xref: /openbmc/linux/sound/pci/hda/hda_codec.c (revision 9ac8d3fb)
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mutex.h>
27 #include <sound/core.h>
28 #include "hda_codec.h"
29 #include <sound/asoundef.h>
30 #include <sound/tlv.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33 #include <sound/hda_hwdep.h>
34 #include "hda_patch.h"	/* codec presets */
35 
36 #ifdef CONFIG_SND_HDA_POWER_SAVE
37 /* define this option here to hide as static */
38 static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
39 module_param(power_save, int, 0644);
40 MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
41 		 "(in second, 0 = disable).");
42 #endif
43 
44 /*
45  * vendor / preset table
46  */
47 
48 struct hda_vendor_id {
49 	unsigned int id;
50 	const char *name;
51 };
52 
53 /* codec vendor labels */
54 static struct hda_vendor_id hda_vendor_ids[] = {
55 	{ 0x1002, "ATI" },
56 	{ 0x1057, "Motorola" },
57 	{ 0x1095, "Silicon Image" },
58 	{ 0x10ec, "Realtek" },
59 	{ 0x1106, "VIA" },
60 	{ 0x111d, "IDT" },
61 	{ 0x11c1, "LSI" },
62 	{ 0x11d4, "Analog Devices" },
63 	{ 0x13f6, "C-Media" },
64 	{ 0x14f1, "Conexant" },
65 	{ 0x17e8, "Chrontel" },
66 	{ 0x1854, "LG" },
67 	{ 0x1aec, "Wolfson Microelectronics" },
68 	{ 0x434d, "C-Media" },
69 	{ 0x8384, "SigmaTel" },
70 	{} /* terminator */
71 };
72 
73 static const struct hda_codec_preset *hda_preset_tables[] = {
74 #ifdef CONFIG_SND_HDA_CODEC_REALTEK
75 	snd_hda_preset_realtek,
76 #endif
77 #ifdef CONFIG_SND_HDA_CODEC_CMEDIA
78 	snd_hda_preset_cmedia,
79 #endif
80 #ifdef CONFIG_SND_HDA_CODEC_ANALOG
81 	snd_hda_preset_analog,
82 #endif
83 #ifdef CONFIG_SND_HDA_CODEC_SIGMATEL
84 	snd_hda_preset_sigmatel,
85 #endif
86 #ifdef CONFIG_SND_HDA_CODEC_SI3054
87 	snd_hda_preset_si3054,
88 #endif
89 #ifdef CONFIG_SND_HDA_CODEC_ATIHDMI
90 	snd_hda_preset_atihdmi,
91 #endif
92 #ifdef CONFIG_SND_HDA_CODEC_CONEXANT
93 	snd_hda_preset_conexant,
94 #endif
95 #ifdef CONFIG_SND_HDA_CODEC_VIA
96 	snd_hda_preset_via,
97 #endif
98 #ifdef CONFIG_SND_HDA_CODEC_NVHDMI
99 	snd_hda_preset_nvhdmi,
100 #endif
101 	NULL
102 };
103 
104 #ifdef CONFIG_SND_HDA_POWER_SAVE
105 static void hda_power_work(struct work_struct *work);
106 static void hda_keep_power_on(struct hda_codec *codec);
107 #else
108 static inline void hda_keep_power_on(struct hda_codec *codec) {}
109 #endif
110 
111 /**
112  * snd_hda_codec_read - send a command and get the response
113  * @codec: the HDA codec
114  * @nid: NID to send the command
115  * @direct: direct flag
116  * @verb: the verb to send
117  * @parm: the parameter for the verb
118  *
119  * Send a single command and read the corresponding response.
120  *
121  * Returns the obtained response value, or -1 for an error.
122  */
123 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
124 				int direct,
125 				unsigned int verb, unsigned int parm)
126 {
127 	unsigned int res;
128 	snd_hda_power_up(codec);
129 	mutex_lock(&codec->bus->cmd_mutex);
130 	if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
131 		res = codec->bus->ops.get_response(codec);
132 	else
133 		res = (unsigned int)-1;
134 	mutex_unlock(&codec->bus->cmd_mutex);
135 	snd_hda_power_down(codec);
136 	return res;
137 }
138 
139 /**
140  * snd_hda_codec_write - send a single command without waiting for response
141  * @codec: the HDA codec
142  * @nid: NID to send the command
143  * @direct: direct flag
144  * @verb: the verb to send
145  * @parm: the parameter for the verb
146  *
147  * Send a single command without waiting for response.
148  *
149  * Returns 0 if successful, or a negative error code.
150  */
151 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
152 			 unsigned int verb, unsigned int parm)
153 {
154 	int err;
155 	snd_hda_power_up(codec);
156 	mutex_lock(&codec->bus->cmd_mutex);
157 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
158 	mutex_unlock(&codec->bus->cmd_mutex);
159 	snd_hda_power_down(codec);
160 	return err;
161 }
162 
163 /**
164  * snd_hda_sequence_write - sequence writes
165  * @codec: the HDA codec
166  * @seq: VERB array to send
167  *
168  * Send the commands sequentially from the given array.
169  * The array must be terminated with NID=0.
170  */
171 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
172 {
173 	for (; seq->nid; seq++)
174 		snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
175 }
176 
177 /**
178  * snd_hda_get_sub_nodes - get the range of sub nodes
179  * @codec: the HDA codec
180  * @nid: NID to parse
181  * @start_id: the pointer to store the start NID
182  *
183  * Parse the NID and store the start NID of its sub-nodes.
184  * Returns the number of sub-nodes.
185  */
186 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
187 			  hda_nid_t *start_id)
188 {
189 	unsigned int parm;
190 
191 	parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
192 	if (parm == -1)
193 		return 0;
194 	*start_id = (parm >> 16) & 0x7fff;
195 	return (int)(parm & 0x7fff);
196 }
197 
198 /**
199  * snd_hda_get_connections - get connection list
200  * @codec: the HDA codec
201  * @nid: NID to parse
202  * @conn_list: connection list array
203  * @max_conns: max. number of connections to store
204  *
205  * Parses the connection list of the given widget and stores the list
206  * of NIDs.
207  *
208  * Returns the number of connections, or a negative error code.
209  */
210 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
211 			    hda_nid_t *conn_list, int max_conns)
212 {
213 	unsigned int parm;
214 	int i, conn_len, conns;
215 	unsigned int shift, num_elems, mask;
216 	hda_nid_t prev_nid;
217 
218 	if (snd_BUG_ON(!conn_list || max_conns <= 0))
219 		return -EINVAL;
220 
221 	parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
222 	if (parm & AC_CLIST_LONG) {
223 		/* long form */
224 		shift = 16;
225 		num_elems = 2;
226 	} else {
227 		/* short form */
228 		shift = 8;
229 		num_elems = 4;
230 	}
231 	conn_len = parm & AC_CLIST_LENGTH;
232 	mask = (1 << (shift-1)) - 1;
233 
234 	if (!conn_len)
235 		return 0; /* no connection */
236 
237 	if (conn_len == 1) {
238 		/* single connection */
239 		parm = snd_hda_codec_read(codec, nid, 0,
240 					  AC_VERB_GET_CONNECT_LIST, 0);
241 		conn_list[0] = parm & mask;
242 		return 1;
243 	}
244 
245 	/* multi connection */
246 	conns = 0;
247 	prev_nid = 0;
248 	for (i = 0; i < conn_len; i++) {
249 		int range_val;
250 		hda_nid_t val, n;
251 
252 		if (i % num_elems == 0)
253 			parm = snd_hda_codec_read(codec, nid, 0,
254 						  AC_VERB_GET_CONNECT_LIST, i);
255 		range_val = !!(parm & (1 << (shift-1))); /* ranges */
256 		val = parm & mask;
257 		parm >>= shift;
258 		if (range_val) {
259 			/* ranges between the previous and this one */
260 			if (!prev_nid || prev_nid >= val) {
261 				snd_printk(KERN_WARNING "hda_codec: "
262 					   "invalid dep_range_val %x:%x\n",
263 					   prev_nid, val);
264 				continue;
265 			}
266 			for (n = prev_nid + 1; n <= val; n++) {
267 				if (conns >= max_conns) {
268 					snd_printk(KERN_ERR
269 						   "Too many connections\n");
270 					return -EINVAL;
271 				}
272 				conn_list[conns++] = n;
273 			}
274 		} else {
275 			if (conns >= max_conns) {
276 				snd_printk(KERN_ERR "Too many connections\n");
277 				return -EINVAL;
278 			}
279 			conn_list[conns++] = val;
280 		}
281 		prev_nid = val;
282 	}
283 	return conns;
284 }
285 
286 
287 /**
288  * snd_hda_queue_unsol_event - add an unsolicited event to queue
289  * @bus: the BUS
290  * @res: unsolicited event (lower 32bit of RIRB entry)
291  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
292  *
293  * Adds the given event to the queue.  The events are processed in
294  * the workqueue asynchronously.  Call this function in the interrupt
295  * hanlder when RIRB receives an unsolicited event.
296  *
297  * Returns 0 if successful, or a negative error code.
298  */
299 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
300 {
301 	struct hda_bus_unsolicited *unsol;
302 	unsigned int wp;
303 
304 	unsol = bus->unsol;
305 	if (!unsol)
306 		return 0;
307 
308 	wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
309 	unsol->wp = wp;
310 
311 	wp <<= 1;
312 	unsol->queue[wp] = res;
313 	unsol->queue[wp + 1] = res_ex;
314 
315 	schedule_work(&unsol->work);
316 
317 	return 0;
318 }
319 
320 /*
321  * process queued unsolicited events
322  */
323 static void process_unsol_events(struct work_struct *work)
324 {
325 	struct hda_bus_unsolicited *unsol =
326 		container_of(work, struct hda_bus_unsolicited, work);
327 	struct hda_bus *bus = unsol->bus;
328 	struct hda_codec *codec;
329 	unsigned int rp, caddr, res;
330 
331 	while (unsol->rp != unsol->wp) {
332 		rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
333 		unsol->rp = rp;
334 		rp <<= 1;
335 		res = unsol->queue[rp];
336 		caddr = unsol->queue[rp + 1];
337 		if (!(caddr & (1 << 4))) /* no unsolicited event? */
338 			continue;
339 		codec = bus->caddr_tbl[caddr & 0x0f];
340 		if (codec && codec->patch_ops.unsol_event)
341 			codec->patch_ops.unsol_event(codec, res);
342 	}
343 }
344 
345 /*
346  * initialize unsolicited queue
347  */
348 static int __devinit init_unsol_queue(struct hda_bus *bus)
349 {
350 	struct hda_bus_unsolicited *unsol;
351 
352 	if (bus->unsol) /* already initialized */
353 		return 0;
354 
355 	unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
356 	if (!unsol) {
357 		snd_printk(KERN_ERR "hda_codec: "
358 			   "can't allocate unsolicited queue\n");
359 		return -ENOMEM;
360 	}
361 	INIT_WORK(&unsol->work, process_unsol_events);
362 	unsol->bus = bus;
363 	bus->unsol = unsol;
364 	return 0;
365 }
366 
367 /*
368  * destructor
369  */
370 static void snd_hda_codec_free(struct hda_codec *codec);
371 
372 static int snd_hda_bus_free(struct hda_bus *bus)
373 {
374 	struct hda_codec *codec, *n;
375 
376 	if (!bus)
377 		return 0;
378 	if (bus->unsol) {
379 		flush_scheduled_work();
380 		kfree(bus->unsol);
381 	}
382 	list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
383 		snd_hda_codec_free(codec);
384 	}
385 	if (bus->ops.private_free)
386 		bus->ops.private_free(bus);
387 	kfree(bus);
388 	return 0;
389 }
390 
391 static int snd_hda_bus_dev_free(struct snd_device *device)
392 {
393 	struct hda_bus *bus = device->device_data;
394 	return snd_hda_bus_free(bus);
395 }
396 
397 /**
398  * snd_hda_bus_new - create a HDA bus
399  * @card: the card entry
400  * @temp: the template for hda_bus information
401  * @busp: the pointer to store the created bus instance
402  *
403  * Returns 0 if successful, or a negative error code.
