1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Creative Labs, Inc. 5 * Routines for control of EMU10K1 chips / PCM routines 6 * Multichannel PCM support Copyright (c) Lee Revell <rlrevell@joe-job.com> 7 * 8 * BUGS: 9 * -- 10 * 11 * TODO: 12 * -- 13 */ 14 15 #include <linux/pci.h> 16 #include <linux/delay.h> 17 #include <linux/slab.h> 18 #include <linux/time.h> 19 #include <linux/init.h> 20 #include <sound/core.h> 21 #include <sound/emu10k1.h> 22 23 static void snd_emu10k1_pcm_interrupt(struct snd_emu10k1 *emu, 24 struct snd_emu10k1_voice *voice) 25 { 26 struct snd_emu10k1_pcm *epcm; 27 28 epcm = voice->epcm; 29 if (!epcm) 30 return; 31 if (epcm->substream == NULL) 32 return; 33 #if 0 34 dev_dbg(emu->card->dev, 35 "IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n", 36 epcm->substream->runtime->hw->pointer(emu, epcm->substream), 37 snd_pcm_lib_period_bytes(epcm->substream), 38 snd_pcm_lib_buffer_bytes(epcm->substream)); 39 #endif 40 snd_pcm_period_elapsed(epcm->substream); 41 } 42 43 static void snd_emu10k1_pcm_ac97adc_interrupt(struct snd_emu10k1 *emu, 44 unsigned int status) 45 { 46 #if 0 47 if (status & IPR_ADCBUFHALFFULL) { 48 if (emu->pcm_capture_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) 49 return; 50 } 51 #endif 52 snd_pcm_period_elapsed(emu->pcm_capture_substream); 53 } 54 55 static void snd_emu10k1_pcm_ac97mic_interrupt(struct snd_emu10k1 *emu, 56 unsigned int status) 57 { 58 #if 0 59 if (status & IPR_MICBUFHALFFULL) { 60 if (emu->pcm_capture_mic_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) 61 return; 62 } 63 #endif 64 snd_pcm_period_elapsed(emu->pcm_capture_mic_substream); 65 } 66 67 static void snd_emu10k1_pcm_efx_interrupt(struct snd_emu10k1 *emu, 68 unsigned int status) 69 { 70 #if 0 71 if (status & IPR_EFXBUFHALFFULL) { 72 if (emu->pcm_capture_efx_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) 73 return; 74 } 75 #endif 76 snd_pcm_period_elapsed(emu->pcm_capture_efx_substream); 77 } 78 79 static void snd_emu10k1_pcm_free_voices(struct snd_emu10k1_pcm *epcm) 80 { 81 for (unsigned i = 0; i < ARRAY_SIZE(epcm->voices); i++) { 82 if (epcm->voices[i]) { 83 snd_emu10k1_voice_free(epcm->emu, epcm->voices[i]); 84 epcm->voices[i] = NULL; 85 } 86 } 87 } 88 89 static int snd_emu10k1_pcm_channel_alloc(struct snd_emu10k1_pcm *epcm, 90 int type, int count, int channels) 91 { 92 int err; 93 94 snd_emu10k1_pcm_free_voices(epcm); 95 96 err = snd_emu10k1_voice_alloc(epcm->emu, 97 type, count, channels, 98 epcm, &epcm->voices[0]); 99 if (err < 0) 100 return err; 101 102 if (epcm->extra == NULL) { 103 // The hardware supports only (half-)loop interrupts, so to support an 104 // arbitrary number of periods per buffer, we use an extra voice with a 105 // period-sized loop as the interrupt source. Additionally, the interrupt 106 // timing of the hardware is "suboptimal" and needs some compensation. 107 err = snd_emu10k1_voice_alloc(epcm->emu, 108 type + 1, 1, 1, 109 epcm, &epcm->extra); 110 if (err < 0) { 111 /* 112 dev_dbg(emu->card->dev, "pcm_channel_alloc: " 113 "failed extra: voices=%d, frame=%d\n", 114 voices, frame); 115 */ 116 snd_emu10k1_pcm_free_voices(epcm); 117 return err; 118 } 119 epcm->extra->interrupt = snd_emu10k1_pcm_interrupt; 120 } 121 122 return 0; 123 } 124 125 // Primes 2-7 and 2^n multiples thereof, up to 16. 126 static const unsigned int efx_capture_channels[] = { 127 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16 128 }; 129 130 static const struct snd_pcm_hw_constraint_list hw_constraints_efx_capture_channels = { 131 .count = ARRAY_SIZE(efx_capture_channels), 132 .list = efx_capture_channels, 133 .mask = 0 134 }; 135 136 static const unsigned int capture_buffer_sizes[31] = { 137 384, 448, 512, 640, 138 384*2, 448*2, 512*2, 640*2, 139 384*4, 448*4, 512*4, 640*4, 140 384*8, 448*8, 512*8, 640*8, 141 384*16, 448*16, 512*16, 640*16, 142 384*32, 448*32, 512*32, 640*32, 143 384*64, 448*64, 512*64, 640*64, 144 384*128,448*128,512*128 145 }; 146 147 static const struct snd_pcm_hw_constraint_list hw_constraints_capture_buffer_sizes = { 148 .count = 31, 149 .list = capture_buffer_sizes, 150 .mask = 0 151 }; 152 153 static const unsigned int capture_rates[8] = { 154 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000 155 }; 156 157 static const struct snd_pcm_hw_constraint_list hw_constraints_capture_rates = { 158 .count = 8, 159 .list = capture_rates, 160 .mask = 0 161 }; 162 163 static unsigned int snd_emu10k1_capture_rate_reg(unsigned int rate) 164 { 165 switch (rate) { 166 case 8000: return ADCCR_SAMPLERATE_8; 167 case 11025: return ADCCR_SAMPLERATE_11; 168 case 16000: return ADCCR_SAMPLERATE_16; 169 case 22050: return ADCCR_SAMPLERATE_22; 170 case 24000: return ADCCR_SAMPLERATE_24; 171 case 32000: return ADCCR_SAMPLERATE_32; 172 case 44100: return ADCCR_SAMPLERATE_44; 173 case 48000: return ADCCR_SAMPLERATE_48; 174 default: 175 snd_BUG(); 176 return ADCCR_SAMPLERATE_8; 177 } 178 } 179 180 static const unsigned int audigy_capture_rates[9] = { 181 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 182 }; 183 184 static const struct snd_pcm_hw_constraint_list hw_constraints_audigy_capture_rates = { 185 .count = 9, 186 .list = audigy_capture_rates, 187 .mask = 0 188 }; 189 190 static unsigned int snd_emu10k1_audigy_capture_rate_reg(unsigned int rate) 191 { 192 switch (rate) { 193 case 8000: return A_ADCCR_SAMPLERATE_8; 194 case 11025: return A_ADCCR_SAMPLERATE_11; 195 case 12000: return A_ADCCR_SAMPLERATE_12; 196 case 16000: return ADCCR_SAMPLERATE_16; 197 case 22050: return ADCCR_SAMPLERATE_22; 198 case 24000: return ADCCR_SAMPLERATE_24; 199 case 32000: return ADCCR_SAMPLERATE_32; 200 case 44100: return ADCCR_SAMPLERATE_44; 201 case 48000: return ADCCR_SAMPLERATE_48; 202 default: 203 snd_BUG(); 204 return A_ADCCR_SAMPLERATE_8; 205 } 206 } 207 208 static void snd_emu10k1_constrain_capture_rates(struct snd_emu10k1 *emu, 209 struct snd_pcm_runtime *runtime) 210 { 211 if (emu->card_capabilities->emu_model && 212 emu->emu1010.word_clock == 44100) { 213 // This also sets the rate constraint by deleting SNDRV_PCM_RATE_KNOT 214 runtime->hw.rates = SNDRV_PCM_RATE_11025 | \ 215 SNDRV_PCM_RATE_22050 | \ 216 SNDRV_PCM_RATE_44100; 217 runtime->hw.rate_min = 11025; 218 runtime->hw.rate_max = 44100; 219 return; 220 } 221 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 222 emu->audigy ? &hw_constraints_audigy_capture_rates : 223 &hw_constraints_capture_rates); 224 } 225 226 static void snd_emu1010_constrain_efx_rate(struct snd_emu10k1 *emu, 227 struct snd_pcm_runtime *runtime) 228 { 229 int rate; 230 231 rate = emu->emu1010.word_clock; 232 runtime->hw.rate_min = runtime->hw.rate_max = rate; 233 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 234 } 235 236 static unsigned int emu10k1_calc_pitch_target(unsigned int rate) 237 { 238 unsigned int pitch_target; 239 240 pitch_target = (rate << 8) / 375; 241 pitch_target = (pitch_target >> 1) + (pitch_target & 1); 242 return pitch_target; 243 } 244 245 #define PITCH_48000 0x00004000 246 #define PITCH_96000 0x00008000 247 #define PITCH_85000 0x00007155 248 #define PITCH_80726 0x00006ba2 249 #define PITCH_67882 0x00005a82 250 #define PITCH_57081 0x00004c1c 251 252 static unsigned int emu10k1_select_interprom(unsigned int pitch_target) 253 { 254 if (pitch_target == PITCH_48000) 255 return CCCA_INTERPROM_0; 256 else if (pitch_target < PITCH_48000) 257 return CCCA_INTERPROM_1; 258 else if (pitch_target >= PITCH_96000) 259 return CCCA_INTERPROM_0; 260 else if (pitch_target >= PITCH_85000) 261 return CCCA_INTERPROM_6; 262 else if (pitch_target >= PITCH_80726) 263 return CCCA_INTERPROM_5; 264 else if (pitch_target >= PITCH_67882) 265 return CCCA_INTERPROM_4; 266 else if (pitch_target >= PITCH_57081) 267 return CCCA_INTERPROM_3; 268 else 269 return CCCA_INTERPROM_2; 270 } 271 272 static u16 