1 /* 2 * 3 * Implementation of primary alsa driver code base for Intel HD Audio. 4 * 5 * Copyright(c) 2004 Intel Corporation. All rights reserved. 6 * 7 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de> 8 * PeiSen Hou <pshou@realtek.com.tw> 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; either version 2 of the License, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 * 20 * 21 */ 22 23 #include <linux/clocksource.h> 24 #include <linux/delay.h> 25 #include <linux/interrupt.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/slab.h> 30 31 #ifdef CONFIG_X86 32 /* for art-tsc conversion */ 33 #include <asm/tsc.h> 34 #endif 35 36 #include <sound/core.h> 37 #include <sound/initval.h> 38 #include "hda_controller.h" 39 40 #define CREATE_TRACE_POINTS 41 #include "hda_controller_trace.h" 42 43 /* DSP lock helpers */ 44 #define dsp_lock(dev) snd_hdac_dsp_lock(azx_stream(dev)) 45 #define dsp_unlock(dev) snd_hdac_dsp_unlock(azx_stream(dev)) 46 #define dsp_is_locked(dev) snd_hdac_stream_is_locked(azx_stream(dev)) 47 48 /* assign a stream for the PCM */ 49 static inline struct azx_dev * 50 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream) 51 { 52 struct hdac_stream *s; 53 54 s = snd_hdac_stream_assign(azx_bus(chip), substream); 55 if (!s) 56 return NULL; 57 return stream_to_azx_dev(s); 58 } 59 60 /* release the assigned stream */ 61 static inline void azx_release_device(struct azx_dev *azx_dev) 62 { 63 snd_hdac_stream_release(azx_stream(azx_dev)); 64 } 65 66 static inline struct hda_pcm_stream * 67 to_hda_pcm_stream(struct snd_pcm_substream *substream) 68 { 69 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 70 return &apcm->info->stream[substream->stream]; 71 } 72 73 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream, 74 u64 nsec) 75 { 76 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 77 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 78 u64 codec_frames, codec_nsecs; 79 80 if (!hinfo->ops.get_delay) 81 return nsec; 82 83 codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream); 84 codec_nsecs = div_u64(codec_frames * 1000000000LL, 85 substream->runtime->rate); 86 87 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 88 return nsec + codec_nsecs; 89 90 return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0; 91 } 92 93 /* 94 * PCM ops 95 */ 96 97 static int azx_pcm_close(struct snd_pcm_substream *substream) 98 { 99 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 100 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 101 struct azx *chip = apcm->chip; 102 struct azx_dev *azx_dev = get_azx_dev(substream); 103 104 trace_azx_pcm_close(chip, azx_dev); 105 mutex_lock(&chip->open_mutex); 106 azx_release_device(azx_dev); 107 if (hinfo->ops.close) 108 hinfo->ops.close(hinfo, apcm->codec, substream); 109 snd_hda_power_down(apcm->codec); 110 mutex_unlock(&chip->open_mutex); 111 snd_hda_codec_pcm_put(apcm->info); 112 return 0; 113 } 114 115 static int azx_pcm_hw_params(struct snd_pcm_substream *substream, 116 struct snd_pcm_hw_params *hw_params) 117 { 118 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 119 struct azx *chip = apcm->chip; 120 struct azx_dev *azx_dev = get_azx_dev(substream); 121 int ret; 122 123 trace_azx_pcm_hw_params(chip, azx_dev); 124 dsp_lock(azx_dev); 125 if (dsp_is_locked(azx_dev)) { 126 ret = -EBUSY; 127 goto unlock; 128 } 129 130 azx_dev->core.bufsize = 0; 131 azx_dev->core.period_bytes = 0; 132 azx_dev->core.format_val = 0; 133 ret = snd_pcm_lib_malloc_pages(substream, 134 params_buffer_bytes(hw_params)); 135 136 unlock: 137 dsp_unlock(azx_dev); 138 return ret; 139 } 140 141 static int azx_pcm_hw_free(struct snd_pcm_substream *substream) 142 { 143 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 144 struct azx_dev *azx_dev = get_azx_dev(substream); 145 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 146 int err; 147 148 /* reset BDL address */ 149 dsp_lock(azx_dev); 150 if (!dsp_is_locked(azx_dev)) 151 snd_hdac_stream_cleanup(azx_stream(azx_dev)); 152 153 snd_hda_codec_cleanup(apcm->codec, hinfo, substream); 154 155 err = snd_pcm_lib_free_pages(substream); 156 azx_stream(azx_dev)->prepared = 0; 157 dsp_unlock(azx_dev); 158 return err; 159 } 160 161 static int azx_pcm_prepare(struct snd_pcm_substream *substream) 162 { 163 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 164 struct azx *chip = apcm->chip; 165 struct azx_dev *azx_dev = get_azx_dev(substream); 166 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 167 struct snd_pcm_runtime *runtime = substream->runtime; 168 unsigned int format_val, stream_tag; 169 int err; 170 struct hda_spdif_out *spdif = 171 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid); 172 unsigned short ctls = spdif ? spdif->ctls : 0; 173 174 trace_azx_pcm_prepare(chip, azx_dev); 175 dsp_lock(azx_dev); 176 if (dsp_is_locked(azx_dev)) { 177 err = -EBUSY; 178 goto unlock; 179 } 180 181 snd_hdac_stream_reset(azx_stream(azx_dev)); 182 format_val = snd_hdac_calc_stream_format(runtime->rate, 183 runtime->channels, 184 runtime->format, 185 hinfo->maxbps, 186 ctls); 187 if (!format_val) { 188 dev_err(chip->card->dev, 189 "invalid format_val, rate=%d, ch=%d, format=%d\n", 190 runtime->rate, runtime->channels, runtime->format); 191 err = -EINVAL; 192 goto unlock; 193 } 194 195 err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val); 196 if (err < 0) 197 goto unlock; 198 199 snd_hdac_stream_setup(azx_stream(azx_dev)); 200 201 stream_tag = azx_dev->core.stream_tag; 202 /* CA-IBG chips need the playback stream starting from 1 */ 203 if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) && 204 stream_tag > chip->capture_streams) 205 stream_tag -= chip->capture_streams; 206 err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag, 207 azx_dev->core.format_val, substream); 208 209 unlock: 210 if (!err) 211 azx_stream(azx_dev)->prepared = 1; 212 dsp_unlock(azx_dev); 213 return err; 214 } 215 216 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 217 { 218 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 219 struct azx *chip = apcm->chip; 220 struct hdac_bus *bus = azx_bus(chip); 221 struct azx_dev *azx_dev; 222 struct snd_pcm_substream *s; 223 struct hdac_stream *hstr; 224 bool start; 225 int sbits = 0; 226 int sync_reg; 227 228 azx_dev = get_azx_dev(substream); 229 trace_azx_pcm_trigger(chip, azx_dev, cmd); 230 231 hstr = azx_stream(azx_dev); 232 if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC) 233 sync_reg = AZX_REG_OLD_SSYNC; 234 else 235 sync_reg = AZX_REG_SSYNC; 236 237 if (dsp_is_locked(azx_dev) || !hstr->prepared) 238 return -EPIPE; 239 240 switch (cmd) { 241 case SNDRV_PCM_TRIGGER_START: 242 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 243 case SNDRV_PCM_TRIGGER_RESUME: 244 start = true; 245 break; 246 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 247 case SNDRV_PCM_TRIGGER_SUSPEND: 248 case SNDRV_PCM_TRIGGER_STOP: 249 start = false; 250 break; 251 default: 252 return -EINVAL; 253 } 254 255 snd_pcm_group_for_each_entry(s, substream) { 256 if (s->pcm->card != substream->pcm->card) 257 continue; 258 azx_dev = get_azx_dev(s); 259 sbits |= 1 << azx_dev->core.index; 260 snd_pcm_trigger_done(s, substream); 261 } 262 263 spin_lock(&bus->reg_lock); 264 265 /* first, set SYNC bits of corresponding streams */ 266 snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg); 267 268 snd_pcm_group_for_each_entry(s, substream) { 269 if (s->pcm->card != substream->pcm->card) 270 continue; 271 azx_dev = get_azx_dev(s); 272 if (start) { 273 azx_dev->insufficient = 1; 274 snd_hdac_stream_start(azx_stream(azx_dev), true); 275 } else { 276 snd_hdac_stream_stop(azx_stream(azx_dev)); 277 } 278 } 279 spin_unlock(&bus->reg_lock); 280 281 snd_hdac_stream_sync(hstr, start, sbits); 282 283 spin_lock(&bus->reg_lock); 284 /* reset SYNC bits */ 285 snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg); 286 if (start) 287 snd_hdac_stream_timecounter_init(hstr, sbits); 288 spin_unlock(&bus->reg_lock); 289 return 0; 290 } 291 292 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev) 293 { 294 return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev)); 295 } 296 EXPORT_SYMBOL_GPL(azx_get_pos_lpib); 297 298 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev) 299 { 300 return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev)); 301 } 302 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf); 303 304 unsigned int azx_get_position(struct azx *chip, 305 struct azx_dev *azx_dev) 306 { 307 struct snd_pcm_substream *substream = azx_dev->core.substream; 308 unsigned int pos; 309 int stream = substream->stream; 310 int delay = 0; 311 312 if (chip->get_position[stream]) 313 pos = chip->get_position[stream](chip, azx_dev); 314 else /* use the position buffer as default */ 315 pos = azx_get_pos_posbuf(chip, azx_dev); 316 317 if (pos >= azx_dev->core.bufsize) 318 pos = 0; 319 320 if (substream->runtime) { 321 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 322 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 323 324 if (chip->get_delay[stream]) 325 delay += chip->get_delay[stream](chip, azx_dev, pos); 326 if (hinfo->ops.get_delay) 327 delay += hinfo->ops.get_delay(hinfo, apcm->codec, 328 substream); 329 substream->runtime->delay = delay; 330 } 331 332 trace_azx_get_position(chip, azx_dev, pos, delay); 333 return pos; 334 } 335 EXPORT_SYMBOL_GPL(azx_get_position); 336 337 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream) 338 { 339 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 340 struct azx *chip = apcm->chip; 341 struct azx_dev *azx_dev = get_azx_dev(substream); 342 return bytes_to_frames(substream->runtime, 343 azx_get_position(chip, azx_dev)); 344 } 345 346 /* 347 * azx_scale64: Scale base by mult/div while not overflowing sanely 348 * 349 * Derived from scale64_check_overflow in kernel/time/timekeeping.c 350 * 351 * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which 352 * is about 384307 ie ~4.5 days. 353 * 354 * This scales the calculation so that overflow will happen but after 2^64 / 355 * 48000 secs, which is pretty large! 