xref: /openbmc/linux/sound/pci/ice1712/juli.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   ALSA driver for ICEnsemble VT1724 (Envy24HT)
4  *
5  *   Lowlevel functions for ESI Juli@ cards
6  *
7  *	Copyright (c) 2004 Jaroslav Kysela <perex@perex.cz>
8  *	              2008 Pavel Hofman <dustin@seznam.cz>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <sound/core.h>
17 #include <sound/tlv.h>
18 
19 #include "ice1712.h"
20 #include "envy24ht.h"
21 #include "juli.h"
22 
23 struct juli_spec {
24 	struct ak4114 *ak4114;
25 	unsigned int analog:1;
26 };
27 
28 /*
29  * chip addresses on I2C bus
30  */
31 #define AK4114_ADDR		0x20		/* S/PDIF receiver */
32 #define AK4358_ADDR		0x22		/* DAC */
33 
34 /*
35  * Juli does not use the standard ICE1724 clock scheme. Juli's ice1724 chip is
36  * supplied by external clock provided by Xilinx array and MK73-1 PLL frequency
37  * multiplier. Actual frequency is set by ice1724 GPIOs hooked to the Xilinx.
38  *
39  * The clock circuitry is supplied by the two ice1724 crystals. This
40  * arrangement allows to generate independent clock signal for AK4114's input
41  * rate detection circuit. As a result, Juli, unlike most other
42  * ice1724+ak4114-based cards, detects spdif input rate correctly.
43  * This fact is applied in the driver, allowing to modify PCM stream rate
44  * parameter according to the actual input rate.
45  *
46  * Juli uses the remaining three stereo-channels of its DAC to optionally
47  * monitor analog input, digital input, and digital output. The corresponding
48  * I2S signals are routed by Xilinx, controlled by GPIOs.
49  *
50  * The master mute is implemented using output muting transistors (GPIO) in
51  * combination with smuting the DAC.
52  *
53  * The card itself has no HW master volume control, implemented using the
54  * vmaster control.
55  *
56  * TODO:
57  * researching and fixing the input monitors
58  */
59 
60 /*
61  * GPIO pins
62  */
63 #define GPIO_FREQ_MASK		(3<<0)
64 #define GPIO_FREQ_32KHZ		(0<<0)
65 #define GPIO_FREQ_44KHZ		(1<<0)
66 #define GPIO_FREQ_48KHZ		(2<<0)
67 #define GPIO_MULTI_MASK		(3<<2)
68 #define GPIO_MULTI_4X		(0<<2)
69 #define GPIO_MULTI_2X		(1<<2)
70 #define GPIO_MULTI_1X		(2<<2)		/* also external */
71 #define GPIO_MULTI_HALF		(3<<2)
72 #define GPIO_INTERNAL_CLOCK	(1<<4)		/* 0 = external, 1 = internal */
73 #define GPIO_CLOCK_MASK		(1<<4)
74 #define GPIO_ANALOG_PRESENT	(1<<5)		/* RO only: 0 = present */
75 #define GPIO_RXMCLK_SEL		(1<<7)		/* must be 0 */
76 #define GPIO_AK5385A_CKS0	(1<<8)
77 #define GPIO_AK5385A_DFS1	(1<<9)
78 #define GPIO_AK5385A_DFS0	(1<<10)
79 #define GPIO_DIGOUT_MONITOR	(1<<11)		/* 1 = active */
80 #define GPIO_DIGIN_MONITOR	(1<<12)		/* 1 = active */
81 #define GPIO_ANAIN_MONITOR	(1<<13)		/* 1 = active */
82 #define GPIO_AK5385A_CKS1	(1<<14)		/* must be 0 */
83 #define GPIO_MUTE_CONTROL	(1<<15)		/* output mute, 1 = muted */
84 
85 #define GPIO_RATE_MASK		(GPIO_FREQ_MASK | GPIO_MULTI_MASK | \
86 		GPIO_CLOCK_MASK)
87 #define GPIO_AK5385A_MASK	(GPIO_AK5385A_CKS0 | GPIO_AK5385A_DFS0 | \
88 		GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS1)
