xref: /openbmc/linux/sound/pci/ctxfi/cthw20k2.c (revision faa11909)
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File	cthw20k2.c
9  *
10  * @Brief
11  * This file contains the implementation of hardware access method for 20k2.
12  *
13  * @Author	Liu Chun
14  * @Date 	May 14 2008
15  *
16  */
17 
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
28 
29 struct hw20k2 {
30 	struct hw hw;
31 	/* for i2c */
32 	unsigned char dev_id;
33 	unsigned char addr_size;
34 	unsigned char data_size;
35 
36 	int mic_source;
37 };
38 
39 static u32 hw_read_20kx(struct hw *hw, u32 reg);
40 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
41 
42 /*
43  * Type definition block.
44  * The layout of control structures can be directly applied on 20k2 chip.
45  */
46 
47 /*
48  * SRC control block definitions.
49  */
50 
51 /* SRC resource control block */
52 #define SRCCTL_STATE	0x00000007
53 #define SRCCTL_BM	0x00000008
54 #define SRCCTL_RSR	0x00000030
55 #define SRCCTL_SF	0x000001C0
56 #define SRCCTL_WR	0x00000200
57 #define SRCCTL_PM	0x00000400
58 #define SRCCTL_ROM	0x00001800
59 #define SRCCTL_VO	0x00002000
60 #define SRCCTL_ST	0x00004000
61 #define SRCCTL_IE	0x00008000
62 #define SRCCTL_ILSZ	0x000F0000
63 #define SRCCTL_BP	0x00100000
64 
65 #define SRCCCR_CISZ	0x000007FF
66 #define SRCCCR_CWA	0x001FF800
67 #define SRCCCR_D	0x00200000
68 #define SRCCCR_RS	0x01C00000
69 #define SRCCCR_NAL	0x3E000000
70 #define SRCCCR_RA	0xC0000000
71 
72 #define SRCCA_CA	0x0FFFFFFF
73 #define SRCCA_RS	0xE0000000
74 
75 #define SRCSA_SA	0x0FFFFFFF
76 
77 #define SRCLA_LA	0x0FFFFFFF
78 
79 /* Mixer Parameter Ring ram Low and Hight register.
80  * Fixed-point value in 8.24 format for parameter channel */
81 #define MPRLH_PITCH	0xFFFFFFFF
82 
83 /* SRC resource register dirty flags */
84 union src_dirty {
85 	struct {
86 		u16 ctl:1;
87 		u16 ccr:1;
88 		u16 sa:1;
89 		u16 la:1;
90 		u16 ca:1;
91 		u16 mpr:1;
92 		u16 czbfs:1;	/* Clear Z-Buffers */
93 		u16 rsv:9;
94 	} bf;
95 	u16 data;
96 };
97 
98 struct src_rsc_ctrl_blk {
99 	unsigned int	ctl;
100 	unsigned int 	ccr;
101 	unsigned int	ca;
102 	unsigned int	sa;
103 	unsigned int	la;
104 	unsigned int	mpr;
105 	union src_dirty	dirty;
106 };
107 
108 /* SRC manager control block */
109 union src_mgr_dirty {
110 	struct {
111 		u16 enb0:1;
112 		u16 enb1:1;
113 		u16 enb2:1;
114 		u16 enb3:1;
115 		u16 enb4:1;
116 		u16 enb5:1;
117 		u16 enb6:1;
118 		u16 enb7:1;
119 		u16 enbsa:1;
120 		u16 rsv:7;
121 	} bf;
122 	u16 data;
123 };
124 
125 struct src_mgr_ctrl_blk {
126 	unsigned int		enbsa;
127 	unsigned int		enb[8];
128 	union src_mgr_dirty	dirty;
129 };
130 
131 /* SRCIMP manager control block */
132 #define SRCAIM_ARC	0x00000FFF
133 #define SRCAIM_NXT	0x00FF0000
134 #define SRCAIM_SRC	0xFF000000
135 
136 struct srcimap {
137 	unsigned int srcaim;
138 	unsigned int idx;
139 };
140 
141 /* SRCIMP manager register dirty flags */
142 union srcimp_mgr_dirty {
143 	struct {
144 		u16 srcimap:1;
145 		u16 rsv:15;
146 	} bf;
147 	u16 data;
148 };
149 
150 struct srcimp_mgr_ctrl_blk {
151 	struct srcimap		srcimap;
152 	union srcimp_mgr_dirty	dirty;
153 };
154 
155 /*
156  * Function implementation block.
157  */
158 
159 static int src_get_rsc_ctrl_blk(void **rblk)
160 {
161 	struct src_rsc_ctrl_blk *blk;
162 
163 	*rblk = NULL;
164 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
165 	if (!blk)
166 		return -ENOMEM;
167 
168 	*rblk = blk;
169 
170 	return 0;
171 }
172 
173 static int src_put_rsc_ctrl_blk(void *blk)
174 {
175 	kfree(blk);
176 
177 	return 0;
178 }
179 
180 static int src_set_state(void *blk, unsigned int state)
181 {
182 	struct src_rsc_ctrl_blk *ctl = blk;
183 
184 	set_field(&ctl->ctl, SRCCTL_STATE, state);
185 	ctl->dirty.bf.ctl = 1;
186 	return 0;
187 }
188 
189 static int src_set_bm(void *blk, unsigned int bm)
190 {
191 	struct src_rsc_ctrl_blk *ctl = blk;
192 
193 	set_field(&ctl->ctl, SRCCTL_BM, bm);
194 	ctl->dirty.bf.ctl = 1;
195 	return 0;
196 }
197 
198 static int src_set_rsr(void *blk, unsigned int rsr)
199 {
200 	struct src_rsc_ctrl_blk *ctl = blk;
201 
202 	set_field(&ctl->ctl, SRCCTL_RSR, rsr);
203 	ctl->dirty.bf.ctl = 1;
204 	return 0;
205 }
206 
207 static int src_set_sf(void *blk, unsigned int sf)
208 {
209 	struct src_rsc_ctrl_blk *ctl = blk;
210 
211 	set_field(&ctl->ctl, SRCCTL_SF, sf);
212 	ctl->dirty.bf.ctl = 1;
213 	return 0;
214 }
215 
216 static int src_set_wr(void *blk, unsigned int wr)
217 {
218 	struct src_rsc_ctrl_blk *ctl = blk;
219 
220 	set_field(&ctl->ctl, SRCCTL_WR, wr);
221 	ctl->dirty.bf.ctl = 1;
222 	return 0;
223 }
224 
225 static int src_set_pm(void *blk, unsigned int pm)
226 {
227 	struct src_rsc_ctrl_blk *ctl = blk;
228 
229 	set_field(&ctl->ctl, SRCCTL_PM, pm);
230 	ctl->dirty.bf.ctl = 1;
231 	return 0;
232 }
233 
234 static int src_set_rom(void *blk, unsigned int rom)
235 {
236 	struct src_rsc_ctrl_blk *ctl = blk;
237 
238 	set_field(&ctl->ctl, SRCCTL_ROM, rom);
239 	ctl->dirty.bf.ctl = 1;
240 	return 0;
241 }
242 
243 static int src_set_vo(void *blk, unsigned int vo)
244 {
245 	struct src_rsc_ctrl_blk *ctl = blk;
246 
247 	set_field(&ctl->ctl, SRCCTL_VO, vo);
248 	ctl->dirty.bf.ctl = 1;
249 	return 0;
250 }
251 
252 static int src_set_st(void *blk, unsigned int st)
253 {
254 	struct src_rsc_ctrl_blk *ctl = blk;
255 
256 	set_field(&ctl->ctl, SRCCTL_ST, st);
257 	ctl->dirty.bf.ctl = 1;
258 	return 0;
259 }
260 
261 static int src_set_ie(void *blk, unsigned int ie)
262 {
263 	struct src_rsc_ctrl_blk *ctl = blk;
264 
265 	set_field(&ctl->ctl, SRCCTL_IE, ie);
266 	ctl->dirty.bf.ctl = 1;
267 	return 0;
268 }
269 
270 static int src_set_ilsz(void *blk, unsigned int ilsz)
271 {
272 	struct src_rsc_ctrl_blk *ctl = blk;
273 
274 	set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
275 	ctl->dirty.bf.ctl = 1;
276 	return 0;
277 }
278 
279 static int src_set_bp(void *blk, unsigned int bp)
280 {
281 	struct src_rsc_ctrl_blk *ctl = blk;
282 
283 	set_field(&ctl->ctl, SRCCTL_BP, bp);
284 	ctl->dirty.bf.ctl = 1;
285 	return 0;
286 }
287 
288 static int src_set_cisz(void *blk, unsigned int cisz)
289 {
290 	struct src_rsc_ctrl_blk *ctl = blk;
291 
292 	set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
293 	ctl->dirty.bf.ccr = 1;
294 	return 0;
295 }
296 
297 static int src_set_ca(void *blk, unsigned int ca)
298 {
299 	struct src_rsc_ctrl_blk *ctl = blk;
300 
301 	set_field(&ctl->ca, SRCCA_CA, ca);
302 	ctl->dirty.bf.ca = 1;
303 	return 0;
304 }
305 
306 static int src_set_sa(void *blk, unsigned int sa)
307 {
308 	struct src_rsc_ctrl_blk *ctl = blk;
309 
310 	set_field(&ctl->sa, SRCSA_SA, sa);
311 	ctl->dirty.bf.sa = 1;
312 	return 0;
313 }
314 
315 static int src_set_la(void *blk, unsigned int la)