356 * 357 * In caln below: 358 * base may overflow, but since there isn’t any additional division 359 * performed on base it’s OK 360 * rem can’t overflow because both are 32-bit values 361 */ 362 363 #ifdef CONFIG_X86 364 static u64 azx_scale64(u64 base, u32 num, u32 den) 365 { 366 u64 rem; 367 368 rem = do_div(base, den); 369 370 base *= num; 371 rem *= num; 372 373 do_div(rem, den); 374 375 return base + rem; 376 } 377 378 static int azx_get_sync_time(ktime_t *device, 379 struct system_counterval_t *system, void *ctx) 380 { 381 struct snd_pcm_substream *substream = ctx; 382 struct azx_dev *azx_dev = get_azx_dev(substream); 383 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 384 struct azx *chip = apcm->chip; 385 struct snd_pcm_runtime *runtime; 386 u64 ll_counter, ll_counter_l, ll_counter_h; 387 u64 tsc_counter, tsc_counter_l, tsc_counter_h; 388 u32 wallclk_ctr, wallclk_cycles; 389 bool direction; 390 u32 dma_select; 391 u32 timeout = 200; 392 u32 retry_count = 0; 393 394 runtime = substream->runtime; 395 396 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 397 direction = 1; 398 else 399 direction = 0; 400 401 /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */ 402 do { 403 timeout = 100; 404 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) | 405 (azx_dev->core.stream_tag - 1); 406 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select); 407 408 /* Enable the capture */ 409 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK); 410 411 while (timeout) { 412 if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) & 413 GTSCC_TSCCD_MASK) 414 break; 415 416 timeout--; 417 } 418 419 if (!timeout) { 420 dev_err(chip->card->dev, "GTSCC capture Timedout!\n"); 421 return -EIO; 422 } 423 424 /* Read wall clock counter */ 425 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC); 426 427 /* Read TSC counter */ 428 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL); 429 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU); 430 431 /* Read Link counter */ 432 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL); 433 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU); 434 435 /* Ack: registers read done */ 436 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT); 437 438 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) | 439 tsc_counter_l; 440 441 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l; 442 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK; 443 444 /* 445 * An error occurs near frame "rollover". The clocks in 446 * frame value indicates whether this error may have 447 * occurred. Here we use the value of 10 i.e., 448 * HDA_MAX_CYCLE_OFFSET 449 */ 450 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET 451 && wallclk_cycles > HDA_MAX_CYCLE_OFFSET) 452 break; 453 454 /* 455 * Sleep before we read again, else we may again get 456 * value near to MAX_CYCLE. Try to sleep for different 457 * amount of time so we dont hit the same number again 458 */ 459 udelay(retry_count++); 460 461 } while (retry_count != HDA_MAX_CYCLE_READ_RETRY); 462 463 if (retry_count == HDA_MAX_CYCLE_READ_RETRY) { 464 dev_err_ratelimited(chip->card->dev, 465 "Error in WALFCC cycle count\n"); 466 return -EIO; 467 } 468 469 *device = ns_to_ktime(azx_scale64(ll_counter, 470 NSEC_PER_SEC, runtime->rate)); 471 *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) / 472 ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate)); 473 474 *system = convert_art_to_tsc(tsc_counter); 475 476 return 0; 477 } 478 479 #else 480 static int azx_get_sync_time(ktime_t *device, 481 struct system_counterval_t *system, void *ctx) 482 { 483 return -ENXIO; 484 } 485 #endif 486 487 static int azx_get_crosststamp(struct snd_pcm_substream *substream, 488 struct system_device_crosststamp *xtstamp) 489 { 490 return get_device_system_crosststamp(azx_get_sync_time, 491 substream, NULL, xtstamp); 492 } 493 494 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime, 495 struct snd_pcm_audio_tstamp_config *ts) 496 { 497 if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME) 498 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED) 499 return true; 500 501 return false; 502 } 503 504 static int azx_get_time_info(struct snd_pcm_substream *substream, 505 struct timespec *system_ts, struct timespec *audio_ts, 506 struct snd_pcm_audio_tstamp_config *audio_tstamp_config, 507 struct snd_pcm_audio_tstamp_report *audio_tstamp_report) 508 { 509 struct azx_dev *azx_dev = get_azx_dev(substream); 510 struct snd_pcm_runtime *runtime = substream->runtime; 511 struct system_device_crosststamp xtstamp; 512 int ret; 513 u64 nsec; 514 515 if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) && 516 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) { 517 518 snd_pcm_gettime(substream->runtime, system_ts); 519 520 nsec = timecounter_read(&azx_dev->core.tc); 521 nsec = div_u64(nsec, 3); /* can be optimized */ 522 if (audio_tstamp_config->report_delay) 523 nsec = azx_adjust_codec_delay(substream, nsec); 524 525 *audio_ts = ns_to_timespec(nsec); 526 527 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK; 528 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */ 529 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */ 530 531 } else if (is_link_time_supported(runtime, audio_tstamp_config)) { 532 533 ret = azx_get_crosststamp(substream, &xtstamp); 534 if (ret) 535 return ret; 536 537 switch (runtime->tstamp_type) { 538 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC: 539 return -EINVAL; 540 541 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW: 542 *system_ts = ktime_to_timespec(xtstamp.sys_monoraw); 543 break; 544 545 default: 546 *system_ts = ktime_to_timespec(xtstamp.sys_realtime); 547 break; 548 549 } 550 551 *audio_ts = ktime_to_timespec(xtstamp.device); 552 553 audio_tstamp_report->actual_type = 554 SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED; 555 audio_tstamp_report->accuracy_report = 1; 556 /* 24 MHz WallClock == 42ns resolution */ 557 audio_tstamp_report->accuracy = 42; 558 559 } else { 560 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT; 561 } 562 563 return 0; 564 } 565 566 static struct snd_pcm_hardware azx_pcm_hw = { 567 .info = (SNDRV_PCM_INFO_MMAP | 568 SNDRV_PCM_INFO_INTERLEAVED | 569 SNDRV_PCM_INFO_BLOCK_TRANSFER | 570 SNDRV_PCM_INFO_MMAP_VALID | 571 /* No full-resume yet implemented */ 572 /* SNDRV_PCM_INFO_RESUME |*/ 573 SNDRV_PCM_INFO_PAUSE | 574 SNDRV_PCM_INFO_SYNC_START | 575 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */ 576 SNDRV_PCM_INFO_HAS_LINK_ATIME | 577 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), 578 .formats = SNDRV_PCM_FMTBIT_S16_LE, 579 .rates = SNDRV_PCM_RATE_48000, 580 .rate_min = 48000, 581 .rate_max = 48000, 582 .channels_min = 2, 583 .channels_max = 2, 584 .buffer_bytes_max = AZX_MAX_BUF_SIZE, 585 .period_bytes_min = 128, 586 .period_bytes_max = AZX_MAX_BUF_SIZE / 2, 587 .periods_min = 2, 588 .periods_max = AZX_MAX_FRAG, 589 .fifo_size = 0, 590 }; 591 592 static int azx_pcm_open(struct snd_pcm_substream *substream) 593 { 594 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 595 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 596 struct azx *chip = apcm->chip; 597 struct azx_dev *azx_dev; 598 struct snd_pcm_runtime *runtime = substream->runtime; 599 int err; 600 int buff_step; 601 602 snd_hda_codec_pcm_get(apcm->info); 603 mutex_lock(&chip->open_mutex); 604 azx_dev = azx_assign_device(chip, substream); 605 trace_azx_pcm_open(chip, azx_dev); 606 if (azx_dev == NULL) { 607 err = -EBUSY; 608 goto unlock; 609 } 610 runtime->private_data = azx_dev; 611 612 if (chip->gts_present) 613 azx_pcm_hw.info = azx_pcm_hw.info | 614 SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME; 615 616 runtime->hw = azx_pcm_hw; 617 runtime->hw.channels_min = hinfo->channels_min; 618 runtime->hw.channels_max = hinfo->channels_max; 619 runtime->hw.formats = hinfo->formats; 620 runtime->hw.rates = hinfo->rates; 621 snd_pcm_limit_hw_rates(runtime); 622 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 623 624 /* avoid wrap-around with wall-clock */ 625 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME, 626 20, 627 178000000); 628 629 if (chip->align_buffer_size) 630 /* constrain buffer sizes to be multiple of 128 631 bytes. This is more efficient in terms of memory 632 access but isn't required by the HDA spec and 633 prevents users from specifying exact period/buffer 634 sizes. For example for 44.1kHz, a period size set 635 to 20ms will be rounded to 19.59ms. */ 636 buff_step = 128; 637 else 638 /* Don't enforce steps on buffer sizes, still need to 639 be multiple of 4 bytes (HDA spec). Tested on Intel 640 HDA controllers, may not work on all devices where 641 option needs to be disabled */ 642 buff_step = 4; 643 644 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 645 buff_step); 646 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 647 buff_step); 648 snd_hda_power_up(apcm->codec); 649 if (hinfo->ops.open) 650 err = hinfo->ops.open(hinfo, apcm->codec, substream); 651 else 652 err = -ENODEV; 653 if (err < 0) { 654 azx_release_device(azx_dev); 655 goto powerdown; 656 } 657 snd_pcm_limit_hw_rates(runtime); 658 /* sanity check */ 659 if (snd_BUG_ON(!runtime->hw.channels_min) || 660 snd_BUG_ON(!runtime->hw.channels_max) || 661 snd_BUG_ON(!runtime->hw.formats) || 662 snd_BUG_ON(!runtime->hw.rates)) { 663 azx_release_device(azx_dev); 664 if (hinfo->ops.close) 665 hinfo->ops.close(hinfo, apcm->codec, substream); 666 err = -EINVAL; 667 goto powerdown; 668 } 669 670 /* disable LINK_ATIME timestamps for capture streams 671 until we figure out how to handle digital inputs */ 672 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { 673 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */ 674 