xref: /openbmc/linux/sound/pci/emu10k1/io.c (revision 7e9f2839)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Creative Labs, Inc.
5  *  Routines for control of EMU10K1 chips
6  *
7  *  BUGS:
8  *    --
9  *
10  *  TODO:
11  *    --
12  */
13 
14 #include <linux/time.h>
15 #include <sound/core.h>
16 #include <sound/emu10k1.h>
17 #include <linux/delay.h>
18 #include <linux/export.h>
19 #include "p17v.h"
20 
21 static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
22 {
23 	if (snd_BUG_ON(!emu))
24 		return false;
25 	if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
26 					  : (0xffff0000 & ~PTR_ADDRESS_MASK))))
27 		return false;
28 	if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
29 		return false;
30 	return true;
31 }
32 
33 unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
34 {
35 	unsigned long flags;
36 	unsigned int regptr, val;
37 	unsigned int mask;
38 
39 	regptr = (reg << 16) | chn;
40 	if (!check_ptr_reg(emu, regptr))
41 		return 0;
42 
43 	spin_lock_irqsave(&emu->emu_lock, flags);
44 	outl(regptr, emu->port + PTR);
45 	val = inl(emu->port + DATA);
46 	spin_unlock_irqrestore(&emu->emu_lock, flags);
47 
48 	if (reg & 0xff000000) {
49 		unsigned char size, offset;
50 
51 		size = (reg >> 24) & 0x3f;
52 		offset = (reg >> 16) & 0x1f;
53 		mask = (1 << size) - 1;
54 
55 		return (val >> offset) & mask;
56 	} else {
57 		return val;
58 	}
59 }
60 
61 EXPORT_SYMBOL(snd_emu10k1_ptr_read);
62 
63 void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
64 {
65 	unsigned int regptr;
66 	unsigned long flags;
67 	unsigned int mask;
68 
69 	regptr = (reg << 16) | chn;
70 	if (!check_ptr_reg(emu, regptr))
71 		return;
72 
73 	if (reg & 0xff000000) {
74 		unsigned char size, offset;
75 
76 		size = (reg >> 24) & 0x3f;
77 		offset = (reg >> 16) & 0x1f;
78 		mask = (1 << size) - 1;
79 		if (snd_BUG_ON(data & ~mask))
80 			return;
81 		mask <<= offset;
82 		data <<= offset;
83 
84 		spin_lock_irqsave(&emu->emu_lock, flags);
85 		outl(regptr, emu->port + PTR);
86 		data |= inl(emu->port + DATA) & ~mask;
87 	} else {
88 		spin_lock_irqsave(&emu->emu_lock, flags);
89 		outl(regptr, emu->port + PTR);
90 	}
91 	outl(data, emu->port + DATA);
92 	spin_unlock_irqrestore(&emu->emu_lock, flags);
93 }
94 
95 EXPORT_SYMBOL(snd_emu10k1_ptr_write);
96 
97 void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
98 {
99 	va_list va;
100 	u32 addr_mask;
101 	unsigned long flags;
102 
103 	if (snd_BUG_ON(!emu))
104 		return;
105 	if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
106 		return;
107 	addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
108 
109 	va_start(va, chn);
110 	spin_lock_irqsave(&emu->emu_lock, flags);
111 	for (;;) {
112 		u32 data;
113 		u32 reg = va_arg(va, u32);
114 		if (reg == REGLIST_END)
115 			break;
116 		data = va_arg(va, u32);
117 		if (snd_BUG_ON(reg & addr_mask))  // Only raw registers supported here
118 			continue;
119 		outl((reg << 16) | chn, emu->port + PTR);
120 		outl(data, emu->port + DATA);
121 	}
122 	spin_unlock_irqrestore(&emu->emu_lock, flags);
123 	va_end(va);
124 }
125 
126 EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
127 
128 unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
129 					  unsigned int reg,
130 					  unsigned int chn)
131 {
132 	unsigned long flags;
133 	unsigned int regptr, val;
134 
135 	regptr = (reg << 16) | chn;
136 
137 	spin_lock_irqsave(&emu->emu_lock, flags);
138 	outl(regptr, emu->port + PTR2);
139 	val = inl(emu->port + DATA2);
140 	spin_unlock_irqrestore(&emu->emu_lock, flags);
141 	return val;
142 }
143 
144 void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
145 				   unsigned int reg,
146 				   unsigned int chn,
147 				   unsigned int data)
148 {
149 	unsigned int regptr;
150 	unsigned long flags;
