xref: /openbmc/linux/sound/pci/hda/hda_codec.c (revision 87c2ce3b)
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33 
34 
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38 
39 
40 /*
41  * vendor / preset table
42  */
43 
44 struct hda_vendor_id {
45 	unsigned int id;
46 	const char *name;
47 };
48 
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 	{ 0x10ec, "Realtek" },
52 	{ 0x11d4, "Analog Devices" },
53 	{ 0x13f6, "C-Media" },
54 	{ 0x434d, "C-Media" },
55 	{ 0x8384, "SigmaTel" },
56 	{} /* terminator */
57 };
58 
59 /* codec presets */
60 #include "hda_patch.h"
61 
62 
63 /**
64  * snd_hda_codec_read - send a command and get the response
65  * @codec: the HDA codec
66  * @nid: NID to send the command
67  * @direct: direct flag
68  * @verb: the verb to send
69  * @parm: the parameter for the verb
70  *
71  * Send a single command and read the corresponding response.
72  *
73  * Returns the obtained response value, or -1 for an error.
74  */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 				unsigned int verb, unsigned int parm)
77 {
78 	unsigned int res;
79 	down(&codec->bus->cmd_mutex);
80 	if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 		res = codec->bus->ops.get_response(codec);
82 	else
83 		res = (unsigned int)-1;
84 	up(&codec->bus->cmd_mutex);
85 	return res;
86 }
87 
88 /**
89  * snd_hda_codec_write - send a single command without waiting for response
90  * @codec: the HDA codec
91  * @nid: NID to send the command
92  * @direct: direct flag
93  * @verb: the verb to send
94  * @parm: the parameter for the verb
95  *
96  * Send a single command without waiting for response.
97  *
98  * Returns 0 if successful, or a negative error code.
99  */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 			 unsigned int verb, unsigned int parm)
102 {
103 	int err;
104 	down(&codec->bus->cmd_mutex);
105 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 	up(&codec->bus->cmd_mutex);
107 	return err;
108 }
109 
110 /**
111  * snd_hda_sequence_write - sequence writes
112  * @codec: the HDA codec
113  * @seq: VERB array to send
114  *
115  * Send the commands sequentially from the given array.
116  * The array must be terminated with NID=0.
117  */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 	for (; seq->nid; seq++)
121 		snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123 
124 /**
125  * snd_hda_get_sub_nodes - get the range of sub nodes
126  * @codec: the HDA codec
127  * @nid: NID to parse
128  * @start_id: the pointer to store the start NID
129  *
130  * Parse the NID and store the start NID of its sub-nodes.
131  * Returns the number of sub-nodes.
132  */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 	unsigned int parm;
136 
137 	parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 	*start_id = (parm >> 16) & 0x7fff;
139 	return (int)(parm & 0x7fff);
140 }
141 
142 /**
143  * snd_hda_get_connections - get connection list
144  * @codec: the HDA codec
145  * @nid: NID to parse
146  * @conn_list: connection list array
147  * @max_conns: max. number of connections to store
148  *
149  * Parses the connection list of the given widget and stores the list
150  * of NIDs.
151  *
152  * Returns the number of connections, or a negative error code.
153  */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 			    hda_nid_t *conn_list, int max_conns)
156 {
157 	unsigned int parm;
158 	int i, conn_len, conns;
159 	unsigned int shift, num_elems, mask;
160 	hda_nid_t prev_nid;
161 
162 	snd_assert(conn_list && max_conns > 0, return -EINVAL);
163 
164 	parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
165 	if (parm & AC_CLIST_LONG) {
166 		/* long form */
167 		shift = 16;
168 		num_elems = 2;
169 	} else {
170 		/* short form */
171 		shift = 8;
172 		num_elems = 4;
173 	}
174 	conn_len = parm & AC_CLIST_LENGTH;
175 	mask = (1 << (shift-1)) - 1;
176 
177 	if (! conn_len)
178 		return 0; /* no connection */
179 
180 	if (conn_len == 1) {
181 		/* single connection */
182 		parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 		conn_list[0] = parm & mask;
184 		return 1;
185 	}
186 
187 	/* multi connection */
188 	conns = 0;
189 	prev_nid = 0;
190 	for (i = 0; i < conn_len; i++) {
191 		int range_val;
192 		hda_nid_t val, n;
193 
194 		if (i % num_elems == 0)
195 			parm = snd_hda_codec_read(codec, nid, 0,
196 						  AC_VERB_GET_CONNECT_LIST, i);
197 		range_val = !! (parm & (1 << (shift-1))); /* ranges */
198 		val = parm & mask;
199 		parm >>= shift;
200 		if (range_val) {
201 			/* ranges between the previous and this one */
202 			if (! prev_nid || prev_nid >= val) {
203 				snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
204 				continue;
205 			}
206 			for (n = prev_nid + 1; n <= val; n++) {
207 				if (conns >= max_conns) {
208 					snd_printk(KERN_ERR "Too many connections\n");
209 					return -EINVAL;
210 				}
211 				conn_list[conns++] = n;
212 			}
213 		} else {
214 			if (conns >= max_conns) {
215 				snd_printk(KERN_ERR "Too many connections\n");
216 				return -EINVAL;
217 			}
218 			conn_list[conns++] = val;
219 		}
220 		prev_nid = val;
221 	}
222 	return conns;
223 }
224 
225 
226 /**
227  * snd_hda_queue_unsol_event - add an unsolicited event to queue
228  * @bus: the BUS
229  * @res: unsolicited event (lower 32bit of RIRB entry)
230  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
231  *
232  * Adds the given event to the queue.  The events are processed in
233  * the workqueue asynchronously.  Call this function in the interrupt
234  * hanlder when RIRB receives an unsolicited event.
235  *
236  * Returns 0 if successful, or a negative error code.
237  */
238 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
239 {
240 	struct hda_bus_unsolicited *unsol;
241 	unsigned int wp;
242 
243 	if ((unsol = bus->unsol) == NULL)
244 		return 0;
245 
246 	wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
247 	unsol->wp = wp;
248 
249 	wp <<= 1;
250 	unsol->queue[wp] = res;
251 	unsol->queue[wp + 1] = res_ex;
252 
253 	queue_work(unsol->workq, &unsol->work);
254 
255 	return 0;
256 }
257 
258 /*
259  * process queueud unsolicited events
260  */
261 static void process_unsol_events(void *data)
262 {
263 	struct hda_bus *bus = data;
264 	struct hda_bus_unsolicited *unsol = bus->unsol;
265 	struct hda_codec *codec;
266 	unsigned int rp, caddr, res;
267 
268 	while (unsol->rp != unsol->wp) {
269 		rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
270 		unsol->rp = rp;
271 		rp <<= 1;
272 		res = unsol->queue[rp];
273 		caddr = unsol->queue[rp + 1];
274 		if (! (caddr & (1 << 4))) /* no unsolicited event? */
275 			continue;
276 		codec = bus->caddr_tbl[caddr & 0x0f];
277 		if (codec && codec->patch_ops.unsol_event)
278 			codec->patch_ops.unsol_event(codec, res);
279 	}
280 }
281 
282 /*
283  * initialize unsolicited queue
284  */
285 static int init_unsol_queue(struct hda_bus *bus)
286 {
287 	struct hda_bus_unsolicited *unsol;
288 
289 	if (bus->unsol) /* already initialized */
290 		return 0;
291 
292 	unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
293 	if (! unsol) {
294 		snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
295 		return -ENOMEM;
296 	}
297 	unsol->workq = create_workqueue("hda_codec");
298 	if (! unsol->workq) {
299 		snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
300 		kfree(unsol);
301 		return -ENOMEM;
302 	}
303 	INIT_WORK(&unsol->work, process_unsol_events, bus);
304 	bus->unsol = unsol;
305 	return 0;
306 }
307 
308 /*
309  * destructor
310  */
311 static void snd_hda_codec_free(struct hda_codec *codec);
312 
313 static int snd_hda_bus_free(struct hda_bus *bus)
314 {
315 	struct list_head *p, *n;
316 
317 	if (! bus)
318 		return 0;
319 	if (bus->unsol) {
320 		destroy_workqueue(bus->unsol->workq);
321 		kfree(bus->unsol);
322 	}
323 	list_for_each_safe(p, n, &bus->codec_list) {
324 		struct hda_codec *codec = list_entry(p, struct hda_codec, list);
325 		snd_hda_codec_free(codec);
326 	}
327 	if (bus->ops.private_free)
328 		bus->ops.private_free(bus);
329 	kfree(bus);
330 	return 0;
331 }
332 
333 static int snd_hda_bus_dev_free(struct snd_device *device)
334 {
335 	struct hda_bus *bus = device->device_data;
336 	return snd_hda_bus_free(bus);
337 }
338 
339 /**
340  * snd_hda_bus_new - create a HDA bus
341  * @card: the card entry
342  * @temp: the template for hda_bus information
343  * @busp: the pointer to store the created bus instance
344  *
345  * Returns 0 if successful, or a negative error code.
