1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ALSA driver for ICEnsemble VT1724 (Envy24HT) 4 * 5 * Lowlevel functions for ESI Juli@ cards 6 * 7 * Copyright (c) 2004 Jaroslav Kysela <perex@perex.cz> 8 * 2008 Pavel Hofman <dustin@seznam.cz> 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/string.h> 16 #include <sound/core.h> 17 #include <sound/tlv.h> 18 19 #include "ice1712.h" 20 #include "envy24ht.h" 21 #include "juli.h" 22 23 struct juli_spec { 24 struct ak4114 *ak4114; 25 unsigned int analog:1; 26 }; 27 28 /* 29 * chip addresses on I2C bus 30 */ 31 #define AK4114_ADDR 0x20 /* S/PDIF receiver */ 32 #define AK4358_ADDR 0x22 /* DAC */ 33 34 /* 35 * Juli does not use the standard ICE1724 clock scheme. Juli's ice1724 chip is 36 * supplied by external clock provided by Xilinx array and MK73-1 PLL frequency 37 * multiplier. Actual frequency is set by ice1724 GPIOs hooked to the Xilinx. 38 * 39 * The clock circuitry is supplied by the two ice1724 crystals. This 40 * arrangement allows to generate independent clock signal for AK4114's input 41 * rate detection circuit. As a result, Juli, unlike most other 42 * ice1724+ak4114-based cards, detects spdif input rate correctly. 43 * This fact is applied in the driver, allowing to modify PCM stream rate 44 * parameter according to the actual input rate. 45 * 46 * Juli uses the remaining three stereo-channels of its DAC to optionally 47 * monitor analog input, digital input, and digital output. The corresponding 48 * I2S signals are routed by Xilinx, controlled by GPIOs. 49 * 50 * The master mute is implemented using output muting transistors (GPIO) in 51 * combination with smuting the DAC. 52 * 53 * The card itself has no HW master volume control, implemented using the 54 * vmaster control. 55 * 56 * TODO: 57 * researching and fixing the input monitors 58 */ 59 60 /* 61 * GPIO pins 62 */ 63 #define GPIO_FREQ_MASK (3<<0) 64 #define GPIO_FREQ_32KHZ (0<<0) 65 #define GPIO_FREQ_44KHZ (1<<0) 66 #define GPIO_FREQ_48KHZ (2<<0) 67 #define GPIO_MULTI_MASK (3<<2) 68 #define GPIO_MULTI_4X (0<<2) 69 #define GPIO_MULTI_2X (1<<2) 70 #define GPIO_MULTI_1X (2<<2) /* also external */ 71 #define GPIO_MULTI_HALF (3<<2) 72 #define GPIO_INTERNAL_CLOCK (1<<4) /* 0 = external, 1 = internal */ 73 #define GPIO_CLOCK_MASK (1<<4) 74 #define GPIO_ANALOG_PRESENT (1<<5) /* RO only: 0 = present */ 75 #define GPIO_RXMCLK_SEL (1<<7) /* must be 0 */ 76 #define GPIO_AK5385A_CKS0 (1<<8) 77 #define GPIO_AK5385A_DFS1 (1<<9) 78 #define GPIO_AK5385A_DFS0 (1<<10) 79 #define GPIO_DIGOUT_MONITOR (1<<11) /* 1 = active */ 80 #define GPIO_DIGIN_MONITOR (1<<12) /* 1 = active */ 81 #define GPIO_ANAIN_MONITOR (1<<13) /* 1 = active */ 82 #define GPIO_AK5385A_CKS1 (1<<14) /* must be 0 */ 83 #define GPIO_MUTE_CONTROL (1<<15) /* output mute, 1 = muted */ 84 85 #define GPIO_RATE_MASK (GPIO_FREQ_MASK | GPIO_MULTI_MASK | \ 86 GPIO_CLOCK_MASK) 87 #define GPIO_AK5385A_MASK (GPIO_AK5385A_CKS0 | GPIO_AK5385A_DFS0 | \ 88 GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS1) 89 90 #define JULI_PCM_RATE (SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \ 91 SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \ 92 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \ 93 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | \ 94 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000) 95 96 #define GPIO_RATE_16000 (GPIO_FREQ_32KHZ | GPIO_MULTI_HALF | \ 97 GPIO_INTERNAL_CLOCK) 98 #define GPIO_RATE_22050 (GPIO_FREQ_44KHZ | GPIO_MULTI_HALF | \ 99 GPIO_INTERNAL_CLOCK) 100 #define GPIO_RATE_24000 (GPIO_FREQ_48KHZ | GPIO_MULTI_HALF | \ 101 GPIO_INTERNAL_CLOCK) 102 #define GPIO_RATE_32000 (GPIO_FREQ_32KHZ | GPIO_MULTI_1X | \ 103 GPIO_INTERNAL_CLOCK) 104 #define GPIO_RATE_44100 (GPIO_FREQ_44KHZ | GPIO_MULTI_1X | \ 105 GPIO_INTERNAL_CLOCK) 106 #define GPIO_RATE_48000 (GPIO_FREQ_48KHZ | GPIO_MULTI_1X | \ 107 GPIO_INTERNAL_CLOCK) 108 #define GPIO_RATE_64000 (GPIO_FREQ_32KHZ | GPIO_MULTI_2X | \ 109 GPIO_INTERNAL_CLOCK) 110 #define GPIO_RATE_88200 (GPIO_FREQ_44KHZ | GPIO_MULTI_2X | \ 111 GPIO_INTERNAL_CLOCK) 112 #define GPIO_RATE_96000 (GPIO_FREQ_48KHZ | GPIO_MULTI_2X | \ 113 GPIO_INTERNAL_CLOCK) 114 #define GPIO_RATE_176400 (GPIO_FREQ_44KHZ | GPIO_MULTI_4X | \ 115 GPIO_INTERNAL_CLOCK) 116 #define GPIO_RATE_192000 (GPIO_FREQ_48KHZ | GPIO_MULTI_4X | \ 117 GPIO_INTERNAL_CLOCK) 118 119 /* 120 * Initial setup of the conversion array GPIO <-> rate 121 */ 122 static const unsigned int juli_rates[] = { 123 16000, 22050, 24000, 32000, 124 44100, 48000, 64000, 88200, 125 96000, 176400, 192000, 126 }; 127 128 static const unsigned int gpio_vals[] = { 129 GPIO_RATE_16000, GPIO_RATE_22050, GPIO_RATE_24000, GPIO_RATE_32000, 130 GPIO_RATE_44100, GPIO_RATE_48000, GPIO_RATE_64000, GPIO_RATE_88200, 131 GPIO_RATE_96000, GPIO_RATE_176400, GPIO_RATE_192000, 132 }; 133 134 static const struct snd_pcm_hw_constraint_list juli_rates_info = { 135 .count = ARRAY_SIZE(juli_rates), 136 .list = juli_rates, 137 .mask = 0, 138 }; 139 140 static int get_gpio_val(int rate) 141 { 142 int i; 143 for (i = 0; i < ARRAY_SIZE(juli_rates); i++) 144 if (juli_rates[i] == rate) 145 return gpio_vals[i]; 146 return 0; 147 } 148 149 static void juli_ak4114_write(void *private_data, unsigned char reg, 150 unsigned char val) 151 { 152 snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR, 153 reg, val); 154 } 155 156 static unsigned char juli_ak4114_read(void *private_data, unsigned char reg) 157 { 158 return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data, 159 AK4114_ADDR, reg); 160 } 161 162 /* 163 * If SPDIF capture and slaved to SPDIF-IN, setting runtime rate 164 * to the external rate 165 */ 166 static void juli_spdif_in_open(struct snd_ice1712 *ice, 167 struct snd_pcm_substream *substream) 168 { 169 struct juli_spec *spec = ice->spec; 170 struct snd_pcm_runtime *runtime = substream->runtime; 171 int rate; 172 173 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || 174 !ice->is_spdif_master(ice)) 175 return; 176 rate = snd_ak4114_external_rate(spec->ak4114); 177 if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) { 178 runtime->hw.rate_min = rate; 179 runtime->hw.rate_max = rate; 180 } 181 } 182 183 /* 184 * AK4358 section 185 */ 186 187 static void juli_akm_lock(struct snd_akm4xxx *ak, int chip) 188 { 189 } 190 191 static void juli_akm_unlock(struct snd_akm4xxx *ak, int chip) 192 { 193 } 194 195 static void juli_akm_write(struct snd_akm4xxx *ak, int chip, 196 unsigned char addr, unsigned char data) 197 { 198 struct snd_ice1712 *ice = ak->private_data[0]; 199 200 if (snd_BUG_ON(chip)) 201 return; 202 snd_vt1724_write_i2c(ice, AK4358_ADDR, addr, data); 203 } 204 205 /* 206 * change the rate of envy24HT, AK4358, AK5385 207 */ 208 static void juli_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate) 209 { 210 unsigned char old, tmp, ak4358_dfs; 211 unsigned int ak5385_pins, old_gpio, new_gpio; 212 struct snd_ice1712 *ice = ak->private_data[0]; 213 struct juli_spec *spec = ice->spec; 214 215 if (rate == 0) /* no hint - S/PDIF input is master or the new spdif 216 input rate undetected, simply return */ 217 return; 218 219 /* adjust DFS on codecs */ 220 if (rate > 96000) { 221 ak4358_dfs = 2; 222 ak5385_pins = GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS0; 223 } else if (rate > 48000) { 224 ak4358_dfs = 1; 225 ak5385_pins = GPIO_AK5385A_DFS0; 226 } else { 227 ak4358_dfs = 0; 228 ak5385_pins = 0; 229 } 230 /* AK5385 first, since it requires cold reset affecting both codecs */ 231 old_gpio = ice->gpio.get_data(ice); 232 new_gpio = (old_gpio & ~GPIO_AK5385A_MASK) | ak5385_pins; 233 /* dev_dbg(ice->card->dev, "JULI - ak5385 set_rate_val: new gpio 0x%x\n", 234 new_gpio); */ 235 ice->gpio.set_data(ice, new_gpio); 236 237 /* cold reset */ 238 old = inb(ICEMT1724(ice, AC97_CMD)); 239 outb(old | VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD)); 240 udelay(1); 241 outb(old & ~VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD)); 242 243 /* AK4358 */ 244 /* set new value, reset DFS */ 245 tmp = snd_akm4xxx_get(ak, 0, 2); 246 snd_akm4xxx_reset(ak, 1); 247 tmp = snd_akm4xxx_get(ak, 0, 2); 248 tmp &= ~(0x03 << 4); 249 tmp |= ak4358_dfs << 4; 250 snd_akm4xxx_set(ak, 0, 2, tmp); 251 snd_akm4xxx_reset(ak, 0); 252 253 /* reinit ak4114 */ 254 snd_ak4114_reinit(spec->ak4114); 255 } 256 257 #define AK_DAC(xname, xch) { .name = xname, .num_channels = xch } 258 #define PCM_VOLUME "PCM Playback Volume" 259 #define MONITOR_AN_IN_VOLUME "Monitor Analog In Volume" 260 #define MONITOR_DIG_IN_VOLUME "Monitor Digital In Volume" 261 #define MONITOR_DIG_OUT_VOLUME "Monitor Digital Out Volume" 262 263 static const struct snd_akm4xxx_dac_channel juli_dac[] = { 264 AK_DAC(PCM_VOLUME, 2), 265 AK_DAC(MONITOR_AN_IN_VOLUME, 2), 266 AK_DAC(MONITOR_DIG_OUT_VOLUME, 2), 267 AK_DAC(MONITOR_DIG_IN_VOLUME, 2), 268 }; 269 270 271 static const struct snd_akm4xxx akm_juli_dac = { 272 .type = SND_AK4358, 273 .num_dacs = 8, /* DAC1 - analog out 274 DAC2 - analog in monitor 275 DAC3 - digital out monitor 276 DAC4 - digital in monitor 277 */ 278 .ops = { 279 .lock = juli_akm_lock, 280 .unlock = juli_akm_unlock, 281 .write = juli_akm_write, 282 .set_rate_val = juli_akm_set_rate_val 283 }, 284 .dac_info = juli_dac, 285 }; 286 287 #define juli_mute_info snd_ctl_boolean_mono_info 288 289 static int juli_mute_get(struct snd_kcontrol *kcontrol, 290 struct snd_ctl_elem_value *ucontrol) 291 { 292 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 293 unsigned int val; 294 val = ice->gpio.get_data(ice) & (unsigned int) kcontrol->private_value; 295 if (kcontrol->private_value == GPIO_MUTE_CONTROL) 296 /* val 0 = signal on */ 297 ucontrol->value.integer.value[0] = (val) ? 0 : 1; 298 else 299 /* val 1 = signal on */ 300 ucontrol->value.integer.value[0] = (val) ? 1 : 0; 301 return 0; 302 } 303 304 static int juli_mute_put(struct snd_kcontrol *kcontrol, 305 struct snd_ctl_elem_value *ucontrol) 306 { 307 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 308 unsigned int old_gpio, new_gpio; 309 old_gpio = ice->gpio.get_data(ice); 310 if (ucontrol->value.integer.value[0]) { 311 /* unmute */ 312 if (kcontrol->private_value == GPIO_MUTE_CONTROL) { 313 /* 0 = signal on */ 314 new_gpio = old_gpio & ~GPIO_MUTE_CONTROL; 315 /* un-smuting DAC */ 316 snd_akm4xxx_write(ice->akm, 0, 0x01, 0x01); 317 } else 318 /* 1 = signal on */ 319 new_gpio = old_gpio | 320 (unsigned int) kcontrol->private_value; 321 } else { 322 /* mute */ 323 if (kcontrol->private_value == GPIO_MUTE_CONTROL) { 324 /* 1 = signal off */ 325 new_gpio = old_gpio | GPIO_MUTE_CONTROL; 326 /* smuting DAC */ 327 snd_akm4xxx_write(ice->akm, 0, 0x01, 0x03); 328 } else 329 /* 0 = signal off */ 330 new_gpio = old_gpio & 331 ~((unsigned int) kcontrol->private_value); 332 } 333 /* dev_dbg(ice->card->dev, 334 "JULI - mute/unmute: control_value: 0x%x, old_gpio: 0x%x, " 335 "new_gpio 0x%x\n", 336 (unsigned int)ucontrol->value.integer.value[0], old_gpio, 337 new_gpio); */ 338 if (old_gpio != new_gpio) { 339 ice->gpio.set_data(ice, new_gpio); 340 return 1; 341 } 342 /* no change */ 343 return 0; 344 } 345 346 static const struct snd_kcontrol_new juli_mute_controls[] = { 347 { 348 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 349 .name = "Master Playback Switch", 350 .info = juli_mute_info, 351 .get = juli_mute_get, 352 .put = juli_mute_put, 353 .private_value = GPIO_MUTE_CONTROL, 354 }, 355 /* Although the following functionality respects the succint NDA'd 356 * documentation from the card manufacturer, and the same way of 357 * operation is coded in OSS Juli driver, only Digital Out monitor 358 * seems to work. Surprisingly, Analog input monitor outputs Digital 359 * output data. The two are independent, as enabling both doubles 360 * volume of the monitor sound. 361 * 362 * Checking traces on the board suggests the functionality described 363 * by the manufacturer is correct - I2S from ADC and AK4114 364 * go to ICE as well as to Xilinx, I2S inputs of DAC2,3,4 (the monitor 365 * inputs) are fed from Xilinx. 366 * 367 * I even checked traces on board and coded a support in driver for 368 * an alternative possibility - the unused I2S ICE output channels 369 * switched to HW-IN/SPDIF-IN and providing the monitoring signal to 370 * the DAC - to no avail. The I2S outputs seem to be unconnected. 