89 
90 #define JULI_PCM_RATE	(SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \
91 		SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \
92 		SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \
93 		SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | \
94 		SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000)
95 
96 #define GPIO_RATE_16000		(GPIO_FREQ_32KHZ | GPIO_MULTI_HALF | \
97 		GPIO_INTERNAL_CLOCK)
98 #define GPIO_RATE_22050		(GPIO_FREQ_44KHZ | GPIO_MULTI_HALF | \
99 		GPIO_INTERNAL_CLOCK)
100 #define GPIO_RATE_24000		(GPIO_FREQ_48KHZ | GPIO_MULTI_HALF | \
101 		GPIO_INTERNAL_CLOCK)
102 #define GPIO_RATE_32000		(GPIO_FREQ_32KHZ | GPIO_MULTI_1X | \
103 		GPIO_INTERNAL_CLOCK)
104 #define GPIO_RATE_44100		(GPIO_FREQ_44KHZ | GPIO_MULTI_1X | \
105 		GPIO_INTERNAL_CLOCK)
106 #define GPIO_RATE_48000		(GPIO_FREQ_48KHZ | GPIO_MULTI_1X | \
107 		GPIO_INTERNAL_CLOCK)
108 #define GPIO_RATE_64000		(GPIO_FREQ_32KHZ | GPIO_MULTI_2X | \
109 		GPIO_INTERNAL_CLOCK)
110 #define GPIO_RATE_88200		(GPIO_FREQ_44KHZ | GPIO_MULTI_2X | \
111 		GPIO_INTERNAL_CLOCK)
112 #define GPIO_RATE_96000		(GPIO_FREQ_48KHZ | GPIO_MULTI_2X | \
113 		GPIO_INTERNAL_CLOCK)
114 #define GPIO_RATE_176400	(GPIO_FREQ_44KHZ | GPIO_MULTI_4X | \
115 		GPIO_INTERNAL_CLOCK)
116 #define GPIO_RATE_192000	(GPIO_FREQ_48KHZ | GPIO_MULTI_4X | \
117 		GPIO_INTERNAL_CLOCK)
118 
119 /*
120  * Initial setup of the conversion array GPIO <-> rate
121  */
122 static const unsigned int juli_rates[] = {
123 	16000, 22050, 24000, 32000,
124 	44100, 48000, 64000, 88200,
125 	96000, 176400, 192000,
126 };
127 
128 static const unsigned int gpio_vals[] = {
129 	GPIO_RATE_16000, GPIO_RATE_22050, GPIO_RATE_24000, GPIO_RATE_32000,
130 	GPIO_RATE_44100, GPIO_RATE_48000, GPIO_RATE_64000, GPIO_RATE_88200,
131 	GPIO_RATE_96000, GPIO_RATE_176400, GPIO_RATE_192000,
132 };
133 
134 static const struct snd_pcm_hw_constraint_list juli_rates_info = {
135 	.count = ARRAY_SIZE(juli_rates),
136 	.list = juli_rates,
137 	.mask = 0,
138 };
139 
140 static int get_gpio_val(int rate)
141 {
142 	int i;
143 	for (i = 0; i < ARRAY_SIZE(juli_rates); i++)
144 		if (juli_rates[i] == rate)
145 			return gpio_vals[i];
146 	return 0;
147 }
148 
149 static void juli_ak4114_write(void *private_data, unsigned char reg,
150 				unsigned char val)
151 {
152 	snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR,
153 				reg, val);
154 }
155 
156 static unsigned char juli_ak4114_read(void *private_data, unsigned char reg)
157 {
158 	return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data,
159 					AK4114_ADDR, reg);
160 }
161 
162 /*
163  * If SPDIF capture and slaved to SPDIF-IN, setting runtime rate
164  * to the external rate
165  */
166 static void juli_spdif_in_open(struct snd_ice1712 *ice,
167 				struct snd_pcm_substream *substream)
168 {
169 	struct juli_spec *spec = ice->spec;
170 	struct snd_pcm_runtime *runtime = substream->runtime;
171 	int rate;
172 
173 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK ||
174 			!ice->is_spdif_master(ice))
175 		return;
176 	rate = snd_ak4114_external_rate(spec->ak4114);