316 {
317 	struct src_rsc_ctrl_blk *ctl = blk;
318 
319 	set_field(&ctl->la, SRCLA_LA, la);
320 	ctl->dirty.bf.la = 1;
321 	return 0;
322 }
323 
324 static int src_set_pitch(void *blk, unsigned int pitch)
325 {
326 	struct src_rsc_ctrl_blk *ctl = blk;
327 
328 	set_field(&ctl->mpr, MPRLH_PITCH, pitch);
329 	ctl->dirty.bf.mpr = 1;
330 	return 0;
331 }
332 
333 static int src_set_clear_zbufs(void *blk, unsigned int clear)
334 {
335 	((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
336 	return 0;
337 }
338 
339 static int src_set_dirty(void *blk, unsigned int flags)
340 {
341 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
342 	return 0;
343 }
344 
345 static int src_set_dirty_all(void *blk)
346 {
347 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
348 	return 0;
349 }
350 
351 #define AR_SLOT_SIZE		4096
352 #define AR_SLOT_BLOCK_SIZE	16
353 #define AR_PTS_PITCH		6
354 #define AR_PARAM_SRC_OFFSET	0x60
355 
356 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
357 {
358 	return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
359 			- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
360 
361 }
362 
363 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
364 {
365 	struct src_rsc_ctrl_blk *ctl = blk;
366 	int i;
367 
368 	if (ctl->dirty.bf.czbfs) {
369 		/* Clear Z-Buffer registers */
370 		for (i = 0; i < 8; i++)
371 			hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
372 
373 		for (i = 0; i < 4; i++)
374 			hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
375 
376 		for (i = 0; i < 8; i++)
377 			hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
378 
379 		ctl->dirty.bf.czbfs = 0;
380 	}
381 	if (ctl->dirty.bf.mpr) {
382 		/* Take the parameter mixer resource in the same group as that
383 		 * the idx src is in for simplicity. Unlike src, all conjugate
384 		 * parameter mixer resources must be programmed for
385 		 * corresponding conjugate src resources. */
386 		unsigned int pm_idx = src_param_pitch_mixer(idx);
387 		hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
388 		hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
389 		hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
390 		ctl->dirty.bf.mpr = 0;
391 	}
392 	if (ctl->dirty.bf.sa) {
393 		hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
394 		ctl->dirty.bf.sa = 0;
395 	}
396 	if (ctl->dirty.bf.la) {
397 		hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
398 		ctl->dirty.bf.la = 0;
399 	}
400 	if (ctl->dirty.bf.ca) {
401 		hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
402 		ctl->dirty.bf.ca = 0;
403 	}
404 
405 	/* Write srccf register */
406 	hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
407 
408 	if (ctl->dirty.bf.ccr) {
409 		hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
410 		ctl->dirty.bf.ccr = 0;
411 	}
412 	if (ctl->dirty.bf.ctl) {
413 		hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
414 		ctl->dirty.bf.ctl = 0;
415 	}
416 
417 	return 0;
418 }
419 
420 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
421 {
422 	struct src_rsc_ctrl_blk *ctl = blk;
423 
424 	ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
425 	ctl->dirty.bf.ca = 0;
426 
427 	return get_field(ctl->ca, SRCCA_CA);
428 }
429 
430 static unsigned int src_get_dirty(void *blk)
431 {
432 	return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
433 }
434 
435 static unsigned int src_dirty_conj_mask(void)
436 {
437 	return 0x20;
438 }
439 
440 static int src_mgr_enbs_src(void *blk, unsigned int idx)
441 {
442 	((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
443 	((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
444 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
445 	return 0;
446 }
447 
448 static int src_mgr_enb_src(void *blk, unsigned int idx)
449 {
450 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
452 	return 0;
453 }
454 
455 static int src_mgr_dsb_src(void *blk, unsigned int idx)
456 {
457 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
458 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
459 	return 0;
460 }
461 
462 static int src_mgr_commit_write(struct hw *hw, void *blk)
463 {
464 	struct src_mgr_ctrl_blk *ctl = blk;
465 	int i;
466 	unsigned int ret;
467 
468 	if (ctl->dirty.bf.enbsa) {
469 		do {
470 			ret = hw_read_20kx(hw, SRC_ENBSTAT);
471 		} while (ret & 0x1);
472 		hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
473 		ctl->dirty.bf.enbsa = 0;
474 	}
475 	for (i = 0; i < 8; i++) {
476 		if ((ctl->dirty.data & (0x1 << i))) {
477 			hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
478 			ctl->dirty.data &= ~(0x1 << i);
479 		}
480 	}
481 
482 	return 0;
483 }
484 
485 static int src_mgr_get_ctrl_blk(void **rblk)
486 {
487 	struct src_mgr_ctrl_blk *blk;
488 
489 	*rblk = NULL;
490 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
491 	if (!blk)
492 		return -ENOMEM;
493 
494 	*rblk = blk;
495 
496 	return 0;
497 }
498 
499 static int src_mgr_put_ctrl_blk(void *blk)
500 {
501 	kfree(blk);
502 
503 	return 0;
504 }
505 
506 static int srcimp_mgr_get_ctrl_blk(void **rblk)
507 {
508 	struct srcimp_mgr_ctrl_blk *blk;
509 
510 	*rblk = NULL;
511 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
512 	if (!blk)
513 		return -ENOMEM;
514 
515 	*rblk = blk;
516 
517 	return 0;
518 }
519 
520 static int srcimp_mgr_put_ctrl_blk(void *blk)
521 {
522 	kfree(blk);
523 
524 	return 0;
525 }
526 
527 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
528 {
529 	struct srcimp_mgr_ctrl_blk *ctl = blk;
530 
531 	set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
532 	ctl->dirty.bf.srcimap = 1;
533 	return 0;
534 }
535 
536 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
537 {
538 	struct srcimp_mgr_ctrl_blk *ctl = blk;
539 
540 	set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
541 	ctl->dirty.bf.srcimap = 1;
542 	return 0;
543 }
544 
545 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
546 {
547 	struct srcimp_mgr_ctrl_blk *ctl = blk;
548 
549 	set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
550 	ctl->dirty.bf.srcimap = 1;
551 	return 0;
552 }
553 
554 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
555 {
556 	((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
557 	((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
558 	return 0;
559 }
560 
561 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
562 {
563 	struct srcimp_mgr_ctrl_blk *ctl = blk;
564 
565 	if (ctl->dirty.bf.srcimap) {
566 		hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
567 						ctl->srcimap.srcaim);
568 		ctl->dirty.bf.srcimap = 0;
569 	}
570 
571 	return 0;
572 }
573 
574 /*
575  * AMIXER control block definitions.
