xref: /openbmc/linux/sound/pci/hda/hda_codec.c (revision a1e58bbd)
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mutex.h>
27 #include <sound/core.h>
28 #include "hda_codec.h"
29 #include <sound/asoundef.h>
30 #include <sound/tlv.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33 #include <sound/hda_hwdep.h>
34 
35 #ifdef CONFIG_SND_HDA_POWER_SAVE
36 /* define this option here to hide as static */
37 static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
38 module_param(power_save, int, 0644);
39 MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
40 		 "(in second, 0 = disable).");
41 #endif
42 
43 /*
44  * vendor / preset table
45  */
46 
47 struct hda_vendor_id {
48 	unsigned int id;
49 	const char *name;
50 };
51 
52 /* codec vendor labels */
53 static struct hda_vendor_id hda_vendor_ids[] = {
54 	{ 0x10ec, "Realtek" },
55 	{ 0x1057, "Motorola" },
56 	{ 0x1106, "VIA" },
57 	{ 0x111d, "IDT" },
58 	{ 0x11d4, "Analog Devices" },
59 	{ 0x13f6, "C-Media" },
60 	{ 0x14f1, "Conexant" },
61 	{ 0x434d, "C-Media" },
62 	{ 0x8384, "SigmaTel" },
63 	{} /* terminator */
64 };
65 
66 /* codec presets */
67 #include "hda_patch.h"
68 
69 
70 #ifdef CONFIG_SND_HDA_POWER_SAVE
71 static void hda_power_work(struct work_struct *work);
72 static void hda_keep_power_on(struct hda_codec *codec);
73 #else
74 static inline void hda_keep_power_on(struct hda_codec *codec) {}
75 #endif
76 
77 /**
78  * snd_hda_codec_read - send a command and get the response
79  * @codec: the HDA codec
80  * @nid: NID to send the command
81  * @direct: direct flag
82  * @verb: the verb to send
83  * @parm: the parameter for the verb
84  *
85  * Send a single command and read the corresponding response.
86  *
87  * Returns the obtained response value, or -1 for an error.
88  */
89 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
90 				int direct,
91 				unsigned int verb, unsigned int parm)
92 {
93 	unsigned int res;
94 	snd_hda_power_up(codec);
95 	mutex_lock(&codec->bus->cmd_mutex);
96 	if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
97 		res = codec->bus->ops.get_response(codec);
98 	else
99 		res = (unsigned int)-1;
100 	mutex_unlock(&codec->bus->cmd_mutex);
101 	snd_hda_power_down(codec);
102 	return res;
103 }
104 
105 /**
106  * snd_hda_codec_write - send a single command without waiting for response
107  * @codec: the HDA codec
108  * @nid: NID to send the command
109  * @direct: direct flag
110  * @verb: the verb to send
111  * @parm: the parameter for the verb
112  *
113  * Send a single command without waiting for response.
114  *
115  * Returns 0 if successful, or a negative error code.
116  */
117 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
118 			 unsigned int verb, unsigned int parm)
119 {
120 	int err;
121 	snd_hda_power_up(codec);
122 	mutex_lock(&codec->bus->cmd_mutex);
123 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
124 	mutex_unlock(&codec->bus->cmd_mutex);
125 	snd_hda_power_down(codec);
126 	return err;
127 }
128 
129 /**
130  * snd_hda_sequence_write - sequence writes
131  * @codec: the HDA codec
132  * @seq: VERB array to send
133  *
134  * Send the commands sequentially from the given array.
135  * The array must be terminated with NID=0.
136  */
137 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
138 {
139 	for (; seq->nid; seq++)
140 		snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
141 }
142 
143 /**
144  * snd_hda_get_sub_nodes - get the range of sub nodes
145  * @codec: the HDA codec
146  * @nid: NID to parse
147  * @start_id: the pointer to store the start NID
148  *
149  * Parse the NID and store the start NID of its sub-nodes.
150  * Returns the number of sub-nodes.
151  */
152 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
153 			  hda_nid_t *start_id)
154 {
155 	unsigned int parm;
156 
157 	parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
158 	if (parm == -1)
159 		return 0;
160 	*start_id = (parm >> 16) & 0x7fff;
161 	return (int)(parm & 0x7fff);
162 }
163 
164 /**
165  * snd_hda_get_connections - get connection list
166  * @codec: the HDA codec
167  * @nid: NID to parse
168  * @conn_list: connection list array
169  * @max_conns: max. number of connections to store
170  *
171  * Parses the connection list of the given widget and stores the list
172  * of NIDs.
173  *
174  * Returns the number of connections, or a negative error code.
175  */
176 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
177 			    hda_nid_t *conn_list, int max_conns)
178 {
179 	unsigned int parm;
180 	int i, conn_len, conns;
181 	unsigned int shift, num_elems, mask;
182 	hda_nid_t prev_nid;
183 
184 	snd_assert(conn_list && max_conns > 0, return -EINVAL);
185 
186 	parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
187 	if (parm & AC_CLIST_LONG) {
188 		/* long form */
189 		shift = 16;
190 		num_elems = 2;
191 	} else {
192 		/* short form */
193 		shift = 8;
194 		num_elems = 4;
195 	}
196 	conn_len = parm & AC_CLIST_LENGTH;
197 	mask = (1 << (shift-1)) - 1;
198 
199 	if (!conn_len)
200 		return 0; /* no connection */
201 
202 	if (conn_len == 1) {
203 		/* single connection */
204 		parm = snd_hda_codec_read(codec, nid, 0,
205 					  AC_VERB_GET_CONNECT_LIST, 0);
206 		conn_list[0] = parm & mask;
207 		return 1;
208 	}
209 
210 	/* multi connection */
211 	conns = 0;
212 	prev_nid = 0;
213 	for (i = 0; i < conn_len; i++) {
214 		int range_val;
215 		hda_nid_t val, n;
216 
217 		if (i % num_elems == 0)
218 			parm = snd_hda_codec_read(codec, nid, 0,
219 						  AC_VERB_GET_CONNECT_LIST, i);
220 		range_val = !!(parm & (1 << (shift-1))); /* ranges */
221 		val = parm & mask;
222 		parm >>= shift;
223 		if (range_val) {
224 			/* ranges between the previous and this one */
225 			if (!prev_nid || prev_nid >= val) {
226 				snd_printk(KERN_WARNING "hda_codec: "
227 					   "invalid dep_range_val %x:%x\n",
228 					   prev_nid, val);
229 				continue;
230 			}
231 			for (n = prev_nid + 1; n <= val; n++) {
232 				if (conns >= max_conns) {
233 					snd_printk(KERN_ERR
234 						   "Too many connections\n");
235 					return -EINVAL;
236 				}
237 				conn_list[conns++] = n;
238 			}
239 		} else {
240 			if (conns >= max_conns) {
241 				snd_printk(KERN_ERR "Too many connections\n");
242 				return -EINVAL;
243 			}
244 			conn_list[conns++] = val;
245 		}
246 		prev_nid = val;
247 	}
248 	return conns;
249 }
250 
251 
252 /**
253  * snd_hda_queue_unsol_event - add an unsolicited event to queue
254  * @bus: the BUS
255  * @res: unsolicited event (lower 32bit of RIRB entry)
256  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
257  *
258  * Adds the given event to the queue.  The events are processed in
259  * the workqueue asynchronously.  Call this function in the interrupt
260  * hanlder when RIRB receives an unsolicited event.
261  *
262  * Returns 0 if successful, or a negative error code.
263  */
264 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
265 {
266 	struct hda_bus_unsolicited *unsol;
267 	unsigned int wp;
268 
269 	unsol = bus->unsol;
270 	if (!unsol)
271 		return 0;
272 
273 	wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
274 	unsol->wp = wp;
275 
276 	wp <<= 1;
277 	unsol->queue[wp] = res;
278 	unsol->queue[wp + 1] = res_ex;
279 
280 	schedule_work(&unsol->work);
281 
282 	return 0;
283 }
284 
285 /*
286  * process queueud unsolicited events
287  */
288 static void process_unsol_events(struct work_struct *work)
289 {
290 	struct hda_bus_unsolicited *unsol =
291 		container_of(work, struct hda_bus_unsolicited, work);
292 	struct hda_bus *bus = unsol->bus;
293 	struct hda_codec *codec;
294 	unsigned int rp, caddr, res;
295 
296 	while (unsol->rp != unsol->wp) {
297 		rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
298 		unsol->rp = rp;
299 		rp <<= 1;
300 		res = unsol->queue[rp];
301 		caddr = unsol->queue[rp + 1];
302 		if (!(caddr & (1 << 4))) /* no unsolicited event? */
303 			continue;
304 		codec = bus->caddr_tbl[caddr & 0x0f];
305 		if (codec && codec->patch_ops.unsol_event)
306 			codec->patch_ops.unsol_event(codec, res);
307 	}
308 }
309 
310 /*
311  * initialize unsolicited queue
312  */
313 static int __devinit init_unsol_queue(struct hda_bus *bus)
314 {
315 	struct hda_bus_unsolicited *unsol;
316 
317 	if (bus->unsol) /* already initialized */
318 		return 0;
319 
320 	unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
321 	if (!unsol) {
322 		snd_printk(KERN_ERR "hda_codec: "
323 			   "can't allocate unsolicited queue\n");
324 		return -ENOMEM;
325 	}
326 	INIT_WORK(&unsol->work, process_unsol_events);
327 	unsol->bus = bus;
328 	bus->unsol = unsol;
329 	return 0;
330 }
331 
332 /*
333  * destructor
334  */
335 static void snd_hda_codec_free(struct hda_codec *codec);
336 
337 static int snd_hda_bus_free(struct hda_bus *bus)
338 {
339 	struct hda_codec *codec, *n;
340 
341 	if (!bus)
342 		return 0;
343 	if (bus->unsol) {
344 		flush_scheduled_work();
345 		kfree(bus->unsol);
346 	}
347 	list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
348 		snd_hda_codec_free(codec);
349 	}
350 	if (bus->ops.private_free)
351 		bus->ops.private_free(bus);
352 	kfree(bus);
353 	return 0;
354 }
355 
356 static int snd_hda_bus_dev_free(struct snd_device *device)
357 {
358 	struct hda_bus *bus = device->device_data;
359 	return snd_hda_bus_free(bus);
360 }
361 
362 /**
363  * snd_hda_bus_new - create a HDA bus
364  * @card: the card entry
365  * @temp: the template for hda_bus information
366  * @busp: the pointer to store the created bus instance
367  *
368  * Returns 0 if successful, or a negative error code.
