xref: /openbmc/linux/sound/pci/hda/hda_codec.c (revision 64c70b1c)
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/tlv.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
34 
35 
36 /*
37  * vendor / preset table
38  */
39 
40 struct hda_vendor_id {
41 	unsigned int id;
42 	const char *name;
43 };
44 
45 /* codec vendor labels */
46 static struct hda_vendor_id hda_vendor_ids[] = {
47 	{ 0x10ec, "Realtek" },
48 	{ 0x1057, "Motorola" },
49 	{ 0x1106, "VIA" },
50 	{ 0x11d4, "Analog Devices" },
51 	{ 0x13f6, "C-Media" },
52 	{ 0x14f1, "Conexant" },
53 	{ 0x434d, "C-Media" },
54 	{ 0x8384, "SigmaTel" },
55 	{} /* terminator */
56 };
57 
58 /* codec presets */
59 #include "hda_patch.h"
60 
61 
62 /**
63  * snd_hda_codec_read - send a command and get the response
64  * @codec: the HDA codec
65  * @nid: NID to send the command
66  * @direct: direct flag
67  * @verb: the verb to send
68  * @parm: the parameter for the verb
69  *
70  * Send a single command and read the corresponding response.
71  *
72  * Returns the obtained response value, or -1 for an error.
73  */
74 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
75 				int direct,
76 				unsigned int verb, unsigned int parm)
77 {
78 	unsigned int res;
79 	mutex_lock(&codec->bus->cmd_mutex);
80 	if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
81 		res = codec->bus->ops.get_response(codec);
82 	else
83 		res = (unsigned int)-1;
84 	mutex_unlock(&codec->bus->cmd_mutex);
85 	return res;
86 }
87 
88 /**
89  * snd_hda_codec_write - send a single command without waiting for response
90  * @codec: the HDA codec
91  * @nid: NID to send the command
92  * @direct: direct flag
93  * @verb: the verb to send
94  * @parm: the parameter for the verb
95  *
96  * Send a single command without waiting for response.
97  *
98  * Returns 0 if successful, or a negative error code.
99  */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 			 unsigned int verb, unsigned int parm)
102 {
103 	int err;
104 	mutex_lock(&codec->bus->cmd_mutex);
105 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 	mutex_unlock(&codec->bus->cmd_mutex);
107 	return err;
108 }
109 
110 /**
111  * snd_hda_sequence_write - sequence writes
112  * @codec: the HDA codec
113  * @seq: VERB array to send
114  *
115  * Send the commands sequentially from the given array.
116  * The array must be terminated with NID=0.
117  */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 	for (; seq->nid; seq++)
121 		snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123 
124 /**
125  * snd_hda_get_sub_nodes - get the range of sub nodes
126  * @codec: the HDA codec
127  * @nid: NID to parse
128  * @start_id: the pointer to store the start NID
129  *
130  * Parse the NID and store the start NID of its sub-nodes.
131  * Returns the number of sub-nodes.
132  */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
134 			  hda_nid_t *start_id)
135 {
136 	unsigned int parm;
137 
138 	parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
139 	*start_id = (parm >> 16) & 0x7fff;
140 	return (int)(parm & 0x7fff);
141 }
142 
143 /**
144  * snd_hda_get_connections - get connection list
145  * @codec: the HDA codec
146  * @nid: NID to parse
147  * @conn_list: connection list array
148  * @max_conns: max. number of connections to store
149  *
150  * Parses the connection list of the given widget and stores the list
151  * of NIDs.
152  *
153  * Returns the number of connections, or a negative error code.
154  */
155 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
156 			    hda_nid_t *conn_list, int max_conns)
157 {
158 	unsigned int parm;
159 	int i, conn_len, conns;
160 	unsigned int shift, num_elems, mask;
161 	hda_nid_t prev_nid;
162 
163 	snd_assert(conn_list && max_conns > 0, return -EINVAL);
164 
165 	parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
166 	if (parm & AC_CLIST_LONG) {
167 		/* long form */
168 		shift = 16;
169 		num_elems = 2;
170 	} else {
171 		/* short form */
172 		shift = 8;
173 		num_elems = 4;
174 	}
175 	conn_len = parm & AC_CLIST_LENGTH;
176 	mask = (1 << (shift-1)) - 1;
177 
178 	if (!conn_len)
179 		return 0; /* no connection */
180 
181 	if (conn_len == 1) {
182 		/* single connection */
183 		parm = snd_hda_codec_read(codec, nid, 0,
184 					  AC_VERB_GET_CONNECT_LIST, 0);
185 		conn_list[0] = parm & mask;
186 		return 1;
187 	}
188 
189 	/* multi connection */
190 	conns = 0;
191 	prev_nid = 0;
192 	for (i = 0; i < conn_len; i++) {
193 		int range_val;
194 		hda_nid_t val, n;
195 
196 		if (i % num_elems == 0)
197 			parm = snd_hda_codec_read(codec, nid, 0,
198 						  AC_VERB_GET_CONNECT_LIST, i);
199 		range_val = !!(parm & (1 << (shift-1))); /* ranges */
200 		val = parm & mask;
201 		parm >>= shift;
202 		if (range_val) {
203 			/* ranges between the previous and this one */
204 			if (!prev_nid || prev_nid >= val) {
205 				snd_printk(KERN_WARNING "hda_codec: "
206 					   "invalid dep_range_val %x:%x\n",
207 					   prev_nid, val);
208 				continue;
209 			}
210 			for (n = prev_nid + 1; n <= val; n++) {
211 				if (conns >= max_conns) {
212 					snd_printk(KERN_ERR
213 						   "Too many connections\n");
214 					return -EINVAL;
215 				}
216 				conn_list[conns++] = n;
217 			}
218 		} else {
219 			if (conns >= max_conns) {
220 				snd_printk(KERN_ERR "Too many connections\n");
221 				return -EINVAL;
222 			}
223 			conn_list[conns++] = val;
224 		}
225 		prev_nid = val;
226 	}
227 	return conns;
228 }
229 
230 
231 /**
232  * snd_hda_queue_unsol_event - add an unsolicited event to queue
233  * @bus: the BUS
234  * @res: unsolicited event (lower 32bit of RIRB entry)
235  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
236  *
237  * Adds the given event to the queue.  The events are processed in
238  * the workqueue asynchronously.  Call this function in the interrupt
239  * hanlder when RIRB receives an unsolicited event.
240  *
241  * Returns 0 if successful, or a negative error code.
242  */
243 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
244 {
245 	struct hda_bus_unsolicited *unsol;
246 	unsigned int wp;
247 
248 	unsol = bus->unsol;
249 	if (!unsol)
250 		return 0;
251 
252 	wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
253 	unsol->wp = wp;
254 
255 	wp <<= 1;
256 	unsol->queue[wp] = res;
257 	unsol->queue[wp + 1] = res_ex;
258 
259 	schedule_work(&unsol->work);
260 
261 	return 0;
262 }
263 
264 /*
265  * process queueud unsolicited events
266  */
267 static void process_unsol_events(struct work_struct *work)
268 {
269 	struct hda_bus_unsolicited *unsol =
270 		container_of(work, struct hda_bus_unsolicited, work);
271 	struct hda_bus *bus = unsol->bus;
272 	struct hda_codec *codec;
273 	unsigned int rp, caddr, res;
274 
275 	while (unsol->rp != unsol->wp) {
276 		rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
277 		unsol->rp = rp;
278 		rp <<= 1;
279 		res = unsol->queue[rp];
280 		caddr = unsol->queue[rp + 1];
281 		if (!(caddr & (1 << 4))) /* no unsolicited event? */
282 			continue;
283 		codec = bus->caddr_tbl[caddr & 0x0f];
284 		if (codec && codec->patch_ops.unsol_event)
285 			codec->patch_ops.unsol_event(codec, res);
286 	}
287 }
288 
289 /*
290  * initialize unsolicited queue
291  */
292 static int __devinit init_unsol_queue(struct hda_bus *bus)
293 {
294 	struct hda_bus_unsolicited *unsol;
295 
296 	if (bus->unsol) /* already initialized */
297 		return 0;
298 
299 	unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
300 	if (!unsol) {
301 		snd_printk(KERN_ERR "hda_codec: "
302 			   "can't allocate unsolicited queue\n");
303 		return -ENOMEM;
304 	}
305 	INIT_WORK(&unsol->work, process_unsol_events);
306 	unsol->bus = bus;
307 	bus->unsol = unsol;
308 	return 0;
309 }
310 
311 /*
312  * destructor
313  */
314 static void snd_hda_codec_free(struct hda_codec *codec);
315 
316 static int snd_hda_bus_free(struct hda_bus *bus)
317 {
318 	struct hda_codec *codec, *n;
319 
320 	if (!bus)
321 		return 0;
322 	if (bus->unsol) {
323 		flush_scheduled_work();
324 		kfree(bus->unsol);
325 	}
326 	list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
327 		snd_hda_codec_free(codec);
328 	}
329 	if (bus->ops.private_free)
330 		bus->ops.private_free(bus);
331 	kfree(bus);
332 	return 0;
333 }
334 
335 static int snd_hda_bus_dev_free(struct snd_device *device)
336 {
337 	struct hda_bus *bus = device->device_data;
338 	return snd_hda_bus_free(bus);
339 }
340 
341 /**
342  * snd_hda_bus_new - create a HDA bus
343  * @card: the card entry
344  * @temp: the template for hda_bus information
345  * @busp: the pointer to store the created bus instance
346  *
347  * Returns 0 if successful, or a negative error code.
