip->dac_routing = min(value->value.enumerated.item[0], 182 count - 1); 183 spin_lock_irq(&chip->reg_lock); 184 oxygen_update_dac_routing(chip); 185 spin_unlock_irq(&chip->reg_lock); 186 } 187 mutex_unlock(&chip->mutex); 188 return changed; 189 } 190 191 static int spdif_switch_get(struct snd_kcontrol *ctl, 192 struct snd_ctl_elem_value *value) 193 { 194 struct oxygen *chip = ctl->private_data; 195 196 mutex_lock(&chip->mutex); 197 value->value.integer.value[0] = chip->spdif_playback_enable; 198 mutex_unlock(&chip->mutex); 199 return 0; 200 } 201 202 static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate) 203 { 204 switch (oxygen_rate) { 205 case OXYGEN_RATE_32000: 206 return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT; 207 case OXYGEN_RATE_44100: 208 return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT; 209 default: /* OXYGEN_RATE_48000 */ 210 return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT; 211 case OXYGEN_RATE_64000: 212 return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT; 213 case OXYGEN_RATE_88200: 214 return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT; 215 case OXYGEN_RATE_96000: 216 return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT; 217 case OXYGEN_RATE_176400: 218 return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT; 219 case OXYGEN_RATE_192000: 220 return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT; 221 } 222 } 223 224 void oxygen_update_spdif_source(struct oxygen *chip) 225 { 226 u32 old_control, new_control; 227 u16 old_routing, new_routing; 228 unsigned int oxygen_rate; 229 230 old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); 231 old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING); 232 if (chip->pcm_active & (1 << PCM_SPDIF)) { 233 new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE; 234 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK) 235 | OXYGEN_PLAY_SPDIF_SPDIF; 236 oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT) 237 & OXYGEN_I2S_RATE_MASK; 238 /* S/PDIF rate was already set by the caller */ 239 } else if ((chip->pcm_active & (1 << PCM_MULTICH)) && 240 chip->spdif_playback_enable) { 241 new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK) 242 | OXYGEN_PLAY_SPDIF_MULTICH_01; 243 oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT) 244 & OXYGEN_I2S_RATE_MASK; 245 new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) | 246 (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) | 247 OXYGEN_SPDIF_OUT_ENABLE; 248 } else { 249 new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE; 250 new_routing = old_routing; 251 oxygen_rate = OXYGEN_RATE_44100; 252 } 253 if (old_routing != new_routing) { 254 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, 255 new_control & ~OXYGEN_SPDIF_OUT_ENABLE); 256 oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing); 257 } 258 if (new_control & OXYGEN_SPDIF_OUT_ENABLE) 259 oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS, 260 oxygen_spdif_rate(oxygen_rate) | 261 ((chip->pcm_active & (1 << PCM_SPDIF)) ? 262 chip->spdif_pcm_bits : chip->spdif_bits)); 263 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control); 264 } 265 266 static int spdif_switch_put(struct snd_kcontrol *ctl, 267 struct snd_ctl_elem_value *value) 268 { 269 struct oxygen *chip = ctl->private_data; 270 int changed; 271 272 mutex_lock(&chip->mutex); 273 changed = value->value.integer.value[0] != chip->spdif_playback_enable; 274 if (changed) { 275 chip->spdif_playback_enable = !!value->value.integer.value[0]; 276 spin_lock_irq(&chip->reg_lock); 277 oxygen_update_spdif_source(chip); 278 spin_unlock_irq(&chip->reg_lock); 279 } 280 mutex_unlock(&chip->mutex); 281 return changed; 282 } 283 284 static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) 285 { 286 info->type = SNDRV_CTL_ELEM_TYPE_IEC958; 287 info->count = 1; 288 return 0; 289 } 290 291 static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value) 292 { 293 value->value.iec958.status[0] = 294 bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C | 295 OXYGEN_SPDIF_PREEMPHASIS); 296 value->value.iec958.status[1] = /* category and original */ 297 bits >> OXYGEN_SPDIF_CATEGORY_SHIFT; 298 } 299 300 static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value) 301 { 302 u32 bits; 303 304 bits = value->value.iec958.status[0] & 305 (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C | 306 