xref: /openbmc/linux/sound/pci/hda/hda_controller.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Implementation of primary alsa driver code base for Intel HD Audio.
5  *
6  *  Copyright(c) 2004 Intel Corporation. All rights reserved.
7  *
8  *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
9  *                     PeiSen Hou <pshou@realtek.com.tw>
10  */
11 
12 #include <linux/clocksource.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/slab.h>
19 
20 #ifdef CONFIG_X86
21 /* for art-tsc conversion */
22 #include <asm/tsc.h>
23 #endif
24 
25 #include <sound/core.h>
26 #include <sound/initval.h>
27 #include "hda_controller.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include "hda_controller_trace.h"
31 
32 /* DSP lock helpers */
33 #define dsp_lock(dev)		snd_hdac_dsp_lock(azx_stream(dev))
34 #define dsp_unlock(dev)		snd_hdac_dsp_unlock(azx_stream(dev))
35 #define dsp_is_locked(dev)	snd_hdac_stream_is_locked(azx_stream(dev))
36 
37 /* assign a stream for the PCM */
38 static inline struct azx_dev *
39 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
40 {
41 	struct hdac_stream *s;
42 
43 	s = snd_hdac_stream_assign(azx_bus(chip), substream);
44 	if (!s)
45 		return NULL;
46 	return stream_to_azx_dev(s);
47 }
48 
49 /* release the assigned stream */
50 static inline void azx_release_device(struct azx_dev *azx_dev)
51 {
52 	snd_hdac_stream_release(azx_stream(azx_dev));
53 }
54 
55 static inline struct hda_pcm_stream *
56 to_hda_pcm_stream(struct snd_pcm_substream *substream)
57 {
58 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
59 	return &apcm->info->stream[substream->stream];
60 }
61 
62 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
63 				u64 nsec)
64 {
65 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
66 	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
67 	u64 codec_frames, codec_nsecs;
68 
69 	if (!hinfo->ops.get_delay)
70 		return nsec;
71 
72 	codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
73 	codec_nsecs = div_u64(codec_frames * 1000000000LL,
74 			      substream->runtime->rate);
75 
76 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
77 		return nsec + codec_nsecs;
78 
79 	return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
80 }
81 
82 /*
83  * PCM ops
84  */
85 
86 static int azx_pcm_close(struct snd_pcm_substream *substream)
87 {
88 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
89 	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
90 	struct azx *chip = apcm->chip;
91 	struct azx_dev *azx_dev = get_azx_dev(substream);
92 
93 	trace_azx_pcm_close(chip, azx_dev);
94 	mutex_lock(&chip->open_mutex);
95 	azx_release_device(azx_dev);
96 	if (hinfo->ops.close)
97 		hinfo->ops.close(hinfo, apcm->codec, substream);
98 	snd_hda_power_down(apcm->codec);
99 	mutex_unlock(&chip->open_mutex);
100 	snd_hda_codec_pcm_put(apcm->info);
101 	return 0;
102 }
103 
104 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
105 			     struct snd_pcm_hw_params *hw_params)
106 {
107 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
108 	struct azx *chip = apcm->chip;
109 	struct azx_dev *azx_dev = get_azx_dev(substream);
110 	int ret;
111 
112 	trace_azx_pcm_hw_params(chip, azx_dev);
113 	dsp_lock(azx_dev);
114 	if (dsp_is_locked(azx_dev)) {
115 		ret = -EBUSY;
116 		goto unlock;
117 	}
118 
119 	azx_dev->core.bufsize = 0;
120 	azx_dev->core.period_bytes = 0;
121 	azx_dev->core.format_val = 0;
122 	ret = snd_pcm_lib_malloc_pages(substream,
123 				       params_buffer_bytes(hw_params));
124 
125 unlock:
126 	dsp_unlock(azx_dev);
127 	return ret;
128 }
129 
130 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
131 {
132 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
133 	struct azx_dev *azx_dev = get_azx_dev(substream);
134 	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
135 	int err;
136 
137 	/* reset BDL address */
138 	dsp_lock(azx_dev);
139 	if (!dsp_is_locked(azx_dev))
140 		snd_hdac_stream_cleanup(azx_stream(azx_dev));
141 
142 	snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
143 
144 	err = snd_pcm_lib_free_pages(substream);
145 	azx_stream(azx_dev)->prepared = 0;
146 	dsp_unlock(azx_dev);
147 	return err;
148 }
149 
150 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
151 {
152 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
153 	struct azx *chip = apcm->chip;
154 	struct azx_dev *azx_dev = get_azx_dev(substream);
155 	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
156 	struct snd_pcm_runtime *runtime = substream->runtime;
157 	unsigned int format_val, stream_tag;
158 	int err;
159 	struct hda_spdif_out *spdif =
160 		snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
161 	unsigned short ctls = spdif ? spdif->ctls : 0;
162 
163 	trace_azx_pcm_prepare(chip, azx_dev);
164 	dsp_lock(azx_dev);
165 	if (dsp_is_locked(azx_dev)) {
166 		err = -EBUSY;
167 		goto unlock;
168 	}
169 
170 	snd_hdac_stream_reset(azx_stream(azx_dev));
171 	format_val = snd_hdac_calc_stream_format(runtime->rate,
172 						runtime->channels,
173 						runtime->format,
174 						hinfo->maxbps,
175 						ctls);
176 	if (!format_val) {
177 		dev_err(chip->card->dev,
