xref: /openbmc/linux/sound/pci/fm801.c (revision ecba1060)
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *
5  *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <sound/core.h>
30 #include <sound/pcm.h>
31 #include <sound/tlv.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/mpu401.h>
34 #include <sound/opl3.h>
35 #include <sound/initval.h>
36 
37 #include <asm/io.h>
38 
39 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
40 #include <sound/tea575x-tuner.h>
41 #define TEA575X_RADIO 1
42 #endif
43 
44 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
45 MODULE_DESCRIPTION("ForteMedia FM801");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
48 		"{Genius,SoundMaker Live 5.1}}");
49 
50 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
51 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
52 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
53 /*
54  *  Enable TEA575x tuner
55  *    1 = MediaForte 256-PCS
56  *    2 = MediaForte 256-PCPR
57  *    3 = MediaForte 64-PCR
58  *   16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
59  *  High 16-bits are video (radio) device number + 1
60  */
61 static int tea575x_tuner[SNDRV_CARDS];
62 
63 module_param_array(index, int, NULL, 0444);
64 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
65 module_param_array(id, charp, NULL, 0444);
66 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
67 module_param_array(enable, bool, NULL, 0444);
68 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
69 module_param_array(tea575x_tuner, int, NULL, 0444);
70 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
71 
72 /*
73  *  Direct registers
74  */
75 
76 #define FM801_REG(chip, reg)	(chip->port + FM801_##reg)
77 
78 #define FM801_PCM_VOL		0x00	/* PCM Output Volume */
79 #define FM801_FM_VOL		0x02	/* FM Output Volume */
80 #define FM801_I2S_VOL		0x04	/* I2S Volume */
81 #define FM801_REC_SRC		0x06	/* Record Source */
82 #define FM801_PLY_CTRL		0x08	/* Playback Control */
83 #define FM801_PLY_COUNT		0x0a	/* Playback Count */
84 #define FM801_PLY_BUF1		0x0c	/* Playback Bufer I */
85 #define FM801_PLY_BUF2		0x10	/* Playback Buffer II */
86 #define FM801_CAP_CTRL		0x14	/* Capture Control */
87 #define FM801_CAP_COUNT		0x16	/* Capture Count */
88 #define FM801_CAP_BUF1		0x18	/* Capture Buffer I */
89 #define FM801_CAP_BUF2		0x1c	/* Capture Buffer II */
90 #define FM801_CODEC_CTRL	0x22	/* Codec Control */
91 #define FM801_I2S_MODE		0x24	/* I2S Mode Control */
92 #define FM801_VOLUME		0x26	/* Volume Up/Down/Mute Status */
93 #define FM801_I2C_CTRL		0x29	/* I2C Control */
94 #define FM801_AC97_CMD		0x2a	/* AC'97 Command */
95 #define FM801_AC97_DATA		0x2c	/* AC'97 Data */
96 #define FM801_MPU401_DATA	0x30	/* MPU401 Data */
97 #define FM801_MPU401_CMD	0x31	/* MPU401 Command */
98 #define FM801_GPIO_CTRL		0x52	/* General Purpose I/O Control */
99 #define FM801_GEN_CTRL		0x54	/* General Control */
100 #define FM801_IRQ_MASK		0x56	/* Interrupt Mask */
101 #define FM801_IRQ_STATUS	0x5a	/* Interrupt Status */
102 #define FM801_OPL3_BANK0	0x68	/* OPL3 Status Read / Bank 0 Write */
103 #define FM801_OPL3_DATA0	0x69	/* OPL3 Data 0 Write */
104 #define FM801_OPL3_BANK1	0x6a	/* OPL3 Bank 1 Write */
105 #define FM801_OPL3_DATA1	0x6b	/* OPL3 Bank 1 Write */
106 #define FM801_POWERDOWN		0x70	/* Blocks Power Down Control */
107 
108 /* codec access */
109 #define FM801_AC97_READ		(1<<7)	/* read=1, write=0 */
110 #define FM801_AC97_VALID	(1<<8)	/* port valid=1 */
111 #define FM801_AC97_BUSY		(1<<9)	/* busy=1 */
112 #define FM801_AC97_ADDR_SHIFT	10	/* codec id (2bit) */
113 
114 /* playback and record control register bits */
115 #define FM801_BUF1_LAST		(1<<1)
116 #define FM801_BUF2_LAST		(1<<2)
117 #define FM801_START		(1<<5)
118 #define FM801_PAUSE		(1<<6)
119 #define FM801_IMMED_STOP	(1<<7)
120 #define FM801_RATE_SHIFT	8
121 #define FM801_RATE_MASK		(15 << FM801_RATE_SHIFT)
122 #define FM801_CHANNELS_4	(1<<12)	/* playback only */
123 #define FM801_CHANNELS_6	(2<<12)	/* playback only */
124 #define FM801_CHANNELS_6MS	(3<<12)	/* playback only */
125 #define FM801_CHANNELS_MASK	(3<<12)
126 #define FM801_16BIT		(1<<14)
127 #define FM801_STEREO		(1<<15)
128 
129 /* IRQ status bits */
130 #define FM801_IRQ_PLAYBACK	(1<<8)
131 #define FM801_IRQ_CAPTURE	(1<<9)
132 #define FM801_IRQ_VOLUME	(1<<14)
133 #define FM801_IRQ_MPU		(1<<15)
134 
135 /* GPIO control register */
136 #define FM801_GPIO_GP0		(1<<0)	/* read/write */
137 #define FM801_GPIO_GP1		(1<<1)
138 #define FM801_GPIO_GP2		(1<<2)
139 #define FM801_GPIO_GP3		(1<<3)
140 #define FM801_GPIO_GP(x)	(1<<(0+(x)))
141 #define FM801_GPIO_GD0		(1<<8)	/* directions: 1 = input, 0 = output*/
142 #define FM801_GPIO_GD1		(1<<9)
143 #define FM801_GPIO_GD2		(1<<10)
144 #define FM801_GPIO_GD3		(1<<11)
145 #define FM801_GPIO_GD(x)	(1<<(8+(x)))
146 #define FM801_GPIO_GS0		(1<<12)	/* function select: */
147 #define FM801_GPIO_GS1		(1<<13)	/*    1 = GPIO */
148 #define FM801_GPIO_GS2		(1<<14)	/*    0 = other (S/PDIF, VOL) */
149 #define FM801_GPIO_GS3		(1<<15)
150 #define FM801_GPIO_GS(x)	(1<<(12+(x)))
151 
152 /*
153 
154  */
155 
156 struct fm801 {
157 	int irq;
158 
159 	unsigned long port;	/* I/O port number */
160 	unsigned int multichannel: 1,	/* multichannel support */
161 		     secondary: 1;	/* secondary codec */
162 	unsigned char secondary_addr;	/* address of the secondary codec */
163 	unsigned int tea575x_tuner;	/* tuner flags */
164 
165 	unsigned short ply_ctrl; /* playback control */
166 	unsigned short cap_ctrl; /* capture control */
167 
168 	unsigned long ply_buffer;
169 	unsigned int ply_buf;
170 	unsigned int ply_count;
171 	unsigned int ply_size;
172 	unsigned int ply_pos;
173 