348  */
349 int __devinit snd_hda_bus_new(struct snd_card *card,
350 			      const struct hda_bus_template *temp,
351 			      struct hda_bus **busp)
352 {
353 	struct hda_bus *bus;
354 	int err;
355 	static struct snd_device_ops dev_ops = {
356 		.dev_free = snd_hda_bus_dev_free,
357 	};
358 
359 	snd_assert(temp, return -EINVAL);
360 	snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
361 
362 	if (busp)
363 		*busp = NULL;
364 
365 	bus = kzalloc(sizeof(*bus), GFP_KERNEL);
366 	if (bus == NULL) {
367 		snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
368 		return -ENOMEM;
369 	}
370 
371 	bus->card = card;
372 	bus->private_data = temp->private_data;
373 	bus->pci = temp->pci;
374 	bus->modelname = temp->modelname;
375 	bus->ops = temp->ops;
376 
377 	mutex_init(&bus->cmd_mutex);
378 	INIT_LIST_HEAD(&bus->codec_list);
379 
380 	err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
381 	if (err < 0) {
382 		snd_hda_bus_free(bus);
383 		return err;
384 	}
385 	if (busp)
386 		*busp = bus;
387 	return 0;
388 }
389 
390 /*
391  * find a matching codec preset
392  */
393 static const struct hda_codec_preset __devinit *
394 find_codec_preset(struct hda_codec *codec)
395 {
396 	const struct hda_codec_preset **tbl, *preset;
397 
398 	if (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
399 		return NULL; /* use the generic parser */
400 
401 	for (tbl = hda_preset_tables; *tbl; tbl++) {
402 		for (preset = *tbl; preset->id; preset++) {
403 			u32 mask = preset->mask;
404 			if (!mask)
405 				mask = ~0;
406 			if (preset->id == (codec->vendor_id & mask) &&
407 			    (!preset->rev ||
408 			     preset->rev == codec->revision_id))
409 				return preset;
410 		}
411 	}
412 	return NULL;
413 }
414 
415 /*
416  * snd_hda_get_codec_name - store the codec name
417  */
418 void snd_hda_get_codec_name(struct hda_codec *codec,
419 			    char *name, int namelen)
420 {
421 	const struct hda_vendor_id *c;
422 	const char *vendor = NULL;
423 	u16 vendor_id = codec->vendor_id >> 16;
424 	char tmp[16];
425 
426 	for (c = hda_vendor_ids; c->id; c++) {
427 		if (c->id == vendor_id) {
428 			vendor = c->name;
429 			break;
430 		}
431 	}
432 	if (!vendor) {
433 		sprintf(tmp, "Generic %04x", vendor_id);
434 		vendor = tmp;
435 	}
436 	if (codec->preset && codec->preset->name)
437 		snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
438 	else
439 		snprintf(name, namelen, "%s ID %x", vendor,
440 			 codec->vendor_id & 0xffff);
441 }
442 
443 /*
444  * look for an AFG and MFG nodes
445  */
446 static void __devinit setup_fg_nodes(struct hda_codec *codec)
447 {
448 	int i, total_nodes;
449 	hda_nid_t nid;
450 
451 	total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
452 	for (i = 0; i < total_nodes; i++, nid++) {
453 		unsigned int func;
454 		func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
455 		switch (func & 0xff) {
456 		case AC_GRP_AUDIO_FUNCTION:
457 			codec->afg = nid;
458 			break;
459 		case AC_GRP_MODEM_FUNCTION:
460 			codec->mfg = nid;
461 			break;
462 		default:
463 			break;
464 		}
465 	}
466 }
467 
468 /*
469  * read widget caps for each widget and store in cache
470  */
471 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
472 {
473 	int i;
474 	hda_nid_t nid;
475 
476 	codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
477 						 &codec->start_nid);
478 	codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
479 	if (!codec->wcaps)
480 		return -ENOMEM;
481 	nid = codec->start_nid;
482 	for (i = 0; i < codec->num_nodes; i++, nid++)
483 		codec->wcaps[i] = snd_hda_param_read(codec, nid,
484 						     AC_PAR_AUDIO_WIDGET_CAP);
485 	return 0;
486 }
487 
488 
489 /*
490  * codec destructor
491  */
492 static void snd_hda_codec_free(struct hda_codec *codec)
493 {
494 	if (!codec)
495 		return;
496 	list_del(&codec->list);
497 	codec->bus->caddr_tbl[codec->addr] = NULL;
498 	if (codec->patch_ops.free)
499 		codec->patch_ops.free(codec);
500 	kfree(codec->amp_info);
501 	kfree(codec->wcaps);
502 	kfree(codec);
503 }
504 
505 static void init_amp_hash(struct hda_codec *codec);
506 
507 /**
508  * snd_hda_codec_new - create a HDA codec
509  * @bus: the bus to assign
510  * @codec_addr: the codec address
511  * @codecp: the pointer to store the generated codec
512  *
513  * Returns 0 if successful, or a negative error code.
514  */
515 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
516 				struct hda_codec **codecp)
517 {
518 	struct hda_codec *codec;
519 	char component[13];
520 	int err;
521 
522 	snd_assert(bus, return -EINVAL);
523 	snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
524 
525 	if (bus->caddr_tbl[codec_addr]) {
526 		snd_printk(KERN_ERR "hda_codec: "
527 			   "address 0x%x is already occupied\n", codec_addr);
528 		return -EBUSY;
529 	}
530 
531 	codec = kzalloc(sizeof(*codec), GFP_KERNEL);
532 	if (codec == NULL) {
533 		snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
534 		return -ENOMEM;
535 	}
536 
537 	codec->bus = bus;
538 	codec->addr = codec_addr;
539 	mutex_init(&codec->spdif_mutex);
540 	init_amp_hash(codec);
541 
542 	list_add_tail(&codec->list, &bus->codec_list);
543 	bus->caddr_tbl[codec_addr] = codec;
544 
545 	codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
546 					      AC_PAR_VENDOR_ID);
547 	if (codec->vendor_id == -1)
548 		/* read again, hopefully the access method was corrected
549 		 * in the last read...
550 		 */
551 		codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
552 						      AC_PAR_VENDOR_ID);
553 	codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
554 						 AC_PAR_SUBSYSTEM_ID);
555 	codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
556 						AC_PAR_REV_ID);
557 
558 	setup_fg_nodes(codec);
559 	if (!codec->afg && !codec->mfg) {
560 		snd_printdd("hda_codec: no AFG or MFG node found\n");
561 		snd_hda_codec_free(codec);
562 		return -ENODEV;
563 	}
564 
565 	if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
566 		snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
567 		snd_hda_codec_free(codec);
568 		return -ENOMEM;
569 	}
570 
571 	if (!codec->subsystem_id) {
572 		hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
573 		codec->subsystem_id =
574 			snd_hda_codec_read(codec, nid, 0,
575 					   AC_VERB_GET_SUBSYSTEM_ID, 0);
576 	}
577 
578 	codec->preset = find_codec_preset(codec);
579 	/* audio codec should override the mixer name */
580 	if (codec->afg || !*bus->card->mixername)
581 		snd_hda_get_codec_name(codec, bus->card->mixername,
582 				       sizeof(bus->card->mixername));
583 
584 	if (codec->preset && codec->preset->patch)
585 		err = codec->preset->patch(codec);
586 	else
587 		err = snd_hda_parse_generic_codec(codec);
588 	if (err < 0) {
589 		snd_hda_codec_free(codec);
590 		return err;
591 	}
592 
593 	if (codec->patch_ops.unsol_event)
594 		init_unsol_queue(bus);
595 
596 	snd_hda_codec_proc_new(codec);
597 
598 	sprintf(component, "HDA:%08x", codec->vendor_id);
599 	snd_component_add(codec->bus->card, component);
600 
601 	if (codecp)
602 		*codecp = codec;
603 	return 0;
604 }
605 
606 /**
607  * snd_hda_codec_setup_stream - set up the codec for streaming
608  * @codec: the CODEC to set up
609  * @nid: the NID to set up
610  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
611  * @channel_id: channel id to pass, zero based.
612  * @format: stream format.
613  */
614 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
615 				u32 stream_tag,
616 				int channel_id, int format)
617 {
618 	if (!nid)
619 		return;
620 
621 	snd_printdd("hda_codec_setup_stream: "
622 		    "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
623 		    nid, stream_tag, channel_id, format);
624 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
625 			    (stream_tag << 4) | channel_id);
626 	msleep(1);
627 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
628 }
629 
630 /*
631  * amp access functions
632  */
633 
634 /* FIXME: more better hash key? */
635 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
636 #define INFO_AMP_CAPS	(1<<0)
637 #define INFO_AMP_VOL(ch)	(1 << (1 + (ch)))
638 
639 /* initialize the hash table */
640 static void __devinit init_amp_hash(struct hda_codec *codec)
641 {
642 	memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
643 	codec->num_amp_entries = 0;
644 	codec->amp_info_size = 0;
645 	codec->amp_info = NULL;
646 }
647 
648 /* query the hash.  allocate an entry if not found. */
649 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
650 {
651 	u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
652 	u16 cur = codec->amp_hash[idx];
653 	struct hda_amp_info *info;
654 
655 	while (cur != 0xffff) {
656 		info = &codec->amp_info[cur];
657 		if (info->key == key)
658 			return info;
659 		cur = info->next;
660 	}
661 
662 	/* add a new hash entry */
663 	if (codec->num_amp_entries >= codec->amp_info_size) {
664 		/* reallocate the array */
665 		int new_size = codec->amp_info_size + 64;
666 		struct hda_amp_info *new_info;
667 		new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
668 				   GFP_KERNEL);
669 		if (!new_info) {
670 			snd_printk(KERN_ERR "hda_codec: "
671 				   "can't malloc amp_info\n");
672 			return NULL;
673 		}
674 		if (codec->amp_info) {
675 			memcpy(new_info, codec->amp_info,
676 			       codec->amp_info_size *
677 			       sizeof(struct hda_amp_info));
678 			kfree(codec->amp_info);
679 		}
680 		codec->amp_info_size = new_size;
681 		codec->amp_info = new_info;
682 	}
683 	cur = codec->num_amp_entries++;
684 	info = &codec->amp_info[cur];
685 	info->key = key;
686 	info->status = 0; /* not initialized yet */
687 	info->next = codec->amp_hash[idx];
688 	codec->amp_hash[idx] = cur;
689 
690 	return info;
691 }
692 
693 /*
694  * query AMP capabilities for the given widget and direction
695  */
696 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
697 {
698 	struct hda_amp_info *info;
699 
700 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
701 	if (!info)
702 		return 0;
703 	if (!(info->status & INFO_AMP_CAPS)) {
704 		if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
705 			nid = codec->afg;
706 		info->amp_caps = snd_hda_param_read(codec, nid,
707 						    direction == HDA_OUTPUT ?
