xref: /openbmc/linux/sound/pci/oxygen/oxygen_mixer.c (revision 22246614)
1 /*
2  * C-Media CMI8788 driver - mixer code
3  *
4  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License, version 2.
9  *
10  *  This driver is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this driver; if not, write to the Free Software
17  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/mutex.h>
21 #include <sound/ac97_codec.h>
22 #include <sound/asoundef.h>
23 #include <sound/control.h>
24 #include <sound/tlv.h>
25 #include "oxygen.h"
26 #include "cm9780.h"
27 
28 static int dac_volume_info(struct snd_kcontrol *ctl,
29 			   struct snd_ctl_elem_info *info)
30 {
31 	struct oxygen *chip = ctl->private_data;
32 
33 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
34 	info->count = chip->model->dac_channels;
35 	info->value.integer.min = chip->model->dac_volume_min;
36 	info->value.integer.max = chip->model->dac_volume_max;
37 	return 0;
38 }
39 
40 static int dac_volume_get(struct snd_kcontrol *ctl,
41 			  struct snd_ctl_elem_value *value)
42 {
43 	struct oxygen *chip = ctl->private_data;
44 	unsigned int i;
45 
46 	mutex_lock(&chip->mutex);
47 	for (i = 0; i < chip->model->dac_channels; ++i)
48 		value->value.integer.value[i] = chip->dac_volume[i];
49 	mutex_unlock(&chip->mutex);
50 	return 0;
51 }
52 
53 static int dac_volume_put(struct snd_kcontrol *ctl,
54 			  struct snd_ctl_elem_value *value)
55 {
56 	struct oxygen *chip = ctl->private_data;
57 	unsigned int i;
58 	int changed;
59 
60 	changed = 0;
61 	mutex_lock(&chip->mutex);
62 	for (i = 0; i < chip->model->dac_channels; ++i)
63 		if (value->value.integer.value[i] != chip->dac_volume[i]) {
64 			chip->dac_volume[i] = value->value.integer.value[i];
65 			changed = 1;
66 		}
67 	if (changed)
68 		chip->model->update_dac_volume(chip);
69 	mutex_unlock(&chip->mutex);
70 	return changed;
71 }
72 
73 static int dac_mute_get(struct snd_kcontrol *ctl,
74 			struct snd_ctl_elem_value *value)
75 {
76 	struct oxygen *chip = ctl->private_data;
77 
78 	mutex_lock(&chip->mutex);
79 	value->value.integer.value[0] = !chip->dac_mute;
80 	mutex_unlock(&chip->mutex);
81 	return 0;
82 }
83 
84 static int dac_mute_put(struct snd_kcontrol *ctl,
85 			  struct snd_ctl_elem_value *value)
86 {
87 	struct oxygen *chip = ctl->private_data;
88 	int changed;
89 
90 	mutex_lock(&chip->mutex);
91 	changed = !value->value.integer.value[0] != chip->dac_mute;
92 	if (changed) {
93 		chip->dac_mute = !value->value.integer.value[0];
94 		chip->model->update_dac_mute(chip);
95 	}
96 	mutex_unlock(&chip->mutex);
97 	return changed;
98 }
99 
100 static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
101 {
102 	static const char *const names[3] = {
103 		"Front", "Front+Surround", "Front+Surround+Back"
104 	};
105 	struct oxygen *chip = ctl->private_data;
106 	unsigned int count = 2 + (chip->model->dac_channels == 8);
107 
108 	info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
109 	info->count = 1;
110 	info->value.enumerated.items = count;
111 	if (info->value.enumerated.item >= count)
112 		info->value.enumerated.item = count - 1;
113 	strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
114 	return 0;
115 }
116 
117 static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
118 {
119 	struct oxygen *chip = ctl->private_data;
120 
121 	mutex_lock(&chip->mutex);
122 	value->value.enumerated.item[0] = chip->dac_routing;
123 	mutex_unlock(&chip->mutex);
124 	return 0;
125 }
126 
127 void oxygen_update_dac_routing(struct oxygen *chip)
128 {
129 	/* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
130 	static const unsigned int reg_values[3] = {
131 		/* stereo -> front */
132 		(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
133 		(1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
134 		(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
135 		(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
136 		/* stereo -> front+surround */
137 		(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
138 		(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
139 		(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
140 		(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
141 		/* stereo -> front+surround+back */
142 		(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
143 		(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
144 		(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
145 		(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
146 	};
147 	u8 channels;
148 	unsigned int reg_value;