178 			"invalid format_val, rate=%d, ch=%d, format=%d\n",
179 			runtime->rate, runtime->channels, runtime->format);
180 		err = -EINVAL;
181 		goto unlock;
182 	}
183 
184 	err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
185 	if (err < 0)
186 		goto unlock;
187 
188 	snd_hdac_stream_setup(azx_stream(azx_dev));
189 
190 	stream_tag = azx_dev->core.stream_tag;
191 	/* CA-IBG chips need the playback stream starting from 1 */
192 	if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
193 	    stream_tag > chip->capture_streams)
194 		stream_tag -= chip->capture_streams;
195 	err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
196 				     azx_dev->core.format_val, substream);
197 
198  unlock:
199 	if (!err)
200 		azx_stream(azx_dev)->prepared = 1;
201 	dsp_unlock(azx_dev);
202 	return err;
203 }
204 
205 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
206 {
207 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
208 	struct azx *chip = apcm->chip;
209 	struct hdac_bus *bus = azx_bus(chip);
210 	struct azx_dev *azx_dev;
211 	struct snd_pcm_substream *s;
212 	struct hdac_stream *hstr;
213 	bool start;
214 	int sbits = 0;
215 	int sync_reg;
216 
217 	azx_dev = get_azx_dev(substream);
218 	trace_azx_pcm_trigger(chip, azx_dev, cmd);
219 
220 	hstr = azx_stream(azx_dev);
221 	if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
222 		sync_reg = AZX_REG_OLD_SSYNC;
223 	else
224 		sync_reg = AZX_REG_SSYNC;
225 
226 	if (dsp_is_locked(azx_dev) || !hstr->prepared)
227 		return -EPIPE;
228 
229 	switch (cmd) {
230 	case SNDRV_PCM_TRIGGER_START:
231 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
232 	case SNDRV_PCM_TRIGGER_RESUME:
233 		start = true;
234 		break;
235 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
236 	case SNDRV_PCM_TRIGGER_SUSPEND:
237 	case SNDRV_PCM_TRIGGER_STOP:
238 		start = false;
239 		break;
240 	default:
241 		return -EINVAL;
242 	}
243 
244 	snd_pcm_group_for_each_entry(s, substream) {
245 		if (s->pcm->card != substream->pcm->card)
246 			continue;
247 		azx_dev = get_azx_dev(s);
248 		sbits |= 1 << azx_dev->core.index;
249 		snd_pcm_trigger_done(s, substream);
250 	}
251 
252 	spin_lock(&bus->reg_lock);
253 
254 	/* first, set SYNC bits of corresponding streams */
255 	snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
256 
257 	snd_pcm_group_for_each_entry(s, substream) {
258 		if (s->pcm->card != substream->pcm->card)
259 			continue;
260 		azx_dev = get_azx_dev(s);
261 		if (start) {
262 			azx_dev->insufficient = 1;
263 			snd_hdac_stream_start(azx_stream(azx_dev), true);
264 		} else {
265 			snd_hdac_stream_stop(azx_stream(azx_dev));
266 		}
267 	}
268 	spin_unlock(&bus->reg_lock);
269 
270 	snd_hdac_stream_sync(hstr, start, sbits);
271 
272 	spin_lock(&bus->reg_lock);
273 	/* reset SYNC bits */
274 	snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
275 	if (start)
276 		snd_hdac_stream_timecounter_init(hstr, sbits);
277 	spin_unlock(&bus->reg_lock);
278 	return 0;
279 }
280 
281 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
282 {
283 	return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
284 }
285 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
286 
287 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
288 {
289 	return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
290 }
291 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
292 
293 unsigned int azx_get_position(struct azx *chip,
294 			      struct azx_dev *azx_dev)
295 {
296 	struct snd_pcm_substream *substream = azx_dev->core.substream;
297 	unsigned int pos;
298 	int stream = substream->stream;
299 	int delay = 0;
300 
301 	if (chip->get_position[stream])
302 		pos = chip->get_position[stream](chip, azx_dev);
303 	else /* use the position buffer as default */
304 		pos = azx_get_pos_posbuf(chip, azx_dev);
305 
306 	if (pos >= azx_dev->core.bufsize)
307 		pos = 0;
308 
309 	if (substream->runtime) {
310 		struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
311 		struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
312 
313 		if (chip->get_delay[stream])
314 			delay += chip->get_delay[stream](chip, azx_dev, pos);
315 		if (hinfo->ops.get_delay)
316 			delay += hinfo->ops.get_delay(hinfo, apcm->codec,
317 						      substream);
318 		substream->runtime->delay = delay;
319 	}
320 
321 	trace_azx_get_position(chip, azx_dev, pos, delay);
322 	return pos;
323 }
324 EXPORT_SYMBOL_GPL(azx_get_position);
325 
326 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
327 {
328 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
329 	struct azx *chip = apcm->chip;
330 	struct azx_dev *azx_dev = get_azx_dev(substream);
331 	return bytes_to_frames(substream->runtime,
332 			       azx_get_position(chip, azx_dev));
333 }
334 
335 /*
336  * azx_scale64: Scale base by mult/div while not overflowing sanely
337  *
338  * Derived from scale64_check_overflow in kernel/time/timekeeping.c
339  *
340  * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
341  * is about 384307 ie ~4.5 days.
342  *
343  * This scales the calculation so that overflow will happen but after 2^64 /
344  * 48000 secs, which is pretty large!