576  */
577 
578 #define AMOPLO_M	0x00000003
579 #define AMOPLO_IV	0x00000004
580 #define AMOPLO_X	0x0003FFF0
581 #define AMOPLO_Y	0xFFFC0000
582 
583 #define AMOPHI_SADR	0x000000FF
584 #define AMOPHI_SE	0x80000000
585 
586 /* AMIXER resource register dirty flags */
587 union amixer_dirty {
588 	struct {
589 		u16 amoplo:1;
590 		u16 amophi:1;
591 		u16 rsv:14;
592 	} bf;
593 	u16 data;
594 };
595 
596 /* AMIXER resource control block */
597 struct amixer_rsc_ctrl_blk {
598 	unsigned int		amoplo;
599 	unsigned int		amophi;
600 	union amixer_dirty	dirty;
601 };
602 
603 static int amixer_set_mode(void *blk, unsigned int mode)
604 {
605 	struct amixer_rsc_ctrl_blk *ctl = blk;
606 
607 	set_field(&ctl->amoplo, AMOPLO_M, mode);
608 	ctl->dirty.bf.amoplo = 1;
609 	return 0;
610 }
611 
612 static int amixer_set_iv(void *blk, unsigned int iv)
613 {
614 	struct amixer_rsc_ctrl_blk *ctl = blk;
615 
616 	set_field(&ctl->amoplo, AMOPLO_IV, iv);
617 	ctl->dirty.bf.amoplo = 1;
618 	return 0;
619 }
620 
621 static int amixer_set_x(void *blk, unsigned int x)
622 {
623 	struct amixer_rsc_ctrl_blk *ctl = blk;
624 
625 	set_field(&ctl->amoplo, AMOPLO_X, x);
626 	ctl->dirty.bf.amoplo = 1;
627 	return 0;
628 }
629 
630 static int amixer_set_y(void *blk, unsigned int y)
631 {
632 	struct amixer_rsc_ctrl_blk *ctl = blk;
633 
634 	set_field(&ctl->amoplo, AMOPLO_Y, y);
635 	ctl->dirty.bf.amoplo = 1;
636 	return 0;
637 }
638 
639 static int amixer_set_sadr(void *blk, unsigned int sadr)
640 {
641 	struct amixer_rsc_ctrl_blk *ctl = blk;
642 
643 	set_field(&ctl->amophi, AMOPHI_SADR, sadr);
644 	ctl->dirty.bf.amophi = 1;
645 	return 0;
646 }
647 
648 static int amixer_set_se(void *blk, unsigned int se)
649 {
650 	struct amixer_rsc_ctrl_blk *ctl = blk;
651 
652 	set_field(&ctl->amophi, AMOPHI_SE, se);
653 	ctl->dirty.bf.amophi = 1;
654 	return 0;
655 }
656 
657 static int amixer_set_dirty(void *blk, unsigned int flags)
658 {
659 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
660 	return 0;
661 }
662 
663 static int amixer_set_dirty_all(void *blk)
664 {
665 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
666 	return 0;
667 }
668 
669 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
670 {
671 	struct amixer_rsc_ctrl_blk *ctl = blk;
672 
673 	if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
674 		hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
675 		ctl->dirty.bf.amoplo = 0;
676 		hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
677 		ctl->dirty.bf.amophi = 0;
678 	}
679 
680 	return 0;
681 }
682 
683 static int amixer_get_y(void *blk)
684 {
685 	struct amixer_rsc_ctrl_blk *ctl = blk;
686 
687 	return get_field(ctl->amoplo, AMOPLO_Y);
688 }
689 
690 static unsigned int amixer_get_dirty(void *blk)
691 {
692 	return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
693 }
694 
695 static int amixer_rsc_get_ctrl_blk(void **rblk)
696 {
697 	struct amixer_rsc_ctrl_blk *blk;
698 
699 	*rblk = NULL;
700 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
701 	if (!blk)
702 		return -ENOMEM;
703 
704 	*rblk = blk;
705 
706 	return 0;
707 }
708 
709 static int amixer_rsc_put_ctrl_blk(void *blk)
710 {
711 	kfree(blk);
712 
713 	return 0;
714 }
715 
716 static int amixer_mgr_get_ctrl_blk(void **rblk)
717 {
718 	*rblk = NULL;
719 
720 	return 0;
721 }
722 
723 static int amixer_mgr_put_ctrl_blk(void *blk)
724 {
725 	return 0;
726 }
727 
728 /*
729  * DAIO control block definitions.
730  */
731 
732 /* Receiver Sample Rate Tracker Control register */
733 #define SRTCTL_SRCO	0x000000FF
734 #define SRTCTL_SRCM	0x0000FF00
735 #define SRTCTL_RSR	0x00030000
736 #define SRTCTL_DRAT	0x00300000
737 #define SRTCTL_EC	0x01000000
738 #define SRTCTL_ET	0x10000000
739 
740 /* DAIO Receiver register dirty flags */
741 union dai_dirty {
742 	struct {
743 		u16 srt:1;
744 		u16 rsv:15;
745 	} bf;
746 	u16 data;
747 };
748 
749 /* DAIO Receiver control block */
750 struct dai_ctrl_blk {
751 	unsigned int	srt;
752 	union dai_dirty	dirty;
753 };
754 
755 /* Audio Input Mapper RAM */
756 #define AIM_ARC		0x00000FFF
757 #define AIM_NXT		0x007F0000
758 
759 struct daoimap {
760 	unsigned int aim;
761 	unsigned int idx;
762 };
763 
764 /* Audio Transmitter Control and Status register */
765 #define ATXCTL_EN	0x00000001
766 #define ATXCTL_MODE	0x00000010
767 #define ATXCTL_CD	0x00000020
768 #define ATXCTL_RAW	0x00000100
769 #define ATXCTL_MT	0x00000200
770 #define ATXCTL_NUC	0x00003000
771 #define ATXCTL_BEN	0x00010000
772 #define ATXCTL_BMUX	0x00700000
773 #define ATXCTL_B24	0x01000000
774 #define ATXCTL_CPF	0x02000000
775 #define ATXCTL_RIV	0x10000000
776 #define ATXCTL_LIV	0x20000000
777 #define ATXCTL_RSAT	0x40000000
778 #define ATXCTL_LSAT	0x80000000
779 
780 /* XDIF Transmitter register dirty flags */
781 union dao_dirty {
782 	struct {
783 		u16 atxcsl:1;
784 		u16 rsv:15;
785 	} bf;
786 	u16 data;
787 };
788 
789 /* XDIF Transmitter control block */
790 struct dao_ctrl_blk {
791 	/* XDIF Transmitter Channel Status Low Register */
792 	unsigned int	atxcsl;
793 	union dao_dirty	dirty;
794 };
795 
796 /* Audio Receiver Control register */
797 #define ARXCTL_EN	0x00000001
798 
799 /* DAIO manager register dirty flags */
800 union daio_mgr_dirty {
801 	struct {
802 		u32 atxctl:8;
803 		u32 arxctl:8;
804 		u32 daoimap:1;
805 		u32 rsv:15;
806 	} bf;
807 	u32 data;
808 };
809 
810 /* DAIO manager control block */
811 struct daio_mgr_ctrl_blk {
812 	struct daoimap		daoimap;
813 	unsigned int		txctl[8];
814 	unsigned int		rxctl[8];
815 	union daio_mgr_dirty	dirty;
816 };
817 
818 static int dai_srt_set_srco(void *blk, unsigned int src)
819 {
820 	struct dai_ctrl_blk *ctl = blk;
821 
822 	set_field(&ctl->srt, SRTCTL_SRCO, src);
823 	ctl->dirty.bf.srt = 1;
824 	return 0;
825 }
826 
827 static int dai_srt_set_srcm(void *blk, unsigned int src)
828 {
829 	struct dai_ctrl_blk *ctl = blk;
830 
831 	set_field(&ctl->srt, SRTCTL_SRCM, src);
832 	ctl->dirty.bf.srt = 1;
833 	return 0;
834 }
835 
836 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
837 {
838 	struct dai_ctrl_blk *ctl = blk;
839 
840 	set_field(&ctl->srt, SRTCTL_RSR, rsr);
841 	ctl->dirty.bf.srt = 1;
842 	return 0;
843 }
844 
845 static int dai_srt_set_drat(void *blk, unsigned int drat)
846 {
847 	struct dai_ctrl_blk *ctl = blk;
848 
849 	set_field(&ctl->srt, SRTCTL_DRAT, drat);
850 	ctl->dirty.bf.srt = 1;
851 	return 0;
852 }
853 
854 static int dai_srt_set_ec(void *blk, unsigned int ec)
855 {
856 	struct dai_ctrl_blk *ctl = blk;
857 
858 	set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
859 	ctl->dirty.bf.srt = 1;
860 	return 0;
861 }
862 
863 static int dai_srt_set_et(void *blk, unsigned int et)
864 {
865 	struct dai_ctrl_blk *ctl = blk;
866 
867 	set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
868 	ctl->dirty.bf.srt = 1;
869 	return 0;
870 }
871 
872 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
873 {
874 	struct dai_ctrl_blk *ctl = blk;
875 
876 	if (ctl->dirty.bf.srt) {
877 		hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
878 		ctl->dirty.bf.srt = 0;
879 	}
880 
881 	return 0;
882 }
883 
884 static int dai_get_ctrl_blk(void **rblk)
885 {
886 	struct dai_ctrl_blk *blk;
887 
888 	*rblk = NULL;
889 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
890 	if (!blk)
891 		return -ENOMEM;
892 
893 	*rblk = blk;
894 
895 	return 0;
896 }
897 
898 static int dai_put_ctrl_blk(void *blk)
899 {
900 	kfree(blk);
901 
902 	return 0;
903 }
904 
905 static int dao_set_spos(void *blk, unsigned int spos)
906 {
907 	((struct dao_ctrl_blk *)blk)->atxcsl = spos;
908 	((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
909 	return 0;
910 }
911 
912 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
913 {
914 	struct dao_ctrl_blk *ctl = blk;
915 