177 	if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) {
178 		runtime->hw.rate_min = rate;
179 		runtime->hw.rate_max = rate;
180 	}
181 }
182 
183 /*
184  * AK4358 section
185  */
186 
187 static void juli_akm_lock(struct snd_akm4xxx *ak, int chip)
188 {
189 }
190 
191 static void juli_akm_unlock(struct snd_akm4xxx *ak, int chip)
192 {
193 }
194 
195 static void juli_akm_write(struct snd_akm4xxx *ak, int chip,
196 			   unsigned char addr, unsigned char data)
197 {
198 	struct snd_ice1712 *ice = ak->private_data[0];
199 
200 	if (snd_BUG_ON(chip))
201 		return;
202 	snd_vt1724_write_i2c(ice, AK4358_ADDR, addr, data);
203 }
204 
205 /*
206  * change the rate of envy24HT, AK4358, AK5385
207  */
208 static void juli_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate)
209 {
210 	unsigned char old, tmp, ak4358_dfs;
211 	unsigned int ak5385_pins, old_gpio, new_gpio;
212 	struct snd_ice1712 *ice = ak->private_data[0];
213 	struct juli_spec *spec = ice->spec;
214 
215 	if (rate == 0)  /* no hint - S/PDIF input is master or the new spdif
216 			   input rate undetected, simply return */
217 		return;
218 
219 	/* adjust DFS on codecs */
220 	if (rate > 96000)  {
221 		ak4358_dfs = 2;
222 		ak5385_pins = GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS0;
223 	} else if (rate > 48000) {
224 		ak4358_dfs = 1;
225 		ak5385_pins = GPIO_AK5385A_DFS0;
226 	} else {
227 		ak4358_dfs = 0;
228 		ak5385_pins = 0;
229 	}
230 	/* AK5385 first, since it requires cold reset affecting both codecs */
231 	old_gpio = ice->gpio.get_data(ice);
232 	new_gpio =  (old_gpio & ~GPIO_AK5385A_MASK) | ak5385_pins;
233 	/* dev_dbg(ice->card->dev, "JULI - ak5385 set_rate_val: new gpio 0x%x\n",
234 		new_gpio); */
235 	ice->gpio.set_data(ice, new_gpio);
236 
237 	/* cold reset */
238 	old = inb(ICEMT1724(ice, AC97_CMD));
239 	outb(old | VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD));
240 	udelay(1);
241 	outb(old & ~VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD));
242 
243 	/* AK4358 */
244 	/* set new value, reset DFS */
245 	tmp = snd_akm4xxx_get(ak, 0, 2);
246 	snd_akm4xxx_reset(ak, 1);
247 	tmp = snd_akm4xxx_get(ak, 0, 2);
248 	tmp &= ~(0x03 << 4);
249 	tmp |= ak4358_dfs << 4;
250 	snd_akm4xxx_set(ak, 0, 2, tmp);
251 	snd_akm4xxx_reset(ak, 0);
252 
253 	/* reinit ak4114 */
254 	snd_ak4114_reinit(spec->ak4114);
255 }
256 
257 #define AK_DAC(xname, xch)	{ .name = xname, .num_channels = xch }
258 #define PCM_VOLUME		"PCM Playback Volume"
259 #define MONITOR_AN_IN_VOLUME	"Monitor Analog In Volume"
260 #define MONITOR_DIG_IN_VOLUME	"Monitor Digital In Volume"
261 #define MONITOR_DIG_OUT_VOLUME	"Monitor Digital Out Volume"
262 
263 static const struct snd_akm4xxx_dac_channel juli_dac[] = {
264 	AK_DAC(PCM_VOLUME, 2),
265 	AK_DAC(MONITOR_AN_IN_VOLUME, 2),
266 	AK_DAC(MONITOR_DIG_OUT_VOLUME, 2),
267 	AK_DAC(MONITOR_DIG_IN_VOLUME, 2),
268 };
269 
270 
271 static const struct snd_akm4xxx akm_juli_dac = {
272 	.type = SND_AK4358,
273 	.num_dacs = 8,	/* DAC1 - analog out
274 			   DAC2 - analog in monitor
275 			   DAC3 - digital out monitor
276 			   DAC4 - digital in monitor
277 			 */
