1 /* 2 * The driver for the ForteMedia FM801 based soundcards 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * Support FM only card by Andy Shevchenko <andy@smile.org.ua> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/delay.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/pci.h> 27 #include <linux/slab.h> 28 #include <linux/moduleparam.h> 29 #include <sound/core.h> 30 #include <sound/pcm.h> 31 #include <sound/tlv.h> 32 #include <sound/ac97_codec.h> 33 #include <sound/mpu401.h> 34 #include <sound/opl3.h> 35 #include <sound/initval.h> 36 37 #include <asm/io.h> 38 39 #ifdef CONFIG_SND_FM801_TEA575X_BOOL 40 #include <sound/tea575x-tuner.h> 41 #define TEA575X_RADIO 1 42 #endif 43 44 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 45 MODULE_DESCRIPTION("ForteMedia FM801"); 46 MODULE_LICENSE("GPL"); 47 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801}," 48 "{Genius,SoundMaker Live 5.1}}"); 49 50 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 51 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 52 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 53 /* 54 * Enable TEA575x tuner 55 * 1 = MediaForte 256-PCS 56 * 2 = MediaForte 256-PCPR 57 * 3 = MediaForte 64-PCR 58 * 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card 59 * High 16-bits are video (radio) device number + 1 60 */ 61 static int tea575x_tuner[SNDRV_CARDS]; 62 63 module_param_array(index, int, NULL, 0444); 64 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard."); 65 module_param_array(id, charp, NULL, 0444); 66 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard."); 67 module_param_array(enable, bool, NULL, 0444); 68 MODULE_PARM_DESC(enable, "Enable FM801 soundcard."); 69 module_param_array(tea575x_tuner, int, NULL, 0444); 70 MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (1 = SF256-PCS, 2=SF256-PCPR, 3=SF64-PCR, +16=tuner-only)."); 71 72 #define TUNER_ONLY (1<<4) 73 #define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF) 74 75 /* 76 * Direct registers 77 */ 78 79 #define FM801_REG(chip, reg) (chip->port + FM801_##reg) 80 81 #define FM801_PCM_VOL 0x00 /* PCM Output Volume */ 82 #define FM801_FM_VOL 0x02 /* FM Output Volume */ 83 #define FM801_I2S_VOL 0x04 /* I2S Volume */ 84 #define FM801_REC_SRC 0x06 /* Record Source */ 85 #define FM801_PLY_CTRL 0x08 /* Playback Control */ 86 #define FM801_PLY_COUNT 0x0a /* Playback Count */ 87 #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */ 88 #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */ 89 #define FM801_CAP_CTRL 0x14 /* Capture Control */ 90 #define FM801_CAP_COUNT 0x16 /* Capture Count */ 91 #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */ 92 #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */ 93 #define FM801_CODEC_CTRL 0x22 /* Codec Control */ 94 #define FM801_I2S_MODE 0x24 /* I2S Mode Control */ 95 #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */ 96 #define FM801_I2C_CTRL 0x29 /* I2C Control */ 97 #define FM801_AC97_CMD 0x2a /* AC'97 Command */ 98 #define FM801_AC97_DATA 0x2c /* AC'97 Data */ 99 #define FM801_MPU401_DATA 0x30 /* MPU401 Data */ 100 #define FM801_MPU401_CMD 0x31 /* MPU401 Command */ 101 #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */ 102 #define FM801_GEN_CTRL 0x54 /* General Control */ 103 #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */ 104 #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */ 105 #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */ 106 #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */ 107 #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */ 108 #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */ 109 #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */ 110 111 /* codec access */ 112 #define FM801_AC97_READ (1<<7) /* read=1, write=0 */ 113 #define FM801_AC97_VALID (1<<8) /* port valid=1 */ 114 #define FM801_AC97_BUSY (1<<9) /* busy=1 */ 115 #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */ 116 117 /* playback and record control register bits */ 118 #define FM801_BUF1_LAST (1<<1) 119 #define FM801_BUF2_LAST (1<<2) 120 #define FM801_START (1<<5) 121 #define FM801_PAUSE (1<<6) 122 #define FM801_IMMED_STOP (1<<7) 123 #define FM801_RATE_SHIFT 8 124 #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT) 125 #define FM801_CHANNELS_4 (1<<12) /* playback only */ 126 #define FM801_CHANNELS_6 (2<<12) /* playback only */ 127 #define FM801_CHANNELS_6MS (3<<12) /* playback only */ 128 #define FM801_CHANNELS_MASK (3<<12) 129 #define FM801_16BIT (1<<14) 130 #define FM801_STEREO (1<<15) 131 132 /* IRQ status bits */ 133 #define FM801_IRQ_PLAYBACK (1<<8) 134 #define FM801_IRQ_CAPTURE (1<<9) 135 #define FM801_IRQ_VOLUME (1<<14) 136 #define FM801_IRQ_MPU (1<<15) 137 138 /* GPIO control register */ 139 #define FM801_GPIO_GP0 (1<<0) /* read/write */ 140 #define FM801_GPIO_GP1 (1<<1) 141 #define FM801_GPIO_GP2 (1<<2) 142 #define FM801_GPIO_GP3 (1<<3) 143 #define FM801_GPIO_GP(x) (1<<(0+(x))) 144 #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/ 145 #define FM801_GPIO_GD1 (1<<9) 146 #define FM801_GPIO_GD2 (1<<10) 147 #define FM801_GPIO_GD3 (1<<11) 148 #define FM801_GPIO_GD(x) (1<<(8+(x))) 149 #define FM801_GPIO_GS0 (1<<12) /* function select: */ 150 #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */ 151 #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */ 152 #define FM801_GPIO_GS3 (1<<15) 153 #define FM801_GPIO_GS(x) (1<<(12+(x))) 154 155 /* 156 157 */ 158 159 struct fm801 { 160 int irq; 161 162 unsigned long port; /* I/O port number */ 163 unsigned int multichannel: 1, /* multichannel support */ 164 secondary: 1; /* secondary codec */ 165 unsigned char secondary_addr; /* address of the secondary codec */ 166 unsigned int tea575x_tuner; /* tuner access method & flags */ 167 168 unsigned short ply_ctrl; /* playback control */ 169 unsigned short cap_ctrl; /* capture control */ 170 171 unsigned long ply_buffer; 172 unsigned int ply_buf; 173 unsigned int ply_count; 174 unsigned int ply_size; 175 unsigned int ply_pos; 176 177 unsigned long cap_buffer; 178 unsigned int cap_buf; 179 unsigned int cap_count; 180 unsigned int cap_size; 181 unsigned int cap_pos; 182 183 struct snd_ac97_bus *ac97_bus; 184 struct snd_ac97 *ac97; 185 struct snd_ac97 *ac97_sec; 186 187 struct pci_dev *pci; 188 struct snd_card *card; 189 struct snd_pcm *pcm; 190 struct snd_rawmidi *rmidi; 191 struct snd_pcm_substream *playback_substream; 192 struct snd_pcm_substream *capture_substream; 193 unsigned int p_dma_size; 194 unsigned int c_dma_size; 195 196 spinlock_t reg_lock; 197 struct snd_info_entry *proc_entry; 198 199 #ifdef TEA575X_RADIO 200 struct snd_tea575x tea; 201 #endif 202 203 #ifdef CONFIG_PM 204 u16 saved_regs[0x20]; 205 #endif 206 }; 207 208 static struct pci_device_id snd_fm801_ids[] = { 209 { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */ 210 { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */ 211 { 0, } 212 }; 213 214 MODULE_DEVICE_TABLE(pci, snd_fm801_ids); 215 216 /* 217 * common I/O routines 218 */ 219 220 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg, 221 unsigned short mask, unsigned short value) 222 { 223 int change; 224 unsigned long flags; 225 unsigned short old, new; 226 227 spin_lock_irqsave(&chip->reg_lock, flags); 228 old = inw(chip->port + reg); 229 new = (old & ~mask) | value; 230 change = old != new; 231 if (change) 232 outw(new, chip->port + reg); 233 spin_unlock_irqrestore(&chip->reg_lock, flags); 234 return change; 235 } 236 237 static void snd_fm801_codec_write(struct snd_ac97 *ac97, 238 unsigned short reg, 239 unsigned short val) 240 { 241 struct fm801 *chip = ac97->private_data; 242 int idx; 243 244 /* 245 * Wait until the codec interface is not ready.. 246 */ 247 for (idx = 0; idx < 100; idx++) { 248 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) 249 goto ok1; 250 udelay(10); 251 } 252 snd_printk(KERN_ERR "AC'97 interface is busy (1)\n"); 253 return; 254 255 ok1: 256 /* write data and address */ 257 outw(val, FM801_REG(chip, AC97_DATA)); 258 outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD)); 259 /* 260 * Wait until the write command is not completed.. 261 */ 262 for (idx = 0; idx < 1000; idx++) { 263 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) 264 return; 265 udelay(10); 266 } 267 snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num); 268 } 269 270 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg) 271 { 272 struct fm801 *chip = ac97->private_data; 273 int idx; 274 275 /* 276 * Wait until the codec interface is not ready.. 277 */ 278 for (idx = 0; idx < 100; idx++) { 279 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) 280 goto ok1; 281 udelay(10); 282 } 283 snd_printk(KERN_ERR "AC'97 interface is busy (1)\n"); 284 return 0; 285 286 ok1: 287 /* read command */ 288 outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ, 289 FM801_REG(chip, AC97_CMD)); 290 for (idx = 0; idx < 100; idx++) { 291 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY)) 292 goto ok2; 293 udelay(10); 294 } 295 snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num); 296 return 0; 297 298 ok2: 299 for (idx = 0; idx < 1000; idx++) { 300 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID) 301 goto ok3; 302 udelay(10); 303 } 304 snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num); 305 return 0; 306 307 ok3: 308 return inw(FM801_REG(chip, AC97_DATA)); 309 } 310 311 static unsigned int rates[] = { 312 5500, 8000, 9600, 11025, 313 16000, 19200, 22050, 32000, 314 38400, 44100, 48000 315 }; 316 317 static struct snd_pcm_hw_constraint_list hw_constraints_rates = { 318 .count = ARRAY_SIZE(rates), 319 .list = rates, 320 .mask = 0, 321 }; 322 323 static unsigned int channels[] = { 324 2, 4, 6 325 }; 326 327 static struct snd_pcm_hw_constraint_list hw_constraints_channels = { 328 .count = ARRAY_SIZE(channels), 329 .list = channels, 330 .mask = 0, 331 }; 332 333 /* 334 * Sample rate routines 335 */ 336 337 static unsigned short snd_fm801_rate_bits(unsigned int rate) 338 { 339 unsigned int idx; 340 341 for (idx = 0; idx < ARRAY_SIZE(rates); idx++) 342 if (rates[idx] == rate) 343 return idx; 344 snd_BUG(); 345 return ARRAY_SIZE(rates) - 1; 346 } 347 348 /* 349 * PCM part 350 */ 351 352 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream, 353 int cmd) 354 { 355 struct fm801 *chip = snd_pcm_substream_chip(substream); 356 357 spin_lock(&chip->reg_lock); 358 switch (cmd) { 359 case SNDRV_PCM_TRIGGER_START: 360 chip->ply_ctrl &= ~(FM801_BUF1_LAST | 361 FM801_BUF2_LAST | 362 FM801_PAUSE); 363 chip->ply_ctrl |= FM801_START | 364 FM801_IMMED_STOP; 365 break; 366 case SNDRV_PCM_TRIGGER_STOP: 367 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE); 368 break; 369 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 370 case SNDRV_PCM_TRIGGER_SUSPEND: 371 chip->ply_ctrl |= FM801_PAUSE; 372 break; 373 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 374 case SNDRV_PCM_TRIGGER_RESUME: 375 chip->ply_ctrl &= ~FM801_PAUSE; 376 break; 377 default: 378 spin_unlock(&chip->reg_lock); 379 snd_BUG(); 380 return -EINVAL; 381 } 382 outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL)); 383 spin_unlock(&chip->reg_lock); 384 return 0; 385 } 386 387 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream, 388 int cmd) 389 { 390 struct fm801 *chip = snd_pcm_substream_chip(substream); 391 392 spin_lock(&chip->reg_lock); 393 switch (cmd) { 394 case SNDRV_PCM_TRIGGER_START: 395 chip->cap_ctrl &= ~(FM801_BUF1_LAST | 396 FM801_BUF2_LAST | 397 FM801_PAUSE); 398 chip->cap_ctrl |= FM801_START | 399 FM801_IMMED_STOP; 400 break; 401 case SNDRV_PCM_TRIGGER_STOP: 402 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE); 403 break; 404 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 405 case SNDRV_PCM_TRIGGER_SUSPEND: 406 chip->cap_ctrl |= FM801_PAUSE; 407 break; 408 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 409 case SNDRV_PCM_TRIGGER_RESUME: 410 chip->cap_ctrl &= ~FM801_PAUSE; 411 break; 412 default: 413 spin_unlock(&chip->reg_lock); 414 snd_BUG(); 415 return -EINVAL; 416 } 417 outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL)); 418 spin_unlock(&chip->reg_lock); 419 return 0; 420 } 421 422 static int snd_fm801_hw_params(struct snd_pcm_substream *substream, 423 struct snd_pcm_hw_params *hw_params) 424 { 425 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 426 } 427 428 static int snd_fm801_hw_free(struct snd_pcm_substream *substream) 429 { 430 return snd_pcm_lib_free_pages(substream); 431 } 432 433 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream) 434 { 435 struct fm801 *chip = snd_pcm_substream_chip(substream); 436 struct snd_pcm_runtime *runtime = substream->runtime; 437 438 chip->ply_size = snd_pcm_lib_buffer_bytes(substream); 439 chip->ply_count = snd_pcm_lib_period_bytes(substream); 440 spin_lock_irq(&chip->reg_lock); 441 chip->ply_ctrl &= ~(FM801_START | FM801_16BIT | 442 FM801_STEREO | FM801_RATE_MASK | 443 FM801_CHANNELS_MASK); 444 if (snd_pcm_format_width(runtime->format) == 16) 445 chip->ply_ctrl |= FM801_16BIT; 446 if (runtime->channels > 1) { 447 chip->ply_ctrl |= FM801_STEREO; 448 if (runtime->channels == 4) 449 chip->ply_ctrl |= FM801_CHANNELS_4; 450 else if (runtime->channels == 6) 451 chip->ply_ctrl |= FM801_CHANNELS_6; 452 } 453 chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; 454 chip->ply_buf = 0; 455 outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL)); 456 outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT)); 457 chip->ply_buffer = runtime->dma_addr; 458 chip->ply_pos = 0; 459 outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1)); 460 outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2)); 461 spin_unlock_irq(&chip->reg_lock); 462 return 0; 463 } 464 465 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream) 466 { 467 struct fm801 *chip = snd_pcm_substream_chip(substream); 468 struct snd_pcm_runtime *runtime = substream->runtime; 469 470 chip->cap_size = snd_pcm_lib_buffer_bytes(substream); 471 chip->cap_count = snd_pcm_lib_period_bytes(substream); 472 spin_lock_irq(&chip->reg_lock); 473 chip->cap_ctrl &= ~(FM801_START | FM801_16BIT | 474 FM801_STEREO | FM801_RATE_MASK); 475 if (snd_pcm_format_width(runtime->format) == 16) 476 chip->cap_ctrl |= FM801_16BIT; 477 if (runtime->channels > 1) 478 chip->cap_ctrl |= FM801_STEREO; 479 chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT; 480 chip->cap_buf = 0; 481 outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL)); 482 outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT)); 483 chip->cap_buffer = runtime->dma_addr; 484 chip->cap_pos = 0; 485 outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1)); 486 outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2)); 487 spin_unlock_irq(&chip->reg_lock); 488 return 0; 489 } 490 491 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream) 492 { 493 struct fm801 *chip = snd_pcm_substream_chip(substream); 494 size_t ptr; 495 496 if (!(chip->ply_ctrl & FM801_START)) 497 return 0; 498 spin_lock(&chip->reg_lock); 499 ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT)); 500 if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) { 501 ptr += chip->ply_count; 502 ptr %= chip->ply_size; 503 } 504 spin_unlock(&chip->reg_lock); 505 return bytes_to_frames(substream->runtime, ptr); 506 } 507 508 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream) 509 { 510 struct fm801 *chip = snd_pcm_substream_chip(substream); 511 size_t ptr; 512 513 if (!(chip->cap_ctrl & FM801_START)) 514 return 0; 515 spin_lock(&chip->reg_lock); 516 ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT)); 517 if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) { 518 ptr += chip->cap_count; 519 ptr %= chip->cap_size; 520 } 521 spin_unlock(&chip->reg_lock); 522 return bytes_to_frames(substream->runtime, ptr); 523 } 524 525 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id) 526 { 527 struct fm801 *chip = dev_id; 528 unsigned short status; 529 unsigned int tmp; 530 531 status = inw(FM801_REG(chip, IRQ_STATUS)); 532 status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME; 533 if (! status) 534 return IRQ_NONE; 535 /* ack first */ 536 outw(status, FM801_REG(chip, IRQ_STATUS)); 537 if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) { 538 spin_lock(&chip->reg_lock); 539 chip->ply_buf++; 540 chip->ply_pos += chip->ply_count; 541 chip->ply_pos %= chip->ply_size; 542 tmp = chip->ply_pos + chip->ply_count; 543 tmp %= chip->ply_size; 544 outl(chip->ply_buffer + tmp, 545 (chip->ply_buf & 1) ? 546 FM801_REG(chip, PLY_BUF1) : 547 FM801_REG(chip, PLY_BUF2)); 548 spin_unlock(&chip->reg_lock); 549 snd_pcm_period_elapsed(chip->playback_substream); 550 } 551 if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) { 552 spin_lock(&chip->reg_lock); 553 chip->cap_buf++; 554 chip->cap_pos += chip->cap_count; 555 chip->cap_pos %= chip->cap_size; 556 tmp = chip->cap_pos + chip->cap_count; 557 tmp %= chip->cap_size; 558 outl(chip->cap_buffer + tmp, 559 (chip->cap_buf & 1) ? 560 FM801_REG(chip, CAP_BUF1) : 561 FM801_REG(chip, CAP_BUF2)); 562 spin_unlock(&chip->reg_lock); 563 snd_pcm_period_elapsed(chip->capture_substream); 564 } 565 if (chip->rmidi && (status & FM801_IRQ_MPU)) 566 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data); 567 if (status & FM801_IRQ_VOLUME) 568 ;/* TODO */ 569 570 return IRQ_HANDLED; 571 } 572 573 static struct snd_pcm_hardware snd_fm801_playback = 574 { 575 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 576 SNDRV_PCM_INFO_BLOCK_TRANSFER | 577 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | 578 SNDRV_PCM_INFO_MMAP_VALID), 579 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 580 .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, 581 .rate_min = 5500, 582 .rate_max = 48000, 583 .channels_min = 1, 584 .channels_max = 2, 585 .buffer_bytes_max = (128*1024), 586 .period_bytes_min = 64, 587 .period_bytes_max = (128*1024), 588 .periods_min = 1, 589 .periods_max = 1024, 590 .fifo_size = 0, 591 }; 592 593 static struct snd_pcm_hardware snd_fm801_capture = 594 { 595 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 596 SNDRV_PCM_INFO_BLOCK_TRANSFER | 597 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME | 598 SNDRV_PCM_INFO_MMAP_VALID), 599 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 600 .