708 						    AC_PAR_AMP_OUT_CAP :
709 						    AC_PAR_AMP_IN_CAP);
710 		if (info->amp_caps)
711 			info->status |= INFO_AMP_CAPS;
712 	}
713 	return info->amp_caps;
714 }
715 
716 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
717 			      unsigned int caps)
718 {
719 	struct hda_amp_info *info;
720 
721 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
722 	if (!info)
723 		return -EINVAL;
724 	info->amp_caps = caps;
725 	info->status |= INFO_AMP_CAPS;
726 	return 0;
727 }
728 
729 /*
730  * read the current volume to info
731  * if the cache exists, read the cache value.
732  */
733 static unsigned int get_vol_mute(struct hda_codec *codec,
734 				 struct hda_amp_info *info, hda_nid_t nid,
735 				 int ch, int direction, int index)
736 {
737 	u32 val, parm;
738 
739 	if (info->status & INFO_AMP_VOL(ch))
740 		return info->vol[ch];
741 
742 	parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
743 	parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
744 	parm |= index;
745 	val = snd_hda_codec_read(codec, nid, 0,
746 				 AC_VERB_GET_AMP_GAIN_MUTE, parm);
747 	info->vol[ch] = val & 0xff;
748 	info->status |= INFO_AMP_VOL(ch);
749 	return info->vol[ch];
750 }
751 
752 /*
753  * write the current volume in info to the h/w and update the cache
754  */
755 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
756 			 hda_nid_t nid, int ch, int direction, int index,
757 			 int val)
758 {
759 	u32 parm;
760 
761 	parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
762 	parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
763 	parm |= index << AC_AMP_SET_INDEX_SHIFT;
764 	parm |= val;
765 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
766 	info->vol[ch] = val;
767 }
768 
769 /*
770  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
771  */
772 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
773 			   int direction, int index)
774 {
775 	struct hda_amp_info *info;
776 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
777 	if (!info)
778 		return 0;
779 	return get_vol_mute(codec, info, nid, ch, direction, index);
780 }
781 
782 /*
783  * update the AMP value, mask = bit mask to set, val = the value
784  */
785 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
786 			     int direction, int idx, int mask, int val)
787 {
788 	struct hda_amp_info *info;
789 
790 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
791 	if (!info)
792 		return 0;
793 	val &= mask;
794 	val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
795 	if (info->vol[ch] == val && !codec->in_resume)
796 		return 0;
797 	put_vol_mute(codec, info, nid, ch, direction, idx, val);
798 	return 1;
799 }
800 
801 
802 /*
803  * AMP control callbacks
804  */
805 /* retrieve parameters from private_value */
806 #define get_amp_nid(kc)		((kc)->private_value & 0xffff)
807 #define get_amp_channels(kc)	(((kc)->private_value >> 16) & 0x3)
808 #define get_amp_direction(kc)	(((kc)->private_value >> 18) & 0x1)
809 #define get_amp_index(kc)	(((kc)->private_value >> 19) & 0xf)
810 
811 /* volume */
812 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
813 				  struct snd_ctl_elem_info *uinfo)
814 {
815 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
816 	u16 nid = get_amp_nid(kcontrol);
817 	u8 chs = get_amp_channels(kcontrol);
818 	int dir = get_amp_direction(kcontrol);
819 	u32 caps;
820 
821 	caps = query_amp_caps(codec, nid, dir);
822 	/* num steps */
823 	caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
824 	if (!caps) {
825 		printk(KERN_WARNING "hda_codec: "
826 		       "num_steps = 0 for NID=0x%x\n", nid);
827 		return -EINVAL;
828 	}
829 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
830 	uinfo->count = chs == 3 ? 2 : 1;
831 	uinfo->value.integer.min = 0;
832 	uinfo->value.integer.max = caps;
833 	return 0;
834 }
835 
836 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
837 				 struct snd_ctl_elem_value *ucontrol)
838 {
839 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
840 	hda_nid_t nid = get_amp_nid(kcontrol);
841 	int chs = get_amp_channels(kcontrol);
842 	int dir = get_amp_direction(kcontrol);
843 	int idx = get_amp_index(kcontrol);
844 	long *valp = ucontrol->value.integer.value;
845 
846 	if (chs & 1)
847 		*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
848 	if (chs & 2)
849 		*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
850 	return 0;
851 }
852 
853 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
854 				 struct snd_ctl_elem_value *ucontrol)
855 {
856 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
857 	hda_nid_t nid = get_amp_nid(kcontrol);
858 	int chs = get_amp_channels(kcontrol);
859 	int dir = get_amp_direction(kcontrol);
860 	int idx = get_amp_index(kcontrol);
861 	long *valp = ucontrol->value.integer.value;
862 	int change = 0;
863 
864 	if (chs & 1) {
865 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
866 						  0x7f, *valp);
867 		valp++;
868 	}
869 	if (chs & 2)
870 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
871 						   0x7f, *valp);
872 	return change;
873 }
874 
875 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
876 			  unsigned int size, unsigned int __user *_tlv)
877 {
878 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
879 	hda_nid_t nid = get_amp_nid(kcontrol);
880 	int dir = get_amp_direction(kcontrol);
881 	u32 caps, val1, val2;
882 
883 	if (size < 4 * sizeof(unsigned int))
884 		return -ENOMEM;
885 	caps = query_amp_caps(codec, nid, dir);
886 	val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
887 	val2 = (val2 + 1) * 25;
888 	val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
889 	val1 = ((int)val1) * ((int)val2);
890 	if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
891 		return -EFAULT;
892 	if (put_user(2 * sizeof(unsigned int), _tlv + 1))
893 		return -EFAULT;
894 	if (put_user(val1, _tlv + 2))
895 		return -EFAULT;
896 	if (put_user(val2, _tlv + 3))
897 		return -EFAULT;
898 	return 0;
899 }
900 
901 /* switch */
902 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
903 				  struct snd_ctl_elem_info *uinfo)
904 {
905 	int chs = get_amp_channels(kcontrol);
906 
907 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
908 	uinfo->count = chs == 3 ? 2 : 1;
909 	uinfo->value.integer.min = 0;
910 	uinfo->value.integer.max = 1;
911 	return 0;
912 }
913 
914 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
915 				 struct snd_ctl_elem_value *ucontrol)
916 {
917 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
918 	hda_nid_t nid = get_amp_nid(kcontrol);
919 	int chs = get_amp_channels(kcontrol);
920 	int dir = get_amp_direction(kcontrol);
921 	int idx = get_amp_index(kcontrol);
922 	long *valp = ucontrol->value.integer.value;
923 
924 	if (chs & 1)
925 		*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
926 			   0x80) ? 0 : 1;
927 	if (chs & 2)
928 		*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
929 			 0x80) ? 0 : 1;
930 	return 0;
931 }
932 
933 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
934 				 struct snd_ctl_elem_value *ucontrol)
935 {
936 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
937 	hda_nid_t nid = get_amp_nid(kcontrol);
938 	int chs = get_amp_channels(kcontrol);
939 	int dir = get_amp_direction(kcontrol);
940 	int idx = get_amp_index(kcontrol);
941 	long *valp = ucontrol->value.integer.value;
942 	int change = 0;
943 
944 	if (chs & 1) {
945 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
946 						  0x80, *valp ? 0 : 0x80);
947 		valp++;
948 	}
949 	if (chs & 2)
950 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
951 						   0x80, *valp ? 0 : 0x80);
952 
953 	return change;
954 }
955 
956 /*
957  * bound volume controls
958  *
959  * bind multiple volumes (# indices, from 0)
960  */
961 
962 #define AMP_VAL_IDX_SHIFT	19
963 #define AMP_VAL_IDX_MASK	(0x0f<<19)
964 
965 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
966 				  struct snd_ctl_elem_value *ucontrol)
967 {
968 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
969 	unsigned long pval;
970 	int err;
971 
972 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
973 	pval = kcontrol->private_value;
974 	kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
975 	err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
976 	kcontrol->private_value = pval;
977 	mutex_unlock(&codec->spdif_mutex);
978 	return err;
979 }
980 
981 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
982 				  struct snd_ctl_elem_value *ucontrol)
983 {
984 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
985 	unsigned long pval;
986 	int i, indices, err = 0, change = 0;
987 
988 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
989 	pval = kcontrol->private_value;
990 	indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
991 	for (i = 0; i < indices; i++) {
992 		kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
993 			(i << AMP_VAL_IDX_SHIFT);
994 		err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
995 		if (err < 0)
996 			break;
997 		change |= err;
998 	}
999 	kcontrol->private_value = pval;
1000 	mutex_unlock(&codec->spdif_mutex);
1001 	return err < 0 ? err : change;
1002 }
1003 
1004 /*
1005  * SPDIF out controls
1006  */
1007 
1008 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1009 				   struct snd_ctl_elem_info *uinfo)
1010 {
1011 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1012 	uinfo->count = 1;
1013 	return 0;
1014 }
1015 
1016 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1017 				   struct snd_ctl_elem_value *ucontrol)
1018 {
1019 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1020 					   IEC958_AES0_NONAUDIO |
1021 					   IEC958_AES0_CON_EMPHASIS_5015 |
1022 					   IEC958_AES0_CON_NOT_COPYRIGHT;
1023 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1024 					   IEC958_AES1_CON_ORIGINAL;
1025 	return 0;
