xref: /openbmc/linux/sound/pci/fm801.c (revision a09d2831)
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *
5  *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <sound/core.h>
30 #include <sound/pcm.h>
31 #include <sound/tlv.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/mpu401.h>
34 #include <sound/opl3.h>
35 #include <sound/initval.h>
36 
37 #include <asm/io.h>
38 
39 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
40 #include <sound/tea575x-tuner.h>
41 #define TEA575X_RADIO 1
42 #endif
43 
44 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
45 MODULE_DESCRIPTION("ForteMedia FM801");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
48 		"{Genius,SoundMaker Live 5.1}}");
49 
50 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
51 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
52 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
53 /*
54  *  Enable TEA575x tuner
55  *    1 = MediaForte 256-PCS
56  *    2 = MediaForte 256-PCPR
57  *    3 = MediaForte 64-PCR
58  *   16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card
59  *  High 16-bits are video (radio) device number + 1
60  */
61 static int tea575x_tuner[SNDRV_CARDS];
62 
63 module_param_array(index, int, NULL, 0444);
64 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
65 module_param_array(id, charp, NULL, 0444);
66 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
67 module_param_array(enable, bool, NULL, 0444);
68 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
69 module_param_array(tea575x_tuner, int, NULL, 0444);
70 MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (1 = SF256-PCS, 2=SF256-PCPR, 3=SF64-PCR, +16=tuner-only).");
71 
72 #define TUNER_ONLY		(1<<4)
73 #define TUNER_TYPE_MASK		(~TUNER_ONLY & 0xFFFF)
74 
75 /*
76  *  Direct registers
77  */
78 
79 #define FM801_REG(chip, reg)	(chip->port + FM801_##reg)
80 
81 #define FM801_PCM_VOL		0x00	/* PCM Output Volume */
82 #define FM801_FM_VOL		0x02	/* FM Output Volume */
83 #define FM801_I2S_VOL		0x04	/* I2S Volume */
84 #define FM801_REC_SRC		0x06	/* Record Source */
85 #define FM801_PLY_CTRL		0x08	/* Playback Control */
86 #define FM801_PLY_COUNT		0x0a	/* Playback Count */
87 #define FM801_PLY_BUF1		0x0c	/* Playback Bufer I */
88 #define FM801_PLY_BUF2		0x10	/* Playback Buffer II */
89 #define FM801_CAP_CTRL		0x14	/* Capture Control */
90 #define FM801_CAP_COUNT		0x16	/* Capture Count */
91 #define FM801_CAP_BUF1		0x18	/* Capture Buffer I */
92 #define FM801_CAP_BUF2		0x1c	/* Capture Buffer II */
93 #define FM801_CODEC_CTRL	0x22	/* Codec Control */
94 #define FM801_I2S_MODE		0x24	/* I2S Mode Control */
95 #define FM801_VOLUME		0x26	/* Volume Up/Down/Mute Status */
96 #define FM801_I2C_CTRL		0x29	/* I2C Control */
97 #define FM801_AC97_CMD		0x2a	/* AC'97 Command */
98 #define FM801_AC97_DATA		0x2c	/* AC'97 Data */
99 #define FM801_MPU401_DATA	0x30	/* MPU401 Data */
100 #define FM801_MPU401_CMD	0x31	/* MPU401 Command */
101 #define FM801_GPIO_CTRL		0x52	/* General Purpose I/O Control */
102 #define FM801_GEN_CTRL		0x54	/* General Control */
103 #define FM801_IRQ_MASK		0x56	/* Interrupt Mask */
104 #define FM801_IRQ_STATUS	0x5a	/* Interrupt Status */
105 #define FM801_OPL3_BANK0	0x68	/* OPL3 Status Read / Bank 0 Write */
106 #define FM801_OPL3_DATA0	0x69	/* OPL3 Data 0 Write */
107 #define FM801_OPL3_BANK1	0x6a	/* OPL3 Bank 1 Write */
108 #define FM801_OPL3_DATA1	0x6b	/* OPL3 Bank 1 Write */
109 #define FM801_POWERDOWN		0x70	/* Blocks Power Down Control */
110 
111 /* codec access */
112 #define FM801_AC97_READ		(1<<7)	/* read=1, write=0 */
113 #define FM801_AC97_VALID	(1<<8)	/* port valid=1 */
114 #define FM801_AC97_BUSY		(1<<9)	/* busy=1 */
115 #define FM801_AC97_ADDR_SHIFT	10	/* codec id (2bit) */
116 
117 /* playback and record control register bits */
118 #define FM801_BUF1_LAST		(1<<1)
119 #define FM801_BUF2_LAST		(1<<2)
120 #define FM801_START		(1<<5)
121 #define FM801_PAUSE		(1<<6)
122 #define FM801_IMMED_STOP	(1<<7)
123 #define FM801_RATE_SHIFT	8
124 #define FM801_RATE_MASK		(15 << FM801_RATE_SHIFT)
125 #define FM801_CHANNELS_4	(1<<12)	/* playback only */
126 #define FM801_CHANNELS_6	(2<<12)	/* playback only */
127 #define FM801_CHANNELS_6MS	(3<<12)	/* playback only */
128 #define FM801_CHANNELS_MASK	(3<<12)
129 #define FM801_16BIT		(1<<14)
130 #define FM801_STEREO		(1<<15)
131 
132 /* IRQ status bits */
133 #define FM801_IRQ_PLAYBACK	(1<<8)
134 #define FM801_IRQ_CAPTURE	(1<<9)
135 #define FM801_IRQ_VOLUME	(1<<14)
136 #define FM801_IRQ_MPU		(1<<15)
137 
138 /* GPIO control register */
139 #define FM801_GPIO_GP0		(1<<0)	/* read/write */
140 #define FM801_GPIO_GP1		(1<<1)
141 #define FM801_GPIO_GP2		(1<<2)
142 #define FM801_GPIO_GP3		(1<<3)
143 #define FM801_GPIO_GP(x)	(1<<(0+(x)))
144 #define FM801_GPIO_GD0		(1<<8)	/* directions: 1 = input, 0 = output*/
145 #define FM801_GPIO_GD1		(1<<9)
146 #define FM801_GPIO_GD2		(1<<10)
147 #define FM801_GPIO_GD3		(1<<11)
148 #define FM801_GPIO_GD(x)	(1<<(8+(x)))
149 #define FM801_GPIO_GS0		(1<<12)	/* function select: */
150 #define FM801_GPIO_GS1		(1<<13)	/*    1 = GPIO */
151 #define FM801_GPIO_GS2		(1<<14)	/*    0 = other (S/PDIF, VOL) */
152 #define FM801_GPIO_GS3		(1<<15)
153 #define FM801_GPIO_GS(x)	(1<<(12+(x)))
154 
155 /*
156 
157  */
158 
159 struct fm801 {
160 	int irq;
161 
162 	unsigned long port;	/* I/O port number */
163 	unsigned int multichannel: 1,	/* multichannel support */
164 		     secondary: 1;	/* secondary codec */
165 	unsigned char secondary_addr;	/* address of the secondary codec */
166 	unsigned int tea575x_tuner;	/* tuner access method & flags */
167 
168 	unsigned short ply_ctrl; /* playback control */
169 	unsigned short cap_ctrl; /* capture control */
170 
171 	unsigned long ply_buffer;