404  */
405 int __devinit snd_hda_bus_new(struct snd_card *card,
406 			      const struct hda_bus_template *temp,
407 			      struct hda_bus **busp)
408 {
409 	struct hda_bus *bus;
410 	int err;
411 	static struct snd_device_ops dev_ops = {
412 		.dev_free = snd_hda_bus_dev_free,
413 	};
414 
415 	if (snd_BUG_ON(!temp))
416 		return -EINVAL;
417 	if (snd_BUG_ON(!temp->ops.command || !temp->ops.get_response))
418 		return -EINVAL;
419 
420 	if (busp)
421 		*busp = NULL;
422 
423 	bus = kzalloc(sizeof(*bus), GFP_KERNEL);
424 	if (bus == NULL) {
425 		snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
426 		return -ENOMEM;
427 	}
428 
429 	bus->card = card;
430 	bus->private_data = temp->private_data;
431 	bus->pci = temp->pci;
432 	bus->modelname = temp->modelname;
433 	bus->ops = temp->ops;
434 
435 	mutex_init(&bus->cmd_mutex);
436 	INIT_LIST_HEAD(&bus->codec_list);
437 
438 	err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
439 	if (err < 0) {
440 		snd_hda_bus_free(bus);
441 		return err;
442 	}
443 	if (busp)
444 		*busp = bus;
445 	return 0;
446 }
447 
448 #ifdef CONFIG_SND_HDA_GENERIC
449 #define is_generic_config(codec) \
450 	(codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
451 #else
452 #define is_generic_config(codec)	0
453 #endif
454 
455 /*
456  * find a matching codec preset
457  */
458 static const struct hda_codec_preset __devinit *
459 find_codec_preset(struct hda_codec *codec)
460 {
461 	const struct hda_codec_preset **tbl, *preset;
462 
463 	if (is_generic_config(codec))
464 		return NULL; /* use the generic parser */
465 
466 	for (tbl = hda_preset_tables; *tbl; tbl++) {
467 		for (preset = *tbl; preset->id; preset++) {
468 			u32 mask = preset->mask;
469 			if (preset->afg && preset->afg != codec->afg)
470 				continue;
471 			if (preset->mfg && preset->mfg != codec->mfg)
472 				continue;
473 			if (!mask)
474 				mask = ~0;
475 			if (preset->id == (codec->vendor_id & mask) &&
476 			    (!preset->rev ||
477 			     preset->rev == codec->revision_id))
478 				return preset;
479 		}
480 	}
481 	return NULL;
482 }
483 
484 /*
485  * snd_hda_get_codec_name - store the codec name
486  */
487 void snd_hda_get_codec_name(struct hda_codec *codec,
488 			    char *name, int namelen)
489 {
490 	const struct hda_vendor_id *c;
491 	const char *vendor = NULL;
492 	u16 vendor_id = codec->vendor_id >> 16;
493 	char tmp[16];
494 
495 	for (c = hda_vendor_ids; c->id; c++) {
496 		if (c->id == vendor_id) {
497 			vendor = c->name;
498 			break;
499 		}
500 	}
501 	if (!vendor) {
502 		sprintf(tmp, "Generic %04x", vendor_id);
503 		vendor = tmp;
504 	}
505 	if (codec->preset && codec->preset->name)
506 		snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
507 	else
508 		snprintf(name, namelen, "%s ID %x", vendor,
509 			 codec->vendor_id & 0xffff);
510 }
511 
512 /*
513  * look for an AFG and MFG nodes
514  */
515 static void __devinit setup_fg_nodes(struct hda_codec *codec)
516 {
517 	int i, total_nodes;
518 	hda_nid_t nid;
519 
520 	total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
521 	for (i = 0; i < total_nodes; i++, nid++) {
522 		unsigned int func;
523 		func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
524 		switch (func & 0xff) {
525 		case AC_GRP_AUDIO_FUNCTION:
526 			codec->afg = nid;
527 			break;
528 		case AC_GRP_MODEM_FUNCTION:
529 			codec->mfg = nid;
530 			break;
531 		default:
532 			break;
533 		}
534 	}
535 }
536 
537 /*
538  * read widget caps for each widget and store in cache
539  */
540 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
541 {
542 	int i;
543 	hda_nid_t nid;
544 
545 	codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
546 						 &codec->start_nid);
547 	codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
548 	if (!codec->wcaps)
549 		return -ENOMEM;
550 	nid = codec->start_nid;
551 	for (i = 0; i < codec->num_nodes; i++, nid++)
552 		codec->wcaps[i] = snd_hda_param_read(codec, nid,
553 						     AC_PAR_AUDIO_WIDGET_CAP);
554 	return 0;
555 }
556 
557 
558 static void init_hda_cache(struct hda_cache_rec *cache,
559 			   unsigned int record_size);
560 static void free_hda_cache(struct hda_cache_rec *cache);
561 
562 /*
563  * codec destructor
564  */
565 static void snd_hda_codec_free(struct hda_codec *codec)
566 {
567 	if (!codec)
568 		return;
569 #ifdef CONFIG_SND_HDA_POWER_SAVE
570 	cancel_delayed_work(&codec->power_work);
571 	flush_scheduled_work();
572 #endif
573 	list_del(&codec->list);
574 	codec->bus->caddr_tbl[codec->addr] = NULL;
575 	if (codec->patch_ops.free)
576 		codec->patch_ops.free(codec);
577 	free_hda_cache(&codec->amp_cache);
578 	free_hda_cache(&codec->cmd_cache);
579 	kfree(codec->wcaps);
580 	kfree(codec);
581 }
582 
583 /**
584  * snd_hda_codec_new - create a HDA codec
585  * @bus: the bus to assign
586  * @codec_addr: the codec address
587  * @codecp: the pointer to store the generated codec
588  *
589  * Returns 0 if successful, or a negative error code.
590  */
591 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
592 				struct hda_codec **codecp)
593 {
594 	struct hda_codec *codec;
595 	char component[31];
596 	int err;
597 
598 	if (snd_BUG_ON(!bus))
599 		return -EINVAL;
600 	if (snd_BUG_ON(codec_addr > HDA_MAX_CODEC_ADDRESS))
601 		return -EINVAL;
602 
603 	if (bus->caddr_tbl[codec_addr]) {
604 		snd_printk(KERN_ERR "hda_codec: "
605 			   "address 0x%x is already occupied\n", codec_addr);
606 		return -EBUSY;
607 	}
608 
609 	codec = kzalloc(sizeof(*codec), GFP_KERNEL);
610 	if (codec == NULL) {
611 		snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
612 		return -ENOMEM;
613 	}
614 
615 	codec->bus = bus;
616 	codec->addr = codec_addr;
617 	mutex_init(&codec->spdif_mutex);
618 	init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
619 	init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
620 
621 #ifdef CONFIG_SND_HDA_POWER_SAVE
622 	INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
623 	/* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
624 	 * the caller has to power down appropriatley after initialization
625 	 * phase.
626 	 */
627 	hda_keep_power_on(codec);
628 #endif
629 
630 	list_add_tail(&codec->list, &bus->codec_list);
631 	bus->caddr_tbl[codec_addr] = codec;
632 
633 	codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
634 					      AC_PAR_VENDOR_ID);
635 	if (codec->vendor_id == -1)
636 		/* read again, hopefully the access method was corrected
637 		 * in the last read...
638 		 */
639 		codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
640 						      AC_PAR_VENDOR_ID);
641 	codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
642 						 AC_PAR_SUBSYSTEM_ID);
643 	codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
644 						AC_PAR_REV_ID);
645 
646 	setup_fg_nodes(codec);
647 	if (!codec->afg && !codec->mfg) {
648 		snd_printdd("hda_codec: no AFG or MFG node found\n");
649 		snd_hda_codec_free(codec);
650 		return -ENODEV;
651 	}
652 
653 	if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
654 		snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
655 		snd_hda_codec_free(codec);
656 		return -ENOMEM;
657 	}
658 
659 	if (!codec->subsystem_id) {
660 		hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
661 		codec->subsystem_id =
662 			snd_hda_codec_read(codec, nid, 0,
663 					   AC_VERB_GET_SUBSYSTEM_ID, 0);
664 	}
665 
666 	codec->preset = find_codec_preset(codec);
667 	/* audio codec should override the mixer name */
668 	if (codec->afg || !*bus->card->mixername)
669 		snd_hda_get_codec_name(codec, bus->card->mixername,
670 				       sizeof(bus->card->mixername));
671 
672 	if (is_generic_config(codec)) {
673 		err = snd_hda_parse_generic_codec(codec);
674 		goto patched;
675 	}
676 	if (codec->preset && codec->preset->patch) {
677 		err = codec->preset->patch(codec);
678 		goto patched;
679 	}
680 
681 	/* call the default parser */
682 	err = snd_hda_parse_generic_codec(codec);
683 	if (err < 0)
684 		printk(KERN_ERR "hda-codec: No codec parser is available\n");
685 
686  patched:
687 	if (err < 0) {
688 		snd_hda_codec_free(codec);
689 		return err;
690 	}
691 
692 	if (codec->patch_ops.unsol_event)
693 		init_unsol_queue(bus);
694 
695 	snd_hda_codec_proc_new(codec);
696 #ifdef CONFIG_SND_HDA_HWDEP
697 	snd_hda_create_hwdep(codec);
698 #endif
699 
700 	sprintf(component, "HDA:%08x,%08x,%08x", codec->vendor_id, codec->subsystem_id, codec->revision_id);
701 	snd_component_add(codec->bus->card, component);
702 
703 	if (codecp)
704 		*codecp = codec;
705 	return 0;
706 }
707 
708 /**
709  * snd_hda_codec_setup_stream - set up the codec for streaming
710  * @codec: the CODEC to set up
711  * @nid: the NID to set up
712  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
713  * @channel_id: channel id to pass, zero based.
714  * @format: stream format.
715  */
716 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
717 				u32 stream_tag,
718 				int channel_id, int format)
719 {
720 	if (!nid)
721 		return;
722 
723 	snd_printdd("hda_codec_setup_stream: "
724 		    "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
725 		    nid, stream_tag, channel_id, format);
726 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
727 			    (stream_tag << 4) | channel_id);
728 	msleep(1);
729 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
730 }
731 
732 void snd_hda_codec_cleanup_stream(struct hda_codec *codec, hda_nid_t nid)
733 {
734 	if (!nid)
735 		return;
736 
737 	snd_printdd("hda_codec_cleanup_stream: NID=0x%x\n", nid);
738 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, 0);
739 #if 0 /* keep the format */
740 	msleep(1);
741 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, 0);
742 #endif
743 }
744 
745 /*
746  * amp access functions
747  */
748 
749 /* FIXME: more better hash key? */
750 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
751 #define INFO_AMP_CAPS	(1<<0)
752 #define INFO_AMP_VOL(ch)	(1 << (1 + (ch)))
753 
754 /* initialize the hash table */
755 static void __devinit init_hda_cache(struct hda_cache_rec *cache,
756 				     unsigned int record_size)
757 {
758 	memset(cache, 0, sizeof(*cache));
759 	memset(cache->hash, 0xff, sizeof(cache->hash));
760 	cache->record_size = record_size;
761 }
762 
763 static void free_hda_cache(struct hda_cache_rec *cache)
764 {
765 	kfree(cache->buffer);
766 }
767 
768 /* query the hash.  allocate an entry if not found. */
769 static struct hda_cache_head  *get_alloc_hash(struct hda_cache_rec *cache,
770 					      u32 key)
771 {
772 	u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
773 	u16 cur = cache->hash[idx];
774 	struct hda_cache_head *info;
775 
776 	while (cur != 0xffff) {
777 		info = (struct hda_cache_head *)(cache->buffer +
778 						 cur * cache->record_size);
779 		if (info->key == key)
780 			return info;
781 		cur = info->next;
782 	}
783 
784 	/* add a new hash entry */
785 	if (cache->num_entries >= cache->size) {
786 		/* reallocate the array */
787 		unsigned int new_size = cache->size + 64;
788 		void *new_buffer;
789 		new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
790 		if (!new_buffer) {
791 			snd_printk(KERN_ERR "hda_codec: "
792 				   "can't malloc amp_info\n");
793 			return NULL;
794 		}
795 		if (cache->buffer) {
796 			memcpy(new_buffer, cache->buffer,
797 			       cache->size * cache->record_size);
798 			kfree(cache->buffer);
799 		}
800 		cache->size = new_size;
801 		cache->buffer = new_buffer;
802 	}
803 	cur = cache->num_entries++;
804 	info = (struct hda_cache_head *)(cache->buffer +
805 					 cur * cache->record_size);
806 	info->key = key;
807 	info->val = 0;
808 	info->next = cache->hash[idx];
809 	cache->hash[idx] = cur;
810 
811 	return info;
812 }
813 
814 /* query and allocate an amp hash entry */
815 static inline struct hda_amp_info *
816 get_alloc_amp_hash(struct hda_codec *codec, u32 key)
817 {
818 	return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
819 }
820 
821 /*
822  * query AMP capabilities for the given widget and direction
823  */
824 u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
825 {
826 	struct hda_amp_info *info;
827 
828 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
829 	if (!info)
830 		return 0;
831 	if (!(info->head.val & INFO_AMP_CAPS)) {
832 		if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
833 			nid = codec->afg;
834 		info->amp_caps = snd_hda_param_read(codec, nid,
835 						    direction == HDA_OUTPUT ?
836 						    AC_PAR_AMP_OUT_CAP :
837 						    AC_PAR_AMP_IN_CAP);
838 		if (info->amp_caps)
839 			info->head.val |= INFO_AMP_CAPS;
840 	}
841 	return info->amp_caps;
842 }
843 
844 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
845 			      unsigned int caps)
846 {
847 	struct hda_amp_info *info;
848 
849 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
850 	if (!info)
851 		return -EINVAL;
852 	info->amp_caps = caps;
853 	info->head.val |= INFO_AMP_CAPS;
854 	return 0;
855 }
856 
857 /*
858  * read the current volume to info
859  * if the cache exists, read the cache value.