916 	if (ctl->dirty.bf.atxcsl) {
917 		if (idx < 4) {
918 			/* S/PDIF SPOSx */
919 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
920 							ctl->atxcsl);
921 		}
922 		ctl->dirty.bf.atxcsl = 0;
923 	}
924 
925 	return 0;
926 }
927 
928 static int dao_get_spos(void *blk, unsigned int *spos)
929 {
930 	*spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
931 	return 0;
932 }
933 
934 static int dao_get_ctrl_blk(void **rblk)
935 {
936 	struct dao_ctrl_blk *blk;
937 
938 	*rblk = NULL;
939 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
940 	if (!blk)
941 		return -ENOMEM;
942 
943 	*rblk = blk;
944 
945 	return 0;
946 }
947 
948 static int dao_put_ctrl_blk(void *blk)
949 {
950 	kfree(blk);
951 
952 	return 0;
953 }
954 
955 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
956 {
957 	struct daio_mgr_ctrl_blk *ctl = blk;
958 
959 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
960 	ctl->dirty.bf.arxctl |= (0x1 << idx);
961 	return 0;
962 }
963 
964 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
965 {
966 	struct daio_mgr_ctrl_blk *ctl = blk;
967 
968 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
969 
970 	ctl->dirty.bf.arxctl |= (0x1 << idx);
971 	return 0;
972 }
973 
974 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
975 {
976 	struct daio_mgr_ctrl_blk *ctl = blk;
977 
978 	set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
979 	ctl->dirty.bf.atxctl |= (0x1 << idx);
980 	return 0;
981 }
982 
983 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
984 {
985 	struct daio_mgr_ctrl_blk *ctl = blk;
986 
987 	set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
988 	ctl->dirty.bf.atxctl |= (0x1 << idx);
989 	return 0;
990 }
991 
992 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
993 {
994 	struct daio_mgr_ctrl_blk *ctl = blk;
995 
996 	if (idx < 4) {
997 		/* S/PDIF output */
998 		switch ((conf & 0x7)) {
999 		case 1:
1000 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1001 			break;
1002 		case 2:
1003 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1004 			break;
1005 		case 4:
1006 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1007 			break;
1008 		case 8:
1009 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1010 			break;
1011 		default:
1012 			break;
1013 		}
1014 		/* CDIF */
1015 		set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1016 		/* Non-audio */
1017 		set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1018 		/* Non-audio */
1019 		set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1020 		set_field(&ctl->txctl[idx], ATXCTL_RAW,
1021 			  ((conf >> 3) & 0x1) ? 0 : 0);
1022 		ctl->dirty.bf.atxctl |= (0x1 << idx);
1023 	} else {
1024 		/* I2S output */
1025 		/*idx %= 4; */
1026 	}
1027 	return 0;
1028 }
1029 
1030 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1031 {
1032 	struct daio_mgr_ctrl_blk *ctl = blk;
1033 
1034 	set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1035 	ctl->dirty.bf.daoimap = 1;
1036 	return 0;
1037 }
1038 
1039 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1040 {
1041 	struct daio_mgr_ctrl_blk *ctl = blk;
1042 
1043 	set_field(&ctl->daoimap.aim, AIM_NXT, next);
1044 	ctl->dirty.bf.daoimap = 1;
1045 	return 0;
1046 }
1047 
1048 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1049 {
1050 	((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1051 	((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1052 	return 0;
1053 }
1054 
1055 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1056 {
1057 	struct daio_mgr_ctrl_blk *ctl = blk;
1058 	unsigned int data;
1059 	int i;
1060 
1061 	for (i = 0; i < 8; i++) {
1062 		if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1063 			data = ctl->txctl[i];
1064 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1065 			ctl->dirty.bf.atxctl &= ~(0x1 << i);
1066 			mdelay(1);
1067 		}
1068 		if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1069 			data = ctl->rxctl[i];
1070 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1071 			ctl->dirty.bf.arxctl &= ~(0x1 << i);
1072 			mdelay(1);
1073 		}
1074 	}
1075 	if (ctl->dirty.bf.daoimap) {
1076 		hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1077 						ctl->daoimap.aim);
1078 		ctl->dirty.bf.daoimap = 0;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1085 {
1086 	struct daio_mgr_ctrl_blk *blk;
1087 	int i;
1088 
1089 	*rblk = NULL;
1090 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1091 	if (!blk)
1092 		return -ENOMEM;
1093 
1094 	for (i = 0; i < 8; i++) {
1095 		blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1096 		blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1097 	}
1098 
1099 	*rblk = blk;
1100 
1101 	return 0;
1102 }
1103 
1104 static int daio_mgr_put_ctrl_blk(void *blk)
1105 {
1106 	kfree(blk);
1107 
1108 	return 0;
1109 }
1110 
1111 /* Timer interrupt */
1112 static int set_timer_irq(struct hw *hw, int enable)
1113 {
1114 	hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1115 	return 0;
1116 }
1117 
1118 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1119 {
1120 	if (ticks)
1121 		ticks |= TIMR_IE | TIMR_IP;
1122 	hw_write_20kx(hw, TIMR, ticks);
1123 	return 0;
1124 }
1125 
1126 static unsigned int get_wc(struct hw *hw)
1127 {
1128 	return hw_read_20kx(hw, WC);
1129 }
1130 
1131 /* Card hardware initialization block */
1132 struct dac_conf {
1133 	unsigned int msr; /* master sample rate in rsrs */
1134 };
1135 
1136 struct adc_conf {
1137 	unsigned int msr; 	/* master sample rate in rsrs */
1138 	unsigned char input; 	/* the input source of ADC */
1139 	unsigned char mic20db; 	/* boost mic by 20db if input is microphone */
1140 };
1141 
1142 struct daio_conf {
1143 	unsigned int msr; /* master sample rate in rsrs */
1144 };
1145 
1146 struct trn_conf {
1147 	unsigned long vm_pgt_phys;
1148 };
1149 
1150 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1151 {
1152 	u32 data;
1153 	int i;
1154 
1155 	/* Program I2S with proper sample rate and enable the correct I2S
1156 	 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1157 	if (1 == info->msr) {
1158 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1159 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1160 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1161 	} else if (2 == info->msr) {
1162 		if (hw->model != CTSB1270) {
1163 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1164 		} else {
1165 			/* PCM4220 on Titanium HD is different. */
1166 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1167 		}
1168 		/* Specify all playing 96khz
1169 		 * EA [0]	- Enabled
1170 		 * RTA [4:5]	- 96kHz
1171 		 * EB [8]	- Enabled
1172 		 * RTB [12:13]	- 96kHz
1173 		 * EC [16]	- Enabled
1174 		 * RTC [20:21]	- 96kHz
1175 		 * ED [24]	- Enabled
1176 		 * RTD [28:29]	- 96kHz */
1177 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1178 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1179 	} else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1180 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1181 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1182 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1183 	} else {
1184 		dev_alert(hw->card->dev,
1185 			  "ERROR!!! Invalid sampling rate!!!\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	for (i = 0; i < 8; i++) {
1190 		if (i <= 3) {
1191 			/* This comment looks wrong since loop is over 4  */
1192 			/* channels and emu20k2 supports 4 spdif IOs.     */
1193 			/* 1st 3 channels are SPDIFs (SB0960) */
1194 			if (i == 3)
1195 				data = 0x1001001;
1196 			else
1197 				data = 0x1000001;
1198 
1199 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1200 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1201 
1202 			/* Initialize the SPDIF Out Channel status registers.