151 
152 	regptr = (reg << 16) | chn;
153 
154 	spin_lock_irqsave(&emu->emu_lock, flags);
155 	outl(regptr, emu->port + PTR2);
156 	outl(data, emu->port + DATA2);
157 	spin_unlock_irqrestore(&emu->emu_lock, flags);
158 }
159 
160 int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
161 				   unsigned int data)
162 {
163 	unsigned int reset, set;
164 	unsigned int reg, tmp;
165 	int n, result;
166 	int err = 0;
167 
168 	/* This function is not re-entrant, so protect against it. */
169 	spin_lock(&emu->spi_lock);
170 	if (emu->card_capabilities->ca0108_chip)
171 		reg = P17V_SPI;
172 	else {
173 		/* For other chip types the SPI register
174 		 * is currently unknown. */
175 		err = 1;
176 		goto spi_write_exit;
177 	}
178 	if (data > 0xffff) {
179 		/* Only 16bit values allowed */
180 		err = 1;
181 		goto spi_write_exit;
182 	}
183 
184 	tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
185 	reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
186 	set = reset | 0x10000; /* Set xxx1xxxx */
187 	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
188 	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
189 	snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
190 	result = 1;
191 	/* Wait for status bit to return to 0 */
192 	for (n = 0; n < 100; n++) {
193 		udelay(10);
194 		tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
195 		if (!(tmp & 0x10000)) {
196 			result = 0;
197 			break;
198 		}
199 	}
200 	if (result) {
201 		/* Timed out */
202 		err = 1;
203 		goto spi_write_exit;
204 	}
205 	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
206 	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
207 	err = 0;
208 spi_write_exit:
209 	spin_unlock(&emu->spi_lock);
210 	return err;
211 }
212 
213 /* The ADC does not support i2c read, so only write is implemented */
214 int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
215 				u32 reg,
216 				u32 value)
217 {
218 	u32 tmp;
219 	int timeout = 0;
220 	int status;
221 	int retry;
222 	int err = 0;
223 
224 	if ((reg > 0x7f) || (value > 0x1ff)) {
225 		dev_err(emu->card->dev, "i2c_write: invalid values.\n");
226 		return -EINVAL;
227 	}
228 
229 	/* This function is not re-entrant, so protect against it. */
230 	spin_lock(&emu->i2c_lock);
231 
232 	tmp = reg << 25 | value << 16;
233 
234 	/* This controls the I2C connected to the WM8775 ADC Codec */
235 	snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
236 	tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
237 
238 	for (retry = 0; retry < 10; retry++) {
239 		/* Send the data to i2c */
240 		tmp = 0;
241 		tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
242 		snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
243 
244 		/* Wait till the transaction ends */
245 		while (1) {
246 			mdelay(1);
247 			status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
248 			timeout++;
249 			if ((status & I2C_A_ADC_START) == 0)
250 				break;
251 
252 			if (timeout > 1000) {
253 				dev_warn(emu->card->dev,
254 					   "emu10k1:I2C:timeout status=0x%x\n",
255 					   status);
256 				break;
257 			}
258 		}
259 		//Read back and see if the transaction is successful
260 		if ((status & I2C_A_ADC_ABORT) == 0)
261 			break;
262 	}
263 
264 	if (retry == 10) {
265 		dev_err(emu->card->dev, "Writing to ADC failed!\n");
266 		dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
267 			status, reg, value);
268 		/* dump_stack(); */
269 		err = -EINVAL;
270 	}
271 
272 	spin_unlock(&emu->i2c_lock);
273 	return err;
274 }
275 
276 static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
277 {
278 	if (snd_BUG_ON(reg > 0x3f))
279 		return;
280 	reg += 0x40; /* 0x40 upwards are registers. */
281 	if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
282 		return;
