1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Implementation of primary alsa driver code base for Intel HD Audio. 5 * 6 * Copyright(c) 2004 Intel Corporation. All rights reserved. 7 * 8 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de> 9 * PeiSen Hou <pshou@realtek.com.tw> 10 */ 11 12 #include <linux/clocksource.h> 13 #include <linux/delay.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/slab.h> 19 20 #ifdef CONFIG_X86 21 /* for art-tsc conversion */ 22 #include <asm/tsc.h> 23 #endif 24 25 #include <sound/core.h> 26 #include <sound/initval.h> 27 #include "hda_controller.h" 28 29 #define CREATE_TRACE_POINTS 30 #include "hda_controller_trace.h" 31 32 /* DSP lock helpers */ 33 #define dsp_lock(dev) snd_hdac_dsp_lock(azx_stream(dev)) 34 #define dsp_unlock(dev) snd_hdac_dsp_unlock(azx_stream(dev)) 35 #define dsp_is_locked(dev) snd_hdac_stream_is_locked(azx_stream(dev)) 36 37 /* assign a stream for the PCM */ 38 static inline struct azx_dev * 39 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream) 40 { 41 struct hdac_stream *s; 42 43 s = snd_hdac_stream_assign(azx_bus(chip), substream); 44 if (!s) 45 return NULL; 46 return stream_to_azx_dev(s); 47 } 48 49 /* release the assigned stream */ 50 static inline void azx_release_device(struct azx_dev *azx_dev) 51 { 52 snd_hdac_stream_release(azx_stream(azx_dev)); 53 } 54 55 static inline struct hda_pcm_stream * 56 to_hda_pcm_stream(struct snd_pcm_substream *substream) 57 { 58 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 59 return &apcm->info->stream[substream->stream]; 60 } 61 62 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream, 63 u64 nsec) 64 { 65 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 66 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 67 u64 codec_frames, codec_nsecs; 68 69 if (!hinfo->ops.get_delay) 70 return nsec; 71 72 codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream); 73 codec_nsecs = div_u64(codec_frames * 1000000000LL, 74 substream->runtime->rate); 75 76 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 77 return nsec + codec_nsecs; 78 79 return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0; 80 } 81 82 /* 83 * PCM ops 84 */ 85 86 static int azx_pcm_close(struct snd_pcm_substream *substream) 87 { 88 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 89 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 90 struct azx *chip = apcm->chip; 91 struct azx_dev *azx_dev = get_azx_dev(substream); 92 93 trace_azx_pcm_close(chip, azx_dev); 94 mutex_lock(&chip->open_mutex); 95 azx_release_device(azx_dev); 96 if (hinfo->ops.close) 97 hinfo->ops.close(hinfo, apcm->codec, substream); 98 snd_hda_power_down(apcm->codec); 99 mutex_unlock(&chip->open_mutex); 100 snd_hda_codec_pcm_put(apcm->info); 101 return 0; 102 } 103 104 static int azx_pcm_hw_params(struct snd_pcm_substream *substream, 105 struct snd_pcm_hw_params *hw_params) 106 { 107 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 108 struct azx *chip = apcm->chip; 109 struct azx_dev *azx_dev = get_azx_dev(substream); 110 int ret = 0; 111 112 trace_azx_pcm_hw_params(chip, azx_dev); 113 dsp_lock(azx_dev); 114 if (dsp_is_locked(azx_dev)) { 115 ret = -EBUSY; 116 goto unlock; 117 } 118 119 azx_dev->core.bufsize = 0; 120 azx_dev->core.period_bytes = 0; 121 azx_dev->core.format_val = 0; 122 123 unlock: 124 dsp_unlock(azx_dev); 125 return ret; 126 } 127 128 static int azx_pcm_hw_free(struct snd_pcm_substream *substream) 129 { 130 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 131 struct azx_dev *azx_dev = get_azx_dev(substream); 132 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 133 134 /* reset BDL address */ 135 dsp_lock(azx_dev); 136 if (!dsp_is_locked(azx_dev)) 137 snd_hdac_stream_cleanup(azx_stream(azx_dev)); 138 139 snd_hda_codec_cleanup(apcm->codec, hinfo, substream); 140 141 azx_stream(azx_dev)->prepared = 0; 142 dsp_unlock(azx_dev); 143 return 0; 144 } 145 146 static int azx_pcm_prepare(struct snd_pcm_substream *substream) 147 { 148 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 149 struct azx *chip = apcm->chip; 150 struct azx_dev *azx_dev = get_azx_dev(substream); 151 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 152 struct snd_pcm_runtime *runtime = substream->runtime; 153 unsigned int format_val, stream_tag; 154 int err; 155 struct hda_spdif_out *spdif = 156 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid); 157 unsigned short ctls = spdif ? spdif->ctls : 0; 158 159 trace_azx_pcm_prepare(chip, azx_dev); 160 dsp_lock(azx_dev); 161 if (dsp_is_locked(azx_dev)) { 162 err = -EBUSY; 163 goto unlock; 164 } 165 166 snd_hdac_stream_reset(azx_stream(azx_dev)); 167 format_val = snd_hdac_calc_stream_format(runtime->rate, 168 runtime->channels, 169 runtime->format, 170 hinfo->maxbps, 171 ctls); 172 if (!format_val) { 173 dev_err(chip->card->dev, 174 "invalid format_val, rate=%d, ch=%d, format=%d\n", 