860  */
861 static unsigned int get_vol_mute(struct hda_codec *codec,
862 				 struct hda_amp_info *info, hda_nid_t nid,
863 				 int ch, int direction, int index)
864 {
865 	u32 val, parm;
866 
867 	if (info->head.val & INFO_AMP_VOL(ch))
868 		return info->vol[ch];
869 
870 	parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
871 	parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
872 	parm |= index;
873 	val = snd_hda_codec_read(codec, nid, 0,
874 				 AC_VERB_GET_AMP_GAIN_MUTE, parm);
875 	info->vol[ch] = val & 0xff;
876 	info->head.val |= INFO_AMP_VOL(ch);
877 	return info->vol[ch];
878 }
879 
880 /*
881  * write the current volume in info to the h/w and update the cache
882  */
883 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
884 			 hda_nid_t nid, int ch, int direction, int index,
885 			 int val)
886 {
887 	u32 parm;
888 
889 	parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
890 	parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
891 	parm |= index << AC_AMP_SET_INDEX_SHIFT;
892 	parm |= val;
893 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
894 	info->vol[ch] = val;
895 }
896 
897 /*
898  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
899  */
900 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
901 			   int direction, int index)
902 {
903 	struct hda_amp_info *info;
904 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
905 	if (!info)
906 		return 0;
907 	return get_vol_mute(codec, info, nid, ch, direction, index);
908 }
909 
910 /*
911  * update the AMP value, mask = bit mask to set, val = the value
912  */
913 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
914 			     int direction, int idx, int mask, int val)
915 {
916 	struct hda_amp_info *info;
917 
918 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
919 	if (!info)
920 		return 0;
921 	val &= mask;
922 	val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
923 	if (info->vol[ch] == val)
924 		return 0;
925 	put_vol_mute(codec, info, nid, ch, direction, idx, val);
926 	return 1;
927 }
928 
929 /*
930  * update the AMP stereo with the same mask and value
931  */
932 int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
933 			     int direction, int idx, int mask, int val)
934 {
935 	int ch, ret = 0;
936 	for (ch = 0; ch < 2; ch++)
937 		ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
938 						idx, mask, val);
939 	return ret;
940 }
941 
942 #ifdef SND_HDA_NEEDS_RESUME
943 /* resume the all amp commands from the cache */
944 void snd_hda_codec_resume_amp(struct hda_codec *codec)
945 {
946 	struct hda_amp_info *buffer = codec->amp_cache.buffer;
947 	int i;
948 
949 	for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
950 		u32 key = buffer->head.key;
951 		hda_nid_t nid;
952 		unsigned int idx, dir, ch;
953 		if (!key)
954 			continue;
955 		nid = key & 0xff;
956 		idx = (key >> 16) & 0xff;
957 		dir = (key >> 24) & 0xff;
958 		for (ch = 0; ch < 2; ch++) {
959 			if (!(buffer->head.val & INFO_AMP_VOL(ch)))
960 				continue;
961 			put_vol_mute(codec, buffer, nid, ch, dir, idx,
962 				     buffer->vol[ch]);
963 		}
964 	}
965 }
966 #endif /* SND_HDA_NEEDS_RESUME */
967 
968 /* volume */
969 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
970 				  struct snd_ctl_elem_info *uinfo)
971 {
972 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
973 	u16 nid = get_amp_nid(kcontrol);
974 	u8 chs = get_amp_channels(kcontrol);
975 	int dir = get_amp_direction(kcontrol);
976 	u32 caps;
977 
978 	caps = query_amp_caps(codec, nid, dir);
979 	/* num steps */
980 	caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
981 	if (!caps) {
982 		printk(KERN_WARNING "hda_codec: "
983 		       "num_steps = 0 for NID=0x%x (ctl = %s)\n", nid,
984 		       kcontrol->id.name);
985 		return -EINVAL;
986 	}
987 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
988 	uinfo->count = chs == 3 ? 2 : 1;
989 	uinfo->value.integer.min = 0;
990 	uinfo->value.integer.max = caps;
991 	return 0;
992 }
993 
994 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
995 				 struct snd_ctl_elem_value *ucontrol)
996 {
997 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
998 	hda_nid_t nid = get_amp_nid(kcontrol);
999 	int chs = get_amp_channels(kcontrol);
1000 	int dir = get_amp_direction(kcontrol);
1001 	int idx = get_amp_index(kcontrol);
1002 	long *valp = ucontrol->value.integer.value;
1003 
1004 	if (chs & 1)
1005 		*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
1006 			& HDA_AMP_VOLMASK;
1007 	if (chs & 2)
1008 		*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
1009 			& HDA_AMP_VOLMASK;
1010 	return 0;
1011 }
1012 
1013 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
1014 				 struct snd_ctl_elem_value *ucontrol)
1015 {
1016 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1017 	hda_nid_t nid = get_amp_nid(kcontrol);
1018 	int chs = get_amp_channels(kcontrol);
1019 	int dir = get_amp_direction(kcontrol);
1020 	int idx = get_amp_index(kcontrol);
1021 	long *valp = ucontrol->value.integer.value;
1022 	int change = 0;
1023 
1024 	snd_hda_power_up(codec);
1025 	if (chs & 1) {
1026 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1027 						  0x7f, *valp);
1028 		valp++;
1029 	}
1030 	if (chs & 2)
1031 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1032 						   0x7f, *valp);
1033 	snd_hda_power_down(codec);
1034 	return change;
1035 }
1036 
1037 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1038 			  unsigned int size, unsigned int __user *_tlv)
1039 {
1040 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1041 	hda_nid_t nid = get_amp_nid(kcontrol);
1042 	int dir = get_amp_direction(kcontrol);
1043 	u32 caps, val1, val2;
1044 
1045 	if (size < 4 * sizeof(unsigned int))
1046 		return -ENOMEM;
1047 	caps = query_amp_caps(codec, nid, dir);
1048 	val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1049 	val2 = (val2 + 1) * 25;
1050 	val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
1051 	val1 = ((int)val1) * ((int)val2);
1052 	if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
1053 		return -EFAULT;
1054 	if (put_user(2 * sizeof(unsigned int), _tlv + 1))
1055 		return -EFAULT;
1056 	if (put_user(val1, _tlv + 2))
1057 		return -EFAULT;
1058 	if (put_user(val2, _tlv + 3))
1059 		return -EFAULT;
1060 	return 0;
1061 }
1062 
1063 /*
1064  * set (static) TLV for virtual master volume; recalculated as max 0dB
1065  */
1066 void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
1067 			     unsigned int *tlv)
1068 {
1069 	u32 caps;
1070 	int nums, step;
1071 
1072 	caps = query_amp_caps(codec, nid, dir);
1073 	nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
1074 	step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1075 	step = (step + 1) * 25;
1076 	tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
1077 	tlv[1] = 2 * sizeof(unsigned int);
1078 	tlv[2] = -nums * step;
1079 	tlv[3] = step;
1080 }
1081 
1082 /* find a mixer control element with the given name */
1083 static struct snd_kcontrol *
1084 _snd_hda_find_mixer_ctl(struct hda_codec *codec,
1085 			const char *name, int idx)
1086 {
1087 	struct snd_ctl_elem_id id;
1088 	memset(&id, 0, sizeof(id));
1089 	id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
1090 	id.index = idx;
1091 	strcpy(id.name, name);
1092 	return snd_ctl_find_id(codec->bus->card, &id);
1093 }
1094 
1095 struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
1096 					    const char *name)
1097 {
1098 	return _snd_hda_find_mixer_ctl(codec, name, 0);
1099 }
1100 
1101 /* create a virtual master control and add slaves */
1102 int snd_hda_add_vmaster(struct hda_codec *codec, char *name,
1103 			unsigned int *tlv, const char **slaves)
1104 {
1105 	struct snd_kcontrol *kctl;
1106 	const char **s;
1107 	int err;
1108 
1109 	for (s = slaves; *s && !snd_hda_find_mixer_ctl(codec, *s); s++)
1110 		;
1111 	if (!*s) {
1112 		snd_printdd("No slave found for %s\n", name);
1113 		return 0;
1114 	}
1115 	kctl = snd_ctl_make_virtual_master(name, tlv);
1116 	if (!kctl)
1117 		return -ENOMEM;
1118 	err = snd_ctl_add(codec->bus->card, kctl);
1119 	if (err < 0)
1120 		return err;
1121 
1122 	for (s = slaves; *s; s++) {
1123 		struct snd_kcontrol *sctl;
1124 
1125 		sctl = snd_hda_find_mixer_ctl(codec, *s);
1126 		if (!sctl) {
1127 			snd_printdd("Cannot find slave %s, skipped\n", *s);
1128 			continue;
1129 		}
1130 		err = snd_ctl_add_slave(kctl, sctl);
1131 		if (err < 0)
1132 			return err;
1133 	}
1134 	return 0;
1135 }
1136 
1137 /* switch */
1138 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
1139 				  struct snd_ctl_elem_info *uinfo)
1140 {
1141 	int chs = get_amp_channels(kcontrol);
1142 
1143 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1144 	uinfo->count = chs == 3 ? 2 : 1;
1145 	uinfo->value.integer.min = 0;
1146 	uinfo->value.integer.max = 1;
1147 	return 0;
1148 }
1149 
1150 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
1151 				 struct snd_ctl_elem_value *ucontrol)
1152 {
1153 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1154 	hda_nid_t nid = get_amp_nid(kcontrol);
1155 	int chs = get_amp_channels(kcontrol);
1156 	int dir = get_amp_direction(kcontrol);
1157 	int idx = get_amp_index(kcontrol);
1158 	long *valp = ucontrol->value.integer.value;
1159 
1160 	if (chs & 1)
1161 		*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
1162 			   HDA_AMP_MUTE) ? 0 : 1;
1163 	if (chs & 2)
1164 		*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
1165 			 HDA_AMP_MUTE) ? 0 : 1;
1166 	return 0;
1167 }
1168 
1169 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
1170 				 struct snd_ctl_elem_value *ucontrol)
1171 {
1172 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1173 	hda_nid_t nid = get_amp_nid(kcontrol);
1174 	int chs = get_amp_channels(kcontrol);
1175 	int dir = get_amp_direction(kcontrol);
1176 	int idx = get_amp_index(kcontrol);
1177 	long *valp = ucontrol->value.integer.value;
1178 	int change = 0;
1179 
1180 	snd_hda_power_up(codec);
1181 	if (chs & 1) {
1182 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1183 						  HDA_AMP_MUTE,
1184 						  *valp ? 0 : HDA_AMP_MUTE);
1185 		valp++;
1186 	}
1187 	if (chs & 2)
1188 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1189 						   HDA_AMP_MUTE,
1190 						   *valp ? 0 : HDA_AMP_MUTE);
1191 #ifdef CONFIG_SND_HDA_POWER_SAVE
1192 	if (codec->patch_ops.check_power_status)
1193 		codec->patch_ops.check_power_status(codec, nid);
1194 #endif
1195 	snd_hda_power_down(codec);
1196 	return change;
1197 }
1198 
1199 /*
1200  * bound volume controls
1201  *
1202  * bind multiple volumes (# indices, from 0)
1203  */
1204 
1205 #define AMP_VAL_IDX_SHIFT	19
1206 #define AMP_VAL_IDX_MASK	(0x0f<<19)
1207 
1208 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
1209 				  struct snd_ctl_elem_value *ucontrol)
1210 {
1211 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1212 	unsigned long pval;
1213 	int err;
1214 
1215 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1216 	pval = kcontrol->private_value;
1217 	kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
1218 	err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
1219 	kcontrol->private_value = pval;
1220 	mutex_unlock(&codec->spdif_mutex);
1221 	return err;
1222 }
1223 
1224 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
1225 				  struct snd_ctl_elem_value *ucontrol)
1226 {
1227 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1228 	unsigned long pval;
1229 	int i, indices, err = 0, change = 0;
1230 
1231 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1232 	pval = kcontrol->private_value;
1233 	indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
1234 	for (i = 0; i < indices; i++) {
1235 		kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
1236 			(i << AMP_VAL_IDX_SHIFT);
1237 		err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
1238 		if (err < 0)
1239 			break;
1240 		change |= err;
1241 	}
1242 	kcontrol->private_value = pval;
1243 	mutex_unlock(&codec->spdif_mutex);
1244 	return err < 0 ? err : change;
1245 }
1246 
1247 /*
1248  * generic bound volume/swtich controls
1249  */
1250 int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
1251 				 struct snd_ctl_elem_info *uinfo)
1252 {
1253 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1254 	struct hda_bind_ctls *c;
1255 	int err;
1256 
1257 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1258 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1259 	kcontrol->private_value = *c->values;
1260 	err = c->ops->info(kcontrol, uinfo);
1261 	kcontrol->private_value = (long)c;
1262 	mutex_unlock(&codec->spdif_mutex);
1263 	return err;
1264 }
1265 
1266 int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
1267 				struct snd_ctl_elem_value *ucontrol)
1268 {
1269 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1270 	struct hda_bind_ctls *c;
1271 	int err;
1272 
1273 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1274 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1275 	kcontrol->private_value = *c->values;
1276 	err = c->ops->get(kcontrol, ucontrol);
1277 	kcontrol->private_value = (long)c;
1278 	mutex_unlock(&codec->spdif_mutex);
1279 	return err;
1280 }
1281 
1282 int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
1283 				struct snd_ctl_elem_value *ucontrol)
1284 {
1285 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1286 	struct hda_bind_ctls *c;
1287 	unsigned long *vals;
1288 	int err = 0, change = 0;
1289 
1290 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1291 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1292 	for (vals = c->values; *vals; vals++) {
1293 		kcontrol->private_value = *vals;