346  */
347 int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
348 		    struct hda_bus **busp)
349 {
350 	struct hda_bus *bus;
351 	int err;
352 	static struct snd_device_ops dev_ops = {
353 		.dev_free = snd_hda_bus_dev_free,
354 	};
355 
356 	snd_assert(temp, return -EINVAL);
357 	snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
358 
359 	if (busp)
360 		*busp = NULL;
361 
362 	bus = kzalloc(sizeof(*bus), GFP_KERNEL);
363 	if (bus == NULL) {
364 		snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
365 		return -ENOMEM;
366 	}
367 
368 	bus->card = card;
369 	bus->private_data = temp->private_data;
370 	bus->pci = temp->pci;
371 	bus->modelname = temp->modelname;
372 	bus->ops = temp->ops;
373 
374 	init_MUTEX(&bus->cmd_mutex);
375 	INIT_LIST_HEAD(&bus->codec_list);
376 
377 	if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
378 		snd_hda_bus_free(bus);
379 		return err;
380 	}
381 	if (busp)
382 		*busp = bus;
383 	return 0;
384 }
385 
386 
387 /*
388  * find a matching codec preset
389  */
390 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
391 {
392 	const struct hda_codec_preset **tbl, *preset;
393 
394 	for (tbl = hda_preset_tables; *tbl; tbl++) {
395 		for (preset = *tbl; preset->id; preset++) {
396 			u32 mask = preset->mask;
397 			if (! mask)
398 				mask = ~0;
399 			if (preset->id == (codec->vendor_id & mask))
400 				return preset;
401 		}
402 	}
403 	return NULL;
404 }
405 
406 /*
407  * snd_hda_get_codec_name - store the codec name
408  */
409 void snd_hda_get_codec_name(struct hda_codec *codec,
410 			    char *name, int namelen)
411 {
412 	const struct hda_vendor_id *c;
413 	const char *vendor = NULL;
414 	u16 vendor_id = codec->vendor_id >> 16;
415 	char tmp[16];
416 
417 	for (c = hda_vendor_ids; c->id; c++) {
418 		if (c->id == vendor_id) {
419 			vendor = c->name;
420 			break;
421 		}
422 	}
423 	if (! vendor) {
424 		sprintf(tmp, "Generic %04x", vendor_id);
425 		vendor = tmp;
426 	}
427 	if (codec->preset && codec->preset->name)
428 		snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
429 	else
430 		snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
431 }
432 
433 /*
434  * look for an AFG and MFG nodes
435  */
436 static void setup_fg_nodes(struct hda_codec *codec)
437 {
438 	int i, total_nodes;
439 	hda_nid_t nid;
440 
441 	total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
442 	for (i = 0; i < total_nodes; i++, nid++) {
443 		switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
444 		case AC_GRP_AUDIO_FUNCTION:
445 			codec->afg = nid;
446 			break;
447 		case AC_GRP_MODEM_FUNCTION:
448 			codec->mfg = nid;
449 			break;
450 		default:
451 			break;
452 		}
453 	}
454 }
455 
456 /*
457  * read widget caps for each widget and store in cache
458  */
459 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
460 {
461 	int i;
462 	hda_nid_t nid;
463 
464 	codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
465 						 &codec->start_nid);
466 	codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
467 	if (! codec->wcaps)
468 		return -ENOMEM;
469 	nid = codec->start_nid;
470 	for (i = 0; i < codec->num_nodes; i++, nid++)
471 		codec->wcaps[i] = snd_hda_param_read(codec, nid,
472 						     AC_PAR_AUDIO_WIDGET_CAP);
473 	return 0;
474 }
475 
476 
477 /*
478  * codec destructor
479  */
480 static void snd_hda_codec_free(struct hda_codec *codec)
481 {
482 	if (! codec)
483 		return;
484 	list_del(&codec->list);
485 	codec->bus->caddr_tbl[codec->addr] = NULL;
486 	if (codec->patch_ops.free)
487 		codec->patch_ops.free(codec);
488 	kfree(codec->amp_info);
489 	kfree(codec->wcaps);
490 	kfree(codec);
491 }
492 
493 static void init_amp_hash(struct hda_codec *codec);
494 
495 /**
496  * snd_hda_codec_new - create a HDA codec
497  * @bus: the bus to assign
498  * @codec_addr: the codec address
499  * @codecp: the pointer to store the generated codec
500  *
501  * Returns 0 if successful, or a negative error code.
502  */
503 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
504 		      struct hda_codec **codecp)
505 {
506 	struct hda_codec *codec;
507 	char component[13];
508 	int err;
509 
510 	snd_assert(bus, return -EINVAL);
511 	snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
512 
513 	if (bus->caddr_tbl[codec_addr]) {
514 		snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
515 		return -EBUSY;
516 	}
517 
518 	codec = kzalloc(sizeof(*codec), GFP_KERNEL);
519 	if (codec == NULL) {
520 		snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
521 		return -ENOMEM;
522 	}
523 
524 	codec->bus = bus;
525 	codec->addr = codec_addr;
526 	init_MUTEX(&codec->spdif_mutex);
527 	init_amp_hash(codec);
528 
529 	list_add_tail(&codec->list, &bus->codec_list);
530 	bus->caddr_tbl[codec_addr] = codec;
531 
532 	codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
533 	codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
534 	codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
535 
536 	setup_fg_nodes(codec);
537 	if (! codec->afg && ! codec->mfg) {
538 		snd_printdd("hda_codec: no AFG or MFG node found\n");
539 		snd_hda_codec_free(codec);
540 		return -ENODEV;
541 	}
542 
543 	if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
544 		snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
545 		snd_hda_codec_free(codec);
546 		return -ENOMEM;
547 	}
548 
549 	if (! codec->subsystem_id) {
550 		hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
551 		codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
552 							 AC_VERB_GET_SUBSYSTEM_ID,
553 							 0);
554 	}
555 
556 	codec->preset = find_codec_preset(codec);
557 	if (! *bus->card->mixername)
558 		snd_hda_get_codec_name(codec, bus->card->mixername,
559 				       sizeof(bus->card->mixername));
560 
561 	if (codec->preset && codec->preset->patch)
562 		err = codec->preset->patch(codec);
563 	else
564 		err = snd_hda_parse_generic_codec(codec);
565 	if (err < 0) {
566 		snd_hda_codec_free(codec);
567 		return err;
568 	}
569 
570 	if (codec->patch_ops.unsol_event)
571 		init_unsol_queue(bus);
572 
573 	snd_hda_codec_proc_new(codec);
574 
575 	sprintf(component, "HDA:%08x", codec->vendor_id);
576 	snd_component_add(codec->bus->card, component);
577 
578 	if (codecp)
579 		*codecp = codec;
580 	return 0;
581 }
582 
583 /**
584  * snd_hda_codec_setup_stream - set up the codec for streaming
585  * @codec: the CODEC to set up
586  * @nid: the NID to set up
587  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
588  * @channel_id: channel id to pass, zero based.