174 	unsigned long cap_buffer;
175 	unsigned int cap_buf;
176 	unsigned int cap_count;
177 	unsigned int cap_size;
178 	unsigned int cap_pos;
179 
180 	struct snd_ac97_bus *ac97_bus;
181 	struct snd_ac97 *ac97;
182 	struct snd_ac97 *ac97_sec;
183 
184 	struct pci_dev *pci;
185 	struct snd_card *card;
186 	struct snd_pcm *pcm;
187 	struct snd_rawmidi *rmidi;
188 	struct snd_pcm_substream *playback_substream;
189 	struct snd_pcm_substream *capture_substream;
190 	unsigned int p_dma_size;
191 	unsigned int c_dma_size;
192 
193 	spinlock_t reg_lock;
194 	struct snd_info_entry *proc_entry;
195 
196 #ifdef TEA575X_RADIO
197 	struct snd_tea575x tea;
198 #endif
199 
200 #ifdef CONFIG_PM
201 	u16 saved_regs[0x20];
202 #endif
203 };
204 
205 static struct pci_device_id snd_fm801_ids[] = {
206 	{ 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
207 	{ 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
208 	{ 0, }
209 };
210 
211 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
212 
213 /*
214  *  common I/O routines
215  */
216 
217 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
218 				 unsigned short mask, unsigned short value)
219 {
220 	int change;
221 	unsigned long flags;
222 	unsigned short old, new;
223 
224 	spin_lock_irqsave(&chip->reg_lock, flags);
225 	old = inw(chip->port + reg);
226 	new = (old & ~mask) | value;
227 	change = old != new;
228 	if (change)
229 		outw(new, chip->port + reg);
230 	spin_unlock_irqrestore(&chip->reg_lock, flags);
231 	return change;
232 }
233 
234 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
235 				  unsigned short reg,
236 				  unsigned short val)
237 {
238 	struct fm801 *chip = ac97->private_data;
239 	int idx;
240 
241 	/*
242 	 *  Wait until the codec interface is not ready..
243 	 */
244 	for (idx = 0; idx < 100; idx++) {
245 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
246 			goto ok1;
247 		udelay(10);
248 	}
249 	snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
250 	return;
251 
252  ok1:
253 	/* write data and address */
254 	outw(val, FM801_REG(chip, AC97_DATA));
255 	outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
256 	/*
257 	 *  Wait until the write command is not completed..
258          */
259 	for (idx = 0; idx < 1000; idx++) {
260 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
261 			return;
262 		udelay(10);
263 	}
264 	snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
265 }
266 
267 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
268 {
269 	struct fm801 *chip = ac97->private_data;
270 	int idx;
271 
272 	/*
273 	 *  Wait until the codec interface is not ready..
274 	 */
275 	for (idx = 0; idx < 100; idx++) {
276 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
277 			goto ok1;
278 		udelay(10);
279 	}
280 	snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
281 	return 0;
282 
283  ok1:
284 	/* read command */
285 	outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
286 	     FM801_REG(chip, AC97_CMD));
287 	for (idx = 0; idx < 100; idx++) {
288 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
289 			goto ok2;
290 		udelay(10);
291 	}
292 	snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
293 	return 0;
294 
295  ok2:
296 	for (idx = 0; idx < 1000; idx++) {
297 		if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
298 			goto ok3;
299 		udelay(10);
300 	}
301 	snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
302 	return 0;
303 
304  ok3:
305 	return inw(FM801_REG(chip, AC97_DATA));
306 }
307 
308 static unsigned int rates[] = {
309   5500,  8000,  9600, 11025,
310   16000, 19200, 22050, 32000,
311   38400, 44100, 48000
312 };
313 
314 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
315 	.count = ARRAY_SIZE(rates),
316 	.list = rates,
317 	.mask = 0,
318 };
319 
320 static unsigned int channels[] = {
321   2, 4, 6
322 };
323 
324 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
325 	.count = ARRAY_SIZE(channels),
326 	.list = channels,
327 	.mask = 0,
328 };
329 
330 /*
331  *  Sample rate routines
332  */
333 
334 static unsigned short snd_fm801_rate_bits(unsigned int rate)
335 {
336 	unsigned int idx;
337 
338 	for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
339 		if (rates[idx] == rate)
340 			return idx;
341 	snd_BUG();
342 	return ARRAY_SIZE(rates) - 1;
343 }
344 
345 /*
346  *  PCM part
347  */
348 
349 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
350 				      int cmd)
351 {
352 	struct fm801 *chip = snd_pcm_substream_chip(substream);
353 
354 	spin_lock(&chip->reg_lock);
355 	switch (cmd) {
356 	case SNDRV_PCM_TRIGGER_START:
357 		chip->ply_ctrl &= ~(FM801_BUF1_LAST |
358 				     FM801_BUF2_LAST |
359 				     FM801_PAUSE);
360 		chip->ply_ctrl |= FM801_START |
361 				   FM801_IMMED_STOP;
362 		break;
363 	case SNDRV_PCM_TRIGGER_STOP:
364 		chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
365 		break;
366 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
367 	case SNDRV_PCM_TRIGGER_SUSPEND:
368 		chip->ply_ctrl |= FM801_PAUSE;
369 		break;
370 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
371 	case SNDRV_PCM_TRIGGER_RESUME:
372 		chip->ply_ctrl &= ~FM801_PAUSE;
373 		break;
374 	default:
375 		spin_unlock(&chip->reg_lock);
376 		snd_BUG();
377 		return -EINVAL;
378 	}
379 	outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
380 	spin_unlock(&chip->reg_lock);
381 	return 0;
382 }
383 
384 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
385 				     int cmd)
386 {
387 	struct fm801 *chip = snd_pcm_substream_chip(substream);
388 
389 	spin_lock(&chip->reg_lock);
390 	switch (cmd) {
391 	case SNDRV_PCM_TRIGGER_START:
392 		chip->cap_ctrl &= ~(FM801_BUF1_LAST |