172 	unsigned int ply_buf;
173 	unsigned int ply_count;
174 	unsigned int ply_size;
175 	unsigned int ply_pos;
176 
177 	unsigned long cap_buffer;
178 	unsigned int cap_buf;
179 	unsigned int cap_count;
180 	unsigned int cap_size;
181 	unsigned int cap_pos;
182 
183 	struct snd_ac97_bus *ac97_bus;
184 	struct snd_ac97 *ac97;
185 	struct snd_ac97 *ac97_sec;
186 
187 	struct pci_dev *pci;
188 	struct snd_card *card;
189 	struct snd_pcm *pcm;
190 	struct snd_rawmidi *rmidi;
191 	struct snd_pcm_substream *playback_substream;
192 	struct snd_pcm_substream *capture_substream;
193 	unsigned int p_dma_size;
194 	unsigned int c_dma_size;
195 
196 	spinlock_t reg_lock;
197 	struct snd_info_entry *proc_entry;
198 
199 #ifdef TEA575X_RADIO
200 	struct snd_tea575x tea;
201 #endif
202 
203 #ifdef CONFIG_PM
204 	u16 saved_regs[0x20];
205 #endif
206 };
207 
208 static struct pci_device_id snd_fm801_ids[] = {
209 	{ 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
210 	{ 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
211 	{ 0, }
212 };
213 
214 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
215 
216 /*
217  *  common I/O routines
218  */
219 
220 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
221 				 unsigned short mask, unsigned short value)
222 {
223 	int change;
224 	unsigned long flags;
225 	unsigned short old, new;
226 
227 	spin_lock_irqsave(&chip->reg_lock, flags);
228 	old = inw(chip->port + reg);
229 	new = (old & ~mask) | value;
230 	change = old != new;
231 	if (change)
232 		outw(new, chip->port + reg);
233 	spin_unlock_irqrestore(&chip->reg_lock, flags);
234 	return change;
235 }
236 
237 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
238 				  unsigned short reg,
239 				  unsigned short val)
240 {
241 	struct fm801 *chip = ac97->private_data;
242 	int idx;
243 
244 	/*
245 	 *  Wait until the codec interface is not ready..
246 	 */
247 	for (idx = 0; idx < 100; idx++) {
248 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
249 			goto ok1;
250 		udelay(10);
251 	}
252 	snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
253 	return;
254 
255  ok1:
256 	/* write data and address */
257 	outw(val, FM801_REG(chip, AC97_DATA));
258 	outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
259 	/*
260 	 *  Wait until the write command is not completed..
261          */
262 	for (idx = 0; idx < 1000; idx++) {
263 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
264 			return;
265 		udelay(10);
266 	}
267 	snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
268 }
269 
270 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
271 {
272 	struct fm801 *chip = ac97->private_data;
273 	int idx;
274 
275 	/*
276 	 *  Wait until the codec interface is not ready..
277 	 */
278 	for (idx = 0; idx < 100; idx++) {
279 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
280 			goto ok1;
281 		udelay(10);
282 	}
283 	snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
284 	return 0;
285 
286  ok1:
287 	/* read command */
288 	outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
289 	     FM801_REG(chip, AC97_CMD));
290 	for (idx = 0; idx < 100; idx++) {
291 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
292 			goto ok2;
293 		udelay(10);
294 	}
295 	snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
296 	return 0;
297 
298  ok2:
299 	for (idx = 0; idx < 1000; idx++) {
300 		if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
301 			goto ok3;
302 		udelay(10);
303 	}
304 	snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
305 	return 0;
306 
307  ok3:
308 	return inw(FM801_REG(chip, AC97_DATA));
309 }
310 
311 static unsigned int rates[] = {
312   5500,  8000,  9600, 11025,
313   16000, 19200, 22050, 32000,
314   38400, 44100, 48000
315 };
316 
317 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
318 	.count = ARRAY_SIZE(rates),
319 	.list = rates,
320 	.mask = 0,
321 };
322 
323 static unsigned int channels[] = {
324   2, 4, 6
325 };
326 
327 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
328 	.count = ARRAY_SIZE(channels),
329 	.list = channels,
330 	.mask = 0,
331 };
332 
333 /*
334  *  Sample rate routines
335  */
336 
337 static unsigned short snd_fm801_rate_bits(unsigned int rate)
338 {
339 	unsigned int idx;
340 
341 	for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
342 		if (rates[idx] == rate)
343 			return idx;
344 	snd_BUG();
345 	return ARRAY_SIZE(rates) - 1;
346 }
347 
348 /*
349  *  PCM part
350  */
351 
352 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
353 				      int cmd)
354 {
355 	struct fm801 *chip = snd_pcm_substream_chip(substream);
356 
357 	spin_lock(&chip->reg_lock);
358 	switch (cmd) {
359 	case SNDRV_PCM_TRIGGER_START:
360 		chip->ply_ctrl &= ~(FM801_BUF1_LAST |
361 				     FM801_BUF2_LAST |
362 				     FM801_PAUSE);
363 		chip->ply_ctrl |= FM801_START |
364 				   FM801_IMMED_STOP;
365 		break;
366 	case SNDRV_PCM_TRIGGER_STOP:
367 		chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
368 		break;
369 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
370 	case SNDRV_PCM_TRIGGER_SUSPEND:
371 		chip->ply_ctrl |= FM801_PAUSE;
372 		break;
373 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
374 	case SNDRV_PCM_TRIGGER_RESUME:
375 		chip->ply_ctrl &= ~FM801_PAUSE;
376 		break;
377 	default:
378 		spin_unlock(&chip->reg_lock);
379 		snd_BUG();
380 		return -EINVAL;
381 	}
382 	outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
383 	spin_unlock(&chip->reg_lock);
384 	return 0;
385 }
386 
387 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
388 				     int cmd)
389 {
390 	struct fm801 *chip = snd_pcm_substream_chip(substream);
391 
392 	spin_lock(&chip->reg_lock);
393 	switch (cmd) {
394 	case SNDRV_PCM_TRIGGER_START:
395 		chip->cap_ctrl &= ~(FM801_BUF1_LAST |
396 				     FM801_BUF2_LAST |
397 				     FM801_PAUSE);
398 		chip->cap_ctrl |= FM801_START |
399 				   FM801_IMMED_STOP;
400 		break;
401 	case SNDRV_PCM_TRIGGER_STOP:
402 		chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
403 		break;
404 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
405 	case SNDRV_PCM_TRIGGER_SUSPEND:
406 		chip->cap_ctrl |= FM801_PAUSE;
407 		break;
408 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
409 	case SNDRV_PCM_TRIGGER_RESUME:
410 		chip->cap_ctrl &= ~FM801_PAUSE;
411 		break;
412 	default:
413 		spin_unlock(&chip->reg_lock);
414 		snd_BUG();
415 		return -EINVAL;
416 	}
417 	outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
418 	spin_unlock(&chip->reg_lock);
419 	return 0;
420 }
421 
422 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
423 			       struct snd_pcm_hw_params *hw_params)
424 {
425 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
426 }
427 
428 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
429 {
430 	return snd_pcm_lib_free_pages(substream);
431 }
432 
433 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
434 {
435 	struct fm801 *chip = snd_pcm_substream_chip(substream);
436 	struct snd_pcm_runtime *runtime = substream->runtime;
437 
438 	chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
439 	chip->ply_count = snd_pcm_lib_period_bytes(substream);
440 	spin_lock_irq(&chip->reg_lock);
441 	chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
442 			     FM801_STEREO | FM801_RATE_MASK |
443 			     FM801_CHANNELS_MASK);
444 	if (snd_pcm_format_width(runtime->format) == 16)
445 		chip->ply_ctrl |= FM801_16BIT;
446 	if (runtime->channels > 1) {
447 		chip->ply_ctrl |= FM801_STEREO;
448 		if (runtime->channels == 4)
449 			chip->ply_ctrl |= FM801_CHANNELS_4;
450 		else if (runtime->channels == 6)
451 			chip->ply_ctrl |= FM801_CHANNELS_6;
452 	}
453 	chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
454 	chip->ply_buf = 0;
455 	outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
456 	outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
457 	chip->ply_buffer = runtime->dma_addr;
458 	chip->ply_pos = 0;
459 	outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
460 	outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
461 	spin_unlock_irq(&chip->reg_lock);
462 	return 0;
463 }
464 
465 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
466 {
467 	struct fm801 *chip = snd_pcm_substream_chip(substream);
468 	struct snd_pcm_runtime *runtime = substream->runtime;
469 
470 	chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
471 	chip->cap_count = snd_pcm_lib_period_bytes(substream);
472 	spin_lock_irq(&chip->reg_lock);
473 	chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
474 			     FM801_STEREO | FM801_RATE_MASK);
475 	if (snd_pcm_format_width(runtime->format) == 16)
476 		chip->cap_ctrl |= FM801_16BIT;
477 	if (runtime->channels > 1)
478 		chip->cap_ctrl |= FM801_STEREO;
479 	chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
480 	chip->cap_buf = 0;
481 	outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
482 	outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
483 	chip->cap_buffer = runtime->dma_addr;
484 	chip->cap_pos = 0;
485 	outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
486 	outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
487 	spin_unlock_irq(&chip->reg_lock);
488 	return 0;
489 }
490 
491 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
492 {
493 	struct fm801 *chip = snd_pcm_substream_chip(substream);
494 	size_t ptr;
495 
496 	if (!(chip->ply_ctrl & FM801_START))
497 		return 0;
498 	spin_lock(&chip->reg_lock);
499 	ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
500 	if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
501 		ptr += chip->ply_count;
502 		ptr %= chip->ply_size;
503 	}
504 	spin_unlock(&chip->reg_lock);
505 	return bytes_to_frames(substream->runtime, ptr);
506 }
507 
508 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
509 {
510 	struct fm801 *chip = snd_pcm_substream_chip(substream);
511 	size_t ptr;
512 
513 	if (!(chip->cap_ctrl & FM801_START))
514 		return 0;
515 	spin_lock(&chip->reg_lock);
516 	ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
517 	if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
518 		ptr += chip->cap_count;
519 		ptr %= chip->cap_size;
520 	}
521 	spin_unlock(&chip->reg_lock);
522 	return bytes_to_frames(substream->runtime, ptr);
523 }
524 
525 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
526 {
527 	struct fm801 *chip = dev_id;
528 	unsigned short status;
529 	unsigned int tmp;
530 
531 	status = inw(FM801_REG(chip, IRQ_STATUS));
532 	status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
533 	if (! status)
534 		return IRQ_NONE;
535 	/* ack first */
536 	outw(status, FM801_REG(chip, IRQ_STATUS));
537 	if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
538 		spin_lock(&chip->reg_lock);
539 		chip->ply_buf++;
540 		chip->ply_pos += chip->ply_count;
541 		chip->ply_pos %= chip->ply_size;
542 		tmp = chip->ply_pos + chip->ply_count;
543 		tmp %= chip->ply_size;
544 		outl(chip->ply_buffer + tmp,
545 				(chip->ply_buf & 1) ?
546 					FM801_REG(chip, PLY_BUF1) :
547 					FM801_REG(chip, PLY_BUF2));
548 		spin_unlock(&chip->reg_lock);
549 		snd_pcm_period_elapsed(chip->playback_substream);
550 	}
551 	if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
552 		spin_lock(&chip->reg_lock);
553 		chip->cap_buf++;
554 		chip->cap_pos += chip->cap_count;
555 		chip->cap_pos %= chip->cap_size;
556 		tmp = chip->cap_pos + chip->cap_count;
557 		tmp %= chip->cap_size;
558 		outl(chip->cap_buffer + tmp,
559 				(chip->cap_buf & 1) ?