589  * @format: stream format.
590  */
591 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
592 				int channel_id, int format)
593 {
594 	if (! nid)
595 		return;
596 
597 	snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
598 		    nid, stream_tag, channel_id, format);
599 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
600 			    (stream_tag << 4) | channel_id);
601 	msleep(1);
602 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
603 }
604 
605 
606 /*
607  * amp access functions
608  */
609 
610 /* FIXME: more better hash key? */
611 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
612 #define INFO_AMP_CAPS	(1<<0)
613 #define INFO_AMP_VOL(ch)	(1 << (1 + (ch)))
614 
615 /* initialize the hash table */
616 static void init_amp_hash(struct hda_codec *codec)
617 {
618 	memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
619 	codec->num_amp_entries = 0;
620 	codec->amp_info_size = 0;
621 	codec->amp_info = NULL;
622 }
623 
624 /* query the hash.  allocate an entry if not found. */
625 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
626 {
627 	u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
628 	u16 cur = codec->amp_hash[idx];
629 	struct hda_amp_info *info;
630 
631 	while (cur != 0xffff) {
632 		info = &codec->amp_info[cur];
633 		if (info->key == key)
634 			return info;
635 		cur = info->next;
636 	}
637 
638 	/* add a new hash entry */
639 	if (codec->num_amp_entries >= codec->amp_info_size) {
640 		/* reallocate the array */
641 		int new_size = codec->amp_info_size + 64;
642 		struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
643 							GFP_KERNEL);
644 		if (! new_info) {
645 			snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
646 			return NULL;
647 		}
648 		if (codec->amp_info) {
649 			memcpy(new_info, codec->amp_info,
650 			       codec->amp_info_size * sizeof(struct hda_amp_info));
651 			kfree(codec->amp_info);
652 		}
653 		codec->amp_info_size = new_size;
654 		codec->amp_info = new_info;
655 	}
656 	cur = codec->num_amp_entries++;
657 	info = &codec->amp_info[cur];
658 	info->key = key;
659 	info->status = 0; /* not initialized yet */
660 	info->next = codec->amp_hash[idx];
661 	codec->amp_hash[idx] = cur;
662 
663 	return info;
664 }
665 
666 /*
667  * query AMP capabilities for the given widget and direction
668  */
669 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
670 {
671 	struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
672 
673 	if (! info)
674 		return 0;
675 	if (! (info->status & INFO_AMP_CAPS)) {
676 		if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
677 			nid = codec->afg;
678 		info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
679 						    AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
680 		info->status |= INFO_AMP_CAPS;
681 	}
682 	return info->amp_caps;
683 }
684 
685 /*
686  * read the current volume to info
687  * if the cache exists, read the cache value.
688  */
689 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
690 			 hda_nid_t nid, int ch, int direction, int index)
691 {
692 	u32 val, parm;
693 
694 	if (info->status & INFO_AMP_VOL(ch))
695 		return info->vol[ch];
696 
697 	parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
698 	parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
699 	parm |= index;
700 	val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
701 	info->vol[ch] = val & 0xff;
702 	info->status |= INFO_AMP_VOL(ch);
703 	return info->vol[ch];
704 }
705 
706 /*
707  * write the current volume in info to the h/w and update the cache
708  */
709 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
710 			 hda_nid_t nid, int ch, int direction, int index, int val)
711 {
712 	u32 parm;
713 
714 	parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
715 	parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
716 	parm |= index << AC_AMP_SET_INDEX_SHIFT;
717 	parm |= val;
718 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
719 	info->vol[ch] = val;
720 }
721 
722 /*
723  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
724  */
725 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
726 {
727 	struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
728 	if (! info)
729 		return 0;
730 	return get_vol_mute(codec, info, nid, ch, direction, index);
731 }
732 
733 /*
734  * update the AMP value, mask = bit mask to set, val = the value
735  */
736 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
737 {
738 	struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
739 
740 	if (! info)
741 		return 0;
742 	val &= mask;
743 	val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
744 	if (info->vol[ch] == val && ! codec->in_resume)
745 		return 0;
746 	put_vol_mute(codec, info, nid, ch, direction, idx, val);
747 	return 1;
748 }
749 
750 
751 /*
752  * AMP control callbacks
753  */
754 /* retrieve parameters from private_value */
755 #define get_amp_nid(kc)		((kc)->private_value & 0xffff)
756 #define get_amp_channels(kc)	(((kc)->private_value >> 16) & 0x3)
757 #define get_amp_direction(kc)	(((kc)->private_value >> 18) & 0x1)
758 #define get_amp_index(kc)	(((kc)->private_value >> 19) & 0xf)
759 
760 /* volume */
761 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
762 {
763 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
764 	u16 nid = get_amp_nid(kcontrol);
765 	u8 chs = get_amp_channels(kcontrol);
766 	int dir = get_amp_direction(kcontrol);
767 	u32 caps;
768 
769 	caps = query_amp_caps(codec, nid, dir);
770 	caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
771 	if (! caps) {
772 		printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
773 		return -EINVAL;
774 	}
775 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
776 	uinfo->count = chs == 3 ? 2 : 1;
777 	uinfo->value.integer.min = 0;
778 	uinfo->value.integer.max = caps;
779 	return 0;
780 }
781 
782 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
783 {
784 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
785 	hda_nid_t nid = get_amp_nid(kcontrol);
786 	int chs = get_amp_channels(kcontrol);
787 	int dir = get_amp_direction(kcontrol);
788 	int idx = get_amp_index(kcontrol);
789 	long *valp = ucontrol->value.integer.value;
790 
791 	if (chs & 1)
792 		*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
793 	if (chs & 2)
794 		*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
795 	return 0;
796 }
797 
798 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
799 {
800 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
801 	hda_nid_t nid = get_amp_nid(kcontrol);
802 	int chs = get_amp_channels(kcontrol);
803 	int dir = get_amp_direction(kcontrol);
804 	int idx = get_amp_index(kcontrol);
805 	long *valp = ucontrol->value.integer.value;
806 	int change = 0;
807 
808 	if (chs & 1) {
809 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
810 						  0x7f, *valp);
811 		valp++;
812 	}
813 	if (chs & 2)
814 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
815 						   0x7f, *valp);
816 	return change;
817 }
818 
819 /* switch */
820 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
821 {
822 	int chs = get_amp_channels(kcontrol);
823 
824 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
825 	uinfo->count = chs == 3 ? 2 : 1;
826 	uinfo->value.integer.min = 0;
827 	uinfo->value.integer.max = 1;
828 	return 0;
829 }
830 
831 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
832 {
833 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
834 	hda_nid_t nid = get_amp_nid(kcontrol);
835 	int chs = get_amp_channels(kcontrol);
836 	int dir = get_amp_direction(kcontrol);
837 	int idx = get_amp_index(kcontrol);
838 	long *valp = ucontrol->value.integer.value;
839 
840 	if (chs & 1)
841 		*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
842 	if (chs & 2)
843 		*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
844 	return 0;
845 }
846 
847 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
848 {
849 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
850 	hda_nid_t nid = get_amp_nid(kcontrol);
851 	int chs = get_amp_channels(kcontrol);
852 	int dir = get_amp_direction(kcontrol);
853 	int idx = get_amp_index(kcontrol);
854 	long *valp = ucontrol->value.integer.value;
855 	int change = 0;
856 
857 	if (chs & 1) {
858 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
859 						  0x80, *valp ? 0 : 0x80);
860 		valp++;
861 	}
862 	if (chs & 2)
863 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
864 						   0x80, *valp ? 0 : 0x80);
865 
866 	return change;
867 }
868 
869 /*
870  * bound volume controls
871  *
872  * bind multiple volumes (# indices, from 0)
873  */
874 
875 #define AMP_VAL_IDX_SHIFT	19
876 #define AMP_VAL_IDX_MASK	(0x0f<<19)
877 
878 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 {
880 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
881 	unsigned long pval;
882 	int err;
883 
884 	down(&codec->spdif_mutex); /* reuse spdif_mutex */
885 	pval = kcontrol->private_value;
886 	kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
887 	err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
888 	kcontrol->private_value = pval;
889 	up(&codec->spdif_mutex);
890 	return err;
891 }
892 
893 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
894 {
895 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
896 	unsigned long pval;
897 	int i, indices, err = 0, change = 0;
898 
899 	down(&codec->spdif_mutex); /* reuse spdif_mutex */
900 	pval = kcontrol->private_value;
901 	indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
902 	for (i = 0; i < indices; i++) {