278 	.ops = {
279 		.lock = juli_akm_lock,
280 		.unlock = juli_akm_unlock,
281 		.write = juli_akm_write,
282 		.set_rate_val = juli_akm_set_rate_val
283 	},
284 	.dac_info = juli_dac,
285 };
286 
287 #define juli_mute_info		snd_ctl_boolean_mono_info
288 
289 static int juli_mute_get(struct snd_kcontrol *kcontrol,
290 		struct snd_ctl_elem_value *ucontrol)
291 {
292 	struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
293 	unsigned int val;
294 	val = ice->gpio.get_data(ice) & (unsigned int) kcontrol->private_value;
295 	if (kcontrol->private_value == GPIO_MUTE_CONTROL)
296 		/* val 0 = signal on */
297 		ucontrol->value.integer.value[0] = (val) ? 0 : 1;
298 	else
299 		/* val 1 = signal on */
300 		ucontrol->value.integer.value[0] = (val) ? 1 : 0;
301 	return 0;
302 }
303 
304 static int juli_mute_put(struct snd_kcontrol *kcontrol,
305 		struct snd_ctl_elem_value *ucontrol)
306 {
307 	struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
308 	unsigned int old_gpio, new_gpio;
309 	old_gpio = ice->gpio.get_data(ice);
310 	if (ucontrol->value.integer.value[0]) {
311 		/* unmute */
312 		if (kcontrol->private_value == GPIO_MUTE_CONTROL) {
313 			/* 0 = signal on */
314 			new_gpio = old_gpio & ~GPIO_MUTE_CONTROL;
315 			/* un-smuting DAC */
316 			snd_akm4xxx_write(ice->akm, 0, 0x01, 0x01);
317 		} else
318 			/* 1 = signal on */
319 			new_gpio =  old_gpio |
320 				(unsigned int) kcontrol->private_value;
321 	} else {
322 		/* mute */
323 		if (kcontrol->private_value == GPIO_MUTE_CONTROL) {
324 			/* 1 = signal off */
325 			new_gpio = old_gpio | GPIO_MUTE_CONTROL;
326 			/* smuting DAC */
327 			snd_akm4xxx_write(ice->akm, 0, 0x01, 0x03);
328 		} else
329 			/* 0 = signal off */
330 			new_gpio =  old_gpio &
331 				~((unsigned int) kcontrol->private_value);
332 	}
333 	/* dev_dbg(ice->card->dev,
334 		"JULI - mute/unmute: control_value: 0x%x, old_gpio: 0x%x, "
335 		"new_gpio 0x%x\n",
336 		(unsigned int)ucontrol->value.integer.value[0], old_gpio,
337 		new_gpio); */
338 	if (old_gpio != new_gpio) {
339 		ice->gpio.set_data(ice, new_gpio);
340 		return 1;
341 	}
342 	/* no change */
343 	return 0;
344 }
345 
346 static const struct snd_kcontrol_new juli_mute_controls[] = {
347 	{
348 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
349 		.name = "Master Playback Switch",
350 		.info = juli_mute_info,
351 		.get = juli_mute_get,
352 		.put = juli_mute_put,
353 		.private_value = GPIO_MUTE_CONTROL,
354 	},
355 	/* Although the following functionality respects the succint NDA'd
356 	 * documentation from the card manufacturer, and the same way of
357 	 * operation is coded in OSS Juli driver, only Digital Out monitor
358 	 * seems to work. Surprisingly, Analog input monitor outputs Digital
359 	 * output data. The two are independent, as enabling both doubles
360 	 * volume of the monitor sound.
361 	 *
362 	 * Checking traces on the board suggests the functionality described
363 	 * by the manufacturer is correct - I2S from ADC and AK4114
364 	 * go to ICE as well as to Xilinx, I2S inputs of DAC2,3,4 (the monitor
365 	 * inputs) are fed from Xilinx.