283 	outw(reg, emu->port + A_GPIO);
284 	udelay(10);
285 	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
286 	udelay(10);
287 	outw(value, emu->port + A_GPIO);
288 	udelay(10);
289 	outw(value | 0x80 , emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
290 }
291 
292 void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
293 {
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&emu->emu_lock, flags);
297 	snd_emu1010_fpga_write_locked(emu, reg, value);
298 	spin_unlock_irqrestore(&emu->emu_lock, flags);
299 }
300 
301 static void snd_emu1010_fpga_read_locked(struct snd_emu10k1 *emu, u32 reg, u32 *value)
302 {
303 	// The higest input pin is used as the designated interrupt trigger,
304 	// so it needs to be masked out.
305 	// But note that any other input pin change will also cause an IRQ,
306 	// so using this function often causes an IRQ as a side effect.
307 	u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
308 	if (snd_BUG_ON(reg > 0x3f))
309 		return;
310 	reg += 0x40; /* 0x40 upwards are registers. */
311 	outw(reg, emu->port + A_GPIO);
312 	udelay(10);
313 	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
314 	udelay(10);
315 	*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
316 }
317 
318 void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
319 {
320 	unsigned long flags;
321 
322 	spin_lock_irqsave(&emu->emu_lock, flags);
323 	snd_emu1010_fpga_read_locked(emu, reg, value);
324 	spin_unlock_irqrestore(&emu->emu_lock, flags);
325 }
326 
327 /* Each Destination has one and only one Source,
328  * but one Source can feed any number of Destinations simultaneously.
329  */
330 void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
331 {
332 	unsigned long flags;
333 
334 	if (snd_BUG_ON(dst & ~0x71f))
335 		return;
336 	if (snd_BUG_ON(src & ~0x71f))
337 		return;
338 	spin_lock_irqsave(&emu->emu_lock, flags);
339 	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8);
340 	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f);
341 	snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCHI, src >> 8);
342 	snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCLO, src & 0x1f);
343 	spin_unlock_irqrestore(&emu->emu_lock, flags);
344 }
345 
346 u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
347 {
348 	unsigned long flags;
349 	u32 hi, lo;
350 
351 	if (snd_BUG_ON(dst & ~0x71f))
352 		return 0;
353 	spin_lock_irqsave(&emu->emu_lock, flags);
354 	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8);
355 	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f);
356 	snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCHI, &hi);
357 	snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCLO, &lo);
358 	spin_unlock_irqrestore(&emu->emu_lock, flags);
359 	return (hi << 8) | lo;
360 }
361 
362 int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
363 {
364 	u32 reg_lo, reg_hi, value, value2;
365 
366 	switch (src) {
367 	case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
368 		snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
369 		if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
370 			return 0;
371 		reg_lo = EMU_HANA_WC_SPDIF_LO;
372 		reg_hi = EMU_HANA_WC_SPDIF_HI;
373 		break;
374 	case EMU_HANA_WCLOCK_HANA_ADAT_IN:
375 		reg_lo = EMU_HANA_WC_ADAT_LO;
376 		reg_hi = EMU_HANA_WC_ADAT_HI;
377 		break;
378 	case EMU_HANA_WCLOCK_SYNC_BNC:
379 		reg_lo = EMU_HANA_WC_BNC_LO;
380 		reg_hi = EMU_HANA_WC_BNC_HI;
381 		break;
382 	case EMU_HANA_WCLOCK_2ND_HANA:
383 		reg_lo = EMU_HANA2_WC_SPDIF_LO;
384 		reg_hi = EMU_HANA2_WC_SPDIF_HI;
385 		break;
386 	default:
387 		return 0;
388 	}
389 	snd_emu1010_fpga_read(emu, reg_hi, &value);
390 	snd_emu1010_fpga_read(emu, reg_lo, &value2);
391 	// FIXME: The /4 is valid for 0404b, but contradicts all other info.