903 		kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
904 		err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
905 		if (err < 0)
906 			break;
907 		change |= err;
908 	}
909 	kcontrol->private_value = pval;
910 	up(&codec->spdif_mutex);
911 	return err < 0 ? err : change;
912 }
913 
914 /*
915  * SPDIF out controls
916  */
917 
918 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
919 {
920 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
921 	uinfo->count = 1;
922 	return 0;
923 }
924 
925 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
926 {
927 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
928 					   IEC958_AES0_NONAUDIO |
929 					   IEC958_AES0_CON_EMPHASIS_5015 |
930 					   IEC958_AES0_CON_NOT_COPYRIGHT;
931 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
932 					   IEC958_AES1_CON_ORIGINAL;
933 	return 0;
934 }
935 
936 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
937 {
938 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
939 					   IEC958_AES0_NONAUDIO |
940 					   IEC958_AES0_PRO_EMPHASIS_5015;
941 	return 0;
942 }
943 
944 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
945 {
946 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
947 
948 	ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
949 	ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
950 	ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
951 	ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
952 
953 	return 0;
954 }
955 
956 /* convert from SPDIF status bits to HDA SPDIF bits
957  * bit 0 (DigEn) is always set zero (to be filled later)
958  */
959 static unsigned short convert_from_spdif_status(unsigned int sbits)
960 {
961 	unsigned short val = 0;
962 
963 	if (sbits & IEC958_AES0_PROFESSIONAL)
964 		val |= 1 << 6;
965 	if (sbits & IEC958_AES0_NONAUDIO)
966 		val |= 1 << 5;
967 	if (sbits & IEC958_AES0_PROFESSIONAL) {
968 		if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
969 			val |= 1 << 3;
970 	} else {
971 		if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
972 			val |= 1 << 3;
973 		if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
974 			val |= 1 << 4;
975 		if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
976 			val |= 1 << 7;
977 		val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
978 	}
979 	return val;
980 }
981 
982 /* convert to SPDIF status bits from HDA SPDIF bits
983  */
984 static unsigned int convert_to_spdif_status(unsigned short val)
985 {
986 	unsigned int sbits = 0;
987 
988 	if (val & (1 << 5))
989 		sbits |= IEC958_AES0_NONAUDIO;
990 	if (val & (1 << 6))
991 		sbits |= IEC958_AES0_PROFESSIONAL;
992 	if (sbits & IEC958_AES0_PROFESSIONAL) {
993 		if (sbits & (1 << 3))
994 			sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
995 	} else {
996 		if (val & (1 << 3))
997 			sbits |= IEC958_AES0_CON_EMPHASIS_5015;
998 		if (! (val & (1 << 4)))
999 			sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1000 		if (val & (1 << 7))
1001 			sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1002 		sbits |= val & (0x7f << 8);
1003 	}
1004 	return sbits;
1005 }
1006 
1007 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1008 {
1009 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1010 	hda_nid_t nid = kcontrol->private_value;
1011 	unsigned short val;
1012 	int change;
1013 
1014 	down(&codec->spdif_mutex);
1015 	codec->spdif_status = ucontrol->value.iec958.status[0] |
1016 		((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1017 		((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1018 		((unsigned int)ucontrol->value.iec958.status[3] << 24);
1019 	val = convert_from_spdif_status(codec->spdif_status);
1020 	val |= codec->spdif_ctls & 1;
1021 	change = codec->spdif_ctls != val;
1022 	codec->spdif_ctls = val;
1023 
1024 	if (change || codec->in_resume) {
1025 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1026 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1027 	}
1028 
1029 	up(&codec->spdif_mutex);
1030 	return change;
1031 }
1032 
1033 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1034 {
1035 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1036 	uinfo->count = 1;
1037 	uinfo->value.integer.min = 0;
1038 	uinfo->value.integer.max = 1;
1039 	return 0;
1040 }
1041 
1042 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1043 {
1044 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1045 
1046 	ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1047 	return 0;
1048 }
1049 
1050 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1051 {
1052 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1053 	hda_nid_t nid = kcontrol->private_value;
1054 	unsigned short val;
1055 	int change;
1056 
1057 	down(&codec->spdif_mutex);
1058 	val = codec->spdif_ctls & ~1;
1059 	if (ucontrol->value.integer.value[0])
1060 		val |= 1;
1061 	change = codec->spdif_ctls != val;
1062 	if (change || codec->in_resume) {
1063 		codec->spdif_ctls = val;
1064 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1065 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1066 				    AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1067 				    AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1068 	}
1069 	up(&codec->spdif_mutex);
1070 	return change;
1071 }
1072 
1073 static struct snd_kcontrol_new dig_mixes[] = {
1074 	{
1075 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1076 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1077 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1078 		.info = snd_hda_spdif_mask_info,
1079 		.get = snd_hda_spdif_cmask_get,
1080 	},
1081 	{
1082 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1083 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1084 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1085 		.info = snd_hda_spdif_mask_info,
1086 		.get = snd_hda_spdif_pmask_get,
1087 	},
1088 	{
1089 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1090 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1091 		.info = snd_hda_spdif_mask_info,
1092 		.get = snd_hda_spdif_default_get,
1093 		.put = snd_hda_spdif_default_put,
1094 	},
1095 	{
1096 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1097 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1098 		.info = snd_hda_spdif_out_switch_info,
1099 		.get = snd_hda_spdif_out_switch_get,
1100 		.put = snd_hda_spdif_out_switch_put,
1101 	},
1102 	{ } /* end */
1103 };
1104 
1105 /**
1106  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1107  * @codec: the HDA codec
1108  * @nid: audio out widget NID
1109  *
1110  * Creates controls related with the SPDIF output.
1111  * Called from each patch supporting the SPDIF out.
1112  *
1113  * Returns 0 if successful, or a negative error code.
1114  */
1115 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1116 {
1117 	int err;
1118 	struct snd_kcontrol *kctl;
1119 	struct snd_kcontrol_new *dig_mix;
1120 
1121 	for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1122 		kctl = snd_ctl_new1(dig_mix, codec);
1123 		kctl->private_value = nid;
1124 		if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1125 			return err;
1126 	}
1127 	codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1128 	codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * SPDIF input
1134  */
1135 
1136 #define snd_hda_spdif_in_switch_info	snd_hda_spdif_out_switch_info
1137 
1138 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1139 {
1140 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1141 
1142 	ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1143 	return 0;
1144 }
1145 
1146 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1147 {
1148 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1149 	hda_nid_t nid = kcontrol->private_value;
1150 	unsigned int val = !!ucontrol->value.integer.value[0];
1151 	int change;
1152 
1153 	down(&codec->spdif_mutex);
1154 	change = codec->spdif_in_enable != val;
1155 	if (change || codec->in_resume) {
1156 		codec->spdif_in_enable = val;
1157 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1158 	}
1159 	up(&codec->spdif_mutex);
1160 	return change;
1161 }
1162 
1163 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1164 {
1165 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1166 	hda_nid_t nid = kcontrol->private_value;
1167 	unsigned short val;
1168 	unsigned int sbits;
1169 
1170 	val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1171 	sbits = convert_to_spdif_status(val);
1172 	ucontrol->value.iec958.status[0] = sbits;
1173 	ucontrol->value.iec958.status[1] = sbits >> 8;
1174 	ucontrol->value.iec958.status[2] = sbits >> 16;
1175 	ucontrol->value.iec958.status[3] = sbits >> 24;
1176 	return 0;
1177 }
1178 
1179 static struct snd_kcontrol_new dig_in_ctls[] = {
1180 	{
1181 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1182 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1183 		.info = snd_hda_spdif_in_switch_info,
1184 		.get = snd_hda_spdif_in_switch_get,
1185 		.put = snd_hda_spdif_in_switch_put,
1186 	},
1187 	{
1188 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1189 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1190 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1191 		.info = snd_hda_spdif_mask_info,
1192 		.get = snd_hda_spdif_in_status_get,
1193 	},
1194 	{ } /* end */
1195 };
1196 
1197 /**
1198  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1199  * @codec: the HDA codec
1200  * @nid: audio in widget NID
1201  *
1202  * Creates controls related with the SPDIF input.