1294 		err = c->ops->put(kcontrol, ucontrol);
1295 		if (err < 0)
1296 			break;
1297 		change |= err;
1298 	}
1299 	kcontrol->private_value = (long)c;
1300 	mutex_unlock(&codec->spdif_mutex);
1301 	return err < 0 ? err : change;
1302 }
1303 
1304 int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1305 			   unsigned int size, unsigned int __user *tlv)
1306 {
1307 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1308 	struct hda_bind_ctls *c;
1309 	int err;
1310 
1311 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1312 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1313 	kcontrol->private_value = *c->values;
1314 	err = c->ops->tlv(kcontrol, op_flag, size, tlv);
1315 	kcontrol->private_value = (long)c;
1316 	mutex_unlock(&codec->spdif_mutex);
1317 	return err;
1318 }
1319 
1320 struct hda_ctl_ops snd_hda_bind_vol = {
1321 	.info = snd_hda_mixer_amp_volume_info,
1322 	.get = snd_hda_mixer_amp_volume_get,
1323 	.put = snd_hda_mixer_amp_volume_put,
1324 	.tlv = snd_hda_mixer_amp_tlv
1325 };
1326 
1327 struct hda_ctl_ops snd_hda_bind_sw = {
1328 	.info = snd_hda_mixer_amp_switch_info,
1329 	.get = snd_hda_mixer_amp_switch_get,
1330 	.put = snd_hda_mixer_amp_switch_put,
1331 	.tlv = snd_hda_mixer_amp_tlv
1332 };
1333 
1334 /*
1335  * SPDIF out controls
1336  */
1337 
1338 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1339 				   struct snd_ctl_elem_info *uinfo)
1340 {
1341 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1342 	uinfo->count = 1;
1343 	return 0;
1344 }
1345 
1346 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1347 				   struct snd_ctl_elem_value *ucontrol)
1348 {
1349 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1350 					   IEC958_AES0_NONAUDIO |
1351 					   IEC958_AES0_CON_EMPHASIS_5015 |
1352 					   IEC958_AES0_CON_NOT_COPYRIGHT;
1353 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1354 					   IEC958_AES1_CON_ORIGINAL;
1355 	return 0;
1356 }
1357 
1358 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1359 				   struct snd_ctl_elem_value *ucontrol)
1360 {
1361 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1362 					   IEC958_AES0_NONAUDIO |
1363 					   IEC958_AES0_PRO_EMPHASIS_5015;
1364 	return 0;
1365 }
1366 
1367 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1368 				     struct snd_ctl_elem_value *ucontrol)
1369 {
1370 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1371 
1372 	ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1373 	ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1374 	ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1375 	ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1376 
1377 	return 0;
1378 }
1379 
1380 /* convert from SPDIF status bits to HDA SPDIF bits
1381  * bit 0 (DigEn) is always set zero (to be filled later)
1382  */
1383 static unsigned short convert_from_spdif_status(unsigned int sbits)
1384 {
1385 	unsigned short val = 0;
1386 
1387 	if (sbits & IEC958_AES0_PROFESSIONAL)
1388 		val |= AC_DIG1_PROFESSIONAL;
1389 	if (sbits & IEC958_AES0_NONAUDIO)
1390 		val |= AC_DIG1_NONAUDIO;
1391 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1392 		if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1393 		    IEC958_AES0_PRO_EMPHASIS_5015)
1394 			val |= AC_DIG1_EMPHASIS;
1395 	} else {
1396 		if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1397 		    IEC958_AES0_CON_EMPHASIS_5015)
1398 			val |= AC_DIG1_EMPHASIS;
1399 		if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1400 			val |= AC_DIG1_COPYRIGHT;
1401 		if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1402 			val |= AC_DIG1_LEVEL;
1403 		val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1404 	}
1405 	return val;
1406 }
1407 
1408 /* convert to SPDIF status bits from HDA SPDIF bits
1409  */
1410 static unsigned int convert_to_spdif_status(unsigned short val)
1411 {
1412 	unsigned int sbits = 0;
1413 
1414 	if (val & AC_DIG1_NONAUDIO)
1415 		sbits |= IEC958_AES0_NONAUDIO;
1416 	if (val & AC_DIG1_PROFESSIONAL)
1417 		sbits |= IEC958_AES0_PROFESSIONAL;
1418 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1419 		if (sbits & AC_DIG1_EMPHASIS)
1420 			sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1421 	} else {
1422 		if (val & AC_DIG1_EMPHASIS)
1423 			sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1424 		if (!(val & AC_DIG1_COPYRIGHT))
1425 			sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1426 		if (val & AC_DIG1_LEVEL)
1427 			sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1428 		sbits |= val & (0x7f << 8);
1429 	}
1430 	return sbits;
1431 }
1432 
1433 /* set digital convert verbs both for the given NID and its slaves */
1434 static void set_dig_out(struct hda_codec *codec, hda_nid_t nid,
1435 			int verb, int val)
1436 {
1437 	hda_nid_t *d;
1438 
1439 	snd_hda_codec_write(codec, nid, 0, verb, val);
1440 	d = codec->slave_dig_outs;
1441 	if (!d)
1442 		return;
1443 	for (; *d; d++)
1444 		snd_hda_codec_write(codec, *d, 0, verb, val);
1445 }
1446 
1447 static inline void set_dig_out_convert(struct hda_codec *codec, hda_nid_t nid,
1448 				       int dig1, int dig2)
1449 {
1450 	if (dig1 != -1)
1451 		set_dig_out(codec, nid, AC_VERB_SET_DIGI_CONVERT_1, dig1);
1452 	if (dig2 != -1)
1453 		set_dig_out(codec, nid, AC_VERB_SET_DIGI_CONVERT_2, dig2);
1454 }
1455 
1456 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1457 				     struct snd_ctl_elem_value *ucontrol)
1458 {
1459 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1460 	hda_nid_t nid = kcontrol->private_value;
1461 	unsigned short val;
1462 	int change;
1463 
1464 	mutex_lock(&codec->spdif_mutex);
1465 	codec->spdif_status = ucontrol->value.iec958.status[0] |
1466 		((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1467 		((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1468 		((unsigned int)ucontrol->value.iec958.status[3] << 24);
1469 	val = convert_from_spdif_status(codec->spdif_status);
1470 	val |= codec->spdif_ctls & 1;
1471 	change = codec->spdif_ctls != val;
1472 	codec->spdif_ctls = val;
1473 
1474 	if (change)
1475 		set_dig_out_convert(codec, nid, val & 0xff, (val >> 8) & 0xff);
1476 
1477 	mutex_unlock(&codec->spdif_mutex);
1478 	return change;
1479 }
1480 
1481 #define snd_hda_spdif_out_switch_info	snd_ctl_boolean_mono_info
1482 
1483 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1484 					struct snd_ctl_elem_value *ucontrol)
1485 {
1486 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1487 
1488 	ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1489 	return 0;
1490 }
1491 
1492 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1493 					struct snd_ctl_elem_value *ucontrol)
1494 {
1495 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1496 	hda_nid_t nid = kcontrol->private_value;
1497 	unsigned short val;
1498 	int change;
1499 
1500 	mutex_lock(&codec->spdif_mutex);
1501 	val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1502 	if (ucontrol->value.integer.value[0])
1503 		val |= AC_DIG1_ENABLE;
1504 	change = codec->spdif_ctls != val;
1505 	if (change) {
1506 		codec->spdif_ctls = val;
1507 		set_dig_out_convert(codec, nid, val & 0xff, -1);
1508 		/* unmute amp switch (if any) */
1509 		if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1510 		    (val & AC_DIG1_ENABLE))
1511 			snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
1512 						 HDA_AMP_MUTE, 0);
1513 	}
1514 	mutex_unlock(&codec->spdif_mutex);
1515 	return change;
1516 }
1517 
1518 static struct snd_kcontrol_new dig_mixes[] = {
1519 	{
1520 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1521 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1522 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1523 		.info = snd_hda_spdif_mask_info,
1524 		.get = snd_hda_spdif_cmask_get,
1525 	},
1526 	{
1527 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1528 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1529 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1530 		.info = snd_hda_spdif_mask_info,
1531 		.get = snd_hda_spdif_pmask_get,
1532 	},
1533 	{
1534 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1535 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1536 		.info = snd_hda_spdif_mask_info,
1537 		.get = snd_hda_spdif_default_get,
1538 		.put = snd_hda_spdif_default_put,
1539 	},
1540 	{
1541 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1542 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1543 		.info = snd_hda_spdif_out_switch_info,
1544 		.get = snd_hda_spdif_out_switch_get,
1545 		.put = snd_hda_spdif_out_switch_put,
1546 	},
1547 	{ } /* end */
1548 };
1549 
1550 #define SPDIF_MAX_IDX	4	/* 4 instances should be enough to probe */
1551 
1552 /**
1553  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1554  * @codec: the HDA codec
1555  * @nid: audio out widget NID
1556  *
1557  * Creates controls related with the SPDIF output.
1558  * Called from each patch supporting the SPDIF out.
1559  *
1560  * Returns 0 if successful, or a negative error code.
1561  */
1562 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1563 {
1564 	int err;
1565 	struct snd_kcontrol *kctl;
1566 	struct snd_kcontrol_new *dig_mix;
1567 	int idx;
1568 
1569 	for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
1570 		if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Playback Switch",
1571 					     idx))
1572 			break;
1573 	}
1574 	if (idx >= SPDIF_MAX_IDX) {
1575 		printk(KERN_ERR "hda_codec: too many IEC958 outputs\n");
1576 		return -EBUSY;
1577 	}
1578 	for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1579 		kctl = snd_ctl_new1(dig_mix, codec);
1580 		kctl->id.index = idx;
1581 		kctl->private_value = nid;
1582 		err = snd_ctl_add(codec->bus->card, kctl);
1583 		if (err < 0)
1584 			return err;
1585 	}
1586 	codec->spdif_ctls =
1587 		snd_hda_codec_read(codec, nid, 0,
1588 				   AC_VERB_GET_DIGI_CONVERT_1, 0);
1589 	codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1590 	return 0;
1591 }
1592 
1593 /*
1594  * SPDIF sharing with analog output
1595  */
1596 static int spdif_share_sw_get(struct snd_kcontrol *kcontrol,
1597 			      struct snd_ctl_elem_value *ucontrol)
1598 {
1599 	struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
1600 	ucontrol->value.integer.value[0] = mout->share_spdif;
1601 	return 0;
1602 }
1603 
1604 static int spdif_share_sw_put(struct snd_kcontrol *kcontrol,
1605 			      struct snd_ctl_elem_value *ucontrol)
1606 {
1607 	struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
1608 	mout->share_spdif = !!ucontrol->value.integer.value[0];
1609 	return 0;
1610 }
1611 
1612 static struct snd_kcontrol_new spdif_share_sw = {
1613 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1614 	.name = "IEC958 Default PCM Playback Switch",
1615 	.info = snd_ctl_boolean_mono_info,
1616 	.get = spdif_share_sw_get,
1617 	.put = spdif_share_sw_put,
1618 };
1619 
1620 int snd_hda_create_spdif_share_sw(struct hda_codec *codec,
1621 				  struct hda_multi_out *mout)
1622 {
1623 	if (!mout->dig_out_nid)
1624 		return 0;
1625 	/* ATTENTION: here mout is passed as private_data, instead of codec */
1626 	return snd_ctl_add(codec->bus->card,
1627 			   snd_ctl_new1(&spdif_share_sw, mout));
1628 }
1629 
1630 /*
1631  * SPDIF input
1632  */
1633 
1634 #define snd_hda_spdif_in_switch_info	snd_hda_spdif_out_switch_info
1635 
1636 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1637 				       struct snd_ctl_elem_value *ucontrol)
1638 {
1639 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1640 
1641 	ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1642 	return 0;
1643 }
1644 
1645 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1646 				       struct snd_ctl_elem_value *ucontrol)
1647 {
1648 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1649 	hda_nid_t nid = kcontrol->private_value;
1650 	unsigned int val = !!ucontrol->value.integer.value[0];
1651 	int change;
1652 
1653 	mutex_lock(&codec->spdif_mutex);
1654 	change = codec->spdif_in_enable != val;
1655 	if (change) {
1656 		codec->spdif_in_enable = val;
1657 		snd_hda_codec_write_cache(codec, nid, 0,
1658 					  AC_VERB_SET_DIGI_CONVERT_1, val);
1659 	}
1660 	mutex_unlock(&codec->spdif_mutex);
1661 	return change;
1662 }
1663 
1664 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1665 				       struct snd_ctl_elem_value *ucontrol)
1666 {
1667 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1668 	hda_nid_t nid = kcontrol->private_value;
1669 	unsigned short val;
1670 	unsigned int sbits;
1671 
1672 	val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
1673 	sbits = convert_to_spdif_status(val);
1674 	ucontrol->value.iec958.status[0] = sbits;
1675 	ucontrol->value.iec958.status[1] = sbits >> 8;
1676 	ucontrol->value.iec958.status[2] = sbits >> 16;
1677 	ucontrol->value.iec958.status[3] = sbits >> 24;
1678 	return 0;
1679 }
1680 
1681 static struct snd_kcontrol_new dig_in_ctls[] = {
1682 	{
1683 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1684 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1685 		.info = snd_hda_spdif_in_switch_info,
1686 		.get = snd_hda_spdif_in_switch_get,
1687 		.put = snd_hda_spdif_in_switch_put,
1688 	},
1689 	{
1690 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1691 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1692 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1693 		.info = snd_hda_spdif_mask_info,
1694 		.get = snd_hda_spdif_in_status_get,
1695 	},
1696 	{ } /* end */
1697 };
1698 
1699 /**
1700  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1701  * @codec: the HDA codec
1702  * @nid: audio in widget NID
1703  *
1704  * Creates controls related with the SPDIF input.