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000, 601 .rate_min = 5500, 602 .rate_max = 48000, 603 .channels_min = 1, 604 .channels_max = 2, 605 .buffer_bytes_max = (128*1024), 606 .period_bytes_min = 64, 607 .period_bytes_max = (128*1024), 608 .periods_min = 1, 609 .periods_max = 1024, 610 .fifo_size = 0, 611 }; 612 613 static int snd_fm801_playback_open(struct snd_pcm_substream *substream) 614 { 615 struct fm801 *chip = snd_pcm_substream_chip(substream); 616 struct snd_pcm_runtime *runtime = substream->runtime; 617 int err; 618 619 chip->playback_substream = substream; 620 runtime->hw = snd_fm801_playback; 621 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 622 &hw_constraints_rates); 623 if (chip->multichannel) { 624 runtime->hw.channels_max = 6; 625 snd_pcm_hw_constraint_list(runtime, 0, 626 SNDRV_PCM_HW_PARAM_CHANNELS, 627 &hw_constraints_channels); 628 } 629 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) 630 return err; 631 return 0; 632 } 633 634 static int snd_fm801_capture_open(struct snd_pcm_substream *substream) 635 { 636 struct fm801 *chip = snd_pcm_substream_chip(substream); 637 struct snd_pcm_runtime *runtime = substream->runtime; 638 int err; 639 640 chip->capture_substream = substream; 641 runtime->hw = snd_fm801_capture; 642 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 643 &hw_constraints_rates); 644 if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) 645 return err; 646 return 0; 647 } 648 649 static int snd_fm801_playback_close(struct snd_pcm_substream *substream) 650 { 651 struct fm801 *chip = snd_pcm_substream_chip(substream); 652 653 chip->playback_substream = NULL; 654 return 0; 655 } 656 657 static int snd_fm801_capture_close(struct snd_pcm_substream *substream) 658 { 659 struct fm801 *chip = snd_pcm_substream_chip(substream); 660 661 chip->capture_substream = NULL; 662 return 0; 663 } 664 665 static struct snd_pcm_ops snd_fm801_playback_ops = { 666 .open = snd_fm801_playback_open, 667 .close = snd_fm801_playback_close, 668 .ioctl = snd_pcm_lib_ioctl, 669 .hw_params = snd_fm801_hw_params, 670 .hw_free = snd_fm801_hw_free, 671 .prepare = snd_fm801_playback_prepare, 672 .trigger = snd_fm801_playback_trigger, 673 .pointer = snd_fm801_playback_pointer, 674 }; 675 676 static struct snd_pcm_ops snd_fm801_capture_ops = { 677 .open = snd_fm801_capture_open, 678 .close = snd_fm801_capture_close, 679 .ioctl = snd_pcm_lib_ioctl, 680 .hw_params = snd_fm801_hw_params, 681 .hw_free = snd_fm801_hw_free, 682 .prepare = snd_fm801_capture_prepare, 683 .trigger = snd_fm801_capture_trigger, 684 .pointer = snd_fm801_capture_pointer, 685 }; 686 687 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm) 688 { 689 struct snd_pcm *pcm; 690 int err; 691 692 if (rpcm) 693 *rpcm = NULL; 694 if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0) 695 return err; 696 697 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops); 698 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops); 699 700 pcm->private_data = chip; 701 pcm->info_flags = 0; 702 strcpy(pcm->name, "FM801"); 703 chip->pcm = pcm; 704 705 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 706 snd_dma_pci_data(chip->pci), 707 chip->multichannel ? 128*1024 : 64*1024, 128*1024); 708 709 if (rpcm) 710 *rpcm = pcm; 711 return 0; 712 } 713 714 /* 715 * TEA5757 radio 716 */ 717 718 #ifdef TEA575X_RADIO 719 720 /* 256PCS GPIO numbers */ 721 #define TEA_256PCS_DATA 1 722 #define TEA_256PCS_WRITE_ENABLE 2 /* inverted */ 723 #define TEA_256PCS_BUS_CLOCK 3 724 725 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val) 726 { 727 struct fm801 *chip = tea->private_data; 728 unsigned short reg; 729 int i = 25; 730 731 spin_lock_irq(&chip->reg_lock); 732 reg = inw(FM801_REG(chip, GPIO_CTRL)); 733 /* use GPIO lines and set write enable bit */ 734 reg |= FM801_GPIO_GS(TEA_256PCS_DATA) | 735 FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) | 736 FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK); 737 /* all of lines are in the write direction */ 738 /* clear data and clock lines */ 739 reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) | 740 FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) | 741 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) | 742 FM801_GPIO_GP(TEA_256PCS_DATA) | 743 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) | 744 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE)); 745 outw(reg, FM801_REG(chip, GPIO_CTRL)); 746 udelay(1); 747 748 while (i--) { 749 if (val & (1 << i)) 750 reg |= FM801_GPIO_GP(TEA_256PCS_DATA); 751 else 752 reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA); 753 outw(reg, FM801_REG(chip, GPIO_CTRL)); 754 udelay(1); 755 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); 756 outw(reg, FM801_REG(chip, GPIO_CTRL)); 757 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); 758 outw(reg, FM801_REG(chip, GPIO_CTRL)); 759 udelay(1); 760 } 761 762 /* and reset the write enable bit */ 763 reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) | 764 FM801_GPIO_GP(TEA_256PCS_DATA); 765 outw(reg, FM801_REG(chip, GPIO_CTRL)); 766 spin_unlock_irq(&chip->reg_lock); 767 } 768 769 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea) 770 { 771 struct fm801 *chip = tea->private_data; 772 unsigned short reg; 773 unsigned int val = 0; 774 int i; 775 776 spin_lock_irq(&chip->reg_lock); 777 reg = inw(FM801_REG(chip, GPIO_CTRL)); 778 /* use GPIO lines, set data direction to input */ 779 reg |= FM801_GPIO_GS(TEA_256PCS_DATA) | 780 FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) | 781 FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) | 782 FM801_GPIO_GD(TEA_256PCS_DATA) | 783 FM801_GPIO_GP(TEA_256PCS_DATA) | 784 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE); 785 /* all of lines are in the write direction, except data */ 786 /* clear data, write enable and clock lines */ 787 reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) | 788 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) | 789 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK)); 790 791 for (i = 0; i < 24; i++) { 792 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); 793 outw(reg, FM801_REG(chip, GPIO_CTRL)); 794 udelay(1); 795 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK); 796 outw(reg, FM801_REG(chip, GPIO_CTRL)); 797 udelay(1); 798 val <<= 1; 799 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA)) 800 val |= 1; 801 } 802 803 spin_unlock_irq(&chip->reg_lock); 804 805 return val; 806 } 807 808 /* 256PCPR GPIO numbers */ 809 #define TEA_256PCPR_BUS_CLOCK 0 810 #define TEA_256PCPR_DATA 1 811 #define TEA_256PCPR_WRITE_ENABLE 2 /* inverted */ 812 813 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val) 814 { 815 struct fm801 *chip = tea->private_data; 816 unsigned short reg; 817 int i = 25; 818 819 spin_lock_irq(&chip->reg_lock); 820 reg = inw(FM801_REG(chip, GPIO_CTRL)); 821 /* use GPIO lines and set write enable bit */ 822 reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) | 