560 					FM801_REG(chip, CAP_BUF1) :
561 					FM801_REG(chip, CAP_BUF2));
562 		spin_unlock(&chip->reg_lock);
563 		snd_pcm_period_elapsed(chip->capture_substream);
564 	}
565 	if (chip->rmidi && (status & FM801_IRQ_MPU))
566 		snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
567 	if (status & FM801_IRQ_VOLUME)
568 		;/* TODO */
569 
570 	return IRQ_HANDLED;
571 }
572 
573 static struct snd_pcm_hardware snd_fm801_playback =
574 {
575 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
576 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
577 				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
578 				 SNDRV_PCM_INFO_MMAP_VALID),
579 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
580 	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
581 	.rate_min =		5500,
582 	.rate_max =		48000,
583 	.channels_min =		1,
584 	.channels_max =		2,
585 	.buffer_bytes_max =	(128*1024),
586 	.period_bytes_min =	64,
587 	.period_bytes_max =	(128*1024),
588 	.periods_min =		1,
589 	.periods_max =		1024,
590 	.fifo_size =		0,
591 };
592 
593 static struct snd_pcm_hardware snd_fm801_capture =
594 {
595 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
596 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
597 				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
598 				 SNDRV_PCM_INFO_MMAP_VALID),
599 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
600 	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
601 	.rate_min =		5500,
602 	.rate_max =		48000,
603 	.channels_min =		1,
604 	.channels_max =		2,
605 	.buffer_bytes_max =	(128*1024),
606 	.period_bytes_min =	64,
607 	.period_bytes_max =	(128*1024),
608 	.periods_min =		1,
609 	.periods_max =		1024,
610 	.fifo_size =		0,
611 };
612 
613 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
614 {
615 	struct fm801 *chip = snd_pcm_substream_chip(substream);
616 	struct snd_pcm_runtime *runtime = substream->runtime;
617 	int err;
618 
619 	chip->playback_substream = substream;
620 	runtime->hw = snd_fm801_playback;
621 	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
622 				   &hw_constraints_rates);
623 	if (chip->multichannel) {
624 		runtime->hw.channels_max = 6;
625 		snd_pcm_hw_constraint_list(runtime, 0,
626 					   SNDRV_PCM_HW_PARAM_CHANNELS,
627 					   &hw_constraints_channels);
628 	}
629 	if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
630 		return err;
631 	return 0;
632 }
633 
634 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
635 {
636 	struct fm801 *chip = snd_pcm_substream_chip(substream);
637 	struct snd_pcm_runtime *runtime = substream->runtime;
638 	int err;
639 
640 	chip->capture_substream = substream;
641 	runtime->hw = snd_fm801_capture;
642 	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
643 				   &hw_constraints_rates);
644 	if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
645 		return err;
646 	return 0;
647 }
648 
649 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
650 {
651 	struct fm801 *chip = snd_pcm_substream_chip(substream);
652 
653 	chip->playback_substream = NULL;
654 	return 0;
655 }
656 
657 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
658 {
659 	struct fm801 *chip = snd_pcm_substream_chip(substream);
660 
661 	chip->capture_substream = NULL;
662 	return 0;
663 }
664 
665 static struct snd_pcm_ops snd_fm801_playback_ops = {
666 	.open =		snd_fm801_playback_open,
667 	.close =	snd_fm801_playback_close,
668 	.ioctl =	snd_pcm_lib_ioctl,
669 	.hw_params =	snd_fm801_hw_params,
670 	.hw_free =	snd_fm801_hw_free,
671 	.prepare =	snd_fm801_playback_prepare,
672 	.trigger =	snd_fm801_playback_trigger,
673 	.pointer =	snd_fm801_playback_pointer,
674 };
675 
676 static struct snd_pcm_ops snd_fm801_capture_ops = {
677 	.open =		snd_fm801_capture_open,
678 	.close =	snd_fm801_capture_close,
679 	.ioctl =	snd_pcm_lib_ioctl,
680 	.hw_params =	snd_fm801_hw_params,
681 	.hw_free =	snd_fm801_hw_free,
682 	.prepare =	snd_fm801_capture_prepare,
683 	.trigger =	snd_fm801_capture_trigger,
684 	.pointer =	snd_fm801_capture_pointer,
685 };
686 
687 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
688 {
689 	struct snd_pcm *pcm;
690 	int err;
691 
692 	if (rpcm)
693 		*rpcm = NULL;
694 	if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
695 		return err;
696 
697 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
698 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
699 
700 	pcm->private_data = chip;
701 	pcm->info_flags = 0;
702 	strcpy(pcm->name, "FM801");
703 	chip->pcm = pcm;
704 
705 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
706 					      snd_dma_pci_data(chip->pci),
707 					      chip->multichannel ? 128*1024 : 64*1024, 128*1024);
708 
709 	if (rpcm)
710 		*rpcm = pcm;
711 	return 0;
712 }
713 
714 /*
715  *  TEA5757 radio
716  */
717 
718 #ifdef TEA575X_RADIO
719 
720 /* 256PCS GPIO numbers */
721 #define TEA_256PCS_DATA			1
722 #define TEA_256PCS_WRITE_ENABLE		2	/* inverted */
723 #define TEA_256PCS_BUS_CLOCK		3
724 
725 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
726 {
727 	struct fm801 *chip = tea->private_data;
728 	unsigned short reg;
729 	int i = 25;
730 
731 	spin_lock_irq(&chip->reg_lock);
732 	reg = inw(FM801_REG(chip, GPIO_CTRL));
733 	/* use GPIO lines and set write enable bit */
734 	reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
735 	       FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
736 	       FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
737 	/* all of lines are in the write direction */
738 	/* clear data and clock lines */
739 	reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
740 	         FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
741 	         FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
742 	         FM801_GPIO_GP(TEA_256PCS_DATA) |
743 	         FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
744 		 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
745 	outw(reg, FM801_REG(chip, GPIO_CTRL));
746 	udelay(1);
747 
748 	while (i--) {
749 		if (val & (1 << i))
750 			reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
751 		else
752 			reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
753 		outw(reg, FM801_REG(chip, GPIO_CTRL));
754 		udelay(1);
755 		reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
756 		outw(reg, FM801_REG(chip, GPIO_CTRL));
757 		reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
758 		outw(reg, FM801_REG(chip, GPIO_CTRL));
759 		udelay(1);
760 	}
761 
762 	/* and reset the write enable bit */
763 	reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
764 	       FM801_GPIO_GP(TEA_256PCS_DATA);
765 	outw(reg, FM801_REG(chip, GPIO_CTRL));
766 	spin_unlock_irq(&chip->reg_lock);
767 }
768 
769 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
770 {
771 	struct fm801 *chip = tea->private_data;
772 	unsigned short reg;
773 	unsigned int val = 0;
774 	int i;
775 
776 	spin_lock_irq(&chip->reg_lock);
777 	reg = inw(FM801_REG(chip, GPIO_CTRL));