149 
150 	channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
151 		OXYGEN_PLAY_CHANNELS_MASK;
152 	if (channels == OXYGEN_PLAY_CHANNELS_2)
153 		reg_value = reg_values[chip->dac_routing];
154 	else if (channels == OXYGEN_PLAY_CHANNELS_8)
155 		/* in 7.1 mode, "rear" channels go to the "back" jack */
156 		reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
157 			    (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
158 			    (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
159 			    (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
160 	else
161 		reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
162 			    (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
163 			    (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
164 			    (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
165 	oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
166 			      OXYGEN_PLAY_DAC0_SOURCE_MASK |
167 			      OXYGEN_PLAY_DAC1_SOURCE_MASK |
168 			      OXYGEN_PLAY_DAC2_SOURCE_MASK |
169 			      OXYGEN_PLAY_DAC3_SOURCE_MASK);
170 }
171 
172 static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
173 {
174 	struct oxygen *chip = ctl->private_data;
175 	unsigned int count = 2 + (chip->model->dac_channels == 8);
176 	int changed;
177 
178 	mutex_lock(&chip->mutex);
179 	changed = value->value.enumerated.item[0] != chip->dac_routing;
180 	if (changed) {
181 		chip->dac_routing = min(value->value.enumerated.item[0],
182 					count - 1);
183 		spin_lock_irq(&chip->reg_lock);
184 		oxygen_update_dac_routing(chip);
185 		spin_unlock_irq(&chip->reg_lock);
186 	}
187 	mutex_unlock(&chip->mutex);
188 	return changed;
189 }
190 
191 static int spdif_switch_get(struct snd_kcontrol *ctl,
192 			    struct snd_ctl_elem_value *value)
193 {
194 	struct oxygen *chip = ctl->private_data;
195 
196 	mutex_lock(&chip->mutex);
197 	value->value.integer.value[0] = chip->spdif_playback_enable;
198 	mutex_unlock(&chip->mutex);
199 	return 0;
200 }
201 
202 static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
203 {
204 	switch (oxygen_rate) {
205 	case OXYGEN_RATE_32000:
206 		return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
207 	case OXYGEN_RATE_44100:
208 		return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
209 	default: /* OXYGEN_RATE_48000 */
210 		return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
211 	case OXYGEN_RATE_64000:
212 		return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
213 	case OXYGEN_RATE_88200:
214 		return 0x8 << OXYGEN_SPDIF_CS_RATE_SHIFT;
215 	case OXYGEN_RATE_96000:
216 		return 0xa << OXYGEN_SPDIF_CS_RATE_SHIFT;
217 	case OXYGEN_RATE_176400:
218 		return 0xc << OXYGEN_SPDIF_CS_RATE_SHIFT;
219 	case OXYGEN_RATE_192000:
220 		return 0xe << OXYGEN_SPDIF_CS_RATE_SHIFT;
221 	}
222 }
223 
224 void oxygen_update_spdif_source(struct oxygen *chip)
225 {
226 	u32 old_control, new_control;
227 	u16 old_routing, new_routing;
228 	unsigned int oxygen_rate;
229 
230 	old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
231 	old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
232 	if (chip->pcm_active & (1 << PCM_SPDIF)) {
233 		new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
234 		new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
235 			| OXYGEN_PLAY_SPDIF_SPDIF;
236 		oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
237 			& OXYGEN_I2S_RATE_MASK;
238 		/* S/PDIF rate was already set by the caller */
239 	} else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
240 		   chip->spdif_playback_enable) {
241 		new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
242 			| OXYGEN_PLAY_SPDIF_MULTICH_01;
243 		oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
244 			& OXYGEN_I2S_RATE_MASK;
245 		new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
246 			(oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
247 			OXYGEN_SPDIF_OUT_ENABLE;
248 	} else {
249 		new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
250 		new_routing = old_routing;
251 		oxygen_rate = OXYGEN_RATE_44100;
252 	}
253 	if (old_routing != new_routing) {
254 		oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
255 			       new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
256 		oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
257 	}
258 	if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
259 		oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
260 			       oxygen_spdif_rate(oxygen_rate) |
261 			       ((chip->pcm_active & (1 << PCM_SPDIF)) ?