emu10k1_send_target_from_amount(u8 amount) 273 { 274 static const u8 shifts[8] = { 4, 4, 5, 6, 7, 8, 9, 10 }; 275 static const u16 offsets[8] = { 0, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000 }; 276 u8 exp; 277 278 if (amount == 0xff) 279 return 0xffff; 280 exp = amount >> 5; 281 return ((amount & 0x1f) << shifts[exp]) + offsets[exp]; 282 } 283 284 static void snd_emu10k1_pcm_init_voice(struct snd_emu10k1 *emu, 285 struct snd_emu10k1_voice *evoice, 286 bool w_16, bool stereo, 287 unsigned int start_addr, 288 unsigned int end_addr, 289 const unsigned char *send_routing, 290 const unsigned char *send_amount) 291 { 292 unsigned int silent_page; 293 int voice; 294 295 voice = evoice->number; 296 297 silent_page = ((unsigned int)emu->silent_page.addr << emu->address_mode) | 298 (emu->address_mode ? MAP_PTI_MASK1 : MAP_PTI_MASK0); 299 snd_emu10k1_ptr_write_multiple(emu, voice, 300 // Not really necessary for the slave, but it doesn't hurt 301 CPF, stereo ? CPF_STEREO_MASK : 0, 302 // Assumption that PT is already 0 so no harm overwriting 303 PTRX, (send_amount[0] << 8) | send_amount[1], 304 // Stereo slaves don't need to have the addresses set, but it doesn't hurt 305 DSL, end_addr | (send_amount[3] << 24), 306 PSST, start_addr | (send_amount[2] << 24), 307 CCCA, emu10k1_select_interprom(evoice->epcm->pitch_target) | 308 (w_16 ? 0 : CCCA_8BITSELECT), 309 // Clear filter delay memory 310 Z1, 0, 311 Z2, 0, 312 // Invalidate maps 313 MAPA, silent_page, 314 MAPB, silent_page, 315 // Disable filter (in conjunction with CCCA_RESONANCE == 0) 316 VTFT, VTFT_FILTERTARGET_MASK, 317 CVCF, CVCF_CURRENTFILTER_MASK, 318 REGLIST_END); 319 // Setup routing 320 if (emu->audigy) { 321 snd_emu10k1_ptr_write_multiple(emu, voice, 322 A_FXRT1, snd_emu10k1_compose_audigy_fxrt1(send_routing), 323 A_FXRT2, snd_emu10k1_compose_audigy_fxrt2(send_routing), 324 A_SENDAMOUNTS, snd_emu10k1_compose_audigy_sendamounts(send_amount), 325 REGLIST_END); 326 for (int i = 0; i < 4; i++) { 327 u32 aml = emu10k1_send_target_from_amount(send_amount[2 * i]); 328 u32 amh = emu10k1_send_target_from_amount(send_amount[2 * i + 1]); 329 snd_emu10k1_ptr_write(emu, A_CSBA + i, voice, (amh << 16) | aml); 330 } 331 } else { 332 snd_emu10k1_ptr_write(emu, FXRT, voice, 333 snd_emu10k1_compose_send_routing(send_routing)); 334 } 335 336 emu->voices[voice].dirty = 1; 337 } 338 339 static void snd_emu10k1_pcm_init_voices(struct snd_emu10k1 *emu, 340 struct snd_emu10k1_voice *evoice, 341 bool w_16, bool stereo, 342 unsigned int start_addr, 343 unsigned int end_addr, 344 struct snd_emu10k1_pcm_mixer *mix) 345 { 346 unsigned long flags; 347 348 spin_lock_irqsave(&emu->reg_lock, flags); 349 snd_emu10k1_pcm_init_voice(emu, evoice, w_16, stereo, 350 start_addr, end_addr, 351 &mix->send_routing[stereo][0], 352 &mix->send_volume[stereo][0]); 353 if (stereo) 354 snd_emu10k1_pcm_init_voice(emu, evoice + 1, w_16, true, 355 start_addr, end_addr, 356 &mix->send_routing[2][0], 357 &mix->send_volume[2][0]); 358 spin_unlock_irqrestore(&emu->reg_lock, flags); 359 } 360 361 static void snd_emu10k1_pcm_init_extra_voice(struct snd_emu10k1 *emu, 362 struct snd_emu10k1_voice *evoice, 363 bool w_16, 364 unsigned int start_addr, 365 unsigned int end_addr) 366 { 367 static const unsigned char send_routing[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; 368 static const unsigned char send_amount[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 369 370 snd_emu10k1_pcm_init_voice(emu, evoice, w_16, false, 371 start_addr, end_addr, 372 send_routing, send_amount); 373 } 374 375 static int snd_emu10k1_playback_hw_params(struct snd_pcm_substream *substream, 376 struct snd_pcm_hw_params *hw_params) 377 { 378 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 379 struct snd_pcm_runtime *runtime = substream->runtime; 380 struct snd_emu10k1_pcm *epcm = runtime->private_data; 381 size_t alloc_size; 382 int type, channels, count; 383 int err; 384 385 if (epcm->type == PLAYBACK_EMUVOICE) { 386 type = EMU10K1_PCM; 387 channels = 1; 388 count = params_channels(hw_params); 389 } else { 390 type = EMU10K1_EFX; 391 channels = params_channels(hw_params); 392 count = 1; 393 } 394 err = snd_emu10k1_pcm_channel_alloc(epcm, type, count, channels); 395 if (err < 0) 396 return err; 397 398 alloc_size = params_buffer_bytes(hw_params); 399 if (emu->iommu_workaround) 400 alloc_size += EMUPAGESIZE; 401 err = snd_pcm_lib_malloc_pages(substream, alloc_size); 402 if (err < 0) 403 return err; 404 if (emu->iommu_workaround && runtime->dma_bytes >= EMUPAGESIZE) 405 runtime->dma_bytes -= EMUPAGESIZE; 406 if (err > 0) { /* change */ 407 int mapped; 408 if (epcm->memblk != NULL) 409 snd_emu10k1_free_pages(emu, epcm->memblk); 410 epcm->memblk = snd_emu10k1_alloc_pages(emu, substream); 411 epcm->start_addr = 0; 412 if (! epcm->memblk) 413 return -ENOMEM; 414 mapped = ((struct snd_emu10k1_memblk *)epcm->memblk)->mapped_page; 415 if (mapped < 0) 416 return -ENOMEM; 417 epcm->start_addr = mapped << PAGE_SHIFT; 418 } 419 return 0; 420 } 421 422 static int snd_emu10k1_playback_hw_free(struct snd_pcm_substream *substream) 423 { 424 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 425 struct snd_pcm_runtime *runtime = substream->runtime; 426 struct snd_emu10k1_pcm *epcm; 427 428 if (runtime->private_data == NULL) 429 return 0; 430 epcm = runtime->private_data; 431 if (epcm->extra) { 432 snd_emu10k1_voice_free(epcm->emu, epcm->extra); 433 epcm->extra = NULL; 434 } 435 snd_emu10k1_pcm_free_voices(epcm); 436 if (epcm->memblk) { 437 snd_emu10k1_free_pages(emu, epcm->memblk); 438 epcm->memblk = NULL; 439 epcm->start_addr = 0; 440 } 441 snd_pcm_lib_free_pages(substream); 442 return 0; 443 } 444 445 static int snd_emu10k1_playback_prepare(struct snd_pcm_substream *substream) 446 { 447 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 448 struct snd_pcm_runtime *runtime = substream->runtime; 449 struct snd_emu10k1_pcm *epcm = runtime->private_data; 450 bool w_16 = snd_pcm_format_width(runtime->format) == 16; 451 bool stereo = runtime->channels == 2; 452 unsigned int start_addr, end_addr; 453 unsigned int rate; 454 455 rate = runtime->rate; 456 if (emu->card_capabilities->emu_model && 457 emu->emu1010.word_clock == 44100) 458 rate = rate * 480 / 441; 459 epcm->pitch_target = emu10k1_calc_pitch_target(rate); 460 461 start_addr = epcm->start_addr >> w_16; 462 end_addr = start_addr + runtime->period_size; 463 snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, w_16, 464 start_addr, end_addr); 465 start_addr >>= stereo; 466 epcm->ccca_start_addr = start_addr; 467 end_addr = start_addr + runtime->buffer_size; 468 snd_emu10k1_pcm_init_voices(emu, epcm->voices[0], w_16, stereo, 469 start_addr, end_addr, 470 &emu->pcm_mixer[substream->number]); 471 472 return 0; 473 } 474 475 static int snd_emu10k1_efx_playback_prepare(struct snd_pcm_substream *substream) 476 { 477 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 478 struct snd_pcm_runtime *runtime = substream->runtime; 479 struct snd_emu10k1_pcm *epcm = runtime->private_data; 480 unsigned int start_addr; 481 unsigned int extra_size, channel_size; 482 unsigned int i; 483 484 epcm->pitch_target = PITCH_48000; 485 486 start_addr = epcm->start_addr >> 1; // 16-bit voices 487 488 extra_size = runtime->period_size; 489 channel_size = runtime->buffer_size; 490 491 snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, true, 492 start_addr, start_addr + extra_size); 493 494 epcm->ccca_start_addr = start_addr; 495 for (i = 0; i < runtime->channels; i++) { 496 snd_emu10k1_pcm_init_voices(emu, epcm->voices[i], true, false, 497 start_addr, start_addr + channel_size, 498 &emu->efx_pcm_mixer[i]); 499 start_addr += channel_size; 500 } 501 502 return 0; 503 } 504 505 static const struct snd_pcm_hardware snd_emu10k1_efx_playback = 506 { 507 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_NONINTERLEAVED | 508 SNDRV_PCM_INFO_BLOCK_TRANSFER | 509 SNDRV_PCM_INFO_RESUME | 510 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE), 511 .formats = SNDRV_PCM_FMTBIT_S16_LE, 512 .rates = SNDRV_PCM_RATE_48000, 513 .rate_min = 48000, 514 .rate_max = 48000, 515 .channels_min = 1, 516 .channels_max = NUM_EFX_PLAYBACK, 517 .buffer_bytes_max = (128*1024), 518 .period_bytes_max = (128*1024), 519 .periods_min = 2, 520 .periods_max = 1024, 521 .fifo_size = 0, 522 }; 523 524 static int snd_emu10k1_capture_prepare(struct snd_pcm_substream *substream) 525 { 526 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 527 struct snd_pcm_runtime *runtime = substream->runtime; 528 struct snd_emu10k1_pcm *epcm = runtime->private_data; 529 int idx; 530 531 /* zeroing the buffer size will stop capture */ 532 snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0); 533 switch (epcm->type) { 534 case CAPTURE_AC97ADC: 535 snd_emu10k1_ptr_write(emu, ADCCR, 0, 0); 536 break; 537 case CAPTURE_EFX: 538 if (emu->card_capabilities->emu_model) { 539 // The upper 32 16-bit capture voices, two for each of the 16 32-bit channels. 