369  */
370 int __devinit snd_hda_bus_new(struct snd_card *card,
371 			      const struct hda_bus_template *temp,
372 			      struct hda_bus **busp)
373 {
374 	struct hda_bus *bus;
375 	int err;
376 	static struct snd_device_ops dev_ops = {
377 		.dev_free = snd_hda_bus_dev_free,
378 	};
379 
380 	snd_assert(temp, return -EINVAL);
381 	snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
382 
383 	if (busp)
384 		*busp = NULL;
385 
386 	bus = kzalloc(sizeof(*bus), GFP_KERNEL);
387 	if (bus == NULL) {
388 		snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
389 		return -ENOMEM;
390 	}
391 
392 	bus->card = card;
393 	bus->private_data = temp->private_data;
394 	bus->pci = temp->pci;
395 	bus->modelname = temp->modelname;
396 	bus->ops = temp->ops;
397 
398 	mutex_init(&bus->cmd_mutex);
399 	INIT_LIST_HEAD(&bus->codec_list);
400 
401 	err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
402 	if (err < 0) {
403 		snd_hda_bus_free(bus);
404 		return err;
405 	}
406 	if (busp)
407 		*busp = bus;
408 	return 0;
409 }
410 
411 #ifdef CONFIG_SND_HDA_GENERIC
412 #define is_generic_config(codec) \
413 	(codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
414 #else
415 #define is_generic_config(codec)	0
416 #endif
417 
418 /*
419  * find a matching codec preset
420  */
421 static const struct hda_codec_preset __devinit *
422 find_codec_preset(struct hda_codec *codec)
423 {
424 	const struct hda_codec_preset **tbl, *preset;
425 
426 	if (is_generic_config(codec))
427 		return NULL; /* use the generic parser */
428 
429 	for (tbl = hda_preset_tables; *tbl; tbl++) {
430 		for (preset = *tbl; preset->id; preset++) {
431 			u32 mask = preset->mask;
432 			if (preset->afg && preset->afg != codec->afg)
433 				continue;
434 			if (preset->mfg && preset->mfg != codec->mfg)
435 				continue;
436 			if (!mask)
437 				mask = ~0;
438 			if (preset->id == (codec->vendor_id & mask) &&
439 			    (!preset->rev ||
440 			     preset->rev == codec->revision_id))
441 				return preset;
442 		}
443 	}
444 	return NULL;
445 }
446 
447 /*
448  * snd_hda_get_codec_name - store the codec name
449  */
450 void snd_hda_get_codec_name(struct hda_codec *codec,
451 			    char *name, int namelen)
452 {
453 	const struct hda_vendor_id *c;
454 	const char *vendor = NULL;
455 	u16 vendor_id = codec->vendor_id >> 16;
456 	char tmp[16];
457 
458 	for (c = hda_vendor_ids; c->id; c++) {
459 		if (c->id == vendor_id) {
460 			vendor = c->name;
461 			break;
462 		}
463 	}
464 	if (!vendor) {
465 		sprintf(tmp, "Generic %04x", vendor_id);
466 		vendor = tmp;
467 	}
468 	if (codec->preset && codec->preset->name)
469 		snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
470 	else
471 		snprintf(name, namelen, "%s ID %x", vendor,
472 			 codec->vendor_id & 0xffff);
473 }
474 
475 /*
476  * look for an AFG and MFG nodes
477  */
478 static void __devinit setup_fg_nodes(struct hda_codec *codec)
479 {
480 	int i, total_nodes;
481 	hda_nid_t nid;
482 
483 	total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
484 	for (i = 0; i < total_nodes; i++, nid++) {
485 		unsigned int func;
486 		func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
487 		switch (func & 0xff) {
488 		case AC_GRP_AUDIO_FUNCTION:
489 			codec->afg = nid;
490 			break;
491 		case AC_GRP_MODEM_FUNCTION:
492 			codec->mfg = nid;
493 			break;
494 		default:
495 			break;
496 		}
497 	}
498 }
499 
500 /*
501  * read widget caps for each widget and store in cache
502  */
503 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
504 {
505 	int i;
506 	hda_nid_t nid;
507 
508 	codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
509 						 &codec->start_nid);
510 	codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
511 	if (!codec->wcaps)
512 		return -ENOMEM;
513 	nid = codec->start_nid;
514 	for (i = 0; i < codec->num_nodes; i++, nid++)
515 		codec->wcaps[i] = snd_hda_param_read(codec, nid,
516 						     AC_PAR_AUDIO_WIDGET_CAP);
517 	return 0;
518 }
519 
520 
521 static void init_hda_cache(struct hda_cache_rec *cache,
522 			   unsigned int record_size);
523 static void free_hda_cache(struct hda_cache_rec *cache);
524 
525 /*
526  * codec destructor
527  */
528 static void snd_hda_codec_free(struct hda_codec *codec)
529 {
530 	if (!codec)
531 		return;
532 #ifdef CONFIG_SND_HDA_POWER_SAVE
533 	cancel_delayed_work(&codec->power_work);
534 	flush_scheduled_work();
535 #endif
536 	list_del(&codec->list);
537 	codec->bus->caddr_tbl[codec->addr] = NULL;
538 	if (codec->patch_ops.free)
539 		codec->patch_ops.free(codec);
540 	free_hda_cache(&codec->amp_cache);
541 	free_hda_cache(&codec->cmd_cache);
542 	kfree(codec->wcaps);
543 	kfree(codec);
544 }
545 
546 /**
547  * snd_hda_codec_new - create a HDA codec
548  * @bus: the bus to assign
549  * @codec_addr: the codec address
550  * @codecp: the pointer to store the generated codec
551  *
552  * Returns 0 if successful, or a negative error code.
553  */
554 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
555 				struct hda_codec **codecp)
556 {
557 	struct hda_codec *codec;
558 	char component[13];
559 	int err;
560 
561 	snd_assert(bus, return -EINVAL);
562 	snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
563 
564 	if (bus->caddr_tbl[codec_addr]) {
565 		snd_printk(KERN_ERR "hda_codec: "
566 			   "address 0x%x is already occupied\n", codec_addr);
567 		return -EBUSY;
568 	}
569 
570 	codec = kzalloc(sizeof(*codec), GFP_KERNEL);
571 	if (codec == NULL) {
572 		snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
573 		return -ENOMEM;
574 	}
575 
576 	codec->bus = bus;
577 	codec->addr = codec_addr;
578 	mutex_init(&codec->spdif_mutex);
579 	init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
580 	init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
581 
582 #ifdef CONFIG_SND_HDA_POWER_SAVE
583 	INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
584 	/* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
585 	 * the caller has to power down appropriatley after initialization
586 	 * phase.
587 	 */
588 	hda_keep_power_on(codec);
589 #endif
590 
591 	list_add_tail(&codec->list, &bus->codec_list);
592 	bus->caddr_tbl[codec_addr] = codec;
593 
594 	codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
595 					      AC_PAR_VENDOR_ID);
596 	if (codec->vendor_id == -1)
597 		/* read again, hopefully the access method was corrected
598 		 * in the last read...
599 		 */
600 		codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
601 						      AC_PAR_VENDOR_ID);
602 	codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
603 						 AC_PAR_SUBSYSTEM_ID);
604 	codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
605 						AC_PAR_REV_ID);
606 
607 	setup_fg_nodes(codec);
608 	if (!codec->afg && !codec->mfg) {
609 		snd_printdd("hda_codec: no AFG or MFG node found\n");
610 		snd_hda_codec_free(codec);
611 		return -ENODEV;
612 	}
613 
614 	if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
615 		snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
616 		snd_hda_codec_free(codec);
617 		return -ENOMEM;
618 	}
619 
620 	if (!codec->subsystem_id) {
621 		hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
622 		codec->subsystem_id =
623 			snd_hda_codec_read(codec, nid, 0,
624 					   AC_VERB_GET_SUBSYSTEM_ID, 0);
625 	}
626 
627 	codec->preset = find_codec_preset(codec);
628 	/* audio codec should override the mixer name */
629 	if (codec->afg || !*bus->card->mixername)
630 		snd_hda_get_codec_name(codec, bus->card->mixername,
631 				       sizeof(bus->card->mixername));
632 
633 	if (is_generic_config(codec)) {
634 		err = snd_hda_parse_generic_codec(codec);
635 		goto patched;
636 	}
637 	if (codec->preset && codec->preset->patch) {
638 		err = codec->preset->patch(codec);
639 		goto patched;
640 	}
641 
642 	/* call the default parser */
643 	err = snd_hda_parse_generic_codec(codec);
644 	if (err < 0)
645 		printk(KERN_ERR "hda-codec: No codec parser is available\n");
646 
647  patched:
648 	if (err < 0) {
649 		snd_hda_codec_free(codec);
650 		return err;
651 	}
652 
653 	if (codec->patch_ops.unsol_event)
654 		init_unsol_queue(bus);
655 
656 	snd_hda_codec_proc_new(codec);
657 #ifdef CONFIG_SND_HDA_HWDEP
658 	snd_hda_create_hwdep(codec);
659 #endif
660 
661 	sprintf(component, "HDA:%08x", codec->vendor_id);
662 	snd_component_add(codec->bus->card, component);
663 
664 	if (codecp)
665 		*codecp = codec;
666 	return 0;
667 }
668 
669 /**
670  * snd_hda_codec_setup_stream - set up the codec for streaming
671  * @codec: the CODEC to set up
672  * @nid: the NID to set up
673  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
674  * @channel_id: channel id to pass, zero based.
675  * @format: stream format.
676  */
677 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
678 				u32 stream_tag,
679 				int channel_id, int format)
680 {
681 	if (!nid)
682 		return;
683 
684 	snd_printdd("hda_codec_setup_stream: "
685 		    "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
686 		    nid, stream_tag, channel_id, format);
687 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
688 			    (stream_tag << 4) | channel_id);
689 	msleep(1);
690 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
691 }
692 
693 /*
694  * amp access functions
695  */
696 
697 /* FIXME: more better hash key? */
698 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
699 #define INFO_AMP_CAPS	(1<<0)
700 #define INFO_AMP_VOL(ch)	(1 << (1 + (ch)))
701 
702 /* initialize the hash table */
703 static void __devinit init_hda_cache(struct hda_cache_rec *cache,
704 				     unsigned int record_size)
705 {
706 	memset(cache, 0, sizeof(*cache));
707 	memset(cache->hash, 0xff, sizeof(cache->hash));
708 	cache->record_size = record_size;
709 }
710 
711 static void free_hda_cache(struct hda_cache_rec *cache)
712 {
713 	kfree(cache->buffer);
714 }
715 
716 /* query the hash.  allocate an entry if not found. */
717 static struct hda_cache_head  *get_alloc_hash(struct hda_cache_rec *cache,
718 					      u32 key)
719 {
720 	u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
721 	u16 cur = cache->hash[idx];
722 	struct hda_cache_head *info;
723 
724 	while (cur != 0xffff) {
725 		info = (struct hda_cache_head *)(cache->buffer +
726 						 cur * cache->record_size);
727 		if (info->key == key)
728 			return info;
729 		cur = info->next;
730 	}
731 
732 	/* add a new hash entry */
733 	if (cache->num_entries >= cache->size) {
734 		/* reallocate the array */
735 		unsigned int new_size = cache->size + 64;
736 		void *new_buffer;
737 		new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
738 		if (!new_buffer) {
739 			snd_printk(KERN_ERR "hda_codec: "
740 				   "can't malloc amp_info\n");
741 			return NULL;
742 		}
743 		if (cache->buffer) {
744 			memcpy(new_buffer, cache->buffer,
745 			       cache->size * cache->record_size);
746 			kfree(cache->buffer);
747 		}
748 		cache->size = new_size;
749 		cache->buffer = new_buffer;
750 	}
751 	cur = cache->num_entries++;
752 	info = (struct hda_cache_head *)(cache->buffer +
753 					 cur * cache->record_size);
754 	info->key = key;
755 	info->val = 0;
756 	info->next = cache->hash[idx];
757 	cache->hash[idx] = cur;
758 
759 	return info;
760 }
761 
762 /* query and allocate an amp hash entry */
763 static inline struct hda_amp_info *
764 get_alloc_amp_hash(struct hda_codec *codec, u32 key)
765 {
766 	return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
767 }
768 
769 /*
770  * query AMP capabilities for the given widget and direction
771  */
772 u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
773 {
774 	struct hda_amp_info *info;
775 
776 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
777 	if (!info)
778 		return 0;
779 	if (!(info->head.val & INFO_AMP_CAPS)) {
780 		if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
781 			nid = codec->afg;
782 		info->amp_caps = snd_hda_param_read(codec, nid,
783 						    direction == HDA_OUTPUT ?
784 						    AC_PAR_AMP_OUT_CAP :
785 						    AC_PAR_AMP_IN_CAP);
786 		if (info->amp_caps)
787 			info->head.val |= INFO_AMP_CAPS;
788 	}
789 	return info->amp_caps;
790 }
791 
792 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
793 			      unsigned int caps)
794 {
795 	struct hda_amp_info *info;
796 
797 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
798 	if (!info)
799 		return -EINVAL;
800 	info->amp_caps = caps;
801 	info->head.val |= INFO_AMP_CAPS;
802 	return 0;
803 }
804 
805 /*
806  * read the current volume to info
807  * if the cache exists, read the cache value.