262 				chip->spdif_pcm_bits : chip->spdif_bits));
263 	oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
264 }
265 
266 static int spdif_switch_put(struct snd_kcontrol *ctl,
267 			    struct snd_ctl_elem_value *value)
268 {
269 	struct oxygen *chip = ctl->private_data;
270 	int changed;
271 
272 	mutex_lock(&chip->mutex);
273 	changed = value->value.integer.value[0] != chip->spdif_playback_enable;
274 	if (changed) {
275 		chip->spdif_playback_enable = !!value->value.integer.value[0];
276 		spin_lock_irq(&chip->reg_lock);
277 		oxygen_update_spdif_source(chip);
278 		spin_unlock_irq(&chip->reg_lock);
279 	}
280 	mutex_unlock(&chip->mutex);
281 	return changed;
282 }
283 
284 static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
285 {
286 	info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
287 	info->count = 1;
288 	return 0;
289 }
290 
291 static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
292 {
293 	value->value.iec958.status[0] =
294 		bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
295 			OXYGEN_SPDIF_PREEMPHASIS);
296 	value->value.iec958.status[1] = /* category and original */
297 		bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
298 }
299 
300 static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
301 {
302 	u32 bits;
303 
304 	bits = value->value.iec958.status[0] &
305 		(OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
306 		 OXYGEN_SPDIF_PREEMPHASIS);
307 	bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
308 	if (bits & OXYGEN_SPDIF_NONAUDIO)
309 		bits |= OXYGEN_SPDIF_V;
310 	return bits;
311 }
312 
313 static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
314 {
315 	oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
316 			      OXYGEN_SPDIF_NONAUDIO |
317 			      OXYGEN_SPDIF_C |
318 			      OXYGEN_SPDIF_PREEMPHASIS |
319 			      OXYGEN_SPDIF_CATEGORY_MASK |
320 			      OXYGEN_SPDIF_ORIGINAL |
321 			      OXYGEN_SPDIF_V);
322 }
323 
324 static int spdif_default_get(struct snd_kcontrol *ctl,
325 			     struct snd_ctl_elem_value *value)
326 {
327 	struct oxygen *chip = ctl->private_data;
328 
329 	mutex_lock(&chip->mutex);
330 	oxygen_to_iec958(chip->spdif_bits, value);
331 	mutex_unlock(&chip->mutex);
332 	return 0;
333 }
334 
335 static int spdif_default_put(struct snd_kcontrol *ctl,
336 			     struct snd_ctl_elem_value *value)
337 {
338 	struct oxygen *chip = ctl->private_data;
339 	u32 new_bits;
340 	int changed;
341 
342 	new_bits = iec958_to_oxygen(value);
343 	mutex_lock(&chip->mutex);
344 	changed = new_bits != chip->spdif_bits;
345 	if (changed) {
346 		chip->spdif_bits = new_bits;
347 		if (!(chip->pcm_active & (1 << PCM_SPDIF)))
348 			write_spdif_bits(chip, new_bits);
349 	}
350 	mutex_unlock(&chip->mutex);
351 	return changed;
352 }
353 
354 static int spdif_mask_get(struct snd_kcontrol *ctl,
355 			  struct snd_ctl_elem_value *value)
356 {
357 	value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
358 		IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
359 	value->value.iec958.status[1] =
360 		IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
361 	return 0;
362 }
363 
364 static int spdif_pcm_get(struct snd_kcontrol *ctl,
365 			 struct snd_ctl_elem_value *value)
366 {
367 	struct oxygen *chip = ctl->private_data;
368 
369 	mutex_lock(&chip->mutex);
370 	oxygen_to_iec958(chip->spdif_pcm_bits, value);
371 	mutex_unlock(&chip->mutex);
372 	return 0;
373 }
374 
375 static int spdif_pcm_put(struct snd_kcontrol *ctl,
376 			 struct snd_ctl_elem_value *value)
377 {
378 	struct oxygen *chip = ctl->private_data;
379 	u32 new_bits;
380 	int changed;
381 
382 	new_bits = iec958_to_oxygen(value);
383 	mutex_lock(&chip->mutex);
384 	changed = new_bits != chip->spdif_pcm_bits;
385 	if (changed) {
386 		chip->spdif_pcm_bits = new_bits;
387 		if (chip->pcm_active & (1 << PCM_SPDIF))
388 			write_spdif_bits(chip, new_bits);
389 	}
390 	mutex_unlock(&chip->mutex);
391 	return changed;
392 }
393 
394 static int spdif_input_mask_get(struct snd_kcontrol *ctl,