393 				     FM801_BUF2_LAST |
394 				     FM801_PAUSE);
395 		chip->cap_ctrl |= FM801_START |
396 				   FM801_IMMED_STOP;
397 		break;
398 	case SNDRV_PCM_TRIGGER_STOP:
399 		chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
400 		break;
401 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
402 	case SNDRV_PCM_TRIGGER_SUSPEND:
403 		chip->cap_ctrl |= FM801_PAUSE;
404 		break;
405 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
406 	case SNDRV_PCM_TRIGGER_RESUME:
407 		chip->cap_ctrl &= ~FM801_PAUSE;
408 		break;
409 	default:
410 		spin_unlock(&chip->reg_lock);
411 		snd_BUG();
412 		return -EINVAL;
413 	}
414 	outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
415 	spin_unlock(&chip->reg_lock);
416 	return 0;
417 }
418 
419 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
420 			       struct snd_pcm_hw_params *hw_params)
421 {
422 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
423 }
424 
425 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
426 {
427 	return snd_pcm_lib_free_pages(substream);
428 }
429 
430 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
431 {
432 	struct fm801 *chip = snd_pcm_substream_chip(substream);
433 	struct snd_pcm_runtime *runtime = substream->runtime;
434 
435 	chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
436 	chip->ply_count = snd_pcm_lib_period_bytes(substream);
437 	spin_lock_irq(&chip->reg_lock);
438 	chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
439 			     FM801_STEREO | FM801_RATE_MASK |
440 			     FM801_CHANNELS_MASK);
441 	if (snd_pcm_format_width(runtime->format) == 16)
442 		chip->ply_ctrl |= FM801_16BIT;
443 	if (runtime->channels > 1) {
444 		chip->ply_ctrl |= FM801_STEREO;
445 		if (runtime->channels == 4)
446 			chip->ply_ctrl |= FM801_CHANNELS_4;
447 		else if (runtime->channels == 6)
448 			chip->ply_ctrl |= FM801_CHANNELS_6;
449 	}
450 	chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
451 	chip->ply_buf = 0;
452 	outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
453 	outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
454 	chip->ply_buffer = runtime->dma_addr;
455 	chip->ply_pos = 0;
456 	outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
457 	outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
458 	spin_unlock_irq(&chip->reg_lock);
459 	return 0;
460 }
461 
462 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
463 {
464 	struct fm801 *chip = snd_pcm_substream_chip(substream);
465 	struct snd_pcm_runtime *runtime = substream->runtime;
466 
467 	chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
468 	chip->cap_count = snd_pcm_lib_period_bytes(substream);
469 	spin_lock_irq(&chip->reg_lock);
470 	chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
471 			     FM801_STEREO | FM801_RATE_MASK);
472 	if (snd_pcm_format_width(runtime->format) == 16)
473 		chip->cap_ctrl |= FM801_16BIT;
474 	if (runtime->channels > 1)
475 		chip->cap_ctrl |= FM801_STEREO;
476 	chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
477 	chip->cap_buf = 0;
478 	outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
479 	outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
480 	chip->cap_buffer = runtime->dma_addr;
481 	chip->cap_pos = 0;
482 	outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
483 	outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
484 	spin_unlock_irq(&chip->reg_lock);
485 	return 0;
486 }
487 
488 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
489 {
490 	struct fm801 *chip = snd_pcm_substream_chip(substream);
491 	size_t ptr;
492 
493 	if (!(chip->ply_ctrl & FM801_START))
494 		return 0;
495 	spin_lock(&chip->reg_lock);
496 	ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
497 	if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
498 		ptr += chip->ply_count;
499 		ptr %= chip->ply_size;
500 	}
501 	spin_unlock(&chip->reg_lock);
502 	return bytes_to_frames(substream->runtime, ptr);
503 }
504 
505 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
506 {
507 	struct fm801 *chip = snd_pcm_substream_chip(substream);
508 	size_t ptr;
509 
510 	if (!(chip->cap_ctrl & FM801_START))
511 		return 0;
512 	spin_lock(&chip->reg_lock);
513 	ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
514 	if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
515 		ptr += chip->cap_count;
516 		ptr %= chip->cap_size;
517 	}
518 	spin_unlock(&chip->reg_lock);
519 	return bytes_to_frames(substream->runtime, ptr);
520 }
521 
522 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
523 {
524 	struct fm801 *chip = dev_id;
525 	unsigned short status;
526 	unsigned int tmp;
527 
528 	status = inw(FM801_REG(chip, IRQ_STATUS));
529 	status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
530 	if (! status)
531 		return IRQ_NONE;
532 	/* ack first */
533 	outw(status, FM801_REG(chip, IRQ_STATUS));
534 	if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
535 		spin_lock(&chip->reg_lock);
536 		chip->ply_buf++;
537 		chip->ply_pos += chip->ply_count;
538 		chip->ply_pos %= chip->ply_size;
539 		tmp = chip->ply_pos + chip->ply_count;
540 		tmp %= chip->ply_size;
541 		outl(chip->ply_buffer + tmp,
542 				(chip->ply_buf & 1) ?
543 					FM801_REG(chip, PLY_BUF1) :
544 					FM801_REG(chip, PLY_BUF2));
545 		spin_unlock(&chip->reg_lock);
546 		snd_pcm_period_elapsed(chip->playback_substream);
547 	}
548 	if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
549 		spin_lock(&chip->reg_lock);
550 		chip->cap_buf++;
551 		chip->cap_pos += chip->cap_count;
552 		chip->cap_pos %= chip->cap_size;
553 		tmp = chip->cap_pos + chip->cap_count;
554 		tmp %= chip->cap_size;
555 		outl(chip->cap_buffer + tmp,
556 				(chip->cap_buf & 1) ?