345  *
346  * In caln below:
347  *	base may overflow, but since there isn’t any additional division
348  *	performed on base it’s OK
349  *	rem can’t overflow because both are 32-bit values
350  */
351 
352 #ifdef CONFIG_X86
353 static u64 azx_scale64(u64 base, u32 num, u32 den)
354 {
355 	u64 rem;
356 
357 	rem = do_div(base, den);
358 
359 	base *= num;
360 	rem *= num;
361 
362 	do_div(rem, den);
363 
364 	return base + rem;
365 }
366 
367 static int azx_get_sync_time(ktime_t *device,
368 		struct system_counterval_t *system, void *ctx)
369 {
370 	struct snd_pcm_substream *substream = ctx;
371 	struct azx_dev *azx_dev = get_azx_dev(substream);
372 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
373 	struct azx *chip = apcm->chip;
374 	struct snd_pcm_runtime *runtime;
375 	u64 ll_counter, ll_counter_l, ll_counter_h;
376 	u64 tsc_counter, tsc_counter_l, tsc_counter_h;
377 	u32 wallclk_ctr, wallclk_cycles;
378 	bool direction;
379 	u32 dma_select;
380 	u32 timeout = 200;
381 	u32 retry_count = 0;
382 
383 	runtime = substream->runtime;
384 
385 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
386 		direction = 1;
387 	else
388 		direction = 0;
389 
390 	/* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
391 	do {
392 		timeout = 100;
393 		dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
394 					(azx_dev->core.stream_tag - 1);
395 		snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
396 
397 		/* Enable the capture */
398 		snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
399 
400 		while (timeout) {
401 			if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
402 						GTSCC_TSCCD_MASK)
403 				break;
404 
405 			timeout--;
406 		}
407 
408 		if (!timeout) {
409 			dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
410 			return -EIO;
411 		}
412 
413 		/* Read wall clock counter */
414 		wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
415 
416 		/* Read TSC counter */
417 		tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
418 		tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
419 
420 		/* Read Link counter */
421 		ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
422 		ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
423 
424 		/* Ack: registers read done */
425 		snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
426 
427 		tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
428 						tsc_counter_l;
429 
430 		ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) |	ll_counter_l;
431 		wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
432 
433 		/*
434 		 * An error occurs near frame "rollover". The clocks in
435 		 * frame value indicates whether this error may have
436 		 * occurred. Here we use the value of 10 i.e.,
437 		 * HDA_MAX_CYCLE_OFFSET
438 		 */
439 		if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
440 					&& wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
441 			break;
442 
443 		/*
444 		 * Sleep before we read again, else we may again get
445 		 * value near to MAX_CYCLE. Try to sleep for different
446 		 * amount of time so we dont hit the same number again
447 		 */
448 		udelay(retry_count++);
449 
450 	} while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
451 
452 	if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
453 		dev_err_ratelimited(chip->card->dev,
454 			"Error in WALFCC cycle count\n");
455 		return -EIO;
456 	}
457 
458 	*device = ns_to_ktime(azx_scale64(ll_counter,
459 				NSEC_PER_SEC, runtime->rate));
460 	*device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
461 			       ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
462 
463 	*system = convert_art_to_tsc(tsc_counter);
464 
465 	return 0;
466 }
467 
468 #else
469 static int azx_get_sync_time(ktime_t *device,
470 		struct system_counterval_t *system, void *ctx)
471 {
472 	return -ENXIO;
473 }
474 #endif
475 
476 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
477 			      struct system_device_crosststamp *xtstamp)
478 {
479 	return get_device_system_crosststamp(azx_get_sync_time,
480 					substream, NULL, xtstamp);
481 }
482 
483 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
484 				struct snd_pcm_audio_tstamp_config *ts)
485 {
486 	if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
487 		if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
488 			return true;
489 
490 	return false;
491 }
492 
493 static int azx_get_time_info(struct snd_pcm_substream *substream,
494 			struct timespec *system_ts, struct timespec *audio_ts,
495 			struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
496 			struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
497 {
498 	struct azx_dev *azx_dev = get_azx_dev(substream);
499 	struct snd_pcm_runtime *runtime = substream->runtime;
500 	struct system_device_crosststamp xtstamp;
501 	int ret;
502 	u64 nsec;
503 
504 	if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
505 		(audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
506 
507 		snd_pcm_gettime(substream->runtime, system_ts);
508 
509 		nsec = timecounter_read(&azx_dev->core.tc);
510 		nsec = div_u64(nsec, 3); /* can be optimized */
511 		if (audio_tstamp_config->report_delay)
512 			nsec = azx_adjust_codec_delay(substream, nsec);
513 
514 		*audio_ts = ns_to_timespec(nsec);
515 