175 runtime->rate, runtime->channels, runtime->format); 176 err = -EINVAL; 177 goto unlock; 178 } 179 180 err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val); 181 if (err < 0) 182 goto unlock; 183 184 snd_hdac_stream_setup(azx_stream(azx_dev)); 185 186 stream_tag = azx_dev->core.stream_tag; 187 /* CA-IBG chips need the playback stream starting from 1 */ 188 if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) && 189 stream_tag > chip->capture_streams) 190 stream_tag -= chip->capture_streams; 191 err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag, 192 azx_dev->core.format_val, substream); 193 194 unlock: 195 if (!err) 196 azx_stream(azx_dev)->prepared = 1; 197 dsp_unlock(azx_dev); 198 return err; 199 } 200 201 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 202 { 203 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 204 struct azx *chip = apcm->chip; 205 struct hdac_bus *bus = azx_bus(chip); 206 struct azx_dev *azx_dev; 207 struct snd_pcm_substream *s; 208 struct hdac_stream *hstr; 209 bool start; 210 int sbits = 0; 211 int sync_reg; 212 213 azx_dev = get_azx_dev(substream); 214 trace_azx_pcm_trigger(chip, azx_dev, cmd); 215 216 hstr = azx_stream(azx_dev); 217 if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC) 218 sync_reg = AZX_REG_OLD_SSYNC; 219 else 220 sync_reg = AZX_REG_SSYNC; 221 222 if (dsp_is_locked(azx_dev) || !hstr->prepared) 223 return -EPIPE; 224 225 switch (cmd) { 226 case SNDRV_PCM_TRIGGER_START: 227 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 228 case SNDRV_PCM_TRIGGER_RESUME: 229 start = true; 230 break; 231 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 232 case SNDRV_PCM_TRIGGER_SUSPEND: 233 case SNDRV_PCM_TRIGGER_STOP: 234 start = false; 235 break; 236 default: 237 return -EINVAL; 238 } 239 240 snd_pcm_group_for_each_entry(s, substream) { 241 if (s->pcm->card != substream->pcm->card) 242 continue; 243 azx_dev = get_azx_dev(s); 244 sbits |= 1 << azx_dev->core.index; 245 snd_pcm_trigger_done(s, substream); 246 } 247 248 spin_lock(&bus->reg_lock); 249 250 /* first, set SYNC bits of corresponding streams */ 251 snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg); 252 253 snd_pcm_group_for_each_entry(s, substream) { 254 if (s->pcm->card != substream->pcm->card) 255 continue; 256 azx_dev = get_azx_dev(s); 257 if (start) { 258 azx_dev->insufficient = 1; 259 snd_hdac_stream_start(azx_stream(azx_dev), true); 260 } else { 261 snd_hdac_stream_stop(azx_stream(azx_dev)); 262 } 263 } 264 spin_unlock(&bus->reg_lock); 265 266 snd_hdac_stream_sync(hstr, start, sbits); 267 268 spin_lock(&bus->reg_lock); 269 /* reset SYNC bits */ 270 snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg); 271 if (start) 272 snd_hdac_stream_timecounter_init(hstr, sbits); 273 spin_unlock(&bus->reg_lock); 274 return 0; 275 } 276 277 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev) 278 { 279 return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev)); 280 } 281 EXPORT_SYMBOL_GPL(azx_get_pos_lpib); 282 283 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev) 284 { 285 return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev)); 286 } 287 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf); 288 289 unsigned int azx_get_position(struct azx *chip, 290 struct azx_dev *azx_dev) 291 { 292 struct snd_pcm_substream *substream = azx_dev->core.substream; 293 unsigned int pos; 294 int stream = substream->stream; 295 int delay = 0; 296 297 if (chip->get_position[stream]) 298 pos = chip->get_position[stream](chip, azx_dev); 299 else /* use the position buffer as default */ 300 pos = azx_get_pos_posbuf(chip, azx_dev); 301 302 if (pos >= azx_dev->core.bufsize) 303 pos = 0; 304 305 if (substream->runtime) { 306 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 307 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 308 309 if (chip->get_delay[stream]) 310 delay += chip->get_delay[stream](chip, azx_dev, pos); 311 if (hinfo->ops.get_delay) 312 delay += hinfo->ops.get_delay(hinfo, apcm->codec, 313 substream); 314 substream->runtime->delay = delay; 315 } 316 317 trace_azx_get_position(chip, azx_dev, pos, delay); 318 return pos; 319 } 320 EXPORT_SYMBOL_GPL(azx_get_position); 321 322 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream) 323 { 324 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 325 struct azx *chip = apcm->chip; 326 struct azx_dev *azx_dev = get_azx_dev(substream); 327 return bytes_to_frames(substream->runtime, 328 azx_get_position(chip, azx_dev)); 329 } 330 331 /* 332 * azx_scale64: Scale base by mult/div while not overflowing sanely 333 * 334 * Derived from scale64_check_overflow in kernel/time/timekeeping.c 335 * 336 * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which 337 * is about 384307 ie ~4.5 days. 338 * 339 * This scales the calculation so that overflow will happen but after 2^64 / 340 * 48000 secs, which is pretty large! 