557 					FM801_REG(chip, CAP_BUF1) :
558 					FM801_REG(chip, CAP_BUF2));
559 		spin_unlock(&chip->reg_lock);
560 		snd_pcm_period_elapsed(chip->capture_substream);
561 	}
562 	if (chip->rmidi && (status & FM801_IRQ_MPU))
563 		snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
564 	if (status & FM801_IRQ_VOLUME)
565 		;/* TODO */
566 
567 	return IRQ_HANDLED;
568 }
569 
570 static struct snd_pcm_hardware snd_fm801_playback =
571 {
572 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
573 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
574 				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
575 				 SNDRV_PCM_INFO_MMAP_VALID),
576 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
577 	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
578 	.rate_min =		5500,
579 	.rate_max =		48000,
580 	.channels_min =		1,
581 	.channels_max =		2,
582 	.buffer_bytes_max =	(128*1024),
583 	.period_bytes_min =	64,
584 	.period_bytes_max =	(128*1024),
585 	.periods_min =		1,
586 	.periods_max =		1024,
587 	.fifo_size =		0,
588 };
589 
590 static struct snd_pcm_hardware snd_fm801_capture =
591 {
592 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
593 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
594 				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
595 				 SNDRV_PCM_INFO_MMAP_VALID),
596 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
597 	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
598 	.rate_min =		5500,
599 	.rate_max =		48000,
600 	.channels_min =		1,
601 	.channels_max =		2,
602 	.buffer_bytes_max =	(128*1024),
603 	.period_bytes_min =	64,
604 	.period_bytes_max =	(128*1024),
605 	.periods_min =		1,
606 	.periods_max =		1024,
607 	.fifo_size =		0,
608 };
609 
610 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
611 {
612 	struct fm801 *chip = snd_pcm_substream_chip(substream);
613 	struct snd_pcm_runtime *runtime = substream->runtime;
614 	int err;
615 
616 	chip->playback_substream = substream;
617 	runtime->hw = snd_fm801_playback;
618 	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
619 				   &hw_constraints_rates);
620 	if (chip->multichannel) {
621 		runtime->hw.channels_max = 6;
622 		snd_pcm_hw_constraint_list(runtime, 0,
623 					   SNDRV_PCM_HW_PARAM_CHANNELS,
624 					   &hw_constraints_channels);
625 	}
626 	if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
627 		return err;
628 	return 0;
629 }
630 
631 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
632 {
633 	struct fm801 *chip = snd_pcm_substream_chip(substream);
634 	struct snd_pcm_runtime *runtime = substream->runtime;
635 	int err;
636 
637 	chip->capture_substream = substream;
638 	runtime->hw = snd_fm801_capture;
639 	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
640 				   &hw_constraints_rates);
641 	if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
642 		return err;
643 	return 0;
644 }
645 
646 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
647 {
648 	struct fm801 *chip = snd_pcm_substream_chip(substream);
649 
650 	chip->playback_substream = NULL;
651 	return 0;
652 }
653 
654 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
655 {
656 	struct fm801 *chip = snd_pcm_substream_chip(substream);
657 
658 	chip->capture_substream = NULL;
659 	return 0;
660 }
661 
662 static struct snd_pcm_ops snd_fm801_playback_ops = {
663 	.open =		snd_fm801_playback_open,
664 	.close =	snd_fm801_playback_close,
665 	.ioctl =	snd_pcm_lib_ioctl,
666 	.hw_params =	snd_fm801_hw_params,
667 	.hw_free =	snd_fm801_hw_free,
668 	.prepare =	snd_fm801_playback_prepare,
669 	.trigger =	snd_fm801_playback_trigger,
670 	.pointer =	snd_fm801_playback_pointer,
671 };
672 
673 static struct snd_pcm_ops snd_fm801_capture_ops = {
674 	.open =		snd_fm801_capture_open,
675 	.close =	snd_fm801_capture_close,
676 	.ioctl =	snd_pcm_lib_ioctl,
677 	.hw_params =	snd_fm801_hw_params,
678 	.hw_free =	snd_fm801_hw_free,
679 	.prepare =	snd_fm801_capture_prepare,
680 	.trigger =	snd_fm801_capture_trigger,
681 	.pointer =	snd_fm801_capture_pointer,
682 };
683 
684 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
685 {
686 	struct snd_pcm *pcm;
687 	int err;
688 
689 	if (rpcm)
690 		*rpcm = NULL;
691 	if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
692 		return err;
693 
694 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
695 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
696 
697 	pcm->private_data = chip;
698 	pcm->info_flags = 0;
699 	strcpy(pcm->name, "FM801");
700 	chip->pcm = pcm;
701 
702 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
703 					      snd_dma_pci_data(chip->pci),
704 					      chip->multichannel ? 128*1024 : 64*1024, 128*1024);
705 
706 	if (rpcm)
707 		*rpcm = pcm;
708 	return 0;
709 }
710 
711 /*
712  *  TEA5757 radio
713  */
714 
715 #ifdef TEA575X_RADIO
716 
717 /* 256PCS GPIO numbers */
718 #define TEA_256PCS_DATA			1
719 #define TEA_256PCS_WRITE_ENABLE		2	/* inverted */
720 #define TEA_256PCS_BUS_CLOCK		3
721 
722 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
723 {
724 	struct fm801 *chip = tea->private_data;
725 	unsigned short reg;
726 	int i = 25;
727 
728 	spin_lock_irq(&chip->reg_lock);
729 	reg = inw(FM801_REG(chip, GPIO_CTRL));
730 	/* use GPIO lines and set write enable bit */
731 	reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
732 	       FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
733 	       FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
734 	/* all of lines are in the write direction */
735 	/* clear data and clock lines */
736 	reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
737 	         FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
738 	         FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
739 	         FM801_GPIO_GP(TEA_256PCS_DATA) |
740 	         FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
741 		 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
742 	outw(reg, FM801_REG(chip, GPIO_CTRL));
743 	udelay(1);
744 
745 	while (i--) {
746 		if (val & (1 << i))
747 			reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
748 		else
749 			reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
750 		outw(reg, FM801_REG(chip, GPIO_CTRL));
751 		udelay(1);
752 		reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
753 		outw(reg, FM801_REG(chip, GPIO_CTRL));
754 		reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
755 		outw(reg, FM801_REG(chip, GPIO_CTRL));
756 		udelay(1);
757 	}
758 
759 	/* and reset the write enable bit */
760 	reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
761 	       FM801_GPIO_GP(TEA_256PCS_DATA);
762 	outw(reg, FM801_REG(chip, GPIO_CTRL));
763 	spin_unlock_irq(&chip->reg_lock);
764 }
765 
766 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
767 {
768 	struct fm801 *chip = tea->private_data;
769 	unsigned short reg;
770 	unsigned int val = 0;
771 	int i;
772 