395 				struct snd_ctl_elem_value *value)
396 {
397 	value->value.iec958.status[0] = 0xff;
398 	value->value.iec958.status[1] = 0xff;
399 	value->value.iec958.status[2] = 0xff;
400 	value->value.iec958.status[3] = 0xff;
401 	return 0;
402 }
403 
404 static int spdif_input_default_get(struct snd_kcontrol *ctl,
405 				   struct snd_ctl_elem_value *value)
406 {
407 	struct oxygen *chip = ctl->private_data;
408 	u32 bits;
409 
410 	bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
411 	value->value.iec958.status[0] = bits;
412 	value->value.iec958.status[1] = bits >> 8;
413 	value->value.iec958.status[2] = bits >> 16;
414 	value->value.iec958.status[3] = bits >> 24;
415 	return 0;
416 }
417 
418 static int spdif_loopback_get(struct snd_kcontrol *ctl,
419 			      struct snd_ctl_elem_value *value)
420 {
421 	struct oxygen *chip = ctl->private_data;
422 
423 	value->value.integer.value[0] =
424 		!!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL)
425 		   & OXYGEN_SPDIF_LOOPBACK);
426 	return 0;
427 }
428 
429 static int spdif_loopback_put(struct snd_kcontrol *ctl,
430 			      struct snd_ctl_elem_value *value)
431 {
432 	struct oxygen *chip = ctl->private_data;
433 	u32 oldreg, newreg;
434 	int changed;
435 
436 	spin_lock_irq(&chip->reg_lock);
437 	oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
438 	if (value->value.integer.value[0])
439 		newreg = oldreg | OXYGEN_SPDIF_LOOPBACK;
440 	else
441 		newreg = oldreg & ~OXYGEN_SPDIF_LOOPBACK;
442 	changed = newreg != oldreg;
443 	if (changed)
444 		oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
445 	spin_unlock_irq(&chip->reg_lock);
446 	return changed;
447 }
448 
449 static int monitor_volume_info(struct snd_kcontrol *ctl,
450 			       struct snd_ctl_elem_info *info)
451 {
452 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
453 	info->count = 1;
454 	info->value.integer.min = 0;
455 	info->value.integer.max = 1;
456 	return 0;
457 }
458 
459 static int monitor_get(struct snd_kcontrol *ctl,
460 		       struct snd_ctl_elem_value *value)
461 {
462 	struct oxygen *chip = ctl->private_data;
463 	u8 bit = ctl->private_value;
464 	int invert = ctl->private_value & (1 << 8);
465 
466 	value->value.integer.value[0] =
467 		!!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
468 	return 0;
469 }
470 
471 static int monitor_put(struct snd_kcontrol *ctl,
472 		       struct snd_ctl_elem_value *value)
473 {
474 	struct oxygen *chip = ctl->private_data;
475 	u8 bit = ctl->private_value;
476 	int invert = ctl->private_value & (1 << 8);
477 	u8 oldreg, newreg;
478 	int changed;
479 
480 	spin_lock_irq(&chip->reg_lock);
481 	oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
482 	if ((!!value->value.integer.value[0] ^ !!invert) != 0)
483 		newreg = oldreg | bit;
484 	else
485 		newreg = oldreg & ~bit;
486 	changed = newreg != oldreg;
487 	if (changed)
488 		oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
489 	spin_unlock_irq(&chip->reg_lock);
490 	return changed;
491 }
492 
493 static int ac97_switch_get(struct snd_kcontrol *ctl,
494 			   struct snd_ctl_elem_value *value)
495 {
496 	struct oxygen *chip = ctl->private_data;
497 	unsigned int codec = (ctl->private_value >> 24) & 1;
498 	unsigned int index = ctl->private_value & 0xff;
499 	unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
500 	int invert = ctl->private_value & (1 << 16);
501 	u16 reg;
502 
503 	mutex_lock(&chip->mutex);
504 	reg = oxygen_read_ac97(chip, codec, index);
505 	mutex_unlock(&chip->mutex);
506 	if (!(reg & (1 << bitnr)) ^ !invert)
507 		value->value.integer.value[0] = 1;
508 	else
509 		value->value.integer.value[0] = 0;
510 	return 0;
511 }
512 
513 static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
514 {
515 	unsigned int priv_idx = chip->controls[control]->private_value & 0xff;
516 	u16 value;
517 
518 	value = oxygen_read_ac97(chip, 0, priv_idx);
519 	if (!(value & 0x8000)) {
520 		oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
521 		if (chip->model->ac97_switch)
