1 /**************************************************************************** 2 3 Copyright Echo Digital Audio Corporation (c) 1998 - 2004 4 All rights reserved 5 www.echoaudio.com 6 7 This file is part of Echo Digital Audio's generic driver library. 8 9 Echo Digital Audio's generic driver library is free software; 10 you can redistribute it and/or modify it under the terms of 11 the GNU General Public License as published by the Free Software 12 Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, 22 MA 02111-1307, USA. 23 24 ************************************************************************* 25 26 Translation from C++ and adaptation for use in ALSA-Driver 27 were made by Giuliano Pochini <pochini@shiny.it> 28 29 ****************************************************************************/ 30 31 32 /****************************************************************************** 33 MIDI lowlevel code 34 ******************************************************************************/ 35 36 /* Start and stop Midi input */ 37 static int enable_midi_input(struct echoaudio *chip, char enable) 38 { 39 dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable); 40 41 if (wait_handshake(chip)) 42 return -EIO; 43 44 if (enable) { 45 chip->mtc_state = MIDI_IN_STATE_NORMAL; 46 chip->comm_page->flags |= 47 cpu_to_le32(DSP_FLAG_MIDI_INPUT); 48 } else 49 chip->comm_page->flags &= 50 ~cpu_to_le32(DSP_FLAG_MIDI_INPUT); 51 52 clear_handshake(chip); 53 return send_vector(chip, DSP_VC_UPDATE_FLAGS); 54 } 55 56 57 58 /* Send a buffer full of MIDI data to the DSP 59 Returns how many actually written or < 0 on error */ 60 static int write_midi(struct echoaudio *chip, u8 *data, int bytes) 61 { 62 if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE)) 63 return -EINVAL; 64 65 if (wait_handshake(chip)) 66 return -EIO; 67 68 /* HF4 indicates that it is safe to write MIDI output data */ 69 if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4)) 70 return 0; 71 72 chip->comm_page->midi_output[0] = bytes; 73 memcpy(&chip->comm_page->midi_output[1], data, bytes); 74 chip->comm_page->midi_out_free_count = 0; 75 clear_handshake(chip); 76 send_vector(chip, DSP_VC_MIDI_WRITE); 77 dev_dbg(chip->card->dev, "write_midi: %d\n", bytes); 78 return bytes; 79 } 80 81 82 83 /* Run the state machine for MIDI input data 84 MIDI time code sync isn't supported by this code right now, but you still need 85 this state machine to parse the incoming MIDI data stream. Every time the DSP 86 sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data 87 stream. The DSP sample position is represented as a 32 bit unsigned value, 88 with the high 16 bits first, followed by the low 16 bits. Since these aren't 89 real MIDI bytes, the following logic is needed to skip them. */ 90 static inline int mtc_process_data(struct echoaudio *chip, short midi_byte) 91 { 92 switch (chip->mtc_state) { 93 case MIDI_IN_STATE_NORMAL: 94 if (midi_byte == 0xF1) 95 chip->mtc_state = MIDI_IN_STATE_TS_HIGH; 96 break; 97 case MIDI_IN_STATE_TS_HIGH: 98 chip->mtc_state = MIDI_IN_STATE_TS_LOW; 99 return MIDI_IN_SKIP_DATA; 100 break; 101 case MIDI_IN_STATE_TS_LOW: 102 chip->mtc_state = MIDI_IN_STATE_F1_DATA; 103 return MIDI_IN_SKIP_DATA; 104 break; 105 case MIDI_IN_STATE_F1_DATA: 106 chip->mtc_state = MIDI_IN_STATE_NORMAL; 107 break; 108 } 109 return 0; 110 } 111 112 113 114 /* This function is called from the IRQ handler and it reads the midi data 115 from the DSP's buffer. It returns the number of bytes received. */ 116 static int midi_service_irq(struct echoaudio *chip) 117 { 118 short int count, midi_byte, i, received; 119 120 /* The count is at index 0, followed by actual data */ 121 count = le16_to_cpu(chip->comm_page->midi_input[0]); 122 123 if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE)) 124 return 0; 125 126 /* Get the MIDI data from the comm page */ 127 i = 1; 128 received = 0; 129 for (i = 1; i <= count; i++) { 130 /* Get the MIDI byte */ 131 midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]); 132 133 /* Parse the incoming MIDI stream. The incoming MIDI data 134 consists of MIDI bytes and timestamps for the MIDI time code 135 0xF1 bytes. mtc_process_data() is a little state machine that 136 parses the stream. If you get MIDI_IN_SKIP_DATA back, then 137 this is a timestamp byte, not a MIDI byte, so don't store it 138 in the MIDI input buffer. */ 139 if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA) 140 continue; 141 142 chip->midi_buffer[received++] = (u8)midi_byte; 143 } 144 145 return received; 146 } 147 148 149 150 151 /****************************************************************************** 152 MIDI interface 153 ******************************************************************************/ 