808  */
809 static unsigned int get_vol_mute(struct hda_codec *codec,
810 				 struct hda_amp_info *info, hda_nid_t nid,
811 				 int ch, int direction, int index)
812 {
813 	u32 val, parm;
814 
815 	if (info->head.val & INFO_AMP_VOL(ch))
816 		return info->vol[ch];
817 
818 	parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
819 	parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
820 	parm |= index;
821 	val = snd_hda_codec_read(codec, nid, 0,
822 				 AC_VERB_GET_AMP_GAIN_MUTE, parm);
823 	info->vol[ch] = val & 0xff;
824 	info->head.val |= INFO_AMP_VOL(ch);
825 	return info->vol[ch];
826 }
827 
828 /*
829  * write the current volume in info to the h/w and update the cache
830  */
831 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
832 			 hda_nid_t nid, int ch, int direction, int index,
833 			 int val)
834 {
835 	u32 parm;
836 
837 	parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
838 	parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
839 	parm |= index << AC_AMP_SET_INDEX_SHIFT;
840 	parm |= val;
841 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
842 	info->vol[ch] = val;
843 }
844 
845 /*
846  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
847  */
848 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
849 			   int direction, int index)
850 {
851 	struct hda_amp_info *info;
852 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
853 	if (!info)
854 		return 0;
855 	return get_vol_mute(codec, info, nid, ch, direction, index);
856 }
857 
858 /*
859  * update the AMP value, mask = bit mask to set, val = the value
860  */
861 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
862 			     int direction, int idx, int mask, int val)
863 {
864 	struct hda_amp_info *info;
865 
866 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
867 	if (!info)
868 		return 0;
869 	val &= mask;
870 	val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
871 	if (info->vol[ch] == val)
872 		return 0;
873 	put_vol_mute(codec, info, nid, ch, direction, idx, val);
874 	return 1;
875 }
876 
877 /*
878  * update the AMP stereo with the same mask and value
879  */
880 int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
881 			     int direction, int idx, int mask, int val)
882 {
883 	int ch, ret = 0;
884 	for (ch = 0; ch < 2; ch++)
885 		ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
886 						idx, mask, val);
887 	return ret;
888 }
889 
890 #ifdef SND_HDA_NEEDS_RESUME
891 /* resume the all amp commands from the cache */
892 void snd_hda_codec_resume_amp(struct hda_codec *codec)
893 {
894 	struct hda_amp_info *buffer = codec->amp_cache.buffer;
895 	int i;
896 
897 	for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
898 		u32 key = buffer->head.key;
899 		hda_nid_t nid;
900 		unsigned int idx, dir, ch;
901 		if (!key)
902 			continue;
903 		nid = key & 0xff;
904 		idx = (key >> 16) & 0xff;
905 		dir = (key >> 24) & 0xff;
906 		for (ch = 0; ch < 2; ch++) {
907 			if (!(buffer->head.val & INFO_AMP_VOL(ch)))
908 				continue;
909 			put_vol_mute(codec, buffer, nid, ch, dir, idx,
910 				     buffer->vol[ch]);
911 		}
912 	}
913 }
914 #endif /* SND_HDA_NEEDS_RESUME */
915 
916 /*
917  * AMP control callbacks
918  */
919 /* retrieve parameters from private_value */
920 #define get_amp_nid(kc)		((kc)->private_value & 0xffff)
921 #define get_amp_channels(kc)	(((kc)->private_value >> 16) & 0x3)
922 #define get_amp_direction(kc)	(((kc)->private_value >> 18) & 0x1)
923 #define get_amp_index(kc)	(((kc)->private_value >> 19) & 0xf)
924 
925 /* volume */
926 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
927 				  struct snd_ctl_elem_info *uinfo)
928 {
929 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
930 	u16 nid = get_amp_nid(kcontrol);
931 	u8 chs = get_amp_channels(kcontrol);
932 	int dir = get_amp_direction(kcontrol);
933 	u32 caps;
934 
935 	caps = query_amp_caps(codec, nid, dir);
936 	/* num steps */
937 	caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
938 	if (!caps) {
939 		printk(KERN_WARNING "hda_codec: "
940 		       "num_steps = 0 for NID=0x%x (ctl = %s)\n", nid,
941 		       kcontrol->id.name);
942 		return -EINVAL;
943 	}
944 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
945 	uinfo->count = chs == 3 ? 2 : 1;
946 	uinfo->value.integer.min = 0;
947 	uinfo->value.integer.max = caps;
948 	return 0;
949 }
950 
951 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
952 				 struct snd_ctl_elem_value *ucontrol)
953 {
954 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
955 	hda_nid_t nid = get_amp_nid(kcontrol);
956 	int chs = get_amp_channels(kcontrol);
957 	int dir = get_amp_direction(kcontrol);
958 	int idx = get_amp_index(kcontrol);
959 	long *valp = ucontrol->value.integer.value;
960 
961 	if (chs & 1)
962 		*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
963 			& HDA_AMP_VOLMASK;
964 	if (chs & 2)
965 		*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
966 			& HDA_AMP_VOLMASK;
967 	return 0;
968 }
969 
970 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
971 				 struct snd_ctl_elem_value *ucontrol)
972 {
973 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
974 	hda_nid_t nid = get_amp_nid(kcontrol);
975 	int chs = get_amp_channels(kcontrol);
976 	int dir = get_amp_direction(kcontrol);
977 	int idx = get_amp_index(kcontrol);
978 	long *valp = ucontrol->value.integer.value;
979 	int change = 0;
980 
981 	snd_hda_power_up(codec);
982 	if (chs & 1) {
983 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
984 						  0x7f, *valp);
985 		valp++;
986 	}
987 	if (chs & 2)
988 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
989 						   0x7f, *valp);
990 	snd_hda_power_down(codec);
991 	return change;
992 }
993 
994 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
995 			  unsigned int size, unsigned int __user *_tlv)
996 {
997 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
998 	hda_nid_t nid = get_amp_nid(kcontrol);
999 	int dir = get_amp_direction(kcontrol);
1000 	u32 caps, val1, val2;
1001 
1002 	if (size < 4 * sizeof(unsigned int))
1003 		return -ENOMEM;
1004 	caps = query_amp_caps(codec, nid, dir);
1005 	val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1006 	val2 = (val2 + 1) * 25;
1007 	val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
1008 	val1 = ((int)val1) * ((int)val2);
1009 	if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
1010 		return -EFAULT;
1011 	if (put_user(2 * sizeof(unsigned int), _tlv + 1))
1012 		return -EFAULT;
1013 	if (put_user(val1, _tlv + 2))
1014 		return -EFAULT;
1015 	if (put_user(val2, _tlv + 3))
1016 		return -EFAULT;
1017 	return 0;
1018 }
1019 
1020 /*
1021  * set (static) TLV for virtual master volume; recalculated as max 0dB
1022  */
1023 void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
1024 			     unsigned int *tlv)
1025 {
1026 	u32 caps;
1027 	int nums, step;
1028 
1029 	caps = query_amp_caps(codec, nid, dir);
1030 	nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
1031 	step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1032 	step = (step + 1) * 25;
1033 	tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
1034 	tlv[1] = 2 * sizeof(unsigned int);
1035 	tlv[2] = -nums * step;
1036 	tlv[3] = step;
1037 }
1038 
1039 /* find a mixer control element with the given name */
1040 struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
1041 					    const char *name)
1042 {
1043 	struct snd_ctl_elem_id id;
1044 	memset(&id, 0, sizeof(id));
1045 	id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
1046 	strcpy(id.name, name);
1047 	return snd_ctl_find_id(codec->bus->card, &id);
1048 }
1049 
1050 /* create a virtual master control and add slaves */
1051 int snd_hda_add_vmaster(struct hda_codec *codec, char *name,
1052 			unsigned int *tlv, const char **slaves)
1053 {
1054 	struct snd_kcontrol *kctl;
1055 	const char **s;
1056 	int err;
1057 
1058 	for (s = slaves; *s && !snd_hda_find_mixer_ctl(codec, *s); s++)
1059 		;
1060 	if (!*s) {
1061 		snd_printdd("No slave found for %s\n", name);
1062 		return 0;
1063 	}
1064 	kctl = snd_ctl_make_virtual_master(name, tlv);
1065 	if (!kctl)
1066 		return -ENOMEM;
1067 	err = snd_ctl_add(codec->bus->card, kctl);
1068 	if (err < 0)
1069 		return err;
1070 
1071 	for (s = slaves; *s; s++) {
1072 		struct snd_kcontrol *sctl;
1073 
1074 		sctl = snd_hda_find_mixer_ctl(codec, *s);
1075 		if (!sctl) {
1076 			snd_printdd("Cannot find slave %s, skipped\n", *s);
1077 			continue;
1078 		}
1079 		err = snd_ctl_add_slave(kctl, sctl);
1080 		if (err < 0)
1081 			return err;
1082 	}
1083 	return 0;
1084 }
1085 
1086 /* switch */
1087 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
1088 				  struct snd_ctl_elem_info *uinfo)
1089 {
1090 	int chs = get_amp_channels(kcontrol);
1091 
1092 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1093 	uinfo->count = chs == 3 ? 2 : 1;
1094 	uinfo->value.integer.min = 0;
1095 	uinfo->value.integer.max = 1;
1096 	return 0;
1097 }
1098 
1099 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
1100 				 struct snd_ctl_elem_value *ucontrol)
1101 {
1102 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1103 	hda_nid_t nid = get_amp_nid(kcontrol);
1104 	int chs = get_amp_channels(kcontrol);
1105 	int dir = get_amp_direction(kcontrol);
1106 	int idx = get_amp_index(kcontrol);
1107 	long *valp = ucontrol->value.integer.value;
1108 
1109 	if (chs & 1)
1110 		*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
1111 			   HDA_AMP_MUTE) ? 0 : 1;
1112 	if (chs & 2)
1113 		*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
1114 			 HDA_AMP_MUTE) ? 0 : 1;
1115 	return 0;
1116 }
1117 
1118 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
1119 				 struct snd_ctl_elem_value *ucontrol)
1120 {
1121 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1122 	hda_nid_t nid = get_amp_nid(kcontrol);
1123 	int chs = get_amp_channels(kcontrol);
1124 	int dir = get_amp_direction(kcontrol);
1125 	int idx = get_amp_index(kcontrol);
1126 	long *valp = ucontrol->value.integer.value;
1127 	int change = 0;
1128 
1129 	snd_hda_power_up(codec);
1130 	if (chs & 1) {
1131 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1132 						  HDA_AMP_MUTE,
1133 						  *valp ? 0 : HDA_AMP_MUTE);
1134 		valp++;
1135 	}
1136 	if (chs & 2)
1137 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1138 						   HDA_AMP_MUTE,
1139 						   *valp ? 0 : HDA_AMP_MUTE);
1140 #ifdef CONFIG_SND_HDA_POWER_SAVE
1141 	if (codec->patch_ops.check_power_status)
1142 		codec->patch_ops.check_power_status(codec, nid);
1143 #endif
1144 	snd_hda_power_down(codec);
1145 	return change;
1146 }
1147 
1148 /*
1149  * bound volume controls
1150  *
1151  * bind multiple volumes (# indices, from 0)
1152  */
1153 
1154 #define AMP_VAL_IDX_SHIFT	19
1155 #define AMP_VAL_IDX_MASK	(0x0f<<19)
1156 
1157 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
1158 				  struct snd_ctl_elem_value *ucontrol)
1159 {
1160 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1161 	unsigned long pval;
1162 	int err;
1163 
1164 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1165 	pval = kcontrol->private_value;
1166 	kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
1167 	err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
1168 	kcontrol->private_value = pval;
1169 	mutex_unlock(&codec->spdif_mutex);
1170 	return err;
1171 }
1172 
1173 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
1174 				  struct snd_ctl_elem_value *ucontrol)
1175 {
1176 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1177 	unsigned long pval;
1178 	int i, indices, err = 0, change = 0;
1179 
1180 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1181 	pval = kcontrol->private_value;
1182 	indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
1183 	for (i = 0; i < indices; i++) {
1184 		kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
1185 			(i << AMP_VAL_IDX_SHIFT);
1186 		err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
1187 		if (err < 0)
1188 			break;
1189 		change |= err;
1190 	}
1191 	kcontrol->private_value = pval;
1192 	mutex_unlock(&codec->spdif_mutex);
1193 	return err < 0 ? err : change;
1194 }
1195 
1196 /*
1197  * generic bound volume/swtich controls
1198  */
1199 int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
1200 				 struct snd_ctl_elem_info *uinfo)
1201 {
1202 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1203 	struct hda_bind_ctls *c;
1204 	int err;
1205 
1206 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1207 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1208 	kcontrol->private_value = *c->values;
1209 	err = c->ops->info(kcontrol, uinfo);