371 * 372 * The windows driver supports the monitoring correctly. 373 */ 374 { 375 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 376 .name = "Monitor Analog In Switch", 377 .info = juli_mute_info, 378 .get = juli_mute_get, 379 .put = juli_mute_put, 380 .private_value = GPIO_ANAIN_MONITOR, 381 }, 382 { 383 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 384 .name = "Monitor Digital Out Switch", 385 .info = juli_mute_info, 386 .get = juli_mute_get, 387 .put = juli_mute_put, 388 .private_value = GPIO_DIGOUT_MONITOR, 389 }, 390 { 391 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 392 .name = "Monitor Digital In Switch", 393 .info = juli_mute_info, 394 .get = juli_mute_get, 395 .put = juli_mute_put, 396 .private_value = GPIO_DIGIN_MONITOR, 397 }, 398 }; 399 400 static const char * const follower_vols[] = { 401 PCM_VOLUME, 402 MONITOR_AN_IN_VOLUME, 403 MONITOR_DIG_IN_VOLUME, 404 MONITOR_DIG_OUT_VOLUME, 405 NULL 406 }; 407 408 static 409 DECLARE_TLV_DB_SCALE(juli_master_db_scale, -6350, 50, 1); 410 411 static struct snd_kcontrol *ctl_find(struct snd_card *card, 412 const char *name) 413 { 414 struct snd_ctl_elem_id sid = {0}; 415 416 strlcpy(sid.name, name, sizeof(sid.name)); 417 sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 418 return snd_ctl_find_id(card, &sid); 419 } 420 421 static void add_followers(struct snd_card *card, 422 struct snd_kcontrol *master, 423 const char * const *list) 424 { 425 for (; *list; list++) { 426 struct snd_kcontrol *follower = ctl_find(card, *list); 427 /* dev_dbg(card->dev, "add_followers - %s\n", *list); */ 428 if (follower) { 429 /* dev_dbg(card->dev, "follower %s found\n", *list); */ 430 snd_ctl_add_follower(master, follower); 431 } 432 } 433 } 434 435 static int juli_add_controls(struct snd_ice1712 *ice) 436 { 437 struct juli_spec *spec = ice->spec; 438 int err; 439 unsigned int i; 440 struct snd_kcontrol *vmaster; 441 442 err = snd_ice1712_akm4xxx_build_controls(ice); 443 if (err < 0) 444 return err; 445 446 for (i = 0; i < ARRAY_SIZE(juli_mute_controls); i++) { 447 err = snd_ctl_add(ice->card, 448 snd_ctl_new1(&juli_mute_controls[i], ice)); 449 if (err < 0) 450 return err; 451 } 452 /* Create virtual master control */ 453 vmaster = snd_ctl_make_virtual_master("Master Playback Volume", 454 juli_master_db_scale); 455 if (!vmaster) 456 return -ENOMEM; 457 add_followers(ice->card, vmaster, follower_vols); 458 err = snd_ctl_add(ice->card, vmaster); 459 if (err < 0) 460 return err; 461 462 /* only capture SPDIF over AK4114 */ 463 return snd_ak4114_build(spec->ak4114, NULL, 464 ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); 465 } 466 467 /* 468 * suspend/resume 469 * */ 470 471 #ifdef CONFIG_PM_SLEEP 472 static int juli_resume(struct snd_ice1712 *ice) 473 { 474 struct snd_akm4xxx *ak = ice->akm; 475 struct juli_spec *spec = ice->spec; 476 /* akm4358 un-reset, un-mute */ 477 snd_akm4xxx_reset(ak, 0); 478 /* reinit ak4114 */ 479 snd_ak4114_resume(spec->ak4114); 480 return 0; 481 } 482 483 static int juli_suspend(struct snd_ice1712 *ice) 484 { 485 struct snd_akm4xxx *ak = ice->akm; 486 struct juli_spec *spec = ice->spec; 487 /* akm4358 reset and soft-mute */ 488 snd_akm4xxx_reset(ak, 1); 489 snd_ak4114_suspend(spec->ak4114); 490 return 0; 491 } 492 #endif 493 494 /* 495 * initialize the chip 496 */ 497 498 static inline int juli_is_spdif_master(struct snd_ice1712 *ice) 499 { 500 return (ice->gpio.get_data(ice) & GPIO_INTERNAL_CLOCK) ? 0 : 1; 501 } 502 503 static unsigned int juli_get_rate(struct snd_ice1712 *ice) 504 { 505 int i; 506 unsigned char result; 507 508 result = ice->gpio.get_data(ice) & GPIO_RATE_MASK; 509 for (i = 0; i < ARRAY_SIZE(gpio_vals); i++) 510 if (gpio_vals[i] == result) 511 return juli_rates[i]; 512 return 0; 513 } 514 515 /* setting new rate */ 516 static void juli_set_rate(struct snd_ice1712 *ice, unsigned int rate) 517 { 518 unsigned int old, new; 519 unsigned char val; 520 521 old = ice->gpio.get_data(ice); 522 new = (old & ~GPIO_RATE_MASK) | get_gpio_val(rate); 523 /* dev_dbg(ice->card->dev, "JULI - set_rate: old %x, new %x\n", 524 old & GPIO_RATE_MASK, 525 new & GPIO_RATE_MASK); */ 526 527 ice->gpio.set_data(ice, new); 528 /* switching to external clock - supplied by external circuits */ 529 val = inb(ICEMT1724(ice, RATE)); 530 outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); 531 } 532 533 static inline unsigned char juli_set_mclk(struct snd_ice1712 *ice, 534 unsigned int rate) 535 { 536 /* no change in master clock */ 537 return 0; 538 } 539 540 /* setting clock to external - SPDIF */ 541 static int juli_set_spdif_clock(struct snd_ice1712 *ice, int type) 542 { 543 unsigned int old; 544 old = ice->gpio.get_data(ice); 545 /* external clock (= 0), multiply 1x, 48kHz */ 546 ice->gpio.set_data(ice, (old & ~GPIO_RATE_MASK) | GPIO_MULTI_1X | 547 GPIO_FREQ_48KHZ); 548 return 0; 549 } 550 551 /* Called when ak4114 detects change in the input SPDIF stream */ 552 static void juli_ak4114_change(struct ak4114 *ak4114, unsigned char c0, 553 unsigned char c1) 554 { 555 struct snd_ice1712 *ice = ak4114->change_callback_private; 556 int rate; 557 if (ice->is_spdif_master(ice) && c1) { 558 /* only for SPDIF master mode, rate was changed */ 559 rate = snd_ak4114_external_rate(ak4114); 560 /* dev_dbg(ice->card->dev, "ak4114 - input rate changed to %d\n", 561 rate); */ 562 juli_akm_set_rate_val(ice->akm, rate); 563 } 564 } 565 566 static int juli_init(struct snd_ice1712 *ice) 567 { 568 static const unsigned char ak4114_init_vals[] = { 569 /* AK4117_REG_PWRDN */ AK4114_RST | AK4114_PWN | 570 AK4114_OCKS0 | AK4114_OCKS1, 571 /* AK4114_REQ_FORMAT */ AK4114_DIF_I24I2S, 572 /* AK4114_REG_IO0 */ AK4114_TX1E, 573 /* AK4114_REG_IO1 */ AK4114_EFH_1024 | AK4114_DIT | 574 AK4114_IPS(1), 575 /* AK4114_REG_INT0_MASK */ 0, 576 /* AK4114_REG_INT1_MASK */ 0 577 }; 578 static const unsigned char ak4114_init_txcsb[] = { 579 0x41, 0x02, 0x2c, 0x00, 0x00 580 }; 581 int err; 582 struct juli_spec *spec; 583 struct snd_akm4xxx *ak; 584 585 spec = kzalloc(sizeof(*spec), GFP_KERNEL); 586 