522 			chip->model->ac97_switch(chip, priv_idx, 0x8000);
523 		snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
524 			       &chip->controls[control]->id);
525 	}
526 }
527 
528 static int ac97_switch_put(struct snd_kcontrol *ctl,
529 			   struct snd_ctl_elem_value *value)
530 {
531 	struct oxygen *chip = ctl->private_data;
532 	unsigned int codec = (ctl->private_value >> 24) & 1;
533 	unsigned int index = ctl->private_value & 0xff;
534 	unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
535 	int invert = ctl->private_value & (1 << 16);
536 	u16 oldreg, newreg;
537 	int change;
538 
539 	mutex_lock(&chip->mutex);
540 	oldreg = oxygen_read_ac97(chip, codec, index);
541 	newreg = oldreg;
542 	if (!value->value.integer.value[0] ^ !invert)
543 		newreg |= 1 << bitnr;
544 	else
545 		newreg &= ~(1 << bitnr);
546 	change = newreg != oldreg;
547 	if (change) {
548 		oxygen_write_ac97(chip, codec, index, newreg);
549 		if (codec == 0 && chip->model->ac97_switch)
550 			chip->model->ac97_switch(chip, index, newreg & 0x8000);
551 		if (index == AC97_LINE) {
552 			oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
553 						 newreg & 0x8000 ?
554 						 CM9780_GPO0 : 0, CM9780_GPO0);
555 			if (!(newreg & 0x8000)) {
556 				mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
557 				mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
558 				mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
559 			}
560 		} else if ((index == AC97_MIC || index == AC97_CD ||
561 			    index == AC97_VIDEO || index == AC97_AUX) &&
562 			   bitnr == 15 && !(newreg & 0x8000)) {
563 			mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
564 			oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
565 						 CM9780_GPO0, CM9780_GPO0);
566 		}
567 	}
568 	mutex_unlock(&chip->mutex);
569 	return change;
570 }
571 
572 static int ac97_volume_info(struct snd_kcontrol *ctl,
573 			    struct snd_ctl_elem_info *info)
574 {
575 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
576 	info->count = 2;
577 	info->value.integer.min = 0;
578 	info->value.integer.max = 0x1f;
579 	return 0;
580 }
581 
582 static int ac97_volume_get(struct snd_kcontrol *ctl,
583 			   struct snd_ctl_elem_value *value)
584 {
585 	struct oxygen *chip = ctl->private_data;
586 	unsigned int codec = (ctl->private_value >> 24) & 1;
587 	unsigned int index = ctl->private_value & 0xff;
588 	u16 reg;
589 
590 	mutex_lock(&chip->mutex);
591 	reg = oxygen_read_ac97(chip, codec, index);
592 	mutex_unlock(&chip->mutex);
593 	value->value.integer.value[0] = 31 - (reg & 0x1f);
594 	value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
595 	return 0;
596 }
597 
598 static int ac97_volume_put(struct snd_kcontrol *ctl,
599 			   struct snd_ctl_elem_value *value)
600 {
601 	struct oxygen *chip = ctl->private_data;
602 	unsigned int codec = (ctl->private_value >> 24) & 1;
603 	unsigned int index = ctl->private_value & 0xff;
604 	u16 oldreg, newreg;
605 	int change;
606 
607 	mutex_lock(&chip->mutex);
608 	oldreg = oxygen_read_ac97(chip, codec, index);
609 	newreg = oldreg;
610 	newreg = (newreg & ~0x1f) |
611 		(31 - (value->value.integer.value[0] & 0x1f));
612 	newreg = (newreg & ~0x1f00) |
613 		((31 - (value->value.integer.value[0] & 0x1f)) << 8);
614 	change = newreg != oldreg;
615 	if (change)
616 		oxygen_write_ac97(chip, codec, index, newreg);
617 	mutex_unlock(&chip->mutex);
618 	return change;
619 }
620 
621 static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
622 				   struct snd_ctl_elem_info *info)
623 {
624 	info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
625 	info->count = 2;
626 	info->value.integer.min = 0;
627 	info->value.integer.max = 7;
628 	return 0;
629 }
630 
631 static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
632 				  struct snd_ctl_elem_value *value)
633 {
634 	struct oxygen *chip = ctl->private_data;
635 	u16 reg;
636 
637 	mutex_lock(&chip->mutex);
638 	reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
639 	mutex_unlock(&chip->mutex);