823 FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) | 824 FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK); 825 /* all of lines are in the write direction */ 826 /* clear data and clock lines */ 827 reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) | 828 FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) | 829 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) | 830 FM801_GPIO_GP(TEA_256PCPR_DATA) | 831 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) | 832 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE)); 833 outw(reg, FM801_REG(chip, GPIO_CTRL)); 834 udelay(1); 835 836 while (i--) { 837 if (val & (1 << i)) 838 reg |= FM801_GPIO_GP(TEA_256PCPR_DATA); 839 else 840 reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA); 841 outw(reg, FM801_REG(chip, GPIO_CTRL)); 842 udelay(1); 843 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); 844 outw(reg, FM801_REG(chip, GPIO_CTRL)); 845 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); 846 outw(reg, FM801_REG(chip, GPIO_CTRL)); 847 udelay(1); 848 } 849 850 /* and reset the write enable bit */ 851 reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) | 852 FM801_GPIO_GP(TEA_256PCPR_DATA); 853 outw(reg, FM801_REG(chip, GPIO_CTRL)); 854 spin_unlock_irq(&chip->reg_lock); 855 } 856 857 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea) 858 { 859 struct fm801 *chip = tea->private_data; 860 unsigned short reg; 861 unsigned int val = 0; 862 int i; 863 864 spin_lock_irq(&chip->reg_lock); 865 reg = inw(FM801_REG(chip, GPIO_CTRL)); 866 /* use GPIO lines, set data direction to input */ 867 reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) | 868 FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) | 869 FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) | 870 FM801_GPIO_GD(TEA_256PCPR_DATA) | 871 FM801_GPIO_GP(TEA_256PCPR_DATA) | 872 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE); 873 /* all of lines are in the write direction, except data */ 874 /* clear data, write enable and clock lines */ 875 reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) | 876 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) | 877 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK)); 878 879 for (i = 0; i < 24; i++) { 880 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); 881 outw(reg, FM801_REG(chip, GPIO_CTRL)); 882 udelay(1); 883 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK); 884 outw(reg, FM801_REG(chip, GPIO_CTRL)); 885 udelay(1); 886 val <<= 1; 887 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA)) 888 val |= 1; 889 } 890 891 spin_unlock_irq(&chip->reg_lock); 892 893 return val; 894 } 895 896 /* 64PCR GPIO numbers */ 897 #define TEA_64PCR_BUS_CLOCK 0 898 #define TEA_64PCR_WRITE_ENABLE 1 /* inverted */ 899 #define TEA_64PCR_DATA 2 900 901 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val) 902 { 903 struct fm801 *chip = tea->private_data; 904 unsigned short reg; 905 int i = 25; 906 907 spin_lock_irq(&chip->reg_lock); 908 reg = inw(FM801_REG(chip, GPIO_CTRL)); 909 /* use GPIO lines and set write enable bit */ 910 reg |= FM801_GPIO_GS(TEA_64PCR_DATA) | 911 FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) | 912 FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK); 913 /* all of lines are in the write direction */ 914 /* clear data and clock lines */ 915 reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) | 916 FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) | 917 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) | 918 FM801_GPIO_GP(TEA_64PCR_DATA) | 919 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) | 920 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE)); 921 outw(reg, FM801_REG(chip, GPIO_CTRL)); 922 udelay(1); 923 924 while (i--) { 925 if (val & (1 << i)) 926 reg |= FM801_GPIO_GP(TEA_64PCR_DATA); 927 else 928 reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA); 929 outw(reg, FM801_REG(chip, GPIO_CTRL)); 930 udelay(1); 931 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); 932 outw(reg, FM801_REG(chip, GPIO_CTRL)); 933 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); 934 outw(reg, FM801_REG(chip, GPIO_CTRL)); 935 udelay(1); 936 } 937 938 /* and reset the write enable bit */ 939 reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) | 940 FM801_GPIO_GP(TEA_64PCR_DATA); 941 outw(reg, FM801_REG(chip, GPIO_CTRL)); 942 spin_unlock_irq(&chip->reg_lock); 943 } 944 945 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea) 946 { 947 struct fm801 *chip = tea->private_data; 948 unsigned short reg; 949 unsigned int val = 0; 950 int i; 951 952 spin_lock_irq(&chip->reg_lock); 953 reg = inw(FM801_REG(chip, GPIO_CTRL)); 954 /* use GPIO lines, set data direction to input */ 955 reg |= FM801_GPIO_GS(TEA_64PCR_DATA) | 956 FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) | 957 FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) | 958 FM801_GPIO_GD(TEA_64PCR_DATA) | 959 FM801_GPIO_GP(TEA_64PCR_DATA) | 960 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE); 961 /* all of lines are in the write direction, except data */ 962 /* clear data, write enable and clock lines */ 963 reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) | 964 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) | 965 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK)); 966 967 for (i = 0; i < 24; i++) { 968 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); 969 outw(reg, FM801_REG(chip, GPIO_CTRL)); 970 udelay(1); 971 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK); 972 outw(reg, FM801_REG(chip, GPIO_CTRL)); 973 udelay(1); 974 val <<= 1; 975 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA)) 976 val |= 1; 977 } 978 979 spin_unlock_irq(&chip->reg_lock); 980 981 return val; 982 } 983 984 static void snd_fm801_tea575x_64pcr_mute(struct snd_tea575x *tea, 985 unsigned int mute) 986 { 987 struct fm801 *chip = tea->private_data; 988 unsigned short reg; 989 990 spin_lock_irq(&chip->reg_lock); 991 992 reg = inw(FM801_REG(chip, GPIO_CTRL)); 993 if (mute) 994 /* 0xf800 (mute) */ 995 reg &= ~FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE); 996 else 997 /* 0xf802 (unmute) */ 998 reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE); 999 outw(reg, FM801_REG(chip, GPIO_CTRL)); 1000 udelay(1); 1001 1002 spin_unlock_irq(&chip->reg_lock); 1003 } 1004 1005 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = { 1006 { 1007 /* 1 = MediaForte 256-PCS */ 1008 .write = snd_fm801_tea575x_256pcs_write, 1009 .read = snd_fm801_tea575x_256pcs_read, 1010 }, 1011 { 1012 /* 2 = MediaForte 256-PCPR */ 1013 .write = snd_fm801_tea575x_256pcpr_write, 1014 .read = snd_fm801_tea575x_256pcpr_read, 1015 }, 1016 { 1017 /* 3 = MediaForte 64-PCR */ 1018 .write = snd_fm801_tea575x_64pcr_write, 1019 .read = snd_fm801_tea575x_64pcr_read, 1020 .mute = snd_fm801_tea575x_64pcr_mute, 1021 } 1022 }; 1023 #endif 1024 1025 /* 1026 * Mixer routines 1027 */ 1028 1029 #define FM801_SINGLE(xname, reg, shift, mask, invert) \ 1030 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \ 1031 .get = snd_fm801_get_single, .put = snd_fm801_put_single, \ 1032 .