392 	return 0x1770000 / 4 / (((value << 5) | value2) + 1);
393 }
394 
395 void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
396 {
397 	int clock;
398 	u32 leds;
399 
400 	switch (emu->emu1010.wclock) {
401 	case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
402 		clock = 44100;
403 		leds = EMU_HANA_DOCK_LEDS_2_44K;
404 		break;
405 	case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
406 		clock = 48000;
407 		leds = EMU_HANA_DOCK_LEDS_2_48K;
408 		break;
409 	default:
410 		clock = snd_emu1010_get_raw_rate(
411 				emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
412 		// The raw rate reading is rather coarse (it cannot accurately
413 		// represent 44.1 kHz) and fluctuates slightly. Luckily, the
414 		// clock comes from digital inputs, which use standardized rates.
415 		// So we round to the closest standard rate and ignore discrepancies.
416 		if (clock < 46000) {
417 			clock = 44100;
418 			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
419 		} else {
420 			clock = 48000;
421 			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
422 		}
423 		break;
424 	}
425 	emu->emu1010.word_clock = clock;
426 
427 	// FIXME: this should probably represent the AND of all currently
428 	// used sources' lock status. But we don't know how to get that ...
429 	leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
430 
431 	snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
432 }
433 
434 void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
435 {
436 	unsigned long flags;
437 	unsigned int enable;
438 
439 	spin_lock_irqsave(&emu->emu_lock, flags);
440 	enable = inl(emu->port + INTE) | intrenb;
441 	outl(enable, emu->port + INTE);
442 	spin_unlock_irqrestore(&emu->emu_lock, flags);
443 }
444 
445 void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
446 {
447 	unsigned long flags;
448 	unsigned int enable;
449 
450 	spin_lock_irqsave(&emu->emu_lock, flags);
451 	enable = inl(emu->port + INTE) & ~intrenb;
452 	outl(enable, emu->port + INTE);
453 	spin_unlock_irqrestore(&emu->emu_lock, flags);
454 }
455 
456 void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
457 {
458 	unsigned long flags;
459 	unsigned int val;
460 
461 	spin_lock_irqsave(&emu->emu_lock, flags);
462 	if (voicenum >= 32) {
463 		outl(CLIEH << 16, emu->port + PTR);
464 		val = inl(emu->port + DATA);
465 		val |= 1 << (voicenum - 32);
466 	} else {
467 		outl(CLIEL << 16, emu->port + PTR);
468 		val = inl(emu->port + DATA);
469 		val |= 1 << voicenum;
470 	}
471 	outl(val, emu->port + DATA);
472 	spin_unlock_irqrestore(&emu->emu_lock, flags);
473 }
474 
475 void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
476 {
477 	unsigned long flags;
478 	unsigned int val;
479 
480 	spin_lock_irqsave(&emu->emu_lock, flags);
481 	if (voicenum >= 32) {
482 		outl(CLIEH << 16, emu->port + PTR);
483 		val = inl(emu->port + DATA);
484 		val &= ~(1 << (voicenum - 32));
485 	} else {
486 		outl(CLIEL << 16, emu->port + PTR);
487 		val = inl(emu->port + DATA);
488 		val &= ~(1 << voicenum);
489 	}
490 	outl(val, emu->port + DATA);
491 	spin_unlock_irqrestore(&emu->emu_lock, flags);
492 }
493 
494 void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
495 {
496 	unsigned long flags;
497 
498 	spin_lock_irqsave(&emu->emu_lock, flags);
499 	if (voicenum >= 32) {
500 		outl(CLIPH << 16, emu->port + PTR);
501 		voicenum = 1 << (voicenum - 32);
502 	} else {
503 		outl(CLIPL << 16, emu->port + PTR);
504 		voicenum = 1 << voicenum;
505 	}
506 	outl(voicenum, emu->port + DATA);
507 	spin_unlock_irqrestore(&emu->emu_lock, flags);
508 }
509 
510 void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
511 {
512 	unsigned long flags;
513 	unsigned int val;
514 
515 	spin_lock_irqsave(&emu->emu_lock, flags);
516 	if (voicenum >= 32) {