773 	spin_lock_irq(&chip->reg_lock);
774 	reg = inw(FM801_REG(chip, GPIO_CTRL));
775 	/* use GPIO lines, set data direction to input */
776 	reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
777 	       FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
778 	       FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
779 	       FM801_GPIO_GD(TEA_256PCS_DATA) |
780 	       FM801_GPIO_GP(TEA_256PCS_DATA) |
781 	       FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
782 	/* all of lines are in the write direction, except data */
783 	/* clear data, write enable and clock lines */
784 	reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
785 	         FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
786 	         FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
787 
788 	for (i = 0; i < 24; i++) {
789 		reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
790 		outw(reg, FM801_REG(chip, GPIO_CTRL));
791 		udelay(1);
792 		reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
793 		outw(reg, FM801_REG(chip, GPIO_CTRL));
794 		udelay(1);
795 		val <<= 1;
796 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
797 			val |= 1;
798 	}
799 
800 	spin_unlock_irq(&chip->reg_lock);
801 
802 	return val;
803 }
804 
805 /* 256PCPR GPIO numbers */
806 #define TEA_256PCPR_BUS_CLOCK		0
807 #define TEA_256PCPR_DATA		1
808 #define TEA_256PCPR_WRITE_ENABLE	2	/* inverted */
809 
810 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
811 {
812 	struct fm801 *chip = tea->private_data;
813 	unsigned short reg;
814 	int i = 25;
815 
816 	spin_lock_irq(&chip->reg_lock);
817 	reg = inw(FM801_REG(chip, GPIO_CTRL));
818 	/* use GPIO lines and set write enable bit */
819 	reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
820 	       FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
821 	       FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
822 	/* all of lines are in the write direction */
823 	/* clear data and clock lines */
824 	reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
825 	         FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
826 	         FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
827 	         FM801_GPIO_GP(TEA_256PCPR_DATA) |
828 	         FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
829 		 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
830 	outw(reg, FM801_REG(chip, GPIO_CTRL));
831 	udelay(1);
832 
833 	while (i--) {
834 		if (val & (1 << i))
835 			reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
836 		else
837 			reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
838 		outw(reg, FM801_REG(chip, GPIO_CTRL));
839 		udelay(1);
840 		reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
841 		outw(reg, FM801_REG(chip, GPIO_CTRL));
842 		reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
843 		outw(reg, FM801_REG(chip, GPIO_CTRL));
844 		udelay(1);
845 	}
846 
847 	/* and reset the write enable bit */
848 	reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
849 	       FM801_GPIO_GP(TEA_256PCPR_DATA);
850 	outw(reg, FM801_REG(chip, GPIO_CTRL));
851 	spin_unlock_irq(&chip->reg_lock);
852 }
853 
854 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
855 {
856 	struct fm801 *chip = tea->private_data;
857 	unsigned short reg;
858 	unsigned int val = 0;
859 	int i;
860 
861 	spin_lock_irq(&chip->reg_lock);
862 	reg = inw(FM801_REG(chip, GPIO_CTRL));
863 	/* use GPIO lines, set data direction to input */
864 	reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
865 	       FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
866 	       FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
867 	       FM801_GPIO_GD(TEA_256PCPR_DATA) |
868 	       FM801_GPIO_GP(TEA_256PCPR_DATA) |
869 	       FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
870 	/* all of lines are in the write direction, except data */
871 	/* clear data, write enable and clock lines */
872 	reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
873 	         FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
874 	         FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
875 
876 	for (i = 0; i < 24; i++) {
877 		reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
878 		outw(reg, FM801_REG(chip, GPIO_CTRL));
879 		udelay(1);
880 		reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
881 		outw(reg, FM801_REG(chip, GPIO_CTRL));
882 		udelay(1);
883 		val <<= 1;
884 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
885 			val |= 1;
886 	}
887 
888 	spin_unlock_irq(&chip->reg_lock);
889 
890 	return val;
891 }
892 
893 /* 64PCR GPIO numbers */
894 #define TEA_64PCR_BUS_CLOCK		0
895 #define TEA_64PCR_WRITE_ENABLE		1	/* inverted */
896 #define TEA_64PCR_DATA			2
897 
898 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
899 {
900 	struct fm801 *chip = tea->private_data;
901 	unsigned short reg;
902 	int i = 25;
903 
904 	spin_lock_irq(&chip->reg_lock);
905 	reg = inw(FM801_REG(chip, GPIO_CTRL));
906 	/* use GPIO lines and set write enable bit */
907 	reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
908 	       FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
909 	       FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
910 	/* all of lines are in the write direction */
911 	/* clear data and clock lines */
912 	reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
913 	         FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
914 	         FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
915 	         FM801_GPIO_GP(TEA_64PCR_DATA) |
916 	         FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
917 		 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
918 	outw(reg, FM801_REG(chip, GPIO_CTRL));
919 	udelay(1);
920 
921 	while (i--) {
922 		if (val & (1 << i))
923 			reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
924 		else
925 			reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
926 		outw(reg, FM801_REG(chip, GPIO_CTRL));
927 		udelay(1);
928 		reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
929 		outw(reg, FM801_REG(chip, GPIO_CTRL));
930 		reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
931 		outw(reg, FM801_REG(chip, GPIO_CTRL));
932 		udelay(1);
933 	}
934 
935 	/* and reset the write enable bit */
936 	reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
937 	       FM801_GPIO_GP(TEA_64PCR_DATA);
938 	outw(reg, FM801_REG(chip, GPIO_CTRL));
939 	spin_unlock_irq(&chip->reg_lock);
940 }
941 
942 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
943 {
944 	struct fm801 *chip = tea->private_data;
945 	unsigned short reg;
946 	unsigned int val = 0;
947 	int i;
948 
949 	spin_lock_irq(&chip->reg_lock);
950 	reg = inw(FM801_REG(chip, GPIO_CTRL));
951 	/* use GPIO lines, set data direction to input */
952 	reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
953 	       FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