1705  * Called from each patch supporting the SPDIF in.
1706  *
1707  * Returns 0 if successful, or a negative error code.
1708  */
1709 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1710 {
1711 	int err;
1712 	struct snd_kcontrol *kctl;
1713 	struct snd_kcontrol_new *dig_mix;
1714 	int idx;
1715 
1716 	for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
1717 		if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Capture Switch",
1718 					     idx))
1719 			break;
1720 	}
1721 	if (idx >= SPDIF_MAX_IDX) {
1722 		printk(KERN_ERR "hda_codec: too many IEC958 inputs\n");
1723 		return -EBUSY;
1724 	}
1725 	for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1726 		kctl = snd_ctl_new1(dig_mix, codec);
1727 		kctl->private_value = nid;
1728 		err = snd_ctl_add(codec->bus->card, kctl);
1729 		if (err < 0)
1730 			return err;
1731 	}
1732 	codec->spdif_in_enable =
1733 		snd_hda_codec_read(codec, nid, 0,
1734 				   AC_VERB_GET_DIGI_CONVERT_1, 0) &
1735 		AC_DIG1_ENABLE;
1736 	return 0;
1737 }
1738 
1739 #ifdef SND_HDA_NEEDS_RESUME
1740 /*
1741  * command cache
1742  */
1743 
1744 /* build a 32bit cache key with the widget id and the command parameter */
1745 #define build_cmd_cache_key(nid, verb)	((verb << 8) | nid)
1746 #define get_cmd_cache_nid(key)		((key) & 0xff)
1747 #define get_cmd_cache_cmd(key)		(((key) >> 8) & 0xffff)
1748 
1749 /**
1750  * snd_hda_codec_write_cache - send a single command with caching
1751  * @codec: the HDA codec
1752  * @nid: NID to send the command
1753  * @direct: direct flag
1754  * @verb: the verb to send
1755  * @parm: the parameter for the verb
1756  *
1757  * Send a single command without waiting for response.
1758  *
1759  * Returns 0 if successful, or a negative error code.
1760  */
1761 int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
1762 			      int direct, unsigned int verb, unsigned int parm)
1763 {
1764 	int err;
1765 	snd_hda_power_up(codec);
1766 	mutex_lock(&codec->bus->cmd_mutex);
1767 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
1768 	if (!err) {
1769 		struct hda_cache_head *c;
1770 		u32 key = build_cmd_cache_key(nid, verb);
1771 		c = get_alloc_hash(&codec->cmd_cache, key);
1772 		if (c)
1773 			c->val = parm;
1774 	}
1775 	mutex_unlock(&codec->bus->cmd_mutex);
1776 	snd_hda_power_down(codec);
1777 	return err;
1778 }
1779 
1780 /* resume the all commands from the cache */
1781 void snd_hda_codec_resume_cache(struct hda_codec *codec)
1782 {
1783 	struct hda_cache_head *buffer = codec->cmd_cache.buffer;
1784 	int i;
1785 
1786 	for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
1787 		u32 key = buffer->key;
1788 		if (!key)
1789 			continue;
1790 		snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
1791 				    get_cmd_cache_cmd(key), buffer->val);
1792 	}
1793 }
1794 
1795 /**
1796  * snd_hda_sequence_write_cache - sequence writes with caching
1797  * @codec: the HDA codec
1798  * @seq: VERB array to send
1799  *
1800  * Send the commands sequentially from the given array.
1801  * Thte commands are recorded on cache for power-save and resume.
1802  * The array must be terminated with NID=0.
1803  */
1804 void snd_hda_sequence_write_cache(struct hda_codec *codec,
1805 				  const struct hda_verb *seq)
1806 {
1807 	for (; seq->nid; seq++)
1808 		snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
1809 					  seq->param);
1810 }
1811 #endif /* SND_HDA_NEEDS_RESUME */
1812 
1813 /*
1814  * set power state of the codec
1815  */
1816 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1817 				unsigned int power_state)
1818 {
1819 	hda_nid_t nid;
1820 	int i;
1821 
1822 	snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1823 			    power_state);
1824 	msleep(10); /* partial workaround for "azx_get_response timeout" */
1825 
1826 	nid = codec->start_nid;
1827 	for (i = 0; i < codec->num_nodes; i++, nid++) {
1828 		unsigned int wcaps = get_wcaps(codec, nid);
1829 		if (wcaps & AC_WCAP_POWER) {
1830 			unsigned int wid_type = (wcaps & AC_WCAP_TYPE) >>
1831 				AC_WCAP_TYPE_SHIFT;
1832 			if (wid_type == AC_WID_PIN) {
1833 				unsigned int pincap;
1834 				/*
1835 				 * don't power down the widget if it controls
1836 				 * eapd and EAPD_BTLENABLE is set.
1837 				 */
1838 				pincap = snd_hda_param_read(codec, nid,
1839 							    AC_PAR_PIN_CAP);
1840 				if (pincap & AC_PINCAP_EAPD) {
1841 					int eapd = snd_hda_codec_read(codec,
1842 						nid, 0,
1843 						AC_VERB_GET_EAPD_BTLENABLE, 0);
1844 					eapd &= 0x02;
1845 					if (power_state == AC_PWRST_D3 && eapd)
1846 						continue;
1847 				}
1848 			}
1849 			snd_hda_codec_write(codec, nid, 0,
1850 					    AC_VERB_SET_POWER_STATE,
1851 					    power_state);
1852 		}
1853 	}
1854 
1855 	if (power_state == AC_PWRST_D0) {
1856 		unsigned long end_time;
1857 		int state;
1858 		msleep(10);
1859 		/* wait until the codec reachs to D0 */
1860 		end_time = jiffies + msecs_to_jiffies(500);
1861 		do {
1862 			state = snd_hda_codec_read(codec, fg, 0,
1863 						   AC_VERB_GET_POWER_STATE, 0);
1864 			if (state == power_state)
1865 				break;
1866 			msleep(1);
1867 		} while (time_after_eq(end_time, jiffies));
1868 	}
1869 }
1870 
1871 #ifdef SND_HDA_NEEDS_RESUME
1872 /*
1873  * call suspend and power-down; used both from PM and power-save
1874  */
1875 static void hda_call_codec_suspend(struct hda_codec *codec)
1876 {
1877 	if (codec->patch_ops.suspend)
1878 		codec->patch_ops.suspend(codec, PMSG_SUSPEND);
1879 	hda_set_power_state(codec,
1880 			    codec->afg ? codec->afg : codec->mfg,
1881 			    AC_PWRST_D3);
1882 #ifdef CONFIG_SND_HDA_POWER_SAVE
1883 	cancel_delayed_work(&codec->power_work);
1884 	codec->power_on = 0;
1885 	codec->power_transition = 0;
1886 #endif
1887 }
1888 
1889 /*
1890  * kick up codec; used both from PM and power-save
1891  */
1892 static void hda_call_codec_resume(struct hda_codec *codec)
1893 {
1894 	hda_set_power_state(codec,
1895 			    codec->afg ? codec->afg : codec->mfg,
1896 			    AC_PWRST_D0);
1897 	if (codec->patch_ops.resume)
1898 		codec->patch_ops.resume(codec);
1899 	else {
1900 		if (codec->patch_ops.init)
1901 			codec->patch_ops.init(codec);
1902 		snd_hda_codec_resume_amp(codec);
1903 		snd_hda_codec_resume_cache(codec);
1904 	}
1905 }
1906 #endif /* SND_HDA_NEEDS_RESUME */
1907 
1908 
1909 /**
1910  * snd_hda_build_controls - build mixer controls
1911  * @bus: the BUS
1912  *
1913  * Creates mixer controls for each codec included in the bus.
1914  *
1915  * Returns 0 if successful, otherwise a negative error code.
1916  */
1917 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1918 {
1919 	struct hda_codec *codec;
1920 
1921 	list_for_each_entry(codec, &bus->codec_list, list) {
1922 		int err = 0;
1923 		/* fake as if already powered-on */
1924 		hda_keep_power_on(codec);
1925 		/* then fire up */
1926 		hda_set_power_state(codec,
1927 				    codec->afg ? codec->afg : codec->mfg,
1928 				    AC_PWRST_D0);
1929 		/* continue to initialize... */
1930 		if (codec->patch_ops.init)
1931 			err = codec->patch_ops.init(codec);
1932 		if (!err && codec->patch_ops.build_controls)
1933 			err = codec->patch_ops.build_controls(codec);
1934 		snd_hda_power_down(codec);
1935 		if (err < 0)
1936 			return err;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 /*
1943  * stream formats
1944  */
1945 struct hda_rate_tbl {
1946 	unsigned int hz;
1947 	unsigned int alsa_bits;
1948 	unsigned int hda_fmt;
1949 };
1950 
1951 static struct hda_rate_tbl rate_bits[] = {
1952 	/* rate in Hz, ALSA rate bitmask, HDA format value */
1953 
1954 	/* autodetected value used in snd_hda_query_supported_pcm */
1955 	{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1956 	{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1957 	{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1958 	{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1959 	{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1960 	{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1961 	{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1962 	{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1963 	{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1964 	{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1965 	{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1966 #define AC_PAR_PCM_RATE_BITS	11
1967 	/* up to bits 10, 384kHZ isn't supported properly */
1968 
1969 	/* not autodetected value */
1970 	{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1971 
1972 	{ 0 } /* terminator */
1973 };
1974 
1975 /**
1976  * snd_hda_calc_stream_format - calculate format bitset
1977  * @rate: the sample rate
1978  * @channels: the number of channels
1979  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1980  * @maxbps: the max. bps
1981  *
1982  * Calculate the format bitset from the given rate, channels and th PCM format.
1983  *
1984  * Return zero if invalid.
1985  */
1986 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1987 					unsigned int channels,
1988 					unsigned int format,
1989 					unsigned int maxbps)
1990 {
1991 	int i;
1992 	unsigned int val = 0;
1993 
1994 	for (i = 0; rate_bits[i].hz; i++)
1995 		if (rate_bits[i].hz == rate) {
1996 			val = rate_bits[i].hda_fmt;
1997 			break;
1998 		}
1999 	if (!rate_bits[i].hz) {
2000 		snd_printdd("invalid rate %d\n", rate);
2001 		return 0;
2002 	}
2003 
2004 	if (channels == 0 || channels > 8) {
2005 		snd_printdd("invalid channels %d\n", channels);
2006 		return 0;
2007 	}
2008 	val |= channels - 1;
2009 
2010 	switch (snd_pcm_format_width(format)) {
2011 	case 8:  val |= 0x00; break;
2012 	case 16: val |= 0x10; break;
2013 	case 20:
2014 	case 24:
2015 	case 32:
2016 		if (maxbps >= 32)
2017 			val |= 0x40;
2018 		else if (maxbps >= 24)
2019 			val |= 0x30;
2020 		else
2021 			val |= 0x20;
2022 		break;
2023 	default:
2024 		snd_printdd("invalid format width %d\n",
2025 			    snd_pcm_format_width(format));
2026 		return 0;
2027 	}
2028 
2029 	return val;
2030 }
2031 
2032 /**
2033  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
2034  * @codec: the HDA codec
2035  * @nid: NID to query
2036  * @ratesp: the pointer to store the detected rate bitflags
2037  * @formatsp: the pointer to store the detected formats
2038  * @bpsp: the pointer to store the detected format widths
2039  *
2040  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
2041  * or @bsps argument is ignored.
2042  *
2043  * Returns 0 if successful, otherwise a negative error code.