640 	value->value.integer.value[0] = reg & 7;
641 	value->value.integer.value[1] = (reg >> 8) & 7;
642 	return 0;
643 }
644 
645 static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
646 				  struct snd_ctl_elem_value *value)
647 {
648 	struct oxygen *chip = ctl->private_data;
649 	u16 oldreg, newreg;
650 	int change;
651 
652 	mutex_lock(&chip->mutex);
653 	oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
654 	newreg = oldreg & ~0x0707;
655 	newreg = newreg | (value->value.integer.value[0] & 7);
656 	newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
657 	change = newreg != oldreg;
658 	if (change)
659 		oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
660 	mutex_unlock(&chip->mutex);
661 	return change;
662 }
663 
664 #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
665 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
666 		.name = xname, \
667 		.info = snd_ctl_boolean_mono_info, \
668 		.get = ac97_switch_get, \
669 		.put = ac97_switch_put, \
670 		.private_value = ((codec) << 24) | ((invert) << 16) | \
671 				 ((bitnr) << 8) | (index), \
672 	}
673 #define AC97_VOLUME(xname, codec, index) { \
674 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
675 		.name = xname, \
676 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
677 			  SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
678 		.info = ac97_volume_info, \
679 		.get = ac97_volume_get, \
680 		.put = ac97_volume_put, \
681 		.tlv = { .p = ac97_db_scale, }, \
682 		.private_value = ((codec) << 24) | (index), \
683 	}
684 
685 static DECLARE_TLV_DB_SCALE(monitor_db_scale, -1000, 1000, 0);
686 static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
687 static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
688 
689 static const struct snd_kcontrol_new controls[] = {
690 	{
691 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
692 		.name = "Master Playback Volume",
693 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
694 		.info = dac_volume_info,
695 		.get = dac_volume_get,
696 		.put = dac_volume_put,
697 	},
698 	{
699 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
700 		.name = "Master Playback Switch",
701 		.info = snd_ctl_boolean_mono_info,
702 		.get = dac_mute_get,
703 		.put = dac_mute_put,
704 	},
705 	{
706 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
707 		.name = "Stereo Upmixing",
708 		.info = upmix_info,
709 		.get = upmix_get,
710 		.put = upmix_put,
711 	},
712 	{
713 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
714 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
715 		.info = snd_ctl_boolean_mono_info,
716 		.get = spdif_switch_get,
717 		.put = spdif_switch_put,
718 	},
719 	{
720 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
721 		.device = 1,
722 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
723 		.info = spdif_info,
724 		.get = spdif_default_get,
725 		.put = spdif_default_put,
726 	},
727 	{
728 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
729 		.device = 1,
730 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
731 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
732 		.info = spdif_info,
733 		.get = spdif_mask_get,
734 	},
735 	{
736 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
737 		.device = 1,
738 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
739 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
740 			  SNDRV_CTL_ELEM_ACCESS_INACTIVE,
741 		.info = spdif_info,
742 		.get = spdif_pcm_get,
743 		.put = spdif_pcm_put,
744 	},
745 };
746 
747 static const struct snd_kcontrol_new spdif_input_controls[] = {
748 	{
749 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
750 		.device = 1,
751 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
752 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
753 		.info = spdif_info,
754 		.get = spdif_input_mask_get,
755 	},
756 	{
757 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
758 		.device = 1,
759 		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