540 // The lower voices are occupied by A_EXTOUT_*_CAP*. 541 epcm->capture_cr_val = 0; 542 epcm->capture_cr_val2 = 0xffffffff >> (32 - runtime->channels * 2); 543 } 544 if (emu->audigy) { 545 snd_emu10k1_ptr_write_multiple(emu, 0, 546 A_FXWC1, 0, 547 A_FXWC2, 0, 548 REGLIST_END); 549 } else 550 snd_emu10k1_ptr_write(emu, FXWC, 0, 0); 551 break; 552 default: 553 break; 554 } 555 snd_emu10k1_ptr_write(emu, epcm->capture_ba_reg, 0, runtime->dma_addr); 556 epcm->capture_bufsize = snd_pcm_lib_buffer_bytes(substream); 557 epcm->capture_bs_val = 0; 558 for (idx = 0; idx < 31; idx++) { 559 if (capture_buffer_sizes[idx] == epcm->capture_bufsize) { 560 epcm->capture_bs_val = idx + 1; 561 break; 562 } 563 } 564 if (epcm->capture_bs_val == 0) { 565 snd_BUG(); 566 epcm->capture_bs_val++; 567 } 568 if (epcm->type == CAPTURE_AC97ADC) { 569 unsigned rate = runtime->rate; 570 if (!(runtime->hw.rates & SNDRV_PCM_RATE_48000)) 571 rate = rate * 480 / 441; 572 573 epcm->capture_cr_val = emu->audigy ? A_ADCCR_LCHANENABLE : ADCCR_LCHANENABLE; 574 if (runtime->channels > 1) 575 epcm->capture_cr_val |= emu->audigy ? A_ADCCR_RCHANENABLE : ADCCR_RCHANENABLE; 576 epcm->capture_cr_val |= emu->audigy ? 577 snd_emu10k1_audigy_capture_rate_reg(rate) : 578 snd_emu10k1_capture_rate_reg(rate); 579 } 580 return 0; 581 } 582 583 static void snd_emu10k1_playback_fill_cache(struct snd_emu10k1 *emu, 584 unsigned voice, 585 u32 sample, bool stereo) 586 { 587 u32 ccr; 588 589 // We assume that the cache is resting at this point (i.e., 590 // CCR_CACHEINVALIDSIZE is very small). 591 592 // Clear leading frames. For simplicitly, this does too much, 593 // except for 16-bit stereo. And the interpolator will actually 594 // access them at all only when we're pitch-shifting. 595 for (int i = 0; i < 3; i++) 596 snd_emu10k1_ptr_write(emu, CD0 + i, voice, sample); 597 598 // Fill cache 599 ccr = (64 - 3) << REG_SHIFT(CCR_CACHEINVALIDSIZE); 600 if (stereo) { 601 // The engine goes haywire if CCR_READADDRESS is out of sync 602 snd_emu10k1_ptr_write(emu, CCR, voice + 1, ccr); 603 } 604 snd_emu10k1_ptr_write(emu, CCR, voice, ccr); 605 } 606 607 static void snd_emu10k1_playback_prepare_voices(struct snd_emu10k1 *emu, 608 struct snd_emu10k1_pcm *epcm, 609 bool w_16, bool stereo, 610 int channels) 611 { 612 struct snd_pcm_substream *substream = epcm->substream; 613 struct snd_pcm_runtime *runtime = substream->runtime; 614 unsigned eloop_start = epcm->start_addr >> w_16; 615 unsigned loop_start = eloop_start >> stereo; 616 unsigned eloop_size = runtime->period_size; 617 unsigned loop_size = runtime->buffer_size; 618 u32 sample = w_16 ? 0 : 0x80808080; 619 620 // To make the playback actually start at the 1st frame, 621 // we need to compensate for two circumstances: 622 // - The actual position is delayed by the cache size (64 frames) 623 // - The interpolator is centered around the 4th frame 624 loop_start += (epcm->resume_pos + 64 - 3) % loop_size; 625 for (int i = 0; i < channels; i++) { 626 unsigned voice = epcm->voices[i]->number; 627 snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, voice, loop_start); 628 loop_start += loop_size; 629 snd_emu10k1_playback_fill_cache(emu, voice, sample, stereo); 630 } 631 632 // The interrupt is triggered when CCCA_CURRADDR (CA) wraps around, 633 // which is ahead of the actual playback position, so the interrupt 634 // source needs to be delayed. 635 // 636 // In principle, this wouldn't need to be the cache's entire size - in 637 // practice, CCR_CACHEINVALIDSIZE (CIS) > `fetch threshold` has never 638 // been observed, and assuming 40 _bytes_ should be safe. 639 // 640 // The cache fills are somewhat random, which makes it impossible to 641 // align them with the interrupts. This makes a non-delayed interrupt 642 // source not practical, as the interrupt handler would have to wait 643 // for (CA - CIS) >= period_boundary for every channel in the stream. 644 // 645 // This is why all other (open) drivers for these chips use timer-based 646 // interrupts. 647 // 648 eloop_start += (epcm->resume_pos + eloop_size - 3) % eloop_size; 649 snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, epcm->extra->number, eloop_start); 650 651 // It takes a moment until the cache fills complete, 652 // but the unmuting takes long enough for that. 653 } 654 655 static void snd_emu10k1_playback_commit_volume(struct snd_emu10k1 *emu, 656 struct snd_emu10k1_voice *evoice, 657 unsigned int vattn) 658 { 659 snd_emu10k1_ptr_write_multiple(emu, evoice->number, 660 VTFT, vattn | VTFT_FILTERTARGET_MASK, 661 CVCF, vattn | CVCF_CURRENTFILTER_MASK, 662 REGLIST_END); 663 } 664 665 static void snd_emu10k1_playback_unmute_voice(struct snd_emu10k1 *emu, 666 struct snd_emu10k1_voice *evoice, 667 bool stereo, bool master, 668 struct snd_emu10k1_pcm_mixer *mix) 669 { 670 unsigned int vattn; 671 unsigned int tmp; 672 673 tmp = stereo ? (master ? 1 : 2) : 0; 674 vattn = mix->attn[tmp] << 16; 675 snd_emu10k1_playback_commit_volume(emu, evoice, vattn); 676 } 677 678 static void snd_emu10k1_playback_unmute_voices(struct snd_emu10k1 *emu, 679 struct snd_emu10k1_voice *evoice, 680 bool stereo, 681 struct snd_emu10k1_pcm_mixer *mix) 682 { 683 snd_emu10k1_playback_unmute_voice(emu, evoice, stereo, true, mix); 684 if (stereo) 685 snd_emu10k1_playback_unmute_voice(emu, evoice + 1, true, false, mix); 686 } 687 688 static void snd_emu10k1_playback_mute_voice(struct snd_emu10k1 *emu, 689 struct snd_emu10k1_voice *evoice) 690 { 691 snd_emu10k1_playback_commit_volume(emu, evoice, 0); 692 } 693 694 static void snd_emu10k1_playback_mute_voices(struct snd_emu10k1 *emu, 695 struct snd_emu10k1_voice *evoice, 696 bool stereo) 697 { 698 snd_emu10k1_playback_mute_voice(emu, evoice); 699 if (stereo) 700 snd_emu10k1_playback_mute_voice(emu, evoice + 1); 701 } 702 703 static void snd_emu10k1_playback_commit_pitch(struct snd_emu10k1 *emu, 704 u32 voice, u32 pitch_target) 705 { 706 u32 ptrx = snd_emu10k1_ptr_read(emu, PTRX, voice); 707 u32 cpf = snd_emu10k1_ptr_read(emu, CPF, voice); 708 snd_emu10k1_ptr_write_multiple(emu, voice, 709 PTRX, (ptrx & ~PTRX_PITCHTARGET_MASK) | pitch_target, 710 CPF, (cpf & ~(CPF_CURRENTPITCH_MASK | CPF_FRACADDRESS_MASK)) | pitch_target, 711 REGLIST_END); 712 } 713 714 static void snd_emu10k1_playback_trigger_voice(struct snd_emu10k1 *emu, 715 struct snd_emu10k1_voice *evoice) 716 { 717 unsigned int voice; 718 719 voice = evoice->number; 720 snd_emu10k1_playback_commit_pitch(emu, voice, evoice->epcm->pitch_target << 16); 721 } 722 723 static void snd_emu10k1_playback_stop_voice(struct snd_emu10k1 *emu, 724 struct snd_emu10k1_voice *evoice) 725 { 726 unsigned int voice; 727 728 voice = evoice->number; 729 