341 * 342 * In caln below: 343 * base may overflow, but since there isn’t any additional division 344 * performed on base it’s OK 345 * rem can’t overflow because both are 32-bit values 346 */ 347 348 #ifdef CONFIG_X86 349 static u64 azx_scale64(u64 base, u32 num, u32 den) 350 { 351 u64 rem; 352 353 rem = do_div(base, den); 354 355 base *= num; 356 rem *= num; 357 358 do_div(rem, den); 359 360 return base + rem; 361 } 362 363 static int azx_get_sync_time(ktime_t *device, 364 struct system_counterval_t *system, void *ctx) 365 { 366 struct snd_pcm_substream *substream = ctx; 367 struct azx_dev *azx_dev = get_azx_dev(substream); 368 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 369 struct azx *chip = apcm->chip; 370 struct snd_pcm_runtime *runtime; 371 u64 ll_counter, ll_counter_l, ll_counter_h; 372 u64 tsc_counter, tsc_counter_l, tsc_counter_h; 373 u32 wallclk_ctr, wallclk_cycles; 374 bool direction; 375 u32 dma_select; 376 u32 timeout; 377 u32 retry_count = 0; 378 379 runtime = substream->runtime; 380 381 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 382 direction = 1; 383 else 384 direction = 0; 385 386 /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */ 387 do { 388 timeout = 100; 389 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) | 390 (azx_dev->core.stream_tag - 1); 391 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select); 392 393 /* Enable the capture */ 394 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK); 395 396 while (timeout) { 397 if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) & 398 GTSCC_TSCCD_MASK) 399 break; 400 401 timeout--; 402 } 403 404 if (!timeout) { 405 dev_err(chip->card->dev, "GTSCC capture Timedout!\n"); 406 return -EIO; 407 } 408 409 /* Read wall clock counter */ 410 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC); 411 412 /* Read TSC counter */ 413 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL); 414 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU); 415 416 /* Read Link counter */ 417 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL); 418 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU); 419 420 /* Ack: registers read done */ 421 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT); 422 423 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) | 424 tsc_counter_l; 425 426 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l; 427 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK; 428 429 /* 430 * An error occurs near frame "rollover". The clocks in 431 * frame value indicates whether this error may have 432 * occurred. Here we use the value of 10 i.e., 433 * HDA_MAX_CYCLE_OFFSET 434 */ 435 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET 436 && wallclk_cycles > HDA_MAX_CYCLE_OFFSET) 437 break; 438 439 /* 440 * Sleep before we read again, else we may again get 441 * value near to MAX_CYCLE. Try to sleep for different 442 * amount of time so we dont hit the same number again 443 */ 444 udelay(retry_count++); 445 446 } while (retry_count != HDA_MAX_CYCLE_READ_RETRY); 447 448 if (retry_count == HDA_MAX_CYCLE_READ_RETRY) { 449 dev_err_ratelimited(chip->card->dev, 450 "Error in WALFCC cycle count\n"); 451 return -EIO; 452 } 453 454 *device = ns_to_ktime(azx_scale64(ll_counter, 455 NSEC_PER_SEC, runtime->rate)); 456 *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) / 457 ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate)); 458 459 *system = convert_art_to_tsc(tsc_counter); 460 461 return 0; 462 } 463 464 #else 465 static int azx_get_sync_time(ktime_t *device, 466 struct system_counterval_t *system, void *ctx) 467 { 468 return -ENXIO; 469 } 470 #endif 471 472 static int azx_get_crosststamp(struct snd_pcm_substream *substream, 473 struct system_device_crosststamp *xtstamp) 474 { 475 return get_device_system_crosststamp(azx_get_sync_time, 476 substream, NULL, xtstamp); 477 } 478 479 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime, 480 struct snd_pcm_audio_tstamp_config *ts) 481 { 482 if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME) 483 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED) 484 return true; 485 486 return false; 487 } 488 489 static int azx_get_time_info(struct snd_pcm_substream *substream, 490 struct timespec64 *system_ts, struct timespec64 *audio_ts, 491 struct snd_pcm_audio_tstamp_config *audio_tstamp_config, 492 struct snd_pcm_audio_tstamp_report *audio_tstamp_report) 493 { 494 struct azx_dev *azx_dev = get_azx_dev(substream); 495 struct snd_pcm_runtime *runtime = substream->runtime; 496 struct system_device_crosststamp xtstamp; 497 int ret; 498 u64 nsec; 499 500 if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) && 501 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) { 502 503 snd_pcm_gettime(substream->runtime, system_ts); 504 505 nsec = timecounter_read(&azx_dev->core.tc); 506 nsec = div_u64(nsec, 3); /* can be