1203 			 * The value specified here is based on the typical
1204 			 * values provided in the specification, namely: Clock
1205 			 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1206 			 * unspecified source number, Generation status = 1,
1207 			 * Category code = 0x12 (Digital Signal Mixer),
1208 			 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1209 			 * (indicating that we're transmitting digital audio,
1210 			 * and the Professional Use bit is 0. */
1211 
1212 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1213 					0x02109204); /* Default to 48kHz */
1214 
1215 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1216 		} else {
1217 			/* Again, loop is over 4 channels not 5. */
1218 			/* Next 5 channels are I2S (SB0960) */
1219 			data = 0x11;
1220 			hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1221 			if (2 == info->msr) {
1222 				/* Four channels per sample period */
1223 				data |= 0x1000;
1224 			} else if (4 == info->msr) {
1225 				/* FIXME: check this against the chip spec */
1226 				data |= 0x2000;
1227 			}
1228 			hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1229 		}
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /* TRANSPORT operations */
1236 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1237 {
1238 	u32 vmctl, data;
1239 	u32 ptp_phys_low, ptp_phys_high;
1240 	int i;
1241 
1242 	/* Set up device page table */
1243 	if ((~0UL) == info->vm_pgt_phys) {
1244 		dev_alert(hw->card->dev,
1245 			  "Wrong device page table page address!!!\n");
1246 		return -1;
1247 	}
1248 
1249 	vmctl = 0x80000C0F;  /* 32-bit, 4k-size page */
1250 	ptp_phys_low = (u32)info->vm_pgt_phys;
1251 	ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1252 	if (sizeof(void *) == 8) /* 64bit address */
1253 		vmctl |= (3 << 8);
1254 	/* Write page table physical address to all PTPAL registers */
1255 	for (i = 0; i < 64; i++) {
1256 		hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1257 		hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1258 	}
1259 	/* Enable virtual memory transfer */
1260 	hw_write_20kx(hw, VMEM_CTL, vmctl);
1261 	/* Enable transport bus master and queueing of request */
1262 	hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1263 	hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1264 	/* Enable transport ring */
1265 	data = hw_read_20kx(hw, TRANSPORT_ENB);
1266 	hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1267 
1268 	return 0;
1269 }
1270 
1271 /* Card initialization */
1272 #define GCTL_AIE	0x00000001
1273 #define GCTL_UAA	0x00000002
1274 #define GCTL_DPC	0x00000004
1275 #define GCTL_DBP	0x00000008
1276 #define GCTL_ABP	0x00000010
1277 #define GCTL_TBP	0x00000020
1278 #define GCTL_SBP	0x00000040
1279 #define GCTL_FBP	0x00000080
1280 #define GCTL_ME		0x00000100
1281 #define GCTL_AID	0x00001000
1282 
1283 #define PLLCTL_SRC	0x00000007
1284 #define PLLCTL_SPE	0x00000008
1285 #define PLLCTL_RD	0x000000F0
1286 #define PLLCTL_FD	0x0001FF00
1287 #define PLLCTL_OD	0x00060000
1288 #define PLLCTL_B	0x00080000
1289 #define PLLCTL_AS	0x00100000
1290 #define PLLCTL_LF	0x03E00000
1291 #define PLLCTL_SPS	0x1C000000
1292 #define PLLCTL_AD	0x60000000
1293 
1294 #define PLLSTAT_CCS	0x00000007
1295 #define PLLSTAT_SPL	0x00000008
1296 #define PLLSTAT_CRD	0x000000F0
1297 #define PLLSTAT_CFD	0x0001FF00
1298 #define PLLSTAT_SL	0x00020000
1299 #define PLLSTAT_FAS	0x00040000
1300 #define PLLSTAT_B	0x00080000
1301 #define PLLSTAT_PD	0x00100000
1302 #define PLLSTAT_OCA	0x00200000
1303 #define PLLSTAT_NCA	0x00400000
1304 
1305 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1306 {
1307 	unsigned int pllenb;
1308 	unsigned int pllctl;
1309 	unsigned int pllstat;
1310 	int i;
1311 
1312 	pllenb = 0xB;
1313 	hw_write_20kx(hw, PLL_ENB, pllenb);
1314 	pllctl = 0x20C00000;
1315 	set_field(&pllctl, PLLCTL_B, 0);
1316 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1317 	set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1318 	hw_write_20kx(hw, PLL_CTL, pllctl);
1319 	mdelay(40);
1320 
1321 	pllctl = hw_read_20kx(hw, PLL_CTL);
1322 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1323 	hw_write_20kx(hw, PLL_CTL, pllctl);
1324 	mdelay(40);
1325 
1326 	for (i = 0; i < 1000; i++) {
1327 		pllstat = hw_read_20kx(hw, PLL_STAT);
1328 		if (get_field(pllstat, PLLSTAT_PD))
1329 			continue;
1330 
1331 		if (get_field(pllstat, PLLSTAT_B) !=
1332 					get_field(pllctl, PLLCTL_B))
1333 			continue;
1334 
1335 		if (get_field(pllstat, PLLSTAT_CCS) !=
1336 					get_field(pllctl, PLLCTL_SRC))
1337 			continue;
1338 
1339 		if (get_field(pllstat, PLLSTAT_CRD) !=
1340 					get_field(pllctl, PLLCTL_RD))
1341 			continue;
1342 
1343 		if (get_field(pllstat, PLLSTAT_CFD) !=
1344 					get_field(pllctl, PLLCTL_FD))
1345 			continue;
1346 
1347 		break;
1348 	}
1349 	if (i >= 1000) {
1350 		dev_alert(hw->card->dev,
1351 			  "PLL initialization failed!!!\n");
1352 		return -EBUSY;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static int hw_auto_init(struct hw *hw)
1359 {
1360 	unsigned int gctl;
1361 	int i;
1362 
1363 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1364 	set_field(&gctl, GCTL_AIE, 0);
1365 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1366 	set_field(&gctl, GCTL_AIE, 1);
1367 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1368 	mdelay(10);
1369 	for (i = 0; i < 400000; i++) {
1370 		gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1371 		if (get_field(gctl, GCTL_AID))
1372 			break;
1373 	}
1374 	if (!get_field(gctl, GCTL_AID)) {
1375 		dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
1376 		return -EBUSY;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 /* DAC operations */
1383 
1384 #define CS4382_MC1 		0x1
1385 #define CS4382_MC2 		0x2
1386 #define CS4382_MC3		0x3
1387 #define CS4382_FC		0x4
1388 #define CS4382_IC		0x5
1389 #define CS4382_XC1		0x6
1390 #define CS4382_VCA1 		0x7
1391 #define CS4382_VCB1 		0x8
1392 #define CS4382_XC2		0x9
1393 #define CS4382_VCA2 		0xA
1394 #define CS4382_VCB2 		0xB
1395 #define CS4382_XC3		0xC
1396 #define CS4382_VCA3		0xD
1397 #define CS4382_VCB3		0xE
1398 #define CS4382_XC4 		0xF
1399 #define CS4382_VCA4 		0x10
1400 #define CS4382_VCB4 		0x11
1401 #define CS4382_CREV 		0x12
1402 
1403 /* I2C status */
1404 #define STATE_LOCKED		0x00
1405 #define STATE_UNLOCKED		0xAA
1406 #define DATA_READY		0x800000    /* Used with I2C_IF_STATUS */
1407 #define DATA_ABORT		0x10000     /* Used with I2C_IF_STATUS */
1408 
1409 #define I2C_STATUS_DCM	0x00000001
1410 #define I2C_STATUS_BC	0x00000006
1411 #define I2C_STATUS_APD	0x00000008
1412 #define I2C_STATUS_AB	0x00010000
1413 #define I2C_STATUS_DR	0x00800000
1414 
1415 #define I2C_ADDRESS_PTAD	0x0000FFFF
1416 #define I2C_ADDRESS_SLAD	0x007F0000
1417 
1418 struct regs_cs4382 {
1419 	u32 mode_control_1;
1420 	u32 mode_control_2;
1421 	u32 mode_control_3;
1422 
1423 	u32 filter_control;
1424 	u32 invert_control;
1425 
1426 	u32 mix_control_P1;
1427 	u32 vol_control_A1;
1428 	u32 vol_control_B1;
1429 
1430 	u32 mix_control_P2;
1431 	u32 vol_control_A2;
1432 	u32 vol_control_B2;
1433 
1434 	u32 mix_control_P3;
1435 	u32 vol_control_A3;
1436 	u32 vol_control_B3;
1437 
1438 	u32 mix_control_P4;
1439 	u32 vol_control_A4;
1440 	u32 vol_control_B4;
1441 };
1442 
1443 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1444 {
1445 	u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] =  {0xB3, 0xD4};
1446 
1447 	/* Send keys for forced BIOS mode */
1448 	hw_write_20kx(hw, I2C_IF_WLOCK,
1449 			UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1450 	hw_write_20kx(hw, I2C_IF_WLOCK,
1451 			UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1452 	/* Check whether the chip is unlocked */
1453 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1454 		return 0;
1455 
1456 	return -1;
1457 }
1458 
1459 static int hw20k2_i2c_lock_chip(struct hw *hw)
1460 {
1461 	/* Write twice */
1462 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1463 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1464 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1465 		return 0;
1466 
1467 	return -1;
1468 }
1469 
1470 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1471 {
1472 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1473 	int err;
1474 	unsigned int i2c_status;
1475 	unsigned int i2c_addr;
1476 
1477 	err = hw20k2_i2c_unlock_full_access(hw);
1478 	if (err < 0)
1479 		return err;
1480 
1481 	hw20k2->addr_size = addr_size;
1482 	hw20k2->data_size = data_size;
1483 	hw20k2->dev_id = dev_id;
1484 
1485 	i2c_addr = 0;
1486 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1487 