1210 	kcontrol->private_value = (long)c;
1211 	mutex_unlock(&codec->spdif_mutex);
1212 	return err;
1213 }
1214 
1215 int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
1216 				struct snd_ctl_elem_value *ucontrol)
1217 {
1218 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1219 	struct hda_bind_ctls *c;
1220 	int err;
1221 
1222 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1223 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1224 	kcontrol->private_value = *c->values;
1225 	err = c->ops->get(kcontrol, ucontrol);
1226 	kcontrol->private_value = (long)c;
1227 	mutex_unlock(&codec->spdif_mutex);
1228 	return err;
1229 }
1230 
1231 int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
1232 				struct snd_ctl_elem_value *ucontrol)
1233 {
1234 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1235 	struct hda_bind_ctls *c;
1236 	unsigned long *vals;
1237 	int err = 0, change = 0;
1238 
1239 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1240 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1241 	for (vals = c->values; *vals; vals++) {
1242 		kcontrol->private_value = *vals;
1243 		err = c->ops->put(kcontrol, ucontrol);
1244 		if (err < 0)
1245 			break;
1246 		change |= err;
1247 	}
1248 	kcontrol->private_value = (long)c;
1249 	mutex_unlock(&codec->spdif_mutex);
1250 	return err < 0 ? err : change;
1251 }
1252 
1253 int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1254 			   unsigned int size, unsigned int __user *tlv)
1255 {
1256 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1257 	struct hda_bind_ctls *c;
1258 	int err;
1259 
1260 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1261 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1262 	kcontrol->private_value = *c->values;
1263 	err = c->ops->tlv(kcontrol, op_flag, size, tlv);
1264 	kcontrol->private_value = (long)c;
1265 	mutex_unlock(&codec->spdif_mutex);
1266 	return err;
1267 }
1268 
1269 struct hda_ctl_ops snd_hda_bind_vol = {
1270 	.info = snd_hda_mixer_amp_volume_info,
1271 	.get = snd_hda_mixer_amp_volume_get,
1272 	.put = snd_hda_mixer_amp_volume_put,
1273 	.tlv = snd_hda_mixer_amp_tlv
1274 };
1275 
1276 struct hda_ctl_ops snd_hda_bind_sw = {
1277 	.info = snd_hda_mixer_amp_switch_info,
1278 	.get = snd_hda_mixer_amp_switch_get,
1279 	.put = snd_hda_mixer_amp_switch_put,
1280 	.tlv = snd_hda_mixer_amp_tlv
1281 };
1282 
1283 /*
1284  * SPDIF out controls
1285  */
1286 
1287 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1288 				   struct snd_ctl_elem_info *uinfo)
1289 {
1290 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1291 	uinfo->count = 1;
1292 	return 0;
1293 }
1294 
1295 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1296 				   struct snd_ctl_elem_value *ucontrol)
1297 {
1298 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1299 					   IEC958_AES0_NONAUDIO |
1300 					   IEC958_AES0_CON_EMPHASIS_5015 |
1301 					   IEC958_AES0_CON_NOT_COPYRIGHT;
1302 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1303 					   IEC958_AES1_CON_ORIGINAL;
1304 	return 0;
1305 }
1306 
1307 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1308 				   struct snd_ctl_elem_value *ucontrol)
1309 {
1310 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1311 					   IEC958_AES0_NONAUDIO |
1312 					   IEC958_AES0_PRO_EMPHASIS_5015;
1313 	return 0;
1314 }
1315 
1316 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1317 				     struct snd_ctl_elem_value *ucontrol)
1318 {
1319 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1320 
1321 	ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1322 	ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1323 	ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1324 	ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1325 
1326 	return 0;
1327 }
1328 
1329 /* convert from SPDIF status bits to HDA SPDIF bits
1330  * bit 0 (DigEn) is always set zero (to be filled later)
1331  */
1332 static unsigned short convert_from_spdif_status(unsigned int sbits)
1333 {
1334 	unsigned short val = 0;
1335 
1336 	if (sbits & IEC958_AES0_PROFESSIONAL)
1337 		val |= AC_DIG1_PROFESSIONAL;
1338 	if (sbits & IEC958_AES0_NONAUDIO)
1339 		val |= AC_DIG1_NONAUDIO;
1340 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1341 		if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1342 		    IEC958_AES0_PRO_EMPHASIS_5015)
1343 			val |= AC_DIG1_EMPHASIS;
1344 	} else {
1345 		if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1346 		    IEC958_AES0_CON_EMPHASIS_5015)
1347 			val |= AC_DIG1_EMPHASIS;
1348 		if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1349 			val |= AC_DIG1_COPYRIGHT;
1350 		if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1351 			val |= AC_DIG1_LEVEL;
1352 		val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1353 	}
1354 	return val;
1355 }
1356 
1357 /* convert to SPDIF status bits from HDA SPDIF bits
1358  */
1359 static unsigned int convert_to_spdif_status(unsigned short val)
1360 {
1361 	unsigned int sbits = 0;
1362 
1363 	if (val & AC_DIG1_NONAUDIO)
1364 		sbits |= IEC958_AES0_NONAUDIO;
1365 	if (val & AC_DIG1_PROFESSIONAL)
1366 		sbits |= IEC958_AES0_PROFESSIONAL;
1367 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1368 		if (sbits & AC_DIG1_EMPHASIS)
1369 			sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1370 	} else {
1371 		if (val & AC_DIG1_EMPHASIS)
1372 			sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1373 		if (!(val & AC_DIG1_COPYRIGHT))
1374 			sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1375 		if (val & AC_DIG1_LEVEL)
1376 			sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1377 		sbits |= val & (0x7f << 8);
1378 	}
1379 	return sbits;
1380 }
1381 
1382 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1383 				     struct snd_ctl_elem_value *ucontrol)
1384 {
1385 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1386 	hda_nid_t nid = kcontrol->private_value;
1387 	unsigned short val;
1388 	int change;
1389 
1390 	mutex_lock(&codec->spdif_mutex);
1391 	codec->spdif_status = ucontrol->value.iec958.status[0] |
1392 		((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1393 		((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1394 		((unsigned int)ucontrol->value.iec958.status[3] << 24);
1395 	val = convert_from_spdif_status(codec->spdif_status);
1396 	val |= codec->spdif_ctls & 1;
1397 	change = codec->spdif_ctls != val;
1398 	codec->spdif_ctls = val;
1399 
1400 	if (change) {
1401 		snd_hda_codec_write_cache(codec, nid, 0,
1402 					  AC_VERB_SET_DIGI_CONVERT_1,
1403 					  val & 0xff);
1404 		snd_hda_codec_write_cache(codec, nid, 0,
1405 					  AC_VERB_SET_DIGI_CONVERT_2,
1406 					  val >> 8);
1407 	}
1408 
1409 	mutex_unlock(&codec->spdif_mutex);
1410 	return change;
1411 }
1412 
1413 #define snd_hda_spdif_out_switch_info	snd_ctl_boolean_mono_info
1414 
1415 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1416 					struct snd_ctl_elem_value *ucontrol)
1417 {
1418 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1419 
1420 	ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1421 	return 0;
1422 }
1423 
1424 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1425 					struct snd_ctl_elem_value *ucontrol)
1426 {
1427 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1428 	hda_nid_t nid = kcontrol->private_value;
1429 	unsigned short val;
1430 	int change;
1431 
1432 	mutex_lock(&codec->spdif_mutex);
1433 	val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1434 	if (ucontrol->value.integer.value[0])
1435 		val |= AC_DIG1_ENABLE;
1436 	change = codec->spdif_ctls != val;
1437 	if (change) {
1438 		codec->spdif_ctls = val;
1439 		snd_hda_codec_write_cache(codec, nid, 0,
1440 					  AC_VERB_SET_DIGI_CONVERT_1,
1441 					  val & 0xff);
1442 		/* unmute amp switch (if any) */
1443 		if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1444 		    (val & AC_DIG1_ENABLE))
1445 			snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
1446 						 HDA_AMP_MUTE, 0);
1447 	}
1448 	mutex_unlock(&codec->spdif_mutex);
1449 	return change;
1450 }
1451 
1452 static struct snd_kcontrol_new dig_mixes[] = {
1453 	{
1454 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1455 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1456 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1457 		.info = snd_hda_spdif_mask_info,
1458 		.get = snd_hda_spdif_cmask_get,
1459 	},
1460 	{
1461 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1462 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1463 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1464 		.info = snd_hda_spdif_mask_info,
1465 		.get = snd_hda_spdif_pmask_get,
1466 	},
1467 	{
1468 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1469 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1470 		.info = snd_hda_spdif_mask_info,
1471 		.get = snd_hda_spdif_default_get,
1472 		.put = snd_hda_spdif_default_put,
1473 	},
1474 	{
1475 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1476 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1477 		.info = snd_hda_spdif_out_switch_info,
1478 		.get = snd_hda_spdif_out_switch_get,
1479 		.put = snd_hda_spdif_out_switch_put,
1480 	},
1481 	{ } /* end */
1482 };
1483 
1484 /**
1485  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1486  * @codec: the HDA codec
1487  * @nid: audio out widget NID
1488  *
1489  * Creates controls related with the SPDIF output.
1490  * Called from each patch supporting the SPDIF out.
1491  *
1492  * Returns 0 if successful, or a negative error code.
1493  */
1494 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1495 {
1496 	int err;
1497 	struct snd_kcontrol *kctl;
1498 	struct snd_kcontrol_new *dig_mix;
1499 
1500 	for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1501 		kctl = snd_ctl_new1(dig_mix, codec);
1502 		kctl->private_value = nid;
1503 		err = snd_ctl_add(codec->bus->card, kctl);
1504 		if (err < 0)
1505 			return err;
1506 	}
1507 	codec->spdif_ctls =
1508 		snd_hda_codec_read(codec, nid, 0,
1509 				   AC_VERB_GET_DIGI_CONVERT_1, 0);
1510 	codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1511 	return 0;
1512 }
1513 
1514 /*
1515  * SPDIF input
1516  */
1517 
1518 #define snd_hda_spdif_in_switch_info	snd_hda_spdif_out_switch_info
1519 
1520 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1521 				       struct snd_ctl_elem_value *ucontrol)
1522 {
1523 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1524 
1525 	ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1526 	return 0;
1527 }
1528 
1529 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1530 				       struct snd_ctl_elem_value *ucontrol)
1531 {
1532 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1533 	hda_nid_t nid = kcontrol->private_value;
1534 	unsigned int val = !!ucontrol->value.integer.value[0];
1535 	int change;
1536 
1537 	mutex_lock(&codec->spdif_mutex);
1538 	change = codec->spdif_in_enable != val;
1539 	if (change) {
1540 		codec->spdif_in_enable = val;
1541 		snd_hda_codec_write_cache(codec, nid, 0,
1542 					  AC_VERB_SET_DIGI_CONVERT_1, val);
1543 	}
1544 	mutex_unlock(&codec->spdif_mutex);
1545 	return change;
1546 }
1547 
1548 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1549 				       struct snd_ctl_elem_value *ucontrol)
1550 {
1551 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1552 	hda_nid_t nid = kcontrol->private_value;
1553 	unsigned short val;
1554 	unsigned int sbits;
1555 
1556 	val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
1557 	sbits = convert_to_spdif_status(val);
1558 	ucontrol->value.iec958.status[0] = sbits;
1559 	ucontrol->value.iec958.status[1] = sbits >> 8;
1560 	ucontrol->value.iec958.status[2] = sbits >> 16;
1561 	ucontrol->value.iec958.status[3] = sbits >> 24;
1562 	return 0;
1563 }
1564 
1565 static struct snd_kcontrol_new dig_in_ctls[] = {
1566 	{
1567 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1568 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1569 		.info = snd_hda_spdif_in_switch_info,
1570 		.get = snd_hda_spdif_in_switch_get,
1571 		.put = snd_hda_spdif_in_switch_put,
1572 	},
1573 	{
1574 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1575 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1576 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1577 		.info = snd_hda_spdif_mask_info,
1578 		.get = snd_hda_spdif_in_status_get,
1579 	},
1580 	{ } /* end */
1581 };
1582 
1583 /**
1584  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1585  * @codec: the HDA codec
1586  * @nid: audio in widget NID
1587  *
1588  * Creates controls related with the SPDIF input.