954 	       FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
955 	       FM801_GPIO_GD(TEA_64PCR_DATA) |
956 	       FM801_GPIO_GP(TEA_64PCR_DATA) |
957 	       FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
958 	/* all of lines are in the write direction, except data */
959 	/* clear data, write enable and clock lines */
960 	reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
961 	         FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
962 	         FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
963 
964 	for (i = 0; i < 24; i++) {
965 		reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
966 		outw(reg, FM801_REG(chip, GPIO_CTRL));
967 		udelay(1);
968 		reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
969 		outw(reg, FM801_REG(chip, GPIO_CTRL));
970 		udelay(1);
971 		val <<= 1;
972 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
973 			val |= 1;
974 	}
975 
976 	spin_unlock_irq(&chip->reg_lock);
977 
978 	return val;
979 }
980 
981 static void snd_fm801_tea575x_64pcr_mute(struct snd_tea575x *tea,
982 					  unsigned int mute)
983 {
984 	struct fm801 *chip = tea->private_data;
985 	unsigned short reg;
986 
987 	spin_lock_irq(&chip->reg_lock);
988 
989 	reg = inw(FM801_REG(chip, GPIO_CTRL));
990 	if (mute)
991 		/* 0xf800 (mute) */
992 		reg &= ~FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
993 	else
994 		/* 0xf802 (unmute) */
995 		reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
996 	outw(reg, FM801_REG(chip, GPIO_CTRL));
997 	udelay(1);
998 
999 	spin_unlock_irq(&chip->reg_lock);
1000 }
1001 
1002 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
1003 	{
1004 		/* 1 = MediaForte 256-PCS */
1005 		.write = snd_fm801_tea575x_256pcs_write,
1006 		.read = snd_fm801_tea575x_256pcs_read,
1007 	},
1008 	{
1009 		/* 2 = MediaForte 256-PCPR */
1010 		.write = snd_fm801_tea575x_256pcpr_write,
1011 		.read = snd_fm801_tea575x_256pcpr_read,
1012 	},
1013 	{
1014 		/* 3 = MediaForte 64-PCR */
1015 		.write = snd_fm801_tea575x_64pcr_write,
1016 		.read = snd_fm801_tea575x_64pcr_read,
1017 		.mute = snd_fm801_tea575x_64pcr_mute,
1018 	}
1019 };
1020 #endif
1021 
1022 /*
1023  *  Mixer routines
1024  */
1025 
1026 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1027 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1028   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1029   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1030 
1031 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1032 				 struct snd_ctl_elem_info *uinfo)
1033 {
1034 	int mask = (kcontrol->private_value >> 16) & 0xff;
1035 
1036 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1037 	uinfo->count = 1;
1038 	uinfo->value.integer.min = 0;
1039 	uinfo->value.integer.max = mask;
1040 	return 0;
1041 }
1042 
1043 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1044 				struct snd_ctl_elem_value *ucontrol)
1045 {
1046 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1047 	int reg = kcontrol->private_value & 0xff;
1048 	int shift = (kcontrol->private_value >> 8) & 0xff;
1049 	int mask = (kcontrol->private_value >> 16) & 0xff;
1050 	int invert = (kcontrol->private_value >> 24) & 0xff;
1051 
1052 	ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1053 	if (invert)
1054 		ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1055 	return 0;
1056 }
1057 
1058 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1059 				struct snd_ctl_elem_value *ucontrol)
1060 {
1061 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1062 	int reg = kcontrol->private_value & 0xff;
1063 	int shift = (kcontrol->private_value >> 8) & 0xff;
1064 	int mask = (kcontrol->private_value >> 16) & 0xff;
1065 	int invert = (kcontrol->private_value >> 24) & 0xff;
1066 	unsigned short val;
1067 
1068 	val = (ucontrol->value.integer.value[0] & mask);
1069 	if (invert)
1070 		val = mask - val;
1071 	return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1072 }
1073 
1074 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1075 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1076   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1077   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1078 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
1079 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1080   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1081   .name = xname, .info = snd_fm801_info_double, \
1082   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1083   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
1084   .tlv = { .p = (xtlv) } }
1085 
1086 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1087 				 struct snd_ctl_elem_info *uinfo)
1088 {
1089 	int mask = (kcontrol->private_value >> 16) & 0xff;
1090 
1091 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1092 	uinfo->count = 2;
1093 	uinfo->value.integer.min = 0;
1094 	uinfo->value.integer.max = mask;
1095 	return 0;
1096 }
1097 
1098 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1099 				struct snd_ctl_elem_value *ucontrol)
1100 {
1101 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1102         int reg = kcontrol->private_value & 0xff;
1103 	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1104 	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1105 	int mask = (kcontrol->private_value >> 16) & 0xff;
1106 	int invert = (kcontrol->private_value >> 24) & 0xff;
1107 
1108 	spin_lock_irq(&chip->reg_lock);
1109 	ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1110 	ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1111 	spin_unlock_irq(&chip->reg_lock);
1112 	if (invert) {
1113 		ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1114 		ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1115 	}
1116 	return 0;
1117 }
1118 
1119 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1120 				struct snd_ctl_elem_value *ucontrol)
1121 {
1122 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1123 	int reg = kcontrol->private_value & 0xff;
1124 	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1125 	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1126 	int mask = (kcontrol->private_value >> 16) & 0xff;
1127 	int invert = (kcontrol->private_value >> 24) & 0xff;
1128 	unsigned short val1, val2;
1129 
1130 	val1 = ucontrol->value.integer.value[0] & mask;
1131 	val2 = ucontrol->value.integer.value[1] & mask;
1132 	if (invert) {
1133 		val1 = mask - val1;
1134 		val2 = mask - val2;
1135 	}
1136 	return snd_fm801_update_bits(chip, reg,
1137 				     (mask << shift_left) | (mask << shift_right),
1138 				     (val1 << shift_left ) | (val2 << shift_right));
1139 }
1140 
1141 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1142 			      struct snd_ctl_elem_info *uinfo)
1143 {
1144 	static char *texts[5] = {
1145 		"AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1146 	};
1147 