778 	/* use GPIO lines, set data direction to input */
779 	reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
780 	       FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
781 	       FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
782 	       FM801_GPIO_GD(TEA_256PCS_DATA) |
783 	       FM801_GPIO_GP(TEA_256PCS_DATA) |
784 	       FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
785 	/* all of lines are in the write direction, except data */
786 	/* clear data, write enable and clock lines */
787 	reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
788 	         FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
789 	         FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
790 
791 	for (i = 0; i < 24; i++) {
792 		reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
793 		outw(reg, FM801_REG(chip, GPIO_CTRL));
794 		udelay(1);
795 		reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
796 		outw(reg, FM801_REG(chip, GPIO_CTRL));
797 		udelay(1);
798 		val <<= 1;
799 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
800 			val |= 1;
801 	}
802 
803 	spin_unlock_irq(&chip->reg_lock);
804 
805 	return val;
806 }
807 
808 /* 256PCPR GPIO numbers */
809 #define TEA_256PCPR_BUS_CLOCK		0
810 #define TEA_256PCPR_DATA		1
811 #define TEA_256PCPR_WRITE_ENABLE	2	/* inverted */
812 
813 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
814 {
815 	struct fm801 *chip = tea->private_data;
816 	unsigned short reg;
817 	int i = 25;
818 
819 	spin_lock_irq(&chip->reg_lock);
820 	reg = inw(FM801_REG(chip, GPIO_CTRL));
821 	/* use GPIO lines and set write enable bit */
822 	reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
823 	       FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
824 	       FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
825 	/* all of lines are in the write direction */
826 	/* clear data and clock lines */
827 	reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
828 	         FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
829 	         FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
830 	         FM801_GPIO_GP(TEA_256PCPR_DATA) |
831 	         FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
832 		 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
833 	outw(reg, FM801_REG(chip, GPIO_CTRL));
834 	udelay(1);
835 
836 	while (i--) {
837 		if (val & (1 << i))
838 			reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
839 		else
840 			reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
841 		outw(reg, FM801_REG(chip, GPIO_CTRL));
842 		udelay(1);
843 		reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
844 		outw(reg, FM801_REG(chip, GPIO_CTRL));
845 		reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
846 		outw(reg, FM801_REG(chip, GPIO_CTRL));
847 		udelay(1);
848 	}
849 
850 	/* and reset the write enable bit */
851 	reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
852 	       FM801_GPIO_GP(TEA_256PCPR_DATA);
853 	outw(reg, FM801_REG(chip, GPIO_CTRL));
854 	spin_unlock_irq(&chip->reg_lock);
855 }
856 
857 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
858 {
859 	struct fm801 *chip = tea->private_data;
860 	unsigned short reg;
861 	unsigned int val = 0;
862 	int i;
863 
864 	spin_lock_irq(&chip->reg_lock);
865 	reg = inw(FM801_REG(chip, GPIO_CTRL));
866 	/* use GPIO lines, set data direction to input */
867 	reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
868 	       FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
869 	       FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
870 	       FM801_GPIO_GD(TEA_256PCPR_DATA) |
871 	       FM801_GPIO_GP(TEA_256PCPR_DATA) |
872 	       FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
873 	/* all of lines are in the write direction, except data */
874 	/* clear data, write enable and clock lines */
875 	reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
876 	         FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
877 	         FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
878 
879 	for (i = 0; i < 24; i++) {
880 		reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
881 		outw(reg, FM801_REG(chip, GPIO_CTRL));
882 		udelay(1);
883 		reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
884 		outw(reg, FM801_REG(chip, GPIO_CTRL));
885 		udelay(1);
886 		val <<= 1;
887 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
888 			val |= 1;
889 	}
890 
891 	spin_unlock_irq(&chip->reg_lock);
892 
893 	return val;
894 }
895 
896 /* 64PCR GPIO numbers */
897 #define TEA_64PCR_BUS_CLOCK		0
898 #define TEA_64PCR_WRITE_ENABLE		1	/* inverted */
899 #define TEA_64PCR_DATA			2
900 
901 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
902 {
903 	struct fm801 *chip = tea->private_data;
904 	unsigned short reg;
905 	int i = 25;
906 
907 	spin_lock_irq(&chip->reg_lock);
908 	reg = inw(FM801_REG(chip, GPIO_CTRL));
909 	/* use GPIO lines and set write enable bit */
910 	reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
911 	       FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
912 	       FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
913 	/* all of lines are in the write direction */
914 	/* clear data and clock lines */
915 	reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
916 	         FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
917 	         FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
918 	         FM801_GPIO_GP(TEA_64PCR_DATA) |
919 	         FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
920 		 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
921 	outw(reg, FM801_REG(chip, GPIO_CTRL));
922 	udelay(1);
923 
924 	while (i--) {
925 		if (val & (1 << i))
926 			reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
927 		else
928 			reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
929 		outw(reg, FM801_REG(chip, GPIO_CTRL));
930 		udelay(1);
931 		reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
932 		outw(reg, FM801_REG(chip, GPIO_CTRL));
933 		reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
934 		outw(reg, FM801_REG(chip, GPIO_CTRL));
935 		udelay(1);
936 	}
937 
938 	/* and reset the write enable bit */
939 	reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
940 	       FM801_GPIO_GP(TEA_64PCR_DATA);
941 	outw(reg, FM801_REG(chip, GPIO_CTRL));
942 	spin_unlock_irq(&chip->reg_lock);
943 }
944 
945 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
946 {
947 	struct fm801 *chip = tea->private_data;
948 	unsigned short reg;
949 	unsigned int val = 0;
950 	int i;
951 
952 	spin_lock_irq(&chip->reg_lock);
953 	reg = inw(FM801_REG(chip, GPIO_CTRL));
954 	/* use GPIO lines, set data direction to input */
955 	reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
956 	       FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
957 	       FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
958 	       FM801_GPIO_GD(TEA_64PCR_DATA) |
959 	       FM801_GPIO_GP(TEA_64PCR_DATA) |