517 		outl(HLIEH << 16, emu->port + PTR);
518 		val = inl(emu->port + DATA);
519 		val |= 1 << (voicenum - 32);
520 	} else {
521 		outl(HLIEL << 16, emu->port + PTR);
522 		val = inl(emu->port + DATA);
523 		val |= 1 << voicenum;
524 	}
525 	outl(val, emu->port + DATA);
526 	spin_unlock_irqrestore(&emu->emu_lock, flags);
527 }
528 
529 void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
530 {
531 	unsigned long flags;
532 	unsigned int val;
533 
534 	spin_lock_irqsave(&emu->emu_lock, flags);
535 	if (voicenum >= 32) {
536 		outl(HLIEH << 16, emu->port + PTR);
537 		val = inl(emu->port + DATA);
538 		val &= ~(1 << (voicenum - 32));
539 	} else {
540 		outl(HLIEL << 16, emu->port + PTR);
541 		val = inl(emu->port + DATA);
542 		val &= ~(1 << voicenum);
543 	}
544 	outl(val, emu->port + DATA);
545 	spin_unlock_irqrestore(&emu->emu_lock, flags);
546 }
547 
548 void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
549 {
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&emu->emu_lock, flags);
553 	if (voicenum >= 32) {
554 		outl(HLIPH << 16, emu->port + PTR);
555 		voicenum = 1 << (voicenum - 32);
556 	} else {
557 		outl(HLIPL << 16, emu->port + PTR);
558 		voicenum = 1 << voicenum;
559 	}
560 	outl(voicenum, emu->port + DATA);
561 	spin_unlock_irqrestore(&emu->emu_lock, flags);
562 }
563 
564 #if 0
565 void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
566 {
567 	unsigned long flags;
568 	unsigned int sol;
569 
570 	spin_lock_irqsave(&emu->emu_lock, flags);
571 	if (voicenum >= 32) {
572 		outl(SOLEH << 16, emu->port + PTR);
573 		sol = inl(emu->port + DATA);
574 		sol |= 1 << (voicenum - 32);
575 	} else {
576 		outl(SOLEL << 16, emu->port + PTR);
577 		sol = inl(emu->port + DATA);
578 		sol |= 1 << voicenum;
579 	}
580 	outl(sol, emu->port + DATA);
581 	spin_unlock_irqrestore(&emu->emu_lock, flags);
582 }
583 
584 void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
585 {
586 	unsigned long flags;
587 	unsigned int sol;
588 
589 	spin_lock_irqsave(&emu->emu_lock, flags);
590 	if (voicenum >= 32) {
591 		outl(SOLEH << 16, emu->port + PTR);
592 		sol = inl(emu->port + DATA);
593 		sol &= ~(1 << (voicenum - 32));
594 	} else {
595 		outl(SOLEL << 16, emu->port + PTR);
596 		sol = inl(emu->port + DATA);
597 		sol &= ~(1 << voicenum);
598 	}
599 	outl(sol, emu->port + DATA);
600 	spin_unlock_irqrestore(&emu->emu_lock, flags);
601 }
602 #endif
603 
604 void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
605 {
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&emu->emu_lock, flags);
609 	outl(SOLEL << 16, emu->port + PTR);
610 	outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
611 	outl(SOLEH << 16, emu->port + PTR);
612 	outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
613 	spin_unlock_irqrestore(&emu->emu_lock, flags);
614 }
615 
616 void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
617 {
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&emu->emu_lock, flags);
621 	outl(SOLEL << 16, emu->port + PTR);
622 	outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
623 	outl(SOLEH << 16, emu->port + PTR);
624 	outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
625 	spin_unlock_irqrestore(&emu->emu_lock, flags);
626 }
627 
628 int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
629 {
630 	unsigned long flags;
631 	u32 soll, solh;
632 	int ret = -EIO;
633 
634 	spin_lock_irqsave(&emu->emu_lock, flags);
635 
636 	outl(SOLEL << 16, emu->port + PTR);
637 	soll = inl(emu->port + DATA);
638 	outl(SOLEH << 16, emu->port + PTR);
639 	solh = inl(emu->port + DATA);
640 
641 	soll &= (u32)~voices;
642 	solh &= (u32)(~voices >> 32);
643 
644 	for (int tries = 0; tries < 1000; tries++) {
645 		const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
646 		// First we wait for the third quarter of the sample cycle ...