366 	 *
367 	 * I even checked traces on board and coded a support in driver for
368 	 * an alternative possibility - the unused I2S ICE output channels
369 	 * switched to HW-IN/SPDIF-IN and providing the monitoring signal to
370 	 * the DAC - to no avail. The I2S outputs seem to be unconnected.
371 	 *
372 	 * The windows driver supports the monitoring correctly.
373 	 */
374 	{
375 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
376 		.name = "Monitor Analog In Switch",
377 		.info = juli_mute_info,
378 		.get = juli_mute_get,
379 		.put = juli_mute_put,
380 		.private_value = GPIO_ANAIN_MONITOR,
381 	},
382 	{
383 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
384 		.name = "Monitor Digital Out Switch",
385 		.info = juli_mute_info,
386 		.get = juli_mute_get,
387 		.put = juli_mute_put,
388 		.private_value = GPIO_DIGOUT_MONITOR,
389 	},
390 	{
391 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
392 		.name = "Monitor Digital In Switch",
393 		.info = juli_mute_info,
394 		.get = juli_mute_get,
395 		.put = juli_mute_put,
396 		.private_value = GPIO_DIGIN_MONITOR,
397 	},
398 };
399 
400 static const char * const follower_vols[] = {
401 	PCM_VOLUME,
402 	MONITOR_AN_IN_VOLUME,
403 	MONITOR_DIG_IN_VOLUME,
404 	MONITOR_DIG_OUT_VOLUME,
405 	NULL
406 };
407 
408 static
409 DECLARE_TLV_DB_SCALE(juli_master_db_scale, -6350, 50, 1);
410 
411 static int juli_add_controls(struct snd_ice1712 *ice)
412 {
413 	struct juli_spec *spec = ice->spec;
414 	int err;
415 	unsigned int i;
416 	struct snd_kcontrol *vmaster;
417 
418 	err = snd_ice1712_akm4xxx_build_controls(ice);
419 	if (err < 0)
420 		return err;
421 
422 	for (i = 0; i < ARRAY_SIZE(juli_mute_controls); i++) {
423 		err = snd_ctl_add(ice->card,
424 				snd_ctl_new1(&juli_mute_controls[i], ice));
425 		if (err < 0)
426 			return err;
427 	}
428 	/* Create virtual master control */
429 	vmaster = snd_ctl_make_virtual_master("Master Playback Volume",
430 					      juli_master_db_scale);
431 	if (!vmaster)
432 		return -ENOMEM;
433 	err = snd_ctl_add(ice->card, vmaster);
434 	if (err < 0)
435 		return err;
436 	err = snd_ctl_add_followers(ice->card, vmaster, follower_vols);
437 	if (err < 0)
438 		return err;
439 
440 	/* only capture SPDIF over AK4114 */
441 	return snd_ak4114_build(spec->ak4114, NULL,
442 			ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream);
443 }
444 
445 /*
446  * suspend/resume
447  * */
448 
449 #ifdef CONFIG_PM_SLEEP
450 static int juli_resume(struct snd_ice1712 *ice)
451 {
452 	struct snd_akm4xxx *ak = ice->akm;
453 	struct juli_spec *spec = ice->spec;
454 	/* akm4358 un-reset, un-mute */
455 	snd_akm4xxx_reset(ak, 0);
456 	/* reinit ak4114 */
457 	snd_ak4114_resume(spec->ak4114);
458 	return 0;
459 }
460 
461 static int juli_suspend(struct snd_ice1712 *ice)
462 {
463 	struct snd_akm4xxx *ak = ice->akm;
464 	struct juli_spec *spec = ice->spec;
465 	/* akm4358 reset and soft-mute */
466 	snd_akm4xxx_reset(ak, 1);
467 	snd_ak4114_suspend(spec->ak4114);
468 	return 0;
469 }
470 #endif
471 
472 /*