960 	       FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
961 	/* all of lines are in the write direction, except data */
962 	/* clear data, write enable and clock lines */
963 	reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
964 	         FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
965 	         FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
966 
967 	for (i = 0; i < 24; i++) {
968 		reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
969 		outw(reg, FM801_REG(chip, GPIO_CTRL));
970 		udelay(1);
971 		reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
972 		outw(reg, FM801_REG(chip, GPIO_CTRL));
973 		udelay(1);
974 		val <<= 1;
975 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
976 			val |= 1;
977 	}
978 
979 	spin_unlock_irq(&chip->reg_lock);
980 
981 	return val;
982 }
983 
984 static void snd_fm801_tea575x_64pcr_mute(struct snd_tea575x *tea,
985 					  unsigned int mute)
986 {
987 	struct fm801 *chip = tea->private_data;
988 	unsigned short reg;
989 
990 	spin_lock_irq(&chip->reg_lock);
991 
992 	reg = inw(FM801_REG(chip, GPIO_CTRL));
993 	if (mute)
994 		/* 0xf800 (mute) */
995 		reg &= ~FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
996 	else
997 		/* 0xf802 (unmute) */
998 		reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
999 	outw(reg, FM801_REG(chip, GPIO_CTRL));
1000 	udelay(1);
1001 
1002 	spin_unlock_irq(&chip->reg_lock);
1003 }
1004 
1005 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
1006 	{
1007 		/* 1 = MediaForte 256-PCS */
1008 		.write = snd_fm801_tea575x_256pcs_write,
1009 		.read = snd_fm801_tea575x_256pcs_read,
1010 	},
1011 	{
1012 		/* 2 = MediaForte 256-PCPR */
1013 		.write = snd_fm801_tea575x_256pcpr_write,
1014 		.read = snd_fm801_tea575x_256pcpr_read,
1015 	},
1016 	{
1017 		/* 3 = MediaForte 64-PCR */
1018 		.write = snd_fm801_tea575x_64pcr_write,
1019 		.read = snd_fm801_tea575x_64pcr_read,
1020 		.mute = snd_fm801_tea575x_64pcr_mute,
1021 	}
1022 };
1023 #endif
1024 
1025 /*
1026  *  Mixer routines
1027  */
1028 
1029 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1030 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1031   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1032   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1033 
1034 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1035 				 struct snd_ctl_elem_info *uinfo)
1036 {
1037 	int mask = (kcontrol->private_value >> 16) & 0xff;
1038 
1039 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1040 	uinfo->count = 1;
1041 	uinfo->value.integer.min = 0;
1042 	uinfo->value.integer.max = mask;
1043 	return 0;
1044 }
1045 
1046 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1047 				struct snd_ctl_elem_value *ucontrol)
1048 {
1049 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1050 	int reg = kcontrol->private_value & 0xff;
1051 	int shift = (kcontrol->private_value >> 8) & 0xff;
1052 	int mask = (kcontrol->private_value >> 16) & 0xff;
1053 	int invert = (kcontrol->private_value >> 24) & 0xff;
1054 
1055 	ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1056 	if (invert)
1057 		ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1058 	return 0;
1059 }
1060 
1061 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1062 				struct snd_ctl_elem_value *ucontrol)
1063 {
1064 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1065 	int reg = kcontrol->private_value & 0xff;
1066 	int shift = (kcontrol->private_value >> 8) & 0xff;
1067 	int mask = (kcontrol->private_value >> 16) & 0xff;
1068 	int invert = (kcontrol->private_value >> 24) & 0xff;
1069 	unsigned short val;
1070 
1071 	val = (ucontrol->value.integer.value[0] & mask);
1072 	if (invert)
1073 		val = mask - val;
1074 	return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1075 }
1076 
1077 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1078 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1079   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1080   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1081 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
1082 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1083   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1084   .name = xname, .info = snd_fm801_info_double, \
1085   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1086   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
1087   .tlv = { .p = (xtlv) } }
1088 
1089 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1090 				 struct snd_ctl_elem_info *uinfo)
1091 {
1092 	int mask = (kcontrol->private_value >> 16) & 0xff;
1093 
1094 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1095 	uinfo->count = 2;
1096 	uinfo->value.integer.min = 0;
1097 	uinfo->value.integer.max = mask;
1098 	return 0;
1099 }
1100 
1101 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1102 				struct snd_ctl_elem_value *ucontrol)
1103 {
1104 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1105         int reg = kcontrol->private_value & 0xff;
1106 	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1107 	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1108 	int mask = (kcontrol->private_value >> 16) & 0xff;
1109 	int invert = (kcontrol->private_value >> 24) & 0xff;
1110 
1111 	spin_lock_irq(&chip->reg_lock);
1112 	ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1113 	ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1114 	spin_unlock_irq(&chip->reg_lock);
1115 	if (invert) {
1116 		ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1117 		ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1118 	}
1119 	return 0;
1120 }
1121 
1122 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1123 				struct snd_ctl_elem_value *ucontrol)
1124 {
1125 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1126 	int reg = kcontrol->private_value & 0xff;
1127 	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1128 	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1129 	int mask = (kcontrol->private_value >> 16) & 0xff;
1130 	int invert = (kcontrol->private_value >> 24) & 0xff;
1131 	unsigned short val1, val2;
1132 
1133 	val1 = ucontrol->value.integer.value[0] & mask;
1134 	val2 = ucontrol->value.integer.value[1] & mask;
1135 	if (invert) {
1136 		val1 = mask - val1;
1137 		val2 = mask - val2;
1138 	}
1139 	return snd_fm801_update_bits(chip, reg,
1140 				     (mask << shift_left) | (mask << shift_right),
1141 				     (val1 << shift_left ) | (val2 << shift_right));
1142 }
1143 
1144 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1145 			      struct snd_ctl_elem_info *uinfo)
1146 {
1147 	static char *texts[5] = {
1148 		"AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1149 	};
1150 
1151 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1152 	uinfo->count = 1;
1153 	uinfo->value.enumerated.items = 5;
1154 	if (uinfo->value.enumerated.item > 4)
1155 		uinfo->value.enumerated.item = 4;
1156 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1157 	return 0;
1158 }
1159 