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) } 1033 1034 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol, 1035 struct snd_ctl_elem_info *uinfo) 1036 { 1037 int mask = (kcontrol->private_value >> 16) & 0xff; 1038 1039 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 1040 uinfo->count = 1; 1041 uinfo->value.integer.min = 0; 1042 uinfo->value.integer.max = mask; 1043 return 0; 1044 } 1045 1046 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol, 1047 struct snd_ctl_elem_value *ucontrol) 1048 { 1049 struct fm801 *chip = snd_kcontrol_chip(kcontrol); 1050 int reg = kcontrol->private_value & 0xff; 1051 int shift = (kcontrol->private_value >> 8) & 0xff; 1052 int mask = (kcontrol->private_value >> 16) & 0xff; 1053 int invert = (kcontrol->private_value >> 24) & 0xff; 1054 1055 ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask; 1056 if (invert) 1057 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; 1058 return 0; 1059 } 1060 1061 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol, 1062 struct snd_ctl_elem_value *ucontrol) 1063 { 1064 struct fm801 *chip = snd_kcontrol_chip(kcontrol); 1065 int reg = kcontrol->private_value & 0xff; 1066 int shift = (kcontrol->private_value >> 8) & 0xff; 1067 int mask = (kcontrol->private_value >> 16) & 0xff; 1068 int invert = (kcontrol->private_value >> 24) & 0xff; 1069 unsigned short val; 1070 1071 val = (ucontrol->value.integer.value[0] & mask); 1072 if (invert) 1073 val = mask - val; 1074 return snd_fm801_update_bits(chip, reg, mask << shift, val << shift); 1075 } 1076 1077 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \ 1078 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \ 1079 .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ 1080 .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) } 1081 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \ 1082 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 1083 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1084 .name = xname, .info = snd_fm801_info_double, \ 1085 .get = snd_fm801_get_double, .put = snd_fm801_put_double, \ 1086 .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \ 1087 .tlv = { .p = (xtlv) } } 1088 1089 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol, 1090 struct snd_ctl_elem_info *uinfo) 1091 { 1092 int mask = (kcontrol->private_value >> 16) & 0xff; 1093 1094 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 1095 uinfo->count = 2; 1096 uinfo->value.integer.min = 0; 1097 uinfo->value.integer.max = mask; 1098 return 0; 1099 } 1100 1101 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol, 1102 struct snd_ctl_elem_value *ucontrol) 1103 { 1104 struct fm801 *chip = snd_kcontrol_chip(kcontrol); 1105 int reg = kcontrol->private_value & 0xff; 1106 int shift_left = (kcontrol->private_value >> 8) & 0x0f; 1107 int shift_right = (kcontrol->private_value >> 12) & 0x0f; 1108 int mask = (kcontrol->private_value >> 16) & 0xff; 1109 int invert = (kcontrol->private_value >> 24) & 0xff; 1110 1111 spin_lock_irq(&chip->reg_lock); 1112 ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask; 1113 ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask; 1114 spin_unlock_irq(&chip->reg_lock); 1115 if (invert) { 1116 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; 1117 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1]; 1118 } 1119 return 0; 1120 } 1121 1122 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol, 1123 struct snd_ctl_elem_value *ucontrol) 1124 { 1125 struct fm801 *chip = snd_kcontrol_chip(kcontrol); 1126 int reg = kcontrol->private_value & 0xff; 1127 int shift_left = (kcontrol->private_value >> 8) & 0x0f; 1128 int shift_right = (kcontrol->private_value >> 12) & 0x0f; 1129 int mask = (kcontrol->private_value >> 16) & 0xff; 1130 int invert = (kcontrol->private_value >> 24) & 0xff; 1131 unsigned short val1, val2; 1132 1133 val1 = ucontrol->value.integer.value[0] & mask; 1134 val2 = ucontrol->value.integer.value[1] & mask; 1135 if (invert) { 1136 val1 = mask - val1; 1137 val2 = mask - val2; 1138 } 1139 return snd_fm801_update_bits(chip, reg, 1140 (mask << shift_left) | (mask << shift_right), 1141 (val1 << shift_left ) | (val2 << shift_right)); 1142 } 1143 1144 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol, 1145 struct snd_ctl_elem_info *uinfo) 1146 { 1147 static char *texts[5] = { 1148 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary" 1149 }; 1150 1151 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1152 uinfo->count = 1; 1153 uinfo->value.enumerated.items = 5; 1154 if (uinfo->value.enumerated.item > 4) 1155 uinfo->value.enumerated.item = 4; 1156 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 1157 return 0; 1158 } 1159 1160 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol, 1161 struct snd_ctl_elem_value *ucontrol) 1162 { 1163 struct fm801 *chip = snd_kcontrol_chip(kcontrol); 1164 unsigned short val; 1165 1166 val = inw(FM801_REG(chip, REC_SRC)) & 7; 1167 if (val > 4) 1168 val = 4; 1169 ucontrol->value.enumerated.item[0] = val; 1170 return 0; 1171 } 1172 1173 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol, 1174 struct snd_ctl_elem_value *ucontrol) 1175 { 1176 struct fm801 *chip = snd_kcontrol_chip(kcontrol); 1177 unsigned short val; 1178 1179 if ((val = ucontrol->value.enumerated.item[0]) > 4) 1180 return -EINVAL; 1181 return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val); 1182 } 1183 1184 static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0); 1185 1186 