473  * initialize the chip
474  */
475 
476 static inline int juli_is_spdif_master(struct snd_ice1712 *ice)
477 {
478 	return (ice->gpio.get_data(ice) & GPIO_INTERNAL_CLOCK) ? 0 : 1;
479 }
480 
481 static unsigned int juli_get_rate(struct snd_ice1712 *ice)
482 {
483 	int i;
484 	unsigned char result;
485 
486 	result =  ice->gpio.get_data(ice) & GPIO_RATE_MASK;
487 	for (i = 0; i < ARRAY_SIZE(gpio_vals); i++)
488 		if (gpio_vals[i] == result)
489 			return juli_rates[i];
490 	return 0;
491 }
492 
493 /* setting new rate */
494 static void juli_set_rate(struct snd_ice1712 *ice, unsigned int rate)
495 {
496 	unsigned int old, new;
497 	unsigned char val;
498 
499 	old = ice->gpio.get_data(ice);
500 	new =  (old & ~GPIO_RATE_MASK) | get_gpio_val(rate);
501 	/* dev_dbg(ice->card->dev, "JULI - set_rate: old %x, new %x\n",
502 			old & GPIO_RATE_MASK,
503 			new & GPIO_RATE_MASK); */
504 
505 	ice->gpio.set_data(ice, new);
506 	/* switching to external clock - supplied by external circuits */
507 	val = inb(ICEMT1724(ice, RATE));
508 	outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
509 }
510 
511 static inline unsigned char juli_set_mclk(struct snd_ice1712 *ice,
512 					  unsigned int rate)
513 {
514 	/* no change in master clock */
515 	return 0;
516 }
517 
518 /* setting clock to external - SPDIF */
519 static int juli_set_spdif_clock(struct snd_ice1712 *ice, int type)
520 {
521 	unsigned int old;
522 	old = ice->gpio.get_data(ice);
523 	/* external clock (= 0), multiply 1x, 48kHz */
524 	ice->gpio.set_data(ice, (old & ~GPIO_RATE_MASK) | GPIO_MULTI_1X |
525 			GPIO_FREQ_48KHZ);
526 	return 0;
527 }
528 
529 /* Called when ak4114 detects change in the input SPDIF stream */
530 static void juli_ak4114_change(struct ak4114 *ak4114, unsigned char c0,
531 			       unsigned char c1)
532 {
533 	struct snd_ice1712 *ice = ak4114->change_callback_private;
534 	int rate;
535 	if (ice->is_spdif_master(ice) && c1) {
536 		/* only for SPDIF master mode, rate was changed */
537 		rate = snd_ak4114_external_rate(ak4114);
538 		/* dev_dbg(ice->card->dev, "ak4114 - input rate changed to %d\n",
539 				rate); */
540 		juli_akm_set_rate_val(ice->akm, rate);
541 	}
542 }
543 
544 static int juli_init(struct snd_ice1712 *ice)
545 {
546 	static const unsigned char ak4114_init_vals[] = {
547 		/* AK4117_REG_PWRDN */	AK4114_RST | AK4114_PWN |
548 					AK4114_OCKS0 | AK4114_OCKS1,
549 		/* AK4114_REQ_FORMAT */	AK4114_DIF_I24I2S,
550 		/* AK4114_REG_IO0 */	AK4114_TX1E,
551 		/* AK4114_REG_IO1 */	AK4114_EFH_1024 | AK4114_DIT |
552 					AK4114_IPS(1),
553 		/* AK4114_REG_INT0_MASK */ 0,
554 		/* AK4114_REG_INT1_MASK */ 0
555 	};
556 	static const unsigned char ak4114_init_txcsb[] = {
557 		0x41, 0x02, 0x2c, 0x00, 0x00
558 	};
559 	int err;
560 	struct juli_spec *spec;
561 	struct snd_akm4xxx *ak;
562 
563 	spec = kzalloc(sizeof(*spec), GFP_KERNEL);
564 	if (!spec)
565 		return -ENOMEM;
566 	ice->spec = spec;
567 
568 	err = snd_ak4114_create(ice->card,
569 				juli_ak4114_read,
570 				juli_ak4114_write,