1488 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1489 
1490 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1491 
1492 	set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1493 
1494 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1495 
1496 	return 0;
1497 }
1498 
1499 static int hw20k2_i2c_uninit(struct hw *hw)
1500 {
1501 	unsigned int i2c_status;
1502 	unsigned int i2c_addr;
1503 
1504 	i2c_addr = 0;
1505 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1506 
1507 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1508 
1509 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1510 
1511 	set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1512 
1513 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1514 
1515 	return hw20k2_i2c_lock_chip(hw);
1516 }
1517 
1518 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1519 {
1520 	int i = 0x400000;
1521 	unsigned int ret;
1522 
1523 	do {
1524 		ret = hw_read_20kx(hw, I2C_IF_STATUS);
1525 	} while ((!(ret & DATA_READY)) && --i);
1526 
1527 	return i;
1528 }
1529 
1530 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1531 {
1532 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1533 	unsigned int i2c_status;
1534 
1535 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1536 	set_field(&i2c_status, I2C_STATUS_BC,
1537 		  (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1538 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1539 	if (!hw20k2_i2c_wait_data_ready(hw))
1540 		return -1;
1541 
1542 	hw_write_20kx(hw, I2C_IF_WDATA, addr);
1543 	if (!hw20k2_i2c_wait_data_ready(hw))
1544 		return -1;
1545 
1546 	/* Force a read operation */
1547 	hw_write_20kx(hw, I2C_IF_RDATA, 0);
1548 	if (!hw20k2_i2c_wait_data_ready(hw))
1549 		return -1;
1550 
1551 	*datap = hw_read_20kx(hw, I2C_IF_RDATA);
1552 
1553 	return 0;
1554 }
1555 
1556 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1557 {
1558 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1559 	unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1560 	unsigned int i2c_status;
1561 
1562 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1563 
1564 	set_field(&i2c_status, I2C_STATUS_BC,
1565 		  (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1566 		  0 : (hw20k2->addr_size + hw20k2->data_size));
1567 
1568 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1569 	hw20k2_i2c_wait_data_ready(hw);
1570 	/* Dummy write to trigger the write operation */
1571 	hw_write_20kx(hw, I2C_IF_WDATA, 0);
1572 	hw20k2_i2c_wait_data_ready(hw);
1573 
1574 	/* This is the real data */
1575 	hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1576 	hw20k2_i2c_wait_data_ready(hw);
1577 
1578 	return 0;
1579 }
1580 
1581 static void hw_dac_stop(struct hw *hw)
1582 {
1583 	u32 data;
1584 	data = hw_read_20kx(hw, GPIO_DATA);
1585 	data &= 0xFFFFFFFD;
1586 	hw_write_20kx(hw, GPIO_DATA, data);
1587 	mdelay(10);
1588 }
1589 
1590 static void hw_dac_start(struct hw *hw)
1591 {
1592 	u32 data;
1593 	data = hw_read_20kx(hw, GPIO_DATA);
1594 	data |= 0x2;
1595 	hw_write_20kx(hw, GPIO_DATA, data);
1596 	mdelay(50);
1597 }
1598 
1599 static void hw_dac_reset(struct hw *hw)
1600 {
1601 	hw_dac_stop(hw);
1602 	hw_dac_start(hw);
1603 }
1604 
1605 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1606 {
1607 	int err;
1608 	u32 data;
1609 	int i;
1610 	struct regs_cs4382 cs_read = {0};
1611 	struct regs_cs4382 cs_def = {
1612 		.mode_control_1 = 0x00000001, /* Mode Control 1 */
1613 		.mode_control_2 = 0x00000000, /* Mode Control 2 */
1614 		.mode_control_3 = 0x00000084, /* Mode Control 3 */
1615 		.filter_control = 0x00000000, /* Filter Control */
1616 		.invert_control = 0x00000000, /* Invert Control */
1617 		.mix_control_P1 = 0x00000024, /* Mixing Control Pair 1 */
1618 		.vol_control_A1 = 0x00000000, /* Vol Control A1 */
1619 		.vol_control_B1 = 0x00000000, /* Vol Control B1 */
1620 		.mix_control_P2 = 0x00000024, /* Mixing Control Pair 2 */
1621 		.vol_control_A2 = 0x00000000, /* Vol Control A2 */
1622 		.vol_control_B2 = 0x00000000, /* Vol Control B2 */
1623 		.mix_control_P3 = 0x00000024, /* Mixing Control Pair 3 */
1624 		.vol_control_A3 = 0x00000000, /* Vol Control A3 */
1625 		.vol_control_B3 = 0x00000000, /* Vol Control B3 */
1626 		.mix_control_P4 = 0x00000024, /* Mixing Control Pair 4 */
1627 		.vol_control_A4 = 0x00000000, /* Vol Control A4 */
1628 		.vol_control_B4 = 0x00000000  /* Vol Control B4 */
1629 				 };
1630 
1631 	if (hw->model == CTSB1270) {
1632 		hw_dac_stop(hw);
1633 		data = hw_read_20kx(hw, GPIO_DATA);
1634 		data &= ~0x0600;
1635 		if (1 == info->msr)
1636 			data |= 0x0000; /* Single Speed Mode 0-50kHz */
1637 		else if (2 == info->msr)
1638 			data |= 0x0200; /* Double Speed Mode 50-100kHz */
1639 		else
1640 			data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1641 		hw_write_20kx(hw, GPIO_DATA, data);
1642 		hw_dac_start(hw);
1643 		return 0;
1644 	}
1645 
1646 	/* Set DAC reset bit as output */
1647 	data = hw_read_20kx(hw, GPIO_CTRL);
1648 	data |= 0x02;
1649 	hw_write_20kx(hw, GPIO_CTRL, data);
1650 
1651 	err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1652 	if (err < 0)
1653 		goto End;
1654 
1655 	for (i = 0; i < 2; i++) {
1656 		/* Reset DAC twice just in-case the chip
1657 		 * didn't initialized properly */
1658 		hw_dac_reset(hw);
1659 		hw_dac_reset(hw);
1660 
1661 		if (hw20k2_i2c_read(hw, CS4382_MC1,  &cs_read.mode_control_1))
1662 			continue;
1663 
1664 		if (hw20k2_i2c_read(hw, CS4382_MC2,  &cs_read.mode_control_2))
1665 			continue;
1666 
1667 		if (hw20k2_i2c_read(hw, CS4382_MC3,  &cs_read.mode_control_3))
1668 			continue;
1669 
1670 		if (hw20k2_i2c_read(hw, CS4382_FC,   &cs_read.filter_control))
1671 			continue;
1672 
1673 		if (hw20k2_i2c_read(hw, CS4382_IC,   &cs_read.invert_control))
1674 			continue;
1675 
1676 		if (hw20k2_i2c_read(hw, CS4382_XC1,  &cs_read.mix_control_P1))
1677 			continue;
1678 
1679 		if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1680 			continue;
1681 
1682 		if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1683 			continue;
1684 
1685 		if (hw20k2_i2c_read(hw, CS4382_XC2,  &cs_read.mix_control_P2))
1686 			continue;
1687 
1688 		if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1689 			continue;
1690 
1691 		if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1692 			continue;
1693 
1694 		if (hw20k2_i2c_read(hw, CS4382_XC3,  &cs_read.mix_control_P3))
1695 			continue;
1696 
1697 		if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1698 			continue;
1699 
1700 		if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1701 			continue;
1702 
1703 		if (hw20k2_i2c_read(hw, CS4382_XC4,  &cs_read.mix_control_P4))
1704 			continue;
1705 
1706 		if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1707 			continue;
1708 
1709 		if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1710 			continue;
1711 
1712 		if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1713 			continue;
1714 		else
1715 			break;
1716 	}
1717 
1718 	if (i >= 2)
1719 		goto End;
1720 
1721 	/* Note: Every I2C write must have some delay.
1722 	 * This is not a requirement but the delay works here... */
1723 	hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1724 	hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1725 	if (1 == info->msr) {
1726 		hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1727 		hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1728 		hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1729 		hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1730 	} else if (2 == info->msr) {
1731 		hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1732 		hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1733 		hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1734 		hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1735 	} else {
1736 		hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1737 		hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1738 		hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1739 		hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1740 	}
1741 
1742 	return 0;
1743 End:
1744 
1745 	hw20k2_i2c_uninit(hw);
1746 	return -1;
1747 }
1748 
1749 /* ADC operations */
1750 #define MAKE_WM8775_ADDR(addr, data)	(u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1751 #define MAKE_WM8775_DATA(data)	(u32)(data&0xFF)
1752 
1753 #define WM8775_IC       0x0B
1754 #define WM8775_MMC      0x0C
1755 #define WM8775_AADCL    0x0E
1756 #define WM8775_AADCR    0x0F
1757 #define WM8775_ADCMC    0x15
1758 #define WM8775_RESET    0x17
1759 