OXYGEN_SPDIF_PREEMPHASIS); 307 bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT; 308 if (bits & OXYGEN_SPDIF_NONAUDIO) 309 bits |= OXYGEN_SPDIF_V; 310 return bits; 311 } 312 313 static inline void write_spdif_bits(struct oxygen *chip, u32 bits) 314 { 315 oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits, 316 OXYGEN_SPDIF_NONAUDIO | 317 OXYGEN_SPDIF_C | 318 OXYGEN_SPDIF_PREEMPHASIS | 319 OXYGEN_SPDIF_CATEGORY_MASK | 320 OXYGEN_SPDIF_ORIGINAL | 321 OXYGEN_SPDIF_V); 322 } 323 324 static int spdif_default_get(struct snd_kcontrol *ctl, 325 struct snd_ctl_elem_value *value) 326 { 327 struct oxygen *chip = ctl->private_data; 328 329 mutex_lock(&chip->mutex); 330 oxygen_to_iec958(chip->spdif_bits, value); 331 mutex_unlock(&chip->mutex); 332 return 0; 333 } 334 335 static int spdif_default_put(struct snd_kcontrol *ctl, 336 struct snd_ctl_elem_value *value) 337 { 338 struct oxygen *chip = ctl->private_data; 339 u32 new_bits; 340 int changed; 341 342 new_bits = iec958_to_oxygen(value); 343 mutex_lock(&chip->mutex); 344 changed = new_bits != chip->spdif_bits; 345 if (changed) { 346 chip->spdif_bits = new_bits; 347 if (!(chip->pcm_active & (1 << PCM_SPDIF))) 348 write_spdif_bits(chip, new_bits); 349 } 350 mutex_unlock(&chip->mutex); 351 return changed; 352 } 353 354 static int spdif_mask_get(struct snd_kcontrol *ctl, 355 struct snd_ctl_elem_value *value) 356 { 357 value->value.iec958.status[0] = IEC958_AES0_NONAUDIO | 358 IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS; 359 value->value.iec958.status[1] = 360 IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL; 361 return 0; 362 } 363 364 static int spdif_pcm_get(struct snd_kcontrol *ctl, 365 struct snd_ctl_elem_value *value) 366 { 367 struct oxygen *chip = ctl->private_data; 368 369 mutex_lock(&chip->mutex); 370 oxygen_to_iec958(chip->spdif_pcm_bits, value); 371 mutex_unlock(&chip->mutex); 372 return 0; 373 } 374 375 static int spdif_pcm_put(struct snd_kcontrol *ctl, 376 struct snd_ctl_elem_value *value) 377 { 378 struct oxygen *chip = ctl->private_data; 379 u32 new_bits; 380 int changed; 381 382 new_bits = iec958_to_oxygen(value); 383 mutex_lock(&chip->mutex); 384 changed = new_bits != chip->spdif_pcm_bits; 385 if (changed) { 386 chip->spdif_pcm_bits = new_bits; 387 if (chip->pcm_active & (1 << PCM_SPDIF)) 388 write_spdif_bits(chip, new_bits); 389 } 390 mutex_unlock(&chip->mutex); 391 return changed; 392 } 393 394 static int spdif_input_mask_get(struct snd_kcontrol *ctl, 395 struct snd_ctl_elem_value *value) 396 { 397 value->value.iec958.status[0] = 0xff; 398 value->value.iec958.status[1] = 0xff; 399 value->value.iec958.status[2] = 0xff; 400 value->value.iec958.status[3] = 0xff; 401 return 0; 402 } 403 404 static int spdif_input_default_get(struct snd_kcontrol *ctl, 405 struct snd_ctl_elem_value *value) 406 { 407 struct oxygen *chip = ctl->private_data; 408 u32 bits; 409 410 bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS); 411 value->value.iec958.status[0] = bits; 412 value->value.iec958.status[1] = bits >> 8; 413 value->value.iec958.status[2] = bits >> 16; 414 value->value.iec958.status[3] = bits >> 24; 415 return 0; 416 } 417 418 static int spdif_loopback_get(struct snd_kcontrol *ctl, 419 struct snd_ctl_elem_value *value) 420 { 421 struct oxygen *chip = ctl->private_data; 422 423 value->value.integer.value[0] = 424 !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL) 425 & OXYGEN_SPDIF_LOOPBACK); 426 return 0; 427 } 428 429 static int spdif_loopback_put(struct snd_kcontrol *ctl, 430 struct snd_ctl_elem_value *value) 431 { 432 struct oxygen *chip = ctl->private_data; 433 u32 oldreg, newreg; 434 int changed; 435 436 spin_lock_irq(&chip->reg_lock); 437 oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL); 438 if (value->value.integer.value[0]) 439 newreg = oldreg | OXYGEN_SPDIF_LOOPBACK; 440 else 441 newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK; 442 changed = newreg != oldreg; 443 if (changed) 444 oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg); 445 spin_unlock_irq(&chip->reg_lock); 446 return changed; 447 } 448 449 static int monitor_volume_info(struct snd_kcontrol *ctl, 450 struct snd_ctl_elem_info *info) 451 { 452 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 453 info->count = 1; 454 info->value.integer.min = 0; 455 info->value.integer.max = 1; 456 return 0; 457 } 458 459 static int monitor_get(struct snd_kcontrol *ctl, 460 struct snd_ctl_elem_value *value) 461 { 462 struct oxygen *chip = ctl->private_data; 463 u8 bit = ctl->private_value; 464 int invert = ctl->private_value & (1 << 8); 465 466 value->value.integer.value[0] = 467 !