1 // SPDX-License-Identifier: GPL-2.0-only 2 /** 3 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 4 * 5 * @File ctvmem.c 6 * 7 * @Brief 8 * This file contains the implementation of virtual memory management object 9 * for card device. 10 * 11 * @Author Liu Chun 12 * @Date Apr 1 2008 13 */ 14 15 #include "ctvmem.h" 16 #include "ctatc.h" 17 #include <linux/slab.h> 18 #include <linux/mm.h> 19 #include <linux/io.h> 20 #include <sound/pcm.h> 21 22 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *)) 23 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE) 24 25 /* * 26 * Find or create vm block based on requested @size. 27 * @size must be page aligned. 28 * */ 29 static struct ct_vm_block * 30 get_vm_block(struct ct_vm *vm, unsigned int size, struct ct_atc *atc) 31 { 32 struct ct_vm_block *block = NULL, *entry; 33 struct list_head *pos; 34 35 size = CT_PAGE_ALIGN(size); 36 if (size > vm->size) { 37 dev_err(atc->card->dev, 38 "Fail! No sufficient device virtual memory space available!\n"); 39 return NULL; 40 } 41 42 mutex_lock(&vm->lock); 43 list_for_each(pos, &vm->unused) { 44 entry = list_entry(pos, struct ct_vm_block, list); 45 if (entry->size >= size) 46 break; /* found a block that is big enough */ 47 } 48 if (pos == &vm->unused) 49 goto out; 50 51 if (entry->size == size) { 52 /* Move the vm node from unused list to used list directly */ 53 list_move(&entry->list, &vm->used); 54 vm->size -= size; 55 block = entry; 56 goto out; 57 } 58 59 block = kzalloc(sizeof(*block), GFP_KERNEL); 60 if (!block) 61 goto out; 62 63 block->addr = entry->addr; 64 block->size = size; 65 list_add(&block->list, &vm->used); 66 entry->addr += size; 67 entry->size -= size; 68 vm->size -= size; 69 70 out: 71 mutex_unlock(&vm->lock); 72 return block; 73 } 74 75 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block) 76 { 77 struct ct_vm_block *entry, *pre_ent; 78 struct list_head *pos, *pre; 79 80 block->size = CT_PAGE_ALIGN(block->size); 81 82 mutex_lock(&vm->lock); 83 list_del(&block->list); 84 vm->size += block->size; 85 86 list_for_each(pos, &vm->unused) { 87 entry = list_entry(pos, struct ct_vm_block, list); 88 if (entry->addr >= (block->addr + block->size)) 89 break; /* found a position */ 90 } 91 if (pos == &vm->unused) { 92 list_add_tail(&block->list, &vm->unused); 93 entry = block; 94 } else { 95 if ((block->addr + block->size) == entry->addr) { 96 entry->addr = block->addr; 97 entry->size += block->size; 98 kfree(block); 99 } else { 100 __list_add(&block->list, pos->prev, pos); 101 entry = block; 102 } 103 } 104 105 pos = &entry->list; 106 pre = pos->prev; 107 while (pre != &vm->unused) { 108 entry = list_entry(pos, struct ct_vm_block, list); 109 pre_ent = list_entry(pre, struct ct_vm_block, list); 110 if ((pre_ent->addr + pre_ent->size) > entry->addr) 111 break; 112 113 pre_ent->size += entry->size; 114 list_del(pos); 115 kfree(entry); 116 pos = pre; 117 pre = pos->prev; 118 } 119 mutex_unlock(&vm->lock); 120 } 121 122 /* Map host addr (kmalloced/vmalloced) to device logical addr. */ 123 static struct ct_vm_block * 124 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size) 125 { 126 struct ct_vm_block *block; 127 unsigned int pte_start; 128 unsigned i, pages; 129 unsigned long *ptp; 130 struct ct_atc *atc = snd_pcm_substream_chip(substream); 131 132 block = get_vm_block(vm, size, atc); 133 if (block == NULL) { 134 dev_err(atc->card->dev, 135 "No virtual memory block that is big enough to allocate!\n"); 136 return NULL; 137 } 138 139 ptp = (unsigned long *)vm->ptp[0].area; 140 pte_start = (block->addr >> CT_PAGE_SHIFT); 141 pages = block->size >> CT_PAGE_SHIFT; 142 for (i = 0; i < pages; i++) { 143 unsigned long addr; 144 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT); 145 ptp[pte_start + i] = addr; 146 } 147 148 block->size = size; 149 return block; 150 } 151 152 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block) 153 { 154 /* do unmapping */ 155 put_vm_block(vm, block); 156 } 157 158 /* * 159 * return the host physical addr of the @index-th device 160 * page table page on success, or ~0UL on failure. 161 * The first returned ~0UL indicates the termination. 162 * */ 163 static dma_addr_t 164 ct_get_ptp_phys(struct ct_vm *vm, int index) 165 { 166 return (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr; 167 } 168 169 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci) 170 { 171 struct ct_vm *vm; 172 struct ct_vm_block *block; 173 int i, err = 0; 174 175 *rvm = NULL; 176 177 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 178 if (!vm) 179 return -ENOMEM; 180 181 mutex_init(&vm->lock); 182 183 /* Allocate page table pages */ 184 for (i = 0; i < CT_PTP_NUM; i++) { 185 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, 186 &pci->dev, 187 PAGE_SIZE, &vm->ptp[i]); 188 if (err < 0) 189 break; 190 } 191 if (err < 0) { 192 /* no page table pages are allocated */ 193 ct_vm_destroy(vm); 194 return -ENOMEM; 195 } 196 vm->size = CT_ADDRS_PER_PAGE * i; 197 vm->map = ct_vm_map; 198 vm->unmap = ct_vm_unmap; 199 vm->get_ptp_phys = ct_get_ptp_phys; 200 INIT_LIST_HEAD(&vm->unused); 201 INIT_LIST_HEAD(&vm->used); 202 block = kzalloc(sizeof(*block), GFP_KERNEL); 203 if (NULL != block) { 204 block->addr = 0; 205 block->size = vm->size; 206 list_add(&block->list, &vm->unused); 207 } 208 209 *rvm = vm; 210 return 0; 211 } 212 213 /* The caller must ensure no mapping pages are being used 214 * by hardware before calling this function */ 215 void ct_vm_destroy(struct ct_vm *vm) 216 { 217 int i; 218 struct list_head *pos; 219 struct ct_vm_block *entry; 220 221 /* free used and unused list nodes */ 222 while (!list_empty(&vm->used)) { 223 pos = vm->used.next; 224 list_del(pos); 225 entry = list_entry(pos, struct ct_vm_block, list); 226 kfree(entry); 227 } 228 while (!list_empty(&vm->unused)) { 229 pos = vm->unused.next; 230 list_del(pos); 231 entry = list_entry(pos, struct ct_vm_block, list); 232 kfree(entry); 233 } 234 235 /* free allocated page table pages */ 236 for (i = 0; i < CT_PTP_NUM; i++) 237 snd_dma_free_pages(&vm->ptp[i]); 238 239 vm->size = 0; 240 241 kfree(vm); 242 } 243