1026 }
1027 
1028 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1029 				   struct snd_ctl_elem_value *ucontrol)
1030 {
1031 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1032 					   IEC958_AES0_NONAUDIO |
1033 					   IEC958_AES0_PRO_EMPHASIS_5015;
1034 	return 0;
1035 }
1036 
1037 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1038 				     struct snd_ctl_elem_value *ucontrol)
1039 {
1040 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1041 
1042 	ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1043 	ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1044 	ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1045 	ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1046 
1047 	return 0;
1048 }
1049 
1050 /* convert from SPDIF status bits to HDA SPDIF bits
1051  * bit 0 (DigEn) is always set zero (to be filled later)
1052  */
1053 static unsigned short convert_from_spdif_status(unsigned int sbits)
1054 {
1055 	unsigned short val = 0;
1056 
1057 	if (sbits & IEC958_AES0_PROFESSIONAL)
1058 		val |= AC_DIG1_PROFESSIONAL;
1059 	if (sbits & IEC958_AES0_NONAUDIO)
1060 		val |= AC_DIG1_NONAUDIO;
1061 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1062 		if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1063 		    IEC958_AES0_PRO_EMPHASIS_5015)
1064 			val |= AC_DIG1_EMPHASIS;
1065 	} else {
1066 		if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1067 		    IEC958_AES0_CON_EMPHASIS_5015)
1068 			val |= AC_DIG1_EMPHASIS;
1069 		if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1070 			val |= AC_DIG1_COPYRIGHT;
1071 		if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1072 			val |= AC_DIG1_LEVEL;
1073 		val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1074 	}
1075 	return val;
1076 }
1077 
1078 /* convert to SPDIF status bits from HDA SPDIF bits
1079  */
1080 static unsigned int convert_to_spdif_status(unsigned short val)
1081 {
1082 	unsigned int sbits = 0;
1083 
1084 	if (val & AC_DIG1_NONAUDIO)
1085 		sbits |= IEC958_AES0_NONAUDIO;
1086 	if (val & AC_DIG1_PROFESSIONAL)
1087 		sbits |= IEC958_AES0_PROFESSIONAL;
1088 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1089 		if (sbits & AC_DIG1_EMPHASIS)
1090 			sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1091 	} else {
1092 		if (val & AC_DIG1_EMPHASIS)
1093 			sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1094 		if (!(val & AC_DIG1_COPYRIGHT))
1095 			sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1096 		if (val & AC_DIG1_LEVEL)
1097 			sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1098 		sbits |= val & (0x7f << 8);
1099 	}
1100 	return sbits;
1101 }
1102 
1103 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1104 				     struct snd_ctl_elem_value *ucontrol)
1105 {
1106 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1107 	hda_nid_t nid = kcontrol->private_value;
1108 	unsigned short val;
1109 	int change;
1110 
1111 	mutex_lock(&codec->spdif_mutex);
1112 	codec->spdif_status = ucontrol->value.iec958.status[0] |
1113 		((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1114 		((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1115 		((unsigned int)ucontrol->value.iec958.status[3] << 24);
1116 	val = convert_from_spdif_status(codec->spdif_status);
1117 	val |= codec->spdif_ctls & 1;
1118 	change = codec->spdif_ctls != val;
1119 	codec->spdif_ctls = val;
1120 
1121 	if (change || codec->in_resume) {
1122 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1123 				    val & 0xff);
1124 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2,
1125 				    val >> 8);
1126 	}
1127 
1128 	mutex_unlock(&codec->spdif_mutex);
1129 	return change;
1130 }
1131 
1132 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol,
1133 					 struct snd_ctl_elem_info *uinfo)
1134 {
1135 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1136 	uinfo->count = 1;
1137 	uinfo->value.integer.min = 0;
1138 	uinfo->value.integer.max = 1;
1139 	return 0;
1140 }
1141 
1142 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1143 					struct snd_ctl_elem_value *ucontrol)
1144 {
1145 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1146 
1147 	ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1148 	return 0;
1149 }
1150 
1151 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1152 					struct snd_ctl_elem_value *ucontrol)
1153 {
1154 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1155 	hda_nid_t nid = kcontrol->private_value;
1156 	unsigned short val;
1157 	int change;
1158 
1159 	mutex_lock(&codec->spdif_mutex);
1160 	val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1161 	if (ucontrol->value.integer.value[0])
1162 		val |= AC_DIG1_ENABLE;
1163 	change = codec->spdif_ctls != val;
1164 	if (change || codec->in_resume) {
1165 		codec->spdif_ctls = val;
1166 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1167 				    val & 0xff);
1168 		/* unmute amp switch (if any) */
1169 		if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1170 		    (val & AC_DIG1_ENABLE))
1171 			snd_hda_codec_write(codec, nid, 0,
1172 					    AC_VERB_SET_AMP_GAIN_MUTE,
1173 					    AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1174 					    AC_AMP_SET_OUTPUT);
1175 	}
1176 	mutex_unlock(&codec->spdif_mutex);
1177 	return change;
1178 }
1179 
1180 static struct snd_kcontrol_new dig_mixes[] = {
1181 	{
1182 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1183 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1184 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1185 		.info = snd_hda_spdif_mask_info,
1186 		.get = snd_hda_spdif_cmask_get,
1187 	},
1188 	{
1189 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1190 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1191 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1192 		.info = snd_hda_spdif_mask_info,
1193 		.get = snd_hda_spdif_pmask_get,
1194 	},
1195 	{
1196 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1197 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1198 		.info = snd_hda_spdif_mask_info,
1199 		.get = snd_hda_spdif_default_get,
1200 		.put = snd_hda_spdif_default_put,
1201 	},
1202 	{
1203 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1204 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1205 		.info = snd_hda_spdif_out_switch_info,
1206 		.get = snd_hda_spdif_out_switch_get,
1207 		.put = snd_hda_spdif_out_switch_put,
1208 	},
1209 	{ } /* end */
1210 };
1211 
1212 /**
1213  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1214  * @codec: the HDA codec
1215  * @nid: audio out widget NID
1216  *
1217  * Creates controls related with the SPDIF output.
1218  * Called from each patch supporting the SPDIF out.
1219  *
1220  * Returns 0 if successful, or a negative error code.
1221  */
1222 int __devinit snd_hda_create_spdif_out_ctls(struct hda_codec *codec,
1223 					    hda_nid_t nid)
1224 {
1225 	int err;
1226 	struct snd_kcontrol *kctl;
1227 	struct snd_kcontrol_new *dig_mix;
1228 
1229 	for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1230 		kctl = snd_ctl_new1(dig_mix, codec);
1231 		kctl->private_value = nid;
1232 		err = snd_ctl_add(codec->bus->card, kctl);
1233 		if (err < 0)
1234 			return err;
1235 	}
1236 	codec->spdif_ctls =
1237 		snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1238 	codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1239 	return 0;
1240 }
1241 
1242 /*
1243  * SPDIF input
1244  */
1245 
1246 #define snd_hda_spdif_in_switch_info	snd_hda_spdif_out_switch_info
1247 
1248 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1249 				       struct snd_ctl_elem_value *ucontrol)
1250 {
1251 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1252 
1253 	ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1254 	return 0;
1255 }
1256 
1257 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1258 				       struct snd_ctl_elem_value *ucontrol)
1259 {
1260 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1261 	hda_nid_t nid = kcontrol->private_value;
1262 	unsigned int val = !!ucontrol->value.integer.value[0];
1263 	int change;
1264 
1265 	mutex_lock(&codec->spdif_mutex);
1266 	change = codec->spdif_in_enable != val;
1267 	if (change || codec->in_resume) {
1268 		codec->spdif_in_enable = val;
1269 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1270 				    val);
1271 	}
1272 	mutex_unlock(&codec->spdif_mutex);
1273 	return change;
1274 }
1275 
1276 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1277 				       struct snd_ctl_elem_value *ucontrol)
1278 {
1279 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1280 	hda_nid_t nid = kcontrol->private_value;
1281 	unsigned short val;
1282 	unsigned int sbits;
1283 
1284 	val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1285 	sbits = convert_to_spdif_status(val);
1286 	ucontrol->value.iec958.status[0] = sbits;
1287 	ucontrol->value.iec958.status[1] = sbits >> 8;
1288 	ucontrol->value.iec958.status[2] = sbits >> 16;
1289 	ucontrol->value.iec958.status[3] = sbits >> 24;
1290 	return 0;
1291 }
1292 
1293 static struct snd_kcontrol_new dig_in_ctls[] = {
1294 	{
1295 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1296 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1297 		.info = snd_hda_spdif_in_switch_info,
1298 		.get = snd_hda_spdif_in_switch_get,
1299 		.put = snd_hda_spdif_in_switch_put,
1300 	},
1301 	{
1302 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1303 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1304 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1305 		.info = snd_hda_spdif_mask_info,
1306 		.get = snd_hda_spdif_in_status_get,
1307 	},
1308 	{ } /* end */
1309 };
1310 
1311 /**
1312  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1313  * @codec: the HDA codec
1314  * @nid: audio in widget NID
1315  *
1316  * Creates controls related with the SPDIF input.