760 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
761 		.info = spdif_info,
762 		.get = spdif_input_default_get,
763 	},
764 	{
765 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
766 		.name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
767 		.info = snd_ctl_boolean_mono_info,
768 		.get = spdif_loopback_get,
769 		.put = spdif_loopback_put,
770 	},
771 };
772 
773 static const struct {
774 	unsigned int pcm_dev;
775 	struct snd_kcontrol_new controls[2];
776 } monitor_controls[] = {
777 	{
778 		.pcm_dev = CAPTURE_0_FROM_I2S_1,
779 		.controls = {
780 			{
781 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
782 				.name = "Analog Input Monitor Switch",
783 				.info = snd_ctl_boolean_mono_info,
784 				.get = monitor_get,
785 				.put = monitor_put,
786 				.private_value = OXYGEN_ADC_MONITOR_A,
787 			},
788 			{
789 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
790 				.name = "Analog Input Monitor Volume",
791 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
792 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
793 				.info = monitor_volume_info,
794 				.get = monitor_get,
795 				.put = monitor_put,
796 				.private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
797 						| (1 << 8),
798 				.tlv = { .p = monitor_db_scale, },
799 			},
800 		},
801 	},
802 	{
803 		.pcm_dev = CAPTURE_0_FROM_I2S_2,
804 		.controls = {
805 			{
806 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
807 				.name = "Analog Input Monitor Switch",
808 				.info = snd_ctl_boolean_mono_info,
809 				.get = monitor_get,
810 				.put = monitor_put,
811 				.private_value = OXYGEN_ADC_MONITOR_B,
812 			},
813 			{
814 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
815 				.name = "Analog Input Monitor Volume",
816 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
817 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
818 				.info = monitor_volume_info,
819 				.get = monitor_get,
820 				.put = monitor_put,
821 				.private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
822 						| (1 << 8),
823 				.tlv = { .p = monitor_db_scale, },
824 			},
825 		},
826 	},
827 	{
828 		.pcm_dev = CAPTURE_2_FROM_I2S_2,
829 		.controls = {
830 			{
831 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
832 				.name = "Analog Input Monitor Switch",
833 				.index = 1,
834 				.info = snd_ctl_boolean_mono_info,
835 				.get = monitor_get,
836 				.put = monitor_put,
837 				.private_value = OXYGEN_ADC_MONITOR_B,
838 			},
839 			{
840 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
841 				.name = "Analog Input Monitor Volume",
842 				.index = 1,
843 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
844 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
845 				.info = monitor_volume_info,
846 				.get = monitor_get,
847 				.put = monitor_put,
848 				.private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
849 						| (1 << 8),
850 				.tlv = { .p = monitor_db_scale, },
851 			},
852 		},
853 	},
854 	{
855 		.pcm_dev = CAPTURE_1_FROM_SPDIF,
856 		.controls = {
857 			{
858 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
859 				.name = "Digital Input Monitor Switch",
860 				.info = snd_ctl_boolean_mono_info,
861 				.get = monitor_get,
862 				.put = monitor_put,
863 				.private_value = OXYGEN_ADC_MONITOR_C,
864 			},
865 			{
866 				.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
867 				.name = "Digital Input Monitor Volume",
868 				.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
869 					  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
870 				.info = monitor_volume_info,
871 				.get = monitor_get,
872 				.put = monitor_put,
873 				.private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
874 						| (1 << 8),
875 				.tlv = { .p = monitor_db_scale, },
876 			},
877 		},
878 	},
879 };
880 
881 static const struct snd_kcontrol_new ac97_controls[] = {
882 	AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC),