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit); 468 return 0; 469 } 470 471 static int monitor_put(struct snd_kcontrol *ctl, 472 struct snd_ctl_elem_value *value) 473 { 474 struct oxygen *chip = ctl->private_data; 475 u8 bit = ctl->private_value; 476 int invert = ctl->private_value & (1 << 8); 477 u8 oldreg, newreg; 478 int changed; 479 480 spin_lock_irq(&chip->reg_lock); 481 oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR); 482 if ((!!value->value.integer.value[0] ^ !!invert) != 0) 483 newreg = oldreg | bit; 484 else 485 newreg = oldreg & ~bit; 486 changed = newreg != oldreg; 487 if (changed) 488 oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg); 489 spin_unlock_irq(&chip->reg_lock); 490 return changed; 491 } 492 493 static int ac97_switch_get(struct snd_kcontrol *ctl, 494 struct snd_ctl_elem_value *value) 495 { 496 struct oxygen *chip = ctl->private_data; 497 unsigned int codec = (ctl->private_value >> 24) & 1; 498 unsigned int index = ctl->private_value & 0xff; 499 unsigned int bitnr = (ctl->private_value >> 8) & 0xff; 500 int invert = ctl->private_value & (1 << 16); 501 u16 reg; 502 503 mutex_lock(&chip->mutex); 504 reg = oxygen_read_ac97(chip, codec, index); 505 mutex_unlock(&chip->mutex); 506 if (!(reg & (1 << bitnr)) ^ !invert) 507 value->value.integer.value[0] = 1; 508 else 509 value->value.integer.value[0] = 0; 510 return 0; 511 } 512 513 static void mute_ac97_ctl(struct oxygen *chip, unsigned int control) 514 { 515 unsigned int priv_idx; 516 u16 value; 517 518 if (!chip->controls[control]) 519 return; 520 priv_idx = chip->controls[control]->private_value & 0xff; 521 value = oxygen_read_ac97(chip, 0, priv_idx); 522 if (!(value & 0x8000)) { 523 oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000); 524 if (chip->model.ac97_switch) 525 chip->model.ac97_switch(chip, priv_idx, 0x8000); 526 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE, 527 &chip->controls[control]->id); 528 } 529 } 530 531 static int ac97_switch_put(struct snd_kcontrol *ctl, 532 struct snd_ctl_elem_value *value) 533 { 534 struct oxygen *chip = ctl->private_data; 535 unsigned int codec = (ctl->private_value >> 24) & 1; 536 unsigned int index = ctl->private_value & 0xff; 537 unsigned int bitnr = (ctl->private_value >> 8) & 0xff; 538 int invert = ctl->private_value & (1 << 16); 539 u16 oldreg, newreg; 540 int change; 541 542 mutex_lock(&chip->mutex); 543 oldreg = oxygen_read_ac97(chip, codec, index); 544 newreg = oldreg; 545 if (!value->value.integer.value[0] ^ !invert) 546 newreg |= 1 << bitnr; 547 else 548 newreg &= ~(1 << bitnr); 549 change = newreg != oldreg; 550 if (change) { 551 oxygen_write_ac97(chip, codec, index, newreg); 552 if (codec == 0 && chip->model.ac97_switch) 553 chip->model.ac97_switch(chip, index, newreg & 0x8000); 554 if (index == AC97_LINE) { 555 oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS, 556 newreg & 0x8000 ? 557 CM9780_GPO0 : 0, CM9780_GPO0); 558 if (!(newreg & 0x8000)) { 559 mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH); 560 mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH); 561 mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH); 562 } 563 } else if ((index == AC97_MIC || index == AC97_CD || 564 index == AC97_VIDEO || index == AC97_AUX) && 565 bitnr == 15 && !(newreg & 0x8000)) { 566 mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH); 567 oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS, 568 CM9780_GPO0, CM9780_GPO0); 569 } 570 } 571 mutex_unlock(&chip->mutex); 572 return change; 573 } 574 575 static int ac97_volume_info(struct snd_kcontrol *ctl, 576 struct snd_ctl_elem_info *info) 577 { 578 int stereo = (ctl->private_value >> 16) & 1; 579 580 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 581 info->count = stereo ? 