516 		audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
517 		audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
518 		audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
519 
520 	} else if (is_link_time_supported(runtime, audio_tstamp_config)) {
521 
522 		ret = azx_get_crosststamp(substream, &xtstamp);
523 		if (ret)
524 			return ret;
525 
526 		switch (runtime->tstamp_type) {
527 		case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
528 			return -EINVAL;
529 
530 		case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
531 			*system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
532 			break;
533 
534 		default:
535 			*system_ts = ktime_to_timespec(xtstamp.sys_realtime);
536 			break;
537 
538 		}
539 
540 		*audio_ts = ktime_to_timespec(xtstamp.device);
541 
542 		audio_tstamp_report->actual_type =
543 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
544 		audio_tstamp_report->accuracy_report = 1;
545 		/* 24 MHz WallClock == 42ns resolution */
546 		audio_tstamp_report->accuracy = 42;
547 
548 	} else {
549 		audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
550 	}
551 
552 	return 0;
553 }
554 
555 static struct snd_pcm_hardware azx_pcm_hw = {
556 	.info =			(SNDRV_PCM_INFO_MMAP |
557 				 SNDRV_PCM_INFO_INTERLEAVED |
558 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
559 				 SNDRV_PCM_INFO_MMAP_VALID |
560 				 /* No full-resume yet implemented */
561 				 /* SNDRV_PCM_INFO_RESUME |*/
562 				 SNDRV_PCM_INFO_PAUSE |
563 				 SNDRV_PCM_INFO_SYNC_START |
564 				 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
565 				 SNDRV_PCM_INFO_HAS_LINK_ATIME |
566 				 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
567 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
568 	.rates =		SNDRV_PCM_RATE_48000,
569 	.rate_min =		48000,
570 	.rate_max =		48000,
571 	.channels_min =		2,
572 	.channels_max =		2,
573 	.buffer_bytes_max =	AZX_MAX_BUF_SIZE,
574 	.period_bytes_min =	128,
575 	.period_bytes_max =	AZX_MAX_BUF_SIZE / 2,
576 	.periods_min =		2,
577 	.periods_max =		AZX_MAX_FRAG,
578 	.fifo_size =		0,
579 };
580 
581 static int azx_pcm_open(struct snd_pcm_substream *substream)
582 {
583 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
584 	struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
585 	struct azx *chip = apcm->chip;
586 	struct azx_dev *azx_dev;
587 	struct snd_pcm_runtime *runtime = substream->runtime;
588 	int err;
589 	int buff_step;
590 
591 	snd_hda_codec_pcm_get(apcm->info);
592 	mutex_lock(&chip->open_mutex);
593 	azx_dev = azx_assign_device(chip, substream);
594 	trace_azx_pcm_open(chip, azx_dev);
595 	if (azx_dev == NULL) {
596 		err = -EBUSY;
597 		goto unlock;
598 	}
599 	runtime->private_data = azx_dev;
600 
601 	if (chip->gts_present)
602 		azx_pcm_hw.info = azx_pcm_hw.info |
603 			SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
604 
605 	runtime->hw = azx_pcm_hw;
606 	runtime->hw.channels_min = hinfo->channels_min;
607 	runtime->hw.channels_max = hinfo->channels_max;
608 	runtime->hw.formats = hinfo->formats;
609 	runtime->hw.rates = hinfo->rates;
610 	snd_pcm_limit_hw_rates(runtime);
611 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
612 
613 	/* avoid wrap-around with wall-clock */
614 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
615 				     20,
616 				     178000000);
617 
618 	if (chip->align_buffer_size)
619 		/* constrain buffer sizes to be multiple of 128
620 		   bytes. This is more efficient in terms of memory
621 		   access but isn't required by the HDA spec and
622 		   prevents users from specifying exact period/buffer
623 		   sizes. For example for 44.1kHz, a period size set
624 		   to 20ms will be rounded to 19.59ms. */
625 		buff_step = 128;
626 	else
627 		/* Don't enforce steps on buffer sizes, still need to
628 		   be multiple of 4 bytes (HDA spec). Tested on Intel
629 		   HDA controllers, may not work on all devices where
630 		   option needs to be disabled */
631 		buff_step = 4;
632 
633 	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
634 				   buff_step);
635 	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
636 				   buff_step);
637 	snd_hda_power_up(apcm->codec);
638 	if (hinfo->ops.open)
639 		err = hinfo->ops.open(hinfo, apcm->codec, substream);
640 	else
641 		err = -ENODEV;
642 	if (err < 0) {
643 		azx_release_device(azx_dev);
644 		goto powerdown;
645 	}
646 	snd_pcm_limit_hw_rates(runtime);
647 	/* sanity check */
648 	if (snd_BUG_ON(!runtime->hw.channels_min) ||
649 	    snd_BUG_ON(!runtime->hw.channels_max) ||
650 	    snd_BUG_ON(!runtime->hw.formats) ||
651 	    snd_BUG_ON(!runtime->hw.rates)) {
652 		azx_release_device(azx_dev);
653 		if (hinfo->ops.close)
654 			hinfo->ops.close(hinfo, apcm->codec, substream);
655 		err = -EINVAL;
656 		goto powerdown;
657 	}
658 
659 	/* disable LINK_ATIME timestamps for capture streams
660 	   until we figure out how to handle digital inputs */
661 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
662 		runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
663 		runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
664 	}
665 
666 	snd_pcm_set_sync(substream);
667 	mutex_unlock(&chip->open_mutex);
668 	return 0;
669 
670  powerdown:
671 	snd_hda_power_down(apcm->codec);
672  unlock:
673 	mutex_unlock(&chip->open_mutex);
674 	snd_hda_codec_pcm_put(apcm->info);
675 	return err;
676 }
677 
678 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
679 			struct vm_area_struct *area)
680 {
681 	struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
682 	struct azx *chip = apcm->chip;
683 	if (chip->ops->pcm_mmap_prepare)
684 		chip->ops->pcm_mmap_prepare(substream, area);
685 	return snd_pcm_lib_default_mmap(substream, area);
686 }
687 
688 static const struct snd_pcm_ops azx_pcm_ops = {
689 	.open = azx_pcm_open,
690 	.close = azx_pcm_close,
691 	.ioctl = snd_pcm_lib_ioctl,
692 	.hw_params = azx_pcm_hw_params,
693 	.hw_free = azx_pcm_hw_free,
694 	.prepare = azx_pcm_prepare,
695 	.trigger = azx_pcm_trigger,
696 	.pointer = azx_pcm_pointer,
697 	.get_time_info =  azx_get_time_info,
698 	.mmap = azx_pcm_mmap,
699 	.page = snd_pcm_sgbuf_ops_page,
700 };
701 
702 static void azx_pcm_free(struct snd_pcm *pcm)
703 {
704 	struct azx_pcm *apcm = pcm->private_data;
705 	if (apcm) {
706 		list_del(&apcm->list);
707 		apcm->info->pcm = NULL;
708 		kfree(apcm);
709 	}
710 }
711 
712 #define MAX_PREALLOC_SIZE	(32 * 1024 * 1024)
713 
714 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
715 			      struct hda_pcm *cpcm)
716 {
717 	struct hdac_bus *bus = &_bus->core;
718 	struct azx *chip = bus_to_azx(bus);
719 	struct snd_pcm *pcm;
720 	struct azx_pcm *apcm;
721 	int pcm_dev = cpcm->device;
722 	unsigned int size;
723 	int s, err;
724 	int type = SNDRV_DMA_TYPE_DEV_SG;
725 
726 	list_for_each_entry(apcm, &chip->pcm_list, list) {
727 		if (apcm->pcm->device == pcm_dev) {
728 			dev_err(chip->card->dev, "PCM %d already exists\n",
729 				pcm_dev);
730 			return -EBUSY;
731 		}
732 	}
733 	err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
734 			  cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
735 			  cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
736 			  &pcm);
737 	if (err < 0)
738 		return err;
739 	strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
740 	apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
741 	if (apcm == NULL) {
742 		snd_device_free(chip->card, pcm);
743 		return -ENOMEM;
744 	}
745 	apcm->chip = chip;
746 	apcm->pcm = pcm;
747 	apcm->codec = codec;
748 	apcm->info = cpcm;
749 	pcm->private_data = apcm;
750 	pcm->private_free = azx_pcm_free;
751 	if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
752 		pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
753 	list_add_tail(&apcm->list, &chip->pcm_list);
754 	cpcm->pcm = pcm;
755 	for (s = 0; s < 2; s++) {
756 		if (cpcm->stream[s].substreams)
757 			snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
758 	}
759 	/* buffer pre-allocation */
760 	size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
761 	if (size > MAX_PREALLOC_SIZE)
762 		size = MAX_PREALLOC_SIZE;
763 	if (chip->uc_buffer)
764 		type = SNDRV_DMA_TYPE_DEV_UC_SG;
765 	snd_pcm_lib_preallocate_pages_for_all(pcm, type,
766 					      chip->card->dev,
767 					      size, MAX_PREALLOC_SIZE);
768 	return 0;
769 }
770 
771 static unsigned int azx_command_addr(u32 cmd)
772 {
773 	unsigned int addr = cmd >> 28;
774 
775 	if (addr >= AZX_MAX_CODECS) {
776 		snd_BUG();
777 		addr = 0;
778 	}
779 
780 	return addr;
781 }
782 
783 /* receive a response */
784 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
785 				 unsigned int *res)
786 {
787 	struct azx *chip = bus_to_azx(bus);
788 	struct hda_bus *hbus = &chip->bus;
789 	unsigned long timeout;
790 	unsigned long loopcounter;
791 	int do_poll = 0;
792 
793  again:
794 	timeout = jiffies + msecs_to_jiffies(1000);
795 
796 	for (loopcounter = 0;; loopcounter++) {
797 		spin_lock_irq(&bus->reg_lock);
798 		if (bus->polling_mode || do_poll)
799 			snd_hdac_bus_update_rirb(bus);
800 		if (!bus->rirb.cmds[addr]) {
801 			if (!do_poll)
802 				bus->poll_count = 0;
803 			if (res)
804 				*res = bus->rirb.res[addr]; /* the last value */
805 			spin_unlock_irq(&bus->reg_lock);
806 			return 0;
807 		}
808 		spin_unlock_irq(&bus->reg_lock);
809 		if (time_after(jiffies, timeout))
810 			break;
811 		if (hbus->needs_damn_long_delay || loopcounter > 3000)
812 			msleep(2); /* temporary workaround */
813 		else {
814 			udelay(10);
815 			cond_resched();
816 		}
817 	}
818 
819 	if (hbus->no_response_fallback)
820 		return -EIO;
821 
822 	if (!bus->polling_mode && bus->poll_count < 2) {
823 		dev_dbg(chip->card->dev,
824 			"azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
825 			bus->last_cmd[addr]);
826 		do_poll = 1;
827 		bus->poll_count++;
828 		goto again;
829 	}
830 
831 
832 	if (!bus->polling_mode) {
833 		dev_warn(chip->card->dev,
834 			 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
835 			 bus->last_cmd[addr]);
836 		bus->polling_mode = 1;
837 		goto again;
838 	}
839 
840 	if (chip->msi) {
841 		dev_warn(chip->card->dev,
842 			 "No response from codec, disabling MSI: last cmd=0x%08x\n",
843 			 bus->last_cmd[addr]);
844 		if (chip->ops->disable_msi_reset_irq &&
845 		    chip->ops->disable_msi_reset_irq(chip) < 0)
846 			return -EIO;
847 		goto again;
848 	}
849 
850 	if (chip->probing) {
851 		/* If this critical timeout happens during the codec probing
852 		 * phase, this is likely an access to a non-existing codec
853 		 * slot.  Better to return an error and reset the system.