883 	AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
884 	AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
885 	AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
886 	AC97_VOLUME("CD Capture Volume", 0, AC97_CD),
887 	AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
888 	AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX),
889 	AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
890 };
891 
892 static const struct snd_kcontrol_new ac97_fp_controls[] = {
893 	AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE),
894 	AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
895 	{
896 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
897 		.name = "Front Panel Capture Volume",
898 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
899 			  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
900 		.info = ac97_fp_rec_volume_info,
901 		.get = ac97_fp_rec_volume_get,
902 		.put = ac97_fp_rec_volume_put,
903 		.tlv = { .p = ac97_rec_db_scale, },
904 	},
905 	AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
906 };
907 
908 static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
909 {
910 	struct oxygen *chip = ctl->private_data;
911 	unsigned int i;
912 
913 	/* I'm too lazy to write a function for each control :-) */
914 	for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
915 		chip->controls[i] = NULL;
916 }
917 
918 static int add_controls(struct oxygen *chip,
919 			const struct snd_kcontrol_new controls[],
920 			unsigned int count)
921 {
922 	static const char *const known_ctl_names[CONTROL_COUNT] = {
923 		[CONTROL_SPDIF_PCM] =
924 			SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
925 		[CONTROL_SPDIF_INPUT_BITS] =
926 			SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
927 		[CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
928 		[CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
929 		[CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
930 		[CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
931 	};
932 	unsigned int i, j;
933 	struct snd_kcontrol_new template;
934 	struct snd_kcontrol *ctl;
935 	int err;
936 
937 	for (i = 0; i < count; ++i) {
938 		template = controls[i];
939 		err = chip->model->control_filter(&template);
940 		if (err < 0)
941 			return err;
942 		if (err == 1)
943 			continue;
944 		if (!strcmp(template.name, "Master Playback Volume") &&
945 		    chip->model->dac_tlv) {
946 			template.tlv.p = chip->model->dac_tlv;
947 			template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
948 		}
949 		ctl = snd_ctl_new1(&template, chip);
950 		if (!ctl)
951 			return -ENOMEM;
952 		err = snd_ctl_add(chip->card, ctl);
953 		if (err < 0)
954 			return err;
955 		for (j = 0; j < CONTROL_COUNT; ++j)
956 			if (!strcmp(ctl->id.name, known_ctl_names[j])) {
957 				chip->controls[j] = ctl;
958 				ctl->private_free = oxygen_any_ctl_free;
959 			}
960 	}
961 	return 0;
962 }
963 
964 int oxygen_mixer_init(struct oxygen *chip)
965 {
966 	unsigned int i;
967 	int err;
968 
969 	err = add_controls(chip, controls, ARRAY_SIZE(controls));
970 	if (err < 0)
971 		return err;
972 	if (chip->model->pcm_dev_cfg & CAPTURE_1_FROM_SPDIF) {
973 		err = add_controls(chip, spdif_input_controls,
974 				   ARRAY_SIZE(spdif_input_controls));
975 		if (err < 0)
976 			return err;
977 	}
978 	for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
979 		if (!(chip->model->pcm_dev_cfg & monitor_controls[i].pcm_dev))
980 			continue;
981 		err = add_controls(chip, monitor_controls[i].controls,
982 				   ARRAY_SIZE(monitor_controls[i].controls));
983 		if (err < 0)
984 			return err;
985 	}
986 	if (chip->has_ac97_0) {
987 		err = add_controls(chip, ac97_controls,
988 				   ARRAY_SIZE(ac97_controls));
989 		if (err < 0)
990 			return err;
991 	}
992 	if (chip->has_ac97_1) {
993 		err = add_controls(chip, ac97_fp_controls,
994 				   ARRAY_SIZE(ac97_fp_controls));
995 		if (err < 0)
996 			return err;
997 	}
998 	return chip->model->mixer_init ? chip->model->mixer_init(chip) : 0;
999 }
1000