1760 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1761 {
1762 	u32 data;
1763 	if (hw->model == CTSB1270) {
1764 		/* Titanium HD has two ADC chips, one for line in and one */
1765 		/* for MIC. We don't need to switch the ADC input. */
1766 		return 1;
1767 	}
1768 	data = hw_read_20kx(hw, GPIO_DATA);
1769 	switch (type) {
1770 	case ADC_MICIN:
1771 		data = (data & (0x1 << 14)) ? 1 : 0;
1772 		break;
1773 	case ADC_LINEIN:
1774 		data = (data & (0x1 << 14)) ? 0 : 1;
1775 		break;
1776 	default:
1777 		data = 0;
1778 	}
1779 	return data;
1780 }
1781 
1782 #define MIC_BOOST_0DB 0xCF
1783 #define MIC_BOOST_STEPS_PER_DB 2
1784 
1785 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1786 {
1787 	u32 adcmc, gain;
1788 
1789 	if (input > 3)
1790 		input = 3;
1791 
1792 	adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1793 
1794 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1795 				MAKE_WM8775_DATA(adcmc));
1796 
1797 	if (gain_in_db < -103)
1798 		gain_in_db = -103;
1799 	if (gain_in_db > 24)
1800 		gain_in_db = 24;
1801 
1802 	gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1803 
1804 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1805 				MAKE_WM8775_DATA(gain));
1806 	/* ...so there should be no need for the following. */
1807 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1808 				MAKE_WM8775_DATA(gain));
1809 }
1810 
1811 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1812 {
1813 	u32 data;
1814 	data = hw_read_20kx(hw, GPIO_DATA);
1815 	switch (type) {
1816 	case ADC_MICIN:
1817 		data |= (0x1 << 14);
1818 		hw_write_20kx(hw, GPIO_DATA, data);
1819 		hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1820 		break;
1821 	case ADC_LINEIN:
1822 		data &= ~(0x1 << 14);
1823 		hw_write_20kx(hw, GPIO_DATA, data);
1824 		hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1825 		break;
1826 	default:
1827 		break;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1834 {
1835 	int err;
1836 	u32 data, ctl;
1837 
1838 	/*  Set ADC reset bit as output */
1839 	data = hw_read_20kx(hw, GPIO_CTRL);
1840 	data |= (0x1 << 15);
1841 	hw_write_20kx(hw, GPIO_CTRL, data);
1842 
1843 	/* Initialize I2C */
1844 	err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1845 	if (err < 0) {
1846 		dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n");
1847 		goto error;
1848 	}
1849 
1850 	/* Reset the ADC (reset is active low). */
1851 	data = hw_read_20kx(hw, GPIO_DATA);
1852 	data &= ~(0x1 << 15);
1853 	hw_write_20kx(hw, GPIO_DATA, data);
1854 
1855 	if (hw->model == CTSB1270) {
1856 		/* Set up the PCM4220 ADC on Titanium HD */
1857 		data &= ~0x0C;
1858 		if (1 == info->msr)
1859 			data |= 0x00; /* Single Speed Mode 32-50kHz */
1860 		else if (2 == info->msr)
1861 			data |= 0x08; /* Double Speed Mode 50-108kHz */
1862 		else
1863 			data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1864 		hw_write_20kx(hw, GPIO_DATA, data);
1865 	}
1866 
1867 	mdelay(10);
1868 	/* Return the ADC to normal operation. */
1869 	data |= (0x1 << 15);
1870 	hw_write_20kx(hw, GPIO_DATA, data);
1871 	mdelay(50);
1872 
1873 	/* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1874 	/* invert bit, interface format to I2S, word length to 24-bit, */
1875 	/* enable ADC high pass filter. Fixes bug 5323?		*/
1876 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1877 			 MAKE_WM8775_DATA(0x26));
1878 
1879 	/* Set the master mode (256fs) */
1880 	if (1 == info->msr) {
1881 		/* slave mode, 128x oversampling 256fs */
1882 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1883 						MAKE_WM8775_DATA(0x02));
1884 	} else if ((2 == info->msr) || (4 == info->msr)) {
1885 		/* slave mode, 64x oversampling, 256fs */
1886 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1887 						MAKE_WM8775_DATA(0x0A));
1888 	} else {
1889 		dev_alert(hw->card->dev,
1890 			  "Invalid master sampling rate (msr %d)!!!\n",
1891 			  info->msr);
1892 		err = -EINVAL;
1893 		goto error;
1894 	}
1895 
1896 	if (hw->model != CTSB1270) {
1897 		/* Configure GPIO bit 14 change to line-in/mic-in */
1898 		ctl = hw_read_20kx(hw, GPIO_CTRL);
1899 		ctl |= 0x1 << 14;
1900 		hw_write_20kx(hw, GPIO_CTRL, ctl);
1901 		hw_adc_input_select(hw, ADC_LINEIN);
1902 	} else {
1903 		hw_wm8775_input_select(hw, 0, 0);
1904 	}
1905 
1906 	return 0;
1907 error:
1908 	hw20k2_i2c_uninit(hw);
1909 	return err;
1910 }
1911 
1912 static struct capabilities hw_capabilities(struct hw *hw)
1913 {
1914 	struct capabilities cap;
1915 
1916 	cap.digit_io_switch = 0;
1917 	cap.dedicated_mic = hw->model == CTSB1270;
1918 	cap.output_switch = hw->model == CTSB1270;
1919 	cap.mic_source_switch = hw->model == CTSB1270;
1920 
1921 	return cap;
1922 }
1923 
1924 static int hw_output_switch_get(struct hw *hw)
1925 {
1926 	u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1927 
1928 	switch (data & 0x30) {
1929 	case 0x00:
1930 	     return 0;
1931 	case 0x10:
1932 	     return 1;
1933 	case 0x20:
1934 	     return 2;
1935 	default:
1936 	     return 3;
1937 	}
1938 }
1939 
1940 static int hw_output_switch_put(struct hw *hw, int position)
1941 {
1942 	u32 data;
1943 
1944 	if (position == hw_output_switch_get(hw))
1945 		return 0;
1946 
1947 	/* Mute line and headphones (intended for anti-pop). */
1948 	data = hw_read_20kx(hw, GPIO_DATA);
1949 	data |= (0x03 << 11);
1950 	hw_write_20kx(hw, GPIO_DATA, data);
1951 
1952 	data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1953 	switch (position) {
1954 	case 0:
1955 		break;
1956 	case 1:
1957 		data |= 0x10;
1958 		break;
1959 	default:
1960 		data |= 0x20;
1961 	}
1962 	hw_write_20kx(hw, GPIO_EXT_DATA, data);
1963 
1964 	/* Unmute line and headphones. */
1965 	data = hw_read_20kx(hw, GPIO_DATA);
1966 	data &= ~(0x03 << 11);
1967 	hw_write_20kx(hw, GPIO_DATA, data);
1968 
1969 	return 1;
1970 }
1971 
1972 static int hw_mic_source_switch_get(struct hw *hw)
1973 {
1974 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1975 
1976 	return hw20k2->mic_source;
1977 }
1978 
1979 static int hw_mic_source_switch_put(struct hw *hw, int position)
1980 {
1981 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1982 
1983 	if (position == hw20k2->mic_source)
1984 		return 0;
1985 
1986 	switch (position) {
1987 	case 0:
1988 		hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1989 		break;
1990 	case 1:
1991 		hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1992 		break;
1993 	case 2:
1994 		hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1995 		break;
1996 	default:
1997 		return 0;
1998 	}
1999 
2000 	hw20k2->mic_source = position;
2001 
2002 	return 1;
2003 }
2004 
2005 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2006 {
2007 	struct hw *hw = dev_id;
2008 	unsigned int status;
2009 
2010 	status = hw_read_20kx(hw, GIP);
2011 	if (!status)
2012 		return IRQ_NONE;
2013 
2014 	if (hw->irq_callback)
2015 		hw->irq_callback(hw->irq_callback_data, status);
2016 
2017 	hw_write_20kx(hw, GIP, status);
2018 	return IRQ_HANDLED;
2019 }
2020 
2021 static int hw_card_start(struct hw *hw)
2022 {
2023 	int err = 0;
2024 	struct pci_dev *pci = hw->pci;
2025 	unsigned int gctl;
2026 	const unsigned int dma_bits = BITS_PER_LONG;
2027 
2028 	err = pci_enable_device(pci);
2029 	if (err < 0)
2030 		return err;
2031 
2032 	/* Set DMA transfer mask */
2033 	if (!dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) {
2034 		dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits));
2035 	} else {
2036 		dma_set_mask(&pci->dev, DMA_BIT_MASK(32));
2037 		dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32));
2038 	}
2039 
2040 	if (!hw->io_base) {
2041 		err = pci_request_regions(pci, "XFi");
2042 		if (err < 0)
2043 			goto error1;
2044 
2045 		hw->io_base = pci_resource_start(hw->pci, 2);
2046 		hw->mem_base = ioremap(hw->io_base,
2047 				       pci_resource_len(hw->pci, 2));
2048 		if (!hw->mem_base) {
2049 			err = -ENOENT;
2050 			goto error2;
2051 		}
2052 	}
2053 
2054 	/* Switch to 20k2 mode from UAA mode. */
2055 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2056 	set_field(&gctl, GCTL_UAA, 0);
2057 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2058 
2059 	if (hw->irq < 0) {
2060 		err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2061 				  KBUILD_MODNAME, hw);
2062 		if (err < 0) {
2063 			dev_err(hw->card->dev,
2064 				"XFi: Cannot get irq %d\n", pci->irq);
2065 			goto error2;
2066 		}
2067 		hw->irq = pci->irq;
2068 	}
2069 
2070 	pci_set_master(pci);
2071 
2072 	return 0;
2073 
2074 /*error3:
2075 	iounmap((void *)hw->mem_base);
2076 	hw->mem_base = (unsigned long)NULL;*/
2077 error2:
2078 	pci_release_regions(pci);
2079 	hw->io_base = 0;
