1 /* 2 * ALSA driver for ICEnsemble VT1724 (Envy24HT) 3 * 4 * Lowlevel functions for ESI Juli@ cards 5 * 6 * Copyright (c) 2004 Jaroslav Kysela <perex@perex.cz> 7 * 2008 Pavel Hofman <dustin@seznam.cz> 8 * 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 */ 25 26 #include <asm/io.h> 27 #include <linux/delay.h> 28 #include <linux/interrupt.h> 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <sound/core.h> 32 #include <sound/tlv.h> 33 34 #include "ice1712.h" 35 #include "envy24ht.h" 36 #include "juli.h" 37 struct juli_spec { 38 struct ak4114 *ak4114; 39 unsigned int analog: 1; 40 }; 41 42 /* 43 * chip addresses on I2C bus 44 */ 45 #define AK4114_ADDR 0x20 /* S/PDIF receiver */ 46 #define AK4358_ADDR 0x22 /* DAC */ 47 48 /* 49 * Juli does not use the standard ICE1724 clock scheme. Juli's ice1724 chip is 50 * supplied by external clock provided by Xilinx array and MK73-1 PLL frequency 51 * multiplier. Actual frequency is set by ice1724 GPIOs hooked to the Xilinx. 52 * 53 * The clock circuitry is supplied by the two ice1724 crystals. This 54 * arrangement allows to generate independent clock signal for AK4114's input 55 * rate detection circuit. As a result, Juli, unlike most other 56 * ice1724+ak4114-based cards, detects spdif input rate correctly. 57 * This fact is applied in the driver, allowing to modify PCM stream rate 58 * parameter according to the actual input rate. 59 * 60 * Juli uses the remaining three stereo-channels of its DAC to optionally 61 * monitor analog input, digital input, and digital output. The corresponding 62 * I2S signals are routed by Xilinx, controlled by GPIOs. 63 * 64 * The master mute is implemented using output muting transistors (GPIO) in 65 * combination with smuting the DAC. 66 * 67 * The card itself has no HW master volume control, implemented using the 68 * vmaster control. 69 * 70 * TODO: 71 * researching and fixing the input monitors 72 */ 73 74 /* 75 * GPIO pins 76 */ 77 #define GPIO_FREQ_MASK (3<<0) 78 #define GPIO_FREQ_32KHZ (0<<0) 79 #define GPIO_FREQ_44KHZ (1<<0) 80 #define GPIO_FREQ_48KHZ (2<<0) 81 #define GPIO_MULTI_MASK (3<<2) 82 #define GPIO_MULTI_4X (0<<2) 83 #define GPIO_MULTI_2X (1<<2) 84 #define GPIO_MULTI_1X (2<<2) /* also external */ 85 #define GPIO_MULTI_HALF (3<<2) 86 #define GPIO_INTERNAL_CLOCK (1<<4) /* 0 = external, 1 = internal */ 87 #define GPIO_CLOCK_MASK (1<<4) 88 #define GPIO_ANALOG_PRESENT (1<<5) /* RO only: 0 = present */ 89 #define GPIO_RXMCLK_SEL (1<<7) /* must be 0 */ 90 #define GPIO_AK5385A_CKS0 (1<<8) 91 #define GPIO_AK5385A_DFS1 (1<<9) 92 #define GPIO_AK5385A_DFS0 (1<<10) 93 #define GPIO_DIGOUT_MONITOR (1<<11) /* 1 = active */ 94 #define GPIO_DIGIN_MONITOR (1<<12) /* 1 = active */ 95 #define GPIO_ANAIN_MONITOR (1<<13) /* 1 = active */ 96 #define GPIO_AK5385A_CKS1 (1<<14) /* must be 0 */ 97 #define GPIO_MUTE_CONTROL (1<<15) /* output mute, 1 = muted */ 98 99 #define GPIO_RATE_MASK (GPIO_FREQ_MASK | GPIO_MULTI_MASK | \ 100 GPIO_CLOCK_MASK) 101 #define GPIO_AK5385A_MASK (GPIO_AK5385A_CKS0 | GPIO_AK5385A_DFS0 | \ 102 GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS1) 103 104 #define JULI_PCM_RATE (SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \ 105 SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \ 106 SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \ 107 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | \ 108 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000) 109 110 #define GPIO_RATE_16000 (GPIO_FREQ_32KHZ | GPIO_MULTI_HALF | \ 111 GPIO_INTERNAL_CLOCK) 112 #define GPIO_RATE_22050 (GPIO_FREQ_44KHZ | GPIO_MULTI_HALF | \ 113 GPIO_INTERNAL_CLOCK) 114 #define GPIO_RATE_24000 (GPIO_FREQ_48KHZ | GPIO_MULTI_HALF | \ 115 GPIO_INTERNAL_CLOCK) 116 #define GPIO_RATE_32000 (GPIO_FREQ_32KHZ | GPIO_MULTI_1X | \ 117 GPIO_INTERNAL_CLOCK) 118 #define GPIO_RATE_44100 (GPIO_FREQ_44KHZ | GPIO_MULTI_1X | \ 119 GPIO_INTERNAL_CLOCK) 120 #define GPIO_RATE_48000 (GPIO_FREQ_48KHZ | GPIO_MULTI_1X | \ 121 GPIO_INTERNAL_CLOCK) 122 #define GPIO_RATE_64000 (GPIO_FREQ_32KHZ | GPIO_MULTI_2X | \ 123 GPIO_INTERNAL_CLOCK) 124 #define GPIO_RATE_88200 (GPIO_FREQ_44KHZ | GPIO_MULTI_2X | \ 125 GPIO_INTERNAL_CLOCK) 126 #define GPIO_RATE_96000 (GPIO_FREQ_48KHZ | GPIO_MULTI_2X | \ 127 GPIO_INTERNAL_CLOCK) 128 #define GPIO_RATE_176400 (GPIO_FREQ_44KHZ | GPIO_MULTI_4X | \ 129 GPIO_INTERNAL_CLOCK) 130 #define GPIO_RATE_192000 (GPIO_FREQ_48KHZ | GPIO_MULTI_4X | \ 131 GPIO_INTERNAL_CLOCK) 132 133 /* 134 * Initial setup of the conversion array GPIO <-> rate 135 */ 136 static unsigned int juli_rates[] = { 137 16000, 22050, 24000, 32000, 138 44100, 48000, 64000, 88200, 139 96000, 176400, 192000, 140 }; 141 142 static unsigned int gpio_vals[] = { 143 GPIO_RATE_16000, GPIO_RATE_22050, GPIO_RATE_24000, GPIO_RATE_32000, 144 GPIO_RATE_44100, GPIO_RATE_48000, GPIO_RATE_64000, GPIO_RATE_88200, 145 GPIO_RATE_96000, GPIO_RATE_176400, GPIO_RATE_192000, 146 }; 147 148 static struct snd_pcm_hw_constraint_list juli_rates_info = { 149 .count = ARRAY_SIZE(juli_rates), 150 .list = juli_rates, 151 .mask = 0, 152 }; 153 154 static int get_gpio_val(int rate) 155 { 156 int i; 157 for (i = 0; i < ARRAY_SIZE(juli_rates); i++) 158 if (juli_rates[i] == rate) 159 return gpio_vals[i]; 160 return 0; 161 } 162 163 static void juli_ak4114_write(void *private_data, unsigned char reg, unsigned char val) 164 { 165 snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR, reg, val); 166 } 167 168 static unsigned char juli_ak4114_read(void *private_data, unsigned char reg) 169 { 170 return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR, reg); 171 } 172 173 /* 174 * If SPDIF capture and slaved to SPDIF-IN, setting runtime rate 175 * to the external rate 176 */ 177 static void juli_spdif_in_open(struct snd_ice1712 *ice, 178 struct snd_pcm_substream *substream) 179 { 180 struct juli_spec *spec = ice->spec; 181 struct snd_pcm_runtime *runtime = substream->runtime; 182 int rate; 183 184 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || 185 !ice->is_spdif_master(ice)) 186 return; 187 rate = snd_ak4114_external_rate(spec->ak4114); 188 