854 		 */
855 		return -EIO;
856 	}
857 
858 	/* no fallback mechanism? */
859 	if (!chip->fallback_to_single_cmd)
860 		return -EIO;
861 
862 	/* a fatal communication error; need either to reset or to fallback
863 	 * to the single_cmd mode
864 	 */
865 	if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
866 		hbus->response_reset = 1;
867 		return -EAGAIN; /* give a chance to retry */
868 	}
869 
870 	dev_err(chip->card->dev,
871 		"azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
872 		bus->last_cmd[addr]);
873 	chip->single_cmd = 1;
874 	hbus->response_reset = 0;
875 	snd_hdac_bus_stop_cmd_io(bus);
876 	return -EIO;
877 }
878 
879 /*
880  * Use the single immediate command instead of CORB/RIRB for simplicity
881  *
882  * Note: according to Intel, this is not preferred use.  The command was
883  *       intended for the BIOS only, and may get confused with unsolicited
884  *       responses.  So, we shouldn't use it for normal operation from the
885  *       driver.
886  *       I left the codes, however, for debugging/testing purposes.
887  */
888 
889 /* receive a response */
890 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
891 {
892 	int timeout = 50;
893 
894 	while (timeout--) {
895 		/* check IRV busy bit */
896 		if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
897 			/* reuse rirb.res as the response return value */
898 			azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
899 			return 0;
900 		}
901 		udelay(1);
902 	}
903 	if (printk_ratelimit())
904 		dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
905 			azx_readw(chip, IRS));
906 	azx_bus(chip)->rirb.res[addr] = -1;
907 	return -EIO;
908 }
909 
910 /* send a command */
911 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
912 {
913 	struct azx *chip = bus_to_azx(bus);
914 	unsigned int addr = azx_command_addr(val);
915 	int timeout = 50;
916 
917 	bus->last_cmd[azx_command_addr(val)] = val;
918 	while (timeout--) {
919 		/* check ICB busy bit */
920 		if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
921 			/* Clear IRV valid bit */
922 			azx_writew(chip, IRS, azx_readw(chip, IRS) |
923 				   AZX_IRS_VALID);
924 			azx_writel(chip, IC, val);
925 			azx_writew(chip, IRS, azx_readw(chip, IRS) |
926 				   AZX_IRS_BUSY);
927 			return azx_single_wait_for_response(chip, addr);
928 		}
929 		udelay(1);
930 	}
931 	if (printk_ratelimit())
932 		dev_dbg(chip->card->dev,
933 			"send_cmd timeout: IRS=0x%x, val=0x%x\n",
934 			azx_readw(chip, IRS), val);
935 	return -EIO;
936 }
937 
938 /* receive a response */
939 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
940 				   unsigned int *res)
941 {
942 	if (res)
943 		*res = bus->rirb.res[addr];
944 	return 0;
945 }
946 
947 /*
948  * The below are the main callbacks from hda_codec.
949  *
950  * They are just the skeleton to call sub-callbacks according to the
951  * current setting of chip->single_cmd.
952  */
953 
954 /* send a command */
955 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
956 {
957 	struct azx *chip = bus_to_azx(bus);
958 
959 	if (chip->disabled)
960 		return 0;
961 	if (chip->single_cmd)
962 		return azx_single_send_cmd(bus, val);
963 	else
964 		return snd_hdac_bus_send_cmd(bus, val);
965 }
966 
967 /* get a response */
968 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
969 			    unsigned int *res)
970 {
971 	struct azx *chip = bus_to_azx(bus);
972 
973 	if (chip->disabled)
974 		return 0;
975 	if (chip->single_cmd)
976 		return azx_single_get_response(bus, addr, res);
977 	else
978 		return azx_rirb_get_response(bus, addr, res);
979 }
980 
981 static const struct hdac_bus_ops bus_core_ops = {
982 	.command = azx_send_cmd,
983 	.get_response = azx_get_response,
984 };
985 
986 #ifdef CONFIG_SND_HDA_DSP_LOADER
987 /*
988  * DSP loading code (e.g. for CA0132)
989  */
990 
991 /* use the first stream for loading DSP */
992 static struct azx_dev *
993 azx_get_dsp_loader_dev(struct azx *chip)
994 {
995 	struct hdac_bus *bus = azx_bus(chip);
996 	struct hdac_stream *s;
997 
998 	list_for_each_entry(s, &bus->stream_list, list)
999 		if (s->index == chip->playback_index_offset)
1000 			return stream_to_azx_dev(s);
1001 
1002 	return NULL;
1003 }
1004 
1005 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
1006 				   unsigned int byte_size,
1007 				   struct snd_dma_buffer *bufp)
1008 {
1009 	struct hdac_bus *bus = &codec->bus->core;
1010 	struct azx *chip = bus_to_azx(bus);
1011 	struct azx_dev *azx_dev;
1012 	struct hdac_stream *hstr;
1013 	bool saved = false;
1014 	int err;
1015 
1016 	azx_dev = azx_get_dsp_loader_dev(chip);
1017 	hstr = azx_stream(azx_dev);
1018 	spin_lock_irq(&bus->reg_lock);
1019 	if (hstr->opened) {
1020 		chip->saved_azx_dev = *azx_dev;
1021 		saved = true;
1022 	}
1023 	spin_unlock_irq(&bus->reg_lock);
1024 
1025 	err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
1026 	if (err < 0) {
1027 		spin_lock_irq(&bus->reg_lock);
1028 		if (saved)
1029 			*azx_dev = chip->saved_azx_dev;
1030 		spin_unlock_irq(&bus->reg_lock);
1031 		return err;
1032 	}
1033 
1034 	hstr->prepared = 0;
1035 	return err;
1036 }
1037 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1038 
1039 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1040 {
1041 	struct hdac_bus *bus = &codec->bus->core;
1042 	struct azx *chip = bus_to_azx(bus);
1043 	struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1044 
1045 	snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1046 }
1047 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1048 