1148 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1149 	uinfo->count = 1;
1150 	uinfo->value.enumerated.items = 5;
1151 	if (uinfo->value.enumerated.item > 4)
1152 		uinfo->value.enumerated.item = 4;
1153 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1154 	return 0;
1155 }
1156 
1157 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1158 			     struct snd_ctl_elem_value *ucontrol)
1159 {
1160 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1161         unsigned short val;
1162 
1163 	val = inw(FM801_REG(chip, REC_SRC)) & 7;
1164 	if (val > 4)
1165 		val = 4;
1166         ucontrol->value.enumerated.item[0] = val;
1167         return 0;
1168 }
1169 
1170 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1171 			     struct snd_ctl_elem_value *ucontrol)
1172 {
1173 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1174         unsigned short val;
1175 
1176         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1177                 return -EINVAL;
1178 	return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1179 }
1180 
1181 static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
1182 
1183 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1184 
1185 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1186 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
1187 		 db_scale_dsp),
1188 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1189 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
1190 		 db_scale_dsp),
1191 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1192 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
1193 		 db_scale_dsp),
1194 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1195 {
1196 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1197 	.name = "Digital Capture Source",
1198 	.info = snd_fm801_info_mux,
1199 	.get = snd_fm801_get_mux,
1200 	.put = snd_fm801_put_mux,
1201 }
1202 };
1203 
1204 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1205 
1206 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1207 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1208 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1209 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1210 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1211 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1212 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1213 };
1214 
1215 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1216 {
1217 	struct fm801 *chip = bus->private_data;
1218 	chip->ac97_bus = NULL;
1219 }
1220 
1221 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1222 {
1223 	struct fm801 *chip = ac97->private_data;
1224 	if (ac97->num == 0) {
1225 		chip->ac97 = NULL;
1226 	} else {
1227 		chip->ac97_sec = NULL;
1228 	}
1229 }
1230 
1231 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1232 {
1233 	struct snd_ac97_template ac97;
1234 	unsigned int i;
1235 	int err;
1236 	static struct snd_ac97_bus_ops ops = {
1237 		.write = snd_fm801_codec_write,
1238 		.read = snd_fm801_codec_read,
1239 	};
1240 
1241 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1242 		return err;
1243 	chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1244 
1245 	memset(&ac97, 0, sizeof(ac97));
1246 	ac97.private_data = chip;
1247 	ac97.private_free = snd_fm801_mixer_free_ac97;
1248 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1249 		return err;
1250 	if (chip->secondary) {
1251 		ac97.num = 1;
1252 		ac97.addr = chip->secondary_addr;
1253 		if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1254 			return err;
1255 	}
1256 	for (i = 0; i < FM801_CONTROLS; i++)
1257 		snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1258 	if (chip->multichannel) {
1259 		for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1260 			snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1261 	}
1262 	return 0;
1263 }
1264 
1265 /*
1266  *  initialization routines
1267  */
1268 
1269 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1270 			  unsigned short reg, unsigned long waits)
1271 {
1272 	unsigned long timeout = jiffies + waits;
1273 
1274 	outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1275 	     FM801_REG(chip, AC97_CMD));
1276 	udelay(5);
1277 	do {
1278 		if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1279 		    == FM801_AC97_VALID)
1280 			return 0;
1281 		schedule_timeout_uninterruptible(1);
1282 	} while (time_after(timeout, jiffies));
1283 	return -EIO;
1284 }
1285 
1286 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1287 {
1288 	unsigned short cmdw;
1289 
1290 	if (chip->tea575x_tuner & 0x0010)
1291 		goto __ac97_ok;
1292 
1293 	/* codec cold reset + AC'97 warm reset */
1294 	outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1295 	inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1296 	udelay(100);
1297 	outw(0, FM801_REG(chip, CODEC_CTRL));
1298 
1299 	if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1300 		snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1301 		if (! resume)
1302 			return -EIO;
1303 	}
1304 
1305 	if (chip->multichannel) {
1306 		if (chip->secondary_addr) {
1307 			wait_for_codec(chip, chip->secondary_addr,
1308 				       AC97_VENDOR_ID1, msecs_to_jiffies(50));
1309 		} else {
1310 			/* my card has the secondary codec */
1311 			/* at address #3, so the loop is inverted */
1312 			int i;
1313 			for (i = 3; i > 0; i--) {
1314 				if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
1315 						     msecs_to_jiffies(50))) {
1316 					cmdw = inw(FM801_REG(chip, AC97_DATA));
1317 					if (cmdw != 0xffff && cmdw != 0) {
1318 						chip->secondary = 1;
1319 						chip->secondary_addr = i;
1320 						break;
1321 					}
1322 				}
1323 			}
1324 		}
1325 
1326 		/* the recovery phase, it seems that probing for non-existing codec might */
1327 		/* cause timeout problems */
1328 		wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1329 	}
1330 
1331       __ac97_ok:
1332 
1333 	/* init volume */
1334 	outw(0x0808, FM801_REG(chip, PCM_VOL));
1335 	outw(0x9f1f, FM801_REG(chip, FM_VOL));
1336 	outw(0x8808, FM801_REG(chip, I2S_VOL));
1337 
1338 	/* I2S control - I2S mode */
1339 	outw(0x0003, FM801_REG(chip, I2S_MODE));
1340 
1341 	/* interrupt setup */
1342 	cmdw = inw(FM801_REG(chip, IRQ_MASK));
1343 	if (chip->irq < 0)
1344 		cmdw |= 0x00c3;		/* mask everything, no PCM nor MPU */
1345 	else
1346 		cmdw &= ~0x0083;	/* unmask MPU, PLAYBACK & CAPTURE */
1347 	outw(cmdw, FM801_REG(chip, IRQ_MASK));
1348 
1349 	/* interrupt clear */
1350 	outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1351 
1352 	return 0;
1353 }
1354 
1355 
1356 static int snd_fm801_free(struct fm801 *chip)
1357 {
1358 	unsigned short cmdw;
1359 
1360 	if (chip->irq < 0)
1361 		goto __end_hw;
1362 
1363 	/* interrupt setup - mask everything */
1364 	cmdw = inw(FM801_REG(chip, IRQ_MASK));
1365 	cmdw |= 0x00c3;
1366 	outw(cmdw, FM801_REG(chip, IRQ_MASK));
1367 
1368       __end_hw:
1369 #ifdef TEA575X_RADIO
1370 	snd_tea575x_exit(&chip->tea);
1371 #endif
1372 	if (chip->irq >= 0)
1373 		free_irq(chip->irq, chip);
1374 	pci_release_regions(chip->pci);
1375 	pci_disable_device(chip->pci);
1376 
1377 	kfree(chip);
1378 	return 0;
1379 }
1380 
1381 static int snd_fm801_dev_free(struct snd_device *device)
1382 {
1383 	struct fm801 *chip = device->device_data;
1384 	return snd_fm801_free(chip);
1385 }
1386 
1387 static int __devinit snd_fm801_create(struct snd_card *card,
1388 				      struct pci_dev * pci,
1389 				      int tea575x_tuner,
1390 				      struct fm801 ** rchip)
1391 {
1392 	struct fm801 *chip;
1393 	int err;
1394 	static struct snd_device_ops ops = {
1395 		.dev_free =	snd_fm801_dev_free,
1396 	};
1397 
1398 	*rchip = NULL;
1399 	if ((err = pci_enable_device(pci)) < 0)
1400 		return err;
1401 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1402 	if (chip == NULL) {
1403 		pci_disable_device(pci);
1404 		return -ENOMEM;
1405 	}
1406 	spin_lock_init(&chip->reg_lock);
1407 	chip->card = card;
1408 	chip->pci = pci;
1409 	chip->irq = -1;
1410 	chip->tea575x_tuner = tea575x_tuner;
1411 	if ((err = pci_request_regions(pci, "FM801")) < 0) {
1412 		kfree(chip);
1413 		pci_disable_device(pci);
1414 		return err;
1415 	}
1416 	chip->port = pci_resource_start(pci, 0);
1417 	if ((tea575x_tuner & 0x0010) == 0) {
1418 		if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
1419 				"FM801", chip)) {
1420 			snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1421 			snd_fm801_free(chip);
1422 			return -EBUSY;
1423 		}
1424 		chip->irq = pci->irq;
1425 		pci_set_master(pci);
1426 	}
1427 
1428 	if (pci->revision >= 0xb1)	/* FM801-AU */
1429 		chip->multichannel = 1;
1430 
1431 	snd_fm801_chip_init(chip, 0);
1432 
1433 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1434 		snd_fm801_free(chip);
1435 		return err;
1436 	}
1437 
1438 	snd_card_set_dev(card, &pci->dev);
1439 
1440 #ifdef TEA575X_RADIO
1441 	if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
1442 		chip->tea.dev_nr = tea575x_tuner >> 16;
1443 		chip->tea.card = card;
1444 		chip->tea.freq_fixup = 10700;
1445 		chip->tea.private_data = chip;
1446 		chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
1447 		snd_tea575x_init(&chip->tea);
1448 	}
1449 #endif
1450 
1451 	*rchip = chip;
1452 	return 0;
1453 }
1454 
1455 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1456 					  const struct pci_device_id *pci_id)
1457 {
1458 	static int dev;
1459 	struct snd_card *card;
1460 	struct fm801 *chip;
1461 	struct snd_opl3 *opl3;
1462 	int err;
1463 
1464         if (dev >= SNDRV_CARDS)
1465                 return -ENODEV;
1466 	if (!enable[dev]) {
1467 		dev++;
1468 		return -ENOENT;
1469 	}
1470 
1471 	err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
1472 	if (err < 0)
1473 		return err;
1474 	if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1475 		snd_card_free(card);
1476 		return err;
1477 	}
1478 	card->private_data = chip;
1479 
1480 	strcpy(card->driver, "FM801");
1481 	strcpy(card->shortname, "ForteMedia FM801-");
1482 	strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1483 	sprintf(card->longname, "%s at 0x%lx, irq %i",
1484 		card->shortname, chip->port, chip->irq);
1485 
1486 	if (tea575x_tuner[dev] & 0x0010)
1487 		goto __fm801_tuner_only;
1488 
1489 	if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1490 		snd_card_free(card);
1491 		return err;
1492 	}
1493 	if ((err = snd_fm801_mixer(chip)) < 0) {
1494 		snd_card_free(card);
1495 		return err;
1496 	}
1497 	if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1498 				       FM801_REG(chip, MPU401_DATA),
1499 				       MPU401_INFO_INTEGRATED,
1500 				       chip->irq, 0, &chip->rmidi)) < 0) {
1501 		snd_card_free(card);
1502 		return err;
1503 	}
1504 	if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1505 				   FM801_REG(chip, OPL3_BANK1),
1506 				   OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1507 		snd_card_free(card);
1508 		return err;
1509 	}
1510 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1511 		snd_card_free(card);
1512 		return err;
1513 	}
1514 
1515       __fm801_tuner_only:
1516 	if ((err = snd_card_register(card)) < 0) {
1517 		snd_card_free(card);
1518 		return err;
1519 	}
1520 	pci_set_drvdata(pci, card);
1521 	dev++;
1522 	return 0;
1523 }
1524 
1525 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1526 {
1527 	snd_card_free(pci_get_drvdata(pci));
1528 	pci_set_drvdata(pci, NULL);
1529 }
1530 
1531 #ifdef CONFIG_PM
1532 static unsigned char saved_regs[] = {
1533 	FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1534 	FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1535 	FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1536 	FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1537 };
1538 
1539 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1540 {
1541 	struct snd_card *card = pci_get_drvdata(pci);
1542 	struct fm801 *chip = card->private_data;
1543 	int i;
1544 
1545 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1546 	snd_pcm_suspend_all(chip->pcm);
1547 	snd_ac97_suspend(chip->ac97);
1548 	snd_ac97_suspend(chip->ac97_sec);
1549 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1550 		chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1551 	/* FIXME: tea575x suspend */
1552 
1553 	pci_disable_device(pci);
1554 	pci_save_state(pci);
1555 	pci_set_power_state(pci, pci_choose_state(pci, state));
1556 	return 0;
1557 }
1558 
1559 static int snd_fm801_resume(struct pci_dev *pci)
1560 {
1561 	struct snd_card *card = pci_get_drvdata(pci);
1562 	struct fm801 *chip = card->private_data;
1563 	int i;
1564 
1565 	pci_set_power_state(pci, PCI_D0);
1566 	pci_restore_state(pci);
1567 	if (pci_enable_device(pci) < 0) {
1568 		printk(KERN_ERR "fm801: pci_enable_device failed, "
1569 		       "disabling device\n");
1570 		snd_card_disconnect(card);
1571 		return -EIO;
1572 	}
1573 	pci_set_master(pci);
1574 
1575 	snd_fm801_chip_init(chip, 1);
1576 	snd_ac97_resume(chip->ac97);
1577 	snd_ac97_resume(chip->ac97_sec);
1578 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1579 		outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1580 
1581 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1582 	return 0;
1583 }
1584 #endif
1585 
1586 static struct pci_driver driver = {
1587 	.name = "FM801",
1588 	.id_table = snd_fm801_ids,
1589 	.probe = snd_card_fm801_probe,
1590 	.remove = __devexit_p(snd_card_fm801_remove),
1591 #ifdef CONFIG_PM
1592 	.suspend = snd_fm801_suspend,
1593 	.resume = snd_fm801_resume,
1594 #endif
1595 };
1596 
1597 static int __init alsa_card_fm801_init(void)
1598 {
1599 	return pci_register_driver(&driver);
1600 }
1601 
1602 static void __exit alsa_card_fm801_exit(void)
1603 {
1604 	pci_unregister_driver(&driver);
1605 }
1606 
1607 module_init(alsa_card_fm801_init)
1608 module_exit(alsa_card_fm801_exit)
1609