154 155 static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream) 156 { 157 struct echoaudio *chip = substream->rmidi->private_data; 158 159 chip->midi_in = substream; 160 return 0; 161 } 162 163 164 165 static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream, 166 int up) 167 { 168 struct echoaudio *chip = substream->rmidi->private_data; 169 170 if (up != chip->midi_input_enabled) { 171 spin_lock_irq(&chip->lock); 172 enable_midi_input(chip, up); 173 spin_unlock_irq(&chip->lock); 174 chip->midi_input_enabled = up; 175 } 176 } 177 178 179 180 static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream) 181 { 182 struct echoaudio *chip = substream->rmidi->private_data; 183 184 chip->midi_in = NULL; 185 return 0; 186 } 187 188 189 190 static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream) 191 { 192 struct echoaudio *chip = substream->rmidi->private_data; 193 194 chip->tinuse = 0; 195 chip->midi_full = 0; 196 chip->midi_out = substream; 197 return 0; 198 } 199 200 201 202 static void snd_echo_midi_output_write(struct timer_list *t) 203 { 204 struct echoaudio *chip = from_timer(chip, t, timer); 205 unsigned long flags; 206 int bytes, sent, time; 207 unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1]; 208 209 /* No interrupts are involved: we have to check at regular intervals 210 if the card's output buffer has room for new data. */ 211 sent = 0; 212 spin_lock_irqsave(&chip->lock, flags); 213 chip->midi_full = 0; 214 if (!snd_rawmidi_transmit_empty(chip->midi_out)) { 215 bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf, 216 MIDI_OUT_BUFFER_SIZE - 1); 217 dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes); 218 sent = write_midi(chip, buf, bytes); 219 if (sent < 0) { 220 dev_err(chip->card->dev, 221 "write_midi() error %d\n", sent); 222 /* retry later */ 223 sent = 9000; 224 chip->midi_full = 1; 225 } else if (sent > 0) { 226 dev_dbg(chip->card->dev, "%d bytes sent\n", sent); 227 snd_rawmidi_transmit_ack(chip->midi_out, sent); 228 } else { 229 /* Buffer is full. DSP's internal buffer is 64 (128 ?) 230 bytes long. Let's wait until half of them are sent */ 231 dev_dbg(chip->card->dev, "Full\n"); 232 sent = 32; 233 chip->midi_full = 1; 234 } 235 } 236 237 /* We restart the timer only if there is some data left to send */ 238 if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) { 239 /* The timer will expire slightly after the data has been 240 sent */ 241 time = (sent << 3) / 25 + 1; /* 8/25=0.32ms to send a byte */ 242 mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000); 243 dev_dbg(chip->card->dev, 244 "Timer armed(%d)\n", ((time * HZ + 999) / 1000)); 245 } 246 spin_unlock_irqrestore(&chip->lock, flags); 247 } 248 249 250 251 static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream, 252 int up) 253 { 254 struct echoaudio *chip = substream->rmidi->private_data; 255 256 dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up); 257 spin_lock_irq(&chip->lock); 258 if (up) { 259 if (!chip->tinuse) { 260 timer_setup(&chip->timer, snd_echo_midi_output_write, 261 0); 262 chip->tinuse = 1; 263 } 264 } else { 265 if (chip->tinuse) { 266 chip->tinuse = 0; 267 spin_unlock_irq(&chip->lock); 268 del_timer_sync(&chip->timer); 269 dev_dbg(chip->card->dev, "Timer removed\n"); 270 return; 271 } 272 } 273 spin_unlock_irq(&chip->lock); 274 275 if (up && !chip->midi_full) 276 snd_echo_midi_output_write(&chip->timer); 277 } 278 279 280 281 static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream) 282 { 283 struct echoaudio *chip = substream->rmidi->private_data; 284 285 chip->midi_out = NULL; 286 return 0; 287 } 288 289 290 291 static const struct snd_rawmidi_ops snd_echo_midi_input = { 292 .open = snd_echo_midi_input_open, 293 .close = snd_echo_midi_input_close, 294 .trigger = snd_echo_midi_input_trigger, 295 }; 296 297 static const struct snd_rawmidi_ops snd_echo_midi_output = { 298 .open = snd_echo_midi_output_open, 299 .close = snd_echo_midi_output_close, 300 .trigger = snd_echo_midi_output_trigger, 301 }; 302 303 304 305 /* <--snd_echo_probe() */ 306 static int snd_echo_midi_create(struct snd_card *card, 307 struct echoaudio *chip) 308 { 309 int err; 310 311 err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi); 312 if (err < 0) 313 return err; 314 315 strcpy(chip->rmidi->name, card->shortname); 316 chip->rmidi->private_data = chip; 317 318 snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT, 319 &snd_echo_midi_input); 320 snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, 321 &snd_echo_midi_output); 322 323 chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | 324 SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; 325 return 0; 326 } 327