snd_emu10k1_playback_commit_pitch(emu, voice, 0); 730 } 731 732 static void snd_emu10k1_playback_set_running(struct snd_emu10k1 *emu, 733 struct snd_emu10k1_pcm *epcm) 734 { 735 epcm->running = 1; 736 snd_emu10k1_voice_intr_enable(emu, epcm->extra->number); 737 } 738 739 static void snd_emu10k1_playback_set_stopped(struct snd_emu10k1 *emu, 740 struct snd_emu10k1_pcm *epcm) 741 { 742 snd_emu10k1_voice_intr_disable(emu, epcm->extra->number); 743 epcm->running = 0; 744 } 745 746 static int snd_emu10k1_playback_trigger(struct snd_pcm_substream *substream, 747 int cmd) 748 { 749 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 750 struct snd_pcm_runtime *runtime = substream->runtime; 751 struct snd_emu10k1_pcm *epcm = runtime->private_data; 752 struct snd_emu10k1_pcm_mixer *mix; 753 bool w_16 = snd_pcm_format_width(runtime->format) == 16; 754 bool stereo = runtime->channels == 2; 755 int result = 0; 756 757 /* 758 dev_dbg(emu->card->dev, 759 "trigger - emu10k1 = 0x%x, cmd = %i, pointer = %i\n", 760 (int)emu, cmd, substream->ops->pointer(substream)) 761 */ 762 spin_lock(&emu->reg_lock); 763 switch (cmd) { 764 case SNDRV_PCM_TRIGGER_START: 765 snd_emu10k1_playback_prepare_voices(emu, epcm, w_16, stereo, 1); 766 fallthrough; 767 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 768 case SNDRV_PCM_TRIGGER_RESUME: 769 mix = &emu->pcm_mixer[substream->number]; 770 snd_emu10k1_playback_unmute_voices(emu, epcm->voices[0], stereo, mix); 771 snd_emu10k1_playback_set_running(emu, epcm); 772 snd_emu10k1_playback_trigger_voice(emu, epcm->voices[0]); 773 snd_emu10k1_playback_trigger_voice(emu, epcm->extra); 774 break; 775 case SNDRV_PCM_TRIGGER_STOP: 776 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 777 case SNDRV_PCM_TRIGGER_SUSPEND: 778 snd_emu10k1_playback_stop_voice(emu, epcm->voices[0]); 779 snd_emu10k1_playback_stop_voice(emu, epcm->extra); 780 snd_emu10k1_playback_set_stopped(emu, epcm); 781 snd_emu10k1_playback_mute_voices(emu, epcm->voices[0], stereo); 782 break; 783 default: 784 result = -EINVAL; 785 break; 786 } 787 spin_unlock(&emu->reg_lock); 788 return result; 789 } 790 791 static int snd_emu10k1_capture_trigger(struct snd_pcm_substream *substream, 792 int cmd) 793 { 794 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 795 struct snd_pcm_runtime *runtime = substream->runtime; 796 struct snd_emu10k1_pcm *epcm = runtime->private_data; 797 int result = 0; 798 799 spin_lock(&emu->reg_lock); 800 switch (cmd) { 801 case SNDRV_PCM_TRIGGER_START: 802 case SNDRV_PCM_TRIGGER_RESUME: 803 /* hmm this should cause full and half full interrupt to be raised? */ 804 outl(epcm->capture_ipr, emu->port + IPR); 805 snd_emu10k1_intr_enable(emu, epcm->capture_inte); 806 /* 807 dev_dbg(emu->card->dev, "adccr = 0x%x, adcbs = 0x%x\n", 808 epcm->adccr, epcm->adcbs); 809 */ 810 switch (epcm->type) { 811 case CAPTURE_AC97ADC: 812 snd_emu10k1_ptr_write(emu, ADCCR, 0, epcm->capture_cr_val); 813 break; 814 case CAPTURE_EFX: 815 if (emu->audigy) { 816 snd_emu10k1_ptr_write_multiple(emu, 0, 817 A_FXWC1, epcm->capture_cr_val, 818 A_FXWC2, epcm->capture_cr_val2, 819 REGLIST_END); 820 dev_dbg(emu->card->dev, 821 "cr_val=0x%x, cr_val2=0x%x\n", 822 epcm->capture_cr_val, 823 epcm->capture_cr_val2); 824 } else 825 snd_emu10k1_ptr_write(emu, FXWC, 0, epcm->capture_cr_val); 826 break; 827 default: 828 break; 829 } 830 snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, epcm->capture_bs_val); 831 epcm->running = 1; 832 epcm->first_ptr = 1; 833 break; 834 case SNDRV_PCM_TRIGGER_STOP: 835 case SNDRV_PCM_TRIGGER_SUSPEND: 836 epcm->running = 0; 837 snd_emu10k1_intr_disable(emu, epcm->capture_inte); 838 outl(epcm->capture_ipr, emu->port + IPR); 839 snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0); 840 switch (epcm->type) { 841 case CAPTURE_AC97ADC: 842 snd_emu10k1_ptr_write(emu, ADCCR, 0, 0); 843 break; 844 case CAPTURE_EFX: 845 if (emu->audigy) { 846 snd_emu10k1_ptr_write_multiple(emu, 0, 847 A_FXWC1, 0, 848 A_FXWC2, 0, 849 REGLIST_END); 850 } else 851 snd_emu10k1_ptr_write(emu, FXWC, 0, 0); 852 break; 853 default: 854 break; 855 } 856 break; 857 default: 858 result = -EINVAL; 859 } 860 spin_unlock(&emu->reg_lock); 861 return result; 862 } 863 864 static snd_pcm_uframes_t snd_emu10k1_playback_pointer(struct snd_pcm_substream *substream) 865 { 866 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 867 struct snd_pcm_runtime *runtime = substream->runtime; 868 struct snd_emu10k1_pcm *epcm = runtime->private_data; 869 int ptr; 870 871 if (!epcm->running) 872 return 0; 873 874 ptr = snd_emu10k1_ptr_read(emu, CCCA, epcm->voices[0]->number) & 0x00ffffff; 875 ptr -= epcm->ccca_start_addr; 876 877 // This is the size of the whole cache minus the interpolator read-ahead, 878 // which leads us to the actual playback position. 879 // 880 // The cache is constantly kept mostly filled, so in principle we could 881 // return a more advanced position representing how far the hardware has 882 // already read the buffer, and set runtime->delay accordingly. However, 883 // this would be slightly different for every channel (and remarkably slow 884 // to obtain), so only a fixed worst-case value would be practical. 885 // 886 ptr -= 64 - 3; 887 if (ptr < 0) 888 ptr += runtime->buffer_size; 889 890 /* 891 dev_dbg(emu->card->dev, 892 "ptr = 0x%lx, buffer_size = 0x%lx, period_size = 0x%lx\n", 893 (long)ptr, (long)runtime->buffer_size, 894 (long)runtime->period_size); 895 */ 896 return ptr; 897 } 898 899 static u64 snd_emu10k1_efx_playback_voice_mask(struct snd_emu10k1_pcm *epcm, 900 int channels) 901 { 902 u64 mask = 0; 903 904 for (int i = 0; i < channels; i++) { 905 int voice = epcm->voices[i]->number; 906 mask |= 1ULL << voice; 907 } 908 return mask; 909 } 910 911 static void snd_emu10k1_efx_playback_freeze_voices(struct snd_emu10k1 *emu, 912 struct snd_emu10k1_pcm *epcm, 913 int channels) 914 { 915 for (int i = 0; i < channels; i++) { 916 int voice = epcm->voices[i]->number; 917 snd_emu10k1_ptr_write(emu, CPF_STOP, voice, 1); 918 snd_emu10k1_playback_commit_pitch(emu, voice, PITCH_48000 << 16); 919 } 920 } 921 922 static void snd_emu10k1_efx_playback_unmute_voices(struct snd_emu10k1 *emu, 923 struct snd_emu10k1_pcm *epcm, 924 int channels) 925 { 926 for (int i = 0; i < channels; i++) 927 snd_emu10k1_playback_unmute_voice(emu, epcm->voices[i], false, true, 928 &emu->efx_pcm_mixer[i]); 929 } 930 931 static void snd_emu10k1_efx_playback_stop_voices(struct snd_emu10k1 *emu, 932 struct snd_emu10k1_pcm *epcm, 933 int channels) 934 { 935 for (int i = 0; i < channels; i++) 936 snd_emu10k1_playback_stop_voice(emu, epcm->voices[i]); 937 snd_emu10k1_playback_set_stopped(emu, epcm); 938 939 for (int i = 0; i < channels; i++) 940 snd_emu10k1_playback_mute_voice(emu, epcm->voices[i]); 941 } 942 943 static int snd_emu10k1_efx_playback_trigger(struct snd_pcm_substream *substream, 944 int cmd) 945 { 946 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 947 struct snd_pcm_runtime *runtime = substream->runtime; 948 struct snd_emu10k1_pcm *epcm = runtime->private_data; 949 u64 mask; 950 int result = 0; 951 952 spin_lock(&emu->reg_lock); 953 switch (cmd) { 954 case SNDRV_PCM_TRIGGER_START: 955 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 956 case SNDRV_PCM_TRIGGER_RESUME: 957 mask = snd_emu10k1_efx_playback_voice_mask( 958 epcm, runtime->channels); 959 for (int i = 0; i < 10; i++) { 960 // Note that the freeze is not interruptible, so we make no 961 // effort to reset the bits outside the error handling here. 962 snd_emu10k1_voice_set_loop_stop_multiple(emu, mask); 963 snd_emu10k1_efx_playback_freeze_voices( 964 emu, epcm, runtime->channels); 965 snd_emu10k1_playback_prepare_voices( 966 emu, epcm, true, false, runtime->channels); 967 968 // It might seem to make more sense to unmute the voices only after 969 // they have been started, to potentially