if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) { 189 runtime->hw.rate_min = rate; 190 runtime->hw.rate_max = rate; 191 } 192 } 193 194 /* 195 * AK4358 section 196 */ 197 198 static void juli_akm_lock(struct snd_akm4xxx *ak, int chip) 199 { 200 } 201 202 static void juli_akm_unlock(struct snd_akm4xxx *ak, int chip) 203 { 204 } 205 206 static void juli_akm_write(struct snd_akm4xxx *ak, int chip, 207 unsigned char addr, unsigned char data) 208 { 209 struct snd_ice1712 *ice = ak->private_data[0]; 210 211 snd_assert(chip == 0, return); 212 snd_vt1724_write_i2c(ice, AK4358_ADDR, addr, data); 213 } 214 215 /* 216 * change the rate of envy24HT, AK4358, AK5385 217 */ 218 static void juli_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate) 219 { 220 unsigned char old, tmp, ak4358_dfs; 221 unsigned int ak5385_pins, old_gpio, new_gpio; 222 struct snd_ice1712 *ice = ak->private_data[0]; 223 struct juli_spec *spec = ice->spec; 224 225 if (rate == 0) /* no hint - S/PDIF input is master or the new spdif 226 input rate undetected, simply return */ 227 return; 228 229 /* adjust DFS on codecs */ 230 if (rate > 96000) { 231 ak4358_dfs = 2; 232 ak5385_pins = GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS0; 233 } else if (rate > 48000) { 234 ak4358_dfs = 1; 235 ak5385_pins = GPIO_AK5385A_DFS0; 236 } else { 237 ak4358_dfs = 0; 238 ak5385_pins = 0; 239 } 240 /* AK5385 first, since it requires cold reset affecting both codecs */ 241 old_gpio = ice->gpio.get_data(ice); 242 new_gpio = (old_gpio & ~GPIO_AK5385A_MASK) | ak5385_pins; 243 /* printk(KERN_DEBUG "JULI - ak5385 set_rate_val: new gpio 0x%x\n", 244 new_gpio); */ 245 ice->gpio.set_data(ice, new_gpio); 246 247 /* cold reset */ 248 old = inb(ICEMT1724(ice, AC97_CMD)); 249 outb(old | VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD)); 250 udelay(1); 251 outb(old & ~VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD)); 252 253 /* AK4358 */ 254 /* set new value, reset DFS */ 255 tmp = snd_akm4xxx_get(ak, 0, 2); 256 snd_akm4xxx_reset(ak, 1); 257 tmp = snd_akm4xxx_get(ak, 0, 2); 258 tmp &= ~(0x03 << 4); 259 tmp |= ak4358_dfs << 4; 260 snd_akm4xxx_set(ak, 0, 2, tmp); 261 snd_akm4xxx_reset(ak, 0); 262 263 /* reinit ak4114 */ 264 snd_ak4114_reinit(spec->ak4114); 265 } 266 267 #define AK_DAC(xname, xch) { .name = xname, .num_channels = xch } 268 #define PCM_VOLUME "PCM Playback Volume" 269 #define MONITOR_AN_IN_VOLUME "Monitor Analog In Volume" 270 #define MONITOR_DIG_IN_VOLUME "Monitor Digital In Volume" 271 #define MONITOR_DIG_OUT_VOLUME "Monitor Digital Out Volume" 272 273 static const struct snd_akm4xxx_dac_channel juli_dac[] = { 274 AK_DAC(PCM_VOLUME, 2), 275 AK_DAC(MONITOR_AN_IN_VOLUME, 2), 276 AK_DAC(MONITOR_DIG_OUT_VOLUME, 2), 277 AK_DAC(MONITOR_DIG_IN_VOLUME, 2), 278 }; 279 280 281 static struct snd_akm4xxx akm_juli_dac __devinitdata = { 282 .type = SND_AK4358, 283 .num_dacs = 8, /* DAC1 - analog out 284 DAC2 - analog in monitor 285 DAC3 - digital out monitor 286 DAC4 - digital in monitor 287 */ 288 .ops = { 289 .lock = juli_akm_lock, 290 .unlock = juli_akm_unlock, 291 .write = juli_akm_write, 292 .set_rate_val = juli_akm_set_rate_val 293 }, 294 .dac_info = juli_dac, 295 }; 296 297 #define juli_mute_info snd_ctl_boolean_mono_info 298 299 static int juli_mute_get(struct snd_kcontrol *kcontrol, 300 struct snd_ctl_elem_value *ucontrol) 301 { 302 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 303 unsigned int val; 304 val = ice->gpio.get_data(ice) & (unsigned int) kcontrol->private_value; 305 if (kcontrol->private_value == GPIO_MUTE_CONTROL) 306 /* val 0 = signal on */ 307 ucontrol->value.integer.value[0] = (val) ? 0 : 1; 308 else 309 /* val 1 = signal on */ 310 ucontrol->value.integer.value[0] = (val) ? 1 : 0; 311 return 0; 312 } 313 314 static int juli_mute_put(struct snd_kcontrol *kcontrol, 315 struct snd_ctl_elem_value *ucontrol) 316 { 317 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 318 unsigned int old_gpio, new_gpio; 319 old_gpio = ice->gpio.get_data(ice); 320 if (ucontrol->value.integer.value[0]) { 321 /* unmute */ 322 if (kcontrol->private_value == GPIO_MUTE_CONTROL) { 323 /* 0 = signal on */ 324 new_gpio = old_gpio & ~GPIO_MUTE_CONTROL; 325 /* un-smuting DAC */ 326 snd_akm4xxx_write(ice->akm, 0, 0x01, 0x01); 327 } else 328 /* 1 = signal on */ 329 new_gpio = old_gpio | 330 (unsigned int) kcontrol->private_value; 331 } else { 332 /* mute */ 333 if (kcontrol->private_value == GPIO_MUTE_CONTROL) { 334 /* 1 = signal off */ 335 new_gpio = old_gpio | GPIO_MUTE_CONTROL; 336 /* smuting DAC */ 337 snd_akm4xxx_write(ice->akm, 0, 0x01, 0x03); 338 } else 339 /* 0 = signal off */ 340 new_gpio = old_gpio & 341 ~((unsigned int) kcontrol->private_value); 342 } 343 /* printk("JULI - mute/unmute: control_value: 0x%x, old_gpio: 0x%x, \ 344 new_gpio 0x%x\n", 345 (unsigned int)ucontrol->value.integer.value[0], old_gpio, 346 new_gpio); */ 347 if (old_gpio != new_gpio) { 348 ice->gpio.set_data(ice, new_gpio); 349 return 1; 350 } 351 /* no change */ 352 return 0; 353 } 354 355 static struct snd_kcontrol_new juli_mute_controls[] __devinitdata = { 356 { 357 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 358 .name = "Master Playback Switch", 359 .info = juli_mute_info, 360 .get = juli_mute_get, 361 .put = juli_mute_put, 362 .private_value = GPIO_MUTE_CONTROL, 363 }, 364 /* Although the following functionality respects the succint NDA'd 365 * documentation from the card manufacturer, and the same way of 366 * operation is coded in OSS Juli driver, only Digital Out monitor 367 * seems to work. Surprisingly, Analog input monitor outputs Digital 368 * output data. The two are independent, as enabling both doubles 369 * volume of the monitor sound. 370 * 371 * Checking traces on the board suggests the functionality described 372 * by the manufacturer is correct - I2S from ADC and AK4114 373 * go to ICE as well as to Xilinx, I2S inputs of DAC2,3,4 (the monitor 374 * inputs) are fed from Xilinx. 