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME; 675 } 676 677 snd_pcm_set_sync(substream); 678 mutex_unlock(&chip->open_mutex); 679 return 0; 680 681 powerdown: 682 snd_hda_power_down(apcm->codec); 683 unlock: 684 mutex_unlock(&chip->open_mutex); 685 snd_hda_codec_pcm_put(apcm->info); 686 return err; 687 } 688 689 static int azx_pcm_mmap(struct snd_pcm_substream *substream, 690 struct vm_area_struct *area) 691 { 692 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 693 struct azx *chip = apcm->chip; 694 if (chip->ops->pcm_mmap_prepare) 695 chip->ops->pcm_mmap_prepare(substream, area); 696 return snd_pcm_lib_default_mmap(substream, area); 697 } 698 699 static const struct snd_pcm_ops azx_pcm_ops = { 700 .open = azx_pcm_open, 701 .close = azx_pcm_close, 702 .ioctl = snd_pcm_lib_ioctl, 703 .hw_params = azx_pcm_hw_params, 704 .hw_free = azx_pcm_hw_free, 705 .prepare = azx_pcm_prepare, 706 .trigger = azx_pcm_trigger, 707 .pointer = azx_pcm_pointer, 708 .get_time_info = azx_get_time_info, 709 .mmap = azx_pcm_mmap, 710 .page = snd_pcm_sgbuf_ops_page, 711 }; 712 713 static void azx_pcm_free(struct snd_pcm *pcm) 714 { 715 struct azx_pcm *apcm = pcm->private_data; 716 if (apcm) { 717 list_del(&apcm->list); 718 apcm->info->pcm = NULL; 719 kfree(apcm); 720 } 721 } 722 723 #define MAX_PREALLOC_SIZE (32 * 1024 * 1024) 724 725 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec, 726 struct hda_pcm *cpcm) 727 { 728 struct hdac_bus *bus = &_bus->core; 729 struct azx *chip = bus_to_azx(bus); 730 struct snd_pcm *pcm; 731 struct azx_pcm *apcm; 732 int pcm_dev = cpcm->device; 733 unsigned int size; 734 int s, err; 735 int type = SNDRV_DMA_TYPE_DEV_SG; 736 737 list_for_each_entry(apcm, &chip->pcm_list, list) { 738 if (apcm->pcm->device == pcm_dev) { 739 dev_err(chip->card->dev, "PCM %d already exists\n", 740 pcm_dev); 741 return -EBUSY; 742 } 743 } 744 err = snd_pcm_new(chip->card, cpcm->name, pcm_dev, 745 cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams, 746 cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams, 747 &pcm); 748 if (err < 0) 749 return err; 750 strlcpy(pcm->name, cpcm->name, sizeof(pcm->name)); 751 apcm = kzalloc(sizeof(*apcm), GFP_KERNEL); 752 if (apcm == NULL) { 753 snd_device_free(chip->card, pcm); 754 return -ENOMEM; 755 } 756 apcm->chip = chip; 757 apcm->pcm = pcm; 758 apcm->codec = codec; 759 apcm->info = cpcm; 760 pcm->private_data = apcm; 761 pcm->private_free = azx_pcm_free; 762 if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM) 763 pcm->dev_class = SNDRV_PCM_CLASS_MODEM; 764 list_add_tail(&apcm->list, &chip->pcm_list); 765 cpcm->pcm = pcm; 766 for (s = 0; s < 2; s++) { 767 if (cpcm->stream[s].substreams) 768 snd_pcm_set_ops(pcm, s, &azx_pcm_ops); 769 } 770 /* buffer pre-allocation */ 771 size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024; 772 if (size > MAX_PREALLOC_SIZE) 773 size = MAX_PREALLOC_SIZE; 774 if (chip->uc_buffer) 775 type = SNDRV_DMA_TYPE_DEV_UC_SG; 776 snd_pcm_lib_preallocate_pages_for_all(pcm, type, 777 chip->card->dev, 778 size, MAX_PREALLOC_SIZE); 779 return 0; 780 } 781 782 static unsigned int azx_command_addr(u32 cmd) 783 { 784 unsigned int addr = cmd >> 28; 785 786 if (addr >= AZX_MAX_CODECS) { 787 snd_BUG(); 788 addr = 0; 789 } 790 791 return addr; 792 } 793 794 /* receive a response */ 795 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr, 796 unsigned int *res) 797 { 798 struct azx *chip = bus_to_azx(bus); 799 struct hda_bus *hbus = &chip->bus; 800 unsigned long timeout; 801 unsigned long loopcounter; 802 int do_poll = 0; 803 804 again: 805 timeout = jiffies + msecs_to_jiffies(1000); 806 807 for (loopcounter = 0;; loopcounter++) { 808 spin_lock_irq(&bus->reg_lock); 809 if (chip->polling_mode || do_poll) 810 snd_hdac_bus_update_rirb(bus); 811 if (!bus->rirb.cmds[addr]) { 812 if (!do_poll) 813 chip->poll_count = 0; 814 if (res) 815 *res = bus->rirb.res[addr]; /* the last value */ 816 spin_unlock_irq(&bus->reg_lock); 817 return 0; 818 } 819 spin_unlock_irq(&bus->reg_lock); 820 if (time_after(jiffies, timeout)) 821 break; 822 if (hbus->needs_damn_long_delay || loopcounter > 3000) 823 msleep(2); /* temporary workaround */ 824 else { 825 udelay(10); 826 cond_resched(); 827 } 828 } 829 830 if (hbus->no_response_fallback) 831 return -EIO; 832 833 if (!chip->polling_mode && chip->poll_count < 2) { 834 dev_dbg(chip->card->dev, 835 "azx_get_response timeout, polling the codec once: last cmd=0x%08x\n", 836 bus->last_cmd[addr]); 837 do_poll = 1; 838 chip->poll_count++; 839 goto again; 840 } 841 842 843 if (!chip->polling_mode) { 844 dev_warn(chip->card->dev, 845 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n", 846 bus->last_cmd[addr]); 847 chip->polling_mode = 1; 848 goto again; 849 } 850 851 if (chip->msi) { 852 dev_warn(chip->card->dev, 853 "No response from codec, disabling MSI: last cmd=0x%08x\n", 854 bus->last_cmd[addr]); 855 if (chip->ops->disable_msi_reset_irq && 856 chip->ops->disable_msi_reset_irq(chip) < 0) 857 return -EIO; 858 goto again; 859 } 860 861 if (chip->probing) { 862 /* If this critical timeout happens during the codec probing 863 * phase, this is likely an access to a non-existing codec 864 * slot. Better to return an error and reset the system. 