2 : 1; 582 info->value.integer.min = 0; 583 info->value.integer.max = 0x1f; 584 return 0; 585 } 586 587 static int ac97_volume_get(struct snd_kcontrol *ctl, 588 struct snd_ctl_elem_value *value) 589 { 590 struct oxygen *chip = ctl->private_data; 591 unsigned int codec = (ctl->private_value >> 24) & 1; 592 int stereo = (ctl->private_value >> 16) & 1; 593 unsigned int index = ctl->private_value & 0xff; 594 u16 reg; 595 596 mutex_lock(&chip->mutex); 597 reg = oxygen_read_ac97(chip, codec, index); 598 mutex_unlock(&chip->mutex); 599 value->value.integer.value[0] = 31 - (reg & 0x1f); 600 if (stereo) 601 value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f); 602 return 0; 603 } 604 605 static int ac97_volume_put(struct snd_kcontrol *ctl, 606 struct snd_ctl_elem_value *value) 607 { 608 struct oxygen *chip = ctl->private_data; 609 unsigned int codec = (ctl->private_value >> 24) & 1; 610 int stereo = (ctl->private_value >> 16) & 1; 611 unsigned int index = ctl->private_value & 0xff; 612 u16 oldreg, newreg; 613 int change; 614 615 mutex_lock(&chip->mutex); 616 oldreg = oxygen_read_ac97(chip, codec, index); 617 newreg = oldreg; 618 newreg = (newreg & ~0x1f) | 619 (31 - (value->value.integer.value[0] & 0x1f)); 620 if (stereo) 621 newreg = (newreg & ~0x1f00) | 622 ((31 - (value->value.integer.value[1] & 0x1f)) << 8); 623 else 624 newreg = (newreg & ~0x1f00) | ((newreg & 0x1f) << 8); 625 change = newreg != oldreg; 626 if (change) 627 oxygen_write_ac97(chip, codec, index, newreg); 628 mutex_unlock(&chip->mutex); 629 return change; 630 } 631 632 static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl, 633 struct snd_ctl_elem_info *info) 634 { 635 info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 636 info->count = 2; 637 info->value.integer.min = 0; 638 info->value.integer.max = 7; 639 return 0; 640 } 641 642 static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl, 643 struct snd_ctl_elem_value *value) 644 { 645 struct oxygen *chip = ctl->private_data; 646 u16 reg; 647 648 mutex_lock(&chip->mutex); 649 reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN); 650 mutex_unlock(&chip->mutex); 651 value->value.integer.value[0] = reg & 7; 652 value->value.integer.value[1] = (reg >> 8) & 7; 653 return 0; 654 } 655 656 static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl, 657 struct snd_ctl_elem_value *value) 658 { 659 struct oxygen *chip = ctl->private_data; 660 u16 oldreg, newreg; 661 int change; 662 663 mutex_lock(&chip->mutex); 664 oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN); 665 newreg = oldreg & ~0x0707; 666 newreg = newreg | (value->value.integer.value[0] & 7); 667 newreg = newreg | ((value->value.integer.value[0] & 7) << 8); 668 change = newreg != oldreg; 669 if (change) 670 oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg); 671 mutex_unlock(&chip->mutex); 672 return change; 673 } 674 675 #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \ 676 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 677 .name = xname, \ 678 .info = snd_ctl_boolean_mono_info, \ 679 .get = ac97_switch_get, \ 680 .put = ac97_switch_put, \ 681 .private_value = ((codec) << 24) | ((invert) << 16) | \ 682 ((bitnr) << 8) | (index), \ 683 } 684 #define AC97_VOLUME(xname, codec, index, stereo) { \ 685 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 686 .name = xname, \ 687 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 688 SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 689 .info = ac97_volume_info, \ 690 .get = ac97_volume_get, \ 691 .put = ac97_volume_put, \ 692 .tlv = { .p = ac97_db_scale, }, \ 693 .private_value = ((codec) << 24) | ((stereo) << 16) | (index), \ 694 } 695 696 static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0); 697 static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0); 698 static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0); 699 700 static const struct snd_kcontrol_new controls[] = { 701 { 702 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 703 .name = "Master Playback Volume", 704 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 705 .info = dac_volume_info, 706 .get = dac_volume_get, 707 .put = dac_volume_put, 708 }, 709 { 710 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 711 .name = "Master Playback Switch", 712 .info = snd_ctl_boolean_mono_info, 713 .get = dac_mute_get, 714 .put = dac_mute_put, 715 }, 716 { 717 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 718 .name = "Stereo Upmixing", 719 .info = upmix_info, 720 .get = upmix_get, 721 .put = upmix_put, 722 }, 723 { 724 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 725 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH), 726 .info = snd_ctl_boolean_mono_info, 727 .get = spdif_switch_get, 728 .put = spdif_switch_put, 729 }, 730 { 731 