375 * 376 * I even checked traces on board and coded a support in driver for 377 * an alternative possiblity - the unused I2S ICE output channels 378 * switched to HW-IN/SPDIF-IN and providing the monitoring signal to 379 * the DAC - to no avail. The I2S outputs seem to be unconnected. 380 * 381 * The windows driver supports the monitoring correctly. 382 */ 383 { 384 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 385 .name = "Monitor Analog In Switch", 386 .info = juli_mute_info, 387 .get = juli_mute_get, 388 .put = juli_mute_put, 389 .private_value = GPIO_ANAIN_MONITOR, 390 }, 391 { 392 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 393 .name = "Monitor Digital Out Switch", 394 .info = juli_mute_info, 395 .get = juli_mute_get, 396 .put = juli_mute_put, 397 .private_value = GPIO_DIGOUT_MONITOR, 398 }, 399 { 400 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 401 .name = "Monitor Digital In Switch", 402 .info = juli_mute_info, 403 .get = juli_mute_get, 404 .put = juli_mute_put, 405 .private_value = GPIO_DIGIN_MONITOR, 406 }, 407 }; 408 409 410 static void ak4358_proc_regs_read(struct snd_info_entry *entry, 411 struct snd_info_buffer *buffer) 412 { 413 struct snd_ice1712 *ice = (struct snd_ice1712 *)entry->private_data; 414 int reg, val; 415 for (reg = 0; reg <= 0xf; reg++) { 416 val = snd_akm4xxx_get(ice->akm, 0, reg); 417 snd_iprintf(buffer, "0x%02x = 0x%02x\n", reg, val); 418 } 419 } 420 421 static void ak4358_proc_init(struct snd_ice1712 *ice) 422 { 423 struct snd_info_entry *entry; 424 if (!snd_card_proc_new(ice->card, "ak4358_codec", &entry)) 425 snd_info_set_text_ops(entry, ice, ak4358_proc_regs_read); 426 } 427 428 static char *slave_vols[] __devinitdata = { 429 PCM_VOLUME, 430 MONITOR_AN_IN_VOLUME, 431 MONITOR_DIG_IN_VOLUME, 432 MONITOR_DIG_OUT_VOLUME, 433 NULL 434 }; 435 436 static __devinitdata 437 DECLARE_TLV_DB_SCALE(juli_master_db_scale, -6350, 50, 1); 438 439 static struct snd_kcontrol __devinit *ctl_find(struct snd_card *card, 440 const char *name) 441 { 442 struct snd_ctl_elem_id sid; 443 memset(&sid, 0, sizeof(sid)); 444 /* FIXME: strcpy is bad. */ 445 strcpy(sid.name, name); 446 sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 447 return snd_ctl_find_id(card, &sid); 448 } 449 450 static void __devinit add_slaves(struct snd_card *card, 451 struct snd_kcontrol *master, char **list) 452 { 453 for (; *list; list++) { 454 struct snd_kcontrol *slave = ctl_find(card, *list); 455 /* printk(KERN_DEBUG "add_slaves - %s\n", *list); */ 456 if (slave) { 457 /* printk(KERN_DEBUG "slave %s found\n", *list); */ 458 snd_ctl_add_slave(master, slave); 459 } 460 } 461 } 462 463 static int __devinit juli_add_controls(struct snd_ice1712 *ice) 464 { 465 struct juli_spec *spec = ice->spec; 466 int err; 467 unsigned int i; 468 struct snd_kcontrol *vmaster; 469 470 err = snd_ice1712_akm4xxx_build_controls(ice); 471 if (err < 0) 472 return err; 473 474 for (i = 0; i < ARRAY_SIZE(juli_mute_controls); i++) { 475 err = snd_ctl_add(ice->card, 476 snd_ctl_new1(&juli_mute_controls[i], ice)); 477 if (err < 0) 478 return err; 479 } 480 /* Create virtual master control */ 481 vmaster = snd_ctl_make_virtual_master("Master Playback Volume", 482 juli_master_db_scale); 483 if (!vmaster) 484 return -ENOMEM; 485 add_slaves(ice->card, vmaster, slave_vols); 486 err = snd_ctl_add(ice->card, vmaster); 487 if (err < 0) 488 return err; 489 490 /* only capture SPDIF over AK4114 */ 491 err = snd_ak4114_build(spec->ak4114, NULL, 492 ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); 493 494 ak4358_proc_init(ice); 495 if (err < 0) 496 return err; 497 return 0; 498 } 499 500 /* 501 * initialize the chip 502 */ 503 504 static inline int juli_is_spdif_master(struct snd_ice1712 *ice) 505 { 506 return (ice->gpio.get_data(ice) & GPIO_INTERNAL_CLOCK) ? 0 : 1; 507 } 508 509 static unsigned int juli_get_rate(struct snd_ice1712 *ice) 510 { 511 int i; 512 unsigned char result; 513 514 result = ice->gpio.get_data(ice) & GPIO_RATE_MASK; 515 for (i = 0; i < ARRAY_SIZE(gpio_vals); i++) 516 if (gpio_vals[i] == result) 517 return juli_rates[i]; 518 return 0; 519 } 520 521 /* setting new rate */ 522 static void juli_set_rate(struct snd_ice1712 *ice, unsigned int rate) 523 { 524 unsigned int old, new; 525 unsigned char val; 526 527 old = ice->gpio.get_data(ice); 528 new = (old & ~GPIO_RATE_MASK) | get_gpio_val(rate); 529 /* printk(KERN_DEBUG "JULI - set_rate: old %x, new %x\n", 530 old & GPIO_RATE_MASK, 531 new & GPIO_RATE_MASK); */ 532 533 ice->gpio.set_data(ice, new); 534 /* switching to external clock - supplied by external circuits */ 535 val = inb(ICEMT1724(ice, RATE)); 536 outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); 537 } 538 539 static inline unsigned char juli_set_mclk(struct snd_ice1712 *ice, 540 unsigned int rate) 541 { 542 /* no change in master clock */ 543 return 0; 544 } 545 546 /* setting clock to external - SPDIF */ 547 static void juli_set_spdif_clock(struct snd_ice1712 *ice) 548 { 549 unsigned int old; 550 old = ice->gpio.get_data(ice); 551 /* external clock (= 0), multiply 1x, 48kHz */ 552 ice->gpio.set_data(ice, (old & ~GPIO_RATE_MASK) | GPIO_MULTI_1X | 553 GPIO_FREQ_48KHZ); 554 } 555 556 /* Called when ak4114 detects change in the input SPDIF stream */ 557 static void juli_ak4114_change(struct ak4114 *ak4114, unsigned char c0, 558 unsigned char c1) 559 { 560 struct snd_ice1712 *ice = ak4114->change_callback_private; 561 int rate; 562 if (ice->is_spdif_master(ice) && c1) { 563 /* only for SPDIF master mode, rate was changed */ 564 rate = snd_ak4114_external_rate(ak4114); 565 /* printk(KERN_DEBUG "ak4114 - input rate changed to %d\n", 566 rate); */ 567 juli_akm_set_rate_val(ice->akm, rate); 568 } 569 } 570 571 static int __devinit juli_init(struct snd_ice1712 *ice) 572 { 573 static const unsigned char ak4114_init_vals[] = { 574 /* AK4117_REG_PWRDN */ AK4114_RST | AK4114_PWN | AK4114_OCKS0 | AK4114_OCKS1, 575 /* AK4114_REQ_FORMAT */ AK4114_DIF_I24I2S, 576 /* AK4114_REG_IO0 */ AK4114_TX1E, 577 /* AK4114_REG_IO1 */ AK4114_EFH_1024 | AK4114_DIT | AK4114_IPS(1), 578 /* AK4114_REG_INT0_MASK */ 0, 579 /* AK4114_REG_INT1_MASK */ 0 580 }; 581 static const unsigned char ak4114_init_txcsb[] = { 