avoid torturing the speakers 970 // if something goes wrong. However, we cannot unmute atomically, 971 // which means that we'd get some mild artifacts in the regular case. 972 snd_emu10k1_efx_playback_unmute_voices(emu, epcm, runtime->channels); 973 974 snd_emu10k1_playback_set_running(emu, epcm); 975 result = snd_emu10k1_voice_clear_loop_stop_multiple_atomic(emu, mask); 976 if (result == 0) { 977 // The extra voice is allowed to lag a bit 978 snd_emu10k1_playback_trigger_voice(emu, epcm->extra); 979 goto leave; 980 } 981 982 snd_emu10k1_efx_playback_stop_voices( 983 emu, epcm, runtime->channels); 984 985 if (result != -EAGAIN) 986 break; 987 // The sync start can legitimately fail due to NMIs, etc. 988 } 989 snd_emu10k1_voice_clear_loop_stop_multiple(emu, mask); 990 break; 991 case SNDRV_PCM_TRIGGER_SUSPEND: 992 case SNDRV_PCM_TRIGGER_STOP: 993 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 994 snd_emu10k1_playback_stop_voice(emu, epcm->extra); 995 snd_emu10k1_efx_playback_stop_voices( 996 emu, epcm, runtime->channels); 997 998 epcm->resume_pos = snd_emu10k1_playback_pointer(substream); 999 break; 1000 default: 1001 result = -EINVAL; 1002 break; 1003 } 1004 leave: 1005 spin_unlock(&emu->reg_lock); 1006 return result; 1007 } 1008 1009 1010 static snd_pcm_uframes_t snd_emu10k1_capture_pointer(struct snd_pcm_substream *substream) 1011 { 1012 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1013 struct snd_pcm_runtime *runtime = substream->runtime; 1014 struct snd_emu10k1_pcm *epcm = runtime->private_data; 1015 unsigned int ptr; 1016 1017 if (!epcm->running) 1018 return 0; 1019 if (epcm->first_ptr) { 1020 udelay(50); /* hack, it takes awhile until capture is started */ 1021 epcm->first_ptr = 0; 1022 } 1023 ptr = snd_emu10k1_ptr_read(emu, epcm->capture_idx_reg, 0) & 0x0000ffff; 1024 return bytes_to_frames(runtime, ptr); 1025 } 1026 1027 /* 1028 * Playback support device description 1029 */ 1030 1031 static const struct snd_pcm_hardware snd_emu10k1_playback = 1032 { 1033 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1034 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1035 SNDRV_PCM_INFO_RESUME | 1036 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE), 1037 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1038 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_96000, 1039 .rate_min = 4000, 1040 .rate_max = 96000, 1041 .channels_min = 1, 1042 .channels_max = 2, 1043 .buffer_bytes_max = (128*1024), 1044 .period_bytes_max = (128*1024), 1045 .periods_min = 2, 1046 .periods_max = 1024, 1047 .fifo_size = 0, 1048 }; 1049 1050 /* 1051 * Capture support device description 1052 */ 1053 1054 static const struct snd_pcm_hardware snd_emu10k1_capture = 1055 { 1056 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1057 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1058 SNDRV_PCM_INFO_RESUME | 1059 SNDRV_PCM_INFO_MMAP_VALID), 1060 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1061 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT, 1062 .rate_min = 8000, 1063 .rate_max = 48000, 1064 .channels_min = 1, 1065 .channels_max = 2, 1066 .buffer_bytes_max = (64*1024), 1067 .period_bytes_min = 384, 1068 .period_bytes_max = (64*1024), 1069 .periods_min = 2, 1070 .periods_max = 2, 1071 .fifo_size = 0, 1072 }; 1073 1074 static const struct snd_pcm_hardware snd_emu10k1_capture_efx = 1075 { 1076 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1077 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1078 SNDRV_PCM_INFO_RESUME | 1079 SNDRV_PCM_INFO_MMAP_VALID), 1080 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1081 .rates = SNDRV_PCM_RATE_48000, 1082 .rate_min = 48000, 1083 .rate_max = 48000, 1084 .channels_min = 1, 1085 .channels_max = 16, 1086 .buffer_bytes_max = (64*1024), 1087 .period_bytes_min = 384, 1088 .period_bytes_max = (64*1024), 1089 .periods_min = 2, 1090 .periods_max = 2, 1091 .fifo_size = 0, 1092 }; 1093 1094 /* 1095 * 1096 */ 1097 1098 static void snd_emu10k1_pcm_mixer_notify1(struct snd_emu10k1 *emu, struct snd_kcontrol *kctl, int idx, int activate) 1099 { 1100 struct snd_ctl_elem_id id; 1101 1102 if (! kctl) 1103 return; 1104 if (activate) 1105 kctl->vd[idx].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1106 else 1107 kctl->vd[idx].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1108 snd_ctl_notify(emu->card, SNDRV_CTL_EVENT_MASK_VALUE | 1109 SNDRV_CTL_EVENT_MASK_INFO, 1110 snd_ctl_build_ioff(&id, kctl, idx)); 1111 } 1112 1113 static void snd_emu10k1_pcm_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate) 1114 { 1115 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_routing, idx, activate); 1116 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_volume, idx, activate); 1117 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_attn, idx, activate); 1118 } 1119 1120 static void snd_emu10k1_pcm_efx_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate) 1121 { 1122 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_routing, idx, activate); 1123 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_volume, idx, activate); 1124 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_attn, idx, activate); 1125 } 1126 1127 static void snd_emu10k1_pcm_free_substream(struct snd_pcm_runtime *runtime) 1128 { 1129 kfree(runtime->private_data); 1130 } 1131 1132 static int snd_emu10k1_efx_playback_close(struct snd_pcm_substream *substream) 1133 { 1134 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1135 struct snd_emu10k1_pcm_mixer *mix; 1136 int i; 1137 1138 for (i = 0; i < NUM_EFX_PLAYBACK; i++) { 1139 mix = &emu->efx_pcm_mixer[i]; 1140 mix->epcm = NULL; 1141 snd_emu10k1_pcm_efx_mixer_notify(emu, i, 0); 1142 } 1143 return 0; 1144 } 1145 1146 static int snd_emu10k1_playback_set_constraints(struct snd_pcm_runtime *runtime) 1147 { 1148 int err; 1149 1150 // The buffer size must be a multiple of the period size, to avoid a 1151 // mismatch between the extra voice and the regular voices. 1152 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 1153 if (err < 0) 1154 return err; 1155 // The hardware is typically the cache's size of 64 frames ahead. 1156 // Leave enough time for actually filling up the buffer. 1157 err = snd_pcm_hw_constraint_minmax( 1158 runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 128, UINT_MAX); 1159 return err; 1160 } 1161 1162 static int snd_emu10k1_efx_playback_open(struct snd_pcm_substream *substream) 1163 { 1164 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1165 struct snd_emu10k1_pcm *epcm; 1166 struct snd_emu10k1_pcm_mixer *mix; 1167 struct snd_pcm_runtime *runtime = substream->runtime; 1168 int i, j, err; 1169 1170 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1171 if (epcm == NULL) 1172 return -ENOMEM; 1173 epcm->emu = emu; 1174 epcm->type = PLAYBACK_EFX; 1175 epcm->substream = substream; 1176 1177 runtime->private_data = epcm; 1178 runtime->private_free = snd_emu10k1_pcm_free_substream; 1179 runtime->hw = snd_emu10k1_efx_playback; 1180 if (emu->card_capabilities->emu_model) 1181 snd_emu1010_constrain_efx_rate(emu, runtime); 1182 err = snd_emu10k1_playback_set_constraints(runtime); 1183 if (err < 0) { 1184 kfree(epcm); 1185 return err; 1186 } 1187 1188 for (i = 0; i < NUM_EFX_PLAYBACK; i++) { 1189 mix = &emu->efx_pcm_mixer[i]; 1190 for (j = 0; j < 8; j++) 1191 mix->send_routing[0][j] = i + j; 1192 memset(&mix->send_volume, 0, sizeof(mix->send_volume)); 1193 mix->send_volume[0][0] = 255; 1194 mix->attn[0] = 0x8000; 1195 mix->epcm = epcm; 1196 snd_emu10k1_pcm_efx_mixer_notify(emu, i, 1); 1197 } 1198 return 0; 1199 } 1200 1201 static int snd_emu10k1_playback_open(struct snd_pcm_substream *substream) 1202 { 1203 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1204 struct snd_emu10k1_pcm *epcm; 1205 struct snd_emu10k1_pcm_mixer *mix; 1206 struct snd_pcm_runtime *runtime = substream->runtime; 1207 int i, err, sample_rate; 1208 1209 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1210 if (epcm == NULL) 1211 return -ENOMEM; 1212 epcm->emu = emu; 1213 epcm->type = PLAYBACK_EMUVOICE; 1214 epcm->substream = substream; 1215 runtime->private_data = epcm; 1216 runtime->private_free = snd_emu10k1_pcm_free_substream; 1217 runtime->hw = snd_emu10k1_playback; 1218 err = snd_emu10k1_playback_set_constraints(runtime); 1219 if (err < 0) { 1220 kfree(epcm); 1221 return err; 1222 } 1223 if (emu->card_capabilities->emu_model) 1224 sample_rate = emu->emu1010.word_clock; 1225 else 1226 sample_rate = 48000; 1227 err = snd_pcm_hw_rule_noresample(runtime, sample_rate); 1228 if (err < 0) { 1229 kfree(epcm); 1230 return err; 1231 } 1232 mix = &emu->pcm_mixer[substream->number]; 1233 for (i = 0; i < 8; i++) 1234 mix->send_routing[0][i] = mix->send_routing[1][i] = mix->send_routing[2][i] = i; 1235 memset(&mix->send_volume, 0, sizeof(mix->send_volume)); 1236 mix->send_volume[0][0] = mix->send_volume[0][1] = 1237 mix->send_volume[1][0] = mix->send_volume[2][1] = 255; 1238 mix->attn[0] = mix->attn[1] = mix->attn[2] = 0x8000; 1239 mix->epcm = epcm; 1240 snd_emu10k1_pcm_mixer_notify(emu, substream->number, 1); 1241 return 0; 1242 } 1243 1244 static int snd_emu10k1_playback_close(struct snd_pcm_substream *substream) 1245 { 1246 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1247 struct snd_emu10k1_pcm_mixer *mix = &emu->pcm_mixer[substream->number]; 1248 1249 mix->epcm = NULL; 1250 snd_emu10k1_pcm_mixer_notify(emu, substream->number, 0); 1251 return 0; 1252 } 1253 1254 static int snd_emu10k1_capture_open(struct snd_pcm_substream *substream) 1255 { 1256 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1257 struct snd_pcm_runtime *runtime = substream->runtime; 1258 struct snd_emu10k1_pcm *epcm; 1259 1260 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1261 if (epcm == NULL) 1262 return -ENOMEM; 1263 epcm->emu = emu; 1264 epcm->type = CAPTURE_AC97ADC; 1265 epcm->substream = substream; 1266 epcm->capture_ipr = IPR_ADCBUFFULL|IPR_ADCBUFHALFFULL; 1267 epcm->capture_inte = INTE_ADCBUFENABLE; 1268 epcm->capture_ba_reg = ADCBA; 1269 epcm->capture_bs_reg = ADCBS; 1270 epcm->capture_idx_reg = emu->audigy ? A_ADCIDX : ADCIDX; 1271 runtime->private_data = epcm; 1272 runtime->private_free = snd_emu10k1_pcm_free_substream; 1273 runtime->hw = snd_emu10k1_capture; 1274 snd_emu10k1_constrain_capture_rates(emu, runtime); 1275 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1276 &hw_constraints_capture_buffer_sizes); 1277 emu->capture_interrupt = snd_emu10k1_pcm_ac97adc_interrupt; 1278 emu->pcm_capture_substream = substream; 1279 return 0; 1280 } 1281 1282 static int snd_emu10k1_capture_close(struct snd_pcm_substream *substream) 1283 { 1284 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1285 1286 emu->capture_interrupt = NULL; 1287 emu->pcm_capture_substream = NULL; 1288 return 0; 1289 } 1290 1291 static int snd_emu10k1_capture_mic_open(struct snd_pcm_substream *substream) 1292 { 1293 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1294 struct snd_emu10k1_pcm *epcm; 1295 struct snd_pcm_runtime *runtime = substream->runtime; 1296 1297 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1298 if (epcm == NULL) 1299 return -ENOMEM; 1300 epcm->emu = emu; 1301 epcm->type = CAPTURE_AC97MIC; 1302 epcm->substream = substream; 1303 epcm->capture_ipr = IPR_MICBUFFULL|IPR_MICBUFHALFFULL; 1304 epcm->capture_inte = INTE_MICBUFENABLE; 1305 epcm->capture_ba_reg = MICBA; 1306 epcm->capture_bs_reg = MICBS; 1307 epcm->capture_idx_reg = emu->audigy ? A_MICIDX : MICIDX; 1308 substream->runtime->private_data = epcm; 1309 substream->runtime->private_free = snd_emu10k1_pcm_free_substream; 1310 runtime->hw = snd_emu10k1_capture; 1311 runtime->hw.rates = SNDRV_PCM_RATE_8000; 1312 runtime->hw.rate_min = runtime->hw.rate_max = 8000; 1313 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1314 &hw_constraints_capture_buffer_sizes); 1315 emu->capture_mic_interrupt = snd_emu10k1_pcm_ac97mic_interrupt; 1316 emu->pcm_capture_mic_substream = substream; 1317 return 0; 1318 } 1319 1320 static int snd_emu10k1_capture_mic_close(struct snd_pcm_substream *substream) 1321 { 1322 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1323 1324 emu->capture_mic_interrupt = NULL; 1325 emu->pcm_capture_mic_substream = NULL; 1326 return 0; 1327 } 1328 1329 static int snd_emu10k1_capture_efx_open(struct snd_pcm_substream *substream) 1330 { 1331 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1332 struct snd_emu10k1_pcm *epcm; 1333 struct snd_pcm_runtime *runtime = substream->runtime; 1334 int nefx = emu->audigy ? 64 : 32; 1335 int idx, err; 1336 1337 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1338 if (epcm == NULL) 1339 return -ENOMEM; 1340 epcm->emu = emu; 1341 epcm->type = CAPTURE_EFX; 1342 epcm->substream = substream; 1343 epcm->capture_ipr = IPR_EFXBUFFULL|IPR_EFXBUFHALFFULL; 1344 epcm->capture_inte = INTE_EFXBUFENABLE; 1345 epcm->capture_ba_reg = FXBA; 1346 epcm->capture_bs_reg = FXBS; 1347 epcm->capture_idx_reg = FXIDX; 1348 substream->runtime->private_data = epcm; 1349 substream->runtime->private_free = snd_emu10k1_pcm_free_substream; 1350 runtime->hw = snd_emu10k1_capture_efx; 1351 if (emu->card_capabilities->emu_model) { 1352 snd_emu1010_constrain_efx_rate(emu, runtime); 1353 /* 1354 * There are 32 mono channels of 16bits each. 1355 * 24bit Audio uses 2x channels over 16bit, 1356 * 96kHz uses 2x channels over 48kHz, 1357 * 192kHz uses 4x channels over 48kHz. 1358 * So, for 48kHz 24bit, one has 16 channels, 1359 * for 96kHz 24bit, one has 8 channels, 1360 * for 192kHz 24bit, one has 4 channels. 1361 * 1010rev2 and 1616(m) cards have double that, 1362 * but we don't exceed 16 channels anyway. 1363 */ 1364 #if 0 1365 /* For 96kHz */ 1366 runtime->hw.channels_min = runtime->hw.channels_max = 4; 1367 #endif 1368 #if 0 1369 /* For 192kHz */ 1370 runtime->hw.channels_min = runtime->hw.channels_max = 2; 1371 #endif 1372 runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE; 1373 } else { 1374 spin_lock_irq(&emu->reg_lock); 1375 runtime->hw.channels_min = runtime->hw.channels_max = 0; 1376 for (idx = 0; idx < nefx; idx++) { 1377 if (emu->efx_voices_mask[idx/32] & (1 << (idx%32))) { 1378 runtime->hw.channels_min++; 1379 runtime->hw.channels_max++; 1380 } 1381 } 1382 epcm->capture_cr_val = emu->efx_voices_mask[0]; 1383 epcm->capture_cr_val2 = emu->efx_voices_mask[1]; 1384 spin_unlock_irq(&emu->reg_lock); 1385 } 1386 err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 1387 &hw_constraints_efx_capture_channels); 1388 if (err < 0) { 1389 kfree(epcm); 1390 return err; 1391 } 1392 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1393 &hw_constraints_capture_buffer_sizes); 1394 emu->capture_efx_interrupt = snd_emu10k1_pcm_efx_interrupt; 1395 emu->pcm_capture_efx_substream = substream; 1396 return 0; 1397 } 1398 1399 static int snd_emu10k1_capture_efx_close(struct snd_pcm_substream *substream) 1400 { 1401 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1402 1403 emu->capture_efx_interrupt = NULL; 1404 emu->pcm_capture_efx_substream = NULL; 1405 return 0; 1406 } 1407 1408 static const struct snd_pcm_ops snd_emu10k1_playback_ops = { 1409 .open = snd_emu10k1_playback_open, 1410 .close = snd_emu10k1_playback_close, 1411 .hw_params = snd_emu10k1_playback_hw_params, 1412 .hw_free = snd_emu10k1_playback_hw_free, 1413 .prepare = snd_emu10k1_playback_prepare, 1414 .trigger = snd_emu10k1_playback_trigger, 1415 .pointer = snd_emu10k1_playback_pointer, 1416 }; 1417 1418 static const struct snd_pcm_ops snd_emu10k1_capture_ops = { 1419 .open = snd_emu10k1_capture_open, 1420 .close = snd_emu10k1_capture_close, 1421 .prepare = snd_emu10k1_capture_prepare, 1422 .trigger = snd_emu10k1_capture_trigger, 1423 .pointer = snd_emu10k1_capture_pointer, 1424 }; 1425 1426 /* EFX playback */ 1427 static const struct snd_pcm_ops snd_emu10k1_efx_playback_ops = { 1428 .open = snd_emu10k1_efx_playback_open, 1429 .close = snd_emu10k1_efx_playback_close, 1430 .hw_params = snd_emu10k1_playback_hw_params, 1431 .hw_free = snd_emu10k1_playback_hw_free, 1432 .prepare = snd_emu10k1_efx_playback_prepare, 1433 .trigger = snd_emu10k1_efx_playback_trigger, 1434 .pointer = snd_emu10k1_playback_pointer, 1435 }; 1436 1437 int snd_emu10k1_pcm(struct snd_emu10k1 *emu, int device) 1438 { 1439 struct snd_pcm *pcm; 1440 struct snd_pcm_substream *substream; 1441 int err; 1442 1443 err = snd_pcm_new(emu->card, "emu10k1", device, 32, 1, &pcm); 1444 if (err < 0) 1445 return err; 1446 1447 pcm->private_data = emu; 1448 1449 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_playback_ops); 1450 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_ops); 1451 1452 pcm->info_flags = 0; 1453 pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; 1454 strcpy(pcm->name, "ADC Capture/Standard PCM Playback"); 1455 emu->pcm = pcm; 1456 1457 /* playback substream can't use managed buffers due to alignment */ 1458 for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) 1459 snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG, 1460 &emu->pci->dev, 1461 64*1024, 64*1024); 1462 1463 for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; substream; substream = substream->next) 1464 snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV, 1465 &emu->pci->dev, 64*1024, 64*1024); 1466 1467 return 0; 1468 } 1469 1470 int snd_emu10k1_pcm_multi(struct snd_emu10k1 *emu, int device) 1471 { 1472 struct snd_pcm *pcm; 1473 struct snd_pcm_substream *substream; 1474 int err; 1475 1476 err = snd_pcm_new(emu->card, "emu10k1", device, 1, 0, &pcm); 1477 if (err < 0) 1478 return err; 1479 1480 pcm->private_data = emu; 1481 1482 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_efx_playback_ops); 1483 1484 pcm->info_flags = 0; 1485 pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; 1486 strcpy(pcm->name, "Multichannel Playback"); 1487 emu->pcm_multi = pcm; 1488 1489 for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) 1490 snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG, 1491 &emu->pci->dev, 1492 64*1024, 64*1024); 1493 1494 return 0; 1495 } 1496 1497 1498 static const struct snd_pcm_ops snd_emu10k1_capture_mic_ops = { 1499 .open = snd_emu10k1_capture_mic_open, 1500 .close = snd_emu10k1_capture_mic_close, 1501 .prepare = snd_emu10k1_capture_prepare, 1502 .trigger = snd_emu10k1_capture_trigger, 1503 .pointer = snd_emu10k1_capture_pointer, 1504 }; 1505 1506 int snd_emu10k1_pcm_mic(struct snd_emu10k1 *emu, int device) 1507 { 1508 struct snd_pcm *pcm; 1509 int err; 1510 1511 err = snd_pcm_new(emu->card, "emu10k1 mic", device, 0, 1, &pcm); 1512 if (err < 0) 1513 return err; 1514 1515 pcm->private_data = emu; 1516 1517 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_mic_ops); 1518 1519 pcm->info_flags = 0; 1520 strcpy(pcm->name, "Mic Capture"); 1521 emu->pcm_mic = pcm; 1522 1523 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 1524 64*1024, 64*1024); 1525 1526 return 0; 1527 } 1528 1529 static int snd_emu10k1_pcm_efx_voices_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1530 { 1531 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); 1532 int nefx = emu->audigy ? 64 : 32; 1533 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1534 uinfo->count = nefx; 1535 uinfo->value.integer.min = 0; 1536 uinfo->value.integer.max = 1; 1537 return 0; 1538 } 1539 1540 static int snd_emu10k1_pcm_efx_voices_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1541 { 1542 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); 1543 int nefx = emu->audigy ? 64 : 32; 1544 int idx; 1545 1546 for (idx = 0; idx < nefx; idx++) 1547 ucontrol->value.integer.value[idx] = (emu->efx_voices_mask[idx / 32] & (1 << (idx % 32))) ? 1 : 0; 1548 return 0; 1549 } 1550 1551 static int snd_emu10k1_pcm_efx_voices_mask_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1552 { 1553 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); 1554 unsigned int nval[2], bits; 1555 int nefx = emu->audigy ? 64 : 32; 1556 int change, idx; 1557 1558 nval[0] = nval[1] = 0; 1559 for (idx = 0, bits = 0; idx < nefx; idx++) 1560 if (ucontrol->value.integer.value[idx]) { 1561 nval[idx / 32] |= 1 << (idx % 32); 1562 bits++; 1563 } 1564 1565 if (bits == 9 || bits == 11 || bits == 13 || bits == 15 || bits > 16) 1566 return -EINVAL; 1567 1568 spin_lock_irq(&emu->reg_lock); 1569 change = (nval[0] != emu->efx_voices_mask[0]) || 1570 (nval[1] != emu->efx_voices_mask[1]); 1571 emu->efx_voices_mask[0] = nval[0]; 1572 emu->efx_voices_mask[1] = nval[1]; 1573 spin_unlock_irq(&emu->reg_lock); 1574 return change; 1575 } 1576 1577 static const struct snd_kcontrol_new snd_emu10k1_pcm_efx_voices_mask = { 1578 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1579 .name = "Captured FX8010 Outputs", 1580 .info = snd_emu10k1_pcm_efx_voices_mask_info, 1581 .get = snd_emu10k1_pcm_efx_voices_mask_get, 1582 .put = snd_emu10k1_pcm_efx_voices_mask_put 1583 }; 1584 1585 static const struct snd_pcm_ops snd_emu10k1_capture_efx_ops = { 1586 .open = snd_emu10k1_capture_efx_open, 1587 .close = snd_emu10k1_capture_efx_close, 1588 .prepare = snd_emu10k1_capture_prepare, 1589 .trigger = snd_emu10k1_capture_trigger, 1590 .pointer = snd_emu10k1_capture_pointer, 1591 }; 1592 1593 1594 /* EFX playback */ 1595 1596 #define INITIAL_TRAM_SHIFT 14 1597 #define INITIAL_TRAM_POS(size) ((((size) / 2) - INITIAL_TRAM_SHIFT) - 1) 1598 1599 static void snd_emu10k1_fx8010_playback_irq(struct snd_emu10k1 *emu, void *private_data) 1600 { 1601 struct snd_pcm_substream *substream = private_data; 1602 snd_pcm_period_elapsed(substream); 1603 } 1604 1605 static void snd_emu10k1_fx8010_playback_tram_poke1(unsigned short *dst_left, 1606 unsigned short *dst_right, 1607 unsigned short *src, 1608 unsigned int count, 1609 unsigned int tram_shift) 1610 { 1611 /* 1612 dev_dbg(emu->card->dev, 1613 "tram_poke1: dst_left = 0x%p, dst_right = 0x%p, " 1614 "src = 0x%p, count = 0x%x\n", 1615 dst_left, dst_right, src, count); 1616 */ 1617 if ((tram_shift & 1) == 0) { 1618 while (count--) { 1619 *dst_left-- = *src++; 1620 *dst_right-- = *src++; 1621 } 1622 } else { 1623 while (count--) { 1624 *dst_right-- = *src++; 1625 *dst_left-- = *src++; 1626 } 1627 } 1628 } 1629 1630 static void fx8010_pb_trans_copy(struct snd_pcm_substream *substream, 1631 struct snd_pcm_indirect *rec, size_t bytes) 1632 { 1633 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1634 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1635 unsigned int tram_size = pcm->buffer_size; 1636 unsigned short *src = (unsigned short *)(substream->runtime->dma_area + rec->sw_data); 1637 unsigned int frames = bytes >> 2, count; 1638 unsigned int tram_pos = pcm->tram_pos; 1639 unsigned int tram_shift = pcm->tram_shift; 1640 1641 while (frames > tram_pos) { 1642 count = tram_pos + 1; 1643 snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos, 1644 (unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2, 1645 src, count, tram_shift); 1646 src += count * 2; 1647 frames -= count; 1648 tram_pos = (tram_size / 2) - 1; 1649 tram_shift++; 1650 } 1651 snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos, 1652 (unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2, 1653 src, frames, tram_shift); 1654 tram_pos -= frames; 1655 pcm->tram_pos = tram_pos; 1656 pcm->tram_shift = tram_shift; 1657 } 1658 1659 static int snd_emu10k1_fx8010_playback_transfer(struct snd_pcm_substream *substream) 1660 { 1661 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1662 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1663 1664 return snd_pcm_indirect_playback_transfer(substream, &pcm->pcm_rec, 1665 fx8010_pb_trans_copy); 1666 } 1667 1668 static int snd_emu10k1_fx8010_playback_hw_free(struct snd_pcm_substream *substream) 1669 { 1670 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1671 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1672 unsigned int i; 1673 1674 for (i = 0; i < pcm->channels; i++) 1675 snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, 0); 1676 return 0; 1677 } 1678 1679 static int snd_emu10k1_fx8010_playback_prepare(struct snd_pcm_substream *substream) 1680 { 1681 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1682 struct snd_pcm_runtime *runtime = substream->runtime; 1683 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1684 unsigned int i; 1685 1686 /* 1687 dev_dbg(emu->card->dev, "prepare: etram_pages = 0x%p, dma_area = 0x%x, " 1688 "buffer_size = 0x%x (0x%x)\n", 1689 emu->fx8010.etram_pages, runtime->dma_area, 1690 runtime->buffer_size, runtime->buffer_size << 2); 1691 */ 1692 memset(&pcm->pcm_rec, 0, sizeof(pcm->pcm_rec)); 1693 pcm->pcm_rec.hw_buffer_size = pcm->buffer_size * 2; /* byte size */ 1694 pcm->pcm_rec.