1203  * Called from each patch supporting the SPDIF in.
1204  *
1205  * Returns 0 if successful, or a negative error code.
1206  */
1207 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1208 {
1209 	int err;
1210 	struct snd_kcontrol *kctl;
1211 	struct snd_kcontrol_new *dig_mix;
1212 
1213 	for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1214 		kctl = snd_ctl_new1(dig_mix, codec);
1215 		kctl->private_value = nid;
1216 		if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1217 			return err;
1218 	}
1219 	codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1220 	return 0;
1221 }
1222 
1223 
1224 /*
1225  * set power state of the codec
1226  */
1227 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1228 				unsigned int power_state)
1229 {
1230 	hda_nid_t nid, nid_start;
1231 	int nodes;
1232 
1233 	snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1234 			    power_state);
1235 
1236 	nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1237 	for (nid = nid_start; nid < nodes + nid_start; nid++) {
1238 		if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1239 			snd_hda_codec_write(codec, nid, 0,
1240 					    AC_VERB_SET_POWER_STATE,
1241 					    power_state);
1242 	}
1243 
1244 	if (power_state == AC_PWRST_D0)
1245 		msleep(10);
1246 }
1247 
1248 
1249 /**
1250  * snd_hda_build_controls - build mixer controls
1251  * @bus: the BUS
1252  *
1253  * Creates mixer controls for each codec included in the bus.
1254  *
1255  * Returns 0 if successful, otherwise a negative error code.
1256  */
1257 int snd_hda_build_controls(struct hda_bus *bus)
1258 {
1259 	struct list_head *p;
1260 
1261 	/* build controls */
1262 	list_for_each(p, &bus->codec_list) {
1263 		struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1264 		int err;
1265 		if (! codec->patch_ops.build_controls)
1266 			continue;
1267 		err = codec->patch_ops.build_controls(codec);
1268 		if (err < 0)
1269 			return err;
1270 	}
1271 
1272 	/* initialize */
1273 	list_for_each(p, &bus->codec_list) {
1274 		struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1275 		int err;
1276 		hda_set_power_state(codec,
1277 				    codec->afg ? codec->afg : codec->mfg,
1278 				    AC_PWRST_D0);
1279 		if (! codec->patch_ops.init)
1280 			continue;
1281 		err = codec->patch_ops.init(codec);
1282 		if (err < 0)
1283 			return err;
1284 	}
1285 	return 0;
1286 }
1287 
1288 
1289 /*
1290  * stream formats
1291  */
1292 struct hda_rate_tbl {
1293 	unsigned int hz;
1294 	unsigned int alsa_bits;
1295 	unsigned int hda_fmt;
1296 };
1297 
1298 static struct hda_rate_tbl rate_bits[] = {
1299 	/* rate in Hz, ALSA rate bitmask, HDA format value */
1300 
1301 	/* autodetected value used in snd_hda_query_supported_pcm */
1302 	{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1303 	{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1304 	{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1305 	{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1306 	{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1307 	{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1308 	{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1309 	{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1310 	{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1311 	{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1312 	{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1313 
1314 	/* not autodetected value */
1315 	{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1316 
1317 	{ 0 } /* terminator */
1318 };
1319 
1320 /**
1321  * snd_hda_calc_stream_format - calculate format bitset
1322  * @rate: the sample rate
1323  * @channels: the number of channels
1324  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1325  * @maxbps: the max. bps
1326  *
1327  * Calculate the format bitset from the given rate, channels and th PCM format.
1328  *
1329  * Return zero if invalid.
1330  */
1331 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1332 					unsigned int channels,
1333 					unsigned int format,
1334 					unsigned int maxbps)
1335 {
1336 	int i;
1337 	unsigned int val = 0;
1338 
1339 	for (i = 0; rate_bits[i].hz; i++)
1340 		if (rate_bits[i].hz == rate) {
1341 			val = rate_bits[i].hda_fmt;
1342 			break;
1343 		}
1344 	if (! rate_bits[i].hz) {
1345 		snd_printdd("invalid rate %d\n", rate);
1346 		return 0;
1347 	}
1348 
1349 	if (channels == 0 || channels > 8) {
1350 		snd_printdd("invalid channels %d\n", channels);
1351 		return 0;
1352 	}
1353 	val |= channels - 1;
1354 
1355 	switch (snd_pcm_format_width(format)) {
1356 	case 8:  val |= 0x00; break;
1357 	case 16: val |= 0x10; break;
1358 	case 20:
1359 	case 24:
1360 	case 32:
1361 		if (maxbps >= 32)
1362 			val |= 0x40;
1363 		else if (maxbps >= 24)
1364 			val |= 0x30;
1365 		else
1366 			val |= 0x20;
1367 		break;
1368 	default:
1369 		snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1370 		return 0;
1371 	}
1372 
1373 	return val;
1374 }
1375 
1376 /**
1377  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1378  * @codec: the HDA codec
1379  * @nid: NID to query
1380  * @ratesp: the pointer to store the detected rate bitflags
1381  * @formatsp: the pointer to store the detected formats
1382  * @bpsp: the pointer to store the detected format widths
1383  *
1384  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1385  * or @bsps argument is ignored.
1386  *
1387  * Returns 0 if successful, otherwise a negative error code.
1388  */
1389 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1390 				u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1391 {
1392 	int i;
1393 	unsigned int val, streams;
1394 
1395 	val = 0;
1396 	if (nid != codec->afg &&
1397 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1398 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1399 		if (val == -1)
1400 			return -EIO;
1401 	}
1402 	if (! val)
1403 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1404 
1405 	if (ratesp) {
1406 		u32 rates = 0;
1407 		for (i = 0; rate_bits[i].hz; i++) {
1408 			if (val & (1 << i))
1409 				rates |= rate_bits[i].alsa_bits;
1410 		}
1411 		*ratesp = rates;
1412 	}
1413 
1414 	if (formatsp || bpsp) {
1415 		u64 formats = 0;
1416 		unsigned int bps;
1417 		unsigned int wcaps;
1418 
1419 		wcaps = get_wcaps(codec, nid);
1420 		streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1421 		if (streams == -1)
1422 			return -EIO;
1423 		if (! streams) {
1424 			streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1425 			if (streams == -1)
1426 				return -EIO;
1427 		}
1428 
1429 		bps = 0;
1430 		if (streams & AC_SUPFMT_PCM) {
1431 			if (val & AC_SUPPCM_BITS_8) {
1432 				formats |= SNDRV_PCM_FMTBIT_U8;
1433 				bps = 8;
1434 			}
1435 			if (val & AC_SUPPCM_BITS_16) {
1436 				formats |= SNDRV_PCM_FMTBIT_S16_LE;
1437 				bps = 16;
1438 			}
1439 			if (wcaps & AC_WCAP_DIGITAL) {
1440 				if (val & AC_SUPPCM_BITS_32)
1441 					formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1442 				if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1443 					formats |= SNDRV_PCM_FMTBIT_S32_LE;
1444 				if (val & AC_SUPPCM_BITS_24)
1445 					bps = 24;
1446 				else if (val & AC_SUPPCM_BITS_20)
1447 					bps = 20;
1448 			} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1449 				formats |= SNDRV_PCM_FMTBIT_S32_LE;
1450 				if (val & AC_SUPPCM_BITS_32)
1451 					bps = 32;
1452 				else if (val & AC_SUPPCM_BITS_20)
1453 					bps = 20;
1454 				else if (val & AC_SUPPCM_BITS_24)
1455 					bps = 24;
1456 			}
1457 		}
1458 		else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1459 			formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1460 			bps = 32;
1461 		} else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1462 			/* temporary hack: we have still no proper support
1463 			 * for the direct AC3 stream...