582 0x41, 0x02, 0x2c, 0x00, 0x00 583 }; 584 int err; 585 struct juli_spec *spec; 586 struct snd_akm4xxx *ak; 587 588 spec = kzalloc(sizeof(*spec), GFP_KERNEL); 589 if (!spec) 590 return -ENOMEM; 591 ice->spec = spec; 592 593 err = snd_ak4114_create(ice->card, 594 juli_ak4114_read, 595 juli_ak4114_write, 596 ak4114_init_vals, ak4114_init_txcsb, 597 ice, &spec->ak4114); 598 if (err < 0) 599 return err; 600 /* callback for codecs rate setting */ 601 spec->ak4114->change_callback = juli_ak4114_change; 602 spec->ak4114->change_callback_private = ice; 603 /* AK4114 in Juli can detect external rate correctly */ 604 spec->ak4114->check_flags = 0; 605 606 #if 0 607 /* it seems that the analog doughter board detection does not work 608 reliably, so force the analog flag; it should be very rare 609 to use Juli@ without the analog doughter board */ 610 spec->analog = (ice->gpio.get_data(ice) & GPIO_ANALOG_PRESENT) ? 0 : 1; 611 #else 612 spec->analog = 1; 613 #endif 614 615 if (spec->analog) { 616 printk(KERN_INFO "juli@: analog I/O detected\n"); 617 ice->num_total_dacs = 2; 618 ice->num_total_adcs = 2; 619 620 ak = ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL); 621 if (! ak) 622 return -ENOMEM; 623 ice->akm_codecs = 1; 624 if ((err = snd_ice1712_akm4xxx_init(ak, &akm_juli_dac, NULL, ice)) < 0) 625 return err; 626 } 627 628 /* juli is clocked by Xilinx array */ 629 ice->hw_rates = &juli_rates_info; 630 ice->is_spdif_master = juli_is_spdif_master; 631 ice->get_rate = juli_get_rate; 632 ice->set_rate = juli_set_rate; 633 ice->set_mclk = juli_set_mclk; 634 ice->set_spdif_clock = juli_set_spdif_clock; 635 636 ice->spdif.ops.open = juli_spdif_in_open; 637 return 0; 638 } 639 640 641 /* 642 * Juli@ boards don't provide the EEPROM data except for the vendor IDs. 643 * hence the driver needs to sets up it properly. 644 */ 645 646 static unsigned char juli_eeprom[] __devinitdata = { 647 [ICE_EEP2_SYSCONF] = 0x2b, /* clock 512, mpu401, 1xADC, 1xDACs, 648 SPDIF in */ 649 [ICE_EEP2_ACLINK] = 0x80, /* I2S */ 650 [ICE_EEP2_I2S] = 0xf8, /* vol, 96k, 24bit, 192k */ 651 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, spdif-in */ 652 [ICE_EEP2_GPIO_DIR] = 0x9f, /* 5, 6:inputs; 7, 4-0 outputs*/ 653 [ICE_EEP2_GPIO_DIR1] = 0xff, 654 [ICE_EEP2_GPIO_DIR2] = 0x7f, 655 [ICE_EEP2_GPIO_MASK] = 0x60, /* 5, 6: locked; 7, 4-0 writable */ 656 [ICE_EEP2_GPIO_MASK1] = 0x00, /* 0-7 writable */ 657 [ICE_EEP2_GPIO_MASK2] = 0x7f, 658 [ICE_EEP2_GPIO_STATE] = GPIO_FREQ_48KHZ | GPIO_MULTI_1X | 659 GPIO_INTERNAL_CLOCK, /* internal clock, multiple 1x, 48kHz*/ 660 [ICE_EEP2_GPIO_STATE1] = 0x00, /* unmuted */ 661 [ICE_EEP2_GPIO_STATE2] = 0x00, 662 }; 663 664 /* entry point */ 665 struct snd_ice1712_card_info snd_vt1724_juli_cards[] __devinitdata = { 666 { 667 .subvendor = VT1724_SUBDEVICE_JULI, 668 .name = "ESI Juli@", 669 .model = "juli", 670 .chip_init = juli_init, 671 .build_controls = juli_add_controls, 672 .eeprom_size = sizeof(juli_eeprom), 673 .eeprom_data = juli_eeprom, 674 }, 675 { } /* terminator */ 676 }; 677