if (!spec) 587 return -ENOMEM; 588 ice->spec = spec; 589 590 err = snd_ak4114_create(ice->card, 591 juli_ak4114_read, 592 juli_ak4114_write, 593 ak4114_init_vals, ak4114_init_txcsb, 594 ice, &spec->ak4114); 595 if (err < 0) 596 return err; 597 /* callback for codecs rate setting */ 598 spec->ak4114->change_callback = juli_ak4114_change; 599 spec->ak4114->change_callback_private = ice; 600 /* AK4114 in Juli can detect external rate correctly */ 601 spec->ak4114->check_flags = 0; 602 603 #if 0 604 /* 605 * it seems that the analog doughter board detection does not work reliably, so 606 * force the analog flag; it should be very rare (if ever) to come at Juli@ 607 * used without the analog daughter board 608 */ 609 spec->analog = (ice->gpio.get_data(ice) & GPIO_ANALOG_PRESENT) ? 0 : 1; 610 #else 611 spec->analog = 1; 612 #endif 613 614 if (spec->analog) { 615 dev_info(ice->card->dev, "juli@: analog I/O detected\n"); 616 ice->num_total_dacs = 2; 617 ice->num_total_adcs = 2; 618 619 ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL); 620 ak = ice->akm; 621 if (!ak) 622 return -ENOMEM; 623 ice->akm_codecs = 1; 624 err = snd_ice1712_akm4xxx_init(ak, &akm_juli_dac, NULL, ice); 625 if (err < 0) 626 return err; 627 } 628 629 /* juli is clocked by Xilinx array */ 630 ice->hw_rates = &juli_rates_info; 631 ice->is_spdif_master = juli_is_spdif_master; 632 ice->get_rate = juli_get_rate; 633 ice->set_rate = juli_set_rate; 634 ice->set_mclk = juli_set_mclk; 635 ice->set_spdif_clock = juli_set_spdif_clock; 636 637 ice->spdif.ops.open = juli_spdif_in_open; 638 639 #ifdef CONFIG_PM_SLEEP 640 ice->pm_resume = juli_resume; 641 ice->pm_suspend = juli_suspend; 642 ice->pm_suspend_enabled = 1; 643 #endif 644 645 return 0; 646 } 647 648 649 /* 650 * Juli@ boards don't provide the EEPROM data except for the vendor IDs. 651 * hence the driver needs to sets up it properly. 652 */ 653 654 static const unsigned char juli_eeprom[] = { 655 [ICE_EEP2_SYSCONF] = 0x2b, /* clock 512, mpu401, 1xADC, 1xDACs, 656 SPDIF in */ 657 [ICE_EEP2_ACLINK] = 0x80, /* I2S */ 658 [ICE_EEP2_I2S] = 0xf8, /* vol, 96k, 24bit, 192k */ 659 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, spdif-in */ 660 [ICE_EEP2_GPIO_DIR] = 0x9f, /* 5, 6:inputs; 7, 4-0 outputs*/ 661 [ICE_EEP2_GPIO_DIR1] = 0xff, 662 [ICE_EEP2_GPIO_DIR2] = 0x7f, 663 [ICE_EEP2_GPIO_MASK] = 0x60, /* 5, 6: locked; 7, 4-0 writable */ 664 [ICE_EEP2_GPIO_MASK1] = 0x00, /* 0-7 writable */ 665 [ICE_EEP2_GPIO_MASK2] = 0x7f, 666 [ICE_EEP2_GPIO_STATE] = GPIO_FREQ_48KHZ | GPIO_MULTI_1X | 667 GPIO_INTERNAL_CLOCK, /* internal clock, multiple 1x, 48kHz*/ 668 [ICE_EEP2_GPIO_STATE1] = 0x00, /* unmuted */ 669 [ICE_EEP2_GPIO_STATE2] = 0x00, 670 }; 671 672 /* entry point */ 673 struct snd_ice1712_card_info snd_vt1724_juli_cards[] = { 674 { 675 .subvendor = VT1724_SUBDEVICE_JULI, 676 .name = "ESI Juli@", 677 .model = "juli", 678 .chip_init = juli_init, 679 .build_controls = juli_add_controls, 680 .eeprom_size = sizeof(juli_eeprom), 681 .eeprom_data = juli_eeprom, 682 }, 683 { } /* terminator */ 684 }; 685