1464 			 */
1465 			formats |= SNDRV_PCM_FMTBIT_U8;
1466 			bps = 8;
1467 		}
1468 		if (formatsp)
1469 			*formatsp = formats;
1470 		if (bpsp)
1471 			*bpsp = bps;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * snd_hda_is_supported_format - check whether the given node supports the format val
1479  *
1480  * Returns 1 if supported, 0 if not.
1481  */
1482 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1483 				unsigned int format)
1484 {
1485 	int i;
1486 	unsigned int val = 0, rate, stream;
1487 
1488 	if (nid != codec->afg &&
1489 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1490 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1491 		if (val == -1)
1492 			return 0;
1493 	}
1494 	if (! val) {
1495 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1496 		if (val == -1)
1497 			return 0;
1498 	}
1499 
1500 	rate = format & 0xff00;
1501 	for (i = 0; rate_bits[i].hz; i++)
1502 		if (rate_bits[i].hda_fmt == rate) {
1503 			if (val & (1 << i))
1504 				break;
1505 			return 0;
1506 		}
1507 	if (! rate_bits[i].hz)
1508 		return 0;
1509 
1510 	stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1511 	if (stream == -1)
1512 		return 0;
1513 	if (! stream && nid != codec->afg)
1514 		stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1515 	if (! stream || stream == -1)
1516 		return 0;
1517 
1518 	if (stream & AC_SUPFMT_PCM) {
1519 		switch (format & 0xf0) {
1520 		case 0x00:
1521 			if (! (val & AC_SUPPCM_BITS_8))
1522 				return 0;
1523 			break;
1524 		case 0x10:
1525 			if (! (val & AC_SUPPCM_BITS_16))
1526 				return 0;
1527 			break;
1528 		case 0x20:
1529 			if (! (val & AC_SUPPCM_BITS_20))
1530 				return 0;
1531 			break;
1532 		case 0x30:
1533 			if (! (val & AC_SUPPCM_BITS_24))
1534 				return 0;
1535 			break;
1536 		case 0x40:
1537 			if (! (val & AC_SUPPCM_BITS_32))
1538 				return 0;
1539 			break;
1540 		default:
1541 			return 0;
1542 		}
1543 	} else {
1544 		/* FIXME: check for float32 and AC3? */
1545 	}
1546 
1547 	return 1;
1548 }
1549 
1550 /*
1551  * PCM stuff
1552  */
1553 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1554 				      struct hda_codec *codec,
1555 				      struct snd_pcm_substream *substream)
1556 {
1557 	return 0;
1558 }
1559 
1560 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1561 				   struct hda_codec *codec,
1562 				   unsigned int stream_tag,
1563 				   unsigned int format,
1564 				   struct snd_pcm_substream *substream)
1565 {
1566 	snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1567 	return 0;
1568 }
1569 
1570 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1571 				   struct hda_codec *codec,
1572 				   struct snd_pcm_substream *substream)
1573 {
1574 	snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1575 	return 0;
1576 }
1577 
1578 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1579 {
1580 	if (info->nid) {
1581 		/* query support PCM information from the given NID */
1582 		if (! info->rates || ! info->formats)
1583 			snd_hda_query_supported_pcm(codec, info->nid,
1584 						    info->rates ? NULL : &info->rates,
1585 						    info->formats ? NULL : &info->formats,
1586 						    info->maxbps ? NULL : &info->maxbps);
1587 	}
1588 	if (info->ops.open == NULL)
1589 		info->ops.open = hda_pcm_default_open_close;
1590 	if (info->ops.close == NULL)
1591 		info->ops.close = hda_pcm_default_open_close;
1592 	if (info->ops.prepare == NULL) {
1593 		snd_assert(info->nid, return -EINVAL);
1594 		info->ops.prepare = hda_pcm_default_prepare;
1595 	}
1596 	if (info->ops.cleanup == NULL) {
1597 		snd_assert(info->nid, return -EINVAL);
1598 		info->ops.cleanup = hda_pcm_default_cleanup;
1599 	}
1600 	return 0;
1601 }
1602 
1603 /**
1604  * snd_hda_build_pcms - build PCM information
1605  * @bus: the BUS
1606  *
1607  * Create PCM information for each codec included in the bus.
1608  *
1609  * The build_pcms codec patch is requested to set up codec->num_pcms and
1610  * codec->pcm_info properly.  The array is referred by the top-level driver
1611  * to create its PCM instances.
1612  * The allocated codec->pcm_info should be released in codec->patch_ops.free
1613  * callback.
1614  *
1615  * At least, substreams, channels_min and channels_max must be filled for
1616  * each stream.  substreams = 0 indicates that the stream doesn't exist.
1617  * When rates and/or formats are zero, the supported values are queried
1618  * from the given nid.  The nid is used also by the default ops.prepare
1619  * and ops.cleanup callbacks.
1620  *
1621  * The driver needs to call ops.open in its open callback.  Similarly,
1622  * ops.close is supposed to be called in the close callback.
1623  * ops.prepare should be called in the prepare or hw_params callback
1624  * with the proper parameters for set up.
1625  * ops.cleanup should be called in hw_free for clean up of streams.
1626  *
1627  * This function returns 0 if successfull, or a negative error code.
1628  */
1629 int snd_hda_build_pcms(struct hda_bus *bus)
1630 {
1631 	struct list_head *p;
1632 
1633 	list_for_each(p, &bus->codec_list) {
1634 		struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1635 		unsigned int pcm, s;
1636 		int err;
1637 		if (! codec->patch_ops.build_pcms)
1638 			continue;
1639 		err = codec->patch_ops.build_pcms(codec);
1640 		if (err < 0)
1641 			return err;
1642 		for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1643 			for (s = 0; s < 2; s++) {
1644 				struct hda_pcm_stream *info;
1645 				info = &codec->pcm_info[pcm].stream[s];
1646 				if (! info->substreams)
1647 					continue;
1648 				err = set_pcm_default_values(codec, info);
1649 				if (err < 0)
1650 					return err;
1651 			}
1652 		}
1653 	}
1654 	return 0;
1655 }
1656 
1657 
1658 /**
1659  * snd_hda_check_board_config - compare the current codec with the config table
1660  * @codec: the HDA codec
1661  * @tbl: configuration table, terminated by null entries
1662  *
1663  * Compares the modelname or PCI subsystem id of the current codec with the
1664  * given configuration table.  If a matching entry is found, returns its
1665  * config value (supposed to be 0 or positive).
1666  *
1667  * If no entries are matching, the function returns a negative value.
1668  */
1669 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1670 {
1671 	const struct hda_board_config *c;
1672 
1673 	if (codec->bus->modelname) {
1674 		for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1675 			if (c->modelname &&
1676 			    ! strcmp(codec->bus->modelname, c->modelname)) {
1677 				snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1678 				return c->config;
1679 			}
1680 		}
1681 	}
1682 
1683 	if (codec->bus->pci) {
1684 		u16 subsystem_vendor, subsystem_device;
1685 		pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1686 		pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1687 		for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1688 			if (c->pci_subvendor == subsystem_vendor &&
1689 			    (! c->pci_subdevice /* all match */||
1690 			     (c->pci_subdevice == subsystem_device))) {
1691 				snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1692 					    subsystem_vendor, subsystem_device, c->config);
1693 				return c->config;
1694 			}
1695 		}
1696 	}
1697 	return -1;
1698 }
1699 
1700 /**
1701  * snd_hda_add_new_ctls - create controls from the array
1702  * @codec: the HDA codec
1703  * @knew: the array of struct snd_kcontrol_new
1704  *
1705  * This helper function creates and add new controls in the given array.