optimized */ 507 if (audio_tstamp_config->report_delay) 508 nsec = azx_adjust_codec_delay(substream, nsec); 509 510 *audio_ts = ns_to_timespec64(nsec); 511 512 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK; 513 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */ 514 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */ 515 516 } else if (is_link_time_supported(runtime, audio_tstamp_config)) { 517 518 ret = azx_get_crosststamp(substream, &xtstamp); 519 if (ret) 520 return ret; 521 522 switch (runtime->tstamp_type) { 523 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC: 524 return -EINVAL; 525 526 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW: 527 *system_ts = ktime_to_timespec64(xtstamp.sys_monoraw); 528 break; 529 530 default: 531 *system_ts = ktime_to_timespec64(xtstamp.sys_realtime); 532 break; 533 534 } 535 536 *audio_ts = ktime_to_timespec64(xtstamp.device); 537 538 audio_tstamp_report->actual_type = 539 SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED; 540 audio_tstamp_report->accuracy_report = 1; 541 /* 24 MHz WallClock == 42ns resolution */ 542 audio_tstamp_report->accuracy = 42; 543 544 } else { 545 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT; 546 } 547 548 return 0; 549 } 550 551 static const struct snd_pcm_hardware azx_pcm_hw = { 552 .info = (SNDRV_PCM_INFO_MMAP | 553 SNDRV_PCM_INFO_INTERLEAVED | 554 SNDRV_PCM_INFO_BLOCK_TRANSFER | 555 SNDRV_PCM_INFO_MMAP_VALID | 556 /* No full-resume yet implemented */ 557 /* SNDRV_PCM_INFO_RESUME |*/ 558 SNDRV_PCM_INFO_PAUSE | 559 SNDRV_PCM_INFO_SYNC_START | 560 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */ 561 SNDRV_PCM_INFO_HAS_LINK_ATIME | 562 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), 563 .formats = SNDRV_PCM_FMTBIT_S16_LE, 564 .rates = SNDRV_PCM_RATE_48000, 565 .rate_min = 48000, 566 .rate_max = 48000, 567 .channels_min = 2, 568 .channels_max = 2, 569 .buffer_bytes_max = AZX_MAX_BUF_SIZE, 570 .period_bytes_min = 128, 571 .period_bytes_max = AZX_MAX_BUF_SIZE / 2, 572 .periods_min = 2, 573 .periods_max = AZX_MAX_FRAG, 574 .fifo_size = 0, 575 }; 576 577 static int azx_pcm_open(struct snd_pcm_substream *substream) 578 { 579 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 580 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 581 struct azx *chip = apcm->chip; 582 struct azx_dev *azx_dev; 583 struct snd_pcm_runtime *runtime = substream->runtime; 584 int err; 585 int buff_step; 586 587 snd_hda_codec_pcm_get(apcm->info); 588 mutex_lock(&chip->open_mutex); 589 azx_dev = azx_assign_device(chip, substream); 590 trace_azx_pcm_open(chip, azx_dev); 591 if (azx_dev == NULL) { 592 err = -EBUSY; 593 goto unlock; 594 } 595 runtime->private_data = azx_dev; 596 597 runtime->hw = azx_pcm_hw; 598 if (chip->gts_present) 599 runtime->hw.info |= SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME; 600 runtime->hw.channels_min = hinfo->channels_min; 601 runtime->hw.channels_max = hinfo->channels_max; 602 runtime->hw.formats = hinfo->formats; 603 runtime->hw.rates = hinfo->rates; 604 snd_pcm_limit_hw_rates(runtime); 605 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 606 607 /* avoid wrap-around with wall-clock */ 608 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME, 609 20, 610 178000000); 611 612 /* by some reason, the playback stream stalls on PulseAudio with 613 * tsched=1 when a capture stream triggers. Until we figure out the 614 * real cause, disable tsched mode by telling the PCM info flag. 615 */ 616 if (chip->driver_caps & AZX_DCAPS_AMD_WORKAROUND) 617 runtime->hw.info |= SNDRV_PCM_INFO_BATCH; 618 619 if (chip->align_buffer_size) 620 /* constrain buffer sizes to be multiple of 128 621 bytes. This is more efficient in terms of memory 622 access but isn't required by the HDA spec and 623 prevents users from specifying exact period/buffer 624 sizes. For example for 44.1kHz, a period size set 625 to 20ms will be rounded to 19.59ms. */ 626 buff_step = 128; 627 else 628 /* Don't enforce steps on buffer sizes, still need to 629 be multiple of 4 bytes (HDA spec). Tested on Intel 630 HDA controllers, may not work on all devices where 631 option needs to be disabled */ 632 buff_step = 4; 633 634 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 635 buff_step); 636 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 637 buff_step); 638 snd_hda_power_up(apcm->codec); 639 if (hinfo->ops.open) 640 err = hinfo->ops.open(hinfo, apcm->codec, substream); 641 else 642 err = -ENODEV; 643 if (err < 0) { 644 azx_release_device(azx_dev); 645 goto powerdown; 646 } 647 snd_pcm_limit_hw_rates(runtime); 648 /* sanity check */ 649 if (snd_BUG_ON(!runtime->hw.channels_min) || 650 snd_BUG_ON(!runtime->hw.channels_max) || 651 snd_BUG_ON(!runtime->hw.formats) || 652 snd_BUG_ON(!runtime->hw.rates)) { 653 azx_release_device(azx_dev); 654 if (hinfo->ops.close) 655 hinfo->ops.close(hinfo, apcm->codec, substream); 