865 */ 866 return -EIO; 867 } 868 869 /* no fallback mechanism? */ 870 if (!chip->fallback_to_single_cmd) 871 return -EIO; 872 873 /* a fatal communication error; need either to reset or to fallback 874 * to the single_cmd mode 875 */ 876 if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) { 877 hbus->response_reset = 1; 878 return -EAGAIN; /* give a chance to retry */ 879 } 880 881 dev_err(chip->card->dev, 882 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n", 883 bus->last_cmd[addr]); 884 chip->single_cmd = 1; 885 hbus->response_reset = 0; 886 snd_hdac_bus_stop_cmd_io(bus); 887 return -EIO; 888 } 889 890 /* 891 * Use the single immediate command instead of CORB/RIRB for simplicity 892 * 893 * Note: according to Intel, this is not preferred use. The command was 894 * intended for the BIOS only, and may get confused with unsolicited 895 * responses. So, we shouldn't use it for normal operation from the 896 * driver. 897 * I left the codes, however, for debugging/testing purposes. 898 */ 899 900 /* receive a response */ 901 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr) 902 { 903 int timeout = 50; 904 905 while (timeout--) { 906 /* check IRV busy bit */ 907 if (azx_readw(chip, IRS) & AZX_IRS_VALID) { 908 /* reuse rirb.res as the response return value */ 909 azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR); 910 return 0; 911 } 912 udelay(1); 913 } 914 if (printk_ratelimit()) 915 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n", 916 azx_readw(chip, IRS)); 917 azx_bus(chip)->rirb.res[addr] = -1; 918 return -EIO; 919 } 920 921 /* send a command */ 922 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val) 923 { 924 struct azx *chip = bus_to_azx(bus); 925 unsigned int addr = azx_command_addr(val); 926 int timeout = 50; 927 928 bus->last_cmd[azx_command_addr(val)] = val; 929 while (timeout--) { 930 /* check ICB busy bit */ 931 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) { 932 /* Clear IRV valid bit */ 933 azx_writew(chip, IRS, azx_readw(chip, IRS) | 934 AZX_IRS_VALID); 935 azx_writel(chip, IC, val); 936 azx_writew(chip, IRS, azx_readw(chip, IRS) | 937 AZX_IRS_BUSY); 938 return azx_single_wait_for_response(chip, addr); 939 } 940 udelay(1); 941 } 942 if (printk_ratelimit()) 943 dev_dbg(chip->card->dev, 944 "send_cmd timeout: IRS=0x%x, val=0x%x\n", 945 azx_readw(chip, IRS), val); 946 return -EIO; 947 } 948 949 /* receive a response */ 950 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr, 951 unsigned int *res) 952 { 953 if (res) 954 *res = bus->rirb.res[addr]; 955 return 0; 956 } 957 958 /* 959 * The below are the main callbacks from hda_codec. 960 * 961 * They are just the skeleton to call sub-callbacks according to the 962 * current setting of chip->single_cmd. 963 */ 964 965 /* send a command */ 966 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val) 967 { 968 struct azx *chip = bus_to_azx(bus); 969 970 if (chip->disabled) 971 return 0; 972 if (chip->single_cmd) 973 return azx_single_send_cmd(bus, val); 974 else 975 return snd_hdac_bus_send_cmd(bus, val); 976 } 977 978 /* get a response */ 979 static int azx_get_response(struct hdac_bus *bus, unsigned int addr, 980 unsigned int *res) 981 { 982 struct azx *chip = bus_to_azx(bus); 983 984 if (chip->disabled) 985 return 0; 986 if (chip->single_cmd) 987 return azx_single_get_response(bus, addr, res); 988 else 989 return azx_rirb_get_response(bus, addr, res); 990 } 991 992 static const struct hdac_bus_ops bus_core_ops = { 993 .command = azx_send_cmd, 994 .get_response = azx_get_response, 995 }; 996 997 #ifdef CONFIG_SND_HDA_DSP_LOADER 998 /* 999 * DSP loading code (e.g. for CA0132) 1000 */ 1001 1002 /* use the first stream for loading DSP */ 1003 static struct azx_dev * 1004 azx_get_dsp_loader_dev(struct azx *chip) 1005 { 1006 struct hdac_bus *bus = azx_bus(chip); 1007 struct hdac_stream *s; 1008 1009 list_for_each_entry(s, &bus->stream_list, list) 1010 if (s->index == chip->playback_index_offset) 1011 return stream_to_azx_dev(s); 1012 1013 return NULL; 1014 } 1015 1016 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format, 1017 unsigned int byte_size, 1018 struct snd_dma_buffer *bufp) 1019 { 1020 struct hdac_bus *bus = &codec->bus->core; 1021 struct azx *chip = bus_to_azx(bus); 1022 struct azx_dev *azx_dev; 1023 struct hdac_stream *hstr; 1024 bool saved = false; 1025 int err; 1026 1027 azx_dev = azx_get_dsp_loader_dev(chip); 1028 hstr = azx_stream(azx_dev); 1029 spin_lock_irq(&bus->reg_lock); 1030 if (hstr->opened) { 1031 chip->saved_azx_dev = *azx_dev; 1032 saved = true; 1033 } 1034 spin_unlock_irq(&bus->reg_lock); 1035 1036 err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp); 1037 if (err < 0) { 1038 spin_lock_irq(&bus->reg_lock); 