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 732 .device = 1, 733 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 734 .info = spdif_info, 735 .get = spdif_default_get, 736 .put = spdif_default_put, 737 }, 738 { 739 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 740 .device = 1, 741 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), 742 .access = SNDRV_CTL_ELEM_ACCESS_READ, 743 .info = spdif_info, 744 .get = spdif_mask_get, 745 }, 746 { 747 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 748 .device = 1, 749 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), 750 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 751 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 752 .info = spdif_info, 753 .get = spdif_pcm_get, 754 .put = spdif_pcm_put, 755 }, 756 }; 757 758 static const struct snd_kcontrol_new spdif_input_controls[] = { 759 { 760 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 761 .device = 1, 762 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK), 763 .access = SNDRV_CTL_ELEM_ACCESS_READ, 764 .info = spdif_info, 765 .get = spdif_input_mask_get, 766 }, 767 { 768 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 769 .device = 1, 770 .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), 771 .access = SNDRV_CTL_ELEM_ACCESS_READ, 772 .info = spdif_info, 773 .get = spdif_input_default_get, 774 }, 775 { 776 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 777 .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH), 778 .info = snd_ctl_boolean_mono_info, 779 .get = spdif_loopback_get, 780 .put = spdif_loopback_put, 781 }, 782 }; 783 784 static const struct { 785 unsigned int pcm_dev; 786 struct snd_kcontrol_new controls[2]; 787 } monitor_controls[] = { 788 { 789 .pcm_dev = CAPTURE_0_FROM_I2S_1, 790 .controls = { 791 { 792 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 793 .name = "Analog Input Monitor Switch", 794 .info = snd_ctl_boolean_mono_info, 795 .get = monitor_get, 796 .put = monitor_put, 797 .private_value = OXYGEN_ADC_MONITOR_A, 798 }, 799 { 800 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 801 .name = "Analog Input Monitor Volume", 802 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 803 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 804 .info = monitor_volume_info, 805 .get = monitor_get, 806 .put = monitor_put, 807 .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL 808 | (1 << 8), 809 .tlv = { .p = monitor_db_scale, }, 810 }, 811 }, 812 }, 813 { 814 .pcm_dev = CAPTURE_0_FROM_I2S_2, 815 .controls = { 816 { 817 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 818 .name = "Analog Input Monitor Switch", 819 .info = snd_ctl_boolean_mono_info, 820 .get = monitor_get, 821 .put = monitor_put, 822 .private_value = OXYGEN_ADC_MONITOR_B, 823 }, 824 { 825 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 826 .name = "Analog Input Monitor Volume", 827 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 828 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 829 .info = monitor_volume_info, 830 .get = monitor_get, 831 .put = monitor_put, 832 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL 833 | (1 << 8), 834 .tlv = { .p = monitor_db_scale, }, 835 }, 836 }, 837 }, 838 { 839 .pcm_dev = CAPTURE_2_FROM_I2S_2, 840 .controls = { 841 { 842 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 843 .name = "Analog Input Monitor Switch", 844 .index = 1, 845 .info = snd_ctl_boolean_mono_info, 846 .get = monitor_get, 847 .put = monitor_put, 848 .private_value = OXYGEN_ADC_MONITOR_B, 849 }, 850 { 851 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 852 .name = "Analog Input Monitor Volume", 853 .index = 1, 854 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 855 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 856 .info = monitor_volume_info, 857 .get = monitor_get, 858 .put = monitor_put, 859 .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL 860 | (1 << 8), 861 .tlv = { .p = monitor_db_scale, }, 862 }, 863 }, 864 }, 865 { 866 .pcm_dev = CAPTURE_1_FROM_SPDIF, 867 .controls = { 868 { 869 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 870 .name = "Digital Input Monitor Switch", 871 .info = snd_ctl_boolean_mono_info, 872 .get = monitor_get, 873 .put = monitor_put, 874 .private_value = OXYGEN_ADC_MONITOR_C, 875 }, 876 { 877 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 878 .name = "Digital Input Monitor Volume", 879 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 880 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 881 .info = monitor_volume_info, 882 .get = monitor_get, 883 .put = monitor_put, 884 .