656 err = -EINVAL; 657 goto powerdown; 658 } 659 660 /* disable LINK_ATIME timestamps for capture streams 661 until we figure out how to handle digital inputs */ 662 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { 663 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */ 664 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME; 665 } 666 667 snd_pcm_set_sync(substream); 668 mutex_unlock(&chip->open_mutex); 669 return 0; 670 671 powerdown: 672 snd_hda_power_down(apcm->codec); 673 unlock: 674 mutex_unlock(&chip->open_mutex); 675 snd_hda_codec_pcm_put(apcm->info); 676 return err; 677 } 678 679 static int azx_pcm_mmap(struct snd_pcm_substream *substream, 680 struct vm_area_struct *area) 681 { 682 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 683 struct azx *chip = apcm->chip; 684 if (chip->ops->pcm_mmap_prepare) 685 chip->ops->pcm_mmap_prepare(substream, area); 686 return snd_pcm_lib_default_mmap(substream, area); 687 } 688 689 static const struct snd_pcm_ops azx_pcm_ops = { 690 .open = azx_pcm_open, 691 .close = azx_pcm_close, 692 .hw_params = azx_pcm_hw_params, 693 .hw_free = azx_pcm_hw_free, 694 .prepare = azx_pcm_prepare, 695 .trigger = azx_pcm_trigger, 696 .pointer = azx_pcm_pointer, 697 .get_time_info = azx_get_time_info, 698 .mmap = azx_pcm_mmap, 699 }; 700 701 static void azx_pcm_free(struct snd_pcm *pcm) 702 { 703 struct azx_pcm *apcm = pcm->private_data; 704 if (apcm) { 705 list_del(&apcm->list); 706 apcm->info->pcm = NULL; 707 kfree(apcm); 708 } 709 } 710 711 #define MAX_PREALLOC_SIZE (32 * 1024 * 1024) 712 713 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec, 714 struct hda_pcm *cpcm) 715 { 716 struct hdac_bus *bus = &_bus->core; 717 struct azx *chip = bus_to_azx(bus); 718 struct snd_pcm *pcm; 719 struct azx_pcm *apcm; 720 int pcm_dev = cpcm->device; 721 unsigned int size; 722 int s, err; 723 int type = SNDRV_DMA_TYPE_DEV_SG; 724 725 list_for_each_entry(apcm, &chip->pcm_list, list) { 726 if (apcm->pcm->device == pcm_dev) { 727 dev_err(chip->card->dev, "PCM %d already exists\n", 728 pcm_dev); 729 return -EBUSY; 730 } 731 } 732 err = snd_pcm_new(chip->card, cpcm->name, pcm_dev, 733 cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams, 734 cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams, 735 &pcm); 736 if (err < 0) 737 return err; 738 strlcpy(pcm->name, cpcm->name, sizeof(pcm->name)); 739 apcm = kzalloc(sizeof(*apcm), GFP_KERNEL); 740 if (apcm == NULL) { 741 snd_device_free(chip->card, pcm); 742 return -ENOMEM; 743 } 744 apcm->chip = chip; 745 apcm->pcm = pcm; 746 apcm->codec = codec; 747 apcm->info = cpcm; 748 pcm->private_data = apcm; 749 pcm->private_free = azx_pcm_free; 750 if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM) 751 pcm->dev_class = SNDRV_PCM_CLASS_MODEM; 752 list_add_tail(&apcm->list, &chip->pcm_list); 753 cpcm->pcm = pcm; 754 for (s = 0; s < 2; s++) { 755 if (cpcm->stream[s].substreams) 756 snd_pcm_set_ops(pcm, s, &azx_pcm_ops); 757 } 758 /* buffer pre-allocation */ 759 size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024; 760 if (size > MAX_PREALLOC_SIZE) 761 size = MAX_PREALLOC_SIZE; 762 if (chip->uc_buffer) 763 type = SNDRV_DMA_TYPE_DEV_UC_SG; 764 snd_pcm_set_managed_buffer_all(pcm, type, chip->card->dev, 765 size, MAX_PREALLOC_SIZE); 766 return 0; 767 } 768 769 static unsigned int azx_command_addr(u32 cmd) 770 { 771 unsigned int addr = cmd >> 28; 772 773 if (addr >= AZX_MAX_CODECS) { 774 snd_BUG(); 775 addr = 0; 776 } 777 778 return addr; 779 } 780 781 /* receive a response */ 782 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr, 783 unsigned int *res) 784 { 785 struct azx *chip = bus_to_azx(bus); 786 struct hda_bus *hbus = &chip->bus; 787 int err; 788 789 again: 790 err = snd_hdac_bus_get_response(bus, addr, res); 791 if (!err) 792 return 0; 793 794 if (hbus->no_response_fallback) 795 return -EIO; 796 797 if (!bus->polling_mode) { 798 dev_warn(chip->card->dev, 799 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n", 800 bus->last_cmd[addr]); 801 bus->polling_mode = 1; 802 goto again; 803 } 804 805 if (chip->msi) { 806 dev_warn(chip->card->dev, 807 "No response from codec, disabling MSI: last cmd=0x%08x\n", 808 bus->last_cmd[addr]); 809 if (chip->ops->disable_msi_reset_irq && 810 chip->ops->disable_msi_reset_irq(chip) < 0) 811 return -EIO; 812 goto again; 813 } 814 815 if (chip->probing) { 816 /* If this critical timeout happens during the codec probing 817 * phase, this is likely an access to a non-existing codec 818 * slot. Better to return an error and reset the system. 