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls) 1187 1188 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = { 1189 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1, 1190 db_scale_dsp), 1191 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1), 1192 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1, 1193 db_scale_dsp), 1194 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1), 1195 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1, 1196 db_scale_dsp), 1197 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1), 1198 { 1199 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1200 .name = "Digital Capture Source", 1201 .info = snd_fm801_info_mux, 1202 .get = snd_fm801_get_mux, 1203 .put = snd_fm801_put_mux, 1204 } 1205 }; 1206 1207 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi) 1208 1209 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = { 1210 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0), 1211 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0), 1212 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0), 1213 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0), 1214 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0), 1215 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0), 1216 }; 1217 1218 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1219 { 1220 struct fm801 *chip = bus->private_data; 1221 chip->ac97_bus = NULL; 1222 } 1223 1224 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97) 1225 { 1226 struct fm801 *chip = ac97->private_data; 1227 if (ac97->num == 0) { 1228 chip->ac97 = NULL; 1229 } else { 1230 chip->ac97_sec = NULL; 1231 } 1232 } 1233 1234 static int __devinit snd_fm801_mixer(struct fm801 *chip) 1235 { 1236 struct snd_ac97_template ac97; 1237 unsigned int i; 1238 int err; 1239 static struct snd_ac97_bus_ops ops = { 1240 .write = snd_fm801_codec_write, 1241 .read = snd_fm801_codec_read, 1242 }; 1243 1244 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1245 return err; 1246 chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus; 1247 1248 memset(&ac97, 0, sizeof(ac97)); 1249 ac97.private_data = chip; 1250 ac97.private_free = snd_fm801_mixer_free_ac97; 1251 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1252 return err; 1253 if (chip->secondary) { 1254 ac97.num = 1; 1255 ac97.addr = chip->secondary_addr; 1256 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0) 1257 return err; 1258 } 1259 for (i = 0; i < FM801_CONTROLS; i++) 1260 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip)); 1261 if (chip->multichannel) { 1262 for (i = 0; i < FM801_CONTROLS_MULTI; i++) 1263 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip)); 1264 } 1265 return 0; 1266 } 1267 1268 /* 1269 * initialization routines 1270 */ 1271 1272 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id, 1273 unsigned short reg, unsigned long waits) 1274 { 1275 unsigned long timeout = jiffies + waits; 1276 1277 outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg, 1278 FM801_REG(chip, AC97_CMD)); 1279 udelay(5); 1280 do { 1281 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY)) 1282 == FM801_AC97_VALID) 1283 return 0; 1284 schedule_timeout_uninterruptible(1); 1285 } while (time_after(timeout, jiffies)); 1286 return -EIO; 1287 } 1288 1289 static int snd_fm801_chip_init(struct fm801 *chip, int resume) 1290 { 1291 unsigned short cmdw; 1292 1293 if (chip->tea575x_tuner & TUNER_ONLY) 1294 goto __ac97_ok; 1295 1296 /* codec cold reset + AC'97 warm reset */ 1297 outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL)); 1298 inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */ 1299 udelay(100); 1300 outw(0, FM801_REG(chip, CODEC_CTRL)); 1301 1302 if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) 1303 if (!resume) { 1304 snd_printk(KERN_INFO "Primary AC'97 codec not found, " 1305 "assume SF64-PCR (tuner-only)\n"); 1306 chip->tea575x_tuner = 3 | TUNER_ONLY; 1307 goto __ac97_ok; 1308 } 1309 1310 if (chip->multichannel) { 1311 if (chip->secondary_addr) { 1312 wait_for_codec(chip, chip->secondary_addr, 1313 AC97_VENDOR_ID1, msecs_to_jiffies(50)); 1314 } else { 1315 /* my card has the secondary codec */ 1316 /* at address #3, so the loop is inverted */ 1317 int i; 1318 for (i = 3; i > 0; i--) { 1319 if (!wait_for_codec(chip, i, AC97_VENDOR_ID1, 1320 msecs_to_jiffies(50))) { 1321 cmdw = inw(FM801_REG(chip, AC97_DATA)); 1322 if (cmdw != 0xffff && cmdw != 0) { 1323 chip->secondary = 1; 1324 chip->secondary_addr = i; 1325 break; 1326 } 1327 } 1328 } 1329 } 1330 1331 /* the recovery phase, it seems that probing for non-existing codec might */ 1332 /* cause timeout problems */ 1333 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750)); 1334 } 1335 1336 __ac97_ok: 1337 1338 /* init volume */ 1339 outw(0x0808, FM801_REG(chip, PCM_VOL)); 1340 outw(0x9f1f, FM801_REG(chip, FM_VOL)); 1341 outw(0x8808, FM801_REG(chip, I2S_VOL)); 1342 1343 /* I2S control - I2S mode */ 1344 outw(0x0003, FM801_REG(chip, I2S_MODE)); 1345 1346 /* interrupt setup */ 1347 cmdw = inw(FM801_REG(chip, IRQ_MASK)); 1348 if (chip->irq < 0) 1349 cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */ 1350 else 1351 cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */ 1352 outw(cmdw, FM801_REG(chip, IRQ_MASK)); 1353 1354 /* interrupt clear */ 1355 outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS)); 1356 1357 return 0; 1358 } 1359 1360 1361 static int snd_fm801_free(struct fm801 *chip) 1362 { 1363 unsigned short cmdw; 1364 1365 if (chip->irq < 0) 1366 goto __end_hw; 1367 1368 /* interrupt setup - mask everything */ 1369 cmdw = inw(FM801_REG(chip, IRQ_MASK)); 1370 cmdw |= 0x00c3; 1371 outw(cmdw, FM801_REG(chip, IRQ_MASK)); 1372 1373 __end_hw: 1374 #ifdef TEA575X_RADIO 1375 snd_tea575x_exit(&chip->tea); 1376 #endif 1377 if (chip->irq >= 0) 1378 free_irq(chip->irq, chip); 1379 pci_release_regions(chip->pci); 1380 pci_disable_device(chip->pci); 1381 1382 kfree(chip); 1383 return 0; 1384 } 1385 1386 static int snd_fm801_dev_free(struct snd_device *device) 1387 { 1388 struct fm801 *chip = device->device_data; 1389 return snd_fm801_free(chip); 1390 } 1391 1392 static int __devinit snd_fm801_create(struct snd_card *card, 1393 struct pci_dev * pci, 1394 int tea575x_tuner, 1395 struct fm801 ** rchip) 1396 { 1397 struct fm801 *chip; 1398 int err; 1399 static struct