1589  * Called from each patch supporting the SPDIF in.
1590  *
1591  * Returns 0 if successful, or a negative error code.
1592  */
1593 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1594 {
1595 	int err;
1596 	struct snd_kcontrol *kctl;
1597 	struct snd_kcontrol_new *dig_mix;
1598 
1599 	for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1600 		kctl = snd_ctl_new1(dig_mix, codec);
1601 		kctl->private_value = nid;
1602 		err = snd_ctl_add(codec->bus->card, kctl);
1603 		if (err < 0)
1604 			return err;
1605 	}
1606 	codec->spdif_in_enable =
1607 		snd_hda_codec_read(codec, nid, 0,
1608 				   AC_VERB_GET_DIGI_CONVERT_1, 0) &
1609 		AC_DIG1_ENABLE;
1610 	return 0;
1611 }
1612 
1613 #ifdef SND_HDA_NEEDS_RESUME
1614 /*
1615  * command cache
1616  */
1617 
1618 /* build a 32bit cache key with the widget id and the command parameter */
1619 #define build_cmd_cache_key(nid, verb)	((verb << 8) | nid)
1620 #define get_cmd_cache_nid(key)		((key) & 0xff)
1621 #define get_cmd_cache_cmd(key)		(((key) >> 8) & 0xffff)
1622 
1623 /**
1624  * snd_hda_codec_write_cache - send a single command with caching
1625  * @codec: the HDA codec
1626  * @nid: NID to send the command
1627  * @direct: direct flag
1628  * @verb: the verb to send
1629  * @parm: the parameter for the verb
1630  *
1631  * Send a single command without waiting for response.
1632  *
1633  * Returns 0 if successful, or a negative error code.
1634  */
1635 int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
1636 			      int direct, unsigned int verb, unsigned int parm)
1637 {
1638 	int err;
1639 	snd_hda_power_up(codec);
1640 	mutex_lock(&codec->bus->cmd_mutex);
1641 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
1642 	if (!err) {
1643 		struct hda_cache_head *c;
1644 		u32 key = build_cmd_cache_key(nid, verb);
1645 		c = get_alloc_hash(&codec->cmd_cache, key);
1646 		if (c)
1647 			c->val = parm;
1648 	}
1649 	mutex_unlock(&codec->bus->cmd_mutex);
1650 	snd_hda_power_down(codec);
1651 	return err;
1652 }
1653 
1654 /* resume the all commands from the cache */
1655 void snd_hda_codec_resume_cache(struct hda_codec *codec)
1656 {
1657 	struct hda_cache_head *buffer = codec->cmd_cache.buffer;
1658 	int i;
1659 
1660 	for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
1661 		u32 key = buffer->key;
1662 		if (!key)
1663 			continue;
1664 		snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
1665 				    get_cmd_cache_cmd(key), buffer->val);
1666 	}
1667 }
1668 
1669 /**
1670  * snd_hda_sequence_write_cache - sequence writes with caching
1671  * @codec: the HDA codec
1672  * @seq: VERB array to send
1673  *
1674  * Send the commands sequentially from the given array.
1675  * Thte commands are recorded on cache for power-save and resume.
1676  * The array must be terminated with NID=0.
1677  */
1678 void snd_hda_sequence_write_cache(struct hda_codec *codec,
1679 				  const struct hda_verb *seq)
1680 {
1681 	for (; seq->nid; seq++)
1682 		snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
1683 					  seq->param);
1684 }
1685 #endif /* SND_HDA_NEEDS_RESUME */
1686 
1687 /*
1688  * set power state of the codec
1689  */
1690 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1691 				unsigned int power_state)
1692 {
1693 	hda_nid_t nid;
1694 	int i;
1695 
1696 	snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1697 			    power_state);
1698 	msleep(10); /* partial workaround for "azx_get_response timeout" */
1699 
1700 	nid = codec->start_nid;
1701 	for (i = 0; i < codec->num_nodes; i++, nid++) {
1702 		unsigned int wcaps = get_wcaps(codec, nid);
1703 		if (wcaps & AC_WCAP_POWER) {
1704 			unsigned int wid_type = (wcaps & AC_WCAP_TYPE) >>
1705 				AC_WCAP_TYPE_SHIFT;
1706 			if (wid_type == AC_WID_PIN) {
1707 				unsigned int pincap;
1708 				/*
1709 				 * don't power down the widget if it controls
1710 				 * eapd and EAPD_BTLENABLE is set.
1711 				 */
1712 				pincap = snd_hda_param_read(codec, nid,
1713 							    AC_PAR_PIN_CAP);
1714 				if (pincap & AC_PINCAP_EAPD) {
1715 					int eapd = snd_hda_codec_read(codec,
1716 						nid, 0,
1717 						AC_VERB_GET_EAPD_BTLENABLE, 0);
1718 					eapd &= 0x02;
1719 					if (power_state == AC_PWRST_D3 && eapd)
1720 						continue;
1721 				}
1722 			}
1723 			snd_hda_codec_write(codec, nid, 0,
1724 					    AC_VERB_SET_POWER_STATE,
1725 					    power_state);
1726 		}
1727 	}
1728 
1729 	if (power_state == AC_PWRST_D0) {
1730 		unsigned long end_time;
1731 		int state;
1732 		msleep(10);
1733 		/* wait until the codec reachs to D0 */
1734 		end_time = jiffies + msecs_to_jiffies(500);
1735 		do {
1736 			state = snd_hda_codec_read(codec, fg, 0,
1737 						   AC_VERB_GET_POWER_STATE, 0);
1738 			if (state == power_state)
1739 				break;
1740 			msleep(1);
1741 		} while (time_after_eq(end_time, jiffies));
1742 	}
1743 }
1744 
1745 #ifdef SND_HDA_NEEDS_RESUME
1746 /*
1747  * call suspend and power-down; used both from PM and power-save
1748  */
1749 static void hda_call_codec_suspend(struct hda_codec *codec)
1750 {
1751 	if (codec->patch_ops.suspend)
1752 		codec->patch_ops.suspend(codec, PMSG_SUSPEND);
1753 	hda_set_power_state(codec,
1754 			    codec->afg ? codec->afg : codec->mfg,
1755 			    AC_PWRST_D3);
1756 #ifdef CONFIG_SND_HDA_POWER_SAVE
1757 	cancel_delayed_work(&codec->power_work);
1758 	codec->power_on = 0;
1759 	codec->power_transition = 0;
1760 #endif
1761 }
1762 
1763 /*
1764  * kick up codec; used both from PM and power-save
1765  */
1766 static void hda_call_codec_resume(struct hda_codec *codec)
1767 {
1768 	hda_set_power_state(codec,
1769 			    codec->afg ? codec->afg : codec->mfg,
1770 			    AC_PWRST_D0);
1771 	if (codec->patch_ops.resume)
1772 		codec->patch_ops.resume(codec);
1773 	else {
1774 		if (codec->patch_ops.init)
1775 			codec->patch_ops.init(codec);
1776 		snd_hda_codec_resume_amp(codec);
1777 		snd_hda_codec_resume_cache(codec);
1778 	}
1779 }
1780 #endif /* SND_HDA_NEEDS_RESUME */
1781 
1782 
1783 /**
1784  * snd_hda_build_controls - build mixer controls
1785  * @bus: the BUS
1786  *
1787  * Creates mixer controls for each codec included in the bus.
1788  *
1789  * Returns 0 if successful, otherwise a negative error code.
1790  */
1791 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1792 {
1793 	struct hda_codec *codec;
1794 
1795 	list_for_each_entry(codec, &bus->codec_list, list) {
1796 		int err = 0;
1797 		/* fake as if already powered-on */
1798 		hda_keep_power_on(codec);
1799 		/* then fire up */
1800 		hda_set_power_state(codec,
1801 				    codec->afg ? codec->afg : codec->mfg,
1802 				    AC_PWRST_D0);
1803 		/* continue to initialize... */
1804 		if (codec->patch_ops.init)
1805 			err = codec->patch_ops.init(codec);
1806 		if (!err && codec->patch_ops.build_controls)
1807 			err = codec->patch_ops.build_controls(codec);
1808 		snd_hda_power_down(codec);
1809 		if (err < 0)
1810 			return err;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 /*
1817  * stream formats
1818  */
1819 struct hda_rate_tbl {
1820 	unsigned int hz;
1821 	unsigned int alsa_bits;
1822 	unsigned int hda_fmt;
1823 };
1824 
1825 static struct hda_rate_tbl rate_bits[] = {
1826 	/* rate in Hz, ALSA rate bitmask, HDA format value */
1827 
1828 	/* autodetected value used in snd_hda_query_supported_pcm */
1829 	{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1830 	{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1831 	{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1832 	{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1833 	{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1834 	{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1835 	{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1836 	{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1837 	{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1838 	{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1839 	{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1840 #define AC_PAR_PCM_RATE_BITS	11
1841 	/* up to bits 10, 384kHZ isn't supported properly */
1842 
1843 	/* not autodetected value */
1844 	{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1845 
1846 	{ 0 } /* terminator */
1847 };
1848 
1849 /**
1850  * snd_hda_calc_stream_format - calculate format bitset
1851  * @rate: the sample rate
1852  * @channels: the number of channels
1853  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1854  * @maxbps: the max. bps
1855  *
1856  * Calculate the format bitset from the given rate, channels and th PCM format.
1857  *
1858  * Return zero if invalid.
1859  */
1860 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1861 					unsigned int channels,
1862 					unsigned int format,
1863 					unsigned int maxbps)
1864 {
1865 	int i;
1866 	unsigned int val = 0;
1867 
1868 	for (i = 0; rate_bits[i].hz; i++)
1869 		if (rate_bits[i].hz == rate) {
1870 			val = rate_bits[i].hda_fmt;
1871 			break;
1872 		}
1873 	if (!rate_bits[i].hz) {
1874 		snd_printdd("invalid rate %d\n", rate);
1875 		return 0;
1876 	}
1877 
1878 	if (channels == 0 || channels > 8) {
1879 		snd_printdd("invalid channels %d\n", channels);
1880 		return 0;
1881 	}
1882 	val |= channels - 1;
1883 
1884 	switch (snd_pcm_format_width(format)) {
1885 	case 8:  val |= 0x00; break;
1886 	case 16: val |= 0x10; break;
1887 	case 20:
1888 	case 24:
1889 	case 32:
1890 		if (maxbps >= 32)
1891 			val |= 0x40;
1892 		else if (maxbps >= 24)
1893 			val |= 0x30;
1894 		else
1895 			val |= 0x20;
1896 		break;
1897 	default:
1898 		snd_printdd("invalid format width %d\n",
1899 			    snd_pcm_format_width(format));
1900 		return 0;
1901 	}
1902 
1903 	return val;
1904 }
1905 
1906 /**
1907  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1908  * @codec: the HDA codec
1909  * @nid: NID to query
1910  * @ratesp: the pointer to store the detected rate bitflags
1911  * @formatsp: the pointer to store the detected formats
1912  * @bpsp: the pointer to store the detected format widths
1913  *
1914  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1915  * or @bsps argument is ignored.