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL 885 | (1 << 8), 886 .tlv = { .p = monitor_db_scale, }, 887 }, 888 }, 889 }, 890 }; 891 892 static const struct snd_kcontrol_new ac97_controls[] = { 893 AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0), 894 AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1), 895 AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0), 896 AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1), 897 AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1), 898 AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1), 899 AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1), 900 AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1), 901 }; 902 903 static const struct snd_kcontrol_new ac97_fp_controls[] = { 904 AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1), 905 AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1), 906 { 907 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 908 .name = "Front Panel Capture Volume", 909 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 910 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 911 .info = ac97_fp_rec_volume_info, 912 .get = ac97_fp_rec_volume_get, 913 .put = ac97_fp_rec_volume_put, 914 .tlv = { .p = ac97_rec_db_scale, }, 915 }, 916 AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1), 917 }; 918 919 static void oxygen_any_ctl_free(struct snd_kcontrol *ctl) 920 { 921 struct oxygen *chip = ctl->private_data; 922 unsigned int i; 923 924 /* I'm too lazy to write a function for each control :-) */ 925 for (i = 0; i < ARRAY_SIZE(chip->controls); ++i) 926 chip->controls[i] = NULL; 927 } 928 929 static int add_controls(struct oxygen *chip, 930 const struct snd_kcontrol_new controls[], 931 unsigned int count) 932 { 933 static const char *const known_ctl_names[CONTROL_COUNT] = { 934 [CONTROL_SPDIF_PCM] = 935 SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), 936 [CONTROL_SPDIF_INPUT_BITS] = 937 SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), 938 [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch", 939 [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch", 940 [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch", 941 [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch", 942 }; 943 unsigned int i, j; 944 struct snd_kcontrol_new template; 945 struct snd_kcontrol *ctl; 946 int err; 947 948 for (i = 0; i < count; ++i) { 949 template = controls[i]; 950 if (chip->model.control_filter) { 951 err = chip->model.control_filter(&template); 952 if (err < 0) 953 return err; 954 if (err == 1) 955 continue; 956 } 957 if (!strcmp(template.name, "Master Playback Volume") && 958 chip->model.dac_tlv) { 959 template.tlv.p = chip->model.dac_tlv; 960 template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ; 961 } 962 ctl = snd_ctl_new1(&template, chip); 963 if (!ctl) 964 return -ENOMEM; 965 err = snd_ctl_add(chip->card, ctl); 966 if (err < 0) 967 return err; 968 for (j = 0; j < CONTROL_COUNT; ++j) 969 if (!strcmp(ctl->id.name, known_ctl_names[j])) { 970 chip->controls[j] = ctl; 971 ctl->private_free = oxygen_any_ctl_free; 972 } 973 } 974 return 0; 975 } 976 977 int oxygen_mixer_init(struct oxygen *chip) 978 { 979 unsigned int i; 980 int err; 981 982 err = add_controls(chip, controls, ARRAY_SIZE(controls)); 983 if (err < 0) 984 return err; 985 if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) { 986 err = add_controls(chip, spdif_input_controls, 987 ARRAY_SIZE(spdif_input_controls)); 988 if (err < 0) 989 return err; 990 } 991 for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) { 992 if (!(chip->model.device_config & monitor_controls[i].pcm_dev)) 993 continue; 994 err = add_controls(chip, monitor_controls[i].controls, 995 ARRAY_SIZE(monitor_controls[i].controls)); 996 if (err < 0) 997 return err; 998 } 999 if (chip->has_ac97_0) { 1000 err = add_controls(chip, ac97_controls, 1001 ARRAY_SIZE(ac97_controls)); 1002 if (err < 0) 1003 return err; 1004 } 1005 if (chip->has_ac97_1) { 1006 err = add_controls(chip, ac97_fp_controls, 1007 ARRAY_SIZE(ac97_fp_controls)); 1008 if (err < 0) 1009 return err; 1010 } 1011 return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0; 1012 } 1013