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1695 pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size); 1696 pcm->tram_shift = 0; 1697 snd_emu10k1_ptr_write_multiple(emu, 0, 1698 emu->gpr_base + pcm->gpr_running, 0, /* reset */ 1699 emu->gpr_base + pcm->gpr_trigger, 0, /* reset */ 1700 emu->gpr_base + pcm->gpr_size, runtime->buffer_size, 1701 emu->gpr_base + pcm->gpr_ptr, 0, /* reset ptr number */ 1702 emu->gpr_base + pcm->gpr_count, runtime->period_size, 1703 emu->gpr_base + pcm->gpr_tmpcount, runtime->period_size, 1704 REGLIST_END); 1705 for (i = 0; i < pcm->channels; i++) 1706 snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, (TANKMEMADDRREG_READ|TANKMEMADDRREG_ALIGN) + i * (runtime->buffer_size / pcm->channels)); 1707 return 0; 1708 } 1709 1710 static int snd_emu10k1_fx8010_playback_trigger(struct snd_pcm_substream *substream, int cmd) 1711 { 1712 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1713 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1714 int result = 0; 1715 1716 spin_lock(&emu->reg_lock); 1717 switch (cmd) { 1718 case SNDRV_PCM_TRIGGER_START: 1719 /* follow thru */ 1720 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1721 case SNDRV_PCM_TRIGGER_RESUME: 1722 #ifdef EMU10K1_SET_AC3_IEC958 1723 { 1724 int i; 1725 for (i = 0; i < 3; i++) { 1726 unsigned int bits; 1727 bits = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | 1728 SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 1729 0x00001200 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT | SPCS_NOTAUDIODATA; 1730 snd_emu10k1_ptr_write(emu, SPCS0 + i, 0, bits); 1731 } 1732 } 1733 #endif 1734 result = snd_emu10k1_fx8010_register_irq_handler(emu, snd_emu10k1_fx8010_playback_irq, pcm->gpr_running, substream, &pcm->irq); 1735 if (result < 0) 1736 goto __err; 1737 snd_emu10k1_fx8010_playback_transfer(substream); /* roll the ball */ 1738 snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 1); 1739 break; 1740 case SNDRV_PCM_TRIGGER_STOP: 1741 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1742 case SNDRV_PCM_TRIGGER_SUSPEND: 1743 snd_emu10k1_fx8010_unregister_irq_handler(emu, &pcm->irq); 1744 snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 0); 1745 pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size); 1746 pcm->tram_shift = 0; 1747 break; 1748 default: 1749 result = -EINVAL; 1750 break; 1751 } 1752 __err: 1753 spin_unlock(&emu->reg_lock); 1754 return result; 1755 } 1756 1757 static snd_pcm_uframes_t snd_emu10k1_fx8010_playback_pointer(struct snd_pcm_substream *substream) 1758 { 1759 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1760 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1761 size_t ptr; /* byte pointer */ 1762 1763 if (!snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_trigger, 0)) 1764 return 0; 1765 ptr = snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_ptr, 0) << 2; 1766 return snd_pcm_indirect_playback_pointer(substream, &pcm->pcm_rec, ptr); 1767 } 1768 1769 static const struct snd_pcm_hardware snd_emu10k1_fx8010_playback = 1770 { 1771 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1772 SNDRV_PCM_INFO_RESUME | 1773 /* SNDRV_PCM_INFO_MMAP_VALID | */ SNDRV_PCM_INFO_PAUSE | 1774 SNDRV_PCM_INFO_SYNC_APPLPTR), 1775 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1776 .rates = SNDRV_PCM_RATE_48000, 1777 .rate_min = 48000, 1778 .rate_max = 48000, 1779 .channels_min = 1, 1780 .channels_max = 1, 1781 .buffer_bytes_max = (128*1024), 1782 .period_bytes_min = 1024, 1783 .period_bytes_max = (128*1024), 1784 .periods_min = 2, 1785 .periods_max = 1024, 1786 .fifo_size = 0, 1787 }; 1788 1789 static int snd_emu10k1_fx8010_playback_open(struct snd_pcm_substream *substream) 1790 { 1791 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1792 struct snd_pcm_runtime *runtime = substream->runtime; 1793 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1794 1795 runtime->hw = snd_emu10k1_fx8010_playback; 1796 runtime->hw.channels_min = runtime->hw.channels_max = pcm->channels; 1797 runtime->hw.period_bytes_max = (pcm->buffer_size * 2) / 2; 1798 spin_lock_irq(&emu->reg_lock); 1799 if (pcm->valid == 0) { 1800 spin_unlock_irq(&emu->reg_lock); 1801 return -ENODEV; 1802 } 1803 pcm->opened = 1; 1804 spin_unlock_irq(&emu->reg_lock); 1805 return 0; 1806 } 1807 1808 static int snd_emu10k1_fx8010_playback_close(struct snd_pcm_substream *substream) 1809 { 1810 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1811 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1812 1813 spin_lock_irq(&emu->reg_lock); 1814 pcm->opened = 0; 1815 spin_unlock_irq(&emu->reg_lock); 1816 return 0; 1817 } 1818 1819 static const struct snd_pcm_ops snd_emu10k1_fx8010_playback_ops = { 1820 .open = snd_emu10k1_fx8010_playback_open, 1821 .close = snd_emu10k1_fx8010_playback_close, 1822 .hw_free = snd_emu10k1_fx8010_playback_hw_free, 1823 .prepare = snd_emu10k1_fx8010_playback_prepare, 1824 .trigger = snd_emu10k1_fx8010_playback_trigger, 1825 .pointer = snd_emu10k1_fx8010_playback_pointer, 1826 .ack = snd_emu10k1_fx8010_playback_transfer, 1827 }; 1828 1829 int snd_emu10k1_pcm_efx(struct snd_emu10k1 *emu, int device) 1830 { 1831 struct snd_pcm *pcm; 1832 struct snd_kcontrol *kctl; 1833 int err; 1834 1835 err = snd_pcm_new(emu->card, "emu10k1 efx", device, emu->audigy ? 0 : 8, 1, &pcm); 1836 if (err < 0) 1837 return err; 1838 1839 pcm->private_data = emu; 1840 1841 if (!emu->audigy) 1842 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_fx8010_playback_ops); 1843 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_efx_ops); 1844 1845 pcm->info_flags = 0; 1846 if (emu->audigy) 1847 strcpy(pcm->name, "Multichannel Capture"); 1848 else 1849 strcpy(pcm->name, "Multichannel Capture/PT Playback"); 1850 emu->pcm_efx = pcm; 1851 1852 if (!emu->card_capabilities->emu_model) { 1853 // On Sound Blasters, the DSP code copies the EXTINs to FXBUS2. 1854 // The mask determines which of these and the EXTOUTs the multi- 1855 // channel capture actually records (the channel order is fixed). 1856 if (emu->audigy) { 1857 emu->efx_voices_mask[0] = 0; 1858 emu->efx_voices_mask[1] = 0xffff; 1859 } else { 1860 emu->efx_voices_mask[0] = 0xffff0000; 1861 emu->efx_voices_mask[1] = 0; 1862 } 1863 kctl = snd_ctl_new1(&snd_emu10k1_pcm_efx_voices_mask, emu); 1864 if (!kctl) 1865 return -ENOMEM; 1866 kctl->id.device = device; 1867 err = snd_ctl_add(emu->card, kctl); 1868 if (err < 0) 1869 return err; 1870 } else { 1871 // On E-MU cards, the DSP code copies the P16VINs/EMU32INs to 1872 // FXBUS2. These are already selected & routed by the FPGA, 1873 // so there is no need to apply additional masking. 1874 } 1875 1876 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 1877 64*1024, 64*1024); 1878 1879 return 0; 1880 } 1881