2080 error1:
2081 	pci_disable_device(pci);
2082 	return err;
2083 }
2084 
2085 static int hw_card_stop(struct hw *hw)
2086 {
2087 	unsigned int data;
2088 
2089 	/* disable transport bus master and queueing of request */
2090 	hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2091 
2092 	/* disable pll */
2093 	data = hw_read_20kx(hw, PLL_ENB);
2094 	hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2095 
2096 	/* TODO: Disable interrupt and so on... */
2097 	return 0;
2098 }
2099 
2100 static int hw_card_shutdown(struct hw *hw)
2101 {
2102 	if (hw->irq >= 0)
2103 		free_irq(hw->irq, hw);
2104 
2105 	hw->irq	= -1;
2106 	iounmap(hw->mem_base);
2107 	hw->mem_base = NULL;
2108 
2109 	if (hw->io_base)
2110 		pci_release_regions(hw->pci);
2111 
2112 	hw->io_base = 0;
2113 
2114 	pci_disable_device(hw->pci);
2115 
2116 	return 0;
2117 }
2118 
2119 static int hw_card_init(struct hw *hw, struct card_conf *info)
2120 {
2121 	int err;
2122 	unsigned int gctl;
2123 	u32 data = 0;
2124 	struct dac_conf dac_info = {0};
2125 	struct adc_conf adc_info = {0};
2126 	struct daio_conf daio_info = {0};
2127 	struct trn_conf trn_info = {0};
2128 
2129 	/* Get PCI io port/memory base address and
2130 	 * do 20kx core switch if needed. */
2131 	err = hw_card_start(hw);
2132 	if (err)
2133 		return err;
2134 
2135 	/* PLL init */
2136 	err = hw_pll_init(hw, info->rsr);
2137 	if (err < 0)
2138 		return err;
2139 
2140 	/* kick off auto-init */
2141 	err = hw_auto_init(hw);
2142 	if (err < 0)
2143 		return err;
2144 
2145 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2146 	set_field(&gctl, GCTL_DBP, 1);
2147 	set_field(&gctl, GCTL_TBP, 1);
2148 	set_field(&gctl, GCTL_FBP, 1);
2149 	set_field(&gctl, GCTL_DPC, 0);
2150 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2151 
2152 	/* Reset all global pending interrupts */
2153 	hw_write_20kx(hw, GIE, 0);
2154 	/* Reset all SRC pending interrupts */
2155 	hw_write_20kx(hw, SRC_IP, 0);
2156 
2157 	if (hw->model != CTSB1270) {
2158 		/* TODO: detect the card ID and configure GPIO accordingly. */
2159 		/* Configures GPIO (0xD802 0x98028) */
2160 		/*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2161 		/* Configures GPIO (SB0880) */
2162 		/*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2163 		hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2164 	} else {
2165 		hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2166 	}
2167 	/* Enable audio ring */
2168 	hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2169 
2170 	trn_info.vm_pgt_phys = info->vm_pgt_phys;
2171 	err = hw_trn_init(hw, &trn_info);
2172 	if (err < 0)
2173 		return err;
2174 
2175 	daio_info.msr = info->msr;
2176 	err = hw_daio_init(hw, &daio_info);
2177 	if (err < 0)
2178 		return err;
2179 
2180 	dac_info.msr = info->msr;
2181 	err = hw_dac_init(hw, &dac_info);
2182 	if (err < 0)
2183 		return err;
2184 
2185 	adc_info.msr = info->msr;
2186 	adc_info.input = ADC_LINEIN;
2187 	adc_info.mic20db = 0;
2188 	err = hw_adc_init(hw, &adc_info);
2189 	if (err < 0)
2190 		return err;
2191 
2192 	data = hw_read_20kx(hw, SRC_MCTL);
2193 	data |= 0x1; /* Enables input from the audio ring */
2194 	hw_write_20kx(hw, SRC_MCTL, data);
2195 
2196 	return 0;
2197 }
2198 
2199 #ifdef CONFIG_PM_SLEEP
2200 static int hw_suspend(struct hw *hw)
2201 {
2202 	hw_card_stop(hw);
2203 	return 0;
2204 }
2205 
2206 static int hw_resume(struct hw *hw, struct card_conf *info)
2207 {
2208 	/* Re-initialize card hardware. */
2209 	return hw_card_init(hw, info);
2210 }
2211 #endif
2212 
2213 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2214 {
2215 	return readl(hw->mem_base + reg);
2216 }
2217 
2218 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2219 {
2220 	writel(data, hw->mem_base + reg);
2221 }
2222 
2223 static const struct hw ct20k2_preset = {
2224 	.irq = -1,
2225 
2226 	.card_init = hw_card_init,
2227 	.card_stop = hw_card_stop,
2228 	.pll_init = hw_pll_init,
2229 	.is_adc_source_selected = hw_is_adc_input_selected,
2230 	.select_adc_source = hw_adc_input_select,
2231 	.capabilities = hw_capabilities,
2232 	.output_switch_get = hw_output_switch_get,
2233 	.output_switch_put = hw_output_switch_put,
2234 	.mic_source_switch_get = hw_mic_source_switch_get,
2235 	.mic_source_switch_put = hw_mic_source_switch_put,
2236 #ifdef CONFIG_PM_SLEEP
2237 	.suspend = hw_suspend,
2238 	.resume = hw_resume,
2239 #endif
2240 
2241 	.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2242 	.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2243 	.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2244 	.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2245 	.src_set_state = src_set_state,
2246 	.src_set_bm = src_set_bm,
2247 	.src_set_rsr = src_set_rsr,
2248 	.src_set_sf = src_set_sf,
2249 	.src_set_wr = src_set_wr,
2250 	.src_set_pm = src_set_pm,
2251 	.src_set_rom = src_set_rom,
2252 	.src_set_vo = src_set_vo,
2253 	.src_set_st = src_set_st,
2254 	.src_set_ie = src_set_ie,
2255 	.src_set_ilsz = src_set_ilsz,
2256 	.src_set_bp = src_set_bp,
2257 	.src_set_cisz = src_set_cisz,
2258 	.src_set_ca = src_set_ca,
2259 	.src_set_sa = src_set_sa,
2260 	.src_set_la = src_set_la,
2261 	.src_set_pitch = src_set_pitch,
2262 	.src_set_dirty = src_set_dirty,
2263 	.src_set_clear_zbufs = src_set_clear_zbufs,
2264 	.src_set_dirty_all = src_set_dirty_all,
2265 	.src_commit_write = src_commit_write,
2266 	.src_get_ca = src_get_ca,
2267 	.src_get_dirty = src_get_dirty,
2268 	.src_dirty_conj_mask = src_dirty_conj_mask,
2269 	.src_mgr_enbs_src = src_mgr_enbs_src,
2270 	.src_mgr_enb_src = src_mgr_enb_src,
2271 	.src_mgr_dsb_src = src_mgr_dsb_src,
2272 	.src_mgr_commit_write = src_mgr_commit_write,
2273 
2274 	.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2275 	.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2276 	.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2277 	.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2278 	.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2279 	.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2280 	.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2281 
2282 	.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2283 	.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2284 	.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2285 	.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2286 	.amixer_set_mode = amixer_set_mode,
2287 	.amixer_set_iv = amixer_set_iv,
2288 	.amixer_set_x = amixer_set_x,
2289 	.amixer_set_y = amixer_set_y,
2290 	.amixer_set_sadr = amixer_set_sadr,
2291 	.amixer_set_se = amixer_set_se,
2292 	.amixer_set_dirty = amixer_set_dirty,
2293 	.amixer_set_dirty_all = amixer_set_dirty_all,
2294 	.amixer_commit_write = amixer_commit_write,
2295 	.amixer_get_y = amixer_get_y,
2296 	.amixer_get_dirty = amixer_get_dirty,
2297 
2298 	.dai_get_ctrl_blk = dai_get_ctrl_blk,
2299 	.dai_put_ctrl_blk = dai_put_ctrl_blk,
2300 	.dai_srt_set_srco = dai_srt_set_srco,
2301 	.dai_srt_set_srcm = dai_srt_set_srcm,
2302 	.dai_srt_set_rsr = dai_srt_set_rsr,
2303 	.dai_srt_set_drat = dai_srt_set_drat,
2304 	.dai_srt_set_ec = dai_srt_set_ec,
2305 	.dai_srt_set_et = dai_srt_set_et,
2306 	.dai_commit_write = dai_commit_write,
2307 
2308 	.dao_get_ctrl_blk = dao_get_ctrl_blk,
2309 	.dao_put_ctrl_blk = dao_put_ctrl_blk,
2310 	.dao_set_spos = dao_set_spos,
2311 	.dao_commit_write = dao_commit_write,
2312 	.dao_get_spos = dao_get_spos,
2313 
2314 	.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2315 	.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2316 	.daio_mgr_enb_dai = daio_mgr_enb_dai,
2317 	.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2318 	.daio_mgr_enb_dao = daio_mgr_enb_dao,
2319 	.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2320 	.daio_mgr_dao_init = daio_mgr_dao_init,
2321 	.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2322 	.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2323 	.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2324 	.daio_mgr_commit_write = daio_mgr_commit_write,
2325 
2326 	.set_timer_irq = set_timer_irq,
2327 	.set_timer_tick = set_timer_tick,
2328 	.get_wc = get_wc,
2329 };
2330 
2331 int create_20k2_hw_obj(struct hw **rhw)
2332 {
2333 	struct hw20k2 *hw20k2;
2334 
2335 	*rhw = NULL;
2336 	hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2337 	if (!hw20k2)
2338 		return -ENOMEM;
2339 
2340 	hw20k2->hw = ct20k2_preset;
2341 	*rhw = &hw20k2->hw;
2342 
2343 	return 0;
2344 }
2345 
2346 int destroy_20k2_hw_obj(struct hw *hw)
2347 {
2348 	if (hw->io_base)
2349 		hw_card_shutdown(hw);
2350 
2351 	kfree(hw);
2352 	return 0;
2353 }
2354