647 		u32 wc = inl(emu->port + WC);
648 		u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
649 		if (cc >= quart * 2 && cc < quart * 3) {
650 			// ... and release the low voices, while the high ones are serviced.
651 			outl(SOLEL << 16, emu->port + PTR);
652 			outl(soll, emu->port + DATA);
653 			// Then we wait for the first quarter of the next sample cycle ...
654 			for (; tries < 1000; tries++) {
655 				cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
656 				if (cc < quart)
657 					goto good;
658 				// We will block for 10+ us with interrupts disabled. This is
659 				// not nice at all, but necessary for reasonable reliability.
660 				udelay(1);
661 			}
662 			break;
663 		good:
664 			// ... and release the high voices, while the low ones are serviced.
665 			outl(SOLEH << 16, emu->port + PTR);
666 			outl(solh, emu->port + DATA);
667 			// Finally we verify that nothing interfered in fact.
668 			if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
669 			    ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
670 				ret = 0;
671 			} else {
672 				ret = -EAGAIN;
673 			}
674 			break;
675 		}
676 		// Don't block for too long
677 		spin_unlock_irqrestore(&emu->emu_lock, flags);
678 		udelay(1);
679 		spin_lock_irqsave(&emu->emu_lock, flags);
680 	}
681 
682 	spin_unlock_irqrestore(&emu->emu_lock, flags);
683 	return ret;
684 }
685 
686 void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
687 {
688 	volatile unsigned count;
689 	unsigned int newtime = 0, curtime;
690 
691 	curtime = inl(emu->port + WC) >> 6;
692 	while (wait-- > 0) {
693 		count = 0;
694 		while (count++ < 16384) {
695 			newtime = inl(emu->port + WC) >> 6;
696 			if (newtime != curtime)
697 				break;
698 		}
699 		if (count > 16384)
700 			break;
701 		curtime = newtime;
702 	}
703 }
704 
705 unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
706 {
707 	struct snd_emu10k1 *emu = ac97->private_data;
708 	unsigned long flags;
709 	unsigned short val;
710 
711 	spin_lock_irqsave(&emu->emu_lock, flags);
712 	outb(reg, emu->port + AC97ADDRESS);
713 	val = inw(emu->port + AC97DATA);
714 	spin_unlock_irqrestore(&emu->emu_lock, flags);
715 	return val;
716 }
717 
718 void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
719 {
720 	struct snd_emu10k1 *emu = ac97->private_data;
721 	unsigned long flags;
722 
723 	spin_lock_irqsave(&emu->emu_lock, flags);
724 	outb(reg, emu->port + AC97ADDRESS);
725 	outw(data, emu->port + AC97DATA);
726 	spin_unlock_irqrestore(&emu->emu_lock, flags);
727 }
728