snd_device_ops ops = { 1400 .dev_free = snd_fm801_dev_free, 1401 }; 1402 1403 *rchip = NULL; 1404 if ((err = pci_enable_device(pci)) < 0) 1405 return err; 1406 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 1407 if (chip == NULL) { 1408 pci_disable_device(pci); 1409 return -ENOMEM; 1410 } 1411 spin_lock_init(&chip->reg_lock); 1412 chip->card = card; 1413 chip->pci = pci; 1414 chip->irq = -1; 1415 chip->tea575x_tuner = tea575x_tuner; 1416 if ((err = pci_request_regions(pci, "FM801")) < 0) { 1417 kfree(chip); 1418 pci_disable_device(pci); 1419 return err; 1420 } 1421 chip->port = pci_resource_start(pci, 0); 1422 if ((tea575x_tuner & TUNER_ONLY) == 0) { 1423 if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED, 1424 "FM801", chip)) { 1425 snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq); 1426 snd_fm801_free(chip); 1427 return -EBUSY; 1428 } 1429 chip->irq = pci->irq; 1430 pci_set_master(pci); 1431 } 1432 1433 if (pci->revision >= 0xb1) /* FM801-AU */ 1434 chip->multichannel = 1; 1435 1436 snd_fm801_chip_init(chip, 0); 1437 /* init might set tuner access method */ 1438 tea575x_tuner = chip->tea575x_tuner; 1439 1440 if (chip->irq >= 0 && (tea575x_tuner & TUNER_ONLY)) { 1441 pci_clear_master(pci); 1442 free_irq(chip->irq, chip); 1443 chip->irq = -1; 1444 } 1445 1446 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 1447 snd_fm801_free(chip); 1448 return err; 1449 } 1450 1451 snd_card_set_dev(card, &pci->dev); 1452 1453 #ifdef TEA575X_RADIO 1454 if ((tea575x_tuner & TUNER_TYPE_MASK) > 0 && 1455 (tea575x_tuner & TUNER_TYPE_MASK) < 4) { 1456 chip->tea.dev_nr = tea575x_tuner >> 16; 1457 chip->tea.card = card; 1458 chip->tea.freq_fixup = 10700; 1459 chip->tea.private_data = chip; 1460 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & TUNER_TYPE_MASK) - 1]; 1461 snd_tea575x_init(&chip->tea); 1462 } 1463 #endif 1464 1465 *rchip = chip; 1466 return 0; 1467 } 1468 1469 static int __devinit snd_card_fm801_probe(struct pci_dev *pci, 1470 const struct pci_device_id *pci_id) 1471 { 1472 static int dev; 1473 struct snd_card *card; 1474 struct fm801 *chip; 1475 struct snd_opl3 *opl3; 1476 int err; 1477 1478 if (dev >= SNDRV_CARDS) 1479 return -ENODEV; 1480 if (!enable[dev]) { 1481 dev++; 1482 return -ENOENT; 1483 } 1484 1485 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); 1486 if (err < 0) 1487 return err; 1488 if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) { 1489 snd_card_free(card); 1490 return err; 1491 } 1492 card->private_data = chip; 1493 1494 strcpy(card->driver, "FM801"); 1495 strcpy(card->shortname, "ForteMedia FM801-"); 1496 strcat(card->shortname, chip->multichannel ? "AU" : "AS"); 1497 sprintf(card->longname, "%s at 0x%lx, irq %i", 1498 card->shortname, chip->port, chip->irq); 1499 1500 if (chip->tea575x_tuner & TUNER_ONLY) 1501 goto __fm801_tuner_only; 1502 1503 if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) { 1504 snd_card_free(card); 1505 return err; 1506 } 1507 if ((err = snd_fm801_mixer(chip)) < 0) { 1508 snd_card_free(card); 1509 return err; 1510 } 1511 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801, 1512 FM801_REG(chip, MPU401_DATA), 1513 MPU401_INFO_INTEGRATED, 1514 chip->irq, 0, &chip->rmidi)) < 0) { 1515 snd_card_free(card); 1516 return err; 1517 } 1518 if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0), 1519 FM801_REG(chip, OPL3_BANK1), 1520 OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) { 1521 snd_card_free(card); 1522 return err; 1523 } 1524 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 1525 snd_card_free(card); 1526 return err; 1527 } 1528 1529 __fm801_tuner_only: 1530 if ((err = snd_card_register(card)) < 0) { 1531 snd_card_free(card); 1532 return err; 1533 } 1534 pci_set_drvdata(pci, card); 1535 dev++; 1536 return 0; 1537 } 1538 1539 static void __devexit snd_card_fm801_remove(struct pci_dev *pci) 1540 { 1541 snd_card_free(pci_get_drvdata(pci)); 1542 pci_set_drvdata(pci, NULL); 1543 } 1544 1545 #ifdef CONFIG_PM 1546 static unsigned char saved_regs[] = { 1547 FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC, 1548 FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2, 1549 FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2, 1550 FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL, 1551 }; 1552 1553 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state) 1554 { 1555 struct snd_card *card = pci_get_drvdata(pci); 1556 struct fm801 *chip = card->private_data; 1557 int i; 1558 1559 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1560 snd_pcm_suspend_all(chip->pcm); 1561 snd_ac97_suspend(chip->ac97); 1562 snd_ac97_suspend(chip->ac97_sec); 1563 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 1564 chip->saved_regs[i] = inw(chip->port + saved_regs[i]); 1565 /* FIXME: tea575x suspend */ 1566 1567 pci_disable_device(pci); 1568 pci_save_state(pci); 1569 pci_set_power_state(pci, pci_choose_state(pci, state)); 1570 return 0; 1571 } 1572 1573 static int snd_fm801_resume(struct pci_dev *pci) 1574 { 1575 struct snd_card *card = pci_get_drvdata(pci); 1576 struct fm801 *chip = card->private_data; 1577 int i; 1578 1579 pci_set_power_state(pci, PCI_D0); 1580 pci_restore_state(pci); 1581 if (pci_enable_device(pci) < 0) { 1582 printk(KERN_ERR "fm801: pci_enable_device failed, " 1583 "disabling device\n"); 1584 snd_card_disconnect(card); 1585 return -EIO; 1586 } 1587 pci_set_master(pci); 1588 1589 snd_fm801_chip_init(chip, 1); 1590 snd_ac97_resume(chip->ac97); 1591 snd_ac97_resume(chip->ac97_sec); 1592 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 1593 outw(chip->saved_regs[i], chip->port + saved_regs[i]); 1594 1595 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1596 return 0; 1597 } 1598 #endif 1599 1600 static struct pci_driver driver = { 1601 .name = "FM801", 1602 .id_table = snd_fm801_ids, 1603 .probe = snd_card_fm801_probe, 1604 .remove = __devexit_p(snd_card_fm801_remove), 1605 #ifdef CONFIG_PM 1606 .suspend = snd_fm801_suspend, 1607 .resume = snd_fm801_resume, 1608 #endif 1609 }; 1610 1611 static int __init alsa_card_fm801_init(void) 1612 { 1613 return pci_register_driver(&driver); 1614 } 1615 1616 static void __exit alsa_card_fm801_exit(void) 1617 { 1618 pci_unregister_driver(&driver); 1619 } 1620 1621 module_init(alsa_card_fm801_init) 1622 module_exit(alsa_card_fm801_exit) 1623