2044  */
2045 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
2046 				u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
2047 {
2048 	int i;
2049 	unsigned int val, streams;
2050 
2051 	val = 0;
2052 	if (nid != codec->afg &&
2053 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
2054 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
2055 		if (val == -1)
2056 			return -EIO;
2057 	}
2058 	if (!val)
2059 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
2060 
2061 	if (ratesp) {
2062 		u32 rates = 0;
2063 		for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
2064 			if (val & (1 << i))
2065 				rates |= rate_bits[i].alsa_bits;
2066 		}
2067 		*ratesp = rates;
2068 	}
2069 
2070 	if (formatsp || bpsp) {
2071 		u64 formats = 0;
2072 		unsigned int bps;
2073 		unsigned int wcaps;
2074 
2075 		wcaps = get_wcaps(codec, nid);
2076 		streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
2077 		if (streams == -1)
2078 			return -EIO;
2079 		if (!streams) {
2080 			streams = snd_hda_param_read(codec, codec->afg,
2081 						     AC_PAR_STREAM);
2082 			if (streams == -1)
2083 				return -EIO;
2084 		}
2085 
2086 		bps = 0;
2087 		if (streams & AC_SUPFMT_PCM) {
2088 			if (val & AC_SUPPCM_BITS_8) {
2089 				formats |= SNDRV_PCM_FMTBIT_U8;
2090 				bps = 8;
2091 			}
2092 			if (val & AC_SUPPCM_BITS_16) {
2093 				formats |= SNDRV_PCM_FMTBIT_S16_LE;
2094 				bps = 16;
2095 			}
2096 			if (wcaps & AC_WCAP_DIGITAL) {
2097 				if (val & AC_SUPPCM_BITS_32)
2098 					formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
2099 				if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
2100 					formats |= SNDRV_PCM_FMTBIT_S32_LE;
2101 				if (val & AC_SUPPCM_BITS_24)
2102 					bps = 24;
2103 				else if (val & AC_SUPPCM_BITS_20)
2104 					bps = 20;
2105 			} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
2106 					  AC_SUPPCM_BITS_32)) {
2107 				formats |= SNDRV_PCM_FMTBIT_S32_LE;
2108 				if (val & AC_SUPPCM_BITS_32)
2109 					bps = 32;
2110 				else if (val & AC_SUPPCM_BITS_24)
2111 					bps = 24;
2112 				else if (val & AC_SUPPCM_BITS_20)
2113 					bps = 20;
2114 			}
2115 		}
2116 		else if (streams == AC_SUPFMT_FLOAT32) {
2117 			/* should be exclusive */
2118 			formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
2119 			bps = 32;
2120 		} else if (streams == AC_SUPFMT_AC3) {
2121 			/* should be exclusive */
2122 			/* temporary hack: we have still no proper support
2123 			 * for the direct AC3 stream...
2124 			 */
2125 			formats |= SNDRV_PCM_FMTBIT_U8;
2126 			bps = 8;
2127 		}
2128 		if (formatsp)
2129 			*formatsp = formats;
2130 		if (bpsp)
2131 			*bpsp = bps;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 /**
2138  * snd_hda_is_supported_format - check whether the given node supports
2139  * the format val
2140  *
2141  * Returns 1 if supported, 0 if not.
2142  */
2143 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
2144 				unsigned int format)
2145 {
2146 	int i;
2147 	unsigned int val = 0, rate, stream;
2148 
2149 	if (nid != codec->afg &&
2150 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
2151 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
2152 		if (val == -1)
2153 			return 0;
2154 	}
2155 	if (!val) {
2156 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
2157 		if (val == -1)
2158 			return 0;
2159 	}
2160 
2161 	rate = format & 0xff00;
2162 	for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
2163 		if (rate_bits[i].hda_fmt == rate) {
2164 			if (val & (1 << i))
2165 				break;
2166 			return 0;
2167 		}
2168 	if (i >= AC_PAR_PCM_RATE_BITS)
2169 		return 0;
2170 
2171 	stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
2172 	if (stream == -1)
2173 		return 0;
2174 	if (!stream && nid != codec->afg)
2175 		stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
2176 	if (!stream || stream == -1)
2177 		return 0;
2178 
2179 	if (stream & AC_SUPFMT_PCM) {
2180 		switch (format & 0xf0) {
2181 		case 0x00:
2182 			if (!(val & AC_SUPPCM_BITS_8))
2183 				return 0;
2184 			break;
2185 		case 0x10:
2186 			if (!(val & AC_SUPPCM_BITS_16))
2187 				return 0;
2188 			break;
2189 		case 0x20:
2190 			if (!(val & AC_SUPPCM_BITS_20))
2191 				return 0;
2192 			break;
2193 		case 0x30:
2194 			if (!(val & AC_SUPPCM_BITS_24))
2195 				return 0;
2196 			break;
2197 		case 0x40:
2198 			if (!(val & AC_SUPPCM_BITS_32))
2199 				return 0;
2200 			break;
2201 		default:
2202 			return 0;
2203 		}
2204 	} else {
2205 		/* FIXME: check for float32 and AC3? */
2206 	}
2207 
2208 	return 1;
2209 }
2210 
2211 /*
2212  * PCM stuff
2213  */
2214 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
2215 				      struct hda_codec *codec,
2216 				      struct snd_pcm_substream *substream)
2217 {
2218 	return 0;
2219 }
2220 
2221 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
2222 				   struct hda_codec *codec,
2223 				   unsigned int stream_tag,
2224 				   unsigned int format,
2225 				   struct snd_pcm_substream *substream)
2226 {
2227 	snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
2228 	return 0;
2229 }
2230 
2231 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
2232 				   struct hda_codec *codec,
2233 				   struct snd_pcm_substream *substream)
2234 {
2235 	snd_hda_codec_cleanup_stream(codec, hinfo->nid);
2236 	return 0;
2237 }
2238 
2239 static int __devinit set_pcm_default_values(struct hda_codec *codec,
2240 					    struct hda_pcm_stream *info)
2241 {
2242 	/* query support PCM information from the given NID */
2243 	if (info->nid && (!info->rates || !info->formats)) {
2244 		snd_hda_query_supported_pcm(codec, info->nid,
2245 				info->rates ? NULL : &info->rates,
2246 				info->formats ? NULL : &info->formats,
2247 				info->maxbps ? NULL : &info->maxbps);
2248 	}
2249 	if (info->ops.open == NULL)
2250 		info->ops.open = hda_pcm_default_open_close;
2251 	if (info->ops.close == NULL)
2252 		info->ops.close = hda_pcm_default_open_close;
2253 	if (info->ops.prepare == NULL) {
2254 		if (snd_BUG_ON(!info->nid))
2255 			return -EINVAL;
2256 		info->ops.prepare = hda_pcm_default_prepare;
2257 	}
2258 	if (info->ops.cleanup == NULL) {
2259 		if (snd_BUG_ON(!info->nid))
2260 			return -EINVAL;
2261 		info->ops.cleanup = hda_pcm_default_cleanup;
2262 	}
2263 	return 0;
2264 }
2265 
2266 /**
2267  * snd_hda_build_pcms - build PCM information
2268  * @bus: the BUS
2269  *
2270  * Create PCM information for each codec included in the bus.
2271  *
2272  * The build_pcms codec patch is requested to set up codec->num_pcms and
2273  * codec->pcm_info properly.  The array is referred by the top-level driver
2274  * to create its PCM instances.
2275  * The allocated codec->pcm_info should be released in codec->patch_ops.free
2276  * callback.
2277  *
2278  * At least, substreams, channels_min and channels_max must be filled for
2279  * each stream.  substreams = 0 indicates that the stream doesn't exist.
2280  * When rates and/or formats are zero, the supported values are queried
2281  * from the given nid.  The nid is used also by the default ops.prepare
2282  * and ops.cleanup callbacks.
2283  *
2284  * The driver needs to call ops.open in its open callback.  Similarly,
2285  * ops.close is supposed to be called in the close callback.
2286  * ops.prepare should be called in the prepare or hw_params callback
2287  * with the proper parameters for set up.
2288  * ops.cleanup should be called in hw_free for clean up of streams.
2289  *
2290  * This function returns 0 if successfull, or a negative error code.
2291  */
2292 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
2293 {
2294 	struct hda_codec *codec;
2295 
2296 	list_for_each_entry(codec, &bus->codec_list, list) {
2297 		unsigned int pcm, s;
2298 		int err;
2299 		if (!codec->patch_ops.build_pcms)
2300 			continue;
2301 		err = codec->patch_ops.build_pcms(codec);
2302 		if (err < 0)
2303 			return err;
2304 		for (pcm = 0; pcm < codec->num_pcms; pcm++) {
2305 			for (s = 0; s < 2; s++) {
2306 				struct hda_pcm_stream *info;
2307 				info = &codec->pcm_info[pcm].stream[s];
2308 				if (!info->substreams)
2309 					continue;
2310 				err = set_pcm_default_values(codec, info);
2311 				if (err < 0)
2312 					return err;
2313 			}
2314 		}
2315 	}
2316 	return 0;
2317 }
2318 
2319 /**
2320  * snd_hda_check_board_config - compare the current codec with the config table
2321  * @codec: the HDA codec
2322  * @num_configs: number of config enums
2323  * @models: array of model name strings
2324  * @tbl: configuration table, terminated by null entries
2325  *
2326  * Compares the modelname or PCI subsystem id of the current codec with the
2327  * given configuration table.  If a matching entry is found, returns its
2328  * config value (supposed to be 0 or positive).
2329  *
2330  * If no entries are matching, the function returns a negative value.
2331  */
2332 int snd_hda_check_board_config(struct hda_codec *codec,
2333 			       int num_configs, const char **models,
2334 			       const struct snd_pci_quirk *tbl)
2335 {
2336 	if (codec->bus->modelname && models) {
2337 		int i;
2338 		for (i = 0; i < num_configs; i++) {
2339 			if (models[i] &&
2340 			    !strcmp(codec->bus->modelname, models[i])) {
2341 				snd_printd(KERN_INFO "hda_codec: model '%s' is "
2342 					   "selected\n", models[i]);
2343 				return i;
2344 			}
2345 		}
2346 	}
2347 
2348 	if (!codec->bus->pci || !tbl)
2349 		return -1;
2350 
2351 	tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
2352 	if (!tbl)
2353 		return -1;
2354 	if (tbl->value >= 0 && tbl->value < num_configs) {
2355 #ifdef CONFIG_SND_DEBUG_VERBOSE
2356 		char tmp[10];
2357 		const char *model = NULL;
2358 		if (models)
2359 			model = models[tbl->value];
2360 		if (!model) {
2361 			sprintf(tmp, "#%d", tbl->value);
2362 			model = tmp;
2363 		}
2364 		snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
2365 			    "for config %x:%x (%s)\n",
2366 			    model, tbl->subvendor, tbl->subdevice,
2367 			    (tbl->name ? tbl->name : "Unknown device"));
2368 #endif
2369 		return tbl->value;
2370 	}
2371 	return -1;
2372 }
2373 
2374 /**
2375  * snd_hda_add_new_ctls - create controls from the array
2376  * @codec: the HDA codec
2377  * @knew: the array of struct snd_kcontrol_new
2378  *
2379  * This helper function creates and add new controls in the given array.
2380  * The array must be terminated with an empty entry as terminator.
2381  *
2382  * Returns 0 if successful, or a negative error code.