1317  * Called from each patch supporting the SPDIF in.
1318  *
1319  * Returns 0 if successful, or a negative error code.
1320  */
1321 int __devinit snd_hda_create_spdif_in_ctls(struct hda_codec *codec,
1322 					   hda_nid_t nid)
1323 {
1324 	int err;
1325 	struct snd_kcontrol *kctl;
1326 	struct snd_kcontrol_new *dig_mix;
1327 
1328 	for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1329 		kctl = snd_ctl_new1(dig_mix, codec);
1330 		kctl->private_value = nid;
1331 		err = snd_ctl_add(codec->bus->card, kctl);
1332 		if (err < 0)
1333 			return err;
1334 	}
1335 	codec->spdif_in_enable =
1336 		snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) &
1337 		AC_DIG1_ENABLE;
1338 	return 0;
1339 }
1340 
1341 
1342 /*
1343  * set power state of the codec
1344  */
1345 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1346 				unsigned int power_state)
1347 {
1348 	hda_nid_t nid, nid_start;
1349 	int nodes;
1350 
1351 	snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1352 			    power_state);
1353 
1354 	nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1355 	for (nid = nid_start; nid < nodes + nid_start; nid++) {
1356 		if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1357 			snd_hda_codec_write(codec, nid, 0,
1358 					    AC_VERB_SET_POWER_STATE,
1359 					    power_state);
1360 	}
1361 
1362 	if (power_state == AC_PWRST_D0)
1363 		msleep(10);
1364 }
1365 
1366 
1367 /**
1368  * snd_hda_build_controls - build mixer controls
1369  * @bus: the BUS
1370  *
1371  * Creates mixer controls for each codec included in the bus.
1372  *
1373  * Returns 0 if successful, otherwise a negative error code.
1374  */
1375 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1376 {
1377 	struct hda_codec *codec;
1378 
1379 	/* build controls */
1380 	list_for_each_entry(codec, &bus->codec_list, list) {
1381 		int err;
1382 		if (!codec->patch_ops.build_controls)
1383 			continue;
1384 		err = codec->patch_ops.build_controls(codec);
1385 		if (err < 0)
1386 			return err;
1387 	}
1388 
1389 	/* initialize */
1390 	list_for_each_entry(codec, &bus->codec_list, list) {
1391 		int err;
1392 		hda_set_power_state(codec,
1393 				    codec->afg ? codec->afg : codec->mfg,
1394 				    AC_PWRST_D0);
1395 		if (!codec->patch_ops.init)
1396 			continue;
1397 		err = codec->patch_ops.init(codec);
1398 		if (err < 0)
1399 			return err;
1400 	}
1401 	return 0;
1402 }
1403 
1404 /*
1405  * stream formats
1406  */
1407 struct hda_rate_tbl {
1408 	unsigned int hz;
1409 	unsigned int alsa_bits;
1410 	unsigned int hda_fmt;
1411 };
1412 
1413 static struct hda_rate_tbl rate_bits[] = {
1414 	/* rate in Hz, ALSA rate bitmask, HDA format value */
1415 
1416 	/* autodetected value used in snd_hda_query_supported_pcm */
1417 	{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1418 	{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1419 	{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1420 	{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1421 	{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1422 	{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1423 	{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1424 	{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1425 	{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1426 	{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1427 	{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1428 #define AC_PAR_PCM_RATE_BITS	11
1429 	/* up to bits 10, 384kHZ isn't supported properly */
1430 
1431 	/* not autodetected value */
1432 	{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1433 
1434 	{ 0 } /* terminator */
1435 };
1436 
1437 /**
1438  * snd_hda_calc_stream_format - calculate format bitset
1439  * @rate: the sample rate
1440  * @channels: the number of channels
1441  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1442  * @maxbps: the max. bps
1443  *
1444  * Calculate the format bitset from the given rate, channels and th PCM format.
1445  *
1446  * Return zero if invalid.
1447  */
1448 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1449 					unsigned int channels,
1450 					unsigned int format,
1451 					unsigned int maxbps)
1452 {
1453 	int i;
1454 	unsigned int val = 0;
1455 
1456 	for (i = 0; rate_bits[i].hz; i++)
1457 		if (rate_bits[i].hz == rate) {
1458 			val = rate_bits[i].hda_fmt;
1459 			break;
1460 		}
1461 	if (!rate_bits[i].hz) {
1462 		snd_printdd("invalid rate %d\n", rate);
1463 		return 0;
1464 	}
1465 
1466 	if (channels == 0 || channels > 8) {
1467 		snd_printdd("invalid channels %d\n", channels);
1468 		return 0;
1469 	}
1470 	val |= channels - 1;
1471 
1472 	switch (snd_pcm_format_width(format)) {
1473 	case 8:  val |= 0x00; break;
1474 	case 16: val |= 0x10; break;
1475 	case 20:
1476 	case 24:
1477 	case 32:
1478 		if (maxbps >= 32)
1479 			val |= 0x40;
1480 		else if (maxbps >= 24)
1481 			val |= 0x30;
1482 		else
1483 			val |= 0x20;
1484 		break;
1485 	default:
1486 		snd_printdd("invalid format width %d\n",
1487 			    snd_pcm_format_width(format));
1488 		return 0;
1489 	}
1490 
1491 	return val;
1492 }
1493 
1494 /**
1495  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1496  * @codec: the HDA codec
1497  * @nid: NID to query
1498  * @ratesp: the pointer to store the detected rate bitflags
1499  * @formatsp: the pointer to store the detected formats
1500  * @bpsp: the pointer to store the detected format widths
1501  *
1502  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1503  * or @bsps argument is ignored.
1504  *
1505  * Returns 0 if successful, otherwise a negative error code.
1506  */
1507 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1508 				u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1509 {
1510 	int i;
1511 	unsigned int val, streams;
1512 
1513 	val = 0;
1514 	if (nid != codec->afg &&
1515 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1516 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1517 		if (val == -1)
1518 			return -EIO;
1519 	}
1520 	if (!val)
1521 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1522 
1523 	if (ratesp) {
1524 		u32 rates = 0;
1525 		for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1526 			if (val & (1 << i))
1527 				rates |= rate_bits[i].alsa_bits;
1528 		}
1529 		*ratesp = rates;
1530 	}
1531 
1532 	if (formatsp || bpsp) {
1533 		u64 formats = 0;
1534 		unsigned int bps;
1535 		unsigned int wcaps;
1536 
1537 		wcaps = get_wcaps(codec, nid);
1538 		streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1539 		if (streams == -1)
1540 			return -EIO;
1541 		if (!streams) {
1542 			streams = snd_hda_param_read(codec, codec->afg,
1543 						     AC_PAR_STREAM);
1544 			if (streams == -1)
1545 				return -EIO;
1546 		}
1547 
1548 		bps = 0;
1549 		if (streams & AC_SUPFMT_PCM) {
1550 			if (val & AC_SUPPCM_BITS_8) {
1551 				formats |= SNDRV_PCM_FMTBIT_U8;
1552 				bps = 8;
1553 			}
1554 			if (val & AC_SUPPCM_BITS_16) {
1555 				formats |= SNDRV_PCM_FMTBIT_S16_LE;
1556 				bps = 16;
1557 			}
1558 			if (wcaps & AC_WCAP_DIGITAL) {
1559 				if (val & AC_SUPPCM_BITS_32)
1560 					formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1561 				if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1562 					formats |= SNDRV_PCM_FMTBIT_S32_LE;
1563 				if (val & AC_SUPPCM_BITS_24)
1564 					bps = 24;
1565 				else if (val & AC_SUPPCM_BITS_20)
1566 					bps = 20;
1567 			} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1568 					  AC_SUPPCM_BITS_32)) {
1569 				formats |= SNDRV_PCM_FMTBIT_S32_LE;
1570 				if (val & AC_SUPPCM_BITS_32)
1571 					bps = 32;
1572 				else if (val & AC_SUPPCM_BITS_24)
1573 					bps = 24;
1574 				else if (val & AC_SUPPCM_BITS_20)
1575 					bps = 20;
1576 			}
1577 		}
1578 		else if (streams == AC_SUPFMT_FLOAT32) {
1579 			/* should be exclusive */
1580 			formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1581 			bps = 32;
1582 		} else if (streams == AC_SUPFMT_AC3) {
1583 			/* should be exclusive */
1584 			/* temporary hack: we have still no proper support
1585 			 * for the direct AC3 stream...
1586 			 */
1587 			formats |= SNDRV_PCM_FMTBIT_U8;
1588 			bps = 8;
1589 		}
1590 		if (formatsp)
1591 			*formatsp = formats;
1592 		if (bpsp)
1593 			*bpsp = bps;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /**
1600  * snd_hda_is_supported_format - check whether the given node supports
1601  * the format val
1602  *
1603  * Returns 1 if supported, 0 if not.