1160 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1161 			     struct snd_ctl_elem_value *ucontrol)
1162 {
1163 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1164         unsigned short val;
1165 
1166 	val = inw(FM801_REG(chip, REC_SRC)) & 7;
1167 	if (val > 4)
1168 		val = 4;
1169         ucontrol->value.enumerated.item[0] = val;
1170         return 0;
1171 }
1172 
1173 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1174 			     struct snd_ctl_elem_value *ucontrol)
1175 {
1176 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1177         unsigned short val;
1178 
1179         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1180                 return -EINVAL;
1181 	return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1182 }
1183 
1184 static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
1185 
1186 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1187 
1188 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1189 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
1190 		 db_scale_dsp),
1191 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1192 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
1193 		 db_scale_dsp),
1194 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1195 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
1196 		 db_scale_dsp),
1197 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1198 {
1199 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1200 	.name = "Digital Capture Source",
1201 	.info = snd_fm801_info_mux,
1202 	.get = snd_fm801_get_mux,
1203 	.put = snd_fm801_put_mux,
1204 }
1205 };
1206 
1207 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1208 
1209 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1210 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1211 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1212 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1213 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1214 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1215 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1216 };
1217 
1218 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1219 {
1220 	struct fm801 *chip = bus->private_data;
1221 	chip->ac97_bus = NULL;
1222 }
1223 
1224 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1225 {
1226 	struct fm801 *chip = ac97->private_data;
1227 	if (ac97->num == 0) {
1228 		chip->ac97 = NULL;
1229 	} else {
1230 		chip->ac97_sec = NULL;
1231 	}
1232 }
1233 
1234 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1235 {
1236 	struct snd_ac97_template ac97;
1237 	unsigned int i;
1238 	int err;
1239 	static struct snd_ac97_bus_ops ops = {
1240 		.write = snd_fm801_codec_write,
1241 		.read = snd_fm801_codec_read,
1242 	};
1243 
1244 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1245 		return err;
1246 	chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1247 
1248 	memset(&ac97, 0, sizeof(ac97));
1249 	ac97.private_data = chip;
1250 	ac97.private_free = snd_fm801_mixer_free_ac97;
1251 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1252 		return err;
1253 	if (chip->secondary) {
1254 		ac97.num = 1;
1255 		ac97.addr = chip->secondary_addr;
1256 		if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1257 			return err;
1258 	}
1259 	for (i = 0; i < FM801_CONTROLS; i++)
1260 		snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1261 	if (chip->multichannel) {
1262 		for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1263 			snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1264 	}
1265 	return 0;
1266 }
1267 
1268 /*
1269  *  initialization routines
1270  */
1271 
1272 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1273 			  unsigned short reg, unsigned long waits)
1274 {
1275 	unsigned long timeout = jiffies + waits;
1276 
1277 	outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1278 	     FM801_REG(chip, AC97_CMD));
1279 	udelay(5);
1280 	do {
1281 		if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1282 		    == FM801_AC97_VALID)
1283 			return 0;
1284 		schedule_timeout_uninterruptible(1);
1285 	} while (time_after(timeout, jiffies));
1286 	return -EIO;
1287 }
1288 
1289 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1290 {
1291 	unsigned short cmdw;
1292 
1293 	if (chip->tea575x_tuner & TUNER_ONLY)
1294 		goto __ac97_ok;
1295 
1296 	/* codec cold reset + AC'97 warm reset */
1297 	outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1298 	inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1299 	udelay(100);
1300 	outw(0, FM801_REG(chip, CODEC_CTRL));
1301 
1302 	if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0)
1303 		if (!resume) {
1304 			snd_printk(KERN_INFO "Primary AC'97 codec not found, "
1305 					    "assume SF64-PCR (tuner-only)\n");
1306 			chip->tea575x_tuner = 3 | TUNER_ONLY;
1307 			goto __ac97_ok;
1308 		}
1309 
1310 	if (chip->multichannel) {
1311 		if (chip->secondary_addr) {
1312 			wait_for_codec(chip, chip->secondary_addr,
1313 				       AC97_VENDOR_ID1, msecs_to_jiffies(50));
1314 		} else {
1315 			/* my card has the secondary codec */
1316 			/* at address #3, so the loop is inverted */
1317 			int i;
1318 			for (i = 3; i > 0; i--) {
1319 				if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
1320 						     msecs_to_jiffies(50))) {
1321 					cmdw = inw(FM801_REG(chip, AC97_DATA));
1322 					if (cmdw != 0xffff && cmdw != 0) {
1323 						chip->secondary = 1;
1324 						chip->secondary_addr = i;
1325 						break;
1326 					}
1327 				}
1328 			}
1329 		}
1330 
1331 		/* the recovery phase, it seems that probing for non-existing codec might */
1332 		/* cause timeout problems */
1333 		wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1334 	}
1335 
1336       __ac97_ok:
1337 
1338 	/* init volume */
1339 	outw(0x0808, FM801_REG(chip, PCM_VOL));
1340 	outw(0x9f1f, FM801_REG(chip, FM_VOL));
1341 	outw(0x8808, FM801_REG(chip, I2S_VOL));
1342 
1343 	/* I2S control - I2S mode */
1344 	outw(0x0003, FM801_REG(chip, I2S_MODE));
1345 
1346 	/* interrupt setup */
1347 	cmdw = inw(FM801_REG(chip, IRQ_MASK));
1348 	if (chip->irq < 0)
1349 		cmdw |= 0x00c3;		/* mask everything, no PCM nor MPU */
1350 	else
1351 		cmdw &= ~0x0083;	/* unmask MPU, PLAYBACK & CAPTURE */
1352 	outw(cmdw, FM801_REG(chip, IRQ_MASK));
1353 
1354 	/* interrupt clear */
1355 	outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1356 
1357 	return 0;
1358 }
1359 
1360 
1361 static int snd_fm801_free(struct fm801 *chip)
1362 {
1363 	unsigned short cmdw;
1364 
1365 	if (chip->irq < 0)
1366 		goto __end_hw;
1367 
1368 	/* interrupt setup - mask everything */
1369 	cmdw = inw(FM801_REG(chip, IRQ_MASK));
1370 	cmdw |= 0x00c3;
1371 	outw(cmdw, FM801_REG(chip, IRQ_MASK));
1372 
1373       __end_hw:
1374 #ifdef TEA575X_RADIO
1375 	snd_tea575x_exit(&chip->tea);
1376 #endif
1377 	if (chip->irq >= 0)
1378 		free_irq(chip->irq, chip);
1379 	pci_release_regions(chip->pci);
1380 	pci_disable_device(chip->pci);
1381 
1382 	kfree(chip);
1383 	return 0;