2383  */
2384 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2385 {
2386  	int err;
2387 
2388 	for (; knew->name; knew++) {
2389 		struct snd_kcontrol *kctl;
2390 		kctl = snd_ctl_new1(knew, codec);
2391 		if (!kctl)
2392 			return -ENOMEM;
2393 		err = snd_ctl_add(codec->bus->card, kctl);
2394 		if (err < 0) {
2395 			if (!codec->addr)
2396 				return err;
2397 			kctl = snd_ctl_new1(knew, codec);
2398 			if (!kctl)
2399 				return -ENOMEM;
2400 			kctl->id.device = codec->addr;
2401 			err = snd_ctl_add(codec->bus->card, kctl);
2402 			if (err < 0)
2403 				return err;
2404 		}
2405 	}
2406 	return 0;
2407 }
2408 
2409 #ifdef CONFIG_SND_HDA_POWER_SAVE
2410 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
2411 				unsigned int power_state);
2412 
2413 static void hda_power_work(struct work_struct *work)
2414 {
2415 	struct hda_codec *codec =
2416 		container_of(work, struct hda_codec, power_work.work);
2417 
2418 	if (!codec->power_on || codec->power_count) {
2419 		codec->power_transition = 0;
2420 		return;
2421 	}
2422 
2423 	hda_call_codec_suspend(codec);
2424 	if (codec->bus->ops.pm_notify)
2425 		codec->bus->ops.pm_notify(codec);
2426 }
2427 
2428 static void hda_keep_power_on(struct hda_codec *codec)
2429 {
2430 	codec->power_count++;
2431 	codec->power_on = 1;
2432 }
2433 
2434 void snd_hda_power_up(struct hda_codec *codec)
2435 {
2436 	codec->power_count++;
2437 	if (codec->power_on || codec->power_transition)
2438 		return;
2439 
2440 	codec->power_on = 1;
2441 	if (codec->bus->ops.pm_notify)
2442 		codec->bus->ops.pm_notify(codec);
2443 	hda_call_codec_resume(codec);
2444 	cancel_delayed_work(&codec->power_work);
2445 	codec->power_transition = 0;
2446 }
2447 
2448 void snd_hda_power_down(struct hda_codec *codec)
2449 {
2450 	--codec->power_count;
2451 	if (!codec->power_on || codec->power_count || codec->power_transition)
2452 		return;
2453 	if (power_save) {
2454 		codec->power_transition = 1; /* avoid reentrance */
2455 		schedule_delayed_work(&codec->power_work,
2456 				      msecs_to_jiffies(power_save * 1000));
2457 	}
2458 }
2459 
2460 int snd_hda_check_amp_list_power(struct hda_codec *codec,
2461 				 struct hda_loopback_check *check,
2462 				 hda_nid_t nid)
2463 {
2464 	struct hda_amp_list *p;
2465 	int ch, v;
2466 
2467 	if (!check->amplist)
2468 		return 0;
2469 	for (p = check->amplist; p->nid; p++) {
2470 		if (p->nid == nid)
2471 			break;
2472 	}
2473 	if (!p->nid)
2474 		return 0; /* nothing changed */
2475 
2476 	for (p = check->amplist; p->nid; p++) {
2477 		for (ch = 0; ch < 2; ch++) {
2478 			v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
2479 						   p->idx);
2480 			if (!(v & HDA_AMP_MUTE) && v > 0) {
2481 				if (!check->power_on) {
2482 					check->power_on = 1;
2483 					snd_hda_power_up(codec);
2484 				}
2485 				return 1;
2486 			}
2487 		}
2488 	}
2489 	if (check->power_on) {
2490 		check->power_on = 0;
2491 		snd_hda_power_down(codec);
2492 	}
2493 	return 0;
2494 }
2495 #endif
2496 
2497 /*
2498  * Channel mode helper
2499  */
2500 int snd_hda_ch_mode_info(struct hda_codec *codec,
2501 			 struct snd_ctl_elem_info *uinfo,
2502 			 const struct hda_channel_mode *chmode,
2503 			 int num_chmodes)
2504 {
2505 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2506 	uinfo->count = 1;
2507 	uinfo->value.enumerated.items = num_chmodes;
2508 	if (uinfo->value.enumerated.item >= num_chmodes)
2509 		uinfo->value.enumerated.item = num_chmodes - 1;
2510 	sprintf(uinfo->value.enumerated.name, "%dch",
2511 		chmode[uinfo->value.enumerated.item].channels);
2512 	return 0;
2513 }
2514 
2515 int snd_hda_ch_mode_get(struct hda_codec *codec,
2516 			struct snd_ctl_elem_value *ucontrol,
2517 			const struct hda_channel_mode *chmode,
2518 			int num_chmodes,
2519 			int max_channels)
2520 {
2521 	int i;
2522 
2523 	for (i = 0; i < num_chmodes; i++) {
2524 		if (max_channels == chmode[i].channels) {
2525 			ucontrol->value.enumerated.item[0] = i;
2526 			break;
2527 		}
2528 	}
2529 	return 0;
2530 }
2531 
2532 int snd_hda_ch_mode_put(struct hda_codec *codec,
2533 			struct snd_ctl_elem_value *ucontrol,
2534 			const struct hda_channel_mode *chmode,
2535 			int num_chmodes,
2536 			int *max_channelsp)
2537 {
2538 	unsigned int mode;
2539 
2540 	mode = ucontrol->value.enumerated.item[0];
2541 	if (mode >= num_chmodes)
2542 		return -EINVAL;
2543 	if (*max_channelsp == chmode[mode].channels)
2544 		return 0;
2545 	/* change the current channel setting */
2546 	*max_channelsp = chmode[mode].channels;
2547 	if (chmode[mode].sequence)
2548 		snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
2549 	return 1;
2550 }
2551 
2552 /*
2553  * input MUX helper
2554  */
2555 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
2556 			   struct snd_ctl_elem_info *uinfo)
2557 {
2558 	unsigned int index;
2559 
2560 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2561 	uinfo->count = 1;
2562 	uinfo->value.enumerated.items = imux->num_items;
2563 	if (!imux->num_items)
2564 		return 0;
2565 	index = uinfo->value.enumerated.item;
2566 	if (index >= imux->num_items)
2567 		index = imux->num_items - 1;
2568 	strcpy(uinfo->value.enumerated.name, imux->items[index].label);
2569 	return 0;
2570 }
2571 
2572 int snd_hda_input_mux_put(struct hda_codec *codec,
2573 			  const struct hda_input_mux *imux,
2574 			  struct snd_ctl_elem_value *ucontrol,
2575 			  hda_nid_t nid,
2576 			  unsigned int *cur_val)
2577 {
2578 	unsigned int idx;
2579 
2580 	if (!imux->num_items)
2581 		return 0;
2582 	idx = ucontrol->value.enumerated.item[0];
2583 	if (idx >= imux->num_items)
2584 		idx = imux->num_items - 1;
2585 	if (*cur_val == idx)
2586 		return 0;
2587 	snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
2588 				  imux->items[idx].index);
2589 	*cur_val = idx;
2590 	return 1;
2591 }
2592 
2593 
2594 /*
2595  * Multi-channel / digital-out PCM helper functions
2596  */
2597 
2598 /* setup SPDIF output stream */
2599 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
2600 				 unsigned int stream_tag, unsigned int format)
2601 {
2602 	/* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
2603 	if (codec->spdif_status_reset && (codec->spdif_ctls & AC_DIG1_ENABLE))
2604 		set_dig_out_convert(codec, nid,
2605 				    codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff,
2606 				    -1);
2607 	snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
2608 	if (codec->slave_dig_outs) {
2609 		hda_nid_t *d;
2610 		for (d = codec->slave_dig_outs; *d; d++)
2611 			snd_hda_codec_setup_stream(codec, *d, stream_tag, 0,
2612 						   format);
2613 	}
2614 	/* turn on again (if needed) */
2615 	if (codec->spdif_status_reset && (codec->spdif_ctls & AC_DIG1_ENABLE))
2616 		set_dig_out_convert(codec, nid,
2617 				    codec->spdif_ctls & 0xff, -1);
2618 }
2619 
2620 static void cleanup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid)
2621 {
2622 	snd_hda_codec_cleanup_stream(codec, nid);
2623 	if (codec->slave_dig_outs) {
2624 		hda_nid_t *d;
2625 		for (d = codec->slave_dig_outs; *d; d++)
2626 			snd_hda_codec_cleanup_stream(codec, *d);
2627 	}
2628 }
2629 
2630 /*
2631  * open the digital out in the exclusive mode
2632  */
2633 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
2634 			       struct hda_multi_out *mout)
2635 {
2636 	mutex_lock(&codec->spdif_mutex);
2637 	if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
2638 		/* already opened as analog dup; reset it once */
2639 		cleanup_dig_out_stream(codec, mout->dig_out_nid);
2640 	mout->dig_out_used = HDA_DIG_EXCLUSIVE;
2641 	mutex_unlock(&codec->spdif_mutex);
2642 	return 0;
2643 }
2644 
2645 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
2646 				  struct hda_multi_out *mout,
2647 				  unsigned int stream_tag,
2648 				  unsigned int format,
2649 				  struct snd_pcm_substream *substream)
2650 {
2651 	mutex_lock(&codec->spdif_mutex);
2652 	setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2653 	mutex_unlock(&codec->spdif_mutex);
2654 	return 0;
2655 }
2656 
2657 /*
2658  * release the digital out
2659  */
2660 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2661 				struct hda_multi_out *mout)
2662 {
2663 	mutex_lock(&codec->spdif_mutex);
2664 	mout->dig_out_used = 0;
2665 	mutex_unlock(&codec->spdif_mutex);
2666 	return 0;
2667 }
2668 
2669 /*
2670  * set up more restrictions for analog out
2671  */
2672 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2673 				  struct hda_multi_out *mout,
2674 				  struct snd_pcm_substream *substream,
2675 				  struct hda_pcm_stream *hinfo)
2676 {
2677 	struct snd_pcm_runtime *runtime = substream->runtime;
2678 	runtime->hw.channels_max = mout->max_channels;
2679 	if (mout->dig_out_nid) {
2680 		if (!mout->analog_rates) {
2681 			mout->analog_rates = hinfo->rates;
2682 			mout->analog_formats = hinfo->formats;
2683 			mout->analog_maxbps = hinfo->maxbps;
2684 		} else {
2685 			runtime->hw.rates = mout->analog_rates;
2686 			runtime->hw.formats = mout->analog_formats;
2687 			hinfo->maxbps = mout->analog_maxbps;
2688 		}
2689 		if (!mout->spdif_rates) {
2690 			snd_hda_query_supported_pcm(codec, mout->dig_out_nid,
2691 						    &mout->spdif_rates,
2692 						    &mout->spdif_formats,
2693 						    &mout->spdif_maxbps);
2694 		}
2695 		mutex_lock(&codec->spdif_mutex);
2696 		if (mout->share_spdif) {
2697 			runtime->hw.rates &= mout->spdif_rates;
2698 			runtime->hw.formats &= mout->spdif_formats;
2699 			if (mout->spdif_maxbps < hinfo->maxbps)
2700 				hinfo->maxbps = mout->spdif_maxbps;
2701 		}
2702 		mutex_unlock(&codec->spdif_mutex);
2703 	}
2704 	return snd_pcm_hw_constraint_step(substream->runtime, 0,
2705 					  SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2706 }
2707 
2708 /*
2709  * set up the i/o for analog out
2710  * when the digital out is available, copy the front out to digital out, too.
2711  */
2712 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2713 				     struct hda_multi_out *mout,
2714 				     unsigned int stream_tag,
2715 				     unsigned int format,
2716 				     struct snd_pcm_substream *substream)
2717 {
2718 	hda_nid_t *nids = mout->dac_nids;
2719 	int chs = substream->runtime->channels;
2720 	int i;
2721 
2722 	mutex_lock(&codec->spdif_mutex);
2723 	if (mout->dig_out_nid && mout->share_spdif &&
2724 	    mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2725 		if (chs == 2 &&
2726 		    snd_hda_is_supported_format(codec, mout->dig_out_nid,
2727 						format) &&
2728 		    !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2729 			mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2730 			setup_dig_out_stream(codec, mout->dig_out_nid,
2731 					     stream_tag, format);
2732 		} else {
2733 			mout->dig_out_used = 0;
2734 			cleanup_dig_out_stream(codec, mout->dig_out_nid);
2735 		}
2736 	}
2737 	mutex_unlock(&codec->spdif_mutex);
2738 
2739 	/* front */
2740 	snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2741 				   0, format);
2742 	if (!mout->no_share_stream &&
2743 	    mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2744 		/* headphone out will just decode front left/right (stereo) */
2745 		snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2746 					   0, format);
2747 	/* extra outputs copied from front */
2748 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2749 		if (!mout->no_share_stream && mout->extra_out_nid[i])
2750 			snd_hda_codec_setup_stream(codec,
2751 						   mout->extra_out_nid[i],
2752 						   stream_tag, 0, format);
2753 
2754 	/* surrounds */
2755 	for (i = 1; i < mout->num_dacs; i++) {
2756 		if (chs >= (i + 1) * 2) /* independent out */
2757 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2758 						   i * 2, format);
2759 		else if (!mout->no_share_stream) /* copy front */
2760 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2761 						   0, format);
2762 	}
2763 	return 0;
2764 }
2765 
2766 /*
2767  * clean up the setting for analog out
2768  */
2769 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2770 				     struct hda_multi_out *mout)
2771 {
2772 	hda_nid_t *nids = mout->dac_nids;
2773 	int i;
2774 
2775 	for (i = 0; i < mout->num_dacs; i++)
2776 		snd_hda_codec_cleanup_stream(codec, nids[i]);
2777 	if (mout->hp_nid)
2778 		snd_hda_codec_cleanup_stream(codec, mout->hp_nid);
2779 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2780 		if (mout->extra_out_nid[i])
2781 			snd_hda_codec_cleanup_stream(codec,
2782 						     mout->extra_out_nid[i]);
2783 	mutex_lock(&codec->spdif_mutex);
2784 	if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2785 		cleanup_dig_out_stream(codec, mout->dig_out_nid);
2786 		mout->dig_out_used = 0;
2787 	}
2788 	mutex_unlock(&codec->spdif_mutex);
2789 	return 0;
2790 }
2791 
2792 /*
2793  * Helper for automatic pin configuration
2794  */
2795 
2796 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2797 {
2798 	for (; *list; list++)
2799 		if (*list == nid)
2800 			return 1;
2801 	return 0;
2802 }
2803 
2804 
2805 /*
2806  * Sort an associated group of pins according to their sequence numbers.