1604  */
1605 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1606 				unsigned int format)
1607 {
1608 	int i;
1609 	unsigned int val = 0, rate, stream;
1610 
1611 	if (nid != codec->afg &&
1612 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1613 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1614 		if (val == -1)
1615 			return 0;
1616 	}
1617 	if (!val) {
1618 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1619 		if (val == -1)
1620 			return 0;
1621 	}
1622 
1623 	rate = format & 0xff00;
1624 	for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
1625 		if (rate_bits[i].hda_fmt == rate) {
1626 			if (val & (1 << i))
1627 				break;
1628 			return 0;
1629 		}
1630 	if (i >= AC_PAR_PCM_RATE_BITS)
1631 		return 0;
1632 
1633 	stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1634 	if (stream == -1)
1635 		return 0;
1636 	if (!stream && nid != codec->afg)
1637 		stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1638 	if (!stream || stream == -1)
1639 		return 0;
1640 
1641 	if (stream & AC_SUPFMT_PCM) {
1642 		switch (format & 0xf0) {
1643 		case 0x00:
1644 			if (!(val & AC_SUPPCM_BITS_8))
1645 				return 0;
1646 			break;
1647 		case 0x10:
1648 			if (!(val & AC_SUPPCM_BITS_16))
1649 				return 0;
1650 			break;
1651 		case 0x20:
1652 			if (!(val & AC_SUPPCM_BITS_20))
1653 				return 0;
1654 			break;
1655 		case 0x30:
1656 			if (!(val & AC_SUPPCM_BITS_24))
1657 				return 0;
1658 			break;
1659 		case 0x40:
1660 			if (!(val & AC_SUPPCM_BITS_32))
1661 				return 0;
1662 			break;
1663 		default:
1664 			return 0;
1665 		}
1666 	} else {
1667 		/* FIXME: check for float32 and AC3? */
1668 	}
1669 
1670 	return 1;
1671 }
1672 
1673 /*
1674  * PCM stuff
1675  */
1676 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1677 				      struct hda_codec *codec,
1678 				      struct snd_pcm_substream *substream)
1679 {
1680 	return 0;
1681 }
1682 
1683 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1684 				   struct hda_codec *codec,
1685 				   unsigned int stream_tag,
1686 				   unsigned int format,
1687 				   struct snd_pcm_substream *substream)
1688 {
1689 	snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1690 	return 0;
1691 }
1692 
1693 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1694 				   struct hda_codec *codec,
1695 				   struct snd_pcm_substream *substream)
1696 {
1697 	snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1698 	return 0;
1699 }
1700 
1701 static int __devinit set_pcm_default_values(struct hda_codec *codec,
1702 					    struct hda_pcm_stream *info)
1703 {
1704 	/* query support PCM information from the given NID */
1705 	if (info->nid && (!info->rates || !info->formats)) {
1706 		snd_hda_query_supported_pcm(codec, info->nid,
1707 				info->rates ? NULL : &info->rates,
1708 				info->formats ? NULL : &info->formats,
1709 				info->maxbps ? NULL : &info->maxbps);
1710 	}
1711 	if (info->ops.open == NULL)
1712 		info->ops.open = hda_pcm_default_open_close;
1713 	if (info->ops.close == NULL)
1714 		info->ops.close = hda_pcm_default_open_close;
1715 	if (info->ops.prepare == NULL) {
1716 		snd_assert(info->nid, return -EINVAL);
1717 		info->ops.prepare = hda_pcm_default_prepare;
1718 	}
1719 	if (info->ops.cleanup == NULL) {
1720 		snd_assert(info->nid, return -EINVAL);
1721 		info->ops.cleanup = hda_pcm_default_cleanup;
1722 	}
1723 	return 0;
1724 }
1725 
1726 /**
1727  * snd_hda_build_pcms - build PCM information
1728  * @bus: the BUS
1729  *
1730  * Create PCM information for each codec included in the bus.
1731  *
1732  * The build_pcms codec patch is requested to set up codec->num_pcms and
1733  * codec->pcm_info properly.  The array is referred by the top-level driver
1734  * to create its PCM instances.
1735  * The allocated codec->pcm_info should be released in codec->patch_ops.free
1736  * callback.
1737  *
1738  * At least, substreams, channels_min and channels_max must be filled for
1739  * each stream.  substreams = 0 indicates that the stream doesn't exist.
1740  * When rates and/or formats are zero, the supported values are queried
1741  * from the given nid.  The nid is used also by the default ops.prepare
1742  * and ops.cleanup callbacks.
1743  *
1744  * The driver needs to call ops.open in its open callback.  Similarly,
1745  * ops.close is supposed to be called in the close callback.
1746  * ops.prepare should be called in the prepare or hw_params callback
1747  * with the proper parameters for set up.
1748  * ops.cleanup should be called in hw_free for clean up of streams.
1749  *
1750  * This function returns 0 if successfull, or a negative error code.
1751  */
1752 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
1753 {
1754 	struct hda_codec *codec;
1755 
1756 	list_for_each_entry(codec, &bus->codec_list, list) {
1757 		unsigned int pcm, s;
1758 		int err;
1759 		if (!codec->patch_ops.build_pcms)
1760 			continue;
1761 		err = codec->patch_ops.build_pcms(codec);
1762 		if (err < 0)
1763 			return err;
1764 		for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1765 			for (s = 0; s < 2; s++) {
1766 				struct hda_pcm_stream *info;
1767 				info = &codec->pcm_info[pcm].stream[s];
1768 				if (!info->substreams)
1769 					continue;
1770 				err = set_pcm_default_values(codec, info);
1771 				if (err < 0)
1772 					return err;
1773 			}
1774 		}
1775 	}
1776 	return 0;
1777 }
1778 
1779 /**
1780  * snd_hda_check_board_config - compare the current codec with the config table
1781  * @codec: the HDA codec
1782  * @num_configs: number of config enums
1783  * @models: array of model name strings
1784  * @tbl: configuration table, terminated by null entries
1785  *
1786  * Compares the modelname or PCI subsystem id of the current codec with the
1787  * given configuration table.  If a matching entry is found, returns its
1788  * config value (supposed to be 0 or positive).
1789  *
1790  * If no entries are matching, the function returns a negative value.
1791  */
1792 int __devinit snd_hda_check_board_config(struct hda_codec *codec,
1793 					 int num_configs, const char **models,
1794 					 const struct snd_pci_quirk *tbl)
1795 {
1796 	if (codec->bus->modelname && models) {
1797 		int i;
1798 		for (i = 0; i < num_configs; i++) {
1799 			if (models[i] &&
1800 			    !strcmp(codec->bus->modelname, models[i])) {
1801 				snd_printd(KERN_INFO "hda_codec: model '%s' is "
1802 					   "selected\n", models[i]);
1803 				return i;
1804 			}
1805 		}
1806 	}
1807 
1808 	if (!codec->bus->pci || !tbl)
1809 		return -1;
1810 
1811 	tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1812 	if (!tbl)
1813 		return -1;
1814 	if (tbl->value >= 0 && tbl->value < num_configs) {
1815 #ifdef CONFIG_SND_DEBUG_DETECT
1816 		char tmp[10];
1817 		const char *model = NULL;
1818 		if (models)
1819 			model = models[tbl->value];
1820 		if (!model) {
1821 			sprintf(tmp, "#%d", tbl->value);
1822 			model = tmp;
1823 		}
1824 		snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1825 			    "for config %x:%x (%s)\n",
1826 			    model, tbl->subvendor, tbl->subdevice,
1827 			    (tbl->name ? tbl->name : "Unknown device"));
1828 #endif
1829 		return tbl->value;
1830 	}
1831 	return -1;
1832 }
1833 
1834 /**
1835  * snd_hda_add_new_ctls - create controls from the array
1836  * @codec: the HDA codec
1837  * @knew: the array of struct snd_kcontrol_new
1838  *
1839  * This helper function creates and add new controls in the given array.
1840  * The array must be terminated with an empty entry as terminator.
1841  *
1842  * Returns 0 if successful, or a negative error code.