1916  *
1917  * Returns 0 if successful, otherwise a negative error code.
1918  */
1919 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1920 				u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1921 {
1922 	int i;
1923 	unsigned int val, streams;
1924 
1925 	val = 0;
1926 	if (nid != codec->afg &&
1927 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1928 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1929 		if (val == -1)
1930 			return -EIO;
1931 	}
1932 	if (!val)
1933 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1934 
1935 	if (ratesp) {
1936 		u32 rates = 0;
1937 		for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1938 			if (val & (1 << i))
1939 				rates |= rate_bits[i].alsa_bits;
1940 		}
1941 		*ratesp = rates;
1942 	}
1943 
1944 	if (formatsp || bpsp) {
1945 		u64 formats = 0;
1946 		unsigned int bps;
1947 		unsigned int wcaps;
1948 
1949 		wcaps = get_wcaps(codec, nid);
1950 		streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1951 		if (streams == -1)
1952 			return -EIO;
1953 		if (!streams) {
1954 			streams = snd_hda_param_read(codec, codec->afg,
1955 						     AC_PAR_STREAM);
1956 			if (streams == -1)
1957 				return -EIO;
1958 		}
1959 
1960 		bps = 0;
1961 		if (streams & AC_SUPFMT_PCM) {
1962 			if (val & AC_SUPPCM_BITS_8) {
1963 				formats |= SNDRV_PCM_FMTBIT_U8;
1964 				bps = 8;
1965 			}
1966 			if (val & AC_SUPPCM_BITS_16) {
1967 				formats |= SNDRV_PCM_FMTBIT_S16_LE;
1968 				bps = 16;
1969 			}
1970 			if (wcaps & AC_WCAP_DIGITAL) {
1971 				if (val & AC_SUPPCM_BITS_32)
1972 					formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1973 				if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1974 					formats |= SNDRV_PCM_FMTBIT_S32_LE;
1975 				if (val & AC_SUPPCM_BITS_24)
1976 					bps = 24;
1977 				else if (val & AC_SUPPCM_BITS_20)
1978 					bps = 20;
1979 			} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1980 					  AC_SUPPCM_BITS_32)) {
1981 				formats |= SNDRV_PCM_FMTBIT_S32_LE;
1982 				if (val & AC_SUPPCM_BITS_32)
1983 					bps = 32;
1984 				else if (val & AC_SUPPCM_BITS_24)
1985 					bps = 24;
1986 				else if (val & AC_SUPPCM_BITS_20)
1987 					bps = 20;
1988 			}
1989 		}
1990 		else if (streams == AC_SUPFMT_FLOAT32) {
1991 			/* should be exclusive */
1992 			formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1993 			bps = 32;
1994 		} else if (streams == AC_SUPFMT_AC3) {
1995 			/* should be exclusive */
1996 			/* temporary hack: we have still no proper support
1997 			 * for the direct AC3 stream...
1998 			 */
1999 			formats |= SNDRV_PCM_FMTBIT_U8;
2000 			bps = 8;
2001 		}
2002 		if (formatsp)
2003 			*formatsp = formats;
2004 		if (bpsp)
2005 			*bpsp = bps;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 /**
2012  * snd_hda_is_supported_format - check whether the given node supports
2013  * the format val
2014  *
2015  * Returns 1 if supported, 0 if not.
2016  */
2017 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
2018 				unsigned int format)
2019 {
2020 	int i;
2021 	unsigned int val = 0, rate, stream;
2022 
2023 	if (nid != codec->afg &&
2024 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
2025 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
2026 		if (val == -1)
2027 			return 0;
2028 	}
2029 	if (!val) {
2030 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
2031 		if (val == -1)
2032 			return 0;
2033 	}
2034 
2035 	rate = format & 0xff00;
2036 	for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
2037 		if (rate_bits[i].hda_fmt == rate) {
2038 			if (val & (1 << i))
2039 				break;
2040 			return 0;
2041 		}
2042 	if (i >= AC_PAR_PCM_RATE_BITS)
2043 		return 0;
2044 
2045 	stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
2046 	if (stream == -1)
2047 		return 0;
2048 	if (!stream && nid != codec->afg)
2049 		stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
2050 	if (!stream || stream == -1)
2051 		return 0;
2052 
2053 	if (stream & AC_SUPFMT_PCM) {
2054 		switch (format & 0xf0) {
2055 		case 0x00:
2056 			if (!(val & AC_SUPPCM_BITS_8))
2057 				return 0;
2058 			break;
2059 		case 0x10:
2060 			if (!(val & AC_SUPPCM_BITS_16))
2061 				return 0;
2062 			break;
2063 		case 0x20:
2064 			if (!(val & AC_SUPPCM_BITS_20))
2065 				return 0;
2066 			break;
2067 		case 0x30:
2068 			if (!(val & AC_SUPPCM_BITS_24))
2069 				return 0;
2070 			break;
2071 		case 0x40:
2072 			if (!(val & AC_SUPPCM_BITS_32))
2073 				return 0;
2074 			break;
2075 		default:
2076 			return 0;
2077 		}
2078 	} else {
2079 		/* FIXME: check for float32 and AC3? */
2080 	}
2081 
2082 	return 1;
2083 }
2084 
2085 /*
2086  * PCM stuff
2087  */
2088 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
2089 				      struct hda_codec *codec,
2090 				      struct snd_pcm_substream *substream)
2091 {
2092 	return 0;
2093 }
2094 
2095 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
2096 				   struct hda_codec *codec,
2097 				   unsigned int stream_tag,
2098 				   unsigned int format,
2099 				   struct snd_pcm_substream *substream)
2100 {
2101 	snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
2102 	return 0;
2103 }
2104 
2105 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
2106 				   struct hda_codec *codec,
2107 				   struct snd_pcm_substream *substream)
2108 {
2109 	snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
2110 	return 0;
2111 }
2112 
2113 static int __devinit set_pcm_default_values(struct hda_codec *codec,
2114 					    struct hda_pcm_stream *info)
2115 {
2116 	/* query support PCM information from the given NID */
2117 	if (info->nid && (!info->rates || !info->formats)) {
2118 		snd_hda_query_supported_pcm(codec, info->nid,
2119 				info->rates ? NULL : &info->rates,
2120 				info->formats ? NULL : &info->formats,
2121 				info->maxbps ? NULL : &info->maxbps);
2122 	}
2123 	if (info->ops.open == NULL)
2124 		info->ops.open = hda_pcm_default_open_close;
2125 	if (info->ops.close == NULL)
2126 		info->ops.close = hda_pcm_default_open_close;
2127 	if (info->ops.prepare == NULL) {
2128 		snd_assert(info->nid, return -EINVAL);
2129 		info->ops.prepare = hda_pcm_default_prepare;
2130 	}
2131 	if (info->ops.cleanup == NULL) {
2132 		snd_assert(info->nid, return -EINVAL);
2133 		info->ops.cleanup = hda_pcm_default_cleanup;
2134 	}
2135 	return 0;
2136 }
2137 
2138 /**
2139  * snd_hda_build_pcms - build PCM information
2140  * @bus: the BUS
2141  *
2142  * Create PCM information for each codec included in the bus.
2143  *
2144  * The build_pcms codec patch is requested to set up codec->num_pcms and
2145  * codec->pcm_info properly.  The array is referred by the top-level driver
2146  * to create its PCM instances.
2147  * The allocated codec->pcm_info should be released in codec->patch_ops.free
2148  * callback.
2149  *
2150  * At least, substreams, channels_min and channels_max must be filled for
2151  * each stream.  substreams = 0 indicates that the stream doesn't exist.
2152  * When rates and/or formats are zero, the supported values are queried
2153  * from the given nid.  The nid is used also by the default ops.prepare
2154  * and ops.cleanup callbacks.
2155  *
2156  * The driver needs to call ops.open in its open callback.  Similarly,
2157  * ops.close is supposed to be called in the close callback.
2158  * ops.prepare should be called in the prepare or hw_params callback
2159  * with the proper parameters for set up.
2160  * ops.cleanup should be called in hw_free for clean up of streams.
2161  *
2162  * This function returns 0 if successfull, or a negative error code.
2163  */
2164 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
2165 {
2166 	struct hda_codec *codec;
2167 
2168 	list_for_each_entry(codec, &bus->codec_list, list) {
2169 		unsigned int pcm, s;
2170 		int err;
2171 		if (!codec->patch_ops.build_pcms)
2172 			continue;
2173 		err = codec->patch_ops.build_pcms(codec);
2174 		if (err < 0)
2175 			return err;
2176 		for (pcm = 0; pcm < codec->num_pcms; pcm++) {
2177 			for (s = 0; s < 2; s++) {
2178 				struct hda_pcm_stream *info;
2179 				info = &codec->pcm_info[pcm].stream[s];
2180 				if (!info->substreams)
2181 					continue;
2182 				err = set_pcm_default_values(codec, info);
2183 				if (err < 0)
2184 					return err;
2185 			}
2186 		}
2187 	}
2188 	return 0;
2189 }
2190 
2191 /**
2192  * snd_hda_check_board_config - compare the current codec with the config table
2193  * @codec: the HDA codec
2194  * @num_configs: number of config enums
2195  * @models: array of model name strings
2196  * @tbl: configuration table, terminated by null entries
2197  *
2198  * Compares the modelname or PCI subsystem id of the current codec with the
2199  * given configuration table.  If a matching entry is found, returns its
2200  * config value (supposed to be 0 or positive).
2201  *
2202  * If no entries are matching, the function returns a negative value.
2203  */
2204 int snd_hda_check_board_config(struct hda_codec *codec,
2205 			       int num_configs, const char **models,
2206 			       const struct snd_pci_quirk *tbl)
2207 {
2208 	if (codec->bus->modelname && models) {
2209 		int i;
2210 		for (i = 0; i < num_configs; i++) {
2211 			if (models[i] &&
2212 			    !strcmp(codec->bus->modelname, models[i])) {
2213 				snd_printd(KERN_INFO "hda_codec: model '%s' is "
2214 					   "selected\n", models[i]);
2215 				return i;
2216 			}
2217 		}
2218 	}
2219 
2220 	if (!codec->bus->pci || !tbl)
2221 		return -1;
2222 
2223 	tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
2224 	if (!tbl)
2225 		return -1;
2226 	if (tbl->value >= 0 && tbl->value < num_configs) {
2227 #ifdef CONFIG_SND_DEBUG_DETECT
2228 		char tmp[10];
2229 		const char *model = NULL;
2230 		if (models)
2231 			model = models[tbl->value];
2232 		if (!model) {
2233 			sprintf(tmp, "#%d", tbl->value);
2234 			model = tmp;
2235 		}
2236 		snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
2237 			    "for config %x:%x (%s)\n",
2238 			    model, tbl->subvendor, tbl->subdevice,
2239 			    (tbl->name ? tbl->name : "Unknown device"));
2240 #endif
2241 		return tbl->value;
2242 	}
2243 	return -1;
2244 }
2245 
2246 /**
2247  * snd_hda_add_new_ctls - create controls from the array
2248  * @codec: the HDA codec
2249  * @knew: the array of struct snd_kcontrol_new
2250  *
2251  * This helper function creates and add new controls in the given array.
2252  * The array must be terminated with an empty entry as terminator.
2253  *
2254  * Returns 0 if successful, or a negative error code.