819 */ 820 return -EIO; 821 } 822 823 /* no fallback mechanism? */ 824 if (!chip->fallback_to_single_cmd) 825 return -EIO; 826 827 /* a fatal communication error; need either to reset or to fallback 828 * to the single_cmd mode 829 */ 830 if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) { 831 hbus->response_reset = 1; 832 dev_err(chip->card->dev, 833 "No response from codec, resetting bus: last cmd=0x%08x\n", 834 bus->last_cmd[addr]); 835 return -EAGAIN; /* give a chance to retry */ 836 } 837 838 dev_err(chip->card->dev, 839 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n", 840 bus->last_cmd[addr]); 841 chip->single_cmd = 1; 842 hbus->response_reset = 0; 843 snd_hdac_bus_stop_cmd_io(bus); 844 return -EIO; 845 } 846 847 /* 848 * Use the single immediate command instead of CORB/RIRB for simplicity 849 * 850 * Note: according to Intel, this is not preferred use. The command was 851 * intended for the BIOS only, and may get confused with unsolicited 852 * responses. So, we shouldn't use it for normal operation from the 853 * driver. 854 * I left the codes, however, for debugging/testing purposes. 855 */ 856 857 /* receive a response */ 858 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr) 859 { 860 int timeout = 50; 861 862 while (timeout--) { 863 /* check IRV busy bit */ 864 if (azx_readw(chip, IRS) & AZX_IRS_VALID) { 865 /* reuse rirb.res as the response return value */ 866 azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR); 867 return 0; 868 } 869 udelay(1); 870 } 871 if (printk_ratelimit()) 872 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n", 873 azx_readw(chip, IRS)); 874 azx_bus(chip)->rirb.res[addr] = -1; 875 return -EIO; 876 } 877 878 /* send a command */ 879 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val) 880 { 881 struct azx *chip = bus_to_azx(bus); 882 unsigned int addr = azx_command_addr(val); 883 int timeout = 50; 884 885 bus->last_cmd[azx_command_addr(val)] = val; 886 while (timeout--) { 887 /* check ICB busy bit */ 888 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) { 889 /* Clear IRV valid bit */ 890 azx_writew(chip, IRS, azx_readw(chip, IRS) | 891 AZX_IRS_VALID); 892 azx_writel(chip, IC, val); 893 azx_writew(chip, IRS, azx_readw(chip, IRS) | 894 AZX_IRS_BUSY); 895 return azx_single_wait_for_response(chip, addr); 896 } 897 udelay(1); 898 } 899 if (printk_ratelimit()) 900 dev_dbg(chip->card->dev, 901 "send_cmd timeout: IRS=0x%x, val=0x%x\n", 902 azx_readw(chip, IRS), val); 903 return -EIO; 904 } 905 906 /* receive a response */ 907 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr, 908 unsigned int *res) 909 { 910 if (res) 911 *res = bus->rirb.res[addr]; 912 return 0; 913 } 914 915 /* 916 * The below are the main callbacks from hda_codec. 917 * 918 * They are just the skeleton to call sub-callbacks according to the 919 * current setting of chip->single_cmd. 920 */ 921 922 /* send a command */ 923 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val) 924 { 925 struct azx *chip = bus_to_azx(bus); 926 927 if (chip->disabled) 928 return 0; 929 if (chip->single_cmd) 930 return azx_single_send_cmd(bus, val); 931 else 932 return snd_hdac_bus_send_cmd(bus, val); 933 } 934 935 /* get a response */ 936 static int azx_get_response(struct hdac_bus *bus, unsigned int addr, 937 unsigned int *res) 938 { 939 struct azx *chip = bus_to_azx(bus); 940 941 if (chip->disabled) 942 return 0; 943 if (chip->single_cmd) 944 return azx_single_get_response(bus, addr, res); 945 else 946 return azx_rirb_get_response(bus, addr, res); 947 } 948 949 static const struct hdac_bus_ops bus_core_ops = { 950 .command = azx_send_cmd, 951 .get_response = azx_get_response, 952 }; 953 954 #ifdef CONFIG_SND_HDA_DSP_LOADER 955 /* 956 * DSP loading code (e.g. for CA0132) 957 */ 958 959 /* use the first stream for loading DSP */ 960 static struct azx_dev * 961 azx_get_dsp_loader_dev(struct azx *chip) 962 { 963 struct hdac_bus *bus = azx_bus(chip); 964 struct hdac_stream *s; 965 966 list_for_each_entry(s, &bus->stream_list, list) 967 if (s->index == chip->playback_index_offset) 968 return stream_to_azx_dev(s); 969 970 return NULL; 971 } 972 973 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format, 974 unsigned int byte_size, 975 struct snd_dma_buffer *bufp) 976 { 977 struct hdac_bus *bus = &codec->bus->core; 978 struct azx *chip = bus_to_azx(bus); 979 struct azx_dev *azx_dev; 980 struct hdac_stream *hstr; 981 bool saved = false; 982 int err; 983 984 azx_dev = azx_get_dsp_loader_dev(chip); 985 hstr = azx_stream(azx_dev); 986 spin_lock_irq(&bus->reg_lock); 987 if (hstr->opened) { 988 chip->saved_azx_dev = *azx_dev; 989 saved = true; 990 } 991 spin_unlock_irq(&bus->reg_lock); 992 993 err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp); 994 if (err < 0) { 995 spin_lock_irq(&bus->reg_lock); 996 if (saved) 997 *azx_dev = chip->saved_azx_dev; 998 spin_unlock_irq(&bus->reg_lock); 999 return err; 1000 } 1001 1002 hstr->prepared = 0; 1003 return err; 1004 } 1005 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare); 1006 1007 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start) 1008 { 1009 struct hdac_bus *bus = &codec->bus->core; 1010 struct azx *chip = bus_to_azx(bus); 1011 