1843  */
1844 int __devinit snd_hda_add_new_ctls(struct hda_codec *codec,
1845 				   struct snd_kcontrol_new *knew)
1846 {
1847 	int err;
1848 
1849 	for (; knew->name; knew++) {
1850 		struct snd_kcontrol *kctl;
1851 		kctl = snd_ctl_new1(knew, codec);
1852 		if (!kctl)
1853 			return -ENOMEM;
1854 		err = snd_ctl_add(codec->bus->card, kctl);
1855 		if (err < 0) {
1856 			if (!codec->addr)
1857 				return err;
1858 			kctl = snd_ctl_new1(knew, codec);
1859 			if (!kctl)
1860 				return -ENOMEM;
1861 			kctl->id.device = codec->addr;
1862 			err = snd_ctl_add(codec->bus->card, kctl);
1863 			if (err < 0)
1864 				return err;
1865 		}
1866 	}
1867 	return 0;
1868 }
1869 
1870 
1871 /*
1872  * Channel mode helper
1873  */
1874 int snd_hda_ch_mode_info(struct hda_codec *codec,
1875 			 struct snd_ctl_elem_info *uinfo,
1876 			 const struct hda_channel_mode *chmode,
1877 			 int num_chmodes)
1878 {
1879 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1880 	uinfo->count = 1;
1881 	uinfo->value.enumerated.items = num_chmodes;
1882 	if (uinfo->value.enumerated.item >= num_chmodes)
1883 		uinfo->value.enumerated.item = num_chmodes - 1;
1884 	sprintf(uinfo->value.enumerated.name, "%dch",
1885 		chmode[uinfo->value.enumerated.item].channels);
1886 	return 0;
1887 }
1888 
1889 int snd_hda_ch_mode_get(struct hda_codec *codec,
1890 			struct snd_ctl_elem_value *ucontrol,
1891 			const struct hda_channel_mode *chmode,
1892 			int num_chmodes,
1893 			int max_channels)
1894 {
1895 	int i;
1896 
1897 	for (i = 0; i < num_chmodes; i++) {
1898 		if (max_channels == chmode[i].channels) {
1899 			ucontrol->value.enumerated.item[0] = i;
1900 			break;
1901 		}
1902 	}
1903 	return 0;
1904 }
1905 
1906 int snd_hda_ch_mode_put(struct hda_codec *codec,
1907 			struct snd_ctl_elem_value *ucontrol,
1908 			const struct hda_channel_mode *chmode,
1909 			int num_chmodes,
1910 			int *max_channelsp)
1911 {
1912 	unsigned int mode;
1913 
1914 	mode = ucontrol->value.enumerated.item[0];
1915 	snd_assert(mode < num_chmodes, return -EINVAL);
1916 	if (*max_channelsp == chmode[mode].channels && !codec->in_resume)
1917 		return 0;
1918 	/* change the current channel setting */
1919 	*max_channelsp = chmode[mode].channels;
1920 	if (chmode[mode].sequence)
1921 		snd_hda_sequence_write(codec, chmode[mode].sequence);
1922 	return 1;
1923 }
1924 
1925 /*
1926  * input MUX helper
1927  */
1928 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
1929 			   struct snd_ctl_elem_info *uinfo)
1930 {
1931 	unsigned int index;
1932 
1933 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1934 	uinfo->count = 1;
1935 	uinfo->value.enumerated.items = imux->num_items;
1936 	index = uinfo->value.enumerated.item;
1937 	if (index >= imux->num_items)
1938 		index = imux->num_items - 1;
1939 	strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1940 	return 0;
1941 }
1942 
1943 int snd_hda_input_mux_put(struct hda_codec *codec,
1944 			  const struct hda_input_mux *imux,
1945 			  struct snd_ctl_elem_value *ucontrol,
1946 			  hda_nid_t nid,
1947 			  unsigned int *cur_val)
1948 {
1949 	unsigned int idx;
1950 
1951 	idx = ucontrol->value.enumerated.item[0];
1952 	if (idx >= imux->num_items)
1953 		idx = imux->num_items - 1;
1954 	if (*cur_val == idx && !codec->in_resume)
1955 		return 0;
1956 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1957 			    imux->items[idx].index);
1958 	*cur_val = idx;
1959 	return 1;
1960 }
1961 
1962 
1963 /*
1964  * Multi-channel / digital-out PCM helper functions
1965  */
1966 
1967 /* setup SPDIF output stream */
1968 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
1969 				 unsigned int stream_tag, unsigned int format)
1970 {
1971 	/* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
1972 	if (codec->spdif_ctls & AC_DIG1_ENABLE)
1973 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1974 				    codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
1975 	snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
1976 	/* turn on again (if needed) */
1977 	if (codec->spdif_ctls & AC_DIG1_ENABLE)
1978 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1979 				    codec->spdif_ctls & 0xff);
1980 }
1981 
1982 /*
1983  * open the digital out in the exclusive mode
1984  */
1985 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
1986 			       struct hda_multi_out *mout)
1987 {
1988 	mutex_lock(&codec->spdif_mutex);
1989 	if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
1990 		/* already opened as analog dup; reset it once */
1991 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1992 	mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1993 	mutex_unlock(&codec->spdif_mutex);
1994 	return 0;
1995 }
1996 
1997 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
1998 				  struct hda_multi_out *mout,
1999 				  unsigned int stream_tag,
2000 				  unsigned int format,
2001 				  struct snd_pcm_substream *substream)
2002 {
2003 	mutex_lock(&codec->spdif_mutex);
2004 	setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2005 	mutex_unlock(&codec->spdif_mutex);
2006 	return 0;
2007 }
2008 
2009 /*
2010  * release the digital out
2011  */
2012 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2013 				struct hda_multi_out *mout)
2014 {
2015 	mutex_lock(&codec->spdif_mutex);
2016 	mout->dig_out_used = 0;
2017 	mutex_unlock(&codec->spdif_mutex);
2018 	return 0;
2019 }
2020 
2021 /*
2022  * set up more restrictions for analog out
2023  */
2024 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2025 				  struct hda_multi_out *mout,
2026 				  struct snd_pcm_substream *substream)
2027 {
2028 	substream->runtime->hw.channels_max = mout->max_channels;
2029 	return snd_pcm_hw_constraint_step(substream->runtime, 0,
2030 					  SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2031 }
2032 
2033 /*
2034  * set up the i/o for analog out
2035  * when the digital out is available, copy the front out to digital out, too.
2036  */
2037 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2038 				     struct hda_multi_out *mout,
2039 				     unsigned int stream_tag,
2040 				     unsigned int format,
2041 				     struct snd_pcm_substream *substream)
2042 {
2043 	hda_nid_t *nids = mout->dac_nids;
2044 	int chs = substream->runtime->channels;
2045 	int i;
2046 
2047 	mutex_lock(&codec->spdif_mutex);
2048 	if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2049 		if (chs == 2 &&
2050 		    snd_hda_is_supported_format(codec, mout->dig_out_nid,
2051 						format) &&
2052 		    !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2053 			mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2054 			setup_dig_out_stream(codec, mout->dig_out_nid,
2055 					     stream_tag, format);
2056 		} else {
2057 			mout->dig_out_used = 0;
2058 			snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2059 						   0, 0, 0);
2060 		}
2061 	}
2062 	mutex_unlock(&codec->spdif_mutex);
2063 
2064 	/* front */
2065 	snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2066 				   0, format);
2067 	if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2068 		/* headphone out will just decode front left/right (stereo) */
2069 		snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2070 					   0, format);
2071 	/* extra outputs copied from front */
2072 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2073 		if (mout->extra_out_nid[i])
2074 			snd_hda_codec_setup_stream(codec,
2075 						   mout->extra_out_nid[i],
2076 						   stream_tag, 0, format);
2077 
2078 	/* surrounds */
2079 	for (i = 1; i < mout->num_dacs; i++) {
2080 		if (chs >= (i + 1) * 2) /* independent out */
2081 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2082 						   i * 2, format);
2083 		else /* copy front */
2084 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2085 						   0, format);
2086 	}
2087 	return 0;
2088 }
2089 
2090 /*
2091  * clean up the setting for analog out
2092  */
2093 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2094 				     struct hda_multi_out *mout)
2095 {
2096 	hda_nid_t *nids = mout->dac_nids;
2097 	int i;
2098 
2099 	for (i = 0; i < mout->num_dacs; i++)
2100 		snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2101 	if (mout->hp_nid)
2102 		snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2103 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2104 		if (mout->extra_out_nid[i])
2105 			snd_hda_codec_setup_stream(codec,
2106 						   mout->extra_out_nid[i],
2107 						   0, 0, 0);
2108 	mutex_lock(&codec->spdif_mutex);
2109 	if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2110 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2111 		mout->dig_out_used = 0;
2112 	}
2113 	mutex_unlock(&codec->spdif_mutex);
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Helper for automatic ping configuration
2119  */
2120 
2121 static int __devinit is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2122 {
2123 	for (; *list; list++)
2124 		if (*list == nid)
2125 			return 1;
2126 	return 0;
2127 }
2128 
2129 
2130 /*
2131  * Sort an associated group of pins according to their sequence numbers.
2132  */
2133 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2134 				  int num_pins)
2135 {
2136 	int i, j;
2137 	short seq;
2138 	hda_nid_t nid;
2139 
2140 	for (i = 0; i < num_pins; i++) {
2141 		for (j = i + 1; j < num_pins; j++) {
2142 			if (sequences[i] > sequences[j]) {
2143 				seq = sequences[i];
2144 				sequences[i] = sequences[j];
2145 				sequences[j] = seq;
2146 				nid = pins[i];
2147 				pins[i] = pins[j];
2148 				pins[j] = nid;
2149 			}
2150 		}
2151 	}
2152 }
2153 
2154 
2155 /*
2156  * Parse all pin widgets and store the useful pin nids to cfg
2157  *
2158  * The number of line-outs or any primary output is stored in line_outs,
2159  * and the corresponding output pins are assigned to line_out_pins[],
2160  * in the order of front, rear, CLFE, side, ...
2161  *
2162  * If more extra outputs (speaker and headphone) are found, the pins are
2163  * assisnged to hp_pins[] and speaker_pins[], respectively.  If no line-out jack
2164  * is detected, one of speaker of HP pins is assigned as the primary
2165  * output, i.e. to line_out_pins[0].  So, line_outs is always positive
2166  * if any analog output exists.
2167  *
2168  * The analog input pins are assigned to input_pins array.
2169  * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2170  * respectively.