1049 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1050 				    struct snd_dma_buffer *dmab)
1051 {
1052 	struct hdac_bus *bus = &codec->bus->core;
1053 	struct azx *chip = bus_to_azx(bus);
1054 	struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1055 	struct hdac_stream *hstr = azx_stream(azx_dev);
1056 
1057 	if (!dmab->area || !hstr->locked)
1058 		return;
1059 
1060 	snd_hdac_dsp_cleanup(hstr, dmab);
1061 	spin_lock_irq(&bus->reg_lock);
1062 	if (hstr->opened)
1063 		*azx_dev = chip->saved_azx_dev;
1064 	hstr->locked = false;
1065 	spin_unlock_irq(&bus->reg_lock);
1066 }
1067 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1068 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1069 
1070 /*
1071  * reset and start the controller registers
1072  */
1073 void azx_init_chip(struct azx *chip, bool full_reset)
1074 {
1075 	if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1076 		/* correct RINTCNT for CXT */
1077 		if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1078 			azx_writew(chip, RINTCNT, 0xc0);
1079 	}
1080 }
1081 EXPORT_SYMBOL_GPL(azx_init_chip);
1082 
1083 void azx_stop_all_streams(struct azx *chip)
1084 {
1085 	struct hdac_bus *bus = azx_bus(chip);
1086 	struct hdac_stream *s;
1087 
1088 	list_for_each_entry(s, &bus->stream_list, list)
1089 		snd_hdac_stream_stop(s);
1090 }
1091 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1092 
1093 void azx_stop_chip(struct azx *chip)
1094 {
1095 	snd_hdac_bus_stop_chip(azx_bus(chip));
1096 }
1097 EXPORT_SYMBOL_GPL(azx_stop_chip);
1098 
1099 /*
1100  * interrupt handler
1101  */
1102 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1103 {
1104 	struct azx *chip = bus_to_azx(bus);
1105 	struct azx_dev *azx_dev = stream_to_azx_dev(s);
1106 
1107 	/* check whether this IRQ is really acceptable */
1108 	if (!chip->ops->position_check ||
1109 	    chip->ops->position_check(chip, azx_dev)) {
1110 		spin_unlock(&bus->reg_lock);
1111 		snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1112 		spin_lock(&bus->reg_lock);
1113 	}
1114 }
1115 
1116 irqreturn_t azx_interrupt(int irq, void *dev_id)
1117 {
1118 	struct azx *chip = dev_id;
1119 	struct hdac_bus *bus = azx_bus(chip);
1120 	u32 status;
1121 	bool active, handled = false;
1122 	int repeat = 0; /* count for avoiding endless loop */
1123 
1124 #ifdef CONFIG_PM
1125 	if (azx_has_pm_runtime(chip))
1126 		if (!pm_runtime_active(chip->card->dev))
1127 			return IRQ_NONE;
1128 #endif
1129 
1130 	spin_lock(&bus->reg_lock);
1131 
1132 	if (chip->disabled)
1133 		goto unlock;
1134 
1135 	do {
1136 		status = azx_readl(chip, INTSTS);
1137 		if (status == 0 || status == 0xffffffff)
1138 			break;
1139 
1140 		handled = true;
1141 		active = false;
1142 		if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1143 			active = true;
1144 
1145 		/* clear rirb int */
1146 		status = azx_readb(chip, RIRBSTS);
1147 		if (status & RIRB_INT_MASK) {
1148 			active = true;
1149 			if (status & RIRB_INT_RESPONSE) {
1150 				if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1151 					udelay(80);
1152 				snd_hdac_bus_update_rirb(bus);
1153 			}
1154 			azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1155 		}
1156 	} while (active && ++repeat < 10);
1157 
1158  unlock:
1159 	spin_unlock(&bus->reg_lock);
1160 
1161 	return IRQ_RETVAL(handled);
1162 }
1163 EXPORT_SYMBOL_GPL(azx_interrupt);
1164 
1165 /*
1166  * Codec initerface
1167  */
1168 
1169 /*
1170  * Probe the given codec address
1171  */
1172 static int probe_codec(struct azx *chip, int addr)
1173 {
1174 	unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1175 		(AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1176 	struct hdac_bus *bus = azx_bus(chip);
1177 	int err;
1178 	unsigned int res = -1;
1179 
1180 	mutex_lock(&bus->cmd_mutex);
1181 	chip->probing = 1;
1182 	azx_send_cmd(bus, cmd);
1183 	err = azx_get_response(bus, addr, &res);
1184 	chip->probing = 0;
1185 	mutex_unlock(&bus->cmd_mutex);
1186 	if (err < 0 || res == -1)
1187 		return -EIO;
1188 	dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1189 	return 0;
1190 }
1191 
1192 void snd_hda_bus_reset(struct hda_bus *bus)
1193 {
1194 	struct azx *chip = bus_to_azx(&bus->core);
1195 
1196 	bus->in_reset = 1;
1197 	azx_stop_chip(chip);
1198 	azx_init_chip(chip, true);
1199 	if (bus->core.chip_init)
1200 		snd_hda_bus_reset_codecs(bus);
1201 	bus->in_reset = 0;
1202 }
1203 
1204 /* HD-audio bus initialization */
1205 int azx_bus_init(struct azx *chip, const char *model,
1206 		 const struct hdac_io_ops *io_ops)
1207 {
1208 	struct hda_bus *bus = &chip->bus;
1209 	int err;
1210 
1211 	err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
1212 				io_ops);
1213 	if (err < 0)
1214 		return err;
1215 
1216 	bus->card = chip->card;
1217 	mutex_init(&bus->prepare_mutex);
1218 	bus->pci = chip->pci;
1219 	bus->modelname = model;
1220 	bus->mixer_assigned = -1;
1221 	bus->core.snoop = azx_snoop(chip);
1222 	if (chip->get_position[0] != azx_get_pos_lpib ||
1223 	    chip->get_position[1] != azx_get_pos_lpib)
1224 		bus->core.use_posbuf = true;
1225 	bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1226 	if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1227 		bus->core.corbrp_self_clear = true;
1228 
1229 	if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1230 		bus->core.align_bdle_4k = true;
1231 
1232 	/* AMD chipsets often cause the communication stalls upon certain
1233 	 * sequence like the pin-detection.  It seems that forcing the synced
1234 	 * access works around the stall.  Grrr...