2255  */
2256 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2257 {
2258  	int err;
2259 
2260 	for (; knew->name; knew++) {
2261 		struct snd_kcontrol *kctl;
2262 		kctl = snd_ctl_new1(knew, codec);
2263 		if (!kctl)
2264 			return -ENOMEM;
2265 		err = snd_ctl_add(codec->bus->card, kctl);
2266 		if (err < 0) {
2267 			if (!codec->addr)
2268 				return err;
2269 			kctl = snd_ctl_new1(knew, codec);
2270 			if (!kctl)
2271 				return -ENOMEM;
2272 			kctl->id.device = codec->addr;
2273 			err = snd_ctl_add(codec->bus->card, kctl);
2274 			if (err < 0)
2275 				return err;
2276 		}
2277 	}
2278 	return 0;
2279 }
2280 
2281 #ifdef CONFIG_SND_HDA_POWER_SAVE
2282 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
2283 				unsigned int power_state);
2284 
2285 static void hda_power_work(struct work_struct *work)
2286 {
2287 	struct hda_codec *codec =
2288 		container_of(work, struct hda_codec, power_work.work);
2289 
2290 	if (!codec->power_on || codec->power_count) {
2291 		codec->power_transition = 0;
2292 		return;
2293 	}
2294 
2295 	hda_call_codec_suspend(codec);
2296 	if (codec->bus->ops.pm_notify)
2297 		codec->bus->ops.pm_notify(codec);
2298 }
2299 
2300 static void hda_keep_power_on(struct hda_codec *codec)
2301 {
2302 	codec->power_count++;
2303 	codec->power_on = 1;
2304 }
2305 
2306 void snd_hda_power_up(struct hda_codec *codec)
2307 {
2308 	codec->power_count++;
2309 	if (codec->power_on || codec->power_transition)
2310 		return;
2311 
2312 	codec->power_on = 1;
2313 	if (codec->bus->ops.pm_notify)
2314 		codec->bus->ops.pm_notify(codec);
2315 	hda_call_codec_resume(codec);
2316 	cancel_delayed_work(&codec->power_work);
2317 	codec->power_transition = 0;
2318 }
2319 
2320 void snd_hda_power_down(struct hda_codec *codec)
2321 {
2322 	--codec->power_count;
2323 	if (!codec->power_on || codec->power_count || codec->power_transition)
2324 		return;
2325 	if (power_save) {
2326 		codec->power_transition = 1; /* avoid reentrance */
2327 		schedule_delayed_work(&codec->power_work,
2328 				      msecs_to_jiffies(power_save * 1000));
2329 	}
2330 }
2331 
2332 int snd_hda_check_amp_list_power(struct hda_codec *codec,
2333 				 struct hda_loopback_check *check,
2334 				 hda_nid_t nid)
2335 {
2336 	struct hda_amp_list *p;
2337 	int ch, v;
2338 
2339 	if (!check->amplist)
2340 		return 0;
2341 	for (p = check->amplist; p->nid; p++) {
2342 		if (p->nid == nid)
2343 			break;
2344 	}
2345 	if (!p->nid)
2346 		return 0; /* nothing changed */
2347 
2348 	for (p = check->amplist; p->nid; p++) {
2349 		for (ch = 0; ch < 2; ch++) {
2350 			v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
2351 						   p->idx);
2352 			if (!(v & HDA_AMP_MUTE) && v > 0) {
2353 				if (!check->power_on) {
2354 					check->power_on = 1;
2355 					snd_hda_power_up(codec);
2356 				}
2357 				return 1;
2358 			}
2359 		}
2360 	}
2361 	if (check->power_on) {
2362 		check->power_on = 0;
2363 		snd_hda_power_down(codec);
2364 	}
2365 	return 0;
2366 }
2367 #endif
2368 
2369 /*
2370  * Channel mode helper
2371  */
2372 int snd_hda_ch_mode_info(struct hda_codec *codec,
2373 			 struct snd_ctl_elem_info *uinfo,
2374 			 const struct hda_channel_mode *chmode,
2375 			 int num_chmodes)
2376 {
2377 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2378 	uinfo->count = 1;
2379 	uinfo->value.enumerated.items = num_chmodes;
2380 	if (uinfo->value.enumerated.item >= num_chmodes)
2381 		uinfo->value.enumerated.item = num_chmodes - 1;
2382 	sprintf(uinfo->value.enumerated.name, "%dch",
2383 		chmode[uinfo->value.enumerated.item].channels);
2384 	return 0;
2385 }
2386 
2387 int snd_hda_ch_mode_get(struct hda_codec *codec,
2388 			struct snd_ctl_elem_value *ucontrol,
2389 			const struct hda_channel_mode *chmode,
2390 			int num_chmodes,
2391 			int max_channels)
2392 {
2393 	int i;
2394 
2395 	for (i = 0; i < num_chmodes; i++) {
2396 		if (max_channels == chmode[i].channels) {
2397 			ucontrol->value.enumerated.item[0] = i;
2398 			break;
2399 		}
2400 	}
2401 	return 0;
2402 }
2403 
2404 int snd_hda_ch_mode_put(struct hda_codec *codec,
2405 			struct snd_ctl_elem_value *ucontrol,
2406 			const struct hda_channel_mode *chmode,
2407 			int num_chmodes,
2408 			int *max_channelsp)
2409 {
2410 	unsigned int mode;
2411 
2412 	mode = ucontrol->value.enumerated.item[0];
2413 	if (mode >= num_chmodes)
2414 		return -EINVAL;
2415 	if (*max_channelsp == chmode[mode].channels)
2416 		return 0;
2417 	/* change the current channel setting */
2418 	*max_channelsp = chmode[mode].channels;
2419 	if (chmode[mode].sequence)
2420 		snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
2421 	return 1;
2422 }
2423 
2424 /*
2425  * input MUX helper
2426  */
2427 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
2428 			   struct snd_ctl_elem_info *uinfo)
2429 {
2430 	unsigned int index;
2431 
2432 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2433 	uinfo->count = 1;
2434 	uinfo->value.enumerated.items = imux->num_items;
2435 	if (!imux->num_items)
2436 		return 0;
2437 	index = uinfo->value.enumerated.item;
2438 	if (index >= imux->num_items)
2439 		index = imux->num_items - 1;
2440 	strcpy(uinfo->value.enumerated.name, imux->items[index].label);
2441 	return 0;
2442 }
2443 
2444 int snd_hda_input_mux_put(struct hda_codec *codec,
2445 			  const struct hda_input_mux *imux,
2446 			  struct snd_ctl_elem_value *ucontrol,
2447 			  hda_nid_t nid,
2448 			  unsigned int *cur_val)
2449 {
2450 	unsigned int idx;
2451 
2452 	if (!imux->num_items)
2453 		return 0;
2454 	idx = ucontrol->value.enumerated.item[0];
2455 	if (idx >= imux->num_items)
2456 		idx = imux->num_items - 1;
2457 	if (*cur_val == idx)
2458 		return 0;
2459 	snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
2460 				  imux->items[idx].index);
2461 	*cur_val = idx;
2462 	return 1;
2463 }
2464 
2465 
2466 /*
2467  * Multi-channel / digital-out PCM helper functions
2468  */
2469 
2470 /* setup SPDIF output stream */
2471 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
2472 				 unsigned int stream_tag, unsigned int format)
2473 {
2474 	/* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
2475 	if (codec->spdif_ctls & AC_DIG1_ENABLE)
2476 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2477 				    codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
2478 	snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
2479 	/* turn on again (if needed) */
2480 	if (codec->spdif_ctls & AC_DIG1_ENABLE)
2481 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2482 				    codec->spdif_ctls & 0xff);
2483 }
2484 
2485 /*
2486  * open the digital out in the exclusive mode
2487  */
2488 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
2489 			       struct hda_multi_out *mout)
2490 {
2491 	mutex_lock(&codec->spdif_mutex);
2492 	if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
2493 		/* already opened as analog dup; reset it once */
2494 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2495 	mout->dig_out_used = HDA_DIG_EXCLUSIVE;
2496 	mutex_unlock(&codec->spdif_mutex);
2497 	return 0;
2498 }
2499 
2500 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
2501 				  struct hda_multi_out *mout,
2502 				  unsigned int stream_tag,
2503 				  unsigned int format,
2504 				  struct snd_pcm_substream *substream)
2505 {
2506 	mutex_lock(&codec->spdif_mutex);
2507 	setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2508 	mutex_unlock(&codec->spdif_mutex);
2509 	return 0;
2510 }
2511 
2512 /*
2513  * release the digital out
2514  */
2515 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2516 				struct hda_multi_out *mout)
2517 {
2518 	mutex_lock(&codec->spdif_mutex);
2519 	mout->dig_out_used = 0;
2520 	mutex_unlock(&codec->spdif_mutex);
2521 	return 0;
2522 }
2523 
2524 /*
2525  * set up more restrictions for analog out
2526  */
2527 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2528 				  struct hda_multi_out *mout,
2529 				  struct snd_pcm_substream *substream)
2530 {
2531 	substream->runtime->hw.channels_max = mout->max_channels;
2532 	return snd_pcm_hw_constraint_step(substream->runtime, 0,
2533 					  SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2534 }
2535 
2536 /*
2537  * set up the i/o for analog out
2538  * when the digital out is available, copy the front out to digital out, too.
2539  */
2540 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2541 				     struct hda_multi_out *mout,
2542 				     unsigned int stream_tag,
2543 				     unsigned int format,
2544 				     struct snd_pcm_substream *substream)
2545 {
2546 	hda_nid_t *nids = mout->dac_nids;
2547 	int chs = substream->runtime->channels;
2548 	int i;
2549 
2550 	mutex_lock(&codec->spdif_mutex);
2551 	if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2552 		if (chs == 2 &&
2553 		    snd_hda_is_supported_format(codec, mout->dig_out_nid,
2554 						format) &&
2555 		    !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2556 			mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2557 			setup_dig_out_stream(codec, mout->dig_out_nid,
2558 					     stream_tag, format);
2559 		} else {
2560 			mout->dig_out_used = 0;
2561 			snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2562 						   0, 0, 0);
2563 		}
2564 	}
2565 	mutex_unlock(&codec->spdif_mutex);
2566 
2567 	/* front */
2568 	snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2569 				   0, format);
2570 	if (!mout->no_share_stream &&
2571 	    mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2572 		/* headphone out will just decode front left/right (stereo) */
2573 		snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2574 					   0, format);
2575 	/* extra outputs copied from front */
2576 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2577 		if (!mout->no_share_stream && mout->extra_out_nid[i])
2578 			snd_hda_codec_setup_stream(codec,
2579 						   mout->extra_out_nid[i],
2580 						   stream_tag, 0, format);
2581 
2582 	/* surrounds */
2583 	for (i = 1; i < mout->num_dacs; i++) {
2584 		if (chs >= (i + 1) * 2) /* independent out */
2585 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2586 						   i * 2, format);
2587 		else if (!mout->no_share_stream) /* copy front */
2588 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2589 						   0, format);
2590 	}
2591 	return 0;
2592 }
2593 
2594 /*
2595  * clean up the setting for analog out
2596  */
2597 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2598 				     struct hda_multi_out *mout)
2599 {
2600 	hda_nid_t *nids = mout->dac_nids;
2601 	int i;
2602 
2603 	for (i = 0; i < mout->num_dacs; i++)
2604 		snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2605 	if (mout->hp_nid)
2606 		snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2607 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2608 		if (mout->extra_out_nid[i])
2609 			snd_hda_codec_setup_stream(codec,
2610 						   mout->extra_out_nid[i],
2611 						   0, 0, 0);
2612 	mutex_lock(&codec->spdif_mutex);
2613 	if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2614 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2615 		mout->dig_out_used = 0;
2616 	}
2617 	mutex_unlock(&codec->spdif_mutex);
2618 	return 0;
2619 }
2620 
2621 /*
2622  * Helper for automatic ping configuration
2623  */
2624 
2625 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2626 {
2627 	for (; *list; list++)
2628 		if (*list == nid)
2629 			return 1;
2630 	return 0;
2631 }
2632 
2633 
2634 /*
2635  * Sort an associated group of pins according to their sequence numbers.