571 				ak4114_init_vals, ak4114_init_txcsb,
572 				ice, &spec->ak4114);
573 	if (err < 0)
574 		return err;
575 	/* callback for codecs rate setting */
576 	spec->ak4114->change_callback = juli_ak4114_change;
577 	spec->ak4114->change_callback_private = ice;
578 	/* AK4114 in Juli can detect external rate correctly */
579 	spec->ak4114->check_flags = 0;
580 
581 #if 0
582 /*
583  * it seems that the analog doughter board detection does not work reliably, so
584  * force the analog flag; it should be very rare (if ever) to come at Juli@
585  * used without the analog daughter board
586  */
587 	spec->analog = (ice->gpio.get_data(ice) & GPIO_ANALOG_PRESENT) ? 0 : 1;
588 #else
589 	spec->analog = 1;
590 #endif
591 
592 	if (spec->analog) {
593 		dev_info(ice->card->dev, "juli@: analog I/O detected\n");
594 		ice->num_total_dacs = 2;
595 		ice->num_total_adcs = 2;
596 
597 		ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL);
598 		ak = ice->akm;
599 		if (!ak)
600 			return -ENOMEM;
601 		ice->akm_codecs = 1;
602 		err = snd_ice1712_akm4xxx_init(ak, &akm_juli_dac, NULL, ice);
603 		if (err < 0)
604 			return err;
605 	}
606 
607 	/* juli is clocked by Xilinx array */
608 	ice->hw_rates = &juli_rates_info;
609 	ice->is_spdif_master = juli_is_spdif_master;
610 	ice->get_rate = juli_get_rate;
611 	ice->set_rate = juli_set_rate;
612 	ice->set_mclk = juli_set_mclk;
613 	ice->set_spdif_clock = juli_set_spdif_clock;
614 
615 	ice->spdif.ops.open = juli_spdif_in_open;
616 
617 #ifdef CONFIG_PM_SLEEP
618 	ice->pm_resume = juli_resume;
619 	ice->pm_suspend = juli_suspend;
620 	ice->pm_suspend_enabled = 1;
621 #endif
622 
623 	return 0;
624 }
625 
626 
627 /*
628  * Juli@ boards don't provide the EEPROM data except for the vendor IDs.
629  * hence the driver needs to sets up it properly.
630  */
631 
632 static const unsigned char juli_eeprom[] = {
633 	[ICE_EEP2_SYSCONF]     = 0x2b,	/* clock 512, mpu401, 1xADC, 1xDACs,
634 					   SPDIF in */
635 	[ICE_EEP2_ACLINK]      = 0x80,	/* I2S */
636 	[ICE_EEP2_I2S]         = 0xf8,	/* vol, 96k, 24bit, 192k */
637 	[ICE_EEP2_SPDIF]       = 0xc3,	/* out-en, out-int, spdif-in */
638 	[ICE_EEP2_GPIO_DIR]    = 0x9f,	/* 5, 6:inputs; 7, 4-0 outputs*/
639 	[ICE_EEP2_GPIO_DIR1]   = 0xff,
640 	[ICE_EEP2_GPIO_DIR2]   = 0x7f,
641 	[ICE_EEP2_GPIO_MASK]   = 0x60,	/* 5, 6: locked; 7, 4-0 writable */
642 	[ICE_EEP2_GPIO_MASK1]  = 0x00,  /* 0-7 writable */
643 	[ICE_EEP2_GPIO_MASK2]  = 0x7f,
644 	[ICE_EEP2_GPIO_STATE]  = GPIO_FREQ_48KHZ | GPIO_MULTI_1X |
645 	       GPIO_INTERNAL_CLOCK,	/* internal clock, multiple 1x, 48kHz*/
646 	[ICE_EEP2_GPIO_STATE1] = 0x00,	/* unmuted */
647 	[ICE_EEP2_GPIO_STATE2] = 0x00,
648 };
649 
650 /* entry point */
651 struct snd_ice1712_card_info snd_vt1724_juli_cards[] = {
652 	{
653 		.subvendor = VT1724_SUBDEVICE_JULI,
654 		.name = "ESI Juli@",
655 		.model = "juli",
656 		.chip_init = juli_init,
657 		.build_controls = juli_add_controls,
658 		.eeprom_size = sizeof(juli_eeprom),
659 		.eeprom_data = juli_eeprom,
660 	},
661 	{ } /* terminator */
662 };
663