2807  */
2808 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2809 				  int num_pins)
2810 {
2811 	int i, j;
2812 	short seq;
2813 	hda_nid_t nid;
2814 
2815 	for (i = 0; i < num_pins; i++) {
2816 		for (j = i + 1; j < num_pins; j++) {
2817 			if (sequences[i] > sequences[j]) {
2818 				seq = sequences[i];
2819 				sequences[i] = sequences[j];
2820 				sequences[j] = seq;
2821 				nid = pins[i];
2822 				pins[i] = pins[j];
2823 				pins[j] = nid;
2824 			}
2825 		}
2826 	}
2827 }
2828 
2829 
2830 /*
2831  * Parse all pin widgets and store the useful pin nids to cfg
2832  *
2833  * The number of line-outs or any primary output is stored in line_outs,
2834  * and the corresponding output pins are assigned to line_out_pins[],
2835  * in the order of front, rear, CLFE, side, ...
2836  *
2837  * If more extra outputs (speaker and headphone) are found, the pins are
2838  * assisnged to hp_pins[] and speaker_pins[], respectively.  If no line-out jack
2839  * is detected, one of speaker of HP pins is assigned as the primary
2840  * output, i.e. to line_out_pins[0].  So, line_outs is always positive
2841  * if any analog output exists.
2842  *
2843  * The analog input pins are assigned to input_pins array.
2844  * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2845  * respectively.
2846  */
2847 int snd_hda_parse_pin_def_config(struct hda_codec *codec,
2848 				 struct auto_pin_cfg *cfg,
2849 				 hda_nid_t *ignore_nids)
2850 {
2851 	hda_nid_t nid, end_nid;
2852 	short seq, assoc_line_out, assoc_speaker;
2853 	short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2854 	short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2855 	short sequences_hp[ARRAY_SIZE(cfg->hp_pins)];
2856 
2857 	memset(cfg, 0, sizeof(*cfg));
2858 
2859 	memset(sequences_line_out, 0, sizeof(sequences_line_out));
2860 	memset(sequences_speaker, 0, sizeof(sequences_speaker));
2861 	memset(sequences_hp, 0, sizeof(sequences_hp));
2862 	assoc_line_out = assoc_speaker = 0;
2863 
2864 	end_nid = codec->start_nid + codec->num_nodes;
2865 	for (nid = codec->start_nid; nid < end_nid; nid++) {
2866 		unsigned int wid_caps = get_wcaps(codec, nid);
2867 		unsigned int wid_type =
2868 			(wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2869 		unsigned int def_conf;
2870 		short assoc, loc;
2871 
2872 		/* read all default configuration for pin complex */
2873 		if (wid_type != AC_WID_PIN)
2874 			continue;
2875 		/* ignore the given nids (e.g. pc-beep returns error) */
2876 		if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2877 			continue;
2878 
2879 		def_conf = snd_hda_codec_read(codec, nid, 0,
2880 					      AC_VERB_GET_CONFIG_DEFAULT, 0);
2881 		if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2882 			continue;
2883 		loc = get_defcfg_location(def_conf);
2884 		switch (get_defcfg_device(def_conf)) {
2885 		case AC_JACK_LINE_OUT:
2886 			seq = get_defcfg_sequence(def_conf);
2887 			assoc = get_defcfg_association(def_conf);
2888 
2889 			if (!(wid_caps & AC_WCAP_STEREO))
2890 				if (!cfg->mono_out_pin)
2891 					cfg->mono_out_pin = nid;
2892 			if (!assoc)
2893 				continue;
2894 			if (!assoc_line_out)
2895 				assoc_line_out = assoc;
2896 			else if (assoc_line_out != assoc)
2897 				continue;
2898 			if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2899 				continue;
2900 			cfg->line_out_pins[cfg->line_outs] = nid;
2901 			sequences_line_out[cfg->line_outs] = seq;
2902 			cfg->line_outs++;
2903 			break;
2904 		case AC_JACK_SPEAKER:
2905 			seq = get_defcfg_sequence(def_conf);
2906 			assoc = get_defcfg_association(def_conf);
2907 			if (! assoc)
2908 				continue;
2909 			if (! assoc_speaker)
2910 				assoc_speaker = assoc;
2911 			else if (assoc_speaker != assoc)
2912 				continue;
2913 			if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2914 				continue;
2915 			cfg->speaker_pins[cfg->speaker_outs] = nid;
2916 			sequences_speaker[cfg->speaker_outs] = seq;
2917 			cfg->speaker_outs++;
2918 			break;
2919 		case AC_JACK_HP_OUT:
2920 			seq = get_defcfg_sequence(def_conf);
2921 			assoc = get_defcfg_association(def_conf);
2922 			if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2923 				continue;
2924 			cfg->hp_pins[cfg->hp_outs] = nid;
2925 			sequences_hp[cfg->hp_outs] = (assoc << 4) | seq;
2926 			cfg->hp_outs++;
2927 			break;
2928 		case AC_JACK_MIC_IN: {
2929 			int preferred, alt;
2930 			if (loc == AC_JACK_LOC_FRONT) {
2931 				preferred = AUTO_PIN_FRONT_MIC;
2932 				alt = AUTO_PIN_MIC;
2933 			} else {
2934 				preferred = AUTO_PIN_MIC;
2935 				alt = AUTO_PIN_FRONT_MIC;
2936 			}
2937 			if (!cfg->input_pins[preferred])
2938 				cfg->input_pins[preferred] = nid;
2939 			else if (!cfg->input_pins[alt])
2940 				cfg->input_pins[alt] = nid;
2941 			break;
2942 		}
2943 		case AC_JACK_LINE_IN:
2944 			if (loc == AC_JACK_LOC_FRONT)
2945 				cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2946 			else
2947 				cfg->input_pins[AUTO_PIN_LINE] = nid;
2948 			break;
2949 		case AC_JACK_CD:
2950 			cfg->input_pins[AUTO_PIN_CD] = nid;
2951 			break;
2952 		case AC_JACK_AUX:
2953 			cfg->input_pins[AUTO_PIN_AUX] = nid;
2954 			break;
2955 		case AC_JACK_SPDIF_OUT:
2956 			cfg->dig_out_pin = nid;
2957 			break;
2958 		case AC_JACK_SPDIF_IN:
2959 			cfg->dig_in_pin = nid;
2960 			break;
2961 		}
2962 	}
2963 
2964 	/* FIX-UP:
2965 	 * If no line-out is defined but multiple HPs are found,
2966 	 * some of them might be the real line-outs.
2967 	 */
2968 	if (!cfg->line_outs && cfg->hp_outs > 1) {
2969 		int i = 0;
2970 		while (i < cfg->hp_outs) {
2971 			/* The real HPs should have the sequence 0x0f */
2972 			if ((sequences_hp[i] & 0x0f) == 0x0f) {
2973 				i++;
2974 				continue;
2975 			}
2976 			/* Move it to the line-out table */
2977 			cfg->line_out_pins[cfg->line_outs] = cfg->hp_pins[i];
2978 			sequences_line_out[cfg->line_outs] = sequences_hp[i];
2979 			cfg->line_outs++;
2980 			cfg->hp_outs--;
2981 			memmove(cfg->hp_pins + i, cfg->hp_pins + i + 1,
2982 				sizeof(cfg->hp_pins[0]) * (cfg->hp_outs - i));
2983 			memmove(sequences_hp + i - 1, sequences_hp + i,
2984 				sizeof(sequences_hp[0]) * (cfg->hp_outs - i));
2985 		}
2986 	}
2987 
2988 	/* sort by sequence */
2989 	sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2990 			      cfg->line_outs);
2991 	sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2992 			      cfg->speaker_outs);
2993 	sort_pins_by_sequence(cfg->hp_pins, sequences_hp,
2994 			      cfg->hp_outs);
2995 
2996 	/* if we have only one mic, make it AUTO_PIN_MIC */
2997 	if (!cfg->input_pins[AUTO_PIN_MIC] &&
2998 	    cfg->input_pins[AUTO_PIN_FRONT_MIC]) {
2999 		cfg->input_pins[AUTO_PIN_MIC] =
3000 			cfg->input_pins[AUTO_PIN_FRONT_MIC];
3001 		cfg->input_pins[AUTO_PIN_FRONT_MIC] = 0;
3002 	}
3003 	/* ditto for line-in */
3004 	if (!cfg->input_pins[AUTO_PIN_LINE] &&
3005 	    cfg->input_pins[AUTO_PIN_FRONT_LINE]) {
3006 		cfg->input_pins[AUTO_PIN_LINE] =
3007 			cfg->input_pins[AUTO_PIN_FRONT_LINE];
3008 		cfg->input_pins[AUTO_PIN_FRONT_LINE] = 0;
3009 	}
3010 
3011 	/*
3012 	 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
3013 	 * as a primary output
3014 	 */
3015 	if (!cfg->line_outs) {
3016 		if (cfg->speaker_outs) {
3017 			cfg->line_outs = cfg->speaker_outs;
3018 			memcpy(cfg->line_out_pins, cfg->speaker_pins,
3019 			       sizeof(cfg->speaker_pins));
3020 			cfg->speaker_outs = 0;
3021 			memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
3022 			cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
3023 		} else if (cfg->hp_outs) {
3024 			cfg->line_outs = cfg->hp_outs;
3025 			memcpy(cfg->line_out_pins, cfg->hp_pins,
3026 			       sizeof(cfg->hp_pins));
3027 			cfg->hp_outs = 0;
3028 			memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
3029 			cfg->line_out_type = AUTO_PIN_HP_OUT;
3030 		}
3031 	}
3032 
3033 	/* Reorder the surround channels
3034 	 * ALSA sequence is front/surr/clfe/side
3035 	 * HDA sequence is:
3036 	 *    4-ch: front/surr  =>  OK as it is
3037 	 *    6-ch: front/clfe/surr
3038 	 *    8-ch: front/clfe/rear/side|fc
3039 	 */
3040 	switch (cfg->line_outs) {
3041 	case 3:
3042 	case 4:
3043 		nid = cfg->line_out_pins[1];
3044 		cfg->line_out_pins[1] = cfg->line_out_pins[2];
3045 		cfg->line_out_pins[2] = nid;
3046 		break;
3047 	}
3048 
3049 	/*
3050 	 * debug prints of the parsed results
3051 	 */
3052 	snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
3053 		   cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
3054 		   cfg->line_out_pins[2], cfg->line_out_pins[3],
3055 		   cfg->line_out_pins[4]);
3056 	snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
3057 		   cfg->speaker_outs, cfg->speaker_pins[0],
3058 		   cfg->speaker_pins[1], cfg->speaker_pins[2],
3059 		   cfg->speaker_pins[3], cfg->speaker_pins[4]);
3060 	snd_printd("   hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
3061 		   cfg->hp_outs, cfg->hp_pins[0],
3062 		   cfg->hp_pins[1], cfg->hp_pins[2],
3063 		   cfg->hp_pins[3], cfg->hp_pins[4]);
3064 	snd_printd("   mono: mono_out=0x%x\n", cfg->mono_out_pin);
3065 	snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
3066 		   " cd=0x%x, aux=0x%x\n",
3067 		   cfg->input_pins[AUTO_PIN_MIC],
3068 		   cfg->input_pins[AUTO_PIN_FRONT_MIC],
3069 		   cfg->input_pins[AUTO_PIN_LINE],
3070 		   cfg->input_pins[AUTO_PIN_FRONT_LINE],
3071 		   cfg->input_pins[AUTO_PIN_CD],
3072 		   cfg->input_pins[AUTO_PIN_AUX]);
3073 
3074 	return 0;
3075 }
3076 
3077 /* labels for input pins */
3078 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
3079 	"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
3080 };
3081 
3082 
3083 #ifdef CONFIG_PM
3084 /*
3085  * power management
3086  */
3087 
3088 /**
3089  * snd_hda_suspend - suspend the codecs
3090  * @bus: the HDA bus
3091  * @state: suspsend state
3092  *
3093  * Returns 0 if successful.
3094  */
3095 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
3096 {
3097 	struct hda_codec *codec;
3098 
3099 	list_for_each_entry(codec, &bus->codec_list, list) {
3100 #ifdef CONFIG_SND_HDA_POWER_SAVE
3101 		if (!codec->power_on)
3102 			continue;
3103 #endif
3104 		hda_call_codec_suspend(codec);
3105 	}
3106 	return 0;
3107 }
3108 
3109 /**
3110  * snd_hda_resume - resume the codecs
3111  * @bus: the HDA bus
3112  * @state: resume state
3113  *
3114  * Returns 0 if successful.
3115  *
3116  * This fucntion is defined only when POWER_SAVE isn't set.
3117  * In the power-save mode, the codec is resumed dynamically.
3118  */
3119 int snd_hda_resume(struct hda_bus *bus)
3120 {
3121 	struct hda_codec *codec;
3122 
3123 	list_for_each_entry(codec, &bus->codec_list, list) {
3124 		if (snd_hda_codec_needs_resume(codec))
3125 			hda_call_codec_resume(codec);
3126 	}
3127 	return 0;
3128 }
3129 #ifdef CONFIG_SND_HDA_POWER_SAVE
3130 int snd_hda_codecs_inuse(struct hda_bus *bus)
3131 {
3132 	struct hda_codec *codec;
3133 
3134 	list_for_each_entry(codec, &bus->codec_list, list) {
3135 		if (snd_hda_codec_needs_resume(codec))
3136 			return 1;
3137 	}
3138 	return 0;
3139 }
3140 #endif
3141 #endif
3142