2171  */
2172 int __devinit snd_hda_parse_pin_def_config(struct hda_codec *codec,
2173 					   struct auto_pin_cfg *cfg,
2174 					   hda_nid_t *ignore_nids)
2175 {
2176 	hda_nid_t nid, nid_start;
2177 	int nodes;
2178 	short seq, assoc_line_out, assoc_speaker;
2179 	short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2180 	short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2181 
2182 	memset(cfg, 0, sizeof(*cfg));
2183 
2184 	memset(sequences_line_out, 0, sizeof(sequences_line_out));
2185 	memset(sequences_speaker, 0, sizeof(sequences_speaker));
2186 	assoc_line_out = assoc_speaker = 0;
2187 
2188 	nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2189 	for (nid = nid_start; nid < nodes + nid_start; nid++) {
2190 		unsigned int wid_caps = get_wcaps(codec, nid);
2191 		unsigned int wid_type =
2192 			(wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2193 		unsigned int def_conf;
2194 		short assoc, loc;
2195 
2196 		/* read all default configuration for pin complex */
2197 		if (wid_type != AC_WID_PIN)
2198 			continue;
2199 		/* ignore the given nids (e.g. pc-beep returns error) */
2200 		if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2201 			continue;
2202 
2203 		def_conf = snd_hda_codec_read(codec, nid, 0,
2204 					      AC_VERB_GET_CONFIG_DEFAULT, 0);
2205 		if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2206 			continue;
2207 		loc = get_defcfg_location(def_conf);
2208 		switch (get_defcfg_device(def_conf)) {
2209 		case AC_JACK_LINE_OUT:
2210 			seq = get_defcfg_sequence(def_conf);
2211 			assoc = get_defcfg_association(def_conf);
2212 			if (!assoc)
2213 				continue;
2214 			if (!assoc_line_out)
2215 				assoc_line_out = assoc;
2216 			else if (assoc_line_out != assoc)
2217 				continue;
2218 			if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2219 				continue;
2220 			cfg->line_out_pins[cfg->line_outs] = nid;
2221 			sequences_line_out[cfg->line_outs] = seq;
2222 			cfg->line_outs++;
2223 			break;
2224 		case AC_JACK_SPEAKER:
2225 			seq = get_defcfg_sequence(def_conf);
2226 			assoc = get_defcfg_association(def_conf);
2227 			if (! assoc)
2228 				continue;
2229 			if (! assoc_speaker)
2230 				assoc_speaker = assoc;
2231 			else if (assoc_speaker != assoc)
2232 				continue;
2233 			if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2234 				continue;
2235 			cfg->speaker_pins[cfg->speaker_outs] = nid;
2236 			sequences_speaker[cfg->speaker_outs] = seq;
2237 			cfg->speaker_outs++;
2238 			break;
2239 		case AC_JACK_HP_OUT:
2240 			if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2241 				continue;
2242 			cfg->hp_pins[cfg->hp_outs] = nid;
2243 			cfg->hp_outs++;
2244 			break;
2245 		case AC_JACK_MIC_IN: {
2246 			int preferred, alt;
2247 			if (loc == AC_JACK_LOC_FRONT) {
2248 				preferred = AUTO_PIN_FRONT_MIC;
2249 				alt = AUTO_PIN_MIC;
2250 			} else {
2251 				preferred = AUTO_PIN_MIC;
2252 				alt = AUTO_PIN_FRONT_MIC;
2253 			}
2254 			if (!cfg->input_pins[preferred])
2255 				cfg->input_pins[preferred] = nid;
2256 			else if (!cfg->input_pins[alt])
2257 				cfg->input_pins[alt] = nid;
2258 			break;
2259 		}
2260 		case AC_JACK_LINE_IN:
2261 			if (loc == AC_JACK_LOC_FRONT)
2262 				cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2263 			else
2264 				cfg->input_pins[AUTO_PIN_LINE] = nid;
2265 			break;
2266 		case AC_JACK_CD:
2267 			cfg->input_pins[AUTO_PIN_CD] = nid;
2268 			break;
2269 		case AC_JACK_AUX:
2270 			cfg->input_pins[AUTO_PIN_AUX] = nid;
2271 			break;
2272 		case AC_JACK_SPDIF_OUT:
2273 			cfg->dig_out_pin = nid;
2274 			break;
2275 		case AC_JACK_SPDIF_IN:
2276 			cfg->dig_in_pin = nid;
2277 			break;
2278 		}
2279 	}
2280 
2281 	/* sort by sequence */
2282 	sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2283 			      cfg->line_outs);
2284 	sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2285 			      cfg->speaker_outs);
2286 
2287 	/*
2288 	 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2289 	 * as a primary output
2290 	 */
2291 	if (!cfg->line_outs) {
2292 		if (cfg->speaker_outs) {
2293 			cfg->line_outs = cfg->speaker_outs;
2294 			memcpy(cfg->line_out_pins, cfg->speaker_pins,
2295 			       sizeof(cfg->speaker_pins));
2296 			cfg->speaker_outs = 0;
2297 			memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2298 			cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2299 		} else if (cfg->hp_outs) {
2300 			cfg->line_outs = cfg->hp_outs;
2301 			memcpy(cfg->line_out_pins, cfg->hp_pins,
2302 			       sizeof(cfg->hp_pins));
2303 			cfg->hp_outs = 0;
2304 			memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2305 			cfg->line_out_type = AUTO_PIN_HP_OUT;
2306 		}
2307 	}
2308 
2309 	/* Reorder the surround channels
2310 	 * ALSA sequence is front/surr/clfe/side
2311 	 * HDA sequence is:
2312 	 *    4-ch: front/surr  =>  OK as it is
2313 	 *    6-ch: front/clfe/surr
2314 	 *    8-ch: front/clfe/rear/side|fc
2315 	 */
2316 	switch (cfg->line_outs) {
2317 	case 3:
2318 	case 4:
2319 		nid = cfg->line_out_pins[1];
2320 		cfg->line_out_pins[1] = cfg->line_out_pins[2];
2321 		cfg->line_out_pins[2] = nid;
2322 		break;
2323 	}
2324 
2325 	/*
2326 	 * debug prints of the parsed results
2327 	 */
2328 	snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2329 		   cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2330 		   cfg->line_out_pins[2], cfg->line_out_pins[3],
2331 		   cfg->line_out_pins[4]);
2332 	snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2333 		   cfg->speaker_outs, cfg->speaker_pins[0],
2334 		   cfg->speaker_pins[1], cfg->speaker_pins[2],
2335 		   cfg->speaker_pins[3], cfg->speaker_pins[4]);
2336 	snd_printd("   hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2337 		   cfg->hp_outs, cfg->hp_pins[0],
2338 		   cfg->hp_pins[1], cfg->hp_pins[2],
2339 		   cfg->hp_pins[3], cfg->hp_pins[4]);
2340 	snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2341 		   " cd=0x%x, aux=0x%x\n",
2342 		   cfg->input_pins[AUTO_PIN_MIC],
2343 		   cfg->input_pins[AUTO_PIN_FRONT_MIC],
2344 		   cfg->input_pins[AUTO_PIN_LINE],
2345 		   cfg->input_pins[AUTO_PIN_FRONT_LINE],
2346 		   cfg->input_pins[AUTO_PIN_CD],
2347 		   cfg->input_pins[AUTO_PIN_AUX]);
2348 
2349 	return 0;
2350 }
2351 
2352 /* labels for input pins */
2353 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2354 	"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2355 };
2356 
2357 
2358 #ifdef CONFIG_PM
2359 /*
2360  * power management
2361  */
2362 
2363 /**
2364  * snd_hda_suspend - suspend the codecs
2365  * @bus: the HDA bus
2366  * @state: suspsend state
2367  *
2368  * Returns 0 if successful.
2369  */
2370 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2371 {
2372 	struct hda_codec *codec;
2373 
2374 	/* FIXME: should handle power widget capabilities */
2375 	list_for_each_entry(codec, &bus->codec_list, list) {
2376 		if (codec->patch_ops.suspend)
2377 			codec->patch_ops.suspend(codec, state);
2378 		hda_set_power_state(codec,
2379 				    codec->afg ? codec->afg : codec->mfg,
2380 				    AC_PWRST_D3);
2381 	}
2382 	return 0;
2383 }
2384 
2385 /**
2386  * snd_hda_resume - resume the codecs
2387  * @bus: the HDA bus
2388  * @state: resume state
2389  *
2390  * Returns 0 if successful.
2391  */
2392 int snd_hda_resume(struct hda_bus *bus)
2393 {
2394 	struct hda_codec *codec;
2395 
2396 	list_for_each_entry(codec, &bus->codec_list, list) {
2397 		hda_set_power_state(codec,
2398 				    codec->afg ? codec->afg : codec->mfg,
2399 				    AC_PWRST_D0);
2400 		if (codec->patch_ops.resume)
2401 			codec->patch_ops.resume(codec);
2402 	}
2403 	return 0;
2404 }
2405 
2406 /**
2407  * snd_hda_resume_ctls - resume controls in the new control list
2408  * @codec: the HDA codec
2409  * @knew: the array of struct snd_kcontrol_new
2410  *
2411  * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2412  * originally for snd_hda_add_new_ctls().
2413  * The array must be terminated with an empty entry as terminator.
2414  */
2415 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2416 {
2417 	struct snd_ctl_elem_value *val;
2418 
2419 	val = kmalloc(sizeof(*val), GFP_KERNEL);
2420 	if (!val)
2421 		return -ENOMEM;
2422 	codec->in_resume = 1;
2423 	for (; knew->name; knew++) {
2424 		int i, count;
2425 		count = knew->count ? knew->count : 1;
2426 		for (i = 0; i < count; i++) {
2427 			memset(val, 0, sizeof(*val));
2428 			val->id.iface = knew->iface;
2429 			val->id.device = knew->device;
2430 			val->id.subdevice = knew->subdevice;
2431 			strcpy(val->id.name, knew->name);
2432 			val->id.index = knew->index ? knew->index : i;
2433 			/* Assume that get callback reads only from cache,
2434 			 * not accessing to the real hardware
2435 			 */
2436 			if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2437 				continue;
2438 			snd_ctl_elem_write(codec->bus->card, NULL, val);
2439 		}
2440 	}
2441 	codec->in_resume = 0;
2442 	kfree(val);
2443 	return 0;
2444 }
2445 
2446 /**
2447  * snd_hda_resume_spdif_out - resume the digital out
2448  * @codec: the HDA codec
2449  */
2450 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2451 {
2452 	return snd_hda_resume_ctls(codec, dig_mixes);
2453 }
2454 
2455 /**
2456  * snd_hda_resume_spdif_in - resume the digital in
2457  * @codec: the HDA codec
2458  */
2459 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2460 {
2461 	return snd_hda_resume_ctls(codec, dig_in_ctls);
2462 }
2463 #endif
2464