1706  * The array must be terminated with an empty entry as terminator.
1707  *
1708  * Returns 0 if successful, or a negative error code.
1709  */
1710 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1711 {
1712 	int err;
1713 
1714 	for (; knew->name; knew++) {
1715 		struct snd_kcontrol *kctl;
1716 		kctl = snd_ctl_new1(knew, codec);
1717 		if (! kctl)
1718 			return -ENOMEM;
1719 		err = snd_ctl_add(codec->bus->card, kctl);
1720 		if (err < 0) {
1721 			if (! codec->addr)
1722 				return err;
1723 			kctl = snd_ctl_new1(knew, codec);
1724 			if (! kctl)
1725 				return -ENOMEM;
1726 			kctl->id.device = codec->addr;
1727 			if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1728 				return err;
1729 		}
1730 	}
1731 	return 0;
1732 }
1733 
1734 
1735 /*
1736  * Channel mode helper
1737  */
1738 int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
1739 			 const struct hda_channel_mode *chmode, int num_chmodes)
1740 {
1741 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1742 	uinfo->count = 1;
1743 	uinfo->value.enumerated.items = num_chmodes;
1744 	if (uinfo->value.enumerated.item >= num_chmodes)
1745 		uinfo->value.enumerated.item = num_chmodes - 1;
1746 	sprintf(uinfo->value.enumerated.name, "%dch",
1747 		chmode[uinfo->value.enumerated.item].channels);
1748 	return 0;
1749 }
1750 
1751 int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1752 			const struct hda_channel_mode *chmode, int num_chmodes,
1753 			int max_channels)
1754 {
1755 	int i;
1756 
1757 	for (i = 0; i < num_chmodes; i++) {
1758 		if (max_channels == chmode[i].channels) {
1759 			ucontrol->value.enumerated.item[0] = i;
1760 			break;
1761 		}
1762 	}
1763 	return 0;
1764 }
1765 
1766 int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1767 			const struct hda_channel_mode *chmode, int num_chmodes,
1768 			int *max_channelsp)
1769 {
1770 	unsigned int mode;
1771 
1772 	mode = ucontrol->value.enumerated.item[0];
1773 	snd_assert(mode < num_chmodes, return -EINVAL);
1774 	if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
1775 		return 0;
1776 	/* change the current channel setting */
1777 	*max_channelsp = chmode[mode].channels;
1778 	if (chmode[mode].sequence)
1779 		snd_hda_sequence_write(codec, chmode[mode].sequence);
1780 	return 1;
1781 }
1782 
1783 /*
1784  * input MUX helper
1785  */
1786 int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1787 {
1788 	unsigned int index;
1789 
1790 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1791 	uinfo->count = 1;
1792 	uinfo->value.enumerated.items = imux->num_items;
1793 	index = uinfo->value.enumerated.item;
1794 	if (index >= imux->num_items)
1795 		index = imux->num_items - 1;
1796 	strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1797 	return 0;
1798 }
1799 
1800 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1801 			  struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1802 			  unsigned int *cur_val)
1803 {
1804 	unsigned int idx;
1805 
1806 	idx = ucontrol->value.enumerated.item[0];
1807 	if (idx >= imux->num_items)
1808 		idx = imux->num_items - 1;
1809 	if (*cur_val == idx && ! codec->in_resume)
1810 		return 0;
1811 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1812 			    imux->items[idx].index);
1813 	*cur_val = idx;
1814 	return 1;
1815 }
1816 
1817 
1818 /*
1819  * Multi-channel / digital-out PCM helper functions
1820  */
1821 
1822 /*
1823  * open the digital out in the exclusive mode
1824  */
1825 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1826 {
1827 	down(&codec->spdif_mutex);
1828 	if (mout->dig_out_used) {
1829 		up(&codec->spdif_mutex);
1830 		return -EBUSY; /* already being used */
1831 	}
1832 	mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1833 	up(&codec->spdif_mutex);
1834 	return 0;
1835 }
1836 
1837 /*
1838  * release the digital out
1839  */
1840 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1841 {
1842 	down(&codec->spdif_mutex);
1843 	mout->dig_out_used = 0;
1844 	up(&codec->spdif_mutex);
1845 	return 0;
1846 }
1847 
1848 /*
1849  * set up more restrictions for analog out
1850  */
1851 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1852 				  struct snd_pcm_substream *substream)
1853 {
1854 	substream->runtime->hw.channels_max = mout->max_channels;
1855 	return snd_pcm_hw_constraint_step(substream->runtime, 0,
1856 					  SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1857 }
1858 
1859 /*
1860  * set up the i/o for analog out
1861  * when the digital out is available, copy the front out to digital out, too.
1862  */
1863 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1864 				     unsigned int stream_tag,
1865 				     unsigned int format,
1866 				     struct snd_pcm_substream *substream)
1867 {
1868 	hda_nid_t *nids = mout->dac_nids;
1869 	int chs = substream->runtime->channels;
1870 	int i;
1871 
1872 	down(&codec->spdif_mutex);
1873 	if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1874 		if (chs == 2 &&
1875 		    snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1876 		    ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1877 			mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1878 			/* setup digital receiver */
1879 			snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1880 						   stream_tag, 0, format);
1881 		} else {
1882 			mout->dig_out_used = 0;
1883 			snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1884 		}
1885 	}
1886 	up(&codec->spdif_mutex);
1887 
1888 	/* front */
1889 	snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1890 	if (mout->hp_nid)
1891 		/* headphone out will just decode front left/right (stereo) */
1892 		snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1893 	/* surrounds */
1894 	for (i = 1; i < mout->num_dacs; i++) {
1895 		if (chs >= (i + 1) * 2) /* independent out */
1896 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1897 						   format);
1898 		else /* copy front */
1899 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1900 						   format);
1901 	}
1902 	return 0;
1903 }
1904 
1905 /*
1906  * clean up the setting for analog out
1907  */
1908 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1909 {
1910 	hda_nid_t *nids = mout->dac_nids;
1911 	int i;
1912 
1913 	for (i = 0; i < mout->num_dacs; i++)
1914 		snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1915 	if (mout->hp_nid)
1916 		snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1917 	down(&codec->spdif_mutex);
1918 	if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1919 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1920 		mout->dig_out_used = 0;
1921 	}
1922 	up(&codec->spdif_mutex);
1923 	return 0;
1924 }
1925 
1926 /*
1927  * Helper for automatic ping configuration
1928  */
1929 
1930 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
1931 {
1932 	for (; *list; list++)
1933 		if (*list == nid)
1934 			return 1;
1935 	return 0;
1936 }
1937 
1938 /* parse all pin widgets and store the useful pin nids to cfg */
1939 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
1940 				 hda_nid_t *ignore_nids)
1941 {
1942 	hda_nid_t nid, nid_start;
1943 	int i, j, nodes;
1944 	short seq, sequences[4], assoc_line_out;
1945 
1946 	memset(cfg, 0, sizeof(*cfg));
1947 
1948 	memset(sequences, 0, sizeof(sequences));
1949 	assoc_line_out = 0;
1950 
1951 	nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1952 	for (nid = nid_start; nid < nodes + nid_start; nid++) {