1039 if (saved) 1040 *azx_dev = chip->saved_azx_dev; 1041 spin_unlock_irq(&bus->reg_lock); 1042 return err; 1043 } 1044 1045 hstr->prepared = 0; 1046 return err; 1047 } 1048 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare); 1049 1050 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start) 1051 { 1052 struct hdac_bus *bus = &codec->bus->core; 1053 struct azx *chip = bus_to_azx(bus); 1054 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip); 1055 1056 snd_hdac_dsp_trigger(azx_stream(azx_dev), start); 1057 } 1058 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger); 1059 1060 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec, 1061 struct snd_dma_buffer *dmab) 1062 { 1063 struct hdac_bus *bus = &codec->bus->core; 1064 struct azx *chip = bus_to_azx(bus); 1065 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip); 1066 struct hdac_stream *hstr = azx_stream(azx_dev); 1067 1068 if (!dmab->area || !hstr->locked) 1069 return; 1070 1071 snd_hdac_dsp_cleanup(hstr, dmab); 1072 spin_lock_irq(&bus->reg_lock); 1073 if (hstr->opened) 1074 *azx_dev = chip->saved_azx_dev; 1075 hstr->locked = false; 1076 spin_unlock_irq(&bus->reg_lock); 1077 } 1078 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup); 1079 #endif /* CONFIG_SND_HDA_DSP_LOADER */ 1080 1081 /* 1082 * reset and start the controller registers 1083 */ 1084 void azx_init_chip(struct azx *chip, bool full_reset) 1085 { 1086 if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) { 1087 /* correct RINTCNT for CXT */ 1088 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) 1089 azx_writew(chip, RINTCNT, 0xc0); 1090 } 1091 } 1092 EXPORT_SYMBOL_GPL(azx_init_chip); 1093 1094 void azx_stop_all_streams(struct azx *chip) 1095 { 1096 struct hdac_bus *bus = azx_bus(chip); 1097 struct hdac_stream *s; 1098 1099 list_for_each_entry(s, &bus->stream_list, list) 1100 snd_hdac_stream_stop(s); 1101 } 1102 EXPORT_SYMBOL_GPL(azx_stop_all_streams); 1103 1104 void azx_stop_chip(struct azx *chip) 1105 { 1106 snd_hdac_bus_stop_chip(azx_bus(chip)); 1107 } 1108 EXPORT_SYMBOL_GPL(azx_stop_chip); 1109 1110 /* 1111 * interrupt handler 1112 */ 1113 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s) 1114 { 1115 struct azx *chip = bus_to_azx(bus); 1116 struct azx_dev *azx_dev = stream_to_azx_dev(s); 1117 1118 /* check whether this IRQ is really acceptable */ 1119 if (!chip->ops->position_check || 1120 chip->ops->position_check(chip, azx_dev)) { 1121 spin_unlock(&bus->reg_lock); 1122 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream); 1123 spin_lock(&bus->reg_lock); 1124 } 1125 } 1126 1127 irqreturn_t azx_interrupt(int irq, void *dev_id) 1128 { 1129 struct azx *chip = dev_id; 1130 struct hdac_bus *bus = azx_bus(chip); 1131 u32 status; 1132 bool active, handled = false; 1133 int repeat = 0; /* count for avoiding endless loop */ 1134 1135 #ifdef CONFIG_PM 1136 if (azx_has_pm_runtime(chip)) 1137 if (!pm_runtime_active(chip->card->dev)) 1138 return IRQ_NONE; 1139 #endif 1140 1141 spin_lock(&bus->reg_lock); 1142 1143 if (chip->disabled) 1144 goto unlock; 1145 1146 do { 1147 status = azx_readl(chip, INTSTS); 1148 if (status == 0 || status == 0xffffffff) 1149 break; 1150 1151 handled = true; 1152 active = false; 1153 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update)) 1154 active = true; 1155 1156 /* clear rirb int */ 1157 status = azx_readb(chip, RIRBSTS); 1158 if (status & RIRB_INT_MASK) { 1159 active = true; 1160 if (status & RIRB_INT_RESPONSE) { 1161 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) 1162 udelay(80); 1163 snd_hdac_bus_update_rirb(bus); 1164 } 1165 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK); 1166 } 1167 } while (active && ++repeat < 10); 1168 1169 unlock: 1170 spin_unlock(&bus->reg_lock); 1171 1172 return IRQ_RETVAL(handled); 1173 } 1174 EXPORT_SYMBOL_GPL(azx_interrupt); 1175 1176 /* 1177 * Codec initerface 1178 */ 1179 1180 /* 1181 * Probe the given codec address 1182 */ 1183 static int probe_codec(struct azx *chip, int addr) 1184 { 1185 unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) | 1186 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID; 1187 struct hdac_bus *bus = azx_bus(chip); 1188 int err; 1189 unsigned int res = -1; 1190 1191 mutex_lock(&bus->cmd_mutex); 1192 chip->probing = 1; 1193 azx_send_cmd(bus, cmd); 1194 err = azx_get_response(bus, addr, &res); 1195 chip->probing = 0; 1196 mutex_unlock(&bus->cmd_mutex); 1197 if (err < 0 || res == -1) 1198 return -EIO; 1199 dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr); 1200 return 0; 1201 } 1202 1203 void snd_hda_bus_reset(struct hda_bus *bus) 1204 { 1205 struct azx *chip = bus_to_azx(&bus->core); 1206 1207 bus->in_reset = 1; 1208 azx_stop_chip(chip); 1209 azx_init_chip(chip, true); 1210 if (bus->core.chip_init) 1211 snd_hda_bus_reset_codecs(bus); 1212 bus->in_reset = 0; 1213 } 1214 1215 /* HD-audio bus initialization */ 1216 int azx_bus_init(struct azx *chip, const char *model, 1217 const struct hdac_io_ops *io_ops) 1218 { 1219 struct hda_bus *bus = &chip->bus; 1220 int err; 1221 1222 err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops, 1223 io_ops); 1224 if (err < 0) 1225 return err; 1226 1227 bus->card = chip->card; 1228 mutex_init(&bus->prepare_mutex); 1229 bus->pci = chip->pci; 1230 bus->modelname = model; 1231 bus->mixer_assigned = -1; 1232 bus->core.snoop = azx_snoop(chip); 1233 if (chip->get_position[0] != azx_get_pos_lpib || 1234 chip->get_position[1] != azx_get_pos_lpib) 1235 bus->core.use_posbuf = true; 1236 bus->core.bdl_pos_adj = chip->bdl_pos_adj; 1237 if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR) 1238 bus->core.corbrp_self_clear = true; 1239 1240 if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY) 1241 bus->core.align_bdle_4k = true; 1242 1243 /* AMD chipsets often cause the communication stalls upon certain 1244 * sequence like the pin-detection. It seems that forcing the synced 1245 * access works around the stall. Grrr... 1246 */ 1247 if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) { 1248 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n"); 1249 bus->core.sync_write = 1; 1250 bus->allow_bus_reset = 1; 1251 } 1252 1253 return 0; 1254 } 1255 EXPORT_SYMBOL_GPL(azx_bus_init); 1256 1257 /* Probe codecs */ 1258 int azx_probe_codecs(struct azx *chip, unsigned int max_slots) 1259 { 1260 struct hdac_bus *bus = azx_bus(chip); 1261 int c, codecs, err; 1262 1263 codecs = 0; 1264 if (!max_slots) 1265 max_slots = AZX_DEFAULT_CODECS; 1266 1267 /* First try to probe all given codec slots */ 1268 for (c = 0; c < max_slots; c++) { 1269 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) { 1270 if (probe_codec(chip, c) < 0) { 1271 /* Some BIOSen give you wrong codec addresses 1272 * that don't exist 1273 */ 1274 dev_warn(chip->card->dev, 1275 "Codec #%d probe error; disabling it...\n", c); 1276 bus->codec_mask &= ~(1 << c); 1277 /* More badly, accessing to a non-existing 1278 * codec often screws up the controller chip, 1279 * and disturbs the further communications. 1280 * Thus if an error occurs during probing, 1281 * better to reset the controller chip to 1282 * get back to the sanity state. 1283 */ 1284 azx_stop_chip(chip); 1285 azx_init_chip(chip, true); 1286 } 1287 } 1288 } 1289 1290 /* Then create codec instances */ 1291 for (c = 0; c < max_slots; c++) { 1292 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) { 1293 struct hda_codec *codec; 1294 err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec); 1295 if (err < 0) 1296 continue; 1297 codec->jackpoll_interval = chip->jackpoll_interval; 1298 codec->beep_mode = chip->beep_mode; 1299 codecs++; 1300 } 1301 } 1302 if (!codecs) { 1303 dev_err(chip->card->dev, "no codecs initialized\n"); 1304 return -ENXIO; 1305 } 1306 return 0; 1307 } 1308 EXPORT_SYMBOL_GPL(azx_probe_codecs); 1309 1310 /* configure each codec instance */ 1311 int azx_codec_configure(struct azx *chip) 1312 { 1313 struct hda_codec *codec, *next; 1314 1315 /* use _safe version here since snd_hda_codec_configure() deregisters 1316 * the device upon error and deletes itself from the bus list. 1317 */ 1318 list_for_each_codec_safe(codec, next, &chip->bus) { 1319 snd_hda_codec_configure(codec); 1320 } 1321 1322 if (!azx_bus(chip)->num_codecs) 1323 return -ENODEV; 1324 return 0; 1325 } 1326 EXPORT_SYMBOL_GPL(azx_codec_configure); 1327 1328 static int stream_direction(struct azx *chip, unsigned char index) 1329 { 1330 if (index >= chip->capture_index_offset && 1331 index < chip->capture_index_offset + chip->capture_streams) 1332 return SNDRV_PCM_STREAM_CAPTURE; 1333 return SNDRV_PCM_STREAM_PLAYBACK; 1334 } 1335 1336 /* initialize SD streams */ 1337 int azx_init_streams(struct azx *chip) 1338 { 1339 int i; 1340 int stream_tags[2] = { 0, 0 }; 1341 1342 /* initialize each stream (aka device) 1343 * assign the starting bdl address to each stream (device) 1344 * and initialize 1345 */ 1346 for (i = 0; i < chip->num_streams; i++) { 1347 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL); 1348 int dir, tag; 1349 1350 if (!azx_dev) 1351 return -ENOMEM; 1352 1353 dir = stream_direction(chip, i); 1354 /* stream tag must be unique throughout 1355 * the stream direction group, 1356 * valid values 1...15 1357 * use separate stream tag if the flag 1358 * AZX_DCAPS_SEPARATE_STREAM_TAG is used 1359 */ 1360 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG) 1361 tag = ++stream_tags[dir]; 1362 else 1363 tag = i + 1; 1364 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev), 1365 i, dir, tag); 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(azx_init_streams); 1371 1372 void azx_free_streams(struct azx *chip) 1373 { 1374 struct hdac_bus *bus = azx_bus(chip); 1375 struct hdac_stream *s; 1376 1377 while (!list_empty(&bus->stream_list)) { 1378 s = list_first_entry(&bus->stream_list, struct hdac_stream, list); 1379 list_del(&s->list); 1380 kfree(stream_to_azx_dev(s)); 1381 } 1382 } 1383 EXPORT_SYMBOL_GPL(azx_free_streams); 1384