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip); 1012 1013 snd_hdac_dsp_trigger(azx_stream(azx_dev), start); 1014 } 1015 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger); 1016 1017 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec, 1018 struct snd_dma_buffer *dmab) 1019 { 1020 struct hdac_bus *bus = &codec->bus->core; 1021 struct azx *chip = bus_to_azx(bus); 1022 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip); 1023 struct hdac_stream *hstr = azx_stream(azx_dev); 1024 1025 if (!dmab->area || !hstr->locked) 1026 return; 1027 1028 snd_hdac_dsp_cleanup(hstr, dmab); 1029 spin_lock_irq(&bus->reg_lock); 1030 if (hstr->opened) 1031 *azx_dev = chip->saved_azx_dev; 1032 hstr->locked = false; 1033 spin_unlock_irq(&bus->reg_lock); 1034 } 1035 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup); 1036 #endif /* CONFIG_SND_HDA_DSP_LOADER */ 1037 1038 /* 1039 * reset and start the controller registers 1040 */ 1041 void azx_init_chip(struct azx *chip, bool full_reset) 1042 { 1043 if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) { 1044 /* correct RINTCNT for CXT */ 1045 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) 1046 azx_writew(chip, RINTCNT, 0xc0); 1047 } 1048 } 1049 EXPORT_SYMBOL_GPL(azx_init_chip); 1050 1051 void azx_stop_all_streams(struct azx *chip) 1052 { 1053 struct hdac_bus *bus = azx_bus(chip); 1054 struct hdac_stream *s; 1055 1056 list_for_each_entry(s, &bus->stream_list, list) 1057 snd_hdac_stream_stop(s); 1058 } 1059 EXPORT_SYMBOL_GPL(azx_stop_all_streams); 1060 1061 void azx_stop_chip(struct azx *chip) 1062 { 1063 snd_hdac_bus_stop_chip(azx_bus(chip)); 1064 } 1065 EXPORT_SYMBOL_GPL(azx_stop_chip); 1066 1067 /* 1068 * interrupt handler 1069 */ 1070 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s) 1071 { 1072 struct azx *chip = bus_to_azx(bus); 1073 struct azx_dev *azx_dev = stream_to_azx_dev(s); 1074 1075 /* check whether this IRQ is really acceptable */ 1076 if (!chip->ops->position_check || 1077 chip->ops->position_check(chip, azx_dev)) { 1078 spin_unlock(&bus->reg_lock); 1079 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream); 1080 spin_lock(&bus->reg_lock); 1081 } 1082 } 1083 1084 irqreturn_t azx_interrupt(int irq, void *dev_id) 1085 { 1086 struct azx *chip = dev_id; 1087 struct hdac_bus *bus = azx_bus(chip); 1088 u32 status; 1089 bool active, handled = false; 1090 int repeat = 0; /* count for avoiding endless loop */ 1091 1092 #ifdef CONFIG_PM 1093 if (azx_has_pm_runtime(chip)) 1094 if (!pm_runtime_active(chip->card->dev)) 1095 return IRQ_NONE; 1096 #endif 1097 1098 spin_lock(&bus->reg_lock); 1099 1100 if (chip->disabled) 1101 goto unlock; 1102 1103 do { 1104 status = azx_readl(chip, INTSTS); 1105 if (status == 0 || status == 0xffffffff) 1106 break; 1107 1108 handled = true; 1109 active = false; 1110 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update)) 1111 active = true; 1112 1113 status = azx_readb(chip, RIRBSTS); 1114 if (status & RIRB_INT_MASK) { 1115 /* 1116 * Clearing the interrupt status here ensures that no 1117 * interrupt gets masked after the RIRB wp is read in 1118 * snd_hdac_bus_update_rirb. This avoids a possible 1119 * race condition where codec response in RIRB may 1120 * remain unserviced by IRQ, eventually falling back 1121 * to polling mode in azx_rirb_get_response. 1122 */ 1123 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK); 1124 active = true; 1125 if (status & RIRB_INT_RESPONSE) { 1126 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) 1127 udelay(80); 1128 snd_hdac_bus_update_rirb(bus); 1129 } 1130 } 1131 } while (active && ++repeat < 10); 1132 1133 unlock: 1134 spin_unlock(&bus->reg_lock); 1135 1136 return IRQ_RETVAL(handled); 1137 } 1138 EXPORT_SYMBOL_GPL(azx_interrupt); 1139 1140 /* 1141 * Codec initerface 1142 */ 1143 1144 /* 1145 * Probe the given codec address 1146 */ 1147 static int probe_codec(struct azx *chip, int addr) 1148 { 1149 unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) | 1150 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID; 1151 struct hdac_bus *bus = azx_bus(chip); 1152 int err; 1153 unsigned int res = -1; 1154 1155 mutex_lock(&bus->cmd_mutex); 1156 chip->probing = 1; 1157 azx_send_cmd(bus, cmd); 1158 err = azx_get_response(bus, addr, &res); 1159 chip->probing = 0; 1160 mutex_unlock(&bus->cmd_mutex); 1161 if (err < 0 || res == -1) 1162 return -EIO; 1163 dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr); 1164 return 0; 1165 } 1166 1167 void snd_hda_bus_reset(struct hda_bus *bus) 1168 { 1169 struct azx *chip = bus_to_azx(&bus->core); 1170 1171 bus->in_reset = 1; 1172 azx_stop_chip(chip); 1173 azx_init_chip(chip, true); 1174 if (bus->core.chip_init) 1175 snd_hda_bus_reset_codecs(bus); 1176 bus->in_reset = 0; 1177 } 1178 1179 /* HD-audio bus initialization */ 1180 int azx_bus_init(struct azx *chip, const char *model) 1181 { 1182 struct hda_bus *bus = &chip->bus; 1183 int