1953 		unsigned int wid_caps = get_wcaps(codec, nid);
1954 		unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1955 		unsigned int def_conf;
1956 		short assoc, loc;
1957 
1958 		/* read all default configuration for pin complex */
1959 		if (wid_type != AC_WID_PIN)
1960 			continue;
1961 		/* ignore the given nids (e.g. pc-beep returns error) */
1962 		if (ignore_nids && is_in_nid_list(nid, ignore_nids))
1963 			continue;
1964 
1965 		def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1966 		if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1967 			continue;
1968 		loc = get_defcfg_location(def_conf);
1969 		switch (get_defcfg_device(def_conf)) {
1970 		case AC_JACK_LINE_OUT:
1971 			seq = get_defcfg_sequence(def_conf);
1972 			assoc = get_defcfg_association(def_conf);
1973 			if (! assoc)
1974 				continue;
1975 			if (! assoc_line_out)
1976 				assoc_line_out = assoc;
1977 			else if (assoc_line_out != assoc)
1978 				continue;
1979 			if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1980 				continue;
1981 			cfg->line_out_pins[cfg->line_outs] = nid;
1982 			sequences[cfg->line_outs] = seq;
1983 			cfg->line_outs++;
1984 			break;
1985 		case AC_JACK_SPEAKER:
1986 			cfg->speaker_pin = nid;
1987 			break;
1988 		case AC_JACK_HP_OUT:
1989 			cfg->hp_pin = nid;
1990 			break;
1991 		case AC_JACK_MIC_IN:
1992 			if (loc == AC_JACK_LOC_FRONT)
1993 				cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1994 			else
1995 				cfg->input_pins[AUTO_PIN_MIC] = nid;
1996 			break;
1997 		case AC_JACK_LINE_IN:
1998 			if (loc == AC_JACK_LOC_FRONT)
1999 				cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2000 			else
2001 				cfg->input_pins[AUTO_PIN_LINE] = nid;
2002 			break;
2003 		case AC_JACK_CD:
2004 			cfg->input_pins[AUTO_PIN_CD] = nid;
2005 			break;
2006 		case AC_JACK_AUX:
2007 			cfg->input_pins[AUTO_PIN_AUX] = nid;
2008 			break;
2009 		case AC_JACK_SPDIF_OUT:
2010 			cfg->dig_out_pin = nid;
2011 			break;
2012 		case AC_JACK_SPDIF_IN:
2013 			cfg->dig_in_pin = nid;
2014 			break;
2015 		}
2016 	}
2017 
2018 	/* sort by sequence */
2019 	for (i = 0; i < cfg->line_outs; i++)
2020 		for (j = i + 1; j < cfg->line_outs; j++)
2021 			if (sequences[i] > sequences[j]) {
2022 				seq = sequences[i];
2023 				sequences[i] = sequences[j];
2024 				sequences[j] = seq;
2025 				nid = cfg->line_out_pins[i];
2026 				cfg->line_out_pins[i] = cfg->line_out_pins[j];
2027 				cfg->line_out_pins[j] = nid;
2028 			}
2029 
2030 	/* Reorder the surround channels
2031 	 * ALSA sequence is front/surr/clfe/side
2032 	 * HDA sequence is:
2033 	 *    4-ch: front/surr  =>  OK as it is
2034 	 *    6-ch: front/clfe/surr
2035 	 *    8-ch: front/clfe/side/surr
2036 	 */
2037 	switch (cfg->line_outs) {
2038 	case 3:
2039 		nid = cfg->line_out_pins[1];
2040 		cfg->line_out_pins[1] = cfg->line_out_pins[2];
2041 		cfg->line_out_pins[2] = nid;
2042 		break;
2043 	case 4:
2044 		nid = cfg->line_out_pins[1];
2045 		cfg->line_out_pins[1] = cfg->line_out_pins[3];
2046 		cfg->line_out_pins[3] = cfg->line_out_pins[2];
2047 		cfg->line_out_pins[2] = nid;
2048 		break;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 /* labels for input pins */
2055 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2056 	"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2057 };
2058 
2059 
2060 #ifdef CONFIG_PM
2061 /*
2062  * power management
2063  */
2064 
2065 /**
2066  * snd_hda_suspend - suspend the codecs
2067  * @bus: the HDA bus
2068  * @state: suspsend state
2069  *
2070  * Returns 0 if successful.
2071  */
2072 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2073 {
2074 	struct list_head *p;
2075 
2076 	/* FIXME: should handle power widget capabilities */
2077 	list_for_each(p, &bus->codec_list) {
2078 		struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2079 		if (codec->patch_ops.suspend)
2080 			codec->patch_ops.suspend(codec, state);
2081 		hda_set_power_state(codec,
2082 				    codec->afg ? codec->afg : codec->mfg,
2083 				    AC_PWRST_D3);
2084 	}
2085 	return 0;
2086 }
2087 
2088 /**
2089  * snd_hda_resume - resume the codecs
2090  * @bus: the HDA bus
2091  * @state: resume state
2092  *
2093  * Returns 0 if successful.
2094  */
2095 int snd_hda_resume(struct hda_bus *bus)
2096 {
2097 	struct list_head *p;
2098 
2099 	list_for_each(p, &bus->codec_list) {
2100 		struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2101 		hda_set_power_state(codec,
2102 				    codec->afg ? codec->afg : codec->mfg,
2103 				    AC_PWRST_D0);
2104 		if (codec->patch_ops.resume)
2105 			codec->patch_ops.resume(codec);
2106 	}
2107 	return 0;
2108 }
2109 
2110 /**
2111  * snd_hda_resume_ctls - resume controls in the new control list
2112  * @codec: the HDA codec
2113  * @knew: the array of struct snd_kcontrol_new
2114  *
2115  * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2116  * originally for snd_hda_add_new_ctls().
2117  * The array must be terminated with an empty entry as terminator.
2118  */
2119 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2120 {
2121 	struct snd_ctl_elem_value *val;
2122 
2123 	val = kmalloc(sizeof(*val), GFP_KERNEL);
2124 	if (! val)
2125 		return -ENOMEM;
2126 	codec->in_resume = 1;
2127 	for (; knew->name; knew++) {
2128 		int i, count;
2129 		count = knew->count ? knew->count : 1;
2130 		for (i = 0; i < count; i++) {
2131 			memset(val, 0, sizeof(*val));
2132 			val->id.iface = knew->iface;
2133 			val->id.device = knew->device;
2134 			val->id.subdevice = knew->subdevice;
2135 			strcpy(val->id.name, knew->name);
2136 			val->id.index = knew->index ? knew->index : i;
2137 			/* Assume that get callback reads only from cache,
2138 			 * not accessing to the real hardware
2139 			 */
2140 			if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2141 				continue;
2142 			snd_ctl_elem_write(codec->bus->card, NULL, val);
2143 		}
2144 	}
2145 	codec->in_resume = 0;
2146 	kfree(val);
2147 	return 0;
2148 }
2149 
2150 /**
2151  * snd_hda_resume_spdif_out - resume the digital out
2152  * @codec: the HDA codec
2153  */
2154 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2155 {
2156 	return snd_hda_resume_ctls(codec, dig_mixes);
2157 }
2158 
2159 /**
2160  * snd_hda_resume_spdif_in - resume the digital in
2161  * @codec: the HDA codec
2162  */
2163 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2164 {
2165 	return snd_hda_resume_ctls(codec, dig_in_ctls);
2166 }
2167 #endif
2168 
2169 /*
2170  * symbols exported for controller modules
2171  */
2172 EXPORT_SYMBOL(snd_hda_codec_read);
2173 EXPORT_SYMBOL(snd_hda_codec_write);
2174 EXPORT_SYMBOL(snd_hda_sequence_write);
2175 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2176 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2177 EXPORT_SYMBOL(snd_hda_bus_new);
2178 EXPORT_SYMBOL(snd_hda_codec_new);
2179 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2180 EXPORT_SYMBOL(snd_hda_calc_stream_format);
2181 EXPORT_SYMBOL(snd_hda_build_pcms);
2182 EXPORT_SYMBOL(snd_hda_build_controls);
2183 #ifdef CONFIG_PM
2184 EXPORT_SYMBOL(snd_hda_suspend);
2185 EXPORT_SYMBOL(snd_hda_resume);
2186 #endif
2187 
2188 /*
2189  *  INIT part
2190  */
2191 
2192 static int __init alsa_hda_init(void)
2193 {
2194 	return 0;
2195 }
2196 
2197 static void __exit alsa_hda_exit(void)
2198 {
2199 }
2200 
2201 module_init(alsa_hda_init)
2202 module_exit(alsa_hda_exit)
2203