1384 }
1385 
1386 static int snd_fm801_dev_free(struct snd_device *device)
1387 {
1388 	struct fm801 *chip = device->device_data;
1389 	return snd_fm801_free(chip);
1390 }
1391 
1392 static int __devinit snd_fm801_create(struct snd_card *card,
1393 				      struct pci_dev * pci,
1394 				      int tea575x_tuner,
1395 				      struct fm801 ** rchip)
1396 {
1397 	struct fm801 *chip;
1398 	int err;
1399 	static struct snd_device_ops ops = {
1400 		.dev_free =	snd_fm801_dev_free,
1401 	};
1402 
1403 	*rchip = NULL;
1404 	if ((err = pci_enable_device(pci)) < 0)
1405 		return err;
1406 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1407 	if (chip == NULL) {
1408 		pci_disable_device(pci);
1409 		return -ENOMEM;
1410 	}
1411 	spin_lock_init(&chip->reg_lock);
1412 	chip->card = card;
1413 	chip->pci = pci;
1414 	chip->irq = -1;
1415 	chip->tea575x_tuner = tea575x_tuner;
1416 	if ((err = pci_request_regions(pci, "FM801")) < 0) {
1417 		kfree(chip);
1418 		pci_disable_device(pci);
1419 		return err;
1420 	}
1421 	chip->port = pci_resource_start(pci, 0);
1422 	if ((tea575x_tuner & TUNER_ONLY) == 0) {
1423 		if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
1424 				"FM801", chip)) {
1425 			snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1426 			snd_fm801_free(chip);
1427 			return -EBUSY;
1428 		}
1429 		chip->irq = pci->irq;
1430 		pci_set_master(pci);
1431 	}
1432 
1433 	if (pci->revision >= 0xb1)	/* FM801-AU */
1434 		chip->multichannel = 1;
1435 
1436 	snd_fm801_chip_init(chip, 0);
1437 	/* init might set tuner access method */
1438 	tea575x_tuner = chip->tea575x_tuner;
1439 
1440 	if (chip->irq >= 0 && (tea575x_tuner & TUNER_ONLY)) {
1441 		pci_clear_master(pci);
1442 		free_irq(chip->irq, chip);
1443 		chip->irq = -1;
1444 	}
1445 
1446 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1447 		snd_fm801_free(chip);
1448 		return err;
1449 	}
1450 
1451 	snd_card_set_dev(card, &pci->dev);
1452 
1453 #ifdef TEA575X_RADIO
1454 	if ((tea575x_tuner & TUNER_TYPE_MASK) > 0 &&
1455 	    (tea575x_tuner & TUNER_TYPE_MASK) < 4) {
1456 		chip->tea.dev_nr = tea575x_tuner >> 16;
1457 		chip->tea.card = card;
1458 		chip->tea.freq_fixup = 10700;
1459 		chip->tea.private_data = chip;
1460 		chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & TUNER_TYPE_MASK) - 1];
1461 		snd_tea575x_init(&chip->tea);
1462 	}
1463 #endif
1464 
1465 	*rchip = chip;
1466 	return 0;
1467 }
1468 
1469 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1470 					  const struct pci_device_id *pci_id)
1471 {
1472 	static int dev;
1473 	struct snd_card *card;
1474 	struct fm801 *chip;
1475 	struct snd_opl3 *opl3;
1476 	int err;
1477 
1478         if (dev >= SNDRV_CARDS)
1479                 return -ENODEV;
1480 	if (!enable[dev]) {
1481 		dev++;
1482 		return -ENOENT;
1483 	}
1484 
1485 	err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
1486 	if (err < 0)
1487 		return err;
1488 	if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1489 		snd_card_free(card);
1490 		return err;
1491 	}
1492 	card->private_data = chip;
1493 
1494 	strcpy(card->driver, "FM801");
1495 	strcpy(card->shortname, "ForteMedia FM801-");
1496 	strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1497 	sprintf(card->longname, "%s at 0x%lx, irq %i",
1498 		card->shortname, chip->port, chip->irq);
1499 
1500 	if (chip->tea575x_tuner & TUNER_ONLY)
1501 		goto __fm801_tuner_only;
1502 
1503 	if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1504 		snd_card_free(card);
1505 		return err;
1506 	}
1507 	if ((err = snd_fm801_mixer(chip)) < 0) {
1508 		snd_card_free(card);
1509 		return err;
1510 	}
1511 	if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1512 				       FM801_REG(chip, MPU401_DATA),
1513 				       MPU401_INFO_INTEGRATED,
1514 				       chip->irq, 0, &chip->rmidi)) < 0) {
1515 		snd_card_free(card);
1516 		return err;
1517 	}
1518 	if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1519 				   FM801_REG(chip, OPL3_BANK1),
1520 				   OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1521 		snd_card_free(card);
1522 		return err;
1523 	}
1524 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1525 		snd_card_free(card);
1526 		return err;
1527 	}
1528 
1529       __fm801_tuner_only:
1530 	if ((err = snd_card_register(card)) < 0) {
1531 		snd_card_free(card);
1532 		return err;
1533 	}
1534 	pci_set_drvdata(pci, card);
1535 	dev++;
1536 	return 0;
1537 }
1538 
1539 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1540 {
1541 	snd_card_free(pci_get_drvdata(pci));
1542 	pci_set_drvdata(pci, NULL);
1543 }
1544 
1545 #ifdef CONFIG_PM
1546 static unsigned char saved_regs[] = {
1547 	FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1548 	FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1549 	FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1550 	FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1551 };
1552 
1553 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1554 {
1555 	struct snd_card *card = pci_get_drvdata(pci);
1556 	struct fm801 *chip = card->private_data;
1557 	int i;
1558 
1559 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1560 	snd_pcm_suspend_all(chip->pcm);
1561 	snd_ac97_suspend(chip->ac97);
1562 	snd_ac97_suspend(chip->ac97_sec);
1563 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1564 		chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1565 	/* FIXME: tea575x suspend */
1566 
1567 	pci_disable_device(pci);
1568 	pci_save_state(pci);
1569 	pci_set_power_state(pci, pci_choose_state(pci, state));
1570 	return 0;
1571 }
1572 
1573 static int snd_fm801_resume(struct pci_dev *pci)
1574 {
1575 	struct snd_card *card = pci_get_drvdata(pci);
1576 	struct fm801 *chip = card->private_data;
1577 	int i;
1578 
1579 	pci_set_power_state(pci, PCI_D0);
1580 	pci_restore_state(pci);
1581 	if (pci_enable_device(pci) < 0) {
1582 		printk(KERN_ERR "fm801: pci_enable_device failed, "
1583 		       "disabling device\n");
1584 		snd_card_disconnect(card);
1585 		return -EIO;
1586 	}
1587 	pci_set_master(pci);
1588 
1589 	snd_fm801_chip_init(chip, 1);
1590 	snd_ac97_resume(chip->ac97);
1591 	snd_ac97_resume(chip->ac97_sec);
1592 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1593 		outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1594 
1595 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1596 	return 0;
1597 }
1598 #endif
1599 
1600 static struct pci_driver driver = {
1601 	.name = "FM801",
1602 	.id_table = snd_fm801_ids,
1603 	.probe = snd_card_fm801_probe,
1604 	.remove = __devexit_p(snd_card_fm801_remove),
1605 #ifdef CONFIG_PM
1606 	.suspend = snd_fm801_suspend,
1607 	.resume = snd_fm801_resume,
1608 #endif
1609 };
1610 
1611 static int __init alsa_card_fm801_init(void)
1612 {
1613 	return pci_register_driver(&driver);
1614 }
1615 
1616 static void __exit alsa_card_fm801_exit(void)
1617 {
1618 	pci_unregister_driver(&driver);
1619 }
1620 
1621 module_init(alsa_card_fm801_init)
1622 module_exit(alsa_card_fm801_exit)
1623