err; 1184 1185 err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops); 1186 if (err < 0) 1187 return err; 1188 1189 bus->card = chip->card; 1190 mutex_init(&bus->prepare_mutex); 1191 bus->pci = chip->pci; 1192 bus->modelname = model; 1193 bus->mixer_assigned = -1; 1194 bus->core.snoop = azx_snoop(chip); 1195 if (chip->get_position[0] != azx_get_pos_lpib || 1196 chip->get_position[1] != azx_get_pos_lpib) 1197 bus->core.use_posbuf = true; 1198 bus->core.bdl_pos_adj = chip->bdl_pos_adj; 1199 if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR) 1200 bus->core.corbrp_self_clear = true; 1201 1202 if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY) 1203 bus->core.align_bdle_4k = true; 1204 1205 /* AMD chipsets often cause the communication stalls upon certain 1206 * sequence like the pin-detection. It seems that forcing the synced 1207 * access works around the stall. Grrr... 1208 */ 1209 if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) { 1210 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n"); 1211 bus->core.sync_write = 1; 1212 bus->allow_bus_reset = 1; 1213 } 1214 1215 return 0; 1216 } 1217 EXPORT_SYMBOL_GPL(azx_bus_init); 1218 1219 /* Probe codecs */ 1220 int azx_probe_codecs(struct azx *chip, unsigned int max_slots) 1221 { 1222 struct hdac_bus *bus = azx_bus(chip); 1223 int c, codecs, err; 1224 1225 codecs = 0; 1226 if (!max_slots) 1227 max_slots = AZX_DEFAULT_CODECS; 1228 1229 /* First try to probe all given codec slots */ 1230 for (c = 0; c < max_slots; c++) { 1231 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) { 1232 if (probe_codec(chip, c) < 0) { 1233 /* Some BIOSen give you wrong codec addresses 1234 * that don't exist 1235 */ 1236 dev_warn(chip->card->dev, 1237 "Codec #%d probe error; disabling it...\n", c); 1238 bus->codec_mask &= ~(1 << c); 1239 /* More badly, accessing to a non-existing 1240 * codec often screws up the controller chip, 1241 * and disturbs the further communications. 1242 * Thus if an error occurs during probing, 1243 * better to reset the controller chip to 1244 * get back to the sanity state. 1245 */ 1246 azx_stop_chip(chip); 1247 azx_init_chip(chip, true); 1248 } 1249 } 1250 } 1251 1252 /* Then create codec instances */ 1253 for (c = 0; c < max_slots; c++) { 1254 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) { 1255 struct hda_codec *codec; 1256 err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec); 1257 if (err < 0) 1258 continue; 1259 codec->jackpoll_interval = chip->jackpoll_interval; 1260 codec->beep_mode = chip->beep_mode; 1261 codecs++; 1262 } 1263 } 1264 if (!codecs) { 1265 dev_err(chip->card->dev, "no codecs initialized\n"); 1266 return -ENXIO; 1267 } 1268 return 0; 1269 } 1270 EXPORT_SYMBOL_GPL(azx_probe_codecs); 1271 1272 /* configure each codec instance */ 1273 int azx_codec_configure(struct azx *chip) 1274 { 1275 struct hda_codec *codec, *next; 1276 1277 /* use _safe version here since snd_hda_codec_configure() deregisters 1278 * the device upon error and deletes itself from the bus list. 1279 */ 1280 list_for_each_codec_safe(codec, next, &chip->bus) { 1281 snd_hda_codec_configure(codec); 1282 } 1283 1284 if (!azx_bus(chip)->num_codecs) 1285 return -ENODEV; 1286 return 0; 1287 } 1288 EXPORT_SYMBOL_GPL(azx_codec_configure); 1289 1290 static int stream_direction(struct azx *chip, unsigned char index) 1291 { 1292 if (index >= chip->capture_index_offset && 1293 index < chip->capture_index_offset + chip->capture_streams) 1294 return SNDRV_PCM_STREAM_CAPTURE; 1295 return SNDRV_PCM_STREAM_PLAYBACK; 1296 } 1297 1298 /* initialize SD streams */ 1299 int azx_init_streams(struct azx *chip) 1300 { 1301 int i; 1302 int stream_tags[2] = { 0, 0 }; 1303 1304 /* initialize each stream (aka device) 1305 * assign the starting bdl address to each stream (device) 1306 * and initialize 1307 */ 1308 for (i = 0; i < chip->num_streams; i++) { 1309 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL); 1310 int dir, tag; 1311 1312 if (!azx_dev) 1313 return -ENOMEM; 1314 1315 dir = stream_direction(chip, i); 1316 /* stream tag must be unique throughout 1317 * the stream direction group, 1318 * valid values 1...15 1319 * use separate stream tag if the flag 1320 * AZX_DCAPS_SEPARATE_STREAM_TAG is used 1321 */ 1322 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG) 1323 tag = ++stream_tags[dir]; 1324 else 1325 tag = i + 1; 1326 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev), 1327 i, dir, tag); 1328 } 1329 1330 return 0; 1331 } 1332 EXPORT_SYMBOL_GPL(azx_init_streams); 1333 1334 void azx_free_streams(struct azx *chip) 1335 { 1336 struct hdac_bus *bus = azx_bus(chip); 1337 struct hdac_stream *s; 1338 1339 while (!list_empty(&bus->stream_list)) { 1340 s = list_first_entry(&bus->stream_list, struct hdac_stream, list); 1341 list_del(&s->list); 1342 kfree(stream_to_azx_dev(s)); 1343 } 1344 } 1345 EXPORT_SYMBOL_GPL(azx_free_streams); 1346