1235 	 */
1236 	if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
1237 		dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1238 		bus->core.sync_write = 1;
1239 		bus->allow_bus_reset = 1;
1240 	}
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(azx_bus_init);
1245 
1246 /* Probe codecs */
1247 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1248 {
1249 	struct hdac_bus *bus = azx_bus(chip);
1250 	int c, codecs, err;
1251 
1252 	codecs = 0;
1253 	if (!max_slots)
1254 		max_slots = AZX_DEFAULT_CODECS;
1255 
1256 	/* First try to probe all given codec slots */
1257 	for (c = 0; c < max_slots; c++) {
1258 		if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1259 			if (probe_codec(chip, c) < 0) {
1260 				/* Some BIOSen give you wrong codec addresses
1261 				 * that don't exist
1262 				 */
1263 				dev_warn(chip->card->dev,
1264 					 "Codec #%d probe error; disabling it...\n", c);
1265 				bus->codec_mask &= ~(1 << c);
1266 				/* More badly, accessing to a non-existing
1267 				 * codec often screws up the controller chip,
1268 				 * and disturbs the further communications.
1269 				 * Thus if an error occurs during probing,
1270 				 * better to reset the controller chip to
1271 				 * get back to the sanity state.
1272 				 */
1273 				azx_stop_chip(chip);
1274 				azx_init_chip(chip, true);
1275 			}
1276 		}
1277 	}
1278 
1279 	/* Then create codec instances */
1280 	for (c = 0; c < max_slots; c++) {
1281 		if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1282 			struct hda_codec *codec;
1283 			err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1284 			if (err < 0)
1285 				continue;
1286 			codec->jackpoll_interval = chip->jackpoll_interval;
1287 			codec->beep_mode = chip->beep_mode;
1288 			codecs++;
1289 		}
1290 	}
1291 	if (!codecs) {
1292 		dev_err(chip->card->dev, "no codecs initialized\n");
1293 		return -ENXIO;
1294 	}
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1298 
1299 /* configure each codec instance */
1300 int azx_codec_configure(struct azx *chip)
1301 {
1302 	struct hda_codec *codec, *next;
1303 
1304 	/* use _safe version here since snd_hda_codec_configure() deregisters
1305 	 * the device upon error and deletes itself from the bus list.
1306 	 */
1307 	list_for_each_codec_safe(codec, next, &chip->bus) {
1308 		snd_hda_codec_configure(codec);
1309 	}
1310 
1311 	if (!azx_bus(chip)->num_codecs)
1312 		return -ENODEV;
1313 	return 0;
1314 }
1315 EXPORT_SYMBOL_GPL(azx_codec_configure);
1316 
1317 static int stream_direction(struct azx *chip, unsigned char index)
1318 {
1319 	if (index >= chip->capture_index_offset &&
1320 	    index < chip->capture_index_offset + chip->capture_streams)
1321 		return SNDRV_PCM_STREAM_CAPTURE;
1322 	return SNDRV_PCM_STREAM_PLAYBACK;
1323 }
1324 
1325 /* initialize SD streams */
1326 int azx_init_streams(struct azx *chip)
1327 {
1328 	int i;
1329 	int stream_tags[2] = { 0, 0 };
1330 
1331 	/* initialize each stream (aka device)
1332 	 * assign the starting bdl address to each stream (device)
1333 	 * and initialize
1334 	 */
1335 	for (i = 0; i < chip->num_streams; i++) {
1336 		struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1337 		int dir, tag;
1338 
1339 		if (!azx_dev)
1340 			return -ENOMEM;
1341 
1342 		dir = stream_direction(chip, i);
1343 		/* stream tag must be unique throughout
1344 		 * the stream direction group,
1345 		 * valid values 1...15
1346 		 * use separate stream tag if the flag
1347 		 * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1348 		 */
1349 		if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1350 			tag = ++stream_tags[dir];
1351 		else
1352 			tag = i + 1;
1353 		snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1354 				     i, dir, tag);
1355 	}
1356 
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(azx_init_streams);
1360 
1361 void azx_free_streams(struct azx *chip)
1362 {
1363 	struct hdac_bus *bus = azx_bus(chip);
1364 	struct hdac_stream *s;
1365 
1366 	while (!list_empty(&bus->stream_list)) {
1367 		s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1368 		list_del(&s->list);
1369 		kfree(stream_to_azx_dev(s));
1370 	}
1371 }
1372 EXPORT_SYMBOL_GPL(azx_free_streams);
1373