2636  */
2637 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2638 				  int num_pins)
2639 {
2640 	int i, j;
2641 	short seq;
2642 	hda_nid_t nid;
2643 
2644 	for (i = 0; i < num_pins; i++) {
2645 		for (j = i + 1; j < num_pins; j++) {
2646 			if (sequences[i] > sequences[j]) {
2647 				seq = sequences[i];
2648 				sequences[i] = sequences[j];
2649 				sequences[j] = seq;
2650 				nid = pins[i];
2651 				pins[i] = pins[j];
2652 				pins[j] = nid;
2653 			}
2654 		}
2655 	}
2656 }
2657 
2658 
2659 /*
2660  * Parse all pin widgets and store the useful pin nids to cfg
2661  *
2662  * The number of line-outs or any primary output is stored in line_outs,
2663  * and the corresponding output pins are assigned to line_out_pins[],
2664  * in the order of front, rear, CLFE, side, ...
2665  *
2666  * If more extra outputs (speaker and headphone) are found, the pins are
2667  * assisnged to hp_pins[] and speaker_pins[], respectively.  If no line-out jack
2668  * is detected, one of speaker of HP pins is assigned as the primary
2669  * output, i.e. to line_out_pins[0].  So, line_outs is always positive
2670  * if any analog output exists.
2671  *
2672  * The analog input pins are assigned to input_pins array.
2673  * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2674  * respectively.
2675  */
2676 int snd_hda_parse_pin_def_config(struct hda_codec *codec,
2677 				 struct auto_pin_cfg *cfg,
2678 				 hda_nid_t *ignore_nids)
2679 {
2680 	hda_nid_t nid, end_nid;
2681 	short seq, assoc_line_out, assoc_speaker;
2682 	short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2683 	short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2684 	short sequences_hp[ARRAY_SIZE(cfg->hp_pins)];
2685 
2686 	memset(cfg, 0, sizeof(*cfg));
2687 
2688 	memset(sequences_line_out, 0, sizeof(sequences_line_out));
2689 	memset(sequences_speaker, 0, sizeof(sequences_speaker));
2690 	memset(sequences_hp, 0, sizeof(sequences_hp));
2691 	assoc_line_out = assoc_speaker = 0;
2692 
2693 	end_nid = codec->start_nid + codec->num_nodes;
2694 	for (nid = codec->start_nid; nid < end_nid; nid++) {
2695 		unsigned int wid_caps = get_wcaps(codec, nid);
2696 		unsigned int wid_type =
2697 			(wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2698 		unsigned int def_conf;
2699 		short assoc, loc;
2700 
2701 		/* read all default configuration for pin complex */
2702 		if (wid_type != AC_WID_PIN)
2703 			continue;
2704 		/* ignore the given nids (e.g. pc-beep returns error) */
2705 		if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2706 			continue;
2707 
2708 		def_conf = snd_hda_codec_read(codec, nid, 0,
2709 					      AC_VERB_GET_CONFIG_DEFAULT, 0);
2710 		if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2711 			continue;
2712 		loc = get_defcfg_location(def_conf);
2713 		switch (get_defcfg_device(def_conf)) {
2714 		case AC_JACK_LINE_OUT:
2715 			seq = get_defcfg_sequence(def_conf);
2716 			assoc = get_defcfg_association(def_conf);
2717 
2718 			if (!(wid_caps & AC_WCAP_STEREO))
2719 				if (!cfg->mono_out_pin)
2720 					cfg->mono_out_pin = nid;
2721 			if (!assoc)
2722 				continue;
2723 			if (!assoc_line_out)
2724 				assoc_line_out = assoc;
2725 			else if (assoc_line_out != assoc)
2726 				continue;
2727 			if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2728 				continue;
2729 			cfg->line_out_pins[cfg->line_outs] = nid;
2730 			sequences_line_out[cfg->line_outs] = seq;
2731 			cfg->line_outs++;
2732 			break;
2733 		case AC_JACK_SPEAKER:
2734 			seq = get_defcfg_sequence(def_conf);
2735 			assoc = get_defcfg_association(def_conf);
2736 			if (! assoc)
2737 				continue;
2738 			if (! assoc_speaker)
2739 				assoc_speaker = assoc;
2740 			else if (assoc_speaker != assoc)
2741 				continue;
2742 			if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2743 				continue;
2744 			cfg->speaker_pins[cfg->speaker_outs] = nid;
2745 			sequences_speaker[cfg->speaker_outs] = seq;
2746 			cfg->speaker_outs++;
2747 			break;
2748 		case AC_JACK_HP_OUT:
2749 			seq = get_defcfg_sequence(def_conf);
2750 			assoc = get_defcfg_association(def_conf);
2751 			if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2752 				continue;
2753 			cfg->hp_pins[cfg->hp_outs] = nid;
2754 			sequences_hp[cfg->hp_outs] = (assoc << 4) | seq;
2755 			cfg->hp_outs++;
2756 			break;
2757 		case AC_JACK_MIC_IN: {
2758 			int preferred, alt;
2759 			if (loc == AC_JACK_LOC_FRONT) {
2760 				preferred = AUTO_PIN_FRONT_MIC;
2761 				alt = AUTO_PIN_MIC;
2762 			} else {
2763 				preferred = AUTO_PIN_MIC;
2764 				alt = AUTO_PIN_FRONT_MIC;
2765 			}
2766 			if (!cfg->input_pins[preferred])
2767 				cfg->input_pins[preferred] = nid;
2768 			else if (!cfg->input_pins[alt])
2769 				cfg->input_pins[alt] = nid;
2770 			break;
2771 		}
2772 		case AC_JACK_LINE_IN:
2773 			if (loc == AC_JACK_LOC_FRONT)
2774 				cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2775 			else
2776 				cfg->input_pins[AUTO_PIN_LINE] = nid;
2777 			break;
2778 		case AC_JACK_CD:
2779 			cfg->input_pins[AUTO_PIN_CD] = nid;
2780 			break;
2781 		case AC_JACK_AUX:
2782 			cfg->input_pins[AUTO_PIN_AUX] = nid;
2783 			break;
2784 		case AC_JACK_SPDIF_OUT:
2785 			cfg->dig_out_pin = nid;
2786 			break;
2787 		case AC_JACK_SPDIF_IN:
2788 			cfg->dig_in_pin = nid;
2789 			break;
2790 		}
2791 	}
2792 
2793 	/* sort by sequence */
2794 	sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2795 			      cfg->line_outs);
2796 	sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2797 			      cfg->speaker_outs);
2798 	sort_pins_by_sequence(cfg->hp_pins, sequences_hp,
2799 			      cfg->hp_outs);
2800 
2801 	/* if we have only one mic, make it AUTO_PIN_MIC */
2802 	if (!cfg->input_pins[AUTO_PIN_MIC] &&
2803 	    cfg->input_pins[AUTO_PIN_FRONT_MIC]) {
2804 		cfg->input_pins[AUTO_PIN_MIC] =
2805 			cfg->input_pins[AUTO_PIN_FRONT_MIC];
2806 		cfg->input_pins[AUTO_PIN_FRONT_MIC] = 0;
2807 	}
2808 	/* ditto for line-in */
2809 	if (!cfg->input_pins[AUTO_PIN_LINE] &&
2810 	    cfg->input_pins[AUTO_PIN_FRONT_LINE]) {
2811 		cfg->input_pins[AUTO_PIN_LINE] =
2812 			cfg->input_pins[AUTO_PIN_FRONT_LINE];
2813 		cfg->input_pins[AUTO_PIN_FRONT_LINE] = 0;
2814 	}
2815 
2816 	/*
2817 	 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2818 	 * as a primary output
2819 	 */
2820 	if (!cfg->line_outs) {
2821 		if (cfg->speaker_outs) {
2822 			cfg->line_outs = cfg->speaker_outs;
2823 			memcpy(cfg->line_out_pins, cfg->speaker_pins,
2824 			       sizeof(cfg->speaker_pins));
2825 			cfg->speaker_outs = 0;
2826 			memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2827 			cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2828 		} else if (cfg->hp_outs) {
2829 			cfg->line_outs = cfg->hp_outs;
2830 			memcpy(cfg->line_out_pins, cfg->hp_pins,
2831 			       sizeof(cfg->hp_pins));
2832 			cfg->hp_outs = 0;
2833 			memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2834 			cfg->line_out_type = AUTO_PIN_HP_OUT;
2835 		}
2836 	}
2837 
2838 	/* Reorder the surround channels
2839 	 * ALSA sequence is front/surr/clfe/side
2840 	 * HDA sequence is:
2841 	 *    4-ch: front/surr  =>  OK as it is
2842 	 *    6-ch: front/clfe/surr
2843 	 *    8-ch: front/clfe/rear/side|fc
2844 	 */
2845 	switch (cfg->line_outs) {
2846 	case 3:
2847 	case 4:
2848 		nid = cfg->line_out_pins[1];
2849 		cfg->line_out_pins[1] = cfg->line_out_pins[2];
2850 		cfg->line_out_pins[2] = nid;
2851 		break;
2852 	}
2853 
2854 	/*
2855 	 * debug prints of the parsed results
2856 	 */
2857 	snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2858 		   cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2859 		   cfg->line_out_pins[2], cfg->line_out_pins[3],
2860 		   cfg->line_out_pins[4]);
2861 	snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2862 		   cfg->speaker_outs, cfg->speaker_pins[0],
2863 		   cfg->speaker_pins[1], cfg->speaker_pins[2],
2864 		   cfg->speaker_pins[3], cfg->speaker_pins[4]);
2865 	snd_printd("   hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2866 		   cfg->hp_outs, cfg->hp_pins[0],
2867 		   cfg->hp_pins[1], cfg->hp_pins[2],
2868 		   cfg->hp_pins[3], cfg->hp_pins[4]);
2869 	snd_printd("   mono: mono_out=0x%x\n", cfg->mono_out_pin);
2870 	snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2871 		   " cd=0x%x, aux=0x%x\n",
2872 		   cfg->input_pins[AUTO_PIN_MIC],
2873 		   cfg->input_pins[AUTO_PIN_FRONT_MIC],
2874 		   cfg->input_pins[AUTO_PIN_LINE],
2875 		   cfg->input_pins[AUTO_PIN_FRONT_LINE],
2876 		   cfg->input_pins[AUTO_PIN_CD],
2877 		   cfg->input_pins[AUTO_PIN_AUX]);
2878 
2879 	return 0;
2880 }
2881 
2882 /* labels for input pins */
2883 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2884 	"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2885 };
2886 
2887 
2888 #ifdef CONFIG_PM
2889 /*
2890  * power management
2891  */
2892 
2893 /**
2894  * snd_hda_suspend - suspend the codecs
2895  * @bus: the HDA bus
2896  * @state: suspsend state
2897  *
2898  * Returns 0 if successful.
2899  */
2900 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2901 {
2902 	struct hda_codec *codec;
2903 
2904 	list_for_each_entry(codec, &bus->codec_list, list) {
2905 #ifdef CONFIG_SND_HDA_POWER_SAVE
2906 		if (!codec->power_on)
2907 			continue;
2908 #endif
2909 		hda_call_codec_suspend(codec);
2910 	}
2911 	return 0;
2912 }
2913 
2914 /**
2915  * snd_hda_resume - resume the codecs
2916  * @bus: the HDA bus
2917  * @state: resume state
2918  *
2919  * Returns 0 if successful.
2920  *
2921  * This fucntion is defined only when POWER_SAVE isn't set.
2922  * In the power-save mode, the codec is resumed dynamically.
2923  */
2924 int snd_hda_resume(struct hda_bus *bus)
2925 {
2926 	struct hda_codec *codec;
2927 
2928 	list_for_each_entry(codec, &bus->codec_list, list) {
2929 		if (snd_hda_codec_needs_resume(codec))
2930 			hda_call_codec_resume(codec);
2931 	}
2932 	return 0;
2933 }
2934 #ifdef CONFIG_SND_HDA_POWER_SAVE
2935 int snd_hda_codecs_inuse(struct hda_bus *bus)
2936 {
2937 	struct hda_codec *codec;
2938 
2939 	list_for_each_entry(codec, &bus->codec_list, list) {
2940 		if (snd_hda_codec_needs_resume(codec))